
12© 2 ll,
ar

ts
f

o
rands

i
register
ignments

c
ures, predication

s

002 by Hi
Vijaykum

•

•

•

•

•
CIS 501 Lecture Notes
Instruction Sets

Wood, Sohi, Smith,
, Lipasti & Roth

Instruction Set Aspec
ormat
• length, encoding

perations
• operations, data types, number & kind of ope

nternal storage
• model: accumulator, stack, general-purpose
• memory: address size, addressing modes, al

ontrol
• branch conditions, special support for proced

pecial features?

13© 2 il
a

t
fix e

nd next instruction

va l

eline

re t r length)
 t (compression)
 instructions
002 by H
Vijaykum

ed l
+

–

riab
+
–

cen
•
•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

Instruction Forma
ngth (most common: 32-bits)

 easy pipelining/superscalar
• don’t have to decode current instruction to fi

 not compact (4-bytes for nop?)

e length
 more compact
 hard (but doable) to superscalarize/pip

 compromise: 2 lengths (32-bit + anothe
MIPS16, ARM Thumb: add 16-bit subse
TM Crusoe: adds 64-bit long-immediate

14© 20 , W
V r,

a r
d
c turn
s
fl
d day)
s n)
m n VIS
02 by Hill
ijaykuma

•
•
•
•
•
•
•
•
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
 Lipasti & Roth

Operations
rithmetic and logical: add, mult, and, xo
ata transfer: move, load, store
ontrol: conditional branch, jump, call, re
ystem: system call, return, traps
oating point: add, mul, div, sqrt
ecimal: addd, convert (not common to
tring: move, compare (also not commo
ultimedia: e.g., Intel MMX/SSE and Su

15© 20 , W
V r,

s
fi

(doubleword)

fl
0-bit (Intel proprietary)

a
-bits
ot enough anymore)
02 by Hill
ijaykuma

•

•

•

CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
 Lipasti & Roth

Data Sizes and Type
xed point (integer)
• 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit

oating point
• 32/64 bit (IEEE754 single/double precision), 8

ddress size (aka “machine size”)
• e.g., 32-bit machine means addresses are 32
• key is virtual memory size: 32-bits ⇒ 4GB (n

16by
yk

 Types
y perty of operation)

 (0 to 2n–1)

i*bi

16/12 (6X perf.)

w)
© 2002
Vija

t

CIS 501 Lecture Notes
Instruction Sets

Hill, Wood, Sohi, Smith,
umar, Lipasti & Roth

Fixed Point Operation
pes: s/w (property of data) vs. h/w (pro
• signed (–2n–1 to 2n–1–1) vs. unsigned
• packed (multimedia short vector)

• treat 64-bit as 8x8, 4x16, or 2x32
• e.g.: addb, addh (MMX)

 17 87 100 ...

 + 17 13 200 ...
 ___ ___ ___ ___
 34 100 255 (saturating or 44 with wraparound)

• MMX example: 16-element dot product: Σa

• plain: 200 instructions/76 cycles → MMX:

• saturating (no wrap around on overflo
• useful in RGBA calculations

17© 2 ill
a

el
ch

ru g
002 by H
Vijaykum

oice
•
•
•
•
•

nnin
CIS 501 Lecture Notes
Instruction Sets

, Wood, Sohi, Smith,
r, Lipasti & Roth

Internal Storage Mod
s
stack
accumulator
memory-memory
register-memory
register-register (load/store)

 example:
 add C, A, B (C := A + B)

18© 200 W
V r,

k

T1+T2;

 TOS2)
ds

c
m

2 by Hill,
ijaykuma

• o
• A
+
–
• m
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
Lipasti & Roth

Storage Model: Stac
 push A S[++TOS] = M[A];
 push B S[++TOS] = M[B];
 add T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=
 pop C M[C] = S[TOS--];

perands implicitly on top-of-stack (TOS,
LU operations have zero explicit operan
ode density (top of stack implicit)
emory, pipelining bottlenecks (why?)
ostly 60’s & 70’s

• x86 uses stack model for FP (sucks for them)
• JAVA bytecodes also use stack model (why?)

19© 200 W
Vi L

lator

c instructions

e r implicit)

•
• ger code

c
• A’02]
2 by Hill,
jaykumar,

• a
• A
+ l
– m
• m

• a
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
ipasti & Roth

Storage Model: Accumu
load A accum = M[A];
add B accum += M[B];
store C M[C] = accum;

cum is implicit destination/source in all
LU operations have one operand
ss hardware, code density (accumulato
emory bottleneck
ostly pre 60’s
 UNIVAC, CRAY
 x86 (IA32) uses extended accumulator for inte

cumulator comeback?
 2-level register file (register-accumulator) [ISC

20© 20 l,
ar

emory

n

n emory
02 by Hil
Vijaykum

•
+
–
–
–
•
CIS 501 Lecture Notes
Instruction Sets

Wood, Sohi, Smith,
, Lipasti & Roth

Storage Model: Memory-M
 add C,A,B M[C] = M[A] + M[B];

o registers whatsoever
code density (most compact)
large variations in instruction lengths
large variations in work per-instruction
memory bottleneck
o current machines support memory-m
• VAX did

21© H
m

Register

•

+
– rk per instruction
•

2002 by
Vijayku
CIS 501 Lecture Notes
Instruction Sets

ill, Wood, Sohi, Smith,
ar, Lipasti & Roth

Storage Model: Memory-
 load R1,A R1 = M[A];
 add R1,B R1 += M[B];
 store C,R1 M[C] = R1;

 like an explicit (extended) accumulator
+ can have several accumulators at a time

 code density, easy to decode
 asymmetric operands, asymmetric wo
 70’s and early 80’s

• IBM 360/370
• Intel x86, Motorola 68K

22© H
um

Register

• s on registers only
–
+
+
+ l CSE
•

lso Cray)
2002 by
Vijayk
CIS 501 Lecture Notes
Instruction Sets

ill, Wood, Sohi, Smith,
ar, Lipasti & Roth

Storage-Model: Register-
 load R1,A R1 = M[A];
 load R2,B R2 = M[B];
 add R3,R1,R2 R3 = R1 + R2;
 store C,R3 M[C] = R3;

 load/store architecture: ALU operation
 code density
 easy decoding, operand symmetry
 deterministic length ALU operations
 scheduling opportunities, register-leve
 60’s and onwards

• RISC machines: ALPHA, MIPS, PPC (but a

23© 200 W
V r,

y
reg r

f
d cy, no misses)
r
s
m ntext switches
fi

ust live in memory

c

2 by Hill,
ijaykuma

iste
+
+
+
+
–
–

–
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
Lipasti & Roth

Registers vs. Memor
s
aster (direct access, smaller, no tags)
eterministic scheduling (i.e., fixed laten
eplicate for more b/w
hort identifier
ust save/restore on procedure calls, co

xed size
• strings, structures (i.e., bigger than 64 bits) m

an’t take address of a register
• pointed-to variables must live in memory

24© H
m

s?
m r

+
 memory traffic

–
– gger is slower)
– (more save/restore)

tr i
• → Itanium: 128
2002 by
Vijayku

ore

end
CIS 501 Lecture Notes
Instruction Sets

ill, Wood, Sohi, Smith,
ar, Lipasti & Roth

How Many Register
egisters
 hold more operands for longer periods

• shorter average operand access time, lower

 longer specifiers (longer instructions?)
 slower access to register operands (bi
 slower procedure calls/context-switch

s for more registers
 X86: 8 → SPARC/MIPS/Alpha/PPC: 32

• why?

25© il
m

t
“n a

xx11 ⇒ unaligned

a hitecture supports

t if 2nd one faults?)
why?)

 e w/ hardware trap)
y handler

 misaligned data

ps for unknown cases
2002 by H
Vijayku

atur
•

lignm
•

•

•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
ar, Lipasti & Roth

Memory Alignmen
l boundaries” ⇒ (address % size) == 0

e.g. word (4 bytes): @xx00 ⇒ aligned, @

ent restrictions: kinds of alignments arc
no restrictions (all in hardware)

• hardware detects, makes 2 references (wha
– expensive logic, slows down all references (

restricted alignment (software guarante
• misaligned access traps, performed in s/w b

middle ground: multiple instructions for
• e.g., MIPS (lwl/lwr), Alpha (ldq_u)
• compiler generates for known cases, h/w tra

26© il
a

odes

 re fields)
 d addresses)

 ointers)
 uctures, X86)
 i = Ri + #n]
2002 by H
Vijaykum

•
•
•
•
•
•
•
•
•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

Operand Addressing M
immediate: #n (immediate values)
register: Ri (register values)
displacement: M[Ri + #n] (stack, structu
register indirect: M[Ri] (loaded/compute
memory absolute: M[#n] (globals)
indexed: M[Ri + Rj] (arrays of scalars)
memory indirect: M[M[Ri]] (in-memory p
scaled: M[Ri + Rj * d + #n] (arrays of str
update/auto-increment/decrement: M[R

27© i
m

odes
1 c rk+Emer]

R m
 ement

 M[Ri]; Rj = M[Rk]
2002 by H
Vijayku

–4 a

ISC
•

•

CIS 501 Lecture Notes
Instruction Sets

ll, Wood, Sohi, Smith,
ar, Lipasti & Roth

Operand Addressing M
count for 93% of all VAX operands [Cla

achines typically implement 1–3
i.e., load/store with only register displac

• load: Rj = M[Ri + #n], store: M[Ri + #n] = Rj

synthesize all other modes
• e.g., memory indirect: Rj = M[M[Ri]] => Rk =

28© 2 il
a

s
a t

in c
 onal) jumps [2]
 ,4]
]
002 by H
Vijaykum

spec
•
•
•
•

stru
•
•
•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

Control Instruction
s
1. taken or not?
2. where is the target?
3. link return address?
4. save or restore state?

tions that change the PC
(conditional) branches [1, 2], (unconditi
function calls [2,3,4], function returns [2
system calls [2,3,4], system returns [2,4

29© 20 l, W
V r, L

“c
+
– cheduling

se tions
– ranch logic
+ ison

co , Carry
+
– s (implicit)

M usage)
• 0% == 0 or <> 0
• r others
02 by Hil
ijaykuma

•

•

•

•
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
ipasti & Roth

Taken or Not?

ompare and branch” instructions
 single instruction branches
 requires ALU op in branch pipeline, restricts s

parate “compare” and “branch” instruc
 uses up a register, separates condition from b
 more scheduling opportunities, reuse compar

ndition codes: Zero, Negative, oVerflow
 set “for free” by ALU operations
 extra state to save/restore, scheduling problem

IPS example (design instruction set for
 data: 80+% cmp immediate, 65+% cmp zero, 5
 ISA: beqz, bnez, compare and set + branch fo

30© il
a

t?
 tion

ts: <4 (47%), <8 (94%)
ar

 in functions

 eturns, switch
c target ok (ret)
parated in pipeline

2002 by H
Vijaykum

•

•

•

•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

Where is the Targe
PC-relative: branches/jumps within func

+ position independent, computable early, #bi
– target must be known statically, can’t jump f

absolute: function calls, long jumps with
+ jump farther
– more bits to specify

register: indirect calls (DLLs, virtuals), r
+ short specifier, can jump anywhere, dynami
– extra instruction (load), branch and target se

vectored trap: system calls
+ protection
– surprises are implementation headache

31© 20 , W
V r,

?
im es use this

ise trap)

e

p

02 by Hill
ijaykuma

•

•

•
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
 Lipasti & Roth

Link Return Address
plicit register: many recent architectur

+ fast, simple
– s/w save register before next call (pain: surpr

xplicit register
+ may avoid saving register
– register must be specified

rocessor stack
+ recursion direct
– complex instructions (yucky)

32© 20 W
V r,

e?
u

s, PC, PSW, etc.
 divides work

ll use

m indows (SPARC)

, global unchanged

s run out

cution) hard
02 by Hill,
ijaykuma

• f
• s
• s

• e

• i
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
Lipasti & Roth

Save or Restore Stat
nction calls: save/restore registers

ystem calls: save/restore registers, flag
oftware save/restore: calling convention
• caller saves registers in use
• callee saves registers it (or nested callees) wi

xplicit hardware save/restore
• IBM STM, VAX CALLS

plicit hardware save/restore: register w
• 32 registers: 8 in, 8 out, 8 local, 8 global
• call: out in (pass parameter), local/out “fresh”
• on return: opposite, 8 output of caller restored
• saving/restoring to memory when h/w window
+ no saving/restoring for shallow call graphs
– make register renaming (needed for OoO exe

33© 200
Vij L

A ication
if (a)

r
–

r -flow
+
–
• redication (right)

 p1, r1
 p1
2 by Hill, W
aykumar,

 > 0

• p

• p
CIS 501 Lecture Notes
Instruction Sets

ood, Sohi, Smith,
ipasti & Roth

lternative to Control: Pred
 c = b*a;

#0: blez r1, #2
#1: mul r3, r2, r1

oblem? #0 is a branch
 expensive if mis-predicted (later)

edication: converts control-flow to data
 branch mis-prediction avoided
 but data-dependences complicated
 two ways: conditional moves (left), or general p

#0: mul r4, r2, r1 #0: sgtzp
#1: cmovgt r3, r4, r1 #1: divp r3, r4, r1,

39© 20 l,
r,

ISC
ea 0 establishment”

R)
Hennessy), IBM 801

C)

w C came along
02 by Hil
Vijaykuma

rly 8
•

•

•
CIS 501 Lecture Notes
Instruction Sets

Wood, Sohi, Smith,
 Lipasti & Roth

RISC War: RISC vs. C
’s: RISC movement challenges “CISC
ISC (reduced instruction set computer
• Berkeley RISC-I (Patterson), Stanford MIPS (

ISC (complex instruction set computer
• VAX, X86, etc.

ord CISC did not exist before word RIS

40© 2 il
a

 lti-cycle ops)

 , mem-mem)
 format)

 : hand assembly)

rmance)
), scheduling (?)

002 by H
Vijaykum

•
•
•
•
•
•

•

CIS 501 Lecture Notes
Instruction Sets

l, Wood, Sohi, Smith,
r, Lipasti & Roth

RISC Manifesto
single-cycle operation (CISC: many mu
hardwired control (CISC: microcode)
load/store organization (CISC: mem-reg
fixed instruction format (CISC: variable
few modes (CISC: many modes)
reliance on compiler optimization (CISC

+ load/store ⇒ register allocation (+21% perfo
+ simple instructions ⇒ fine-grain CSE (+10%

no equivalent “CISC manifesto”

43© 2 ill,
a

m idedly CISC)
 a icroprocessor

ying field
g returns)

 I
ISC µops

C!
002 by H
Vijaykum

ost c
•

•

CIS 501 Lecture Notes
Instruction Sets

Wood, Sohi, Smith,
r, Lipasti & Roth

The Joke on RISC
ommercially successful ISA is x86 (dec
lso: PentiumPro was first out-of-order m
• good RISC pipeline, 100K transistors
• good CISC pipeline, 300K transistors
• by 1995: 2M+ transistors evened pipeline pla
• rest of transistors used for caches (diminishin

ntel’s other trick?
• decoder translates CISC into sequences of R

 push EAX
 ⇓

µaddi ESP, ESP, 4
µstore EAX, 0(ESP)

• internally (micro-architecture) is actually RIS

L06-1

http://www.csg.csail.mit.edu/6.823September 24, 2008

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Microprogramming

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-2

Arvind & Emer

ISA to Microarchitecture Mapping

• An ISA often designed for a particular
microarchitectural style, e.g.,

– CISC ⇒ microcoded
– RISC ⇒ hardwired, pipelined
– VLIW ⇒ fixed latency in-order pipelines
– JVM ⇒ software interpretation

• But an ISA can be implemented in any
microarchitectural style

– Pentium-4: hardwired pipelined CISC (x86) machine (with
some microcode support)

– This lecture: a microcoded RISC (MIPS) machine
– Intel will probably eventually have a dynamically scheduled

out-of-order VLIW (IA-64) processor
– PicoJava: A hardware JVM processor

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-3

Arvind & Emer

Microarchitecture: Implementation of an ISA

Structure: How components are connected.
 Static
Behavior: How data moves between components
 Dynamic

Controller

Data
path

control
pointsstatus

lines

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-4

Arvind & Emer

Microcontrol Unit Maurice Wilkes, 1954

Embed the control logic state table in a memory array

Matrix A Matrix B

Decoder

Next state

op conditional
code flip-flop

µ address

Control lines to
ALU, MUXs, Registers

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-5

Arvind & Emer

Microcoded Microarchitecture

Memory
(RAM)

Datapath

µcontroller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions

holds user program
written in macrocode

instructions (e.g.,
MIPS, x86, etc.)

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-18

Arvind & Emer

Reducing Control Store Size

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast ⇒ expensive

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-27

Arvind & Emer

Performance Issues
Microprogrammed control

⇒ multiple cycles per instruction

Cycle time ?
tC > max(treg-reg, tALU, tµROM, tRAM)

Given complex control, tALU & tRAM can be broken
into multiple cycles. However, tµROM cannot be
broken down. Hence

tC > max(treg-reg, tµROM)

Suppose 10 * tµROM < tRAM
Good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-35

Arvind & Emer

Modern Usage
• Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

• Microcode pays an assisting role in most modern
 CISC micros (AMD Athlon, Intel Pentium-4 ...)

• Most instructions are executed directly, i.e., with hard-wired
 control
• Infrequently-used and/or complicated instructions invoke the
 microcode engine

• Patchable microcode common for post-fabrication
 bug fixes, e.g. Intel Pentiums load mcode patches
 at bootup

September 24, 2008 http://www.csg.csail.mit.edu/6.823

L06-38

Arvind & Emer

Horizontal vs Vertical µCode

• Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
– Fewer steps per macroinstruction
– Sparser encoding ⇒ more bits

• Vertical µcode has narrower µinstructions
– Typically a single datapath operation per µinstruction

– separate µinstruction for branches
– More steps to per macroinstruction
– More compact ⇒ less bits

• Nanocoding
– Tries to combine best of horizontal and vertical µcode

µInstructions

Bits per µInstruction

CIS 501 Lecture Notes
Instruction Sets

11© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Evolution of Instruction Sets
instruction sets evolve

• implementability driven by technology
• microcode, VLSI, pipelining, superscalar

• programmability driven by (compiler) technology
• hand assembly → compilers → register allocation

• instruction set features go from good to bad to good
• just like microarchitecture ideas

lessons
• many non-technical (tr: business) issues influence ISAs
• best solutions don’t always win

	L02_InstructionSetArchitecture.pdf
	L02_ISA.pdf
	L01_Princip_2.pdf
	Instruction Set Architecture (ISA) versus Implementation
	Processor Performance
	Hardware Elements
	Register Files
	Register File Implementation
	A Simple Memory Model
	Implementing MIPS:Single-cycle per instructiondatapath & control logic
	The MIPS ISA
	Instruction Execution
	Datapath: Reg-Reg ALU Instructions
	Datapath: Reg-Imm ALU Instructions
	Conflicts in Merging Datapath
	Datapath for ALU Instructions
	Datapath for Memory Instructions
	Load/Store Instructions:Harvard Datapath
	MIPS Control Instructions
	Conditional Branches (BEQZ, BNEZ)
	Register-Indirect Jumps (JR)
	Register-Indirect Jump-&-Link (JALR)
	Absolute Jumps (J, JAL)
	Harvard-Style Datapath for MIPS
	Hardwired Control is pure Combinational Logic
	ALU Control & Immediate Extension
	Hardwired Control Table
	Single-Cycle Hardwired Control:Harvard architecture
	At least the instruction fetch and a Load (or Store) cannot be executed in the same cyclestructural hazard
	Princeton MicroarchitectureDatapath & Control
	Two-State Controller: Princeton Architecture
	Hardwired Controller: Princeton Architecture
	Clock Period
	Clock Rate vs CPI

	L02_ISA_2.pdf
	Intel Itanium (IA64)
	4GB virtual memory too little, options?
	• segmentation (already present in IA32)
	• 64-bit extensions (solution for 16- and 32-bits)
	• AMD Sledgehammer (Intel hedge Yamhill?)

	2000: neither, create brand new ISA (IA64)
	• EPIC: binary compatible (interlocked) VLIW
	• 3-instruction bundles (with explicit info about parallelism)

	• underlying RISC: 128 registers (register-register FP model)
	• support for ILP: predication, software speculation
	• implementations

	– Itanium (Merced), under Moore’s curve
	• Itanium2 (McKinley), jury out

	Instruction Sets
	• what is an instruction set?
	• what is a good instruction set?
	• the forces that shape instruction sets
	• aspects of instruction sets
	• instruction set examples
	• RISC vs. CISC

	Alternative to Control: Predication
	if (a > 0) c = b*a;
	#0: blez r1, #2
	#1: mul r3, r2, r1
	• problem? #0 is a branch

	– expensive if mis-predicted (later)
	• predication: converts control-flow to data-flow
	+ branch mis-prediction avoided

	– but data-dependences complicated
	• two ways: conditional moves (left), or general predication (right)
	#0: mul r4, r2, r1 #0: sgtzp p1, r1
	#1: cmovgt r3, r4, r1 #1: divp r3, r4, r1, p1

	Readings
	H+P
	• chapter 2
	• appendices C (RISC), D (X86), available from web page

	other readings
	• Patterson+Ditzel, “The Case for RISC”
	• Colwell+, “Instruction Sets and Beyond” (CISC comeback)

	Intel X86 (IA32)
	1974: most commercially successful ISA ever
	• variable length instructions (1–16 bytes)
	• 8 32-bit general purpose registers (only 4 actually GP)
	• partial 16- and 8-bit versions of each register (AX, AH, AL)
	• FP operand stack

	• extended accumulator (two-operand instructions)
	• register-register and register-memory
	• stack manipulation instructions (but no internal integer stack)

	• scaled addressing: base + (index * scale) + displacement
	• 2-level memory (segments)
	• interruptible string instructions

	“difficult to explain and impossible to love” –an X86 designer

	Instruction Sets
	“Instruction set architecture is the structure of a computer that a machine language programmer (...
	–IBM introducing 360 (1964)
	an instruction set specifies a processor’s functionality
	• what operations it supports
	• what storage mechanisms it has & how they are accessed
	• programmer/compiler use to communicate programs to processor

	instruction set architecture (ISA): “architecture” part of 501

	What Makes a Good Instruction Set?
	implementability
	• supports a (performance/cost) range of implementations
	• implies support for high performance implementations

	programmability
	• easy to express programs

	backward/forward/upward compatibility
	• implementability & programmability across generations
	• e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II, Pentium III, Pentium 4...

	think about these as we discuss aspects

	Summary
	• 3 *-ilities: implementability, programmability, compatibility
	• design principles
	• aspects: format, data types, operand modes/model...
	• RISC vs. CISC
	readings
	• H+P, chapter 2
	• Patterson+Ditzel: “RISC”
	• Colwell+: “CISC”

	next up: memory hierarchy I (caches)

	Implementability
	low performance implementation
	• easy, trap to software to emulate complex instructions

	high performance implementation
	• more difficult
	• components: pipelining, parallelism, dynamic scheduling?
	• avoid artificial sequential dependences
	• deterministic execution latencies simplify scheduling
	• avoid instructions with multiple long latency components
	• avoid not-easily-interruptable instructions

	ISA Æ ISA + mISA
	Intel’s trick (decode external ISA into internal ISA) is popular
	+ stable external ISA gives compatibility
	+ flexible internal ISA gives implementability
	• obsolete features? don’t implement, emulate
	• Intel PentiumII, AMD Athlon: mops or Rops
	• translation by PLAs (hardware)

	• Intel Pentium4
	• translations are cached

	• TransMeta Crusoe: translates X86 to RISC VLIW
	• translation (code-morphing) by invisible software
	• primary goal is lower power/performance (VLIW)
	• TM3200 and TM5400 mISAs are slightly different

	Programmability
	programmability timeline
	• –1975: most code was hand-assembled
	• 1975–1985: most code was compiled
	• but people thought that hand assembled code was superior

	• 1985–: most code was compiled
	• and compiled code was at least as good as hand-assembly

	• big shift in what “programmability” meant

	DEC (Æ Compaq Æ /dev/null) Alpha
	1990: ultimate RISC
	• first 64-bit machine
	• 32 64-bit GPRs, 32 64-bit FPRs
	• RISC: first implementation had no support for 8, 16, 32-bit data
	• added later after software vendor protests (BWX)

	• displacement addressing only
	• priveleged subset (PAL) for lightweight OS implementation
	• other extensions
	• predication: conditional moves
	• non-binding memory instructions (prefetch hints)

	get familiar with this ISA via SimpleScalar

	–1980: Human Programmability
	focus: instruction sets that were easy for humans to program
	• ISA sematically close to high-level language (HLL)
	• closing the “semantic gap”

	• semantically heavy (CISC-like) instructions
	• automatic saves/restores on procedure calls
	• VAX insque

	• people thought computers may execute HLL directly
	• never materialized

	• one problem with this approach: multiple HLLs
	• “semantic clash”: not exactly the semantics you want

	1980–: Compiler Programmability
	focus: instruction sets that are easy for compilers to compile to
	• primitive instructions from which solutions are synthesized
	• Wulf: primitives not solutions
	• hard for compiler to tell if complex instruction fits situation

	• regularity: do things the same way, consistently
	• “principle of least astonishment” (true even for hand-assembly)
	• one vs. all (either one way for all things, or one way for each thing)

	• orthogonality, composability
	• all combinations of operation, data type, addressing mode possible

	• few modes/obvious choices
	• compilers do giant case analysis, don’t add more cases

	Today’s Semantic Gap
	popular argument: today’s ISAs are targeted to one HLL, it just so happens that this HLL (C) is v...
	• would ISAs be different if Java was dominant?
	• more object oriented?
	• GC support?
	• support for bounds-checking?
	• security support?

	Compatibilities: Upward/Forward/Backward
	basic tenet: make sure all written software works
	• business reality: software cost greater than hardware cost
	• intel first company to realize this

	thinking about compatibility ahead of time is hard
	• temptation: use ISA gadget for 5% performance gain
	• frequent outcome: must continue to support gadget
	• even if gain disappears or turns into loss!!

	• e.g.’s: register windows, delayed branches

	forward compatibility
	• reserve trap hooks to emulate future ISA extensions

	Evolution of Instruction Sets
	instruction sets evolve
	• implementability driven by technology
	• microcode, VLSI, pipelining, superscalar

	• programmability driven by (compiler) technology
	• hand assembly Æ compilers Æ register allocation

	• instruction set features go from good to bad to good
	• just like microarchitecture ideas

	lessons
	• many non-technical (tr: business) issues influence ISAs
	• best solutions don’t always win

	Instruction Set Aspects
	• format
	• length, encoding

	• operations
	• operations, data types, number & kind of operands

	• internal storage
	• model: accumulator, stack, general-purpose register
	• memory: address size, addressing modes, alignments

	• control
	• branch conditions, special support for procedures, predication

	• special features?

	Instruction Format
	fixed length (most common: 32-bits)
	+ easy pipelining/superscalar
	• don’t have to decode current instruction to find next instruction

	– not compact (4-bytes for nop?)

	variable length
	+ more compact
	– hard (but doable) to superscalarize/pipeline

	recent compromise: 2 lengths (32-bit + another length)
	• MIPS16, ARM Thumb: add 16-bit subset (compression)
	• TM Crusoe: adds 64-bit long-immediate instructions

	Operations
	• arithmetic and logical: add, mult, and, xor
	• data transfer: move, load, store
	• control: conditional branch, jump, call, return
	• system: system call, return, traps
	• floating point: add, mul, div, sqrt
	• decimal: addd, convert� (not common today)
	• string: move, compare (also not common)
	• multimedia: e.g., Intel MMX/SSE and Sun VIS

	Data Sizes and Types
	• fixed point (integer)
	• 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit (doubleword)

	• floating point
	• 32/64 bit (IEEE754 single/double precision), 80-bit (Intel proprietary)

	• address size (aka “machine size”)
	• e.g., 32-bit machine means addresses are 32-bits
	• key is virtual memory size: 32-bits ﬁ 4GB (not enough anymore)

	Fixed Point Operation Types
	types: s/w (property of data) vs. h/w (property of operation)
	• signed (–2n–1 to 2n–1–1) vs. unsigned (0 to 2n–1)
	• packed (multimedia short vector)
	• treat 64-bit as 8x8, 4x16, or 2x32
	• e.g.: addb, addh (MMX)
	17 87 100 ...
	+ 17 13 200 ...
	___ ___ ___ ___
	34 100 255 (saturating or 44 with wraparound)

	• MMX example: 16-element dot product: Sai*bi
	• plain: 200 instructions/76 cycles Æ MMX: 16/12 (6X perf.)

	• saturating (no wrap around on overflow)
	• useful in RGBA calculations

	Internal Storage Model
	choices
	• stack
	• accumulator
	• memory-memory
	• register-memory
	• register-register (load/store)

	running example:
	add C, A, B (C := A + B)

	Storage Model: Stack
	push A S[++TOS] = M[A];
	push B S[++TOS] = M[B];
	add T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=T1+T2;
	pop C M[C] = S[TOS--];
	• operands implicitly on top-of-stack (TOS, TOS2)
	• ALU operations have zero explicit operands
	+ code density (top of stack implicit)
	– memory, pipelining bottlenecks (why?)
	• mostly 60’s & 70’s
	• x86 uses stack model for FP (sucks for them)
	• JAVA bytecodes also use stack model (why?)

	Storage Model: Accumulator
	load A accum = M[A];
	add B accum += M[B];
	store C M[C] = accum;
	• accum is implicit destination/source in all instructions
	• ALU operations have one operand
	+ less hardware, code density (accumulator implicit)
	– memory bottleneck
	• mostly pre 60’s
	• UNIVAC, CRAY
	• x86 (IA32) uses extended accumulator for integer code

	• accumulator comeback?
	• 2-level register file (register-accumulator) [ISCA’02]

	Storage Model: Memory-Memory
	add C,A,B M[C] = M[A] + M[B];
	• no registers whatsoever
	+ code density (most compact)
	– large variations in instruction lengths
	– large variations in work per-instruction
	– memory bottleneck
	• no current machines support memory-memory
	• VAX did

	Storage Model: Memory-Register
	load R1,A R1 = M[A];
	add R1,B R1 += M[B];
	store C,R1 M[C] = R1;
	• like an explicit (extended) accumulator
	+ can have several accumulators at a time

	+ code density, easy to decode
	– asymmetric operands, asymmetric work per instruction
	• 70’s and early 80’s
	• IBM 360/370
	• Intel x86, Motorola 68K

	Storage-Model: Register-Register
	load R1,A R1 = M[A];
	load R2,B R2 = M[B];
	add R3,R1,R2 R3 = R1 + R2;
	store C,R3 M[C] = R3;
	• load/store architecture: ALU operations on registers only
	– code density
	+ easy decoding, operand symmetry
	+ deterministic length ALU operations
	+ scheduling opportunities, register-level CSE
	• 60’s and onwards
	• RISC machines: ALPHA, MIPS, PPC (but also Cray)

	Registers vs. Memory
	registers
	+ faster (direct access, smaller, no tags)
	+ deterministic scheduling (i.e., fixed latency, no misses)
	+ replicate for more b/w
	+ short identifier
	– must save/restore on procedure calls, context switches
	– fixed size
	• strings, structures (i.e., bigger than 64 bits) must live in memory

	– can’t take address of a register
	• pointed-to variables must live in memory

	How Many Registers?
	more registers
	+ hold more operands for longer periods
	• shorter average operand access time, lower memory traffic

	– longer specifiers (longer instructions?)
	– slower access to register operands (bigger is slower)
	– slower procedure calls/context-switch (more save/restore)

	trend is for more registers
	• X86: 8 Æ SPARC/MIPS/Alpha/PPC: 32 Æ Itanium: 128
	• why?

	Memory Alignment
	“natural boundaries” ﬁ (address % size) == 0
	• e.g. word (4 bytes): @xx00 ﬁ aligned, @xx11 ﬁ unaligned

	alignment restrictions: kinds of alignments architecture supports
	• no restrictions (all in hardware)
	• hardware detects, makes 2 references (what if 2nd one faults?)

	– expensive logic, slows down all references (why?)
	• restricted alignment (software guarantee w/ hardware trap)
	• misaligned access traps, performed in s/w by handler

	• middle ground: multiple instructions for misaligned data
	• e.g., MIPS (lwl/lwr), Alpha (ldq_u)
	• compiler generates for known cases, h/w traps for unknown cases

	Operand Addressing Modes
	• immediate: #n (immediate values)
	• register: Ri (register values)
	• displacement: M[Ri + #n] (stack, structure fields)
	• register indirect: M[Ri] (loaded/computed addresses)
	• memory absolute: M[#n] (globals)
	• indexed: M[Ri + Rj] (arrays of scalars)
	• memory indirect: M[M[Ri]] (in-memory pointers)
	• scaled: M[Ri + Rj * d + #n] (arrays of structures, X86)
	• update/auto-increment/decrement: M[Ri = Ri + #n]

	Operand Addressing Modes
	1–4 account for 93% of all VAX operands [Clark+Emer]
	RISC machines typically implement 1–3
	• i.e., load/store with only register displacement
	• load: Rj = M[Ri + #n], store: M[Ri + #n] = Rj

	• synthesize all other modes
	• e.g., memory indirect: Rj = M[M[Ri]] => Rk = M[Ri]; Rj = M[Rk]

	Control Instructions
	aspects
	• 1. taken or not?
	• 2. where is the target?
	• 3. link return address?
	• 4. save or restore state?

	instructions that change the PC
	• (conditional) branches [1, 2], (unconditional) jumps [2]
	• function calls [2,3,4], function returns [2,4]
	• system calls [2,3,4], system returns [2,4]

	Taken or Not?
	• “compare and branch” instructions
	+ single instruction branches

	– requires ALU op in branch pipeline, restricts scheduling
	• separate “compare” and “branch” instructions

	– uses up a register, separates condition from branch logic
	+ more scheduling opportunities, reuse comparison
	• condition codes: Zero, Negative, oVerflow, Carry
	+ set “for free” by ALU operations

	– extra state to save/restore, scheduling problems (implicit)
	• MIPS example (design instruction set for usage)
	• data: 80+% cmp immediate, 65+% cmp zero, 50% == 0 or <> 0
	• ISA: beqz, bnez, compare and set + branch for others

	Where is the Target?
	• PC-relative: branches/jumps within function
	+ position independent, computable early, #bits: <4 (47%), <8 (94%)

	– target must be known statically, can’t jump far
	• absolute: function calls, long jumps within functions
	+ jump farther

	– more bits to specify
	• register: indirect calls (DLLs, virtuals), returns, switch
	+ short specifier, can jump anywhere, dynamic target ok (ret)

	– extra instruction (load), branch and target separated in pipeline
	• vectored trap: system calls
	+ protection

	– surprises are implementation headache

	Link Return Address?
	• implicit register: many recent architectures use this
	+ fast, simple

	– s/w save register before next call (pain: surprise trap)
	• explicit register
	+ may avoid saving register

	– register must be specified
	• processor stack
	+ recursion direct

	– complex instructions (yucky)

	Save or Restore State?
	• function calls: save/restore registers
	• system calls: save/restore registers, flags, PC, PSW, etc.
	• software save/restore: calling convention divides work
	• caller saves registers in use
	• callee saves registers it (or nested callees) will use

	• explicit hardware save/restore
	• IBM STM, VAX CALLS

	• implicit hardware save/restore: register windows (SPARC)
	• 32 registers: 8 in, 8 out, 8 local, 8 global
	• call: out in (pass parameter), local/out “fresh”, global unchanged
	• on return: opposite, 8 output of caller restored
	• saving/restoring to memory when h/w windows run out
	+ no saving/restoring for shallow call graphs

	– make register renaming (needed for OoO execution) hard

	Instruction Set Examples
	• DEC: VAX (CISC) Æ Alpha (RISC)
	• Intel: IA32 (CISC) Æ IA64 (RISC VLIW)

	DEC (Æ Compaq Æ /dev/null) VAX
	1977: ultimate CISC
	• virtual memory (Virtual Address eXtension to PDP-11)
	• 32-bit ISA, variable length instructions (1 to 321 bytes!!!)
	• 16 GPRs (r15 PC, r14 SP), CCs
	• data types: 8, 16, 32, 64, 128, decimals, strings
	• orthogonal, memory-memory, all operand modes
	• hundreds of instructions: crc, insque, polyf
	• touted as first MIPS-1 machine

	– oops: 10.6 CPI @ 200ns ﬁ 0.5 MIPS
	– 5 CPI just in decode (4 just to decode 16% of instructions)
	– flagrant violation of Amdahl’s law

	RISC War: RISC vs. CISC
	early 80’s: RISC movement challenges “CISC establishment”
	• RISC (reduced instruction set computer)
	• Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801

	• CISC (complex instruction set computer)
	• VAX, X86, etc.

	• word CISC did not exist before word RISC came along

	RISC Manifesto
	• single-cycle operation (CISC: many multi-cycle ops)
	• hardwired control (CISC: microcode)
	• load/store organization (CISC: mem-reg, mem-mem)
	• fixed instruction format (CISC: variable format)
	• few modes (CISC: many modes)
	• reliance on compiler optimization (CISC: hand assembly)
	+ load/store ﬁ register allocation (+21% performance)
	+ simple instructions ﬁ fine-grain CSE (+10%), scheduling (?)

	• no equivalent “CISC manifesto”

	RISC and CISC Arguments
	RISC argument [Patterson]
	• CISC is fundamentally handicapped
	• for a given technology, RISC implementation will be faster
	• current VLSI technology enables single-chip RISC
	• when technology enables single-chip CISC, RISC will be pipelined
	• when technology enables pipelined CISC, RISC will have caches
	• when technology enables CISC with caches, RISC will have ...

	CISC rebuttal [Colwell]
	• CISC flaws not fundamental (fixed with more transistors)
	• Moore’s Law will narrow the RISC/CISC gap (true)

	• software costs will dominate (very true)

	RISC/CISC Showdown
	VAX 8700 vs. MIPS R3000 [Clark+Bhandarkar]
	li
	1.6
	6.0
	3.7
	eqntott
	1.1
	3.5
	3.3
	fpppp
	2.9
	10.5
	2.7
	tomcatv
	2.9
	8.2
	2.9
	• argues
	• RISCs fundamentally better than CISCs
	• implementation effects, compilers are second order

	• unfair comparison
	• VAX advantages: big immediates, not-taken branches
	• MIPS advantages: more registers, FPU, instruction scheduling, TB

	The Joke on RISC
	most commercially successful ISA is x86 (decidedly CISC)
	• also: PentiumPro was first out-of-order microprocessor
	• good RISC pipeline, 100K transistors
	• good CISC pipeline, 300K transistors
	• by 1995: 2M+ transistors evened pipeline playing field
	• rest of transistors used for caches (diminishing returns)

	• Intel’s other trick?
	• decoder translates CISC into sequences of RISC mops
	push EAX
	ﬂ
	maddi ESP, ESP, 4
	mstore EAX, 0(ESP)

	• internally (micro-architecture) is actually RISC!

	L06-Microprogramming.pdf
	ISA to Microarchitecture Mapping
	Microarchitecture: Implementation of an ISA
	Microcontrol Unit Maurice Wilkes, 1954
	Microcoded Microarchitecture
	The MIPS32 ISA
	MIPS Instruction Formats
	A Bus-based Datapath for MIPS
	Memory Module
	Instruction Execution
	Microprogram Fragments
	Microprogram Fragments (cont.)
	MIPS Microcontroller: first attempt
	Microprogram in the ROM worksheet
	Microprogram in the ROM
	Microprogram in the ROM Cont.
	Size of Control Store
	Reducing Control Store Size
	MIPS Controller V2
	Jump Logic
	Instruction Fetch & ALU:MIPS-Controller-2
	Load & Store: MIPS-Controller-2
	Branches: MIPS-Controller-2
	Jumps: MIPS-Controller-2
	Implementing Complex Instructions
	Mem-Mem ALU Instructions: MIPS-Controller-2
	Performance Issues
	Some more history …
	Microprogramming in IBM 360
	Microcode Emulation
	Microprogramming thrived in the Seventies
	Nanocoding
	Writable Control Store (WCS)
	Microprogramming: early eighties
	Modern Usage
	
	VAX 11-780 Microcode
	Horizontal vs Vertical mCode

