
September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-10

Arvind & Emer

An Ideal Pipeline

• All objects go through the same stages

• No sharing of resources between any two stages

• Propagation delay through all pipeline stages is equal

• The scheduling of an object entering the pipeline
 is not affected by the objects in other stages

stage
1

stage
2

stage
3

stage
4

These conditions generally hold for industrial assembly lines.

But can an instruction pipeline satisfy the last condition?

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-13

Arvind & Emer

Alternative Pipelining

tC > max {tIM, tRF, tALU, tDM, tRW} = tDMtC > max {tIM, tRF+tALU, tDM, tRW} = tDM

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

tC > max {tIM, tRF+tALU, tDM+tRW} = tDM+ tRW

⇒ increase the critical path by 10%

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4

Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR
PC

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-14

Arvind & Emer

Maximum Speedup by Pipelining

1. tIM = tDM = 10,
tALU = 5,
tRF = tRW= 1
4-stage pipeline

Assumptions Unpipelined Pipelined Speedup
 tC tC

One can achieve higher speedup with more pipeline stages.

27 10 2.7

25 10 2.5

25 5 5.0

2. tIM =tDM = tALU = tRF = tRW = 5
 4-stage pipeline

3. tIM =tDM = tALU = tRF = tRW = 5
 5-stage pipeline

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-15

Arvind & Emer

5-Stage Pipelined Execution

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2 IF2 ID2 EX2 MA2 WB2
instruction3 IF3 ID3 EX3 MA3 WB3
instruction4 IF4 ID4 EX4 MA4 WB4
instruction5 IF5 ID5 EX5 MA5 WB5

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IR
PC

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-20

Arvind & Emer

Pipelined MIPS Datapath
without jumps

IRIR IR

31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Data
Memory

wdata

addr

wdata

rdata

we

OpSel

ExtSel BSrc

WBSrc
MemWrite

RegDst
RegWrite

F D E M W

Control Points Need to
Be ConnectedWhat else is needed?

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-21

Arvind & Emer

How Instructions can Interact
with each other in a pipeline

• An instruction in the pipeline may need a
resource being used by another instruction
in the pipeline structural hazard

• An instruction may depend on something
produced by an earlier instruction

– Dependence may be for a a data calculation
 data hazard

– Dependence may be for calculating the next address
 control hazard (branches, interrrupts)

September 15, 2008 http://www.csg.csail.mit.edu/6.823

L04-23

Arvind & Emer

Resolving Data Hazards

Strategy 1: Wait for the result to be available
by freezing earlier pipeline stages interlocks

Strategy 2: Route data as soon as possible
after it is calculated to the earlier pipeline stage

 bypass

Strategy 3: Speculate on the dependence
 Two cases:

Guessed correctly do nothing
Guessed incorrectly kill and restart

September 17, 2008 http://www.csg.csail.mit.edu/6.823

L05-18

Arvind & Emer

Instruction to Instruction Dependence

• What do we need to calculate next PC:

– For Jumps
• Opcode, offset and PC

– For Jump Register
• Opcode and Register value

– For Conditional Branches
• Opcode, PC, Register (for condition), and offset

– For all others
• Opcode and PC

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-8

Floating Point ISA

Interaction between the Floating point datapath
and the Integer datapath is determined largely
by the ISA

MIPS ISA
• separate register files for FP and Integer instructions

the only interaction is via a set of move
instructions (some ISA’s don’t even permit this)

• separate load/store for FPR’s and GPR’s but both
 use GPR’s for address calculation
• separate conditions for branches

FP branches are defined in terms of condition codes

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-9

Floating Point Unit

Much more hardware than an integer unit

Single-cycle floating point unit is a bad idea - why?

• it is common to have several floating point units

• it is common to have different types of FPU's
 Fadd, Fmul, Fdiv, ...

• an FPU may be pipelined, partially pipelined or not
 pipelined

To operate several FPU’s concurrently the register
file needs to have more read and write ports

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-10

Function Unit Characteristics

fully
pipelined

partially
pipelined

Function units have internal pipeline registers

⇒ operands are latched when an instruction
enters a function unit

⇒ inputs to a function unit (e.g., register file)
 can change during a long latency operation

busy1cyc1cyc1cyc accept

busy 2 cyc 2 cyc accept

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-11

Realistic Memory Systems
Latency of access to the main memory is
usually much greater than one cycle and often
unpredictable

Solving this problem is a central issue in computer
architecture

Common approaches to improving memory
performance

• separate instruction and data memory ports
⇒ no self-modifying code

• caches
single cycle except in case of a miss ⇒ stall

• interleaved memory
multiple memory accesses ⇒ bank conflicts

• split-phase memory operations
⇒ out-of-order responses

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-12

Complex Pipeline Structure

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-14

Complex In-Order Pipeline

• Delay writeback so all
operations have same
latency to W stage
– Write ports never

oversubscribed (one inst.
in & one inst. out every
cycle)

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased
writeback latency from
slowing down single cycle
integer operations?

Bypassing

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-15

Complex In-Order Pipeline

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

• Stall pipeline on long
latency operations, e.g.,
divides, cache misses

• Handle exceptions in
program order at commit
point

How should we handle
data hazards for very
long latency operations?

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-16

Superscalar In-Order Pipeline

• Fetch two instructions per
cycle; issue both
simultaneously if one is
integer/memory and other
is floating-point

• Inexpensive way of
increasing throughput
– Examples Alpha 21064 (1992)

& MIPS R5000 series (1996)

• The idea can be extended
to wider issue but register
file ports and bypassing
costs grow quickly
– Example 4-issue UltraSPARC

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFadd X3

X3

FPRs X1

X2 Fmul X3

X2FDiv X3

Unpipelined
divider

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-18

Data-dependence
r3 ← (r1) op (r2) Read-after-Write
r5 ← (r3) op (r4) (RAW) hazard

Types of Data Hazards

Consider executing a sequence of
rk ← (ri) op (rj)

type of instructions

Anti-dependence
r3 ← (r1) op (r2) Write-after-Read
r1 ← (r4) op (r5) (WAR) hazard

Output-dependence
r3 ← (r1) op (r2) Write-after-Write
r3 ← (r6) op (r7) (WAW) hazard

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-19

Detecting Data Hazards

Range and Domain of instruction i
R(i) = Registers (or other storage) modified by
 instruction i
D(i) = Registers (or other storage) read by
 instruction i

Suppose instruction j follows instruction i in the
program order. Executing instruction j before the
effect of instruction i has taken place can cause a

RAW hazard if R(i) ∩ D(j) ≠ ∅
WAR hazard if D(i) ∩ R(j) ≠ ∅
WAW hazard if R(i) ∩ R(j)

≠ ∅

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-20

Register vs. Memory
Data Dependence

• Data hazards due to register operands
can be determined at the decode stage
but

• Data hazards due to memory operands
can be determined only after computing
the effective address

store M[(r1) + disp1] ← (r2)
load r3 ← M[(r4) + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-26

When is it Safe to Issue an
Instruction?

• Suppose a data structure keeps track of all
the instructions in all the functional units

• The following checks need to be made before
the Issue stage can dispatch an instruction

– Is the required function unit available?
– Is the input data available? ⇒ RAW?
– Is it safe to write the destination? ⇒ WAR? WAW?
– Is there a structural conflict at the WB stage?

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-27

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

The instruction i at the Issue stage consults this table
FU available?
RAW?
WAR?
WAW?

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

check the busy column
search the dest column for i’s sources
search the source columns for i’s destination
search the dest column for i’s destination

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-28

Simplifying the Data Structure
Assuming In-order Issue

• Suppose the instruction is not dispatched
by the Issue stage

• If a RAW hazard exists
• or if the required FU is busy,
• and if operands are latched by functional unit

on issue

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

October 8, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L10-29

Simplifying the Data Structure ...

• No WAR hazard
⇒ no need to keep src1 and src2

• The Issue stage does not dispatch an
instruction in case of a WAW hazard
⇒ a register name can occur at most once in the

dest column

• WP[reg#] : a bit-vector to record the
registers for which writes are pending
– These bits are set to true by the Issue stage

and set to false by the WB stage
⇒Each pipeline stage in the FU's must carry the

dest field and a flag to indicate if it is valid
“the (we, ws) pair”

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-6

Out-of-Order Issue

• Issue stage buffer holds multiple instructions waiting
to issue.

• Decode adds next instruction to buffer if there is
space and the instruction does not cause a WAR or
WAW hazard.

• Any instruction in buffer whose RAW hazards are
satisfied can be issued (for now at most one dispatch
per cycle). On a write back (WB), new instructions
may get enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-8

How many Instructions can
be in the pipeline

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement !

Number of Registers

Control transfers

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-9

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

WBIssue Execution

Example:
--- 4 floating point registers
--- 8 cycles per floating point operation

⇒ ½ issues per cycle!

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-10

Overcoming the Lack of
Register Names

Floating Point pipelines often cannot be kept filled
with small number of registers.

IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-12

Register Renaming

• Decode does register renaming and adds instructions to
the issue stage reorder buffer (ROB)

 ⇒ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.

⇒ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-13

Dataflow execution

Instruction slot is candidate for execution when:
•It holds a valid instruction (“use” bit is set)
•It has not already started execution (“exec” bit is clear)
•Both operands are available (p1 and p2 are set)

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

prt1
next

available

Ins# use exec op p1 src1 p2 src2

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-15

Data-Driven Execution

Renaming
table &
reg file

Reorder
buffer

Load
 Unit

FU FU Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also stores the tag in the reg file
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-16

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

prt1
next

available

Ins# use exec op p1 src1 p2 src2

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-18

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.

Why ?

1. Effective on a very small class of programs
2. Made exceptions imprecise
3. Did not address the memory latency problem which
 turned out be a much bigger issue than FU latency

One more problem needed to be solved

Control transfers

More on this in the next lecture

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-19

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is
 totally complete
• no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-21

Exception Handling
(In-Order Five-Stage Pipeline)

• Hold exception flags in pipeline until commit point (M stage)
• Exceptions in earlier pipe stages override later exceptions
• Inject external interrupts at commit point (override others)
• If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

PC
Inst.
Mem D Decode E M

Data
Mem W+

Kill D
Stage

Kill F
Stage

Kill E
Stage

Kill
Writeback

Select
Handler
PC

Commit
Point

Illegal
Opcode

Overflow Data Addr
Except

PC Address
Exceptions

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-22

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Result
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-23

In-Order Commit for Precise Exceptions

• Instructions fetched and decoded into instruction
 reorder buffer in-order
• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-24

Extensions for Precise Exceptions

Reorder buffer

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
 order ⇒ buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2

(stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-25

Rollback and Renaming

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

October 15, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L11-26

Renaming Table

Register
File

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v
r2

tag
valid bit

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-2

Arvind & Emer

Commit: Instruction irrevocably updates
architectural state (aka “graduation” or
“completion”).

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Result
Buffer

PC

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-3

Arvind & Emer

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-5

Arvind & Emer

Instruction Taken known? Target known?

J

JR

BEQZ/BNEZ

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

After Reg. Fetch* After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

*Assuming zero detect on register read

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-7

Arvind & Emer

Reducing Control Flow Penalty
Software solutions

• Eliminate branches - loop unrolling
Increases the run length

• Reduce resolution time - instruction scheduling
Compute the branch condition as early
as possible (of limited value)

Hardware solutions
• Find something else to do - delay slots

Replaces pipeline bubbles with useful work
(requires software cooperation)

• Speculate - branch prediction
Speculative execution of instructions beyond
the branch

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-8

Arvind & Emer

Branch Prediction
Motivation:

Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to state following branch

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-9

Arvind & Emer

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

JZ

JZ
backward

90%
forward

50%

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-10

Arvind & Emer

Dynamic Prediction

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict

• UpdatePrediction as a feedback control process

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-11

Arvind & Emer

Predictor Primitive

• Indexed table holding values

• Operations
– Predict
– Update

• Algebraic notation

Prediction = P[Width, Depth](Index; Update)

Index

Prediction

Update

Depth

Width

P

UI

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-12

Arvind & Emer

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-26

Arvind & Emer

Branch Target Buffer

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPbpredicted

target BP

 target

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-28

Arvind & Emer

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

⇒ Do not update it for other instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
instruction?

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-29

Arvind & Emer

Branch Target Buffer (BTB)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-30

Arvind & Emer

Consulting BTB Before Decoding

1028 Add

132 Jump 100

BPbtarget
take236

entry PC
132

• The match for PC=1028 fails and 1028+4 is fetched
 ⇒ eliminates false predictions after ALU instructions

• BTB contains entries only for control transfer instructions
⇒ more room to store branch targets

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-33

Arvind & Emer

Uses of Jump Register (JR)
• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function address)

• Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place
 ⇒ Often one function called from many distinct call sites!

October 20, 2008 http://www.csg.csail.mit.edu/6.823

L12-35

Arvind & Emer

Overview of branch prediction

P
C

Need next PC
immediately

Decode Reg
Read Execute

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

BTB

BP,
JMP,
Ret

Loose loop Loose loop Loose loopTight loop

Must speculation check always be correct? No…

Best predictors
reflect

program
behavior

Arvind & EmerOctober 22, 2008 http://www.csg.csail.mit.edu/6.823

L13-3

Speculative Execution Recipe

• In event of mis-
speculation dispose of
all new values, restore
old values and re-
execute from point
before mis-speculation

• After sure that there
was no mis-speculation
and there will be no
more uses of the old
values then discard old
values and just use
new values.

OR

• Proceed ahead despite unresolved dependencies

• Maintain both old and new values on updates to
architectural (and often micro-architectural) state.

Why might one use old values? O-O-O WAR hazards

Arvind & EmerOctober 22, 2008 http://www.csg.csail.mit.edu/6.823

L13-4

Value Management Strategies

Greedy Update:
– Update value in place, and
– Maintain a log of old values to use for recovery.

Lazy Update:
– Buffer new value leaving old value in place.
– Replace old value only at ‘commit’ time.

Why leave an old value in place?

Old value might be used even after new
value is generated

Arvind & EmerOctober 22, 2008 http://www.csg.csail.mit.edu/6.823

L13-31

Speculating Both Directions

• resource requirement is proportional to the
 number of concurrent speculative executions

An alternative to branch prediction is to execute
both directions of a branch speculatively

• branch prediction takes less resources
 than speculative execution of both paths

• only half the resources engage in useful work
 when both directions of a branch are executed
 speculatively

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

	L03_Pipelinined_Instruction.pdf
	L03-InstructionPipeline.pdf
	Princeton MicroarchitectureDatapath & Control for 2-cycles-per-instruction
	Princeton Microarchitecture (redrawn)
	Princeton Microarchitecture Can we overlap instruction fetch and execute?
	Stalling the instruction fetch Princeton Microarchitecture
	Need to stall on branchesPrinceton Microarchitecture
	Pipelined Princeton Microarchitecture
	Pipelined Princeton: Control Table
	Pipelined Princeton Architecture
	An Ideal Pipeline
	Pipelined Datapath
	How to divide the datapath into stages
	Alternative Pipelining
	Maximum Speedup by Pipelining
	5-Stage Pipelined Execution
	Instruction Flow Diagram
	5-Stage Pipelined ExecutionResource Usage Diagram
	Resource Usage Diagram
	Pipelined Execution:ALU Instructions
	Pipelined MIPS Datapathwithout jumps
	How Instructions can Interact with each other in a pipeline
	Data Hazards
	Resolving Data Hazards
	Resolving Data Hazards (1)
	Feedback to Resolve Hazards
	Interlocks to resolve Data Hazards
	Stalled Stages and Pipeline Bubbles
	Interlock Control Logic

	L05-InstructionPipeline_2.pdf
	Resolving Data Hazards
	Resolving Data Hazards (1)
	Interlocks to resolve Data Hazards
	Interlock Control Logic
	Interlocks Control Logicignoring jumps & branches
	Source & Destination Registers
	Deriving the Stall Signal
	Hazards due to Loads & Stores
	Load & Store Hazards
	Resolving Data Hazards (2)
	Bypassing
	Adding a Bypass
	The Bypass SignalDeriving it from the Stall Signal
	Bypass and Stall Signals
	Fully Bypassed Datapath
	Resolving Data Hazards (3)
	Instruction to Instruction Dependence
	PC Calculation Bubbles
	Speculate next address is PC+4
	Pipelining Jumps
	Jump Pipeline Diagrams
	Pipelining Conditional Branches
	Pipelining Conditional Branches
	Pipelining Conditional Branches
	New Stall Signal
	Control Equations for PC and IR Muxes
	Branch Pipeline Diagrams(resolved in execute stage)
	Reducing Branch Penalty(resolve in decode stage)
	Branch Delay Slots(expose control hazard to software)
	Why an Instruction may not be dispatched every cycle (CPI>1)
	Critical paths and clocks

	L03_Pipelinined_Instruction_2.pdf
	Complex Pipelining: Motivation
	CDC 6600 Seymour Cray, 1963
	CDC 6600: Datapath
	CDC 6600: A Load/Store Architecture
	CDC6600: Vector Addition
	We will present complex pipelining issues more abstractly …
	Floating Point ISA
	Floating Point Unit
	Function Unit Characteristics
	Realistic Memory Systems
	Complex Pipeline Structure
	Complex Pipeline Control Issues
	Complex In-Order Pipeline
	Complex In-Order Pipeline
	Superscalar In-Order Pipeline
	Dependence Analysis:Needed to Exploit Instruction-level Parallelism
	Types of Data Hazards
	Detecting Data Hazards
	Register vs. MemoryData Dependence
	Data Hazards: An Example
	Instruction Scheduling
	Out-of-order CompletionIn-order Issue
	Scoreboard:A Hardware Data Structure to Detect Hazards Dynamically
	Complex Pipeline
	When is it Safe to Issue an Instruction?
	A Data Structure for Correct IssuesKeeps track of the status of Functional Units
	Simplifying the Data Structure Assuming In-order Issue
	Simplifying the Data Structure ...
	Scoreboard for In-order Issues
	Scoreboard Dynamics

	L03_Pipelinined_Instruction_3.pdf
	CDC 6600-style Scoreboard
	Scoreboard Dynamic Checks
	Scoreboard Dynamics
	In-Order Issue Limitations: an example
	Out-of-Order Issue
	In-Order Issue Limitations: an example
	How many Instructions can be in the pipeline
	Little’s Law
	Overcoming the Lack of Register Names
	Instruction-level Parallelism via Renaming
	Register Renaming
	Dataflow execution
	Renaming & Out-of-order IssueAn example
	Data-Driven Execution
	Simplifying Allocation/Deallocation
	IBM 360/91 Floating Point UnitR. M. Tomasulo, 1967
	Effectiveness?
	Precise Interrupts
	Effect on InterruptsOut-of-order Completion
	Exception Handling(In-Order Five-Stage Pipeline)
	Phases of Instruction Execution
	In-Order Commit for Precise Exceptions
	Extensions for Precise Exceptions
	Rollback and Renaming
	Renaming Table
	Physical Register files
	Branch Penalty

	L03_Pipelinined_Instruction_4.pdf
	Phases of Instruction Execution
	Control Flow Penalty
	Average Run-Length between Branches
	MIPS Branches and Jumps
	Branch Penalties in Modern Pipelines
	Reducing Control Flow Penalty
	Branch Prediction
	Static Branch Prediction
	Dynamic Prediction
	Predictor Primitive
	Dynamic Branch Predictionlearning based on past behavior
	One-bit Predictor
	Branch Prediction Bits
	Two-bit Predictor
	Branch History Table
	Exploiting Spatial CorrelationYeh and Patt, 1992
	History Register
	Global History
	Local History
	Two-level Predictor
	Two-Level Branch Predictor
	Choosing Predictors
	Tournament Branch Predictor(Alpha 21264)
	Limitations of BHTs
	Branch Target Buffer
	Address Collisions
	BTB is only for Control Instructions
	Branch Target Buffer (BTB)
	Consulting BTB Before Decoding
	Combining BTB and BHT
	Line Prediction(Alpha 21[234]64)
	Uses of Jump Register (JR)
	Subroutine Return Stack
	Overview of branch prediction

	L03_Pipelinined_Instruction_5.pdf
	Speculative Execution
	Speculative Execution Recipe
	Value Management Strategies
	Exception Handling(In-Order Five-Stage Pipeline)
	Mispredict Recovery
	Data-Driven Execution
	Rollback and Renaming
	Renaming Table
	Recovering ROB/Renaming Table
	Map Table Recovery - Snapshots
	Branch Predictor Recovery
	O-o-O Execution with ROB
	Unified Physical Register File(MIPS R10K, Alpha 21264, Pentium 4)
	Lifetime of Physical Registers
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Physical Register Management
	Reorder Buffer HoldsActive Instruction Window
	Issue Timing
	Issue Queue with latency prediction
	Data-in-ROB vs. Single Register File
	Superscalar Register Renaming
	Superscalar Register Renaming
	Speculating Both Directions

