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Computer Architecture is the
design of the abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

Reliability, power

Parallel computing
security, …

Expansion of
computer

architecture, mid-
2000s onward.
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Technology is the dominant factor
in computer design

Technology
ROMs, RAMs
VLSI
Packaging
Low Power 

Computers

Technology
Core memories
Magnetic tapes
Disks

Computers

Computers
Technology

Transistors
Integrated circuits
VLSI  (initially)
Flash memories, …
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But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

Modern architects cannot avoid paying
attention to software and compilation issues.

Technology

Software

Computers
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Architecture is Engineering
Design under constraints
Factors to consider:
• Performance of whole system on target applications

– Average case & worst case

• Cost of manufacturing chips and supporting system
• Power to run system

– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

• Cost to design chips (engineers, computers, CAD tools)
– Becoming a limiting factor in many situations, fewer unique chips

can be justified

• Cost to develop applications and system software
– Often the dominant constraint for any programmable device

At different points in history, and for different applications
at the same point in time, the relative balance of these
factors can result in widely varying architectural choices
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Charles Babbage 1791-1871
Lucasian Professor of Mathematics,
Cambridge University, 1827-1839
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The first programmer
Ada Byron aka  “Lady Lovelace”  1815-52

Ada’s tutor was Babbage himself!
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Babbage’s Influence

• Babbage’s ideas had great influence later
primarily because of
– Luigi Menabrea, who published notes of Babbage’s

lectures in Italy
– Lady Lovelace, who translated Menabrea’s notes in

English and thoroughly expanded them.
“... Analytic Engine weaves algebraic patterns....”

• In the early twentieth century - the focus
shifted to analog computers but
– Harvard Mark I built in 1944 is very close in spirit to

the Analytic Engine.
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Harvard Mark I

• Built in 1944 in IBM Endicott laboratories
– Howard Aiken – Professor of Physics at Harvard
– Essentially mechanical but had some electro-

magnetically controlled relays and gears
– Weighed 5 tons and had 750,000 components
– A synchronizing clock that beat every 0.015

seconds

Performance:
      0.3 seconds for addition
        6    seconds for multiplication
        1    minute for a sine calculation

Broke down once a week!
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Electronic Numerical Integrator
and Computer (ENIAC)

• Designed and built by Eckert and Mauchly at the
University of Pennsylvania during 1943-45

• The first, completely electronic, operational,
general-purpose analytical calculator!

– 30 tons, 72 square meters, 200KW

• Performance
– Read in 120 cards per minute
– Addition took 200 µs, Division 6 ms
– 1000 times faster than Mark I

• Not very reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,  
               air density, temperature, weight of shell,
               propellant charge, ... )

WW-2 Effort
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Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external

– Sequences of instructions were executed
independently of the results of the calculation

– Human intervention required to take instructions
“out of order”

• EDVAC was designed by Eckert, Mauchly and von
Neumann in 1944 to solve this problem

– Solution was the stored program computer

⇒ “program can be manipulated as data”

• First Draft of a report on EDVAC was published in
1945, but just had von Neumann’s signature!

– Without a doubt the most influential paper in
computer architecture
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Stored Program Computer

manual control calculators

automatic control
external ( paper tape) Harvard Mark I , 1944

Zuse’s Z1, WW2
internal

plug  board ENIAC     1946
read-only memory ENIAC     1948
read-write memory EDVAC    1947 (concept )

–                     The same
storage can be used to store program and data

Program = A sequence of instructions

How to control instruction sequencing?

 EDSAC         1950          Maurice Wilkes
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The Spread of Ideas

ENIAC & EDVAC had immediate impact 
    brilliant engineering:  Eckert & Mauchley
     lucid paper:   Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

UNIVAC - the first commercial computer, 1951

Alan Turing’s direct influence on these developments 
is often debated by historians.
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And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54

IBM 650  -- a cheaper, drum based machine,
                  more than 120  were sold in 1954
                  and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computers?

IBM was making too much money!
Even without computers, IBM revenues
were doubling every 4 to 5 years in 40’s
and 50’s.
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Software Developments

up to 1955 Libraries of numerical routines
   - Floating point operations
    - Transcendental functions
    - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956
Operating Systems -   
   - Assemblers, Loaders, Linkers, Compilers
   - Accounting programs to keep track of 
      usage and charges

 Machines required experienced operators 
    ⇒   Most users could not be expected to understand
           these programs, much less write them

⇒ Machines had to be sold with a lot of resident
software
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Linear Equation Solver
John Atanasoff, Iowa State University

1930’s:
– Atanasoff built the Linear Equation Solver.
– It had 300 tubes!

Application:
– Linear and Integral differential equations

Background:
– Vannevar Bush’s Differential Analyzer

--- an analog computer

Technology:
– Tubes and Electromechanical relays

Atanasoff decided that the correct mode of
computation was by electronic digital means.
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Computers in mid 50’s

• Hardware was expensive

• Stores were small (1000 words)
⇒ No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle
⇒ Instruction execution time was totally dominated by the

memory reference time.

• The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

• Programmer’s view of the machine was inseparable
from the actual hardware implementation
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Processor-Memory Bottleneck:
Early Solutions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator

• Indexing capability
– to reduce book keeping instructions

• Complex instructions
–  to reduce instruction fetches

• Compact instructions
– implicit address bits for operands, to reduce

instruction fetches

Memory

Processor
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Processor State

Programmer visible state of the processor (and memory)
plays a central role in computer organization for both
hardware and software:

• Software must make efficient use of it

• If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer’s machine model is a contract
between the hardware and software
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versus Implementation

•  ISA is the hardware/software interface
– Defines set of programmer visible state
– Defines instruction format (bit encoding)
– Defines instruction semantics
– Examples: MIPS, Alpha, x86, IBM 360, VAX, ARM, JVM

•  Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964), z900 (c. 2001)
– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,

Pentium, Pentium Pro, Pentium-4 (c. 2000),  AMD Athlon,
AMD Opteron, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...
– JVM: HotSpot, PicoJava, ARM Jazelle, ...



Arvind & EmerSeptember 10, 2008 http://www.csg.csail.mit.edu/6.823

L03-3

Processor Performance

      Time     =   Instructions         Cycles            Time
   Program           Program    *   Instruction   *   Cycle

– Instructions per program depends on source code, compiler
technology and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

this lecture
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Hardware Elements
• Combinational circuits

– Mux, Demux, Decoder, ALU, ...

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge
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Register Files
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Register File Implementation
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• Register files with a large number of ports are difficult to design
– Almost all Alpha instructions have exactly 2 register source operands
– Intel’s Itanium, GPR File has 128 registers with 8 read ports and 4 write ports!!!
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A Simple Memory Model

MAGIC
 RAM

ReadData

WriteData

Address

WriteEnable
Clock

Reads and writes are always completed in one cycle
• a Read can be done any time (i.e. combinational)
• a Write is performed at the rising clock edge
   if it is enabled

⇒    the write address and data
      must be stable at the clock edge

Later in the course we will present a more realistic
model of memory
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Execution of an instruction involves

1. instruction fetch
2. Decode
3. Register fetch
4. ALU operation
5. memory operation (optional)
6. write back

and the computation of the address of the 
next instruction
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Instruction Sets
• what is an instruction set?
• what is a good instruction set?
• the forces that shape instruction sets
• aspects of instruction sets
• instruction set examples
• RISC vs. CISC
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Instruction Sets
“Instruction set architecture is the structure of a computer that a
machine language programmer (or a compiler) must understand
to write a correct (timing independent) program for that machine”

–IBM introducing 360 (1964)

an instruction set specifies a processor’s functionality
• what operations it supports
• what storage mechanisms it has & how they are accessed
• programmer/compiler use to communicate programs to

processor

instruction set architecture (ISA): “architecture” part of 501
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What Makes a Good Instruction Set?
implementability

• supports a (performance/cost) range of implementations
• implies support for high performance implementations

programmability
• easy to express programs

backward/forward/upward compatibility
• implementability & programmability across generations

• e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II,
Pentium III, Pentium 4...

think about these as we discuss aspects
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Implementability
low performance implementation

• easy, trap to software to emulate complex instructions

high performance implementation
• more difficult
• components: pipelining, parallelism, dynamic scheduling?

• avoid artificial sequential dependences
• deterministic execution latencies simplify scheduling
• avoid instructions with multiple long latency components
• avoid not-easily-interruptable instructions
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Programmability
programmability timeline

• –1975: most code was hand-assembled
• 1975–1985: most code was compiled

• but people thought that hand assembled code was superior

• 1985–: most code was compiled
• and compiled code was at least as good as hand-assembly

• big shift in what “programmability” meant
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–1980: Human Programmability
focus: instruction sets that were easy for humans to program

• ISA sematically close to high-level language (HLL)
• closing the “semantic gap”

•  semantically heavy (CISC-like) instructions
• automatic saves/restores on procedure calls
• VAX insque

• people thought computers may execute HLL directly
• never materialized

• one problem with this approach: multiple HLLs
• “semantic clash”: not exactly the semantics you want
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1980–: Compiler Programmability
focus: instruction sets that are easy for compilers to compile to

• primitive instructions from which solutions are synthesized
• Wulf: primitives not solutions
• hard for compiler to tell if complex instruction fits situation

• regularity: do things the same way, consistently
• “principle of least astonishment” (true even for hand-assembly)
• one vs. all (either one way for all things, or one way for each thing)

• orthogonality, composability
• all combinations of operation, data type, addressing mode possible

• few modes/obvious choices
• compilers do giant case analysis, don’t add more cases
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Today’s Semantic Gap
popular argument: today’s ISAs are targeted to one HLL, it just so
happens that this HLL (C) is very low-level (assembly++)

• would ISAs be different if Java was dominant?
• more object oriented?
• GC support?
• support for bounds-checking?
• security support?
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Compatibilities: Upward/Forward/Backward
basic tenet: make sure all written software works

• business reality: software cost greater than hardware cost
• intel first company to realize this

thinking about compatibility ahead of time is hard
• temptation: use ISA gadget for 5% performance gain
• frequent outcome: must continue to support gadget

• even if gain disappears or turns into loss!!

• e.g.’s: register windows, delayed branches

forward compatibility
• reserve trap hooks to emulate future ISA extensions
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