
September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-5

Arvind & Emer

Computer Architecture is the
design of the abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

Reliability, power

Parallel computing
security, …

Expansion of
computer

architecture, mid-
2000s onward.

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-7

Arvind & Emer

Technology is the dominant factor
in computer design

Technology
ROMs, RAMs
VLSI
Packaging
Low Power

Computers

Technology
Core memories
Magnetic tapes
Disks

Computers

Computers
Technology

Transistors
Integrated circuits
VLSI (initially)
Flash memories, …

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-8

Arvind & Emer

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

Modern architects cannot avoid paying
attention to software and compilation issues.

Technology

Software

Computers

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-9

Arvind & Emer

Architecture is Engineering
Design under constraints
Factors to consider:
• Performance of whole system on target applications

– Average case & worst case

• Cost of manufacturing chips and supporting system
• Power to run system

– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

• Cost to design chips (engineers, computers, CAD tools)
– Becoming a limiting factor in many situations, fewer unique chips

can be justified

• Cost to develop applications and system software
– Often the dominant constraint for any programmable device

At different points in history, and for different applications
at the same point in time, the relative balance of these
factors can result in widely varying architectural choices

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-17

Arvind & Emer

Charles Babbage 1791-1871
Lucasian Professor of Mathematics,
Cambridge University, 1827-1839

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-23

Arvind & Emer

The first programmer
Ada Byron aka “Lady Lovelace” 1815-52

Ada’s tutor was Babbage himself!

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-24

Arvind & Emer

Babbage’s Influence

• Babbage’s ideas had great influence later
primarily because of
– Luigi Menabrea, who published notes of Babbage’s

lectures in Italy
– Lady Lovelace, who translated Menabrea’s notes in

English and thoroughly expanded them.
“... Analytic Engine weaves algebraic patterns....”

• In the early twentieth century - the focus
shifted to analog computers but
– Harvard Mark I built in 1944 is very close in spirit to

the Analytic Engine.

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-25

Arvind & Emer

Harvard Mark I

• Built in 1944 in IBM Endicott laboratories
– Howard Aiken – Professor of Physics at Harvard
– Essentially mechanical but had some electro-

magnetically controlled relays and gears
– Weighed 5 tons and had 750,000 components
– A synchronizing clock that beat every 0.015

seconds

Performance:
 0.3 seconds for addition
 6 seconds for multiplication
 1 minute for a sine calculation

Broke down once a week!

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-27

Arvind & Emer

Electronic Numerical Integrator
and Computer (ENIAC)

• Designed and built by Eckert and Mauchly at the
University of Pennsylvania during 1943-45

• The first, completely electronic, operational,
general-purpose analytical calculator!

– 30 tons, 72 square meters, 200KW

• Performance
– Read in 120 cards per minute
– Addition took 200 µs, Division 6 ms
– 1000 times faster than Mark I

• Not very reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
 air density, temperature, weight of shell,
 propellant charge, ...)

WW-2 Effort

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-28

Arvind & Emer

Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external

– Sequences of instructions were executed
independently of the results of the calculation

– Human intervention required to take instructions
“out of order”

• EDVAC was designed by Eckert, Mauchly and von
Neumann in 1944 to solve this problem

– Solution was the stored program computer

⇒ “program can be manipulated as data”

• First Draft of a report on EDVAC was published in
1945, but just had von Neumann’s signature!

– Without a doubt the most influential paper in
computer architecture

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-29

Arvind & Emer

Stored Program Computer

manual control calculators

automatic control
external (paper tape) Harvard Mark I , 1944

Zuse’s Z1, WW2
internal

plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

– The same
storage can be used to store program and data

Program = A sequence of instructions

How to control instruction sequencing?

 EDSAC 1950 Maurice Wilkes

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-30

Arvind & Emer

The Spread of Ideas

ENIAC & EDVAC had immediate impact
 brilliant engineering: Eckert & Mauchley
 lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

UNIVAC - the first commercial computer, 1951

Alan Turing’s direct influence on these developments
is often debated by historians.

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-33

Arvind & Emer

And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54

IBM 650 -- a cheaper, drum based machine,
 more than 120 were sold in 1954
 and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computers?

IBM was making too much money!
Even without computers, IBM revenues
were doubling every 4 to 5 years in 40’s
and 50’s.

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-34

Arvind & Emer

Software Developments

up to 1955 Libraries of numerical routines
 - Floating point operations
 - Transcendental functions
 - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956
Operating Systems -
 - Assemblers, Loaders, Linkers, Compilers
 - Accounting programs to keep track of
 usage and charges

 Machines required experienced operators
 ⇒ Most users could not be expected to understand
 these programs, much less write them

⇒ Machines had to be sold with a lot of resident
software

September 3, 2008 http://www.csg.csail.mit.edu/6.823

L01-38

Arvind & Emer

Linear Equation Solver
John Atanasoff, Iowa State University

1930’s:
– Atanasoff built the Linear Equation Solver.
– It had 300 tubes!

Application:
– Linear and Integral differential equations

Background:
– Vannevar Bush’s Differential Analyzer

--- an analog computer

Technology:
– Tubes and Electromechanical relays

Atanasoff decided that the correct mode of
computation was by electronic digital means.

September 8, 2008 http://www.csg.csail.mit.edu/6.823

L02-2

Arvind & Emer

Computers in mid 50’s

• Hardware was expensive

• Stores were small (1000 words)
⇒ No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle
⇒ Instruction execution time was totally dominated by the

memory reference time.

• The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

• Programmer’s view of the machine was inseparable
from the actual hardware implementation

September 8, 2008 http://www.csg.csail.mit.edu/6.823

L02-6

Arvind & Emer

Processor-Memory Bottleneck:
Early Solutions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator

• Indexing capability
– to reduce book keeping instructions

• Complex instructions
– to reduce instruction fetches

• Compact instructions
– implicit address bits for operands, to reduce

instruction fetches

Memory

Processor

September 8, 2008 http://www.csg.csail.mit.edu/6.823

L02-7

Arvind & Emer

Processor State

Programmer visible state of the processor (and memory)
plays a central role in computer organization for both
hardware and software:

• Software must make efficient use of it

• If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer’s machine model is a contract
between the hardware and software

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-2

Instruction Set Architecture (ISA)
versus Implementation

• ISA is the hardware/software interface
– Defines set of programmer visible state
– Defines instruction format (bit encoding)
– Defines instruction semantics
– Examples: MIPS, Alpha, x86, IBM 360, VAX, ARM, JVM

• Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964), z900 (c. 2001)
– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000), AMD Athlon,
AMD Opteron, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...
– JVM: HotSpot, PicoJava, ARM Jazelle, ...

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-3

Processor Performance

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

– Instructions per program depends on source code, compiler
technology and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

this lecture

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

Hardware Elements
• Combinational circuits

– Mux, Demux, Decoder, ALU, ...

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge

Clk

D

Q

Enff

Q

D

Clk
En

OpSelect
 - Add, Sub, ...
 - And, Or, Xor, Not, ...
 - GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O
A0
A1

An-1

Mux...

lg(n)
Sel

O0
O1

On-1

A

D
em

u
x ...

lg(n)

A

D
ec

o
d
er ...

O0
O1

On-1

lg(n)

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-5

Register Files

ReadData1ReadSel1
ReadSel2

 WriteSel

Register
file

2R+1W

ReadData2

 WriteData

WEClock

rd1rs1

rs2

ws
wd

rd2

we

• No timing issues in reading a selected register

ff

Q0

D0

Clk
En

ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-6

Register File Implementation

reg 31

ws clk

reg 1

wd

we

rs1
rd1 rd2

reg 0

…

32

…

5 32 32

…

rs25
5

• Register files with a large number of ports are difficult to design
– Almost all Alpha instructions have exactly 2 register source operands
– Intel’s Itanium, GPR File has 128 registers with 8 read ports and 4 write ports!!!

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-7

A Simple Memory Model

MAGIC
 RAM

ReadData

WriteData

Address

WriteEnable
Clock

Reads and writes are always completed in one cycle
• a Read can be done any time (i.e. combinational)
• a Write is performed at the rising clock edge
 if it is enabled

⇒ the write address and data
 must be stable at the clock edge

Later in the course we will present a more realistic
model of memory

Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-10

Instruction Execution

Execution of an instruction involves

1. instruction fetch
2. Decode
3. Register fetch
4. ALU operation
5. memory operation (optional)
6. write back

and the computation of the address of the
next instruction

CIS 501 Lecture Notes
Instruction Sets

1© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Instruction Sets
• what is an instruction set?
• what is a good instruction set?
• the forces that shape instruction sets
• aspects of instruction sets
• instruction set examples
• RISC vs. CISC

CIS 501 Lecture Notes
Instruction Sets

3© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Instruction Sets
“Instruction set architecture is the structure of a computer that a
machine language programmer (or a compiler) must understand
to write a correct (timing independent) program for that machine”

–IBM introducing 360 (1964)

an instruction set specifies a processor’s functionality
• what operations it supports
• what storage mechanisms it has & how they are accessed
• programmer/compiler use to communicate programs to

processor

instruction set architecture (ISA): “architecture” part of 501

CIS 501 Lecture Notes
Instruction Sets

4© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

What Makes a Good Instruction Set?
implementability

• supports a (performance/cost) range of implementations
• implies support for high performance implementations

programmability
• easy to express programs

backward/forward/upward compatibility
• implementability & programmability across generations

• e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II,
Pentium III, Pentium 4...

think about these as we discuss aspects

CIS 501 Lecture Notes
Instruction Sets

5© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Implementability
low performance implementation

• easy, trap to software to emulate complex instructions

high performance implementation
• more difficult
• components: pipelining, parallelism, dynamic scheduling?

• avoid artificial sequential dependences
• deterministic execution latencies simplify scheduling
• avoid instructions with multiple long latency components
• avoid not-easily-interruptable instructions

CIS 501 Lecture Notes
Instruction Sets

6© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Programmability
programmability timeline

• –1975: most code was hand-assembled
• 1975–1985: most code was compiled

• but people thought that hand assembled code was superior

• 1985–: most code was compiled
• and compiled code was at least as good as hand-assembly

• big shift in what “programmability” meant

CIS 501 Lecture Notes
Instruction Sets

7© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

–1980: Human Programmability
focus: instruction sets that were easy for humans to program

• ISA sematically close to high-level language (HLL)
• closing the “semantic gap”

• semantically heavy (CISC-like) instructions
• automatic saves/restores on procedure calls
• VAX insque

• people thought computers may execute HLL directly
• never materialized

• one problem with this approach: multiple HLLs
• “semantic clash”: not exactly the semantics you want

CIS 501 Lecture Notes
Instruction Sets

8© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

1980–: Compiler Programmability
focus: instruction sets that are easy for compilers to compile to

• primitive instructions from which solutions are synthesized
• Wulf: primitives not solutions
• hard for compiler to tell if complex instruction fits situation

• regularity: do things the same way, consistently
• “principle of least astonishment” (true even for hand-assembly)
• one vs. all (either one way for all things, or one way for each thing)

• orthogonality, composability
• all combinations of operation, data type, addressing mode possible

• few modes/obvious choices
• compilers do giant case analysis, don’t add more cases

CIS 501 Lecture Notes
Instruction Sets

9© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Today’s Semantic Gap
popular argument: today’s ISAs are targeted to one HLL, it just so
happens that this HLL (C) is very low-level (assembly++)

• would ISAs be different if Java was dominant?
• more object oriented?
• GC support?
• support for bounds-checking?
• security support?

CIS 501 Lecture Notes
Instruction Sets

10© 2002 by Hill, Wood, Sohi, Smith,
Vijaykumar, Lipasti & Roth

Compatibilities: Upward/Forward/Backward
basic tenet: make sure all written software works

• business reality: software cost greater than hardware cost
• intel first company to realize this

thinking about compatibility ahead of time is hard
• temptation: use ISA gadget for 5% performance gain
• frequent outcome: must continue to support gadget

• even if gain disappears or turns into loss!!

• e.g.’s: register windows, delayed branches

forward compatibility
• reserve trap hooks to emulate future ISA extensions

	Acr12.tmp
	L01_Princip_vonNeuman.pdf
	L01-FirstSteps.pdf
	Lecturers: Arvind, Joel EmerTA’s: Xavid Pretzer, Brandon Cho
	Computing Devices Then…
	Computing Devices Now
	A journey through this space
	Computer Architecture is the design of the abstraction layers
	Importance of Technology
	Technology is the dominant factor in computer design
	But Software...
	Architecture is Engineering Design under constraints
	Course Information
	Contact Times
	The course has 5 modules
	Grading
	Problem Sets
	Self evaluation take-home quiz
	Charles Babbage 1791-1871Lucasian Professor of Mathematics, Cambridge University, 1827-1839
	Charles Babbage
	Difference EngineA machine to compute mathematical tables
	Difference Engine
	Analytic Engine
	Analytic EngineThe first conception of a general purpose computer
	The first programmer Ada Byron aka “Lady Lovelace” 1815-52
	Babbage’s Influence
	Harvard Mark I
	Electronic Numerical Integratorand Computer (ENIAC)
	Electronic Discrete Variable Automatic Computer (EDVAC)
	Stored Program Computer
	The Spread of Ideas
	Dominant Technology Issue: Reliability
	BINAC
	And then there was IBM 701
	Software Developments
	
	Extras …
	Commercial Activity: 1948-52
	Linear Equation SolverJohn Atanasoff, Iowa State University

	L01-FirstSteps_2.pdf
	Computers in mid 50’s
	The Earliest Instruction SetsBurks, Goldstein & von Neumann ~1946
	Programming: Single Accumulator Machine
	Self-Modifying Code
	Processor-Memory Bottleneck:Early Solutions
	Processor State
	Index RegistersTom Kilburn, Manchester University, mid 50’s
	Using Index Registers
	Indexing vs. Index Registers
	Operations on Index Registers
	Support for Subroutine Calls
	Indirect Addressing and Subroutine Calls
	Recursive Procedure Calls and Reentrant Codes
	Evolution of Addressing Modes
	Variety of Instruction Formats
	More Instruction Formats
	Data Formats and Memory Addresses
	Some Problems
	The IBM 650 (1953-4)
	Programmer’s view of a machine:IBM 650
	Compatibility Problem at IBM
	IBM 360 : Design Premises Amdahl, Blaauw and Brooks, 1964
	IBM 360: A General-Purpose Register (GPR) Machine
	IBM 360: Some Addressing Modes
	IBM 360: Character String Operations
	IBM 360: Branches & Condition Codes
	IBM 360: Precise Interrupts
	IBM 360: Initial Implementations (1964)
	IBM 360: Forty years later…The zSeries z990 Microprocessor
	Next lecture: Implementing an ISA

