
1y Hi
uma

e

n Memory

DRAM)

tegration

 translation

isk

I$
© 2002 b
Vijayk

m

d

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

ll, Wood, Sohi, Smith,
r, Lipasti and Roth

mory

Storage Hierarchy II: Mai

main memory

• memory technology (

• interleaving

• special DRAMs

• processor/memory in

virtual memory and address

 (swap)

L3

L2

D$

reg

y
4y Hill, Wood, Sohi, Smith,

umar, Lipasti and Roth

AM (Dy cess Memory)

• bit stored
• optimize RAM)

– capacitor tructive read)
• read is a to restore bit)

– charge le
• refresh b very 2ms (row at a time)

• access tim

• cycle time cess time

rdline”

bitline” (datain/out)

ll active or not)
© 2002 b
Vijayk

DR
“wo
(ce
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memor

namic Random Ac

 as charge in capacitor
d for density (1 transistor, 6 for S

 discharges on a read (des
utomatically followed by a write (

aks away over time
y reading/writing every bit once e

e (time to read)

 (time between reads) > ac

capacitor

pass transistor

“

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

5© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti and Roth

DRAM Organization

• square row/column matrix

• multiplexed address lines

• internal row buffer

• operation
• put row address on lines

• set row address strobe (RAS)

• read row into row buffer

• put column address on lines

• set column address strobe (CAS)

• read column bits out of row buffer

• write row buffer contents to row

• usually narrow interface (data)

row buffer

DRAM array

CAS

RAS

data

address

ry
6by H

kum

RAM

A

rs per bit)
© 2002
Vijay

SR
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memo

ill, Wood, Sohi, Smith,
ar, Lipasti and Roth

Comparison with S

M

• optimized for speed, then density
+ 1/4–1/8 access time of DRAM

– 1/4 density of DRAM

• bits stored as flip-flops (4-6 transisto

• static: bit not erased on a read
+ no need to refresh

– greater power dissipated than DRAM

+ access time = cycle time

• non-multiplexed address/data lines

7© 200 Woo
Vija Lipa

d
•

sp
•

Cycle Time
300ns
160ns
120ns
100ns
2 by Hill,
ykumar,

•

•
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

d, Sohi, Smith,
sti and Roth

DRAM Specs

ensity: +60% annual
 Moore’s law: doubles every 18 months

eed: %7 annual
 much flatter improvement

Year #bits Access Time
1980 64Kb 150ns
1990 1Mb 80ns
1993 4Mb 60ns
2000 64Mb 50ns

8© 200 Wo
Vij Lipa

y

3

a

tr

c cess time)

w k?
2 by Hill,
aykumar,

•

•

•

•

•
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

od, Sohi, Smith,
sti and Roth

Simple Main Memor

2-bit DRAM (1 word of data at a time)
• pretty wide for an actual DRAM

ccess time: 2 cycles (A)

ansfer time: 1 cycle (T)
• time on the bus

ycle time: 4 cycles (B = cycle time - ac

hat is the miss penalty for 4-word bloc

9© 2 ll, W
V r, L

Simple Main Memory

le addr mem steady
12 A *

A *
T/B *
B *

13 A *
A *

T/B *
B *

4-word access = 15 cycles

4-word cycle = 16 cycles

can we speed this up?

• lower latency?
 no

A,B & T are fixed

“9 women...”

her bandwidth?
002 by Hi
ijaykuma

cyc
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

ood, Sohi, Smith,
ipasti and Roth

14 A *
A *

T/B *
B *

15 A *
A *

T/B *
B *

–

•

•

• hig

CIS 501 Lecture Notes
orage Hierarchy II: Main Memory

10© 20 , Wo
Vi , Lip

Bandwidth: Wider DRAMs

le addr mem steady
12 A *

A *
T/B *
B *

14 A *
A *

T/B *
B *

 6
ff-chip) are hard

 l

new parameter

• 64-bit DRAMs

4-word access = 7 cycles

4-word cycle = 8 cycles
02 by Hill
jaykumar

cyc
1
2
3
4
5
6
7
8

–

–

St
od, Sohi, Smith,
asti and Roth

4-bit bus
• wide buses (especially o

• electrical problems

arger expansion size

11© 20 , Wo
Vi , Lip

n ng/Banking

u u andwidth

 e
ether called a bank

 M

 w

s s lines
02 by Hill
jaykumar

Ba

se m

•

•

•

•

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

od, Sohi, Smith,
asti and Roth

dwidth: Simple Interleavi

ltiple DRAMs, exploit their aggregate b

ach DRAM called a bank
• not true: sometimes collection of DRAMs tog

 32-bit banks

ord A in bank (A % M) at (A div M)

imple interleaving: banks share addres

12© 20 ll, W
V r, Li

g

4 d

4 d

yc bank3 steady
1 A
2 A
3 B *
4 B *
5 *
6 T *
02 by Hi
ijaykuma

-wor

-wor

+

+

+

c

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

ood, Sohi, Smith,
pasti and Roth

Simple Interleavin

 access = 6 cycles

 cycle = 4 cycles

can start a new access in cycle 5

overlap access with transfer

and still use a 32-bit bus!

le addr bank0 bank1 bank2
12 A A A

A A A
T/B B B
B T/B B

T

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

13y H
uma

idth: Complex Interleaving

pl : banks share address lines

p ng: banks are independent

nsive (separate address lines for each bank)

es

at

b2 b3

address0

data

b0 b1 b2 b3

address1
address2
address3
© 2002 b
Vijayk

sim

com

addr

d

ill, Wood, Sohi, Smith,
r, Lipasti and Roth

Bandw

e interleaving

lex interleavi

– more expe

s

a

b0 b1

14© 20 l, W
V r, Lip

g

4 d

4 d

 s

 s

yc bank3 steady
1
2
3 *
4 A *
5 A *
6 T/B *
7 B
02 by Hil
ijaykuma

-wor

-wor

•

•

c

CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

ood, Sohi, Smith,
asti and Roth

Complex Interleavin

access = 6 cycles

cycle = 4 cycles

ame as simple interleaving

o why use complex interleaving?

le addr bank0 bank1 bank2
12 A
13 A A
14 T/B A A
15 B T/B A

B T/B
B

ory
20by

yku

ions

rm d column from buffer

se from row buffer?

ss (narrow DRAMs)

s

 toggle CAS

th M)

s are commodities)
© 2002
Vija

no

ob

or
CIS 501 Lecture Notes
Storage Hierarchy II: Main Mem

Hill, Wood, Sohi, Smith,
mar, Lipasti and Roth

DRAM Optimizat

al operation: read row into buffer, rea

rvation: why not do multiple accesses

• nibble mode: additional bits per acce

• page mode: change column addres

• static column mode (SCRAM): don’t

• cached DRAMs: multiple row buffers

ogonally: synchronous DRAMs (SDRA

• clock replaces RAS/CAS

+ faster

• just now becoming standard (DRAM

21© Hill,
ar,

m z]

• ntroller)

•

•

•

•

•

+
 much b/w

–

2002 by
Vijaykum

a co
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

Wood, Sohi, Smith,
 Lipasti and Roth

RAMBUS

pletely new memory interface [Horowit

 high level behaviors (like a memory co

 synchronous, no CAS/RAS

 internal caching (4–16 row buffers)

 split transaction (address queuing)

 8-bit data
• narrow (fix w/ multiple RAMBUS channels)

 variable length sequential transfers

 2ns/byte transfer time
• 5GB/s: we initially said we couldn’t get this

 expensive

22© ill,
ar,

gration

t e on same chip

• . why not memory?

– gies incompatible

apacitance a bad thing

w n

• ssor (10% enough)

• rformance from that

• essor/memory unit)

• , performance

•
2002 by H
Vijaykum

he n

hat
CIS 501 Lecture Notes
Storage Hierarchy II: Main Memory

Wood, Sohi, Smith,
Lipasti and Roth

Processor/Memory Inte

xt logical step: processor and memory

move on-chip: FP, L2 caches, graphics

 problem: processor/memory technolo
• different number/kinds of metal layers

• DRAM: capacitance is a good thing, logic: c

eeds to be done?

use some DRAM area for simple proce

eliminate external memory bus, milk pe

integrate interconnect interfaces (proc

re-examine tradeoffs: technology, cost

e.g., HITACHI

	Storage Hierarchy II: Main Memory
	main memory
	• memory technology (DRAM)
	• interleaving
	• special DRAMs
	• processor/memory integration

	virtual memory and address translation

	Readings
	H+P
	• chapter 5.8 to 5.13

	History
	“...the one single development that put computers on their feet was the invention of a reliable f...
	–Maurice Wilkes

	DRAM (Dynamic Random Access Memory)
	• bit stored as charge in capacitor
	• optimized for density (1 transistor, 6 for SRAM)

	– capacitor discharges on a read (destructive read)
	• read is automatically followed by a write (to restore bit)

	– charge leaks away over time
	• refresh by reading/writing every bit once every 2ms (row at a time)
	• access time (time to read)
	• cycle time (time between reads) > access time

	DRAM Organization
	• square row/column matrix
	• multiplexed address lines
	• internal row buffer
	• operation
	• put row address on lines
	• set row address strobe (RAS)
	• read row into row buffer
	• put column address on lines
	• set column address strobe (CAS)
	• read column bits out of row buffer
	• write row buffer contents to row

	• usually narrow interface (data)

	Comparison with SRAM
	SRAM
	• optimized for speed, then density
	+ 1/4–1/8 access time of DRAM
	– 1/4 density of DRAM

	• bits stored as flip-flops (4-6 transistors per bit)
	• static: bit not erased on a read
	+ no need to refresh
	– greater power dissipated than DRAM
	+ access time = cycle time

	• non-multiplexed address/data lines

	DRAM Specs
	1980
	64Kb
	150ns
	300ns
	1990
	1Mb
	80ns
	160ns
	1993
	4Mb
	60ns
	120ns
	2000
	64Mb
	50ns
	100ns
	• density: +60% annual
	• Moore’s law: doubles every 18 months

	• speed: %7 annual
	• much flatter improvement

	Simple Main Memory
	• 32-bit DRAM (1 word of data at a time)
	• pretty wide for an actual DRAM

	• access time: 2 cycles (A)
	• transfer time: 1 cycle (T)
	• time on the bus

	• cycle time: 4 cycles (B = cycle time - access time)
	• what is the miss penalty for 4-word block?

	Simple Main Memory
	1
	12
	A
	*
	2
	A
	*
	3
	T/B
	*
	4
	B
	*
	5
	13
	A
	*
	6
	A
	*
	7
	T/B
	*
	8
	B
	*
	9
	14
	A
	*
	10
	A
	*
	11
	T/B
	*
	12
	B
	*
	13
	15
	A
	*
	14
	A
	*
	15
	T/B
	*
	16
	B
	*
	4-word access = 15 cycles
	4-word cycle = 16 cycles
	can we speed this up?
	• lower latency?
	– no
	• A,B & T are fixed
	• “9 women...”

	• higher bandwidth?

	Bandwidth: Wider DRAMs
	1
	12
	A
	*
	2
	A
	*
	3
	T/B
	*
	4
	B
	*
	5
	14
	A
	*
	6
	A
	*
	7
	T/B
	*
	8
	B
	*
	– 64-bit bus
	• wide buses (especially off-chip) are hard
	• electrical problems

	– larger expansion size
	new parameter
	• 64-bit DRAMs

	4-word access = 7 cycles
	4-word cycle = 8 cycles

	Bandwidth: Simple Interleaving/Banking
	use multiple DRAMs, exploit their aggregate bandwidth
	• each DRAM called a bank
	• not true: sometimes collection of DRAMs together called a bank

	• M 32-bit banks
	• word A in bank (A % M) at (A div M)
	• simple interleaving: banks share address lines

	Simple Interleaving
	1
	12
	A
	A
	A
	A
	2
	A
	A
	A
	A
	3
	T/B
	B
	B
	B
	*
	4
	B
	T/B
	B
	B
	*
	5
	T
	*
	6
	T
	*
	4-word access = 6 cycles
	4-word cycle = 4 cycles
	+ can start a new access in cycle 5
	+ overlap access with transfer
	+ and still use a 32-bit bus!

	Bandwidth: Complex Interleaving
	simple interleaving: banks share address lines
	complex interleaving: banks are independent
	– more expensive (separate address lines for each bank)

	Complex Interleaving
	1
	12
	A
	2
	13
	A
	A
	3
	14
	T/B
	A
	A
	*
	4
	15
	B
	T/B
	A
	A
	*
	5
	B
	T/B
	A
	*
	6
	B
	T/B
	*
	7
	B
	4-word access = 6 cycles
	4-word cycle = 4 cycles
	• same as simple interleaving
	• so why use complex interleaving?

	Simple with Non-Sequential Access
	what if the 4 words are not sequential?
	• e.g., stride = 3, addresses = 12,15,18,21
	– 4-word access = 4-word cycle = 12 cycles!!

	1
	12 (15)
	A
	A
	A
	A
	*
	2
	A
	A
	A
	A
	*
	3
	T/B
	B
	B
	B
	*
	4
	B
	B
	B
	T/B
	*
	5
	18
	A
	A
	A
	A
	*
	6
	A
	A
	A
	A
	*
	7
	B
	B
	T/B
	B
	*
	8
	B
	B
	B
	B
	*
	9
	21
	A
	A
	A
	A
	*
	10
	A
	A
	A
	A
	*
	11
	B
	T/B
	B
	B
	*
	12
	B
	B
	B
	B
	*

	Complex with Non-Sequential Access
	non-sequential (stride = 3) access with complex interleaving
	+ 4-word access = 6, 4-word cycle = 4

	1
	12
	A
	*
	2
	15
	A
	A
	*
	3
	18
	T/B
	A
	A
	*
	4
	21
	B
	A
	A
	T/B
	*
	5
	A
	T/B
	B
	6
	T/B
	B
	aren’t all accesses sequential anyway (e.g. cache lines)
	• DMA isn’t, vector accesses (later) aren’t
	• want more banks than words in a cache line (superbanks)
	• why? multiple cache misses in parallel (non-blocking caches)

	Complex Interleaving
	problem: power of 2 strides (very common)
	• e.g. same 4 banks, stride = 8, addresses = 12, 20, 28, 36
	• 4-word access = 15 cycles, 4-word cycle = 16 cycle

	1
	12
	A
	*
	2
	A
	*
	3
	T/B
	*
	4
	B
	*
	5
	20
	A
	*
	6
	A
	*
	7
	T/B
	*
	8
	B
	*
	• problem: all addresses map to the same bank
	• solution: use prime number of banks (BSP: 17 banks)

	Interleaving Summary
	banks
	+ high bandwidth with a narrow (cheap) bus

	superbank
	• collection of banks that make up a cache line
	+ multiple superbanks, good for multiple line accesses

	how many banks to “eliminate” conflicts?
	• r.o.t. answer = 2 * banks required for b/w purposes

	Bandwidth Determines Capacity?
	aggressive configurations need a lot of banks
	• 120ns DRAM
	• processor 1: 4ns clock, no cache ﬁ 1 64-bit ref / cycle
	• at least 32 banks

	• processor 2: add write-back cache ﬁ 1 64-bit ref / 4 cycles
	• at least 8 banks

	– hard to make this many banks from narrow DRAMs
	• e.g., 32 64-bit banks from 1x64Mb DRAMS ﬁ 2048 DRAMS (4 GB)
	• e.g., 32 64-bit banks from 4x16Mb DRAMS ﬁ 512 DRAMS (1 GB)
	• can’t force people to buy that much memory just to get bandwidth
	• use wide DRAMs (32-bit) or optimize narrow DRAMs

	DRAM Optimizations
	normal operation: read row into buffer, read column from buffer
	observation: why not do multiple accesses from row buffer?
	• nibble mode: additional bits per access (narrow DRAMs)
	• page mode: change column address
	• static column mode (SCRAM): don’t toggle CAS
	• cached DRAMs: multiple row buffers

	orthogonally: synchronous DRAMs (SDRAM)
	• clock replaces RAS/CAS
	+ faster
	• just now becoming standard (DRAMs are commodities)

	RAMBUS
	a completely new memory interface [Horowitz]
	• high level behaviors (like a memory controller)
	• synchronous, no CAS/RAS
	• internal caching (4–16 row buffers)
	• split transaction (address queuing)
	• 8-bit data
	• narrow (fix w/ multiple RAMBUS channels)

	• variable length sequential transfers
	+ 2ns/byte transfer time
	• 5GB/s: we initially said we couldn’t get this much b/w

	– expensive

	Processor/Memory Integration
	the next logical step: processor and memory on same chip
	• move on-chip: FP, L2 caches, graphics. why not memory?
	– problem: processor/memory technologies incompatible
	• different number/kinds of metal layers
	• DRAM: capacitance is a good thing, logic: capacitance a bad thing

	what needs to be done?
	• use some DRAM area for simple processor (10% enough)
	• eliminate external memory bus, milk performance from that
	• integrate interconnect interfaces (processor/memory unit)
	• re-examine tradeoffs: technology, cost, performance
	• e.g., HITACHI

	Just A Little Detail...
	address generated by program != physical memory address

	Virtual Memory (VM)
	virtual: something that appears to be there, but isn’t
	original motivation: make more memory “appear to be there”
	• physical memory expensive & not very dense ﬁ too small
	+ business: common software on wide product line
	– w/out VM software sensitive to physical memory size (overlays)

	current motivation: use indirection in VM as a feature
	• physical memories are big now
	• multiprogramming, sharing, relocation, protection
	• fast start-up, sparse use
	• memory mapped files, networks

	Virtual Memory: The Story
	• blocks called pages
	• processes use virtual addresses (VA)
	• physical memory uses physical addresses (PA)
	• address divided into page offset, page number
	• virtual: virtual page number (VPN)
	• physical: page frame number (PFN)

	• address translation: system maps VA to PA (VPN to PFN)
	• e.g., 4KB pages, 32-bit machine, 64MB physical memory
	• 32-bit VA, 26-bit PA (log264MB), 12-bit page offset (log24KB)

	System Maps VA To PA (VPN to PFN)
	key word in that sentence? “system”
	• individual processes do not perform mapping
	• same VPNs in different processes map to different PFNs
	+ protection: processes cannot use each other’s PAs
	+ programming made easier: each process thinks it is alone
	+ relocation: program can be run anywhere in memory
	• doesn’t have to be physically contiguous
	• can be paged out, paged back in to a different physical location

	“system”: something user process can’t directly use via ISA
	• OS or purely microarchitectural part of processor

	Virtual Memory: The Four Questions
	same four questions, different four answers
	• page placement: fully (or very highly) associative
	• why?

	• page identification: address translation
	• soon

	• page replacement: sophisticated (LRU + “working set”)
	• why?

	• write strategy: always write-back + write-allocate
	• why?

	The Answer Behind the Four Answers
	backing store to main memory is disk
	• memory is 50 to 100 slower than processor
	• disk is 20 to 100 thousand times slower than memory
	• disk is 1 to 10 million times slower than processor

	a VA miss (VPN has no PFN) is called a page fault
	• high cost of page fault determines design
	• full associativity + OS replacement ﬁ reduce miss rate
	• have time to let software get involved, make better decisions

	• write-back reduces disk traffic
	• page size usually large (4KB to 16KB) to amortize reads

	Compare Levels of Memory Hierarchy
	thit
	1,2 cycles
	5-15 cycles
	10-150 cycles
	tmiss
	6-50 cycles
	20-200 cycles
	0.5-5M cycles
	capacity
	4-128KB
	128KB-8MB
	16MB-8GB
	block size
	8-64B
	32-256B
	4KB-16KB
	associativity
	1,2
	2,4,8,16
	full
	write strategy
	write-thru/back
	write-back
	write-back
	thit and tmiss determine everything else

	VM Architecture
	so far: per-process virtual address space (most common)
	• created when process is born, gone when process dies

	alternative: system-wide shared virtual address space
	• persistent “single level store”
	• requires VERY LARGE virtual address space (>> 32-bit)
	• e.g. IBM PowerPC
	• use “segments”
	• 16M segments in whole system, each process gets 16
	• 32-bit process address (high 4-bits are “segment descriptor”)
	• extends to 52-bit global virtual address space

	Address Translation: Page Tables
	OS performs address translation using a page table
	• each process has its own page table
	• OS knows address of each process’ page table

	• a page table is an array of page table entries (PTEs)
	• one for each VPN of each process, indexed by VPN

	• each PTE contains
	• PFN
	• permission
	• dirty bit
	• LRU state
	• e.g., 4-bytes total

	Page Table Size
	page table size
	• example #1: 32-bit VA, 4KB pages, 4-byte PTE
	• 1M pages, 4MB page table (bad, but could be worse)

	• example #2: 64-bit VA, 4KB pages, 4-byte PTE
	• 4P pages, 16PB page table (couldn’t be worse, really)

	• upshot: can’t have page tables of this size in memory

	techniques for reducing page table size
	• multi-level page tables
	• inverted page tables

	Multi-Level Page Tables
	tree of page tables
	• L1 table points to L2 tables (etc.)
	• different VPN bits are offsets at different levels

	+ save space: not all tables at all levels need to exist
	• exploits “sparse use” of virtual address space

	– slow: multi-hop chain of translations
	• overwhelmed by space savings
	• e.g., Alpha

	Multi-Level Page Table Example
	• 32-bit address space, 4KB pages, 4 byte PTEs
	• 2 level virtual page table
	• 2nd-level tables are each the size of 1 data page
	• program uses only upper and lower 1MB of address space
	• how much memory does page table take?
	• 4GB VM / 4KB pages ﬁ 1M pages
	• 4KB pages / 4B PTEs ﬁ 1K pages per 2nd level table
	• 1M pages / 1K pages per 2nd level table ﬁ 1K 2nd-level tables
	• 1K 2nd level tables + virtual page table ﬁ 4KB first level table
	• 1MB VA space + 4KB pages ﬁ 256 PTEs ﬁ 1 2nd level table
	• memory = 1st level table (4KB) + 2 * 2nd level table (4KB) = 12KB!!

	Inverted Page Table
	observe: don’t need more PTEs than physical memory pages
	• hash virtual address into array of PTEs
	• deal with collisions via chaining

	+ small (proportional to memory size << VA space size)
	• page table size = (memory size / page size) * (PTE size + pointer)

	– slow searches (PTE pointer chasing)
	• use extra levels of hashing to mitigate
	• e.g., IBM POWER1

	Mechanics of Address Translation
	so how does address translation actually work?
	• does process read page table & translate every VA to PA?
	– would be REALLY SLOW (esp. with 2-level page table)
	– is actually not allowed (implies process can access PAs)

	• “system” performs translation & access on process behalf
	+ legal from a protection standpoint
	• who is “system”?

	• physical table: pointers are process PAs
	• processor can perform translation (Intel’s page table walker FSM)
	• page-table base register helps here

	• virtual table: pointers are kernel VAs (can be paged)
	• processor or OS

	Fast Translation: Virtual Caches
	solution #1: first level caches are “virtual”
	• L2 and main memory are “physical”
	+ address translation only on a miss (fast)
	• not popular today, but may be coming into vogue

	– virtual address space changes
	• e.g., user vs. kernel, different users
	• flush caches on context switches?
	• process IDs in caches?
	• single system-wide virtual address space?

	– I/O
	• only deals with physical addresses
	• flush caches on I/O?

	Fast Translation: Physical Caches + TBs
	solution #2: first level caches are “physical”
	• address translation before every cache access
	+ no problems I/O, address space changes & MP
	– SLOW

	solution #2a: cache recent translations
	• not in I$ & D$
	• why not?

	• translation buffer (TB)
	+ only go to page table on TB miss
	– still 2 serial accesses on a hit

	Fast Translation: Physical Caches + TLBs
	solution #3: address translation & L1 cache access in parallel!!
	• translation lookaside buffer (TLB)
	+ fast (one step access)
	+ no problems changing virtual address spaces
	+ can keep I/O coherent
	• but...

	Physical Cache with a Virtual Index?
	Q:how to access a physical cache with a virtual address?
	• A.1: only cache index matters for access
	• A.2: only part of virtual address changes during translation
	• A.3: make sure index is in untranslated part
	• index is within page offset
	• virtual index == physical index

	• sometimes called “virtually indexed, physically tagged”
	+ fast
	– restricts cache size? (block size * #sets) <= page size
	• that’s OK, use associativity to increase size

	Cache + TLB Access
	virtually-indexed, virutally-tagged
	virtually-indexed, physically-tagged with TLB

	Synonyms
	sometimes, it is useful to find VA (i.e., cache set) given PA only
	• bus events: MP invalidations, DMA I/O, split transaction bus

	what happens if (index+offset) > page offset?
	• J VPN bits used in index
	• same physical block may be in 2J sets
	– impossible to know which given only physical address
	• called a synonym: intra-cache coherence problem

	• solutions
	• search all possible synonymous sets in parallel
	• restrict page placement in OS s.t. index(VA) == index(PA)
	• eliminate by OS convention: single shared virtual address space

	More About TLBs
	TLB miss
	• entry not in TLB, but in page table (soft miss)
	• not quite a page fault (no disk access necessary)

	• virtual page table: trap to OS, double TLB miss
	• physical page table: processor can do it in ~30 cycles

	why are there no L2 TLBs? (esp. with a physical page table)
	superpages: variable sized pages for more TLB coverage
	• want TLB to cover L2 cache contents (why?)
	– need OS support (not widely implemented)
	– restricts relocation

	Protection
	goal
	• one process should not interfere with another

	process model
	• “virtual” user processes
	• must access memory through address translation
	• can’t “see” address translation mechanism itself (its own page table)

	• OS kernel: a process with special privileges
	• can access memory directly (using physical addresses)
	• hence, can mess with the page tables (someone should be able to)

	Protection Primitives
	policy vs. mechanism
	• h/w provides primitives, problems if h/w implements policy

	primitives
	• at least one privileged mode
	• some bit(s) somewhere in the processor
	• certain resources readable/writable only if processor in this mode

	• a safe facility for switching into this mode (SYSCALL)
	• can’t “call” OS (OS is another process with its own VA space)
	• user process: specifies what it wants done & return address
	• SYSCALL: user process abdicates, OS starts in privileged mode
	• return to process (switch back to unprivileged mode) not a big deal

	Protection Primitives
	protection bits (R,W,X,K/U) for different memory regions
	• in general: base and bound registers + bits
	• check: base <= address <= bounds

	• page-level protection: implicit base and bounds
	• cache protection bits in TLB for speed

	• segment-level protection: explicit base and bounds
	• like variable size pages

	• Intel, paged segments
	• a two-level address space (user visible segments)
	• paging underneath
	• much more

	Memory Summary
	main memory
	• technology: DRAM (slow, but dense)
	• interleaving/banking for high bandwidth
	• simple vs. complex

	virtual memory, address translation & protection
	• larger memory, protection, relocation, multiprogramming
	• page tables
	• inverted/multi-level tables save space

	• TLB: cache translations for speed
	• access in parallel with cache tags

	next up: disks, buses, and I/O

