

Scalus Winter School Storage Systems

Flash Memory

André Brinkmann

Flash Memory

- Floating gate of a flash cell is electrically isolated
- Applying high voltages between source and drain accelerates electrons and improves probability that they float through isolator (in case of positive gate source voltage)
 - Fowler-Nordheim tunneling effect
 - Bits are persistently stored on the floating gate

- It is only possible to write '0'
- High negative voltage enables information erasure
- Erasure harms isolator
- max. of 1 Mio. erasure cycles

NOR-Flash

- Developed as a replacement for EPROMs and ROMs
- Addressing done via standard memory address bus
 - No "Glue Logic" between controller and flash
 - Can be used to store code
- Bytes can be individually written (Transfer from '1' → '0')
- Only complete blocks can be erased (Reset all bits to '1')
- Block site between64 Kbyte and 256 KByte
- Slow writing data
- Capacity smaller 1 GBit

NAND-Flash

- NAND flash works page and block oriented
- Page has to be read sequentially and resembles NAND gates
- Page size between 512 Byte and 4 Kbyte
 - Additionally 12 to 16 bytes of checksum data
- Pages are combined into blocks
- Pages can only be written once
 - without flashing the complete block
- Higher density than for NOR flash

Comparison NOR/NAND

Challenges

- Good Performance
- Limited Cost per Unit
- Strong Demands in Reliability
- Access Frequencies
- Tight Coupling with Other Components
- Low Compatibility among Vendors

Issues – Architecture

FTL: Flash Translation Layer MTD: Memory Technology Device

Write-Once

- No writing on the same page unless its residing block is erased
- Pages are classified into valid, invalid, and free pages

Bulk-Erasing

 Pages are erased in a block unit to recycle used but invalid pages

Wear-Leveling

Each block has a limited lifetime in erasing counts

Example: "out-of-place update"

Assume that we want to update pages A and B

Example: "out-of-place update"

Example 2: Garbage Collection

• Example 2: Garbage Collection

Copy Live Data somewhere else

Example 2: Garbage Collection

Example 3: Wear-Leveling

Erase Counter

Hot Data vs. Cold Data

- Hot data usually comes from
 - metadata of file-systems
 - Small. A piece of hot data is usually ≤ 2 sectors.
 - structured (or indexed) user files, etc.
- Cold data usually comes from
 - read-only (or WORM) files
 - E.g., bulk and sequential files that often have a number of sectors

Efficient Hot-Data Identification

Why Important?

- Wear-Leveling
 - Pages that contain hot data could turn into dead pages very quickly
 - Blocks with dead pages are usually chosen for erasing
 - Hot data should be written to blocks with smaller erase counts
- Erase Efficiency (i.e., effective free pages reclaimed from garbage collection.)
 - Mixture of hot data and non-hot data in blocks might deteriorate the efficiency of erase operations

Flash Translation Layer (FTL)

- A software layer that allows the flash memory to look like a HDD
 - Address mapping: logical to physical
 - Garbage collection & power-off recovery
 - Wear-leveling & bad block management
- Popular FTL algorithms
 - FMAX, BAST, FAST, Super block, LAST
 - DFTL, DAC, etc...

Flash Translation Layer (FTL)

- Page-mapping FTL can map a logical page to any physical page
- Block-mapping FTL can only map a logical page to a fixed offset of a block
- Hybrid FTL includes log blocks

System Architecture

Embedded Systems and Wireless Networking Lab.

Observations

- Write throughput drops significantly after garbage collection starts
- The capacity of flash-memory storage systems increases very quickly such that also memory space requirements for address translation growth quickly
- Reliability becomes more and more critical when the manufacturing capacity increases
- Significant increment of flash-memory access numbers

3 passive linear circuit elements

Resistor – 1827 Georg Ohm

INDUCTOR $\varphi = \mathcal{L} i$

Capacitor - 1745 Volta / von Kleist & van Musschenbroek Benjamin Franklin

Inductor – 1831 Michael Faraday Joseph Henry

Chua generalizes circuit theory to nonlinear systems

- L. O. Chua, "Memristor the missing circuit element," IEEE Trans. Circuit Theory 18, 507–519 (1971)
- L. O. Chua and S. M. Kang, "Memristive devices and systems," *Proc. IEEE, 64 (2), 209-23 (1976)*
- Memristor "remembers" changes in the curren its resistance
- D. Strukov, G. Snider, D. Stewart & S. Williams: The missing memristor found. In: Nature. 453, 2008, S. 80-83

Memristors

Advantages

- Fast, cheap, dense, & low energy
- Can be fabbed with CMOS logic &3D layers on single die

Challenges

- Understand wear out
- Moving from the lab to the fab

Phase-change memory (PRAM)

- PRAM based on unique behavior of chalcogenide glass
- Each memory cell contains a material that has two phases with very different electrical properties
- An "amorphous phase" exhibits high resistivity, while a "crystalline phase" has much lower resistivity
- Reading the bit value stored in a cell consists of sensing its resistivity (a fast, low-power operation)

PRAM

- Individual PRAM cells can be programmed independently of other cells
- When overwriting data stored in PRAM, only cells whose current value differs from the new value to be written need to be updated
- Degrades much more slowly than Flash
- Challenges:
 - requirement of high programming current density
 - long-term resistance and threshold voltage drift

PRAM

- In order to change the bit value stored in a PRAM cell, the phase-change material must be brought into a different phase by heating
- Heating the phase-change material to its crystallization temperature for a sufficiently long period of time causes it to get into its crystalline state
- Heating it to a yet higher temperature for a short period of time makes the material amorphous
- Both of these operations require high-power current pulses (relative to the read operation)