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Instruction Set Aspec
ormat
• length, encoding

perations
• operations, data types, number & kind of ope

nternal storage
• model: accumulator, stack, general-purpose 
• memory: address size, addressing modes, al

ontrol
• branch conditions, special support for proced

pecial features?
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Instruction Forma
ngth (most common: 32-bits)

 easy pipelining/superscalar
• don’t have to decode current instruction to fi

 not compact (4-bytes for nop?)

e length
 more compact
 hard (but doable) to superscalarize/pip

 compromise: 2 lengths (32-bit + anothe
MIPS16, ARM Thumb: add 16-bit subse
TM Crusoe: adds 64-bit long-immediate



14© 20 , W
V r,

a r
d
c turn
s
fl
d day)
s n)
m n VIS
02 by Hill
ijaykuma

• 
• 
• 
• 
• 
• 
• 
• 
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
 Lipasti & Roth

Operations
rithmetic and logical: add, mult, and, xo
ata transfer: move, load, store
ontrol: conditional branch, jump, call, re
ystem: system call, return, traps
oating point: add, mul, div, sqrt
ecimal: addd, convert  (not common to
tring: move, compare  (also not commo
ultimedia: e.g., Intel MMX/SSE and Su
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Data Sizes and Type
xed point (integer)
• 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit 

oating point
• 32/64 bit (IEEE754 single/double precision), 8

ddress size (aka “machine size”)
• e.g., 32-bit machine means addresses are 32
• key is virtual memory size: 32-bits ⇒ 4GB (n
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Fixed Point Operation
pes: s/w (property of data) vs. h/w (pro
• signed (–2n–1 to 2n–1–1) vs. unsigned
• packed (multimedia short vector)

• treat 64-bit as 8x8, 4x16, or 2x32
• e.g.: addb, addh (MMX)

    17  87 100 ...

 + 17  13 200 ...
   ___ ___ ___ ___
    34 100  255 (saturating or 44 with wraparound)

• MMX example: 16-element dot product: Σa

• plain: 200 instructions/76 cycles → MMX: 

• saturating (no wrap around on overflo
• useful in RGBA calculations
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Internal Storage Mod
s
stack
accumulator
memory-memory
register-memory
register-register (load/store)

 example:
 add C, A, B  (C := A + B)
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Storage Model: Stac
 push A  S[++TOS] = M[A];
 push B  S[++TOS] = M[B];
 add     T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=
 pop C   M[C] = S[TOS--];

perands implicitly on top-of-stack (TOS,
LU operations have zero explicit operan
ode density (top of stack implicit)
emory, pipelining bottlenecks (why?)
ostly 60’s & 70’s

• x86 uses stack model for FP (sucks for them)
• JAVA bytecodes also use stack model (why?)
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Storage Model: Accumu
load A   accum = M[A];
add B    accum += M[B];
store C  M[C] = accum;

cum is implicit destination/source in all
LU operations have one operand
ss hardware, code density (accumulato
emory bottleneck
ostly pre 60’s
 UNIVAC, CRAY
 x86 (IA32) uses extended accumulator for inte

cumulator comeback?
 2-level register file (register-accumulator) [ISC
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Storage Model: Memory-M
 add C,A,B   M[C] = M[A] + M[B];

o registers whatsoever
code density (most compact)
large variations in instruction lengths
large variations in work per-instruction
memory bottleneck
o current machines support memory-m
• VAX did
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Storage Model: Memory-
 load R1,A   R1 = M[A];
 add R1,B    R1 += M[B];
 store C,R1  M[C] = R1;

 like an explicit (extended) accumulator
+ can have several accumulators at a time

 code density, easy to decode
 asymmetric operands, asymmetric wo
 70’s and early 80’s

• IBM 360/370
• Intel x86, Motorola 68K
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Storage-Model: Register-
 load R1,A     R1 = M[A];
 load R2,B     R2 = M[B];
 add R3,R1,R2  R3 = R1 + R2;
 store C,R3    M[C] = R3;

 load/store architecture: ALU operation
 code density
 easy decoding, operand symmetry
 deterministic length ALU operations
 scheduling opportunities, register-leve
 60’s and onwards

• RISC machines: ALPHA, MIPS, PPC (but a
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Registers vs. Memor
s
aster (direct access, smaller, no tags)
eterministic scheduling (i.e., fixed laten
eplicate for more b/w
hort identifier
ust save/restore on procedure calls, co

xed size
• strings, structures (i.e., bigger than 64 bits) m

an’t take address of  a register
• pointed-to variables must live in memory
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How Many Register
egisters
 hold more operands for longer periods

• shorter average operand access time, lower

 longer specifiers (longer instructions?)
 slower access to register operands (bi
 slower procedure calls/context-switch 

s for more registers
 X86: 8 → SPARC/MIPS/Alpha/PPC: 32

• why?
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Memory Alignmen
l boundaries” ⇒ (address % size) == 0

e.g. word (4 bytes): @xx00 ⇒ aligned, @

ent restrictions: kinds of alignments arc
no restrictions (all in hardware)

• hardware detects, makes 2 references (wha
– expensive logic, slows down all references (

restricted alignment (software guarante
• misaligned access traps, performed in s/w b

middle ground: multiple instructions for
• e.g., MIPS (lwl/lwr), Alpha (ldq_u)
• compiler generates for known cases, h/w tra
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Operand Addressing M
immediate: #n (immediate values)
register: Ri (register values)
displacement: M[Ri + #n] (stack, structu
register indirect: M[Ri] (loaded/compute
memory absolute: M[#n] (globals)
indexed: M[Ri + Rj] (arrays of scalars)
memory indirect: M[M[Ri]] (in-memory p
scaled: M[Ri + Rj * d + #n] (arrays of str
update/auto-increment/decrement: M[R
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Operand Addressing M
count for 93% of all VAX operands [Cla

achines typically implement 1–3
i.e., load/store with only register displac

• load: Rj = M[Ri + #n], store: M[Ri + #n] = Rj

synthesize all other modes
• e.g., memory indirect: Rj = M[M[Ri]] => Rk =
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Control Instruction
s
1. taken or not?
2. where is the target?
3. link return address?
4. save or restore state?

tions that change the PC
(conditional) branches [1, 2], (unconditi
function calls [2,3,4], function returns [2
system calls [2,3,4], system returns [2,4
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Taken or Not?

ompare and branch” instructions
 single instruction branches
 requires ALU op in branch pipeline, restricts s

parate “compare” and “branch” instruc
 uses up a register, separates condition from b
 more scheduling opportunities, reuse compar

ndition codes: Zero, Negative, oVerflow
 set “for free” by ALU operations
 extra state to save/restore, scheduling problem

IPS example (design instruction set for
 data: 80+% cmp immediate, 65+% cmp zero, 5
 ISA: beqz, bnez, compare and set + branch fo
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Where is the Targe
PC-relative: branches/jumps within func

+ position independent, computable early, #bi
– target must be known statically, can’t jump f

absolute: function calls, long jumps with
+ jump farther
– more bits to specify

register: indirect calls (DLLs, virtuals), r
+ short specifier, can jump anywhere, dynami
– extra instruction (load), branch and target se

vectored trap: system calls
+ protection
– surprises are implementation headache
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Link Return Address
plicit register: many recent architectur

+ fast, simple
– s/w save register before next call (pain: surpr

xplicit register
+ may avoid saving register
– register must be specified

rocessor stack
+ recursion direct
– complex instructions (yucky)
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Save or Restore Stat
nction calls: save/restore registers

ystem calls: save/restore registers, flag
oftware save/restore: calling convention
• caller saves registers in use
• callee saves registers it (or nested callees) wi

xplicit hardware save/restore
• IBM STM, VAX CALLS

plicit hardware save/restore: register w
• 32 registers: 8 in, 8 out, 8 local, 8 global
• call: out  in (pass parameter), local/out “fresh”
• on return: opposite, 8 output of caller restored
• saving/restoring to memory when h/w window
+ no saving/restoring for shallow call graphs
– make register renaming (needed for OoO exe
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lternative to Control: Pred
  c = b*a;

#0: blez  r1, #2
#1: mul r3, r2, r1

oblem? #0 is a branch
 expensive if mis-predicted (later)

edication: converts control-flow to data
 branch mis-prediction avoided
 but data-dependences complicated
 two ways: conditional moves (left), or general p

#0: mul r4, r2, r1       #0: sgtzp
#1: cmovgt  r3, r4, r1    #1: divp r3, r4, r1,
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RISC War: RISC vs. C
’s: RISC movement challenges “CISC 
ISC (reduced instruction set computer
• Berkeley RISC-I (Patterson), Stanford MIPS (

ISC (complex instruction set computer
• VAX, X86, etc.

ord CISC did not exist before word RIS



40© 2 il
a

 lti-cycle ops)
 
 , mem-mem)
 format)
 
 : hand assembly)

rmance)
), scheduling (?)

 

002 by H
Vijaykum

•
•
•
•
•
•

•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

RISC Manifesto
single-cycle operation (CISC: many mu
hardwired control (CISC: microcode)
load/store organization (CISC: mem-reg
fixed instruction format (CISC: variable 
few modes (CISC: many modes)
reliance on compiler optimization (CISC

+ load/store ⇒ register allocation (+21% perfo
+ simple instructions ⇒ fine-grain CSE (+10%

no equivalent “CISC manifesto”
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The Joke on RISC
ommercially successful ISA is x86 (dec
lso: PentiumPro was first out-of-order m
• good RISC pipeline, 100K transistors
• good CISC pipeline, 300K transistors
• by 1995: 2M+ transistors evened pipeline pla
• rest of transistors used for caches (diminishin

ntel’s other trick?
• decoder translates CISC into sequences of R

 push EAX
               ⇓

µaddi ESP, ESP, 4
µstore EAX, 0(ESP)

• internally (micro-architecture) is actually RIS
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Arvind & Emer

ISA to Microarchitecture Mapping

• An ISA often designed for a particular
microarchitectural style, e.g.,

– CISC ⇒ microcoded
– RISC ⇒ hardwired, pipelined
– VLIW ⇒ fixed latency in-order pipelines
– JVM ⇒ software interpretation

• But an ISA can be implemented in any
microarchitectural style

– Pentium-4: hardwired pipelined CISC (x86) machine (with
some microcode support)

– This lecture: a microcoded RISC (MIPS) machine
– Intel will probably eventually have a dynamically scheduled

out-of-order VLIW (IA-64) processor
– PicoJava: A hardware JVM processor
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Microarchitecture: Implementation of an ISA

Structure:  How components are connected. 
                                                Static
Behavior:   How data moves between components 
                                                Dynamic

Controller

Data
path

control
pointsstatus

lines
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Microcontrol Unit Maurice Wilkes, 1954

Embed the control logic state table in a memory array

Matrix A Matrix B

Decoder

Next state

op      conditional
code   flip-flop

µ  address

Control lines  to
ALU, MUXs, Registers
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Microcoded Microarchitecture

Memory
(RAM)

Datapath

µcontroller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions

holds user program
written in macrocode

instructions (e.g.,
MIPS, x86, etc.)
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Reducing Control Store Size

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the 
control store

– reduce states by grouping opcodes 
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast ⇒ expensive
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Performance Issues
Microprogrammed control 

⇒  multiple cycles per instruction

Cycle time ? 
tC > max(treg-reg, tALU, tµROM, tRAM)

Given complex control, tALU & tRAM can be broken
into multiple cycles.  However, tµROM cannot be
broken down.  Hence 

tC > max(treg-reg, tµROM)

Suppose  10 * tµROM < tRAM
Good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10 
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Modern Usage
• Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

• Microcode pays an assisting role in most modern
   CISC micros (AMD Athlon, Intel Pentium-4 ...)

• Most instructions are executed directly, i.e., with hard-wired
   control
• Infrequently-used and/or complicated instructions invoke the
   microcode engine

• Patchable microcode common for post-fabrication
   bug fixes, e.g. Intel Pentiums load mcode patches
   at bootup
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Horizontal vs Vertical µCode

• Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
– Fewer steps per macroinstruction
– Sparser encoding ⇒ more bits

• Vertical µcode has narrower µinstructions
– Typically a single datapath operation per µinstruction

– separate µinstruction for branches
– More steps to per macroinstruction
– More compact  ⇒ less bits

• Nanocoding
– Tries to combine best of horizontal and vertical µcode

# µInstructions

Bits per µInstruction
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Evolution of Instruction Sets
instruction sets evolve

• implementability driven by technology
• microcode, VLSI, pipelining, superscalar

• programmability driven by (compiler) technology
• hand assembly → compilers → register allocation

• instruction set features go from good to bad to good
• just like microarchitecture ideas

lessons
• many non-technical (tr: business) issues influence ISAs
• best solutions don’t always win


	L02_InstructionSetArchitecture.pdf
	L02_ISA.pdf
	L01_Princip_2.pdf
	Instruction Set Architecture (ISA) versus Implementation
	Processor Performance
	Hardware Elements
	Register Files
	Register File Implementation
	A Simple Memory Model
	Implementing MIPS:Single-cycle per instructiondatapath & control logic
	The MIPS ISA
	Instruction Execution
	Datapath: Reg-Reg ALU Instructions
	Datapath: Reg-Imm ALU Instructions
	Conflicts in Merging Datapath
	Datapath for ALU Instructions
	Datapath for Memory Instructions
	Load/Store Instructions:Harvard Datapath
	MIPS Control Instructions
	Conditional Branches (BEQZ, BNEZ)
	Register-Indirect Jumps (JR)
	Register-Indirect Jump-&-Link (JALR)
	Absolute Jumps (J, JAL)
	Harvard-Style Datapath for MIPS
	Hardwired Control is pure Combinational Logic
	ALU Control & Immediate Extension
	Hardwired Control Table
	Single-Cycle Hardwired Control:Harvard architecture
	At least the instruction fetch and a Load (or Store) cannot be executed in the same cyclestructural hazard
	Princeton MicroarchitectureDatapath & Control
	Two-State Controller: Princeton Architecture
	Hardwired Controller: Princeton Architecture
	Clock Period
	Clock Rate vs CPI

	L02_ISA_2.pdf
	Intel Itanium (IA64)
	4GB virtual memory too little, options?
	• segmentation (already present in IA32)
	• 64-bit extensions (solution for 16- and 32-bits)
	• AMD Sledgehammer (Intel hedge Yamhill?)


	2000: neither, create brand new ISA (IA64)
	• EPIC: binary compatible (interlocked) VLIW
	• 3-instruction bundles (with explicit info about parallelism)

	• underlying RISC: 128 registers (register-register FP model)
	• support for ILP: predication, software speculation
	• implementations

	– Itanium (Merced), under Moore’s curve
	• Itanium2 (McKinley), jury out


	Instruction Sets
	• what is an instruction set?
	• what is a good instruction set?
	• the forces that shape instruction sets
	• aspects of instruction sets
	• instruction set examples
	• RISC vs. CISC

	Alternative to Control: Predication
	if (a > 0) c = b*a;
	#0: blez r1, #2
	#1: mul r3, r2, r1
	• problem? #0 is a branch

	– expensive if mis-predicted (later)
	• predication: converts control-flow to data-flow
	+ branch mis-prediction avoided


	– but data-dependences complicated
	• two ways: conditional moves (left), or general predication (right)
	#0: mul r4, r2, r1 #0: sgtzp p1, r1
	#1: cmovgt r3, r4, r1 #1: divp r3, r4, r1, p1



	Readings
	H+P
	• chapter 2
	• appendices C (RISC), D (X86), available from web page

	other readings
	• Patterson+Ditzel, “The Case for RISC”
	• Colwell+, “Instruction Sets and Beyond” (CISC comeback)


	Intel X86 (IA32)
	1974: most commercially successful ISA ever
	• variable length instructions (1–16 bytes)
	• 8 32-bit general purpose registers (only 4 actually GP)
	• partial 16- and 8-bit versions of each register (AX, AH, AL)
	• FP operand stack

	• extended accumulator (two-operand instructions)
	• register-register and register-memory
	• stack manipulation instructions (but no internal integer stack)

	• scaled addressing: base + (index * scale) + displacement
	• 2-level memory (segments)
	• interruptible string instructions

	“difficult to explain and impossible to love” –an X86 designer

	Instruction Sets
	“Instruction set architecture is the structure of a computer that a machine language programmer (...
	–IBM introducing 360 (1964)
	an instruction set specifies a processor’s functionality
	• what operations it supports
	• what storage mechanisms it has & how they are accessed
	• programmer/compiler use to communicate programs to processor

	instruction set architecture (ISA): “architecture” part of 501

	What Makes a Good Instruction Set?
	implementability
	• supports a (performance/cost) range of implementations
	• implies support for high performance implementations


	programmability
	• easy to express programs

	backward/forward/upward compatibility
	• implementability & programmability across generations
	• e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II, Pentium III, Pentium 4...


	think about these as we discuss aspects

	Summary
	• 3 *-ilities: implementability, programmability, compatibility
	• design principles
	• aspects: format, data types, operand modes/model...
	• RISC vs. CISC
	readings
	• H+P, chapter 2
	• Patterson+Ditzel: “RISC”
	• Colwell+: “CISC”

	next up: memory hierarchy I (caches)

	Implementability
	low performance implementation
	• easy, trap to software to emulate complex instructions

	high performance implementation
	• more difficult
	• components: pipelining, parallelism, dynamic scheduling?
	• avoid artificial sequential dependences
	• deterministic execution latencies simplify scheduling
	• avoid instructions with multiple long latency components
	• avoid not-easily-interruptable instructions



	ISA Æ ISA + mISA
	Intel’s trick (decode external ISA into internal ISA) is popular
	+ stable external ISA gives compatibility
	+ flexible internal ISA gives implementability
	• obsolete features? don’t implement, emulate
	• Intel PentiumII, AMD Athlon: mops or Rops
	• translation by PLAs (hardware)

	• Intel Pentium4
	• translations are cached

	• TransMeta Crusoe: translates X86 to RISC VLIW
	• translation (code-morphing) by invisible software
	• primary goal is lower power/performance (VLIW)
	• TM3200 and TM5400 mISAs are slightly different




	Programmability
	programmability timeline
	• –1975: most code was hand-assembled
	• 1975–1985: most code was compiled
	• but people thought that hand assembled code was superior

	• 1985–: most code was compiled
	• and compiled code was at least as good as hand-assembly

	• big shift in what “programmability” meant


	DEC (Æ Compaq Æ /dev/null) Alpha
	1990: ultimate RISC
	• first 64-bit machine
	• 32 64-bit GPRs, 32 64-bit FPRs
	• RISC: first implementation had no support for 8, 16, 32-bit data
	• added later after software vendor protests (BWX)

	• displacement addressing only
	• priveleged subset (PAL) for lightweight OS implementation
	• other extensions
	• predication: conditional moves
	• non-binding memory instructions (prefetch hints)


	get familiar with this ISA via SimpleScalar

	–1980: Human Programmability
	focus: instruction sets that were easy for humans to program
	• ISA sematically close to high-level language (HLL)
	• closing the “semantic gap”

	• semantically heavy (CISC-like) instructions
	• automatic saves/restores on procedure calls
	• VAX insque

	• people thought computers may execute HLL directly
	• never materialized

	• one problem with this approach: multiple HLLs
	• “semantic clash”: not exactly the semantics you want



	1980–: Compiler Programmability
	focus: instruction sets that are easy for compilers to compile to
	• primitive instructions from which solutions are synthesized
	• Wulf: primitives not solutions
	• hard for compiler to tell if complex instruction fits situation

	• regularity: do things the same way, consistently
	• “principle of least astonishment” (true even for hand-assembly)
	• one vs. all (either one way for all things, or one way for each thing)

	• orthogonality, composability
	• all combinations of operation, data type, addressing mode possible

	• few modes/obvious choices
	• compilers do giant case analysis, don’t add more cases



	Today’s Semantic Gap
	popular argument: today’s ISAs are targeted to one HLL, it just so happens that this HLL (C) is v...
	• would ISAs be different if Java was dominant?
	• more object oriented?
	• GC support?
	• support for bounds-checking?
	• security support?



	Compatibilities: Upward/Forward/Backward
	basic tenet: make sure all written software works
	• business reality: software cost greater than hardware cost
	• intel first company to realize this


	thinking about compatibility ahead of time is hard
	• temptation: use ISA gadget for 5% performance gain
	• frequent outcome: must continue to support gadget
	• even if gain disappears or turns into loss!!

	• e.g.’s: register windows, delayed branches

	forward compatibility
	• reserve trap hooks to emulate future ISA extensions


	Evolution of Instruction Sets
	instruction sets evolve
	• implementability driven by technology
	• microcode, VLSI, pipelining, superscalar

	• programmability driven by (compiler) technology
	• hand assembly Æ compilers Æ register allocation

	• instruction set features go from good to bad to good
	• just like microarchitecture ideas


	lessons
	• many non-technical (tr: business) issues influence ISAs
	• best solutions don’t always win


	Instruction Set Aspects
	• format
	• length, encoding

	• operations
	• operations, data types, number & kind of operands

	• internal storage
	• model: accumulator, stack, general-purpose register
	• memory: address size, addressing modes, alignments

	• control
	• branch conditions, special support for procedures, predication

	• special features?

	Instruction Format
	fixed length (most common: 32-bits)
	+ easy pipelining/superscalar
	• don’t have to decode current instruction to find next instruction

	– not compact (4-bytes for nop?)

	variable length
	+ more compact
	– hard (but doable) to superscalarize/pipeline

	recent compromise: 2 lengths (32-bit + another length)
	• MIPS16, ARM Thumb: add 16-bit subset (compression)
	• TM Crusoe: adds 64-bit long-immediate instructions


	Operations
	• arithmetic and logical: add, mult, and, xor
	• data transfer: move, load, store
	• control: conditional branch, jump, call, return
	• system: system call, return, traps
	• floating point: add, mul, div, sqrt
	• decimal: addd, convert� (not common today)
	• string: move, compare (also not common)
	• multimedia: e.g., Intel MMX/SSE and Sun VIS

	Data Sizes and Types
	• fixed point (integer)
	• 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit (doubleword)

	• floating point
	• 32/64 bit (IEEE754 single/double precision), 80-bit (Intel proprietary)

	• address size (aka “machine size”)
	• e.g., 32-bit machine means addresses are 32-bits
	• key is virtual memory size: 32-bits ﬁ 4GB (not enough anymore)


	Fixed Point Operation Types
	types: s/w (property of data) vs. h/w (property of operation)
	• signed (–2n–1 to 2n–1–1) vs. unsigned (0 to 2n–1)
	• packed (multimedia short vector)
	• treat 64-bit as 8x8, 4x16, or 2x32
	• e.g.: addb, addh (MMX)
	17 87 100 ...
	+ 17 13 200 ...
	___ ___ ___ ___
	34 100 255 (saturating or 44 with wraparound)

	• MMX example: 16-element dot product: Sai*bi
	• plain: 200 instructions/76 cycles Æ MMX: 16/12 (6X perf.)

	• saturating (no wrap around on overflow)
	• useful in RGBA calculations



	Internal Storage Model
	choices
	• stack
	• accumulator
	• memory-memory
	• register-memory
	• register-register (load/store)

	running example:
	add C, A, B (C := A + B)


	Storage Model: Stack
	push A S[++TOS] = M[A];
	push B S[++TOS] = M[B];
	add T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=T1+T2;
	pop C M[C] = S[TOS--];
	• operands implicitly on top-of-stack (TOS, TOS2)
	• ALU operations have zero explicit operands
	+ code density (top of stack implicit)
	– memory, pipelining bottlenecks (why?)
	• mostly 60’s & 70’s
	• x86 uses stack model for FP (sucks for them)
	• JAVA bytecodes also use stack model (why?)



	Storage Model: Accumulator
	load A accum = M[A];
	add B accum += M[B];
	store C M[C] = accum;
	• accum is implicit destination/source in all instructions
	• ALU operations have one operand
	+ less hardware, code density (accumulator implicit)
	– memory bottleneck
	• mostly pre 60’s
	• UNIVAC, CRAY
	• x86 (IA32) uses extended accumulator for integer code

	• accumulator comeback?
	• 2-level register file (register-accumulator) [ISCA’02]



	Storage Model: Memory-Memory
	add C,A,B M[C] = M[A] + M[B];
	• no registers whatsoever
	+ code density (most compact)
	– large variations in instruction lengths
	– large variations in work per-instruction
	– memory bottleneck
	• no current machines support memory-memory
	• VAX did



	Storage Model: Memory-Register
	load R1,A R1 = M[A];
	add R1,B R1 += M[B];
	store C,R1 M[C] = R1;
	• like an explicit (extended) accumulator
	+ can have several accumulators at a time

	+ code density, easy to decode
	– asymmetric operands, asymmetric work per instruction
	• 70’s and early 80’s
	• IBM 360/370
	• Intel x86, Motorola 68K



	Storage-Model: Register-Register
	load R1,A R1 = M[A];
	load R2,B R2 = M[B];
	add R3,R1,R2 R3 = R1 + R2;
	store C,R3 M[C] = R3;
	• load/store architecture: ALU operations on registers only
	– code density
	+ easy decoding, operand symmetry
	+ deterministic length ALU operations
	+ scheduling opportunities, register-level CSE
	• 60’s and onwards
	• RISC machines: ALPHA, MIPS, PPC (but also Cray)



	Registers vs. Memory
	registers
	+ faster (direct access, smaller, no tags)
	+ deterministic scheduling (i.e., fixed latency, no misses)
	+ replicate for more b/w
	+ short identifier
	– must save/restore on procedure calls, context switches
	– fixed size
	• strings, structures (i.e., bigger than 64 bits) must live in memory

	– can’t take address of a register
	• pointed-to variables must live in memory



	How Many Registers?
	more registers
	+ hold more operands for longer periods
	• shorter average operand access time, lower memory traffic

	– longer specifiers (longer instructions?)
	– slower access to register operands (bigger is slower)
	– slower procedure calls/context-switch (more save/restore)

	trend is for more registers
	• X86: 8 Æ SPARC/MIPS/Alpha/PPC: 32 Æ Itanium: 128
	• why?



	Memory Alignment
	“natural boundaries” ﬁ (address % size) == 0
	• e.g. word (4 bytes): @xx00 ﬁ aligned, @xx11 ﬁ unaligned

	alignment restrictions: kinds of alignments architecture supports
	• no restrictions (all in hardware)
	• hardware detects, makes 2 references (what if 2nd one faults?)


	– expensive logic, slows down all references (why?)
	• restricted alignment (software guarantee w/ hardware trap)
	• misaligned access traps, performed in s/w by handler

	• middle ground: multiple instructions for misaligned data
	• e.g., MIPS (lwl/lwr), Alpha (ldq_u)
	• compiler generates for known cases, h/w traps for unknown cases



	Operand Addressing Modes
	• immediate: #n (immediate values)
	• register: Ri (register values)
	• displacement: M[Ri + #n] (stack, structure fields)
	• register indirect: M[Ri] (loaded/computed addresses)
	• memory absolute: M[#n] (globals)
	• indexed: M[Ri + Rj] (arrays of scalars)
	• memory indirect: M[M[Ri]] (in-memory pointers)
	• scaled: M[Ri + Rj * d + #n] (arrays of structures, X86)
	• update/auto-increment/decrement: M[Ri = Ri + #n]

	Operand Addressing Modes
	1–4 account for 93% of all VAX operands [Clark+Emer]
	RISC machines typically implement 1–3
	• i.e., load/store with only register displacement
	• load: Rj = M[Ri + #n], store: M[Ri + #n] = Rj

	• synthesize all other modes
	• e.g., memory indirect: Rj = M[M[Ri]] => Rk = M[Ri]; Rj = M[Rk]



	Control Instructions
	aspects
	• 1. taken or not?
	• 2. where is the target?
	• 3. link return address?
	• 4. save or restore state?

	instructions that change the PC
	• (conditional) branches [1, 2], (unconditional) jumps [2]
	• function calls [2,3,4], function returns [2,4]
	• system calls [2,3,4], system returns [2,4]


	Taken or Not?
	• “compare and branch” instructions
	+ single instruction branches

	– requires ALU op in branch pipeline, restricts scheduling
	• separate “compare” and “branch” instructions

	– uses up a register, separates condition from branch logic
	+ more scheduling opportunities, reuse comparison
	• condition codes: Zero, Negative, oVerflow, Carry
	+ set “for free” by ALU operations


	– extra state to save/restore, scheduling problems (implicit)
	• MIPS example (design instruction set for usage)
	• data: 80+% cmp immediate, 65+% cmp zero, 50% == 0 or <> 0
	• ISA: beqz, bnez, compare and set + branch for others



	Where is the Target?
	• PC-relative: branches/jumps within function
	+ position independent, computable early, #bits: <4 (47%), <8 (94%)

	– target must be known statically, can’t jump far
	• absolute: function calls, long jumps within functions
	+ jump farther


	– more bits to specify
	• register: indirect calls (DLLs, virtuals), returns, switch
	+ short specifier, can jump anywhere, dynamic target ok (ret)


	– extra instruction (load), branch and target separated in pipeline
	• vectored trap: system calls
	+ protection


	– surprises are implementation headache

	Link Return Address?
	• implicit register: many recent architectures use this
	+ fast, simple

	– s/w save register before next call (pain: surprise trap)
	• explicit register
	+ may avoid saving register


	– register must be specified
	• processor stack
	+ recursion direct


	– complex instructions (yucky)

	Save or Restore State?
	• function calls: save/restore registers
	• system calls: save/restore registers, flags, PC, PSW, etc.
	• software save/restore: calling convention divides work
	• caller saves registers in use
	• callee saves registers it (or nested callees) will use

	• explicit hardware save/restore
	• IBM STM, VAX CALLS

	• implicit hardware save/restore: register windows (SPARC)
	• 32 registers: 8 in, 8 out, 8 local, 8 global
	• call: out in (pass parameter), local/out “fresh”, global unchanged
	• on return: opposite, 8 output of caller restored
	• saving/restoring to memory when h/w windows run out
	+ no saving/restoring for shallow call graphs

	– make register renaming (needed for OoO execution) hard

	Instruction Set Examples
	• DEC: VAX (CISC) Æ Alpha (RISC)
	• Intel: IA32 (CISC) Æ IA64 (RISC VLIW)

	DEC (Æ Compaq Æ /dev/null) VAX
	1977: ultimate CISC
	• virtual memory (Virtual Address eXtension to PDP-11)
	• 32-bit ISA, variable length instructions (1 to 321 bytes!!!)
	• 16 GPRs (r15 PC, r14 SP), CCs
	• data types: 8, 16, 32, 64, 128, decimals, strings
	• orthogonal, memory-memory, all operand modes
	• hundreds of instructions: crc, insque, polyf
	• touted as first MIPS-1 machine

	– oops: 10.6 CPI @ 200ns ﬁ 0.5 MIPS
	– 5 CPI just in decode (4 just to decode 16% of instructions)
	– flagrant violation of Amdahl’s law

	RISC War: RISC vs. CISC
	early 80’s: RISC movement challenges “CISC establishment”
	• RISC (reduced instruction set computer)
	• Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801

	• CISC (complex instruction set computer)
	• VAX, X86, etc.

	• word CISC did not exist before word RISC came along


	RISC Manifesto
	• single-cycle operation (CISC: many multi-cycle ops)
	• hardwired control (CISC: microcode)
	• load/store organization (CISC: mem-reg, mem-mem)
	• fixed instruction format (CISC: variable format)
	• few modes (CISC: many modes)
	• reliance on compiler optimization (CISC: hand assembly)
	+ load/store ﬁ register allocation (+21% performance)
	+ simple instructions ﬁ fine-grain CSE (+10%), scheduling (?)

	• no equivalent “CISC manifesto”

	RISC and CISC Arguments
	RISC argument [Patterson]
	• CISC is fundamentally handicapped
	• for a given technology, RISC implementation will be faster
	• current VLSI technology enables single-chip RISC
	• when technology enables single-chip CISC, RISC will be pipelined
	• when technology enables pipelined CISC, RISC will have caches
	• when technology enables CISC with caches, RISC will have ...


	CISC rebuttal [Colwell]
	• CISC flaws not fundamental (fixed with more transistors)
	• Moore’s Law will narrow the RISC/CISC gap (true)

	• software costs will dominate (very true)


	RISC/CISC Showdown
	VAX 8700 vs. MIPS R3000 [Clark+Bhandarkar]
	li
	1.6
	6.0
	3.7
	eqntott
	1.1
	3.5
	3.3
	fpppp
	2.9
	10.5
	2.7
	tomcatv
	2.9
	8.2
	2.9
	• argues
	• RISCs fundamentally better than CISCs
	• implementation effects, compilers are second order

	• unfair comparison
	• VAX advantages: big immediates, not-taken branches
	• MIPS advantages: more registers, FPU, instruction scheduling, TB



	The Joke on RISC
	most commercially successful ISA is x86 (decidedly CISC)
	• also: PentiumPro was first out-of-order microprocessor
	• good RISC pipeline, 100K transistors
	• good CISC pipeline, 300K transistors
	• by 1995: 2M+ transistors evened pipeline playing field
	• rest of transistors used for caches (diminishing returns)

	• Intel’s other trick?
	• decoder translates CISC into sequences of RISC mops
	push EAX
	ﬂ
	maddi ESP, ESP, 4
	mstore EAX, 0(ESP)

	• internally (micro-architecture) is actually RISC!
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