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CPU-Memory Bottleneck

MemoryCPU

Performance of high-speed computers is usually
limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

⇒1+m memory references / instruction
⇒ CPI = 1 requires 1+m memory refs / cycle
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Multilevel Memory

Strategy: Reduce average latency using
small, fast memories called caches.

Caches are a mechanism to reduce memory
latency based on the empirical observation
that the patterns of memory references
made by a processor are often highly
predictable:

                                      PC
             …                           96
loop: ADD r2, r1, r1               100
       SUBI r3, r3, #1              104
       BNEZ r3, loop                 108

               …                     112
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Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

– Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.
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Memory Hierarchy

• size:  Register << SRAM << DRAM    why?
• latency:  Register << SRAM << DRAM    why?
• bandwidth:  on-chip >> off-chip         why?

On a data access:
hit (data ∈ fast memory)    ⇒ low latency access
miss (data ∉ fast memory) ⇒ long latency access (DRAM)

Small,
Fast

Memory
(RF, SRAM)

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data
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Management of Memory Hierarchy

• Small/fast storage, e.g., registers
– Address usually specified in instruction
– Generally implemented directly as a register file

• but hardware might do things behind software’s back, e.g.,
stack management, register renaming

• Large/slower storage, e.g., memory
– Address usually computed from values in register
– Generally implemented as a cache hierarchy

• hardware decides what is kept in fast memory
• but software may provide “hints”, e.g., don’t cache or

prefetch
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Inside a Cache

CACHEProcessor Main
Memory 

Address Address

DataData

  Address
     Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

 416
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Cache Algorithm (Read)

   Look at Processor Address, search cache tags to find
match.  Then either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache

Q: Which line do we replace?
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Placement Policy

0 1 2 3 4 5 6 70     1      2     3Set Number

Cache

     Fully  (2-way) Set        Direct
Associative Associative         Mapped
anywhere anywhere in          only into

      set 0                block 4
         (12 mod 4)    (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12 
can be placed
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Direct-Mapped Cache

  Tag Data Block  V

 =

Block
Offset

  Tag Index

 t  k  b
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HIT Data Word or Byte
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Direct Map Address Selection
higher-order vs. lower-order address bits

  Tag Data Block  V
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Block
Offset

 Index

 t k
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HIT Data Word or Byte
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lines

Tag
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2-Way Set-Associative Cache
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Fully Associative Cache
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Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx 8-32KB in modern technology)

[design issues more complex with out-of-order superscalar processors]
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Causes for Cache Misses

• Compulsory:
first-reference to a block a.k.a. cold start misses

- misses that would occur even with infinite cache

• Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
  placement & replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity
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Effect of Cache Parameters on Performance

• Larger cache size
+ reduces capacity and conflict misses
-  hit time will increase

• Higher associativity
+ reduces conflict misses
-  may increase hit time

• Larger block size
+ reduces compulsory and capacity (reload) misses
+ exploit burst transfers in memory and on buses
-  increases conflict misses and miss penalty



September 29, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L07- 23

Block-level Optimizations

• Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss penalty

could be large.

• Sub-block placement (aka sector cache)
– A valid bit added to units smaller than the full block,

called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?

100
300
204

1             1              1             1
•         1              0             0
0             1              0             1
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Replacement Policy

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.
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Multilevel Caches
• A memory cannot be large and fast
• Increasing sizes of cache at each level

CPU L1 L2 DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions
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Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache
– External access need only check outer cache
– Most common case

• Exclusive multilevel caches:
– Inner cache may hold data not in outer cache
– Swap lines between inner/outer caches on miss
– Used in AMD Athlon with 64KB primary and 256KB

secondary cache

Why choose one type or the other?
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• small (<4 entry) buffer

• allows writes to be pipelined
• check tag
• write store data into WB
• write data from WB to cache (tags OK now
• in parallel!!

• problem: read to data in write buffer
• match read addresses to WB addresses
• stall or bypass
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Software Prefetching
ing: prefetch into register (e.g., softwar
o ISA support, use normal loads
eed more registers, what about faults?
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0; j<COLS; j++)

(i=0; i<ROWS; i+=BLOCK_SIZE)

prefetch (&x[i][j]+BLOCK_SIZE);

r (ii=i; ii<i+BLOCK_SIZE-1; ii++)

sum += x[ii][j];
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Hardware Prefetchin
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	• implemented in SRAM
	• recently: any locality exploiting buffer
	• e.g., file cache, Netscape page cache

	• answers to four questions
	• ABCs: associativity, block size, capacity
	• 3C (4C) miss model
	• advanced cache techniques
	• later: cache coherence


	History
	“Ideally one would desire an infinitely large memory capacity such that any particular ... word w...

	–BGvN ‘46
	Readings
	H+P
	• chapter 5.1 to 5.5

	other
	• Jouppi: “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative...


	Terminology
	let X be a structure in hierarchy (D$, L2, memory, or disk)
	X block: minimum storage unit (usually fixed)
	X hit: block found in X
	X miss: block not found in X
	X miss ratio: fraction of accesses to X that miss
	X hit time: time to access X
	X miss penalty: time to get block into X + time to get data to CPU
	• X access time: time to get requested data
	• X transfer time: time to get rest of block


	Performance
	time is the ultimate metric
	• miss rate does not measure performance
	• average (effective) access time is better

	tavg = thit + %miss * tmiss
	• thit = 1, tmiss = 20, %miss = 5%
	• tavg = 1 + .05*20 = 2

	misses are much more expensive per instance than hits

	Concept: Locality
	hierarchy exploits locality to create illusion of large & fast store
	• temporal locality: locality in time
	• recently referenced data likely to be referenced again soon
	• each level stores most recent blocks from lower level

	• spatial locality: locality in space
	• neighbors of recently referenced data likely to be referenced soon
	• lower level blocks are bigger, anticipating neighbor accesses


	remember: make common case fast
	• common case: temporal & spatial locality
	• fast: smaller, faster memory


	Hardware Prefetching: Address Prediction
	address-prediction
	• easy for arrays, harder for pointer-based data structures

	some options
	• cache conscious layout/malloc
	• lays lists out serially in memory, makes them look like arrays

	• correlated predictors
	• large tables (store <miss, next miss> pairs)

	• dependence based prefetching (pre-execution)
	• FSM greedily chases pointers from fetched blocks

	• jump-pointers
	• augment data structure with prefetch pointers



	Storage Hierarchy Specs
	Register
	< 2 KB
	1 ns
	150 GB/s
	L1 Cache
	< 64 KB
	4 ns
	50 GB/s
	L2 Cache
	< 8 MB
	10 ns
	25 GB/s
	L3 Cache
	< 64 MB
	20 ns
	10 GB/s
	Memory
	< 4 GB
	50 ns
	4 GB/s
	Disk
	> 1 GB
	10 ms
	10 MB/s

	Storage Hierarchy Groups
	levels can be grouped in different ways
	• ISA visibility
	• registers
	• caches, memory, disk (swap): look like one thing
	• disk (file system)
	• Q: what are register windows?

	• implementation technology
	• registers, caches: SRAM (high-speed circuits)
	• main memory: DRAM (high-density circuits)
	• disk: magnetic iron oxide (electrical/mechanical)
	• we will use this division



	Miss Classification: 3C’s/4C’s
	taxonomy due to [Hill+Smith]
	• compulsory (cold-start): first access to a block
	• would miss even in an inifinite cache

	• capacity: miss because cache not big enough
	• would miss even in fully associative cache

	• conflict: miss because of low associativity
	• remaining misses

	• coherence: misses due to external invalidations
	• only in shared-memory multiprocessors

	• why? different techniques for attacking different misses


	Miss Classification Example
	32B cache, 8B blocks, direct-mapped
	• 4 blocks, 4 sets

	010, 020, 030, 040
	044
	hit
	010, 020, 030, 040
	140
	compulsory miss
	010, 020, 030, 140
	210
	compulsory miss
	210, 020, 030, 140
	010
	conflict miss
	010, 020, 030, 140
	220
	compulsory miss
	010, 220, 030, 140
	040
	capacity miss
	• first time see block ﬁ compulsory
	• 4 (N) distinct blocks used from last access ﬁ capacity
	• everything else ﬁ conflict


	Some Perspective
	Concept: Balance
	balance system by adjusting sizes of hierarchy components
	• e.g., larger L1 ﬁ higher hit rate ﬁ lower L2 demand
	• e.g., larger memory ﬁ less paging ﬁ lower I/O demand
	• Amdahl’s rule: 1 MIPS ¤ 1 MB memory ¤ 1 Mbits/s I/O
	• if corrected to 1 Mbytes/s of I/O, still good!

	• balance example
	• IPC = 1.5
	• 30% loads & stores
	• 90% D$ hit rate, 95% I$ hit rate, 32B blocks, no L2/L3

	• compute memory b/w demand
	• instruction: 1.5 * 1.0 * 0.05 * 32 = 2.4 bytes/clock
	• data: 1.5 * 0.3 * 0.10 * 32 = 1.44 bytes/clock
	• total = 3.84 bytes/clock



	Miss Rate + Bandwidth: Unified vs. Split
	Q: instructions and data together or in separate caches?
	• unified I and D
	+ cheaper to build
	+ higher utilization (dynamic load balance)
	+ handles writes to I-stream (self-modifying code, JIT)
	– I/D conflicts (both access and block)


	• split I and D (Harvard)
	+ 2x bandwidth, place close to I/D ports
	+ no I/D conflicts
	– self-modifying code can cause problems


	• bottom line: split if simultaneous I and D accesses frequent
	• split L1
	• unified L2


	CPU is small part of system (physically)
	most is a hierarchy of storage
	• closer to CPU (“higher” levels)
	• lower capacity (smaller)
	• lower latency (faster)
	• high bandwidth (more parallelism)

	• connected by “buses”
	• study hierarchy top-down
	• I: caches
	• II: main memory (and virtual memory)
	• III: disks, buses and I/O architecture



	Mapping Addresses to Frames
	‹ what makes SA slow

	SRAM (Static Random Access Memory)
	• “logic” (CPU process, registers are SRAM)
	• store bits in flip-flops (cross-coupled NORs)
	– not very dense (six transistors per bit)
	+ fast
	+ doesn’t need to be “refreshed”

	Another Cache Example: Tag Size
	• 32-bit machine
	• 64KB, 32B block, 2-way set-associative cache
	• compute total size of tag array (not including state bits)
	• 64KB / 32B blocks ﬁ 2K blocks
	• 2K blocks / 2-way set-associative ﬁ 1K sets
	• 32B blocks ﬁ 5 offset bits
	• 1K sets ﬁ 10 index bits
	• 32-bit addresses – 5 offset bits – 10 index bits ﬁ 17 tag bits
	• 17 tag bits * 2K blocks ﬁ 34Kb ﬁ 4.25KB


	Basic Cache
	structure
	• collection of “frames”
	• frame = data + tag + state bits
	• state bits: valid (tag/data there), dirty (wrote into data)


	cache algorithm
	• find frame(s)
	• if incoming tag != stored tag then MISS
	• evict block currently in frame (may have to do something)
	• replace with block from memory (or next level of cache)

	• return appropriate word within block


	Tag/Data Access II
	conventional: way = RAM
	• access entire tag array
	– high-power

	• mux entire data array
	– low-associativity or serial access
	+ few comparators


	RAM/CAM: set = CAM
	• access only tags in right set
	+ low-power

	• data selected via wired or
	– many comparators or serial access
	+ high associativity (if needed)

	• used in StrongARM


	Cache Bandwidth
	superscalar processors need multiple cache accesses per cycle
	• parallel cache accesses harder than parallel ALU ops
	• difference? caches have state
	• operation thru one port affects future operations thru others


	tag/state physically sepearate from data

	Basic Cache Organization
	logical organization
	• block frames organized into sets
	• number of frames (ways) in each set is associativity
	• if one frame per set, cache is direct-mapped



	Bandwidth Techniques
	• true multiporting (N = number of ports)
	• multiple decoders, multiple r/w lines for every SRAM bit
	+ no bandwidth loss due to conflicts (any combination of accesses)
	– cache area: O(N2), access time~wire length: O(N2)


	• virtual multiporting (time multi-plexing)
	• pipeline a single port (time share on clock edges)
	– not scalable beyond 2 ports
	• Alpha 21264, HP PA-8X00: wave pipelining (no latches!)
	• multiple values on wire at precise intervals (circuit magic)

	• multiple cache copies (don’t laugh)
	• replicate tag/data arrays (Alpha 21164)
	• independent load ports, single shared store port (why?)
	+ no load b/w loss, smaller than true multiporting (why?)
	– no added store bandwidth, not scalable beyond 2 paths



	Mapping Addresses to Frames
	divide address into offset, index, tag
	• offset: finds word within a cache block
	• O-bit offset ¤ 2O-byte block size

	• index: finds set containing block frame
	• N-bit index ¤ 2N sets in cache
	• direct-mapped cache: index finds frame directly

	• tag: remaining bits not implied by block frame, must match
	• Q1: how do you find way within a set?
	• Q2: why tag/index/offset and not index/tag/offset?



	Cache Example: Access
	• 32-bit machine
	• 4KB, 16B block, direct-mapped cache
	• 16B blocks ﬁ 4 offset bits
	• 4KB / 16B blocks ﬁ 256 frames
	• 256 frames / 1-way (DM) ﬁ 256 sets ﬁ 8 index bits
	• 32-bit address – 4 offset bits – 8 index bits ﬁ 20 tag bits

	• memory: @0x1400fa20: 007CFFFF 1200F01c 1200F448 00000001
	ldl R4, 0x1200fa24
	• offset = (0x1400fa24 & 0xf) = 4
	• block address = (0x1400fa24 & 0xfffffff0) = 0x1400fa24
	• set = ((0x1400fa20 >> 4) & 0xff) = 0x1400fa24
	• tag = ((0x1400fa20 >> 12) & 0xfffff) = 0x1400fa24
	• R4 = x1200F01C


	The Four Questions
	1. where can a block be placed? block placement
	2. how is a block found? block identification
	3. which block is replaced on a miss? block replacement
	4. what happens on a write (store)? write strategy

	Block Placement + Identification
	placement
	• invariant: block always goes in exactly one set
	• fully-associative: cache is one set, block goes anywhere
	• direct-mapped: block goes in exactly one frame
	• set-associative: block goes in any one of a few frames

	identification
	• find set
	• search ways in parallel (compare tags, check valid bits)
	• h/w != s/w



	Block Replacement
	options
	• least recently used (LRU)
	• optimized for temporal locality, complicated LRU state

	• (pseudo) random
	• nearly as good as LRU, simpler

	• not most recently used (NMRU)
	• track MRU, random select from others, good compromise

	• optimal (Belady)
	• replace block used furthest ahead in time (theoretical limit)


	not an issue for direct-mapped caches

	Write Policies (2 separate questions)
	QI: propagate new value to memory?
	• yes: write-through (propagate all writes to memory)
	– update traffic independent of cache performance (bad)
	– update/reference = fwrite

	• no: write-back (update memory on block replacement)
	• set dirty bit on write, replace “clean” blocks w/o update
	+ less traffic for larger caches (low miss rates)
	+ multiple writes to same line combined into 1 update
	+ update/reference = fdirty * %miss * block size


	Q2: on a miss, allocate a cache block?
	• yes: write-allocate (usually with write-back)
	• no: no-write-allocate (usually with write-through)


	Fundamental Parameters: ABC of Caches
	• associativity
	• block size
	• capacity

	Capacity (Cache Size)
	total data (not including tag) capacity of cache
	• bigger not ALWAYS better

	too small
	– doesn’t exploit temporal locality well
	– useful data prematurely replaced

	too large
	– too slow
	• longer access may slow clock or increase cycles (more likely)



	Block Size
	minimal data size
	• associated with a tag / transferred from memory
	• usually the same, advanced caches allow different


	too small (too many blocks given capacity)
	– don’t exploit spatial locality well
	– inordinate tag overhead

	too large (too few blocks given capacity)
	– useless data transferred
	– premature replacement


	Associativity
	number of frames in each set
	• typical values: 1, 2, 3, 4, 5, 8, 16

	large associativity
	+ lower miss rate
	+ less variation among programs

	small associativity
	+ faster hit time (perhaps)
	• for given thit, can build bigger DM cache than SA cache
	• why is DM faster than SA?



	Tag/Data Access
	in parallel (common organization)
	+ faster

	in series (first tag, then data)
	+ uses less power
	• don’t fire up data array on miss
	• SA? fire up only one data array



	Write Buffers
	parallel data access/tag check only for reads!!
	• cannot be done for writes

	solution: write buffer (WB)
	• small (<4 entry) buffer
	• allows writes to be pipelined
	• check tag
	• write store data into WB
	• write data from WB to cache (tags OK now)
	• in parallel!!

	• problem: read to data in write buffer
	• match read addresses to WB addresses
	• stall or bypass



	Write Buffers
	can keep writes in write buffer for a while
	• reads can still proceed (as described)
	• coalesce (combine) writes to same block
	+ fewer writes, fast burst transfer (transfer of entire block)

	+ also good for write-thru caches (don’t stall for memory)

	back/alloc
	both
	cache
	back/no-alloc
	hit
	cache
	back/no-alloc
	miss
	memory
	thru/alloc
	both
	both
	thru/no-alloc
	hit
	both
	thru/no-alloc
	miss
	memory

	Writeback Buffers
	like a write buffer, but between write-back cache and memory
	+ allows replacement to be performed before writeback
	• replacement is more latency critical (someone is waiting)



	Advanced Caches
	• evaluation methods
	• reducing miss rate
	• reducing miss penalty
	• reducing hit time
	• increasing bandwidth (for superscalar processors)

	Evaluation Methods
	• hardware counters
	+ accurate, realistic workloads (system, user, everything)
	– machine must exist, can’t vary cache parameters, non-deterministic


	• analytical models (mathematical expressions)
	+ fast, good insight (can vary parameters)
	– suspect accuracy, finding parameters is difficult


	• trace-driven simulation (get %miss, plug thit, tmiss)
	+ experiments repeatable, can be accurate
	– time consuming, don’t model speculative execution


	• full processor simulation
	+ true performance (parallel misses, prefetches, speculation effects)
	– complicated simulation model, very time consuming



	Miss Rate: Work with Cache Parmeters
	key: think about which kinds of misses you are reducing
	• increase capacity (obviously)
	+ monotonically reduce capacity misses (rot: size*2 ﬁ %miss/2)
	– may slow hits


	• increase block size (fixed capacity, associativity)
	+ reduce compulsory / capacity misses (spatial prefetching)
	– increase capacity / conflict misses (fewer frames)
	• typical miss rate drops up to 32/64B, increases afterwards
	– increase memory traffic


	• increase associativity (fixed capacity, block size)
	+ reduce conflict misses (monotonically, up to fully-associative)
	– hard to implement, may slow hits




	Conflict Misses: Skewed Associativity
	observation: if addresses conflict in 1 way, conflict in all
	• e.g., 3 addresses with same index “thrash” in 2-way cache
	• solution: different mapping function for each way! [Seznec]
	• e.g. 2-way skewed
	• divide index+tag into two sets of bits (a1, a2)
	• mapping functions: bank 0 ﬁ a1^a2, bank 1 ﬁ shuffle(a1)^a2
	• only adds ^ to path, shuffle is just crossing wires!!

	• performance
	• not much higher, but stable (no pathologies)

	• upshot
	• not implemented, LRU (even approximate) is a nightmare



	Conflict Misses: Victim Buffer
	observation: high associativity needed infrequently, dynamically
	• solution: victim buffer [Jouppi]
	• a small fully associative buffer
	• holds victims replaced in cache
	• miss in cache + hit in victim buffer ﬁ move line to cache

	• performance
	+ even one entry helps some benchmarks (wow!)
	• I-cache helped more than D-cache (why?)
	• generally helps more for smaller caches (why?)
	• helps more with larger line size (why?)


	• upshot
	• commonly implemented



	Capacity Misses: Software Restructuring
	re-order program accesses to improve locality
	• e.g. loop-interchange for column-major matrix
	• x[i,j] followed by x[i+1,j], x[i,j+1] much later

	• poor code (doesn’t exploit spatial locality)
	for (i=0; i<ROWS; i++)
	for (j=0; j<COLS; j++)
	sum += x[i][j]

	• better code
	for (j=0; j<COLS; j++)
	for (i=0; i<ROWS; i++)
	sum += x[i][j]


	automatically? must check if valid to do them (hard)

	Software Restructuring
	• loop blocking
	• cut array into cache-size chunks
	• run all phases on one chunk, proceed to next chunk
	for (k=0; k<ITERATIONS; k++)
	for (i=0; i<ELEMS;i++)
	// do something
	for (i=0; i<ELEMS; i+=CACHE_SIZE)
	for (k=0; k<ITERATIONS; k++)
	for (ii=i; i<i+CACHE_SIZE-1; ii++)
	// do something

	• loop fusion
	• similar


	Capacity Misses: Prefetching
	even “demand fetching” prefetches other words in block
	• spatial prefetching

	prefetching should...
	• always cheaper than a demand miss
	• get data before it is referenced
	• late prefetching

	• not get data that will not be used
	• useless prefetching

	• not prematurely replace prefetched data
	• early prefetching


	prefetching: classic latency/bandwidth tradeoff

	Software Prefetching
	• binding: prefetch into register (e.g., software pipelining)
	+ no ISA support, use normal loads
	– need more registers, what about faults?


	• non-binding: prefetch into cache (e.g., below)
	– need ISA support (non-binding, non-faulting loads)
	+ simpler semantics, preferred
	for (j=0; j<COLS; j++)
	for (i=0; i<ROWS; i+=BLOCK_SIZE)
	prefetch (&x[i][j]+BLOCK_SIZE);
	for (ii=i; ii<i+BLOCK_SIZE-1; ii++)
	sum += x[ii][j];



	Hardware Prefetching
	what to prefetch?
	• one block ahead (spatially)
	+ works well for instructions, sequential data (arrays)

	• more complex: use “address prediction”
	• needed for non-sequential data


	when to prefetch?
	• on every reference
	• on a miss (i.e., effectively double block size)
	+ better performance than doubling block size (why?)

	• when resident block becomes dead [ISCA’01]
	• when no one will use it anymore (how do we know this?)



	Hardware Prefetching: Stream Buffers
	stream buffers: same paper as victim buffers [Jouppi]
	• prefetch into buffers, NOT into cache
	• on miss: start filling stream buffer with successive lines
	• on access: check both cache and stream buffer
	• SB hit ﬁ move line to cache, miss both ﬁ clear/refill SP

	• performance
	+ very effective for I$
	• less so for D$ (why?)
	• fix with multiple buffers




	Miss Cost: Early Restart/Critical Word First
	observation: tmiss = taccess + ttransfer
	• taccess: time to get first word
	• ttransfer: time to get rest of block
	• implies whole block loaded before data returned to CPU!

	optimization: early restart/critical word first
	• critical word first: requested word returned first
	• must arrange for this to happen (bus, memory must cooperate)

	• early restart: send requested word to CPU immediately
	• get rest of block, load into cache in parallel



	Miss Cost: Sub-Blocking
	observation: not all parts of block equally important
	solution: break blocks into sub-blocks
	• address block associated with tag, larger...
	+ decrease tag overhead
	– but allow fewer blocks to reside


	• transfer block to/from memory, larger...
	+ exploit spatial locality
	– longer to load, more replacements, unnecessary traffic
	• separate dirty/valid bits per transfer block


	• good compromise for on-chip caches
	• pins limit data transfer bandwidth ﬁ small blocks
	• tag overhead too great for 1-2 word blocks ﬁ large blocks

	• transfer size > tag size ﬁ hardware prefetching


	Miss Cost: Lock-up Free Caches
	normal cache stalls while a miss is pending
	lock-up free caches [Kroft’81, Sohi’91]
	• handle hits while miss is pending
	• “hit under miss” (very common)

	• handle misses while miss is pending
	• overlapping misses (less common, but miss serialization costly)

	• only makes sense
	• if processor can do useful work under a miss (dynamic scheduled)
	• if processor/program has misses that can be overlapped
	• for data cache (why?)

	• implementation: MSHR (miss status holding register)
	• catch? bus mus be pipelined/split transaction


	Miss Cost: L2 Caches
	observation: CPU getting faster w.r.t memory (memory gap)
	• miss to memory is more costly
	• larger L1 may make hits too slow, or may not fit on chip

	solution: second-level (L2) cache
	• reduces frequency of misses to memory
	• L1 hits (common case) still fast
	+ exploit technological boundaries
	• on-chip vs. off-chip (tags on-chip, data off-chip)
	• if off-chip, can have mulitple sizes



	Measuring L2 Cache Performance
	Q: how is tavg affected by the addition of an L2?
	A: depends on how we define %miss-L2 and tmiss-L1
	• local L2 miss rate: L2 misses / L2 accesses
	• “filtered” miss rate, used to calculate tmissL1
	• tavg = thit-L1 + (%miss-L1 * (thit-L2 + (%miss-local-L2 * tmiss-L2)))

	• global L2 miss rate: L2 misses / total references
	• “unfiltered” miss rate, used directly
	• tavg = thit-L1 + (%miss-L1 * thit-L2) + (%miss-global-L2 * tmiss-L2)

	• solo L2 miss rate: pretend L2 is the only cache
	• similar to global miss rate for large L2s ( > 8 * L1)


	upshot: choose definition that fits situation

	Designing an L2 Cache
	apply L1 principles to L2 design? not necessarily
	• low latency, high b/w less important (why?)
	• low miss rate very important (why?)

	design L2 for low miss rates
	• unified: better frame utilization
	• large size: 256KB to 8MB (latency be damned)
	• large block size: 64B or 128B (more spatial prefetching)
	• high associativity: 4,8,16 (again, latency be damned)
	• blocking? (multiple L2 misses less common)

	important: design L1 and L2 together (match b/w’s, latencies)

	Multi-Level Inclusion?
	multi-level inclusion: L2 cache contents always superset of L1
	+ filters coherence traffic (later)
	+ makes L1 writes simpler (why?)
	– local LRU (L1 & L2 independently) can’t guarantee
	• e.g., 2-block L1, 3-block L3, local LRU, references: 1,2,1,3,1,4
	• final L1 contents: 1,4, final L2 contents: 2,3,4

	– takes effort to maintain [Wang,Baer,Levy]
	• L2 blocksize/L1blocksize pointers per L2 block give L1 contents
	• invalidate from L1 before replacing from L2



	Hit Latency Reduction Techniques
	obvious/have seen/later
	• small/simple caches
	• parallel tag/data for fast reads
	• pipelining (write buffers) for fast writes
	• avoid address translation during indexing (VM, later)


	Bandwidth: Multibanking (Interleaving)
	• divide cache into banks
	• each bank usally a subset of the sets (why?)
	• pre-determine which bank to access (using address bits)
	• allow parallel access to different banks
	• two accesses to same bank ﬁ conflict (one must stall)
	+ low area, few conflicts if sufficient banks
	• observe: requests to same bank often to same block! exploit?


	Cache Performance Summary
	tavg = thit + %miss * tmiss
	• reducing miss rate (%miss)
	• large block size, higher associativity, victim buffers
	• software restructuring, prefetching

	• reducing miss penalty (tmiss)
	• early restart/critical word first, sub-blocking
	• non-blocking caches, L2 caches

	• reducing hit time (thit)
	• small and simple caches
	• parallel tag/data for reads, pipelining (write buffer) for writes

	• increasing bandwidth
	• banking/interleaving, multiporting
	• tradeoff: more b/w ﬁ selection network ﬁ more latency



	Memory Hierarchy Summary
	L1, L2, L3 have different design constraints
	• L1: low latency, high b/w (primary), low miss rate
	• L2: low miss rate, low latency
	• L3 (starting to appear): very low miss rate
	• design hierarchy together to match capacities, bandwidths

	next up: main memory + virtual memory
	then: I/O + buses





