
Practical Guide to
Software Quality Management

Practical Guide to
Software Quality Management

John W. Horch

Artech House
Boston • London

Library of Congress Cataloging-in-Publication Data
Horch, John W.

Practical guide to software quality management / John W. Horch.
p. cm.

Includes bibliographical references and index.
ISBN 0-89006-865-8
1. Computer software—Quality control. I. Title.

QA76.76.Q35H67 1996
005.1’068’5—dc20 96-19493

CIP

British Library Cataloguing in Publication Data
Horch, John W.

Practical guide to software quality managment
1. Software engineering—Quality control
I. Title
005.1’0685

ISBN 0-89006-865-8

Cover and text design by Darrell Judd

© 1996 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this
book may be reproduced or utilized in any form or by any means, electronic or me-
chanical, including photocopying, recording, or by any information storage and re-
trieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

International Standard Book Number: 0-89006-865-8
Library of Congress Catalog Card Number: 96-19493

10 9 8 7 6 5 4 3 2 1

Practical Guide To Software QualityManagement

Contents

Preface xi

Introduction xiii

Chapter 1

The elements of a complete software
quality system 1

1.1 Definitions 2

1.2 The elements of a software
quality system 6

1.2.1 Standards 7
1.2.2 Reviewing 9
1.2.3 Testing 11
1.2.4 Defect analysis 13
1.2.5 Configuration management 15

1.2.6 Security 17
1.2.7 Education 18
1.2.8 Vendor management 18

1.3 Additional Issues 19
1.3.1 Maintenance 20
1.3.2 Documentation 21
1.3.3 Organizational considerations 22
1.3.4 Implementation of the total SQS 23

1.4 Summary 24

1.5 The next step 25

Chapter 2

Standards 27

2.1 Areas of standardization 28
2.1.1 The software life cycle 29

v

2.1.2 Documentation 31
2.1.3 Coding 32
2.1.4 Naming 32
2.1.5 Operating procedures and protocols 34
2.1.6 User development 34
2.1.7 Emerging technologies 36

2.2 Sources of standards 36
2.2.1 External standards developers 37
2.2.2 Purchased standards 39
2.2.3 Inhouse development 40

2.3 Selection of standards 42

2.4 Promulgation of standards 43
2.4.1 Availability 43
2.4.2 Compliance 44
2.4.3 Maintenance 45

2.5 Summary 45

2.6 The next step 46

Chapter 3

Reviews 47

3.1 Types of reviews 49
3.1.1 Inprocess reviews 49
3.1.2 Phase-end reviews 52

3.2 Review subjects 54

3.3 Documentation reviews 54
3.3.1 Requirements reviews 56
3.3.2 Design reviews 58
3.3.3 Test documentation reviews 60
3.3.4 User documentation reviews 61
3.3.5 Other documentation reviews 62

3.4 Summary 63

3.5 The next step 64

Chapter 4

Testing 65

4.1 Types of testing 67
4.1.1 Unit testing 67
4.1.2 Module testing 68
4.1.3 Integration testing 69
4.1.4 User or acceptance testing 70
4.1.5 Special types of tests 71

4.2 Test planning and conduct 74
4.2.1 Test plans 74
4.2.2 Test cases 76
4.2.3 Test procedures 78
4.2.4 Test data input 78
4.2.5 Expected results 80
4.2.6 Test analysis 80
4.2.7 Test tools 81
4.2.8 Reviewing the test program 82

4.3 Who does the testing 83

4.4 Summary 85

4.5 The next step 86

Chapter 5

Defect analysis 87

5.1 Analysis concepts 88
5.1.1 Measures 88
5.1.2 Metrics 89
5.1.3 Product analysis 89
5.1.4 Process analysis 89

5.2 Locating data 90
5.2.1 Defect reporting 90
5.2.2 Other data 92

5.3 Defect repair and closure 93

5.4 Selecting metrics 96
5.4.1 Available metrics 96

Practical Guide To Software Quality Management

vi

5.4.2 Applicable metrics 96
5.4.3 SQS goal-oriented metrics 98

5.5 Collecting measurements 100
5.5.1 Classification of defects 100
5.5.2 Other defect measures 102
5.5.3 Nondefect measures 103

5.6 Quality Tools 104
5.6.1 Tally sheet 104
5.6.2 Scatter diagram 105
5.6.3 Graph 105
5.6.4 Histogram 106
5.6.5 Pareto diagram 107
5.6.6 Flowchart 107
5.6.7 Cause and effect diagram 108
5.6.8 Process control charts 109

5.7 Implementing defect analysis 112
5.7.1 Rules 112
5.7.2 Designing the program 114
5.7.3 Metric characteristics 115

5.8 Summary 116

5.9 The next step 116

Chapter 6

Configuration management 119

6.1 Configuration management
components 121

6.1.1 Configuration identification 121
6.1.2 Configuration control 122
6.1.3 Configuration accounting 123

6.2 Configuration identification 126
6.2.1 Configuration item 126
6.2.2 Release 128
6.2.3 Version 128
6.2.4 Edition 129

6.3 Configuration control 129
6.3.1 Change processing 129
6.3.2 Change control boards 131
6.3.3 Software libraries 132

6.4 Configuration accounting 133
6.4.1 Baselines 133
6.4.2 Accounting 135

6.5 Summary 136

6.6 The next step 137

Chapter 7

Associated quality concerns 139

7.1 Security 140
7.1.1 Database security 140
7.1.2 Teleprocessing security 142
7.1.3 Viruses 144
7.1.4 Risk analysis 145
7.1.5 Disaster recovery 146

7.2 Education 147
7.2.1 Developer education 148
7.2.2 Support training 149
7.2.3 User education 151
7.2.4 Operations training 152
7.2.5 Education delivery 153

7.3 Vendor management 155
7.3.1 Off-the-shelf software 156
7.3.2 Tailored shells 158
7.3.3 Contracted new development 159

7.4 Maintenance 160
7.4.1 Types of maintenance 160
7.4.2 Documentation 165
7.4.3 Regression testing 165

7.5 Summary 166

7.6 The next step 167

Contents

vii

Chapter 8

Software documentation 169

8.1 Management documents 171
8.1.1 Software development plan 172
8.1.2 SQS plan 173
8.1.3 Configuration management plan 174
8.1.4 Additional plans 174

8.2 Development documents 175
8.2.1 Requirements specification 176
8.2.2 Design specifications 178
8.2.3 Other development documents 179

8.3 Test documentation 180
8.3.1 Test plan 181
8.3.2 Test cases 182
8.3.3 Test data 182
8.3.4 Test procedures 182
8.3.5 Test reports 183

8.4 User documentation 183
8.4.1 Input requirements 183
8.4.2 Output description 184
8.4.3 Operation instructions 184
8.4.4 Maintenance 185

8.5 Training documentation 185

8.6 Documentation standards 186

8.7 Summary 187

8.8 The next step 188

Chapter 9

Quality system implementation 189

9.1 Planning the implementation 190

9.2 The quality charter 191

9.3 Changing the organizational culture 192
9.3.1 Culture change 192
9.3.2 Management commitment 193

9.3.3 Organizational commitment 193

9.4 Organizational considerations 194
9.4.1 SQS task performance 195
9.4.2 Reporting level 196

9.5 Development organization
participation 199

9.6 Implementation strategies 200
9.6.1 Single-project implementation 200
9.6.2 Single-element implementation 201
9.6.3 Combined implementation 202
9.6.4 Adapting the SQS 202

9.7 SQS improvement 203
9.7.1 Assessment 203
9.7.2 Certification 204
9.7.3 Awards 204

9.8 Summary 204

9.9 The next step 205

Appendixes 207

Appendix A

Sample outline of software
development plan 209

Appendix B

Sample outline of SQS plan 213

Appendix C

Sample outline of configuration
management plan 217

Practical Guide To Software Quality Management

viii

Appendix D

Sample outline of software
requirements specification 219

Appendix E

Sample outline of software
preliminary design specification 221

Appendix F

Sample outline of software detailed
design specification 223

Appendix G

Sample outline of test plan
(system) 227

Appendix H

Sample outline of test case 231

Appendix I

Sample outline of test report 233

Appendix J

Sample quality management
charter 235

Acronyms 243

About the author 247

Index 249

Contents

ix

Practical Guide to Software Quality Management

Preface

This book explores the various aspects of a total software quality
system. It identifies the eight basic elements of the software quality
systems and shows how each element fits into the total picture of

software quality management.
The subject matter, which is presented at a high level, is suitable for

managers and engineers as a introduction to a software quality program.
The audience for this book includes those who have been charged with the
responsibility of creating and implementing a total software quality system
in their organizations. It also will be of use to those who need an overview
of a total software quality framework. Individuals who have some parts of a
system in place, such as a configuration management system or a standards
program, and want to go forth with a full software quality effort also will
find this text of interest.

The book delineates the elements of a total software quality system, ex-
plains briefly what each element comprises, and discusses the role of the

xi

software quality practitioner with respect to each element. It shows how
the full set of elements interacts and how to integrate the elements to form a
whole software quality system.

Practical Guide to Software Quality Management

xii

Practical Guide to Software Quality ManagementPractical Guide to Software Quality Management

Introduction

This book is a primer for those who need to understand the con-
cepts as well as the value of software quality management. It de-
scribes the eight major software quality elements and how they

combine to form a solid software quality program. It is not intended to be a
reference for the experienced software quality practitioner or the definitive
text on how to accomplish all the software quality tasks available today.

The implementation of a software quality system depends heavily on
the organization and its software work. The sample software quality system
plan provided in Appendix B covers all eight basic elements and should
prove sufficient for most organizations. Companies that are being audited
for compliance with an ISO 9000 standard or one of the several process
maturity or process improvement models may need to augment the sample
plan to address organization-specific issues.

The basic elements of the quality system apply to any software develop-
ment or maintenance. Small organizations will use the elements commensu-

xiii

rate with their needs, whereas large organizations will find their application
more sophisticated and elaborate. Organizations, large or small, that are
involved in the most current techniques and applications, such as client-
server, graphical user interfaces, distributed processing, and the like, will
need to extend these elements beyond the basics given here. Similarly, or-
ganizations using advanced development methodologies such as informa-
tion engineering, object-oriented techniques, mathematical proofs of
correctness, and so on, will implement these quality system elements in
more sophisticated ways than more traditionally oriented organizations.

So, then, why should you read this book? Perhaps your situation paral-
lels one of the following scenarios:

• You have done a good job testing the last few projects, and your
boss promotes you to software quality manager.

• Corporate headquarters decides that all software projects will be
subject to quality management, and, as the director of information
services, you are to implement a software quality program.

• The chair of the ISO 9000 certification project informs you that you
are to bring the software area into line with the quality management
precepts of ISO 9001.

• An assessment of the software development organization, against
the SEI’s CMM, shows your organization to be at level 1. As vice
president of management information systems, you are to take ac-
tion to raise that level.

• You are senior systems analyst, and the head of software quality
wants you to learn more about software quality and how you
affect it.

Any one of those situations would be a good reason to start your under-
standing of quality systems with this book. After you have gained insight
into software quality systems, other books are available to assist you in the
application of each specific element described in this text. If you are a
tester, there are excellent texts on all sorts of testing concerns and applica-
tions. As a disaster recovery manager, you can find much material that will
help you prepare for and recover from disasters.

Each chapter concludes with the sections “The Next Step” and “Addi-
tional Reading.” The first section includes one or two texts that I believe
can answer the question, “Where do we go from here?” Additional Read-
ing includes texts generally applicable to the software quality elements dis-
cussed in the chapter. Inclusion in the list should not be inferred as an
endorsement of a particular book or a negative endorsement of a text not in-
cluded. Anyone who has browsed through the computer section of a book-

Practical Guide to Software Quality Management

xiv

store or library knows there are far too many books to list in an introduc-
tory volume such as this one. (You will note that a few of the Additional
Reading texts are from outside the United States, which may constitute an
endorsement of sorts, as I believe those titles to be of sufficient value to war-
rant the extra effort it may take to acquire them.)

The order of the chapters in this volume is, perhaps, an indication of
the relative importance I attach to the eight elements of a software quality
program. I recognize that this is almost certainly not the order in which
you will implement (or may have implemented) whatever software quality
activities you are undertaking. I suspect that most, if not all, organizations
do some sort of testing, conduct a few reviews, and follow standards al-
ready in place to determine the implementation sequence. The order of the
chapters in this book should serve, rather, as an agenda for the evaluation
of a software quality program and its improvement.

Chapter 1 introduces my view of what constitutes a beneficial—and in-
tentional—software quality system. Chapters 2 through 7 present discus-
sions of the elements of a quality system, their areas of interest or
application, and why they are important in a software quality system.

Chapter 8 just as well could have been the first chapter. No project is
complete without the documentation that defines its purpose and direction
and describes its approach and progress. The documentation itself may be
considered to be outside the purview of a quality system. It is, however, the
basis for the vast majority of the quality system. A popular misconception
is that the product of software development is the code, the whole code,
and nothing but the code. Code is merely one of the documents that are the
ongoing and sequential set of software development products. As anyone
involved in a dispute over the terms of an agreement will tell you, “If it isn’t
written, it isn’t!” The importance of documentation cannot be overempha-
sized. Its inclusion in a book on quality is part of that emphasis.

Chapter 9 considers the implications and concerns surrounding the ac-
tual implementation of the software quality system. Although this text is
not a step-by-step “cookbook” on how to implement quality management,
Chapter 9 discusses things you should remember when planning the intro-
duction or improvement of a quality system.

To emphasize the importance of documentation, the appendixes con-
tain examples or starting-point outlines for some of the documentation dis-
cussed in the rest of the text. Many of the outlines are taken from or are
based on Institute of Electrical and Electronics Engineers (IEEE) stand-
ards that address the specific topic. Appendix J, “Sample Software Quality
Charter,” was contributed by an organization that requested anonymity.
The charter is, though, the charter in place in that organization.

Introduction

xv

Practical Guide to Software Quality Management

Chapter 1
The elements of a complete
software quality system

Starting a software quality program from scratch is a time-
consuming task that is often doomed to failure before it is begun. In-
adequate preparation, misused terms, lack of planning, and failure to

recognize the individual roles of all members of the organization are only a
few of the pitfalls that await the overanxious practitioner.

As stated in the Introduction, this is a “what-to book.” It is intended
to introduce you to the concepts involved in a software quality system
(SQS) and to suggest how to implement the parts of such a system. This
chapter defines some software quality terms, describes the basic elements
of a SQS, and addresses some important concerns. The balance of the
book elaborates on each element and discusses implementation of an
overall SQS.

1

1.1 Definitions
Several terms are granted many meanings throughout the computing indus-
try, particularly in the software sector. This text uses certain of these vari-
ably defined terms as defined here.

Activity. A task or body of effort directed at the accomplishment of an
objective or the production of all or part of a product.

Arithmetic defect. A software flaw in a mathematical computation.

Audit. According to ANSI N45.2.10-1973, “an activity to determine
through investigation the adequacy of, and adherence to, established proce-
dures, instructions, specifications, codes, and standards or other applica-
ble contractual and licensing requirements, and the effectiveness of
implementation.”

Client. The person or organization that causes a product to be developed
or maintained. The client is often also the customer.

Component. A general term for a portion of a product, for example, a
chapter of a document or a unit or module of software. A component may
include the entire product.

Consumer. The person or organization that acquires a software product.
The consumer may be either the customer or the user.

Control defect. A software flaw in a decision process.

Customer. The person or organization that pays for the product.

Element. See unit.

Entity. Part of the overall company organization, for example, the soft-
ware quality group, a development group.

Guideline. A preferred practice or procedure that is encouraged, but not
enforced, throughout the organization.

Input/output defect. A software flaw in the process of passing informa-
tion into or out of the software element.

Practical Guide to Software Quality Management

2

Inspection. According to IEEE Standard 100-1992, “a formal evaluation
technique in which software requirements, design, or code is examined in
detail by a person or group other than the author to detect faults, violations
of development standards, and other problems.”

ISO 9000, 9001, … International standards for quality systems pub-
lished by the International Organization for Standardization (ISO) and
intended to be used as the international definition of quality systems to be
applied by producers or suppliers. Certification of an organization to ISO
9001, 9002, or 9003 attests that the organization has a documented quality
system and evidence of its application.

Item. See component.

Module. A group of units that together perform some convenient individ-
ual function or subfunction within a software system.

Peer review. An informal examination by a coworker of the producer,
usually of a small portion of a product. In some literature, the term peer
review means any of the informal reviews.

Phase. Any of several convenient divisions of the software life cycle, typi-
cally including concept development, requirements, design, coding, test,
installation and acceptance, operation and maintenance, and retirement.
Phases may or may not be sequential.

Process. The group of activities and procedures by which a producer
develops or maintains a product.

Producer. The person or organization that, following a process, devel-
ops or maintains a product.

Product. The intermediate or final output from any given phase of the
software life cycle, for example, specifications, code, or test results.

Program. According to IEEE Standard 100-1992, “a schedule or plan
that specifies actions to be taken.”

Quality. Compliance of a product with the expectations of the user,
based on the product’s requirements.

Quality assurance. The set of activities intended to detect, document,
analyze, and correct process defects and to manage process changes.

The elements of a complete software quality system

3

Quality control. The set of activities intended to detect, document, ana-
lyze, and correct product defects and to manage product changes.

Quality group. The organizational entity responsible for monitoring and
reporting the performance of the product development functions and
activities.

Quality management. The empowering and encouraging of the pro-
ducer to identify and submit improvements to the product development
process.

Quality practitioner. A person whose task is to perform one or more of
the functions or activities that make up the quality system. The quality
practitioner may or may not be assigned to a quality group.

Quality system. The total set of quality control, quality assurance, and
quality management activities dedicated to the provision of quality
products.

Requirement. According to IEEE Standard 100-1992, “a condition of
capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed
documents.”

Review. A formal or informal meeting at which an output (product or
component) of the software development life cycle is presented to the cus-
tomer, user, or other interested parties for examination, evaluation, and
approval.

SEI CMM. A five-level model of an organization’s software process ma-
turity, called the capability maturity model (CMM), developed by the Soft-
ware Engineering Institute (SEI).

Software. Computer programs, procedures, and possibly associated
documentation and data pertaining to the operation of a computer system.

Software development life cycle. The portion of the software life cycle
devoted to the actual creation of the software system, generally beginning
with requirements generation and ending with installation of the software
system into active production.

Practical Guide to Software Quality Management

4

Software life cycle. The entire period during which a software system is
active, beginning with its initial conceptual development and ending with
its removal from active use and its archiving.

Software system. A total, integrated aggregation of software components
that performs the set of specific functions as defined by its approved
requirements.

Standard. A practice or procedure that is imposed and enforced through-
out the organization.

Subsystem. A group of modules that together perform one of the major
functions of a software system.

Total quality. The culture that maximizes the likelihood that a product
conforms with its requirements on an ongoing basis.

Total quality system. The set of activities required to provide decision-
making, action-capable management with the information necessary to
beneficially affect the product development process.

Unit. According to IEEE Standard 610.12-1990, “a software component
that is not subdivided into other components.” Sometimes called an ele-
ment, a unit is also known as the “smallest replaceable component.”

Unit development folder. The “diary” of the development of a software
component. The unit development folder usually contains the portion of
the approved requirements being addressed by the component, the design
and test information that applies, and any additional information applica-
ble to an understanding of the development approach used for the
component.

User. The person who actually performs a job function with the assis-
tance of the product.

Walkthrough. A review method in which a producer leads other mem-
bers of the development team through a product or a portion thereof that
the producer has developed. During a walkthrough, the other members of
the team ask questions and comment on technique, style, possible errors,
violations of development standards, and other issues.

The elements of a complete software quality system

5

1.2 The elements of a software quality system
An SQS has two goals. The first goal is to build quality into the software
from the beginning. That means ensuring that the problem or the need is
clearly and accurately stated and that the requirements for the solution are
properly defined, expressed, and understood. Nearly all the elements of an
SQS are oriented toward requirement validity and satisfaction.

For quality to be built into a software system from its inception, the
software requirements must be clearly understood and documented.
Unless the actual requirements and the needs of the user are known and
understood, there is little likelihood that the user will be satisfied with any
software system that is delivered. Further discussion of requirements is pro-
vided in Chapters 6 and 8.

The second goal of the SQS is to keep quality in the software through-
out the software life cycle (SLC). This chapter describes the eight elements
of the SQS and discusses their contributions to these two goals.

The eight elements of an SQS are as follows:

• Standards;

• Reviewing;

• Testing;

• Defect analysis;

• Configuration management;

• Security;

• Education;

• Vendor management.

While each element can be shown to contribute to both goals, there are
heavier relationships between some elements and one or the other of the
two goals. Those particular relationships will become obvious as each ele-
ment is discussed in the chapters that follow.

Every SLC model has divisions, or periods of effort, into which the
work of developing and using the software is divided. These divisions or
periods are given various names, depending on the particular life cycle
paradigm being applied. For this discussion, the periods of effort, together
with their common names, are defined as follows:

• Recognition of a need or problem (i.e., concept definition);

• Definition of the software solution to be applied (i.e., requirements
definition);

Practical Guide to Software Quality Management

6

• Development of the software that solves the problem or satisfies the
need (i.e., design and coding);

• Proving that the solution is correct (i.e., testing);

• Implementing the solution (i.e., installation and acceptance);

• Using the solution (i.e., operation);

• Improving the solution (i.e., maintenance).

Regardless of their names, each division represents a period of effort
directed at a particular part of the overall life cycle. The divisions may be of
various lengths and applied in various sequences.

There are also associations between certain elements and the various
divisions of the SLC. Again, most of the elements support most of the
SLC, but certain elements are more closely associated with particular peri-
ods than with others.

Figure 1.1 displays the eight elements as a cube supporting the goals of
software quality and the periods of the SLC with which each element is
most closely associated.

1.2.1 Standards
Software development is becoming a science. The old days of free-form
creativity in the development of software are gradually giving way to more

Ta
sk

s

Goa
ls

Keep in

Rec
ogn

ize

Defi
ne

So
lve

Pro
ve

Im
ple

men
t

Use Im
pro

ve

Standards

Reviewing

Testing

Defect analysis

Config mgt.

Security

Education

Vendor mgt. Build in

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X X
X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

Periods of effort

Figure 1.1
Quality tasks,

life cycle periods,
and goals.

The elements of a complete software quality system

7

controlled and scientific approaches. As some observers have noted, soft-
ware is moving from an arcane art to a visible science.

As Figure 1.2 illustrates, a standards manual can have input from many
sources. Standards are intended to provide consistent, rigorous, uniform,
and enforceable methods for software development and operation activi-
ties. The development of standards, whether by professional societies such
as the IEEE, international groups such as the International Organization
for Standardization/International Electrotechnical Commission Joint Tech-
nical Committee One (ISO/IEC JTC1), industry groups, or software devel-
opment organizations themselves, is recognizing and furthering that
movement.

Standards cover all aspects of the SLC, including the very definition of
the SLC itself. Probably more than any of the other elements, standards
can govern every phase of the life cycle. Standards can describe considera-
tions to be covered during the concept exploration phase, as well as specify
the format of the final report describing the retirement of a software system
that is no longer in use.

Standards come into being for many reasons. They might document
experience gained in the day-to-day running of a computer center and the
most efficient methods to be used. Laws and government regulations often
impose standard procedures on business and industry. Industries can band
together to standardize interfaces between their products, as is done in the

Consultants

Inhouse groups
Professional societies

International tradeInd
us

try
gro

up
s

Use
r gro

up
s

Sta
ndard

s

manual

Figure 1.2
Standards sources.

Practical Guide to Software Quality Management

8

communications field. Contracts often specify standard methods of per-
formance. And, in many cases, standards arise out of common sense.

Whether a standard comes from within a company, is imposed by gov-
ernment, or is adopted from an industry source, it must have several char-
acteristics. First of all, the standard must be necessary. No standard will be
observed for long if there is no real reason for its existence. Second, it must
be feasible. Again, common sense tells us that if it is not possible to comply
with the tenets of a standard, then that standard will be ignored. Finally,
the standard or, more precisely, adherence to it must be measurable; that
is, it must be possible to demonstrate that the standard is being followed.
Each of these characteristics supports the total enforceability of the stand-
ard. An unenforceable standard is of no use to anyone.

Software standards should be imposed so that the producer of a soft-
ware product or component can pay attention to the technical aspects of
the task rather than to the routine aspects that may be the same for every
task. Standards, such as those for document formats, permit the producer
to concentrate on technical issues and content rather than on format or lay-
out details.

Standards, while worthwhile, are less than fully effective if they are not
supported by policies that clearly indicate their imposition and the intent
of responsible management to see that the standards are followed and en-
forced. Often, specific practices are useful, so that implementation of the
standard is uniform.

Not everything must be standardized. Guidelines that call out the pre-
ferred methods or approaches to many things are fully adequate. A set of
standards that covers every minute aspect of an organization’s activity can
lose respect simply from its own magnitude. Competent and comprehen-
sive guidelines give each person some degree of freedom in those areas
where specific methods or approaches are not absolutely necessary. That
leaves the standards to govern those areas where a single particular way of
doing business is required.

1.2.2 Reviewing
Reviews permit ongoing visibility into the activities of software develop-
ment and installation. Product reviews, also called technical reviews, are
formal or informal examinations of products and components throughout
the development phases of the life cycle. They are conducted throughout
the software development life cycle (SDLC). Informal reviews generally oc-
cur during SDLC phases, while formal reviews usually mark the ends of
the phases. Figure 1.3 illustrates this point.

The elements of a complete software quality system

9

Informal reviews include walkthroughs and inspections. Walkthroughs
are informal but scheduled reviews, usually conducted in and by peer
groups. The author of the subject component (design specification, test
procedure, coded unit, or the like) “walks through” the component, ex-
plaining it to a small group of peers. The role of the peers is to look for
defects in or problems with the component. Those problems then are cor-
rected before the component becomes the basis for further development.

Inspections are a newer, more structured type of walkthrough. Al-
though the basic goal of an inspection—removal of defects—is the same as
that of the walkthrough, the format of the meeting and the roles of the par-
ticipants are more strictly defined, and more formal records of the proceed-
ings are prepared.

Process reviews may be held at any time. The purpose of a process re-
view is to examine the success of the software process in effect. Data for the
review are collected in the technical reviews and usually are based on de-
fects identified by the technical reviews. Opportunities for improvements
to the current process are sought. Management reviews are specialized
process reviews, performed on behalf of senior management, to examine
project status and effective use of resources based on the current process.

Also included in the quality control review activity are audits. Audits
are examinations of components for compliance with a content and format

Requirements
definition

Preliminary
design

Detailed
design

Coding and
testing

Acceptance and
implementation

Operation

Inprocess
review

Postimplementation
review

Formal
review

Figure 1.3
SDLC reviews.

Practical Guide to Software Quality Management

10

specification or for consistency with or comparison to a predecessor. An
inprocess audit of the unit development folder (UDF) (also called the soft-
ware development file in some organizations) is usually informal. It com-
pares the content and status of the UDF against standards governing the
preparation and maintenance of the UDF. Its goal is to ascertain that UDFs
are being used as required.

The physical audit (PA), often included as a part of the configuration
management process, is an example of a formal audit. It compares the final
form of a code against the final documentation for that code. The goal of
the PA is to ensure that the two products, documentation and code, are in
agreement before being released to the user or customer. Another formal
audit is the functional audit (FA). The functional audit, again often a
configuration management responsibility, compares the test results with
the currently approved requirements to ensure that all requirements have
been satisfied.

1.2.3 Testing
Testing provides increasing confidence and, ultimately, a demonstration
that the software requirements are being satisfied. Test activities include
planning, design, execution, and reporting. Figure 1.4 is a simple concep-
tual view of the testing process. The basic test process is the same, whether
it is applied to system testing or to the earliest module testing.

Test planning begins during the requirements phase and parallels the
requirements development. As each requirement is generated, the corre-
sponding method of testing for that requirement should be a consideration.
A requirement is faulty if it is not testable. By starting test planning with the
requirements, nontestability often is avoided. In the same manner that re-
quirements evolve and change throughout the software development, so,
too, do the test plans evolve and change. This emphasizes the need for
early and continuing configuration management of the requirements and
the test plans.

Test design begins when the software design begins. Here, as before, a
parallel effort with software development is appropriate. As the design of
the software takes form, test cases, scenarios, and data are developed that
will exercise the designed software. Each test case also will include specific
expected results so that a pass-fail criterion is established. Just as each re-
quirement must be measurable and testable, so must each test be measur-
able. A test whose completion is not definitive tells little about the subject
of the test. Expected results give the basis against which the success or fail-
ure of the test is measured.

The elements of a complete software quality system

11

Actual testing begins with debugging and early unit and module tests
conducted by the programmer. These tests usually are informally docu-
mented (perhaps by notations in the UDF). They are not closely moni-
tored by the software quality practitioner, since they frequently are
experimental and meant to help the programmer in day-to-day software
generation. Formal test execution generally begins with integration tests
in which modules are combined into subsystems for function testing. In
larger systems, it is frequently advisable to begin formal testing at the mod-
ule level after the programmer is satisfied that the module is ready for for-
mal testing.

Test execution requires the use of detailed test procedures, which
are step-by-step directions that tell the test conductor exactly what to do
as the test is run. Every action, input, expected output, and response

Design

Code

Test
procedures

Test
data

Test
design

Test

Reports

Delivery

Requirements

Test
plan

Figure 1.4
Simplified test

process.

Practical Guide to Software Quality Management

12

should be documented, so the test conductor does not have to make test
design decisions while the test is being run. Preparation of the test proce-
dures is begun during the design phase and completed during the coding
and debugging activities. By the time the coding phase is complete, all
preparations for the formal testing activities also should be in place. Test
cases, scenarios, data, and procedures, together with expected results and
completion criteria, should be ready to be applied from module testing (if
included on the particular project) through qualification and acceptance
tests.

Test reports document the actual results of the testing effort as it pro-
gresses. For each test that is run, a report of the expected results, the actual
results, and the conclusions of the test conductor concerning success of the
test should be prepared. Included in the report are the anomalies that were
found and recommended corrective actions. Errors, defects, faults, ques-
tionable or unexpected results, and any other nonpredicted outcomes are
recorded and assigned for action. Once the anomaly has been addressed,
the test, or an appropriate portion thereof, is rerun to show that the defect
has been corrected. As the tests progress, so do the levels of detail of the
test reports, until the final acceptance test report is prepared documenting
the fitness of the software system for use in its intended environment.

1.2.4 Defect analysis
Defect analysis is the combination of defect detection and correction and
defect trend analysis. Defect detection and correction, together with
change control, are a record of all discrepancies found in each software
component and the disposition of each discrepancy, perhaps in the form of
a software problem report or software change request.

As shown in Figure 1.5, each needed modification to a software com-
ponent, whether found through a walkthrough, review, test, audit, opera-
tion, or other means, is reported, corrected, and formally closed. A
problem or requested change may be submitted by anyone with an interest
in the software. The situation will be verified by the developers, and the
configuration management activity will agree to the change. Verification of
the situation is to ensure that the problem or a need for the change actually
exists. Configuration management may wish to withhold permission for the
change or delay it until a later time; perhaps because of concerns such as in-
terference with other software, schedule and budget considerations, or the
customer’s desires. Once the change has been completed and tested, it will
be reported by configuration management to all concerned parties, in-
stalled into the operational software by the developers or operations staff,
and tested for functionality and compatibility in the full environment.

The elements of a complete software quality system

13

This procedure is required throughout a project to make sure that all
defects found are properly fixed and closed. It also serves future projects
by providing a means for feeding defect information back into the develop-
ment life cycle and modifying the software development process so that
future occurrences of certain defects are reduced. Figure 1.6 places the
change procedure into the larger picture of development process analysis
and improvement.

A running record of defects, their solutions, and their status is pro-
vided by the defect trend analysis effort. (The actual changes are made ac-
cording to the configuration control process.) As mentioned above, the
record of defects and their solutions can serve to:

• Prevent defects from remaining unsolved for inappropriate lengths
of time;

• Prevent unwarranted changes;

• Point out inherently weak areas in the software;

• Provide analysis data for development process evaluation
and correction;

• Provide warnings of potential defects through analysis of
defect trends.

Situation
verfied?

(developer)

Permission
to change?

(configuration
management)

No No

A
Change

requested?
(anyone)

Begin

Change
made

(developer)

Change
correct?

(test)

No

A B

End
Installation
correct?

(test)

Change
installed

(developer/
operations)

Change
reported

(configuration
management)

No

B

Figure 1.5
Typical change

procedure.

Practical Guide to Software Quality Management

14

Formal recording and closure procedures applied to defects are insuffi-
cient if corresponding reports are not generated so that project manage-
ment has visibility into the progress and status of the project. Regular
reports of defect detection and correction activity keep management
apprised of current defect areas and can warn of potential future trouble
spots. Further, analysis of ongoing defect and change reports and activities
provide valuable insight into the software development process and en-
hance the software quality practitioner’s ability to suggest error avoidance
and software development process modification.

1.2.5 Configuration management
Configuration management is a threefold discipline. Its intent is to main-
tain control of the software, both during development and after it is put
into use and changes begin.

As shown in Figure 1.7, configuration management is, in fact, three
related activities: identification, control, and accounting. If the physical
and functional audits are included as configuration management responsi-
bilities, there are four activities. Each activity has a distinct role to play. As
system size grows, so do the scope and importance of each activities. In
very small or one-time-use systems, configuration management may be

Begin A

B

Process
definition and

documentation

Process
identification

Change
procedure
(Figure 1.5)

Process
modification Begin

A

B

A
Process

application

Product
evaluation

results

OK

Not
OK

Figure 1.6
Development

process
improvement.

The elements of a complete software quality system

15

minimal. As systems grow and become more complex, or as changes to the
system become more important, each activity takes on a more definite role
in the overall management of the software and its integrity. Further, some
configuration management may be informal for the organization itself, to
keep track of how the development is proceeding and to maintain control
of changes, while other will be more formal and be reported to the cus-
tomer or the user.

Configuration identification is, as its name implies, the naming of each
component (document, unit, module, subsystem, and system) so that at
any given time, the particular component of interest can be uniquely identi-
fied. That is important when software is being documented, tested,
changed, or delivered to the customer, in other words, throughout the
entire SLC. Unless it is known which specific version or component of the
software is being affected (i.e., coded, changed, tested), the software is out
of control. Tests may be run on the wrong version of the code, changes
may be made to an obsolete version of a document, or a system composed
of the wrong versions of the various components may be delivered to the
user or customer.

Configuration control prevents unauthorized changes to any software
product. Early in the SLC, documentation is the primary product.
Configuration control takes on an increasingly formal role as the docu-
ments move from draft to final form. Once published, any changes to the
documents are formally processed so that capricious, unnecessary, or unap-
proved changes are not made. As the life cycle moves into the coding, test-
ing, and operation and maintenance phases, changes to either documents
or code are closely controlled. Each change is verified for necessity and cor-
rectness before being approved for insertion, so that control of the software
can be maintained.

Configuration
management

Configuration
audits

Configuration
identification

Configuration
control

Configuration
accounting

Figure 1.7
Configuration
management

activities.

Practical Guide to Software Quality Management

16

Configuration accounting keeps track of the status of each component.
The latest version or update of each software component is recorded.
Thus, when changes or other activities are necessary with respect to the
component, the correct version of the component can be located and used.
Each new edition of a document, each new assembly or compilation of the
code, each new build of the software system is given a new specific identi-
fier (through configuration identification) and recorded. All changes to that
version or edition of a component are also referenced to it so that, if neces-
sary, the history of activity with respect to any component can be recre-
ated. This might be necessary in the loss of the current version or to return
to a previous version for analysis or other purposes.

1.2.6 Security
Security activities apply both to data and to the physical data center itself.
These activities are intended to protect the usefulness of the software and
its environment.

The highest quality software system is of no use if the data center in
which it is to be used is damaged or destroyed. Events such as broken
water pipes, fire, malicious damage by a disgruntled employee, and storm
damage are among the most common causes of data center inoperability.
Even more ominous is the rising incidence of terrorist attacks on certain
industries and in various countries around the world.

Another frequent damager of the quality of output of an otherwise high-
quality software system is data that have been unknowingly modified. If the
data on which the system is operating have been made inaccurate, whether
intentionally or by accident, the results of the software will not be correct.
To the user or the customer, such software appears to be inadequate.

Additionally, though not really a software quality issue per se, is the
question of theft of data. The security of stored or transmitted data is of
paramount concern in most organizations. From the theft of millions of dol-
lars by interception of electronic funds transfers to an employee who just
changes personnel or payroll records, data security is a major concern.

Finally, the recent onslaught of hackers and viruses must be consid-
ered. These threats to software quality must also be recognized and
countered.

The role of the software quality practitioner is, again, not to police the
data or to provide security for the data or the data center. The software
quality practitioner is responsible for alerting management to the absence
or apparent inadequacy of security provisions in the software. In addition,
the software quality practitioner must bring the issue of data center security
and disaster recovery to management’s attention.

The elements of a complete software quality system

17

1.2.7 Education
Education ensures that the people involved with software development and
those people using the software once it has been developed are able to do
their jobs correctly.

It is important to the quality of the software that the producers be edu-
cated in the use of the various development tools at their disposal. Program-
mers charged with writing object-oriented software in C++ cannot perform
well if the only language they know is Visual Basic. It is necessary that the
programmers be taught to use C++ before beginning the programming as-
signment. Likewise, the producers also must be taught the operating sys-
tems, data modeling techniques, debugging tools, special work stations,
test tools, and so on.

The proper use of the software once it has been developed and put
into operation is another area requiring education. In that case, the actual
user of the software must be taught proper operating procedures, data en-
try, report generation, and whatever else is involved in the effective use of
the capabilities of the software system.

The personnel in the data center must be taught the proper operating
procedures before the system is put into full operation. Loading and initial-
izing a large system may not be a trivial task. Procedures for recovering
from abnormal situations may be the responsibility of the data center per-
sonnel. Each of the many facets of the operation of a software system must
be clear so that the quality software system that has been developed may
continue to provide quality results.

The software quality practitioner is not usually the trainer or educator.
Those functions are normally provided by some other group or means.
The role of the software quality practitioner is, as always, to keep manage-
ment attention focused on the needs surrounding the development and use
of a quality software system. The software quality practitioner is expected
to monitor the requirements for and the provision of the education of the
personnel involved in the SLC.

Last, the support personnel surrounding software development must
know their jobs. The educators, configuration management and software
quality practitioners, security and database administrators, and others
must be competent in fostering an environment in which quality software
can be built, used, and maintained.

1.2.8 Vendor management
When software is to be purchased, the buyer must be aware of and take ac-
tion to gain confidence in the quality of the software being purchased. Not
all purchased software can be treated in the same way, as will be seen be-

Practical Guide to Software Quality Management

18

low. Each type of purchased software will have its own SQS approach, and
each type must be handled in a manner appropriate to the degree of control
the purchaser has over the development process used by the producer.
There are three basic types of purchased software:

• Off-the-shelf software;

• Tailored-shell software;

• Contracted software.

Off-the-shelf software is the package carried at retail outlets, for exam-
ple, spreadsheets, word processors, and graphics programs. These pack-
ages come as they are with no warranty that they will do what you need to
have done. They are also almost totally outside the buyer’s influence with
respect to quality.

The second category may be called the tailored shell. The customer
purchases a basic, existing framework, and the vendor then adds specific
capabilities as required by contract. This is somewhat like buying a
stripped version of a new car and then having the dealer add a stereo, a sun
roof, and other extras. The only real influence the customer has over qual-
ity is on the custom-tailored portions.

The third category is contracted software, which is contractually speci-
fied and provided by a third-party developer. In this case, the contract can
also specify the software quality activities that the vendor must perform and
which the buyer will audit. The software quality practitioner has the re-
sponsibility in each case to determine the optimum level of influence and
how that influence can be most effectively applied. The purchaser’s quality
practitioners must work closely with the vendor’s quality practitioners to
ensure that all required steps are taken.

1.3 Additional Issues
Several other issues can and will affect the scope and the authority of the
SQS. These issues include maintenance of the software once it is in opera-
tion, documentation of the development and configuration of the software,
placement of the software quality practitioners within the overall organiza-
tion, and the concerns of implementing the quality system.

The elements of a complete software quality system

19

1.3.1 Maintenance
Software maintenance can best be viewed and treated as an extension or a
repetition of the development process.

Software maintenance includes two primary activities: correction of
defects not found during development and testing and enhancement of the
software to meet new or changed requirements after installation. As sug-
gested in Figure 1.8, each maintenance action or project is treated in much
the same way as original development, and the parallels with the SDLC can
be seen. The maintenance process begins with identification of the need for
a change. The occurrence of an error due to a previously unencountered
defect will trigger a change. New requirements may come from requests
from the users, the need for increased throughput in the data center, a
change in processing technology such as from mainframes to a client-server
approach, or just the desire to reengineer old legacy code.

Whatever the reason for the change, effort is expended in determining
exactly what will be needed (concept definition and requirements specifica-

Requirements

Design

Code

Implement

Test

Maintain

Repairs and
enhancements

Figure 1.8
Recycling the

life cycle.

Practical Guide to Software Quality Management

20

tion); how the change will be effected (design); the actual creation of the
new or modified software (code and unit test); and the testing, approval,
and installation of the change (integration, testing, and installation). Thus,
in almost all cases (there are exceptions to most rules), maintenance can be
seen primarily as a return to the regular SDLC activities, though usually on
a smaller scale.

It is important to note the need for rigorous configuration management
during the maintenance phase. Especially in periods of rapid change, such
as might be found during the modification of software to address new gov-
ernment regulations or the introduction of a new weapon system in a com-
bat vehicle, there is significant danger of making changes to the wrong
version of a module or subsystem. If multiple changes are made simultane-
ously, as is often the case, one change may unknowingly affect another.
The software quality practitioner must take an aggressive role in
confirming that all configuration management procedures are followed.
That is in addition to the software quality practitioner’s regular monitoring
role in all software development activities, whether original development or
maintenance.

1.3.2 Documentation
The purpose of documentation is to record what is required of the soft-
ware, how that goal is to be accomplished, proof that the software was pro-
vided, and how to use and maintain the software. The role of the software
quality practitioner is to monitor the documentation activities and keep
management apprised of their status and quality.

It’s like the old adage, “If you don’t know where you’re going, any
road will take you there—but it doesn’t matter, because you won’t realize
that you’ve arrived.” Without adequate documentation, the task at hand is
never accurately specified. What is really wanted is not made clear. The
starting and ending points are poorly specified, and no one is sure when
the project is complete. Inadequate documentation is like not knowing
where you are going. The system designers are not sure what the customer
or user really wants, the programmer is not sure what the designer intends,
and the tester is not sure what to look for. Finally, the customers or users
are not sure that they got what they wanted in the first place.

The depth of the documentation depends on the scope of the specific
project. Small projects can be successful with reduced documentation re-
quirements. But as the size of the project increases, the need for more com-
plete documentation also increases. In the case of small or uncomplicated
projects, the information contained in some documents can be provided in
higher level documents. As system size increases, additional documents
may be needed to adequately cover such topics as interfaces and data de-

The elements of a complete software quality system

21

sign. More comprehensive test documentation will also be required such as
specific test plans, cases, and reports.

Too much documentation can be as bad as too little. The time spent
documenting a project is wasted if the documentation does not add to the
required body of knowledge about the project. Overdocumentation can in-
troduce inconsistencies, conflicting information, and other kinds of defects
that, in the long run, detract from performance.

Documentation should be sufficient to accurately and completely tell
what to do (concept and requirements), how to do it (plan and design),
how to show that it was done (test), and how to use the system (user). The
software quality practitioner monitors and reviews the documentation to
see that it satisfies those needs.

1.3.3 Organizational considerations
The placement of the software quality practitioner or group within the
organization is a critical factor in its effectiveness. While there are several
acceptable structures, each dependent on the specific total business org-
anization, certain conditions must be observed to enable the SQS to be
effective. Figure 1.9 depicts several possible organizational reporting ar-
rangements. Each has its merits and faults, which will be explored in
Chapter 9.

It is important to note that in some companies the SQS functions and
activities may not be under the auspices of a formal software quality group
at all. Because the SQS functions should be carried out by those parts of

Company
management

Staff Engineering All quality

Project

H/ W SYSOPS S/W
Software
quality

Software
quality

Project H/W QA S/W QA

Figure 1.9
Traditional

organization style.

Practical Guide to Software Quality Management

22

the organization best qualified to perform them, some companies stop at
that point and have various managers responsible for individual SQS func-
tions. That approach would seem to have some economies connected with
it, since there is not the cost of a dedicated staff just for software quality.
However, the coordination among the various responsible managers may
in fact be time consuming enough to actually cost more than a software
quality group. In addition, when a manager has an assignment such as the
development of a new software system and some ancillary tasks such as
documentation coordination, configuration management, training, secu-
rity, or software quality, the development task usually gets the bulk of the
manager’s attention and other tasks less attention or effort.

Software quality is everyone’s individual responsibility. All partici-
pants in the SLC are expected to perform their jobs correctly. Unfortu-
nately, that goal often is unachieved. Software quality tasks, then, must be
assigned to the group or individual who can and will be accountable for as-
sessing and reporting on the quality of the software throughout its life cycle.

1.3.4 Implementation of the total SQS
Implementation of an SQS requires delegation of authority (a charter to
perform the activities), cooperation of the organization (which is usually
gained through demonstration of usefulness over time), and order (a logical
progression of steps leading to the actual application and performance of
the SQS activities).

No activity should be started until management has created a formal
charter of responsibilities, accountabilities, and authority vested in the
SQS and assigned that charter to the software quality practitioner or
group. That, however, only creates the SQS; it does not establish the set of
functions and activities that must be performed or the order in which they
will be inaugurated. The software quality practitioners themselves must
plan, design, and implement the overall SQS.

The four major elements in a successful SQS are the quality culture of
“do it right the first time,” a quality charter that specifies the responsibili-
ties and authorities of each person with respect to quality, a software qual-
ity manual that details the various components of the organization’s SQS,
and the SQS standards and procedures themselves. Table 1.1 shows how
the various affected parts of an organization must contribute to the ele-
ments for the institution of an effective and acceptable SQS.

The elements of a complete software quality system

23

Table 1.1
Key software
quality roles

Senior
management

SQS program
element

Technical
personnel

Insist on Culture Input to

Commit to Charter Input to

Input to Manual Input to

Fully support Total SQS Cooperate with

An important aspect of the whole process is the continued involvement
of the development group from the very beginning. As each part of the
SQS is conceived and planned, the quality charter established, the quality
manual prepared, and the SQS implemented, the involvement of the pro-
ducers will help ensure their acceptance and cooperation. Their participa-
tion, from the beginning, reduces the elements of surprise and, sometimes,
distrust on the part of those whose work is the subject of the software qual-
ity activities.

Management, too, must be kept fully apprised of the activities and pro-
gress of the implementation of the SQS. Management provides the initial
impetus for the SQS with its insistence on the concept of an organizational
culture based on quality. Next, it starts the process through its demon-
strated commitment to the quality charter. Continued support for the effort
depends on management’s continued belief that an SQS will be beneficial
in the long run. By maintaining close contact with management during the
startup period, potential future pitfalls can be recognized and avoided.

Finally, management and all the groups involved must work out and
accept a logical implementation plan. The needs of the various groups and
their priorities must be reflected in the actual implementation schedule.

In the final analysis, the startup of a SQS closely resembles the creation
of a software system. Each part of the SDLC is paralleled in the SQS, and
each must be carefully addressed. Most of all, however, every affected or-
ganization should be a party to the planning, design, and implementation
of the SQS.

1.4 Summary
A total SQS is more than reviews or testing or standards. It is the compre-
hensive application of an eight-element discipline. The role of the software
quality function is to review the state of the software development process
and its products and to report that state to decision-making, action-capable

Practical Guide to Software Quality Management

24

management. It is not the role of the software quality function to manage,
direct, or control the software development process.

The ultimate objective of a SQS is to provide, based on the results of
the eight elements, information that will permit decision-making, action-
capable management to beneficially affect the software development
process.

While it is not an absolute necessity that the SQS functions be under
the cognizance of a software quality organization, the accountability for the
SQS functions becomes more visible and addressable if a software quality
group actually exists. That group is not necessarily responsible for the ac-
tual performance of the SQS functions, but it should alert management to
the need for and the efficacy of those functions. The functions themselves
are to be performed by the organizational entities most qualified to perform
them, for example, training by the training department and configuration
management by the configuration management department.

The software quality practitioners must be administratively and finan-
cially independent of the parts of the organization that they will monitor,
that is, at least on the same organizational level within a project or in a ma-
trix management situation in which the SQS is administered by an organ-
izational element completely outside the project organization.

So that the software quality practitioners have the authority commensu-
rate with their responsibilities and accountabilities, there should be a writ-
ten charter from senior management that specifies the roles, objectives, and
authority of the SQS and the software quality practitioners. The prepara-
tion and approval of the charter will serve to get the commitment of senior
management to whatever SQS is finally implemented. This commitment of
senior management is key to the success, both near and long term, of an
SQS. Without the formal commitment of senior management, an SQS and
the software quality practitioners who execute it are at high risk from politi-
cal and financial variations within the organization.

1.5 The next step
To delve into the topic of software quality management, the reader might
find the following two texts of interest:

• Improving Software Quality: An Insider’s Guide to TQM by Lowell
J. Arthur (New York: John Wiley & Sons, 1993).

• Software Quality: Concepts and Plans by Robert H. Dunn (Engle-
wood Cliffs, NJ: Prentice-Hall, 1990).

The elements of a complete software quality system

25

Additional Reading

Barret, Derm, Fast Focus on TQM: A Concise Guide to Companywide
Learning, Portland, OR: Productivity Press, 1994.

Boehm, B. W., Software Engineering Economics, Englewood Cliffs,
NJ: Prentice-Hall, 1981.

Crosby, P. B., Quality Is Free, New York: McGraw-Hill, 1979.

Dunn, Robert, and Richard Ullman, Quality Assurance for Computer
Software, New York: McGraw-Hill, 1982.

Evans, Michael W., and John J. Marciniak, Software Quality Assurance
and Management, New York: John Wiley & Sons, 1987.

Humphrey, Watts S., Managing the Software Development Process,
Reading, MA: Addison-Wesley, 1989.

Schulmeyer, G. Gordon, Zero Defect Software, New York:
McGraw-Hill, 1990.

Walton, Mary, The Deming Management Method, New York: Putnam,
1986.

Practical Guide to Software Quality Management

26

Practical Guide to Software Quality Management

Chapter 2
Standards

Standards are the keystone of an SQS. They provide the basis
against which activities can be measured and evaluated. Further,
they provide common methods and practices so that a task can be

accomplished the same way each time it is performed.
Standards applied to software development provide uniform direction

on how the development is to be conducted. Standards also apply to the
balance of the SLC. They can prescribe everything from the form on which
an original system concept is submitted for consideration to the storage lo-
cation in the computer center for four-ply printer paper. The degree of
standardization is, of course, a company decision. It is important, however,
that the development portion of the SLC be standardized as much as is
practical. Intelligent standards can increase productivity since many mun-
dane decisions need not be made every time a software system is
undertaken.

27

Standards arise from many sources. They may come from the day-to-
day activities within the organization as the “best way to do it” surfaces in
some area. An example might be the method by which access to the interac-
tive software development facility is allocated. The companies in a given in-
dustry often band together to set standards so that their products can be
used together or so that information passing between them means the same
thing to everyone (e.g., the telephone industry standards for interconnec-
tion). Computer user groups and computer-industry associations often
work on standards dealing with software development.

A subgroup of the IEEE, the Software Engineering Standards Commit-
tee, develops standards for software development. These standards deal
with topics ranging from the SLC as a whole down through individual ac-
tivities in the life cycle, such as testing and documentation. Still another
source of standards is outside consulting firms that can be retained to study
an individual company’s specific situation and develop a set of standards
especially tailored to that company’s needs.

More and more organizations are recognizing the importance of stable,
identified processes and their relationship to the overall direction of the or-
ganization. Standards play an important role in the development, mainte-
nance, and execution of organizational mission statements, policies, and
process procedures. External standards often define or limit the breadth of
an organization’s freedom in the conduct of its business. Internal standards
define the organization’s own performance expectations and requirements.
Definition of processes is often in the context of standards, which are all
subject to evaluation during process reviews.

Standards are one of the yardsticks against which the processes of soft-
ware development and usage can be evaluated. Deviation from various ap-
plicable standards is an indication that the software development process is
veering away from the production of quality software.

2.1 Areas of standardization
Standardization can be applied to any or all of the areas of software devel-
opment and maintenance. Such broad use of standards is rarely the case
and usually is not appropriate. Areas that are usually involved in the stand-
ardization effort include, but are by no means limited to, the following:

• SLC;

• Documentation;

• Coding;

• Naming;

Practical Guide to Software Quality Management

28

• Operating procedures and protocols;

• User development.

2.1.1 The software life cycle
The SLC describes the whole software process from conception through
retirement of a given system. Two life cycles are used in discussing soft-
ware. The overall SLC for a system, an example of which is shown in
Figure 2.1, begins with the original idea for the software system, or its con-
ception, and the evaluation of that concept for necessity and feasibility.
The life cycle ends when the software system is retired from use and set
aside. Figure 2.1 also shows that, in the full life cycle, there is the SDLC,
the portion of the overall SLC that deals expressly with the development of
the software system. It begins with the formation of the formal require-
ments documentation, which states specifically what the system will do,
and ends with the implementation of the system into full use. Clearly, there
are other software development paradigms; the example shown is one that
is commonly used.

The SLC, and thus the SDLC, is usually divided into portions of work
or effort called phases. Because of the number of functions and activities
performed in the life of a software system, the activities are grouped into
phases so they can be conveniently referenced, monitored, and managed.
In Figure 2.1, the SLC is divided into six major phases, plus the effort re-
quired to retire a system at the end of its useful life. The SDLC comprises
the middle five major phases. In any particular organization, the various ac-
tivities may be grouped differently, or the phases may be combined, further
divided, or given different names.

It is appropriate at this point to recognize the methodology called pro-
totyping. Prototyping, a simplified overview of which is presented in
Figure 2.2, in an increasingly popular adjunct to the SDLC as we present it
in this text. Prototyping has as its goal the quick analysis of the problem to
be solved and experimentation with potential solutions. Used properly,

Overall software life cycle

Explore
concept

Analyze
reqts

Design
system

Code and
debug

Test and
accept

Operate and
maintain

Retire
system

Software development life cycle
Figure 2.1

Two software
life cycles.

Standards

29

prototyping is a powerful requirements analysis and design tool. Used im-
properly, it can lead to undocumented and unmaintainable software.

A detailed discussion of prototyping is beyond the intent and scope of
this text. It is the subject of much current literature, and the interested
reader is encouraged to pursue the topic. It is sufficient to observe that,
while the development of a prototype system can support activities in the
SDLC, the prototyping development itself is expected to follow a standard
SDLC.

The SLC is the basis for many of the standards that are applicable to
the development and use of quality software. One of the first standards that
should be prepared is a description of the life cycle, sometimes called the
software development methodology. Which phases comprise the SLC and
the SDLC and which activities comprise each of the phases must be clearly
delineated. Once the life cycle phases are defined, the process of determin-
ing proper subjects for standardization within the life cycle activities can
begin.

Most standards will be applicable to activities during the SDLC, since
that is where the heaviest concentration of tasks is found. That in no way
means that standards for the other phases should be ignored or not pre-
pared. As the SQS matures, it will determine, together with the rest of the
software organization, new areas to which standards can be usefully
applied.

Identify
improvements

Standard
requirements and
design methods

OK

Not OK

Idea Rough
prototype

Evaluate
prototype

Improve
prototype

Figure 2.2
General

prototyping
approach.

Practical Guide to Software Quality Management

30

The arrival of computer-aided software engineering tools has opened
another opportunity and necessity for SLC standardization. Which tools to
use; how to specify, acquire, and apply them; and the interfaces among
them may need to be addressed by standards.

2.1.2 Documentation
Comprehensive documentation standards are a basic necessity for thor-
ough design, test, operation, and maintenance.

A major complaint against most software systems is that they are
poorly documented. A generality is that documentation is done, if at all, af-
ter the software system is delivered. Thus, while in the best of worlds, the
documentation describes the delivered system, it often fails to describe
what was originally requested by the customer. Further, there is often little
documentation of the test program applied to the software system. That
makes the software’s ability to perform as desired suspect. Also, user docu-
mentation—how to use the software system—frequently is accused of being
unusable.

Standards for documentation should address two fronts: the required
documentation for each software system and the format and content re-
quirements for that documentation.

A comprehensive set of documentation standards can help ensure that
the documentation of a software system is capable of the tasks for which it
is intended. Without standards to govern what to document and how to
document it, the system may well go into production and fail for one of the
following reasons:

• It is not what the customer really wanted.

• The users and operators don’t know how it works.

The most important document and, frequently, the least standardized
and least well done is the requirements document. The requirements docu-
ment is intended to spell out specifically the problem or need that the soft-
ware is to address. It must describe the intended software system from an
external, operational point of view. Once the requirements have been deter-
mined and expressed, they must be managed. Every system being devel-
oped will undergo requirements changes. Some will be necessary, some
just “nice to have”; others actually may be harmful or detrimental to the sys-
tem as a whole. Without rigorous standards for the analysis, definition, ex-
pression, and control of the requirements, a software development project
is in danger of failing to satisfy its users.

Standards

31

2.1.3 Coding
Coding standards can help reduce “artistry” and enhance clarity and main-
tainability. Some coding standards take effect earlier than others, some-
times reaching back into the design phases. A standard that calls for
structured coding techniques usually will imply the imposition of a stand-
ard that calls for structured design techniques. Conversely, standards re-
quiring object-oriented development techniques often will lead to
standards for coding in one or another of the newer languages that support
object development.

Standards such as these are intended to permit greater understanding
throughout the balance of the SLC. Peers who are involved in walk-
throughs and inspections are better able to understand the code as they pre-
pare for the review. Maintainers have a much easier time correcting and
enhancing code that is well structured and follows adequate standards.

Some coding standards deal with which specific language is to be
used. Many shops that rely on large mainframe-based systems still use Co-
bol or PL/I as their standard application language. Another, differently ori-
ented development organization may standardize on Pascal, C, or C++.
Defense contractors are required by Department of Defense (DoD) regula-
tions to use Ada as their standard language. Some organizations have sev-
eral standard languages, depending on which type of application is being
developed, or even specific characteristics of a given application.

Beyond standards that specify a given language, an organization may
prepare standards for subroutine calls, reentrant or recursive coding tech-
niques, reuse of existing code, or restrictions on verbs or coding constructs.

Most organizations have specific approaches that are preferred or, per-
haps, prohibited. The coding standards will reflect the needs and the per-
sonality of the organization. A set of standards is useful in creating an
environment where all the programmers know the rules that govern their
work. If a coding convention is beneficial to the performance of the coding
staff, it should be made a standard so that all coding can benefit from it. On
the other hand, if a particular coding technique is found to be detrimental,
a standard prohibiting its use is appropriate so that all programmers know
to avoid it.

2.1.4 Naming
Standard naming conventions assist in readability and configuration man-
agement. The standardization of naming conventions for system compo-
nents (units, modules, etc.), data, and even entry points in the code is both
easy and beneficial. There is usually little resistance to a consistent naming
or labeling scheme, and its benefits are the ease of identifying the object be-

Practical Guide to Software Quality Management

32

ing named or labeled. Beyond that, configuration management, especially
configuration identification, is much more difficult if there are no consis-
tent rules or standards for component identification.

Naming standards are based on consistent identifiers in specific loca-
tions in the name. As Figure 2.3 shows, identifiers may be assigned to de-
creasing hierarchical levels in a system, the first characters specifying the
system itself and subsequent characters defining lower levels in the system.
Data can be similarly named, as can subroutines and even external
interfaces.

The important point in naming conventions is that all components of a
given software system can be identified as belonging to that system. That in
turn can simplify the bookkeeping for testing, integration, and delivery of
the system, since each component is uniquely identified. As will be dis-
cussed later, that also is important for the management of the overall
configuration. To have the user or customer accept one version of the sys-
tem and then mistakenly deliver a different version obviously is undesirable.

Configuration identification, while going beyond the basic naming
standards and conventions, depends on unique identifiers for all compo-
nents of a particular software system. It can perform its function with what-
ever naming standards, conventions, schemes, or methods are used.
However, a standard naming convention greatly eases the configuration
identification task.

The tasks of the software developer and tester are also simplified if
standard naming conventions are used. Confusion and doubt as to exactly
which interface is to be exercised or which module is to be tested are mini-
mized. The developer can easily determine the subroutine to call or entry

System A

A2

A21

A212

A2121

Software
subsystem

Program

Unit/
element

Unit/
element

1

Hardware
subsystem

Group

Assembly

Component/
part

Component/
part

1 2

1 2

1 2

Group

Assembly

Group
1 2

2

1 2

1 2

Group

Program

Figure 2.3
Identification

based on hierarchy.

Standards

33

point to use if there are standard rules and formats for the names of those
items.

2.1.5 Operating procedures and protocols
Operating procedures are standardized so that everyone does the same
thing the same way with a given software system. Standardizing the opera-
tional environment is important to software system results. Correct data en-
tered in different ways can give different, yet seemingly correct, results.
The sequencing of subsystem operations in nonstandard ways may lead to
varied results, all of which might be taken as correct. To be sure, much of
the opportunity for variation in the use or operation of a software system
can be eliminated by the software itself. On the other hand, software can-
not easily control all procedures, so standards are used to govern the re-
maining variables.

Standard user procedures tend to reduce errors and defects, maximize
system response time, simplify user education, and increase understanding
of system outputs.

Standards applied to users may address time of day or cycle considera-
tions with respect to the running of the system. A payroll system may be
run on Friday as a standard to permit proper interface with the timecard re-
porting system. A corresponding standard may call for running on Thurs-
day in holiday situations. By having standards for use, the user is not put in
the position of making decisions that could conflict with those made by
someone else. Further, it reduces the likelihood that a person making the
same decision will make it differently from time to time.

The standardization of operating procedures and protocols applies to
both large centralized data centers, client-server installations, standalone
and networked workstations, and specific application systems. Specific ap-
plication systems standards can regulate when the system is run, how to re-
cover from system crashes, and the like. Equally important, though, the
overall operation of the data center or network should have governing
standards. Such things as scheduled maintenance time, job entry rules,
mass storage allocation, remote job entry procedures, log-on and log-off
procedures, password use, data access, and distributed computing are all
subjects for appropriate standardization. Such standards have high pay-
back in smoother operation, reduced errors and defects, and easier educa-
tion of personnel.

2.1.6 User development
User development of software needs strict standards so that the actions of
one user do not affect other users or the data center itself.

Practical Guide to Software Quality Management

34

The rapidly growing capability for user-developed software provides a
fast, easy method of providing quick service for small tasks. An associated
area is the availability of off-the-shelf software from both regular commer-
cial suppliers and online bulletin boards. Software can be purchased,
downloaded, and made into an integral part of larger systems being devel-
oped. Users have the ability to buy a package, merge it with another pack-
age, write some special code for their own needs, and run the amalgam of
software without the intervention of the regular software organization.
While convenient and often productive, this has opened the door for un-
controlled software development, potentially damaging access to the organ-
izational database, excessive loading of the data processing facilities, and
wasteful duplication of effort and resources. Standards for user develop-
ment of software are needed to address those potential conditions.

User understanding and observation of standards are required to avoid
a negative impact on the overall data processing facility. Uncontrolled pur-
chase of small, local (departmental) computational facilities can be an un-
necessary drain on a company’s resources and can lead to incompatibilities
between local facilities and the main data center or network. Further, as
software is developed, it can, if unregulated, lead to problems with data in-
terface, integrity, and security. Acquisition of software from nonstandard
sources or suppliers also increases the likelihood of virus infections and
other security concerns.

User development of software can be a beneficial addition to the com-
putational capabilities of an organization. Standards are easier to develop
and enforce in the traditional mainframe environments, since all processing
is done under a central operating system. As control and processing are
moved toward the decentralized environment, enforcement becomes more
difficult. Not only are user development standards more necessary, but in-
creased surveillance of storage and files is appropriate, to reduce the
chances of misuse of unauthorized or nonlicensed commercial software.
Standards for user development, ranging from equipment and language se-
lection to data security and networking, will permit maximum user flexibil-
ity and still maintain central control for efficient overall data processing.

Changes to standards affecting user work flow and tasks may also be
affected by new standards governing user development of software. Users
should have the opportunity to participate in the standardization activities.
They might even have a trial-use period. The quality practitioner will want
to ensure that addressing the dangers inherent in uncontrolled user devel-
opment are not creating unnecessary restrictions.

Standards

35

2.1.7 Emerging technologies
The software development and maintenance world is in a period of great
expansion and change. While most of the “new” technologies can be
traced back to “old” methods and look more like changes than innova-
tions, the applications of the technologies are often new or at least different.
Some of us see object-oriented design and development as little more than
a refinement of subroutines and independent modules. Client-server tech-
nology probably really began when IBM introduced its CICS operating
system; the “clients” were terminals, and the “server” was a big mainframe.
Graphical user interfaces are more of a new development than the others.

In any event, developers are having a hard time finding standards to
govern these technologies. That is not to say that no standards are avail-
able. It is to say that few of the standards have gained wide industrial accep-
tance and are more de facto standards than formal standards. That places
the burden on the users of these technologies to develop their own ap-
proaches and standards. The alternative is to gamble on adopting one or
another of the de facto standards and to hope that the industry as a whole
goes in the same direction. The same is true for the burgeoning field of mul-
timedia software.

2.2 Sources of standards
It was stated in Section 2.1 that standards should cover as much of the
overall SLC as is practical and appropriate for a given organization. That is
clearly a large and important task. Certainly, in an organization of more
than minimum size, it will involve more than just one or two persons. Even
then, to create all the standards needed can be an overwhelming task and
one that cannot be accomplished in a timely manner. The goal should be to
identify the minimum set of standards that will serve the organization’s ac-
tual needs and the sources for those standards.

Software standards can come from many sources. The standards coor-
dinator (or whoever has the responsibility for standards) can make use of
all or any of the standards-acquisition means and sources. The three main
standards-acquisition methods are to:

• Develop them inhouse;

• Buy them from consultants or other similar organizations;

• Adapt industry-prepared and consensus-approved standards.

Practical Guide to Software Quality Management

36

The three main standards sources are:

• External standards developers;

• Purchased standards;

• Inhouse development.

2.2.1 External standards developers
Standards are available from several sources. Some externally available
standards are useful as starting points for an inhouse standards program.
Some are likely to be imposed as a condition of commerce with a particular
business field or with other countries. One advantage to the standards de-
veloped by various industry and other groups is that they reflect the con-
sensus of the groups involved. Several industry-segment points of view
usually are represented, so that a wide range of applications is available.
Table 2.1 presents some typical standards subjects and representative ex-
ternal standards and sources applicable to them. The list is certainly not all
inclusive, but it does indicate the breadth of standards available.

International standards
Of increasing interest is the activity in the international sector with respect
to software standards. The ISO has published what is called the 9000 se-
ries of standards (ISO 9000, 9001, 9002, 9003, 9004) dealing with qual-
ity. Standard 9001, “Quality Systems—Model for Quality Assurance in
Design, Development, Production, Installation and Servicing,” is the one
most often applied to software development because it includes all aspects
of product development from requirements control through measurements
and metrics applied to the quality program and the control of the products.

Written from a primarily manufacturing point of view, ISO 9001 is
difficult to relate to the software realm. Therefore, the ISO added an annex
to ISO 9000, called Part 3. This annex explains how the requirements of
ISO 9001 can be applied to software. A working group of Standards Aus-
tralia has prepared AS 3563, which is a better interpretation of ISO 9001
for software.

Also active is the international group ISO/IEC JTC1, formed through
the cooperation of ISO and the IEC. This group is dedicated to informa-
tion technology standards and includes several subcommittees that affect
the development of software. Organizations that do, or expect to do, busi-
ness with countries other than their own, are well advised to seek out and
comply with the tenets of the international standards. At the time of this
writing, ISO/IEC had published IS 12207, “Information Technology—

Standards

37

Software life cycle processes,” and was working on several standards that
will support 12207.

Major subject Specific area
Standard
developer

Standard
number

Software life cycle Life cycle
processes

IEEE
ISO/IEC

1074, 1074.1
12207

Project
management

IEEE 1058

Development DoD
IEEE
ISO

498
1074
12207

Reviews IEEE
NIST

1028, 1059
500-165

Testing IEEE

NIST
ISO/IEC

829, 1008, 1012,
1059

500-75, 500-165
9126

Quality program IEEE
AS
ISO
NRC

1298
3563.1, 3563.2
9000 et al.
NUREG/CR-4640

Metrics IEEE 982.1, 982.2, 1044,
1044.1, 1045,
1061

Case tools IEEE 1175, 1209, 1343

Documentation Quality plans IEEE
IEEE/EIA

730, 730.1
1498/IS 640

Requirements
specifications

IEEE
ISO/IEC

830
12207

Design
specifications

IEEE
ISO/IEC

1016, 1016.1
12207

User
documentation

IEEE 1063

Table 2.1
Representative

standards sources

Naming Configuration
management

IEEE
EIA

1042, 828
649

User development Software packages ISO/IEC 12119

Practical Guide to Software Quality Management

38

Industrial and professional groups
Several industry and professional societies are developing generic stand-
ards that can be used as is or tailored as appropriate.

A number of professional and technical societies are increasingly active
in the preparation of software standards. The IEEE and the Electronic In-
dustries Association (EIA) have ongoing working groups addressing stand-
ards and guidelines in the software engineering area. The American
National Standards Institute (ANSI) is the coordinating body for standards
of all types in the United States. Another group becoming active in the soft-
ware area is the American Society for Quality Control.

These, and other, groups are preparing generic software engineering
standards that can be adopted as they are written or adapted by an individ-
ual organization. Many of them are also suitable for inclusion in software ac-
quisition contracts as well as inhouse use.

Government agencies
In addition to the previously mentioned groups, many software standards
are available from various government agencies, in particular the DoD and
the National Institute of Standards and Technology (NIST). As a large
buyer of software, as well as a developer, the federal government has pre-
pared and is still generating standards meant primarily for software acquisi-
tion contracts. These are frequently applicable, in whole or in part, to a
specific organization’s internal standards needs. The DoD has recently de-
clared its intention to cease active writing of its own standards and to adopt
existing software standards.

Manufacturers’ user groups
Another source of software standards can be found in computer user
groups. GUIDE International (IBM), SHARE (IBM), DECUS (DEC),
and other major user groups often address the question of software stand-
ards as a part of their activities. The standards generated by these user
groups usually are generic in nature. They are sometimes standalone but
frequently benefit from tailoring.

2.2.2 Purchased standards
Standards can be purchased and then tailored to the needs of a specific or-
ganization. Companies sometimes will provide their standards manuals to
other, similar companies for a fee. That is especially true in industries in
which there is a great deal of interaction or interfacing, such as between
telephone companies. Although there may be strong resistance to this prac-
tice in industries in which competition is strong, in general, most organiza-

Standards

39

tions are willing to share, even on an informal basis, their software stand-
ards. It must be remembered, though, that standards received from another
company, no matter how similar, are tailored to that company’s specific
situation and needs. Standards obtained in this way should be only a start-
ing point for the standards effort in the receiving company.

Another avenue for purchased standards is through a consultant or
consulting company. Many consultants will prepare a full set of software
standards tailored to a specific client company. This can be an easy way to
get an initial set of the most critical standards in place quickly. The consult-
ant can then continue the standards development effort or turn the rest of
the task over to the client company. The advantage of this approach is
rapid standards development, usually utilizing the consultant’s prior expe-
rience in the particular industry and software area. The main disadvantage
is the perception of the consultant as an outsider who “doesn’t really under-
stand the situation.” Involvement of the affected departments, as “consult-
ants” to or joint participants with the real consultant can usually diminish
this perception.

2.2.3 Inhouse development
Standards, from whatever source, may have to be tailored or adapted to the
individual needs and environment of the specific organization or project.
Inhouse development is the only way to ensure that each standard reflects
those needs and the environment. There are at least three major ap-
proaches to inhouse standards development, in addition to an enormous
number of variations and combinations. The three major approaches are:

• Ad hoc standardization;

• Standards groups;

• Standards committees.

Ad hoc standardization
Members of the SLC staff may be assigned, as an additional but temporary
part of their job, the responsibility and authority to create and institute soft-
ware standards. Since the affected staff are involved with the various parts
of the entire life cycle of all projects, they have a high degree of insight into
the SLC and its standardization needs. They can become aware of areas
and tasks that need standardization, observe the various methods in use,
and propose the most appropriate methods as candidates to be standards.
As the monitor of the SLC activities, the software quality practitioner is in
the proper position to determine the appropriateness of a standard once it
is in use.

Practical Guide to Software Quality Management

40

An advantage of ad hoc standardization is that the “experts” in the area
being standardized can be called on to write—and to follow—the standard.
A disadvantage is that the writers may not be aware of side issues or poten-
tial conflicts with other standards. The corporate memory of the continuity
and consistency of the standards program may be lost.

In general, it is not recommended that the software quality practitioner
write standards. That role could place the practitioners in the position of
imposing standards on tasks and activities that they themselves do not per-
form. For example, the software quality practitioner does little coding,
rarely operates the data center, and usually does not perform data entry.

Standards groups
A second method of inhouse development is through a separately char-
tered standards group (SG). Since the SG has, as its whole task, the genera-
tion of standards, it often can spend more time researching a standard or
looking to outside sources for a particular standard. The advantage of hav-
ing an SG is maintaining the continuity and corporate memory of the stand-
ards program.

An SG, however, suffers the same disadvantage as the software quality
practitioner: standardizing from outside a task or activity. That is, the SG
members usually are not in a position to follow the standards they create.
In addition, an SG usually does not have the insight available to the soft-
ware quality practitioner as to needed standards or standards
appropriateness.

Standards committees
The third major approach to standards development is the chartering of a
standards committee (SC). Usually, the SC comprises the managers of
each of the departments in the data processing organization: applications
development, operations, systems programming, and so on, as shown in
Figure 2.4. The SC is responsible for identifying needed standards and
those requiring modification or replacement. The specific generation of a
standard is assigned to the manager of the department that will be most
affected by the standard—language standard to applications development,
database definition standard to database administration, and so on. The ad-
vantage of this approach is that the most knowledgeable and affected de-
partment prepares the standard with inputs from all other interested
departments. The disadvantage is the usually difficult task of involving the
actual department managers so that full departmental visibility is ensured.

Standards

41

Standards coordinator
In any of the above approaches or combinations thereof, a specific person
should have the job of ensuring that needed standards are identified, cre-
ated, and followed. That person, the standards coordinator, may be a soft-
ware quality practitioner, the manager of the SG, or the chairperson of the
SC. The important matter is that he or she have the ear of the software qual-
ity practitioner or upper management to ensure that standards receive the
attention they merit and require.

It is the role of the standards coordinator to ascertain the standards re-
quirements for each installation and situation and then arrange for those
needed standards to be available, invoked, and followed. As is the case
with the software quality practitioner, the standards coordinator usually
should not prepare the standards.

It is the responsibility of the standards coordinator to provide stand-
ards as needed and to monitor compliance with them. It is the role and re-
sponsibility of everyone in the organization to identify potential standards
needs and to adhere to those standards that have been applied. It is the role
of management to enforce the application of and compliance with the im-
plemented standards.

2.3 Selection of standards
Standards must be selected that apply to the company’s specific needs, en-
vironment, and resources. Standards for almost everything are available,
often from several different sources. As described in Section 2.2, standards
can be obtained from industry and professional groups, other companies,

MIS

Applications Systems Network Database

S Q M Training Operations C M

EDP
Audit

Figure 2.4
Standards

committee.

Practical Guide to Software Quality Management

42

private consultants, or the government. They also can be prepared in-
house. The major concern, then, is not where to find standards but to be
sure that the ones being obtained are necessary and proper for the given or-
ganization. Even in a particular company, all the standards in use in one
data center may not apply to a second data center. For example, the com-
pany’s scientific data processing needs may call for standards that are differ-
ent from those for its financial data processing center.

Many things can affect the need for standards and the standards
needed. As stated, different data processing orientations may call for spe-
cific standards. Such things as run times, terminal response times, language
selection, operating systems, and telecommunications protocols are all sub-
ject to standardization on different terms in different processing environ-
ments. Even such things as programmer workstation size and arrangement,
data-input and results-output locations, training and educational needs,
and data access rights often are determined on a basis that includes the type
of processing as a consideration.

Not all standards available for a given subject or topic may apply in
every situation. Language standards, particularly selection of the languages
to be used, may have exceptions or not be applied at all. A particular stand-
ard life cycle model may be inappropriate in a given instance or for a spe-
cific project. Data access or telecommunications standards may be
modified or waived to fit a particular project or installation.

2.4 Promulgation of standards
Standards must be available to the intended users. They also must be fol-
lowed and kept up to date with user environment.

2.4.1 Availability
Two common methods of providing standards to the standards user are
currently popular. The foremost method of publishing standards is by way
of a standards manual. The standards manual is usually a large loose-leaf
binder with the organization’s standards filed in some logical order. It can
also be a set of binders, each covering some subset of the total standards
set. The loose-leaf binder approach is a convenient and generally inexpen-
sive way of keeping the standards filed, up to date, and accessible.

This approach has some drawbacks, however. Unless some official up-
dating method is used, holders of the manuals may be careless about mak-
ing changes to their copies as new, revised, or obsolete standards are
added, replaced, or removed. Using an incorrect standard is sometimes
worse then using none at all. Loose-leaf pages, especially in a heavily used

Standards

43

book or section, frequently become torn out of the book and lost. A com-
mon excuse for not following a standard is that the offender’s standards
book was misplaced, borrowed, or never issued.

In a large organization, the cost of providing and maintaining a set of
standards books may become a significantly costly item. One way to cut
that cost is to restrict the distribution of manuals to some subset of the us-
ing population. However, that solution has the usual effect of diminishing
the use of the standards because of the increased difficulty of access.

One way to counter some of the more severe drawbacks of the book-
style manual is to make the standards available online. In organizations that
have widespread usage of terminals, there is an increasing trend to having
the full set of standards available for access through the terminal network.
In that way, someone who wants to look up a standard need only call up
the standard on the screen for review. In addition, the problems associated
with correcting and updating the standards are eliminated—the only copy
of the standards is the one in the database. Once that is changed, everyone
has access to the new version without having to manually update individual
books.

Like all methods, though, the online one has its drawbacks, not the
least of which is cost. In a large organization that already has widespread
terminal usage and a large database capability, automation of a standards
manual will be a relatively inexpensive situation. In those organizations that
do not have the facilities already in place, however, putting the standards
online probably is not cost-justifiable, since there will be limited automated
access and the book method will probably have to be used as well.

2.4.2 Compliance
Standards that are not followed are frequently worse than no standards at
all. Standards are intended to improve the overall quality of software as it
progresses through the life cycle. When a standard has been established
and implemented for a particular subject, the organization as a whole ex-
pects the standard to be followed. If it is not followed, some things may be
done incorrectly or lead to errors on the part of those who work in other
portions of the life cycle.

The role of the software quality practitioner—specifically, the stand-
ards coordinator—is to monitor and report to management on the adher-
ence of the entire computational organization to the standards that have
been implemented. It is not the role of the software quality practitioner or
the SC to enforce the standards. Enforcement is the responsibility of
management.

Not every case of noncompliance with a standard represents disregard
for or lack of knowledge about the standard. In some cases, lack of compli-

Practical Guide to Software Quality Management

44

ance may be a signal that the standard is no longer appropriate or applica-
ble. While it is not practical to investigate every case of noncompliance, it is
necessary to look for trends in noncompliance that may indicate missing,
faulty, or even incorrect standards. Observation of noncompliance trends
can give clues that may indicate the need for companion standards to those
that already exist, additional standards that complement those in place, or
modification or replacement of existing standards. The software quality
practitioner or the standards coordinator is responsible for identifying such
cases through an ongoing review of the standards and their continuing
applicability.

2.4.3 Maintenance
Standards must be kept current with the changing computational environ-
ment. No matter from where the standards have come, nor how they are
made available, they will quickly fall into disuse if they do not continue to
reflect the needs of the organization. Standards become obsolete as main-
frames, operating systems, federal regulations, business emphases, and the
like change and evolve. Probably no installation is the same today as it was
as little as a year ago. Further, some of the subjects of standards also have
changed. Thus, some method of keeping standards up to date must be pro-
vided. Clues that it is time to review a standard include increasing instances
of noncompliance, the installation of new equipment or support software,
expansion into a new area of business emphasis, the advent of new govern-
ment regulations, and so on.

The standards coordinator is the person primarily responsible for
standard maintenance, but anyone in the organization can point out the po-
tential need for change. Just as in the sequence for requesting changes to
software, there should be a formal standards change request and a standard
method for processing that change request. Once the request is received,
the standards coordinator can verify the need for the change, present it to
the standards generating group, and get the change made and distributed.

2.5 Summary
Standards are the keystone of the SQS. They provide the basis against
which reviewing and monitoring are conducted. Areas of standardization
cover the entire SLC from the definition of the SLC itself through the meth-
ods by which software is withdrawn from use. All aspects of the SLC are
open to standardization, even the process by which the standards them-
selves are created. Standards may be purchased, obtained from profes-

Standards

45

sional and user groups, and specifically developed for or by the
organization.

No matter how standards come into being, they must be relevant to the
organization and the software development process, that is, they must
reflect the needs of the organization. Standards must be appropriate to the
environment in which the software is to be developed and used.

Finally, the application of standards must be uniform and enforced
across the full organization, at least at the project level. While it is desirable
from a consistency point of view to impose the same standards on all soft-
ware development groups in an organization, it is not always feasible from a
business standpoint. Within a single project, however, there must be uni-
formity of standards.

2.6 The next step
Two texts that can help the reader’s standards development activities are:

• The ISO 9000 Book: A Global Competitor’s Guide to Compliance and
Certification by John T. Rabbitt and Peter A. Bergh (New York:
Quality Resources, 1993).

• Software Engineering Standards & Specifications—An Annotated In-
dex & Directory by Stan Magee and Leonard L. Tripp (Englewood,
CO: Global Professional Publications, 1994).

Additional Reading

Deming, W. Edwards, Out of the Crisis, MIT Center for Advanced
Engineering Study, Cambridge, MA, 1986.

Dunn, Robert, Software Quality: Concepts and Plans, Englewood Cliffs,
NJ: Prentice-Hall, 1990.

ISO/IEC JTC1/SC7, Information Technology—Software life cycle
processes—ISO/IEC 12207, ISO/IEC Copyright Office, Geneva,
Switzerland, 1995.

Software Engineering Standards Committee, IEEE Standards
Collection—Software Engineering, IEEE, New York, 1994 (or current
edition).

Standards Australia, Software Quality Management System—AS
3563-1991—Parts 1 & 2, North Sydney, Australia, 1991.

Practical Guide to Software Quality Management

46

Practical Guide to Software Quality Management

Chapter 3
Reviews

R eviews are the first and primary form of quality control activity.
Quality control is concerned with the search for faults in the
various products of software development. While testing, as will

be discussed in Chapter 4, also is concerned with the search for faults, re-
views are more effective because they look for faults sooner than testing. Re-
views are conducted during the process of the development, not at the end,
as is the case with testing. Quality control has as its mission the detection
and elimination of errors in the product, and reviews are the front line in
that mission.

Reviews take place throughout the SLC and verify that the products
of each phase are correct with respect to the phase inputs and outputs. Re-
views take on many forms. They may be informal peer reviews, walk-
throughs, inspections, formal verification reviews, or audits. Regardless of
its form, the primary purpose of a review is the identification of defects in
the product being considered. Boehm and others have developed graphs,

47

similar to that in Figure 3.1, that show that the costs of defects rise steeply
the longer they remain in the products. Reviews are aimed at finding the er-
rors as they are made, rather than depending on the test and operation
phases to uncover them.

Each review has a specific purpose, objective, audience, and cast of
participants. Some reviews may be held multiple times during the develop-
ment, such as design walkthroughs. Others, such as the functional audit,
are of such magnitude that they normally are one-time events that form the
basis for major decisions about the product. In each case, however, a for-
mat and a procedure for the review should be reflected in the organiza-
tion’s standards.

The chief role of the software quality practitioner is to confirm that the
reviews are scheduled appropriately throughout the SLC and that they are
held as scheduled. In some organizations, a software quality practitioner is
tasked to be the chair of the review. Whatever his or her official role, it is
imperative that in all reviews, except perhaps very informal walkthroughs,
the software quality practitioner is an active participant. The practitioner
should also make sure that minutes and action items are recorded as neces-
sary, and that any action items are suitably addressed and closed before ap-
proving and recording the review as complete.

It must be noted that the entire goal of an SQS is to increase the quality
of the delivered product. That, of course, entails the intentional seeking of
errors and defects. It also entails an opportunity for the unskilled manager
to make personnel decisions based on the defects found. Some managers
are tempted to use the number of errors made by a developer as the basis

1

5

10

20

150

75

Require Design Code Test Install Operate

U
ni

ts
of

co
st

Figure 3.1
Costs of

identified defects.

Practical Guide to Software Quality Management

48

for performance evaluations. That is a self-defeating approach for two rea-
sons. First, employees may begin to react to the stress of reviews and try to
minimize their defect-finding effectiveness so as to not “look bad.” Second,
as the effectiveness of the reviews goes down, the defects being delivered to
the customer will increase, which undermines the customer’s confidence.

3.1 Types of reviews
Reviews take on various aspects depending on their type. The two broad
types of reviews are the inprocess review and the phase-end review.

3.1.1 Inprocess reviews
Inprocess reviews are informal reviews that are intended to be held during
the conduct of each SDLC phase. The term informal implies that there is
little reporting to the customer on the results of the review. Scheduling of
the reviews, while intentional and a part of the overall project plan, is rather
flexible. That allows reviews to be conducted as necessary: earlier if the
product is ready, later if the product is late. One scheduling rule of thumb
is to review no more than the producer is willing to throw away. Another
rule of thumb is to have an inprocess review every two weeks. Figure 3.2
offers suggestions on the application of these two rules. Each project will
determine the appropriate rules for its own inprocess reviews.

There is a “spectrum of rigor” across the range of inprocess reviews.
The least rigorous review is the peer review, followed, in increasing rigor,
by walkthroughs of the inprocess product, such as a requirements docu-
ment or a design specification. The most rigorous review is the inspection.
These are discussed more completely next. Table 3.1 summarizes some of
the characteristics of inprocess reviews.

Peer reviews
The peer review is the least rigorous of the reviews and, thus, usually the
least stressful. In a peer review, the producer asks a coworker to check the
product to make sure that it is basically correct. Questions like “Did I get
the right information in the right place?” and “Did I use the right for-
mula?” are the main concerns of the peer review. The results of the review
are often verbal or, at the most, a red mark or two on the draft of the
product.

Reviews

49

Table 3.1
Characteristics of
inprocess reviews

Review
type Records

Configuration
management Participants Stress level

Peer None None Coworker Very low

Walkthrough Marked-up
copy

Probably none Interested
project
members

Low to
medium

Structured
walkthrough

Defect reports Informal Selected
project
members

Medium

Inspection Defect report
database

Formal Specific role
players

High

Peer reviews are mostly used during the drafting of the product and
cover small parts at a time. Since there is virtually no distribution of the er-
rors found or corrections suggested, the producer feels little stress or threat
that he or she will be seen as having done a poor job.

Walkthroughs
As the producer of a particular product gets to convenient points in his or
her work, a group of peers should be requested to review the work as the
producer describes, or walks through, the product with them. In that way

Rules of thumb
• Review only as much as can be scrapped
• Review every two weeks

0

P WT P P P INS FR

6

SWT WT SWT P

1 2 3 4 5

0

P - - - - - - P
INS FR

DEL

WT SWT

Draft 1 Draft 2 Final D

Based on phase length (e.g., 6 months)

Based on product drafts or deliveries

P - - - - - - P P - - - - - - P

P = Peer review
WT = Walkthrough INS = Inspection

FR = Formal reviewSWT = Structured WT

Figure 3.2
Scheduling rules

of thumb.

Practical Guide to Software Quality Management

50

defects can be found and corrected immediately, before the product is used
as the basis for the next-phase activities. Since it is usually informal and
conducted by the producer’s peers, there is less tendency on the part of the
producer to be defensive and protective, leading to a more open exchange
and correspondingly better results.

Results of the walkthrough should be recorded on software defect re-
ports such as those discussed in Chapter 6. This makes the defects found a
bit more “public,” which can increase the stress on the producer.

Inspections
Another, more rigorous inprocess review is the inspection. While its simi-
larities with the walkthrough are great, the inspection requires a more spe-
cific cast of participants and more elaborate minutes and action item
reporting. Unlike the walkthrough, which may be documented only within
the UDF, the inspection requires a written report of its results and strict re-
cording of trouble reports. Being more rigorous, the inspection tends to be
more costly in time and resources than the walkthrough and is generally
used on projects with higher risk or complexity. However, the inspection
is usually more successful at finding defects than the walkthrough, and
some companies use only the inspection as their inprocess review.

It is fairly obvious that the inspection, with its regularized recording of
defects, will be the most stressful and threatening of the inprocess reviews.
Skilled managers will remove defect histories from their bases of perform-
ance evaluations. Doing so and treating each discovered defect as “one that
didn’t get to the customer,” the manager can reduce the stress associated
with the reviews and increase their effectiveness.

The software quality role with respect to inspections is also more well
defined. The software quality practitioner is a recommended member of
the inspection team and may serve as the recorder. The resolution of action
items is carefully monitored by the software quality practitioner, and the re-
sults are formally reported to project management.

Inprocess audits
Audits, too, can be informal as the SDLC progresses. One common infor-
mal audit is that applied to the UDF or software development notebook.
The notebook or folder is the repository of the notes and other material
that the producer has collected during the SDLC. Its required contents
should be spelled out by a standard, along with its format or arrangement.
Throughout the SDLC, the software quality practitioner should audit the
UDFs to make sure they are being maintained according to the standard.

Reviews

51

3.1.2 Phase-end reviews
Phase-end reviews are formal reviews that usually occur at the end of each
SDLC phase and establish the baselines for work in the succeeding phases.
For example, the software requirements review (SRR) is a formal examina-
tion of the requirements document and sets the baseline for the activities in
the design phase to follow. The participants include not only the producer
and the software quality practitioner but the user or customer as well. The
phase-end reviews are a primary means of keeping the user or customer
aware of the progress and the direction of the project. A phase-end review
is not considered finished until the action items have been closed, software
quality has approved the results, and the user or customer has approved go-
ing ahead with the next phase. Phase-end reviews permit the user or cus-
tomer to verify that the project is proceeding as intended or to give
redirection as needed. They are also major reporting points for software
quality to indicate to management how the project is adhering to its stand-
ards, requirements, and resource budgets.

Figure 3.3 shows various phase-end reviews throughout the SDLC.
The formal reviews, such as the SRR, the preliminary design review
(PDR), and the critical design review (CDR), are held at major milestone
points in the SDLC and create the baselines for subsequent SDLC phases.
The test readiness review (TRR) is completed prior to the onset of accep-
tance or user testing.

Table 3.2 presents the typical subjects of each of the four major devel-
opment phase-end reviews. Those documents listed as required are consid-
ered the minimum acceptable set of documents required for successful
software development and maintenance.

The postimplementation review (PIR) is held once the software system
is in production. The PIR usually is conducted six to nine months after im-
plementation. Its purpose is to determine whether the software has, in fact,
met the user’s expectations for it in actual operation. The software quality
practitioner can use data from the PIR to help improve the software devel-
opment process. Table 3.3 lists some of the characteristics of the PIR.

Usually included in the category of phase-end reviews are the formal
audits: the FA and the PA (see Figure 3.3). These two audits, held at the
end of the SDLC, are the final analyses of the software product to be
delivered against its approved requirements (FA) and its current
documentation (PA).

Practical Guide to Software Quality Management

52

Table 3.2
Phase-end

review subject
documents

Review Required documents Optional documents

SRR Software requirements specification,
software test plan, software development
plan, quality system plan, configuration
management plan, standards and
procedures, cost/schedule status report

Interface requirements
specification

PDR Software top-level design, software test
description, cost/schedule status report

Interface design,
database design

CDR Software detailed design, cost/schedule
status report

Interface design,
database design

TRR Software product specification, software
test procedures, cost/schedule status report

User’s manual,
operator’s manual

The FA compares the software system being delivered against the cur-
rently approved requirements for the system. That comparison usually is
accomplished through an audit of the test records. The PA is intended to
ensure that the full set of deliverables is an internally consistent set, for ex-
ample, the user manual is the correct one for a particular version of the soft-

PDR

Requirements
definition

Preliminary
design

Detailed
design

Coding and
testing

Acceptance and
implementation

Operational baseline

Product baseline

Design baseline

Allocated baseline

Functional baseline

SRR

CDR

TRR

PA
FA

PIR held during operation
Figure 3.3

Typical phase-end
reviews.

Reviews

53

ware. The PA relies on the configuration management records for the deliv-
ered products.

Table 3.3
Characteristics of

the PIR

Timing 3–6 months after software system
implementation

Software system goals versus experience Return on investment, schedule results,
user response, defect history

Usage of results Input to process analysis and
improvement too often ignored

The software quality practitioner frequently is charged with the
responsibility of conducting both audits. In any case, the practitioner
must be sure that the audits are conducted and report the findings to
management.

3.2 Review subjects
Reviews continue throughout the SDLC with development reviews that fo-
cus on code and its related products.

Design and code reviews held during the course of the various phases
are usually in the form of walkthroughs and inspections. These reviews are
held to get an early start on the elimination of defects in the products being
examined. They are generally informal, which makes them more produc-
tive and less threatening to the egos and feelings of the producers.

Test reviews are much the same as the code reviews, covering the
test program products rather than the software products. They include
the same types of formal and informal reviews and are held throughout
the SDLC. Their function is to examine the test program as it is being de-
veloped and to make sure that the tests will exercise the software in such a
manner as to find defects and to demonstrate that the software complies
with the requirements.

3.3 Documentation reviews
A number of types of documentation reviews, both formal and informal,
are applicable to each of the software documents.

The most basic of the reviews is the peer walkthrough, in which a
group of the author’s peers look for defects and weaknesses in the docu-

Practical Guide to Software Quality Management

54

ment as it is being prepared. Finding defects as they are introduced avoids
more expensive corrective action later in the SDLC, and the document is
more correct when it is released.

Another basic document review is the format review, which can be
either formal or informal. When it is a part of a larger set of document re-
views, the format review usually is an informal examination of the overall
format of the document to be sure that it adheres to the minimum stand-
ards for layout and content. In its informal style, little attention is paid
to the actual technical content of the document. The major concern is that
all required paragraphs are present and addressed. In some cases, the
format review is before or in conjunction with the document’s peer
walkthrough.

A more formalized approach to the format review is taken when no
content review is scheduled. In that case, the review will also take the tech-
nical content into consideration. A formal format review usually takes place
after the peer walkthroughs and is scheduled for shortly before delivery of
the document. In that way, it serves as a quality-oriented audit and may
lead to formal approval for publication.

When the format review is informal in nature, a companion content re-
view should evaluate the actual technical content of the document. There
are a number of ways in which the content review can be conducted. First
is a review by the author’s supervisor, which generally is used when formal
customer-oriented reviews, such as the PDR and CDR, are scheduled.
This type of content review serves to give the producer confidence that the
document is a quality product prior to review by the customer.

A second type of content review is one conducted by a person or
group outside the producer’s group but still familiar enough with the sub-
ject matter to be able to critically evaluate the technical content. Also, there
are the customer-conducted reviews of the document. Often these are per-
formed by the customer or an outside agency (such as an independent
verification and validation contractor) in preparation for an upcoming
SRR, PDR, or CDR.

Still another type of review is the algorithm analysis. The algorithm
analysis examines the specific approaches called out in the document that
will be used in the actual solutions of the problems being addressed by the
software system. Because of their cost in time and resources, algorithm
analyses usually are restricted to very large or critical systems. Such things
as missile guidance, electronic funds transfer, and security systems are can-
didates for this type of review. Payroll and inventory systems rarely warrant
such indepth study.

Software quality practitioners extensively involved with documenta-
tion reviews. They must make sure that the proper reviews are scheduled
throughout the development life cycle. That includes a determination of

Reviews

55

the appropriate levels of formality as well as the actual reviews to be con-
ducted. The software quality practitioner also monitors the reviews to see
that they are conducted and that defects in the documents are corrected be-
fore the next steps in publication or development are taken. In some cases,
the software quality department itself is the reviewing agency, especially
where there is not a requirement for in-depth technical analysis. In all
cases, the software quality practitioner will report to management on the re-
sults of the reviews.

3.3.1 Requirements reviews
Requirements reviews are intended to show that the problem to be solved
is completely spelled out. Informal reviews are held during the preparation
of the document. A formal review is appropriate prior to delivery of the
document.

The requirements specification is the keystone of the entire software
system. Without firm, clear requirements, there will no way to determine if
the software successfully performs its intended functions. For that reason,
the informal requirements review looks not only at the problem to be
solved but at the way in which the problem is stated. A requirement that
says “compute the sine of x in real time” certainly states the problem to be
solved—the computation of the sine of x—but it leaves a great deal to the
designer to determine, for instance, the range of x, the accuracy to which
the value of sine x is to be computed, the dimension of x (radians or de-
grees), and the definition of “real time.”

Requirements statements must meet a series of criteria if they are to be
considered adequate as the basis of the design of the system. Included in
these criteria are:

• Necessity;

• Feasibility;

• Correctness;

• Completeness;

• Clarity;

• Measurability;

• Testability.

A requirement is sometimes included simply because it seems like a
good idea; it may add nothing useful to the overall system. The require-
ments review assesses the necessity of each requirement. In conjunction
with the necessity of the requirement is the feasibility of that requirement.

Practical Guide to Software Quality Management

56

A requirement may be thought to be necessary, but if it is not achievable,
some other approach will have to be taken or some other method found to
address the requirement.

Completeness, correctness, and clarity are all criteria that address the
way a given requirement is stated. A good requirement statement will pre-
sent the requirement completely, that is, present all aspects of the require-
ment. The sine of x example was shown to be lacking several necessary
parts of the requirement. The statement also must be correct. If, in fact, the
requirement should call for the cosine of x, a perfectly stated requirement
for the sine of x is not useful. And, finally, the requirement must be stated
without ambiguity. A statement that correctly and completely states the re-
quirement but cannot be understood by the designer is as useless as no
statement at all. The language of the requirements should be simple and
straightforward and not use jargon. That also means that somewhere in the
requirements document terms and acronyms are clearly defined.

Measurability and testability go together. Every requirement will ulti-
mately have to be demonstrated before the software can be considered com-
plete. Requirements that have no definite measure or attribute that can be
shown as present or absent cannot be specifically tested. The sine of x ex-
ample uses the term “real time,” hardly a measurable or testable quality. A
more acceptable statement would be “every 30 milliseconds, starting at the
receipt of the start pulse from the radar.” In that way, the time interval for
“real time” is defined, as is the starting point for that interval. When the
test procedures are written, the interval can be measured, and the compli-
ance or noncompliance of the software with this requirement can be shown
exactly.

The formal SRR is held at the end of the requirements phase. It is a
demonstration that the requirements document is complete and meets the
criteria stated above. It also creates the first baseline for the software sys-
tem, which is the approved basis for commencement of the design efforts.
All design components will be tracked back to this baseline for assurance
that all requirements are addressed and that nothing not in the require-
ments appears in the design.

The purpose of the requirements review, then, is to examine the state-
ments of the requirements and determine if they adhere to the criteria for re-
quirements. For the software quality practitioner, it may not be possible to
determine the technical accuracy or correctness of the requirements. That
task will be delegated to those who have the specific technical expertise.
The software quality department or its agent (perhaps an outside contrac-
tor or another group within the organization) will review the documents for
the balance of the criteria.

Each nonconformance will be recorded, along with suggested correc-
tions. The records are returned to the authors of the documents, and the

Reviews

57

correction of the nonconformances tracked. The software quality practitio-
ner also reports the results of the review and the status of the corrective ac-
tions to management.

3.3.2 Design reviews
Design reviews verify that the evolving design is both correct and traceable
back to the approved requirements.

Informal design reviews follow closely the style and execution of the in-
formal requirements reviews. Like the requirements, all aspects of the de-
sign must adhere to the criteria for good requirements statements. The
design reviews go further, though, since there is more detail to be consid-
ered, since the requirements are broken down into smaller and smaller
pieces in preparation for coding.

Walkthroughs and inspections are inprocess reviews that occur during
the preparation of the design. They look at design components as they are
completed.

Design documents describe how the requirements are apportioned to
each subsystem and module of the software. As the apportionment pro-
ceeds, the elements of the design are traced back to the requirements. The
reviews that are held determine if the design documentation describes each
module according to the same criteria used for requirements.

There are at least two major design reviews, the PDR and the CDR. In
addition, for larger or more complex systems, the organization standards
may call for reviews that concentrate on interfaces or database concerns. Fi-
nally, there may be multiple occurrences of these reviews if the system is
large, critical, or complex.

The number and the degree of each review are governed by the stand-
ards and needs of the specific organization.

The first formal design review is the PDR, which takes place at the end
of the initial design phase and presents the functional breakdown of the re-
quirements into executable modules. The PDR presents the design phi-
losophy and approach to the solution of the problem as stated in the
requirements. It is important that the customer or user take an active role in
the PDR. Defects in the requirements, misunderstandings of the problem
to be solved, and needed redirections of effort can be resolved in the course
of a properly conducted PDR.

Defects found in the PDR are assigned for solution to the appropriate
people or groups; upon closure of the action items, the second baseline of
the software is established. Changes made to the preliminary design are
also reflected as appropriate in the requirements document, so that the re-
quirements are kept up to date as the basis for acceptance of the software

Practical Guide to Software Quality Management

58

later on. The new baseline is used as the foundation for the detailed design
efforts that follow.

At the end of the detailed design, the CDR is held. This, too, is a time
for significant customer or user involvement. The result of the CDR is the
“code-to” design that is the blueprint for the coding of the software. Much
attention is given in the CDR to the adherence of the detailed design to the
baseline established at PDR. The customer or user, too, must approve the
final design as being acceptable for the solution of the problem presented
in the requirements. As before, the criteria for requirements statements
must be met in the statements of the detailed design.

So that there is assurance that nothing has been left out, each element
of the detailed design is mapped back to the approved preliminary design
and the requirements. The requirements are traced forward to the detailed
design, as well, to show that no additions have been made along the way
that do not address the requirements as stated. As before, all defects found
during CDR are assigned for solution and closure. Once the detailed de-
sign is approved, it becomes the baseline for the coding effort.

Another review that is sometimes held is the interface design review.
The purpose of this review is to assess the interface specification that will
have been prepared if there are significant interface concerns on a particu-
lar project. The format and conduct of this review are similar to the PDR
and CDR, but there is no formal baseline established as a result of the re-
view. The interface design review will contribute to the design baseline.

A database design review may be conducted on large or complex pro-
jects. Its intent is to ascertain that all data considerations have been made as
the database for the software system has been prepared. This review will es-
tablish a baseline for the database, but it is an informal baseline, subordi-
nate to the baseline from the CDR.

The role of the software quality practitioner in these reviews is sig-
nificant. In many cases, the practitioner is the chair of the review. The prac-
titioner will have provided formal assessments of the documents being
reviewed and will report on the defects found in them together with correc-
tive actions that have been taken to date. It is also the task of the software
quality practitioner to monitor and report on the progress and status of any
outstanding corrective actions or action items that result from each review.

One of the two goals of the SQS is to facilitate the building of quality
into the software products as they are produced. Design reviews provide a
great opportunity for the realization of that goal. By maintaining a high
standard for the conduct and completion of the reviews and the estab-
lishment of the respective baselines, the software quality practitioner can
make significant contributions to the attainment of a quality software
product.

Reviews

59

3.3.3 Test documentation reviews
Test documentation is reviewed to ensure that the test program will find
defects and will test the software against its requirements.

The objective of the test program as a whole is to find defects in the
software products as they are developed and to demonstrate that the soft-
ware complies with its requirements. Test documentation is begun during
the requirements phase with the preparation of the initial test plans. Test
documentation reviews, then, also begin at this time as the test plans are ex-
amined for their comprehensiveness in addressing the requirements.

The initial test plans are prepared with the final acceptance test in
mind, as well as the intermediate tests that will examine the software during
development. It is important, therefore, that each requirement be ad-
dressed in the overall test plan. By the same token, each portion of the test
plan must specifically address some portion of the requirements. It is un-
derstood that the requirements, as they exist in the requirements phase,
will probably undergo some evolution as the software development process
progresses. This does not negate the necessity for the test plans to track the
requirements as the basis for the testing program. At each step further
through the SDLC, the growing set of test documentation must be trace-
able back to the requirements. The test program documentation also must
reflect the evolutionary changes in the requirements as they occur.

As the SDLC progresses, more of the test documentation is prepared.
During each phase of the SDLC, additional parts of the test program are
developed. Test cases with their accompanying test data are prepared, fol-
lowed by the test scenarios and specific test procedures to be executed. For
each test, pass/fail criteria are determined, based on the expected results
from each test case or scenario. In each instance, the test documentation is
reviewed to ascertain that the test plans, cases, scenarios, data, procedures,
and so on, are complete, necessary, correct, measurable, consistent, and
unambiguous. In all, the most important criterion for the test documenta-
tion is that it specifies a test program that will find defects and demonstrate
that the software requirements have been satisfied.

Test documentation reviews take the same forms as the reviews of the
software documentation itself. Walkthroughs of the test plans are con-
ducted during their preparation, and they are formally reviewed as part of
the SRR. Test cases, scenarios, and test data specifications are also subject
to walkthroughs and sometimes inspections. During the PDR and the
CDR, these documents are formally reviewed.

During the development of test procedures, there is a heavy emphasis
on walkthroughs, inspections, and even dry runs, to show that the proce-
dures are comprehensive and actually executable. By the end of the coding

Practical Guide to Software Quality Management

60

phase, the acceptance test should be ready to be performed, with all docu-
mentation in readiness.

The acceptance test is not the only test with which the test documenta-
tion is concerned, of course. All through the coding and testing phases,
there have been unit, module, integration, and subsystem tests. Each of
these tests has also been planned and documented, and that documenta-
tion has been reviewed. These tests have been a part of the overall test plan-
ning and development process, and the plans, cases, scenarios, data, and
so on, have been reviewed right along with the acceptance test documenta-
tion. Again, the objective of all these tests is to find the defects that prevent
the software from complying with its requirements.

3.3.4 User documentation reviews
User documentation not only must present information about the system, it
must be meaningful to the reader.

The reviews of the user documentation are meant to determine that the
documentation meets the criteria already discussed. Just as important, how-
ever, is the requirement that the documentation be meaningful to the user.
The initial reviews will concentrate on completeness, correctness, and read-
ability. The primary concern will be the needs of the user to understand
how to make the system perform its function. Attention must be paid to
starting the system, inputting and outputting data, and the meaning of er-
ror messages and what the user can do about them.

The layout of the user document and the comprehensiveness of the ta-
ble of contents and the index can enhance or impede the user in the use of
the document. Clarity of terminology and avoidance of system-peculiar jar-
gon are important to an understanding of the document content. Reviews
of the document during its preparation help to uncover and eliminate er-
rors and defects of this type before they are firmly imbedded in the text.

A critical step in the review of the user documentation is the actual trial
use of the documentation by one or more typical users before the docu-
ment is released. In that way, omissions, confusing terminology, inade-
quate index entries, unclear error messages, and so on, can be found. Most
of those defects are the result of the authors’ close association with the sys-
tem rather than outright mistakes. By having representatives of the actual
using community try out the documentation, such defects are more easily
identified and recommended corrections obtained.

Changes to user work flow and tasks may also be affected by the new
software system. To the extent that they are minor changes to input, con-
trol, or output actions using the system, they may be summarized in the
user documentation. Major changes to behavior or responsibilities may re-
quire training or retraining. Hands-on trial use of the user documentation

Reviews

61

can point out the differences between old and new processes and highlight
those that require more complete coverage than will be available in the
documentation itself.

3.3.5 Other documentation reviews
In addition to the normally required documentation, other documents are
produced during the software system development that must be reviewed
as they are prepared. These documents include the software development
plan, the software quality system plan, the configuration management plan,
and various others that may be contractually invoked or called for by the
organization’s standards. Many of these other documents are of an adminis-
trative nature and are prepared prior to the start of software development.

The software development plan, which also goes by many other
names, lays out the plan for the overall software development effort. It will
discuss schedules, resources, perhaps work breakdown and task assign-
ment rules, and other details of the development process as they are to be
followed for the particular system development.

The software quality system plan and the configuration management
plan address the specifics of the implementation of those two disciplines
for the project at hand. They, too, should include schedule and resource
requirements as well as the actual procedures and practices to be applied to
the project. Additional documents may be called out by the contract or the
organization’s standards, as well.

Since these are the project management documents, it is important that
they be reviewed at each of the formal reviews during the SLC and that
modifications to the documents or the overall development process be
made as necessary to keep the project within its schedule and resource
limitations.

Reviews of all these documents concentrate on the basic criteria and on
the completeness of the discussions of the specific areas covered. Attention
must be paid to compliance with the format and content standards im-
posed for each document.

Finally, the software quality practitioner must ascertain that all docu-
ments required by standards or the contract are prepared on the required
schedule and are kept up to date as the SLC progresses. Too often, docu-
mentation that was appropriate at the time of delivery is not maintained as
the software is maintained in operation. That leads to increased difficulty
and cost of later modification. It is important to include resources for con-
tinued maintenance of the software documentation, especially the mainte-
nance documentation (discussed in Chapter 8). To ignore the maintenance
of the documentation will result in time being spent reinventing or reengi-

Practical Guide to Software Quality Management

62

neering the documentation each time maintenance of the software is
required.

3.4 Summary
Reviews take on many forms. Each review has a specific purpose, objec-
tive, audience, and cast of participants.

Informal, inprocess reviews generally occur during the execution of
each SDLC phase. They concentrate on single products or even small
parts of single products. It is the intention of inprocess reviews to detect de-
fects as quickly as possible after their insertion into the product.

Formal, phase-end reviews usually occur at the end of each SDLC
phase and establish the baselines for work in the succeeding phases. For-
mal audits include the FA and the PA. The phase-end reviews are much
broader in scope. They cover the entire family of products to be prepared
in each major SDLC phase as well as the various documented plans for the
project.

Documentation reviews, both formal and informal, are applicable to
each software document. The most basic of the reviews is the peer walk-
through. Another basic document review is the format review, which can
be either formal or informal. Requirements reviews are intended to show
that the problem to be solved is completely spelled out. Design reviews ver-
ify that the evolving design is both correct and traceable back to the ap-
proved requirements. Test documentation is reviewed to ensure that the
test program will find defects and will test the software against its require-
ments. The reviews of the user documentation are meant to determine that
the documentation meets the criteria.

Other documents are often produced during the SLC and must be re-
viewed as they are prepared. Reviews of all these documents concentrate
on the basic criteria and on the completeness of the discussions of the spe-
cific areas covered.

Design and code reviews held during the course of the various phases
are usually in the form of walkthroughs and inspections. These reviews are
held to get an early start on the elimination of defects in the products being
examined and generally are informal.

Test reviews are much the same as code reviews, covering the test pro-
gram products rather than the software products.

Implementation reviews are those conducted just prior to implementa-
tion of the software system into full use.

Reviews take place throughout the SLC and verify that the products of
each phase are correct with respect to the phase inputs and the activities of
the phase.

Reviews

63

3.5 The next step
To find out how to start a review program, consult the following sources:

• Software Reviews and Audits Handbook by Charles P. Hollocker
(New York: John Wiley & Sons, 1990).

• Software Inspection Process by Susan H. Strauss and Robert G.
Ebenau (New York: McGraw-Hill, 1994).

Additional Reading

Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ:
Prentice-Hall, 1981.

Dunn, Robert, Software Defect Removal, New York: McGraw-Hill, 1984.

Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal, Vol. 15, No. 3, 1976.

Yourdon, Edward, Structured Walkthroughs, Englewood Cliffs, NJ:
Prentice-Hall, 1989.

Practical Guide to Software Quality Management

64

Practical Guide to Software Quality Management

Chapter 4
Testing

The goals of testing are to find defects and to verify that the soft-
ware meets its requirements as perceived by the user. It is unfortu-
nate that, in many cases, the testing program is actually aimed at

showing that the software, as produced, runs as it is written. That is far
short of the real goal of a sound testing program. Testing that is not based
on challenging requirements compliance is generally a waste of time.

It has been shown that the cost of finding and correcting a defect goes
up dramatically with the length of time the defect exists. That is especially
true in the case of design and requirements defects. When a test program
merely shows that the software runs, the design and requirements defects
are going to come up in the acceptance and operation phases of the SLC.
The user or customer is going to discover that the system received is not
the system desired. The software will have to go back through large por-
tions of the SDLC, and the costs will be significant.

65

An alternative to correcting defects is to accept the system as is and live
with it or to modify the system while it is being used. Those, too, are ex-
pensive situations. The final alternatives are to throw out the system and
start over or just abandon the whole project altogether. None of these “al-
ternatives” is especially attractive. The answer seems to be to generate a
testing program that will exercise the software against its requirements in
such a way as to uncover as many defects as possible as soon as possible in
the SDLC.

The types of testing that will be covered here are unit, module, integra-
tion, user or acceptance, and regression testing. These tests follow the natu-
ral progression of the SLC and lead from one into the next. As the testing
progresses, the emphasis shifts slightly from the pure defect search to a
more sophisticated demonstration of the requirements. Early testing in-
tends to exercise as many of the software paths as is practical to find mis-
takes in coding, errors in design, and so on. As the SDLC matures, there is
less opportunity to exercise all paths of the software, so the concentration
is on the integration of the modules and subsystems into the whole and the
exercise of the growing entity against the requirements. The basic goal re-
mains the finding of defects, but there is reliance on the earlier testing for
the finer, internal details of each module. Later testing deals with the sys-
tem itself and its interfaces with the outside, as defined in the requirements.

It must be remembered that all testing is designed to challenge the soft-
ware implementation of the approved requirements. In straightforward
data processing applications this task is uncomplicated. In applications
such as client-server, graphical user interfaces, or distributed processing,
the approach becomes much more sophisticated. But whatever the applica-
tion, the underlying rule remains requirements-based testing. The quality
control practitioner must be well versed in the types of applications being
tested. To expect a practitioner with specific experience in testing tradi-
tional accounting systems to step in and immediately be successful at test-
ing a distributed processing, imbedded real-time software system is asking
too much. The quality assurance practitioner will recognize such a situ-
ation as a training requirement and recommend that the tester be given the
proper training before being assigned the new testing task.

The testing program begins in the requirements phase and, effectively,
never ends. The regression tests continue for as long as there are changes
and enhancements being made to the system. Figure 4.1 depicts this con-
cept. Planning for such a long-lived effort must also begin in the require-
ments phase and be updated at each milestone along the way. The
planning will include not only the tests to be run but also the resources
needed, including people, hardware, support software, and scheduling.

Practical Guide to Software Quality Management

66

4.1 Types of testing
The four most common types of testing are unit testing, module testing, in-
tegration testing, and user or acceptance testing. The tests may have differ-
ent names in different organizations, but the types are basically the same.

4.1.1 Unit testing
Unit testing, the most basic type of software testing, ignores the concept
that document reviews are really a type of testing. Unit testing is usually
conducted by the individual producer.

Unit testing is primarily a debugging activity that concentrates on the
removal of coding mistakes. It is part and parcel with the coding activity it-
self. Even though unit testing is conducted almost as a part of the day-to-
day development activity, there must be some level of planning for it. The
programmer should document at least the test data and cases he or she
plans to use and the results expected from each test. Part of each walk-
through or inspection of the software should be dedicated to the review of
the unit test plans so that peers can be sure the programmer has given
thought to the test needs at that level.

It is worth reiterating the tenet that the tests run must be oriented to
finding defects in the software, not to showing that the software runs as it is
written. Further, the defects found will include not only mistakes in the
coding of the unit, but design and even requirements inadequacies or out-
right mistakes. Even though the unit is the smallest individually compilable
portion of the software system, its interfaces and data manipulation can
point out wide-reaching defects. Informal though it may be, the unit testing
activity is the first chance to see some of the software in action.

Test
plans

Design

Test
design

Test
data Test Operate Maintain

Regression
test

Test
procs

R
eq

ui
re

m
en

ts

Code and
debug

Figure 4.1
SLC testing.

Testing

67

It can be seen that the rule of finding defects, not showing that software
runs, could be in jeopardy here. In fact, a tradeoff is in play with having
programmers test their own software. The expense, in both time and per-
sonnel, to introduce an independent tester at this point usually offsets the
danger of inadequate testing. With high-quality peer reviews and good,
though informal, documentation of the tests and their results, the risk is re-
duced to a low level. Software quality practitioners in their audits of the
UDF and their reviews of the testing program as a whole will also pay close
attention to the unit test plans and results.

4.1.2 Module testing
Module testing is a combination of debugging and integration. It is some-
times called glass box testing (or white box testing), because the tester has
good visibility into the structure of the software and frequently has access
to the actual source code with which to develop the test strategies. As inte-
gration proceeds, the visibility into the actual code is diminished.

As units are integrated into their respective modules, the testing moves
appropriately from a unit testing—that is, debugging—mode into the more
rigorous module testing mode. Module integration and testing examine the
functional entities of the system. Each module is assigned some specific
function of the software system to perform. As the units that make up the
module are brought together into that functional unit, the module tests are
run.

The testing program becomes somewhat more rigorous at the module
level because the individual programmer is not now the primary tester.
There will be in place a more detailed test plan, sets of data and test cases,
and expected results.

The recording of defects is also more comprehensive at this stage of
the test program. Defects are recorded in defect history logs, and regular-
ized test reports are prepared. As they are found, the defects are fed back
into the code and unit test phase for correction. Each defect is tracked from
its finding and reporting through its correction and retest. The results of
the correction are monitored and controlled by the configuration manage-
ment system that is begun at this point in the SLC. That is important, since
many of the errors that have been made and defects that have been discov-
ered will affect the design and requirements documentation.

Most of the minor coding mistakes will have been caught and cor-
rected in the unit testing process. The defects that are being found in the
module tests are more global in nature, tending to affect multiple units and
modules. Defects in interfaces and data structures are common, but a sig-
nificant number of the defects will involve deficiencies in the design and re-

Practical Guide to Software Quality Management

68

quirements. As those deficiencies come to light and are corrected, the de-
sign and requirements baselines will change.

It is critical to the rest of the SLC that close control of the evolving
documents be maintained. If the corrections to the defects found in the test
program are allowed to change the products of earlier SLC phases without
proper control and documentation, the software system quickly can get out
of control. When a requirement or the design changes without commensu-
rate modification to the rest of the system, there will come a time when the
various pieces do not fit together, and it will not be clear which versions of
the units and modules are correct.

Software quality practitioners will have reviewed the test plans and the
rest of the documentation prior to the module testing. Software quality
practitioners are also expected to review the results of the testing. Their re-
views ensure that defects will be recorded, tracked, resolved, and configura-
tion-managed.

4.1.3 Integration testing
Integration testing may be considered to have officially begun when the
modules begin to be tested together. This type of testing sometimes is
referred to as gray box testing, referring to the limited visibility into the
software and its structure. As integration proceeds, gray box testing ap-
proaches black box testing, which is more nearly pure function testing, with
no reliance on knowledge of the software structure or the software
itself.

As modules pass their individual tests, they are brought together into
functional groups and tested. Testing of the integrated modules is designed
to find latent defects as well as interface and database defects. Because test-
ing up to this point has been of individual modules, several types of defects
cannot be detected. Such things as database interference, timing conflicts,
interface mismatches, memory overlaps, and so on, are found only when
the modules are forced to work together in integrated packages.

Integration testing uses the same sorts of conditions and data as the
individual module tests. Valid data and messages are input, as are invalid
conditions and situations. The test designer must be creative in coming
up with valid combinations of possible circumstances but with illegal or
invalid conditions. How the integrated software responds to those situ-
ations is noted, as well as the software’s performance with valid inputs.

Integration testing is the level at which the quality control practitioner
or tester begins to see differences between traditional systems and client-
server or distributed processing applications. The greatly increased sets of
inputs and initial conditions require some more elaborate testing schemes

Testing

69

such as record and playback, automated test generation, software charac-
terization, data equivalence, and sampling.

The reporting of test results is important in the integration test period.
How the software responds is recorded and analyzed so corrections can be
made that fix the defect but do not introduce new defects somewhere else.
Error and defect logs should be maintained for trend analysis that can
point to particularly vulnerable portions of the software and its develop-
ment. Those portions can then receive additional testing to ferret out deep-
seated anomalies and improper responses. Close control must be
maintained of the configuration of the software system through this period
so that all changes are properly documented and tracked. It is in this time
frame that many software systems get out of hand and accounting is lost as
to which version of which unit, module, or subsystem is the proper one to
use at any point.

It is the integration test phase that will uncover many hidden defects
with the design and requirements. Formal reviews and less formal walk-
throughs and inspections have been used to find many of the design and re-
quirements defects. But as the software is put into use in an increasingly
realistic manner, other defects may surface that were beyond the depth of
the earlier defect-finding efforts. As defects are found in the design or re-
quirements, they must be corrected and changes to the earlier documents
made. That in turn may necessitate rework of design, code, and earlier test-
ing. Finding such serious defects at this point is expensive but less so than
finding the defects in the operations phase. Thus, every effort must be
made to maximize the defect-finding capabilities of the integration tests.

An important role for the software quality practitioner in this effort is
the review of the integration test plans, cases, scenarios, and procedures.
Software quality practitioners should make every effort to ensure that the
integration tests cover the full range of capabilities of the integrated set of
modules. Review of the test results and the decisions made on the basis of
those results also should be reviewed and approved by the software quality
practitioner before testing progresses beyond the integration phase.

4.1.4 User or acceptance testing
User testing is intended primarily to demonstrate that the software com-
plies with its requirements. This type of testing is black box testing, which
does not rely on knowledge of the software or the structure of the software.
Acceptance testing is intended to challenge the software in relation to its
satisfaction of the functional requirements.

Acceptance tests are planned based on the requirements approved by
the user or customer. All testing up to this time has been oriented to
finding defects in the software. Earlier tests also were based on the require-

Practical Guide to Software Quality Management

70

ments, but they were designed to show that the software did not comply in
one fashion or another to the requirements. By the time the acceptance test-
ing stage is reached, the software should be in a sufficiently defect-free state
to permit the emphasis to change.

One important aspect of the acceptance test is that, whenever possible,
it is performed by actual intended users of the system. In that way, while it
is being shown that the software complies with its requirements, there is
still the opportunity to introduce anomalous user actions that have not yet
been encountered. Persons unfamiliar with the system may enter data in in-
correct, though technically permitted, ways. They may push the wrong
buttons or the correct buttons in an incorrect sequence. The software’s re-
sponse to those unexpected or incorrect situations is important to the
user—the system should not collapse due to human mistakes. The overrid-
ing requirement for every system is that it perform its intended function.
That means that if incorrect actions or data are presented, the system will
not just abort but will tell the user what has been done wrong and will pro-
vide the user the opportunity to retry the action or input. Invalid data re-
ceived from outside sources also should be treated in such a manner as to
prevent collapse of the system.

Another important consideration of an acceptance test is verification
that the new software does not cause changes to workflow or user responsi-
bilities that have been overlooked. While it may be shown that the software
performs exactly as expected, the associated human-factor changes may
make the system difficult to use or cause negative effects on the related
work of the users.

The acceptance or user test is usually the last step before the user or
customer takes possession of the software system. It is important that soft-
ware quality and configuration management practitioners play active roles
in the review and execution of the tests and the change management of the
system during this period. Software quality practitioners may even have
performed the full execution of the acceptance test as a dry run prior to the
release of the system for the user operation of the test. Configuration man-
agement of the system at this time is critical to the eventual delivery of the
exact system that passes the acceptance test.

4.1.5 Special types of tests
Four types of tests may be considered to fall into the “special” category.
These tests are planned and documented according to the same rules and
standards as the other types of tests, but they have specific applications.
The four major special tests are regression tests, stress tests, recovery tests,
and back-out and restoration tests.

Testing

71

Regression tests
Regression tests show that modifications to one part of the system have not
invalidated some other part. Regression tests usually are a subset of the
user or acceptance test. They are maintained for verification that changes
made as a result of defects or enhancements during operation do not result
in failures in other parts of the system. Regression tests are an abbreviated
revalidation of the entire system using generally valid data to show that the
parts that were operating correctly before the changes are still performing
as required.

Discussions “around the water cooler” indicate that as many as 50% of
all changes made to a software system result in the introduction of new de-
fects. This figure may be low or high, but there is a significant risk to the in-
troduction of corrections. Some, of course, are errors in the change being
made, such as coding errors and change design mistakes. Others, however,
come from unexpected interactions with subsystems other than the one be-
ing modified. A change to the way a database variable is updated in one
module may affect the time at which another module should read that vari-
able in its own computations.

Close configuration management control and analysis of changes and
their impact on the system as a whole are imperative. Software quality prac-
titioners must be sure that a change control board or equivalent function is
involved in all change activity during both integration testing and the opera-
tion phases of the SLC. That protects the integrity of the baseline system it-
self and helps ensure that changes are being made to the correct versions of
the affected software. Delivery of the proper versions of the modifications
is also a function of configuration management that software quality practi-
tioners must monitor.

Stress tests
Stress tests cover the situations that occur when the software is pushed to
or beyond its limits of required capability. Such situations as the end of the
day, when the software is required to recognize that 00:00:00 is later than
23:59:59, must be challenged. The rollover of the year field also is a situ-
ation ripe for testing. Will the software realize that the years “00” and
“000” are later than the years “99” and “999,” respectively?

Other stress situations occur when the software is presented with the
full number of transactions it is expected to handle plus one or two more.
What happens when transaction n + 1 is presented? Does one of the exist-
ing transactions get overwritten? Is there a weighting algorithm that selects
some transaction for replacement? Is the new transaction merely ignored?

Practical Guide to Software Quality Management

72

Still another case is the situation in which the software is run for a long
time without interruption. Such a case could easily expose flaws in house-
keeping or initialization routines.

Stress tests are an important part of any test program. The types of
stress that might be exercised will become apparent as the software devel-
ops and the testers understand its construction more clearly. The require-
ments statement should spell out a valid way of handling these and other
situations. The compliance of the software with the requirement is to be
challenged.

Recovery tests
Most data centers have recovery procedures for the repair of data on a dam-
aged disk or tape, and they also consider the case of operator errors that
may invalidate some of the data being processed.

Recovery testing is conducted when a hardware fault or operating er-
ror damages the software or the data. This type of testing is critical to the
confidence of the user when a data or software restoration has been
performed.

Often, restoration testing can be accomplished by using the regression
test software. In other cases, the full acceptance test might be required to re-
store confidence in the software and its data.

Back-out and restoration tests
To back out and restore is the decision to remove a new software system in
favor of the older version that it replaced. Needless to say, developers usu-
ally are embarrassed by such an action. It is recognition that the new sys-
tem was insufficiently tested or was so error-ridden that it was worse to use
than the old system.

In a back-out and restoration situation, the new system is removed
from production, any new database conditions are restored to the way they
would have been under the old system, and the old system itself is restart-
ed. In the least critical case, the database used by the new system is the
same as that of the old system. More often than not, the new system pro-
vides expanded database content as well as improved processing. When
the contents of the new database must be condensed back into the form of
the old database, care must be taken to restore the data to the form in
which the old system would have used it.

The testing required includes at least the acceptance test of the old sys-
tem, which often is augmented by the running of the most recent set of re-
gression tests used for the old system. Clearly, there must have been some
planning for back-out and replacement when the new system was installed.
The old system normally would have been archived, but the saving of the

Testing

73

acceptance test and the regression tests must also have been part of the ar-
chiving process.

It is rare that a newly installed system is so badly flawed that it must be
replaced. However, it is the responsibility of the quality practitioner to
make management aware of the threat, no matter how remote.

4.2 Test planning and conduct
Testing is like any other project. It must be planned, designed, docu-
mented, reviewed, and conducted.

4.2.1 Test plans
Because proper testing is based on the software requirements, test planning
starts during the requirements phase and continues throughout the SDLC.

As the requirements for the software system are prepared, the original
planning for the test program also gets underway. Each requirement even-
tually will have to be validated during the acceptance testing. The plans for
how that requirement will be demonstrated are laid right at the start. In
fact, one of the ways the measurable and testable criteria for the require-
ments are determined is by having to plan for the test of each requirement.
The test planning at this point is necessarily high level, but the general
thrust of the acceptance demonstration can be laid out along with the ap-
proaches to be used for the intermediate testing.

Requirements traceability matrices (RTMs), which track the require-
ments though design and down to the code that implements them, are used
to prepare test matrices. These matrices track the requirements to the tests
that demonstrate software compliance with the requirements. Figure 4.2 is
an example of what a test traceability matrix might look like. Each require-
ment, both functional and interface, is traced to the primary (P) test that
demonstrates its correct implementation. In an ideal test situation, each re-
quirements will be challenged by one specific test. That is rarely the case,
but redundant testing of some requirements and the failure to test others
are quickly apparent in the RTM. Figure 4.2 also indicates other tests in
which the requirements are involved (I). In this way, there is some indica-
tion of the interrelationships between the various requirements. As the soft-
ware matures and requirements are modified, this matrix can offer clues to
unexpected and usually undesirable results if a requirement is changed or
eliminated.

Practical Guide to Software Quality Management

74

Conflicts between requirements can sometimes be indicated in the
RTM, as the I fields are completed. A common example of requirements
conflict is the situation that calls for high-speed processing and efficient use
of memory, as in the case of real-time, imbedded software. The fastest soft-
ware is written in highly linear style with little looping or calling of subrou-
tines. Efficient use of memory calls for tight loops, subroutine calls, and
other practices that tend to consume more processing time.

Figure 4.2 is an example of an RTM at the system or black box testing
level since the requirements are noted as functions. As the SDLC pro-
gresses, so does the planning for the testing, and the RTM becomes more
and more detailed until each specific required characteristic of the software
has been challenged in at least one test at some level. Not every require-
ment can or should be tested at every level of the test program. Compliance
with some can be tested at the white box level; some cannot be fully chal-
lenged until the black box testing is in progress.

Tests

Requirements

P

P

P

P

I

II I

I

P

I

I

I

I

I

I

P

Function no. 1

Function no. 2

Function no. 3

Interface no. 1

Interface no. 2

Interface no. 3

Interface no. 4

Interface no. 5

P

P

P

Te
st

1

Te
st

2

Te
st

3

Te
st

4

Te
st

5

Te
st

6

Te
st

7

Te
st

8

Te
st

9

Te
st

10

I

P = primary subject
of test

I = involved in test

Function no. 4

Function no. 5

Function no. 6

Figure 4.2 Requirements traceability matrix.

Testing

75

The RTM is also important as the requirements evolve throughout the
development of the software system. As the requirements that form the ba-
sis for testing are changed, added, or eliminated, each change likewise is go-
ing to affect the test program. Just as the requirements are the basis for
everything that follows in the development of the software, so, too, are they
the drivers for the whole test program.

Some items of test planning are necessarily left until later in the SDLC.
Such things as the bases for regression testing are determined during the ac-
ceptance test period as the final requirements baseline is determined. Like-
wise, as new requirements are determined, so are the plans for testing those
requirements.

Even though some parts of the test planning will be done later, the
overall test plan is completed during the requirements phase. It is also,
therefore, one of the subjects of the system requirements review at the end
of the requirements phase. As the approved requirements are released for
the design phase activities, the approved test plans are released to the test
design personnel for the beginning of the design of test cases and proce-
dures. Figure 4.3 depicts the flow of testing, starting with the test plan and
culminating in the test reports.

4.2.2 Test cases
The first step in function testing, and often in input/output testing, is to
construct situations that mimic actual use of the software. These situations,

Test
case 1

Test
case n

Test plan

Test
case 2

Test
proc 2.2

Test
report 2.2

Test
data 2

Test
proc 2.1

Test
report 2.1

Test
report 2.n

Test
proc 2.n

Figure 4.3
Typical testing

flow.

Practical Guide to Software Quality Management

76

or test cases, should represent actual tasks that the software user might
perform.

Once the test cases have been developed, the software requirements
that are involved in each test case are identified. A check is made against
the RTM to be sure that each requirement is included in at least one test
case. If a test case is too large or contains too many requirements, it should
be divided into subtest cases or scenarios. Test cases (and scenarios)
should be small enough to be manageable. Limited size makes sure that er-
rors uncovered can be isolated with minimum delay to and effect on the bal-
ance of the testing.

Consider the case of testing the software in a point-of-sale terminal for
a convenience store. The store stocks both grocery and fuel products. The
test cases might be as follow.

1. Open the store the very first time. This would test the require-
ments dealing with the variety of stock items to be sold, their
prices, and the taxes to be applied to each item. It also includes
requirements covering the setting of the initial inventory levels.

2. Sell products. Sales of various products might be further divided
into test scenarios such as:
Sell only fuel. This scenario includes those requirements that deal
with pump control, fuel levels in the tanks, and the prices and vol-
ume of fuel sold. It also tests those requirements that cause the
sale to be recorded and the register tape to be printed.
Sell only grocery items. Here, the sales events are keyed in on the
terminal rather than read from a pump register, so there are re-
quirements being tested that are different from the preceding sce-
nario. The sales recording requirements are probably the same.
Sell both fuel and grocery items. This scenario, building on the
first two, causes the previous requirements to be met in a single
sale. There may be additional requirements that prevent the key-
ing of a grocery sale to adversely affect the operation of the pump
and vice versa. Other requirements might deal with the interac-
tion of pump register readings with key-entered sales data. Fur-
ther, a test of the ability to add pump sale charges to keyed sales
charges is encountered.

3. Restock the store. After sufficient items have been sold, it becomes
necessary to restock shelves and refill fuel tanks. This test case
might also deal with he changing of prices and taxes and the
modification of inventory levels. It can be seen as an extension of
the requirements tested in test case 1.

Testing

77

4. Close the store for the last time. Even the best businesses eventu-
ally close. This test case exercises the requirements involved in
determining and reporting the value of the remaining inventory.
Some of these same requirements might be used in tallying
weekly or other periodic inventory levels for business history and
planning tasks.

Should comparison of the test cases and scenarios with the RTM re-
veal leftover requirements, additional situations must be developed until
each requirement is included in at least one test case or scenario.

Although this has been a simple situation, the example shows how test
cases and scenarios can be developed using the actual anticipated use of the
software as a basis.

4.2.3 Test procedures
As design proceeds, the test plans are expanded into specific test cases, test
scenarios, and step-by-step procedures.

Test procedures are step-by-step instructions that spell out the specific
steps that will be taken in the execution of the test being run. They tell
which buttons to push, what data to input, what responses to look for, and
what to do if the expected response is not received. The procedures also
tell the tester how to process the test outputs to determine if the test passed
or failed. The test procedures are tied to the test cases and scenarios that ac-
tually exercise each approved requirement.

The software quality practitioner reviews the test cases and scenarios,
the test data, and the test procedures to ensure that they all go together and
follow the overall test plan and that they fully exercise all the requirements
for the software system. Figure 4.4 is a sample test procedure form.

4.2.4 Test data input
Input of test data is the key to testing and comes from a variety of sources.
Traditionally, test data inputs have been provided by test driver software
or tables of test data that are input at the proper time by an executive test
control module specially written for the purpose. These methods are ac-
ceptable when the intent is to provide a large number of data values to
check repetitive calculations or transaction processors. The use of these
methods does diminish the interactive capability of the test environment.
The sequential data values are going to be presented regardless of the re-
sult of the preceding processing.

Practical Guide to Software Quality Management

78

As the software system being tested becomes more complex, particu-
larly in the case of interactive computing, a more flexible type of test envi-
ronment is needed. Simulators, which are test software packages that
perform in the same manner as some missing piece of hardware or other
software, frequently are used. Simulators can be written to represent any-
thing from a simple interfacing software unit to a complete spacecraft or ra-
dar installation. As data are received from the simulator and the results
returned to it, the simulator is programmed to respond with new input
based on the results of the previous calculations of the system under test.

Another type of test software is a stimulator, which represents an out-
side software or hardware unit that presents input data independently from
the activities of the system under test. An example might be the input of a
warning message that interrupts the processing of the system under test
and forces it to initiate emergency measures to deal with the warning.

The final step in the provision of interactive inputs is the use of a key-
board or a terminal that is being operated by a test user. Here the re-
sponses to the processing by the system under test are, subject to the
constraints of the test procedures, the same as they will be in full operation.

Each type of data input fulfills a specific need as called out in the test
documentation. The software quality practitioner will review the various
forms of test data inputs to be sure that they meet the needs of the test cases
and that the proper provisions have been made for the acquisition of the
simulators, stimulators, live inputs, and so on.

P R O C E D U R E S R E S U L T S

NO. ACTION EXPECTED ACTUAL P STR

PASS /
FAIL

TEST C/S/T TEST DIRECTOR DATE & TIME

HARDWARE CONFIG ID SOFTWARE CONFIG ID

SET UP INITIALIZE TERMINATE RESTORE

Figure 4.4
Sample test

procedure form.

Testing

79

4.2.5 Expected results
Documentation of expected results is necessary so that actual results can be
evaluated to demonstrate test success or failure. The bottom line in any test
program is the finding of defects and the demonstration that the software
under test satisfies its requirements. Unless the expected results of each test
are documented, there is no way to tell if the test has done what was in-
tended by the test designer. Each test case is expected to provide the test
data to be input for it. In the same way, each test case must provide the cor-
rect answer that should result from the input of the data.

Expected results may be of various sorts. The most common, of
course, is simply the answer expected when a computation operates on a
given set of numbers. Another type of expected result is the lighting or ex-
tinguishing of a light on a console. Many combinations of these two results
may also occur, such as the appearance of a particular screen display, the
starting of a motor, the initiation of an allied software system, or even the
abnormal end of the system under test when a particular illegal function
has been input, for example, an invalid password into a software security
system.

It is the responsibility of the software quality practitioner to review the
test documentation to ensure that each test has an associated set of ex-
pected results. Also present must be a description of any processing of the
actual results so they can be compared with the expected results and a
pass/fail determination made for the test.

4.2.6 Test analysis
Test analysis involves more than pass/fail determination. Analyses of the
expected versus actual results of each test provide the pass or fail determi-
nation for that test. There may be some intermediate processing necessary
before the comparison can be made, however. In a case in which previous
real sales data is used to check out a new inventory system, some adjust-
ment to the actual results may be necessary to allow for the dating of the in-
put data or the absence of some allied software system that it was not cost
effective to simulate. In any case, the pass/fail criteria are applied to the ex-
pected and received results and the success of the test determined.

Other beneficial analysis of the test data is possible and appropriate. As
defects are found during the testing or as certain tests continue to fail, clues
may arise as to larger defects in the system or the test program than are ap-
parent in just a single test case or procedure. As test data are analyzed over
time, trends may appear that show certain modules to be defect prone and
in need of special attention before the test program continues. Other de-
fects that might surfaces include inadequate housekeeping of common data

Practical Guide to Software Quality Management

80

areas, inappropriate limits on input or intermediate data values, unstated
but implied requirements that need to be added and specifically addressed,
design errors, sections of software that are never used or cannot be
reached, and erroneous expected results.

Software quality practitioners can play an important role in the review
and analysis of test results. It is not as important that software quality prac-
titioners actually perform the analysis as it is that they ensure adequate
analysis by persons with the proper technical knowledge. This responsibil-
ity of software quality practitioners is discharged through careful review of
the test results and conclusions as those results are published.

4.2.7 Test tools
Many automated and manual test tools are available to assist in the various
test activities. A major area for the application of tools is in the area of test
data provision. Commercially available software packages can help in the
creation and insertion of test data. Test data generators can, on the basis of
parameters provided to them, create tables, strings, or files of fixed data.
Those fixed data can, in turn, be input either by the test data generator it-
self or by any of several test input tools. General-purpose simulators can be
programmed to behave like certain types of hardware or software systems
or units. Stimulators that provide synchronous or asynchronous interrupts
or messages are available. It is more likely, though, that most of these tools
will be created inhouse so they can be tailored to the test application at
hand.

Another area in which tools are available is that of data recording.
Large-scale event recorders often are used to record long or complicated in-
teractive test data for future repeats of tests or for detailed test data analysis.
In association with the data recorders are general- and specific-purpose
data reduction packages. Large volumes of data are often sorted and catego-
rized so that individual analyses can be made of particular areas of interest.
Some very powerful analysis packages are commercially available, provid-
ing computational and graphic capabilities that can be of great assistance in
the analysis of test results and trend determination.

Other valuable tools in the test area are path analyzers. These tools
monitor the progress of the test program and track the exercising of the
various paths through the software. While it is impossible to execute every
path through a software system of more than a few steps, it is possible to ex-
ercise every decision point and each segment of code. (A segment in this
context means the code between two successive decision points.) A path
analyzer will show all software that has been executed at least once, point
out any software that has not been exercised, and clearly indicate those

Testing

81

code segments that cannot be reached at all (e.g., a subroutine that never
gets called or a decision point that, for some reason, cannot take a branch).

Many of these tools are commercially available. Most applications of
them, however, are in the form of tools specifically designed and built for a
given project or application. Some development organizations will custom-
build test completeness packages that software quality practitioners will
use prior to acceptance testing or, perhaps, system release. Whatever their
source or application, test tools are becoming more and more necessary as
software systems grow in size, complexity, and criticality. Software quality
practitioners should monitor the application of test tools to be sure that
all appropriate use is being made of them and that they are being used
correctly.

4.2.8 Reviewing the test program
An important part of the software quality practitioner’s activity is the re-
view of the test program. As discussed in Section 3.3.3, review of the test
documentation is important. In fact, the full test program should be re-
viewed regularly for status, sufficiency, and success. Such reviews are ex-
pected to be an integral part of the major phase-end reviews, as explained
in Section 3.1.2. It is reasonable to hold less formal, inprocess reviews of
the test program as testing progresses and more of the software system is
involved.

The development test documentation permits this review of the whole
test approach as it is formulated. Without a documented approach to the
problems of testing the software, the testing tends to become haphazard
and undisciplined. There is a strong tendency on the part of many project
managers to commit to a firm delivery date. If the project gets behind
schedule, the slippage is usually made up by shortening the test phase to fit
the time remaining. This also happens in the case of budget problems. A
well-planned and well-documented test program reduces the temptation to
shorten the testing effort to make up for other problems. Having a software
quality practitioner review and approve the documentation of the test pro-
gram adds even more impetus to maintain the integrity of the program.

The documentation of the test program should extend all the way to
the unit and module tests. While those tests tend to be more informal than
later tests, they, too, should have test cases and specific test data recorded
in, at least, the UDF. The results of the unit and module tests also should
be recorded. Software quality practitioners will review the results of the
unit and module tests to decide, in part, whether the modules are ready for
integration. There may even be cases in which the module tests are suffi-
cient to form part of the acceptance test.

Practical Guide to Software Quality Management

82

4.3 Who does the testing
Until recently, the common preference for who actually performed the test-
ing favored the independent tester. While this is still valid in some very
critical software situations, the definition of independent has been changing
for most applications.

On the basis of the concept that everyone is responsible for his or her
own work and that this responsibility also applies to groups, the task of test-
ing is being returned to the developers. That is not to say that program-
mers should test all their own work, but rather that the development group
is responsible for the quality of the software that they deliver.

A programmer should test only that software for which he or she has
sole responsibility. Once the work of more than one person is to be tested,
an independent tester, that is, someone other than the persons involved,
should carry out the testing. Even at this level, though, the testers should
come from within the development group responsible for the full set of soft-
ware. Outside testers are necessary only at the full software system test level
when all the developers have an investment in the software.

Unit, module, and most integration testing are the proper tasks of the
development organization. This is consistent with total quality concepts
and the idea that persons (or in this case organization) are responsible for
the quality of their own work. The very early testing is in the form of debug-
ging, and as the unit tests cover more of the software, they flow into mod-
ule tests. Module tests, too, are primarily debugging in nature. Even the
initial integration tests can be thought of as advanced debugging, although
this is more of an organizational decision than an industrywide convention.

The characteristic of debugging that separates it from rigorous testing
is that defects are generally fixed on the spot without much formal change
control. At whatever time the organization institutes some level of change
control, the testing is usually considered out of the debugging process and
into rigorous testing. That is not to say that there is no configuration con-
trol up to this point. Configuration control is already in effect on the docu-
mentation. Any change that affects the requirements or design must be
processed formally to maintain the integrity of the documentation and the
system as a whole. Changes that merely fix mistakes in the code can be
made with minimum control at this stage, since the only elements involved
are individual units or modules or small groups of two or three closely in-
terfacing modules prior to actual integration.

There should, however, be at least an audit trail of the changes main-
tained in the UDF. This trail will be used for error and defect history analy-
sis as the development proceeds. Software quality practitioners should
monitor the testing at the unit and module levels to be sure that such an

Testing

83

audit trail is provided. Software quality practitioners are also an appropri-
ate resource for the error and defect history analysis. Conclusions reached
as a result of the analysis should be fed back, as improvements, into the de-
velopment process.

As the time for full-scale integration and system testing arrives, a test
team that is organizationally independent from the producers should take
over the testing. Because the goal of the test program is to find defects, the
objectivity of an independent test team greatly enhances the quality of the
testing. The independent testers will perform the testing tasks all the way
to user or acceptance testing. This team is probably the group that pro-
duced the formal test program documents. User or acceptance testing
should be performed by the users themselves, preferably in the user’s envi-
ronment, to help ensure that the software meets the user’s expectations, as
well as the officially approved requirements. Table 4.1 suggests appropri-
ate testers for each type of testing. As each organization’s test program ma-
tures, the identification of the testers for each type of test will be based on
the organization’s experience and testing approach.

Table 4.1
Who tests what

Type of testing Tester

Debugging Programmer

Unit testing Programmer

Module (or object) testing Programmer

Module (or object) integration
testing

Third party

Subsystem and system integration
testing

Third party

System testing Developer test team

User/acceptance testing User test team

Regression tests are conducted by many different persons involved in
the SLC. The developers will regressively test changes to modules and sub-
systems as they make changes in response to trouble reports generated dur-
ing formal testing or maintenance. The test team also will have occasion to
use regression testing as they verify that new modules or subsystems do not
adversely affect the system as a whole. Software quality practitioners can
even use regressive testing techniques as they perform some of their audit
and review tasks.

Practical Guide to Software Quality Management

84

The software quality practitioner’s primary role in the testing process,
aside from reviewing and approving the test documents, is to monitor the
testing as it progresses. The software quality practitioner will audit the tests
against their plans and procedures and report the status of the test program
to management. There are added benefits if software quality practitioners
have been doing more than just cursory reviews of the documentation as it
has been produced. The cross-fertilization of the technical knowledge of
the system and the test planning for the system can produce better results
in both areas.

4.4 Summary
Testing has as its goals the finding of defects and verifying that the software
meets its requirements. The cost of finding and correcting a defect goes up
dramatically with the length of time the defect is present. The types of test-
ing are unit, module, integration, user or acceptance, and regression testing.

Unit testing is primarily a debugging activity that concentrates on the
removal of coding mistakes. Module integration and testing examine the
functional entities of the system. As modules pass their individual tests,
they are brought into increasingly larger functional groups. Testing of the
integrated modules is designed to find latent defects as well as interface and
database defects. User testing is intended primarily to demonstrate that the
software complies with its approved requirements, as they are perceived by
the user. Regression tests usually are a subset of the user or acceptance
tests. They are maintained for the verification that changes made to the soft-
ware do not result in failures in other parts of the system.

As the requirements for the system are prepared, the original planning
for the test program also is started. During software design, the test plans
are expanded into specific test cases, scenarios, and step-by-step test
procedures.

Expected results are an important part of the test procedures. Unless
the expected results of each test are documented, there is no way to judge
whether the test has performed as intended. Analyses of the expected ver-
sus actual results of each test provide the pass or fail determination for that
test.

A necessary part of the software quality practitioner’s activities is the re-
view of the test program. The software quality practitioner’s additional role
is to monitor the testing as it progresses. The practitioner will audit the
tests against their plans and procedures and report the status of the test pro-
gram to management.

Tests follow the natural progression of the SLC. The testing program
begins in the requirements phase and, effectively, never ends, since regres-

Testing

85

sion tests continue for as long as there are changes and enhancements being
made to the software system.

4.5 The next step
Testing takes on many forms and must adapt to every type of software,
from traditional data processing applications through embedded real-time
systems to client-server and distributed systems. Starting points for your
testing efforts could be the following texts:

• Software Testing by Marc Roper (New York: McGraw-Hill, 1994).

• Testing Very Big Systems by David M. Marks (New York: McGraw-
Hill, 1992).

Additional Reading

Beizer, Boris B., Software Systems Testing and Quality Assurance, New
York: Van Nostrand Reinhold, 1984.

Beizer, Boris B., Black Box Testing: Techniques for Functional Testing of
Software Systems, New York: John Wiley & Sons, 1995.

De Millo, Richard A., et al., Software Testing and Evaluation, Menlo Park,
CA: Benjamin/Cummings, 1987.

Howden, William E., Functional Program Testing and Analysis, New
York: McGraw-Hill, 1987.

Myers, G., The Art of Software Testing, New York: John Wiley & Sons,
1979.

Perry, William, Effective Methods for Software Testing, New York: John
Wiley & Sons, 1995.

Practical Guide to Software Quality Management

86

Practical Guide to Software Quality Management

Chapter 5
Defect analysis

Most organizations use the term quality to mean no or few de-
fects. Some consider quality to mean meeting users’ or custom-
ers’ expectations. In the context of this book, both uses are

correct. Any time that the software does not perform as the user expects, a
defect has been encountered. It matters little to the user whether the prob-
lem is a coding error, a missed requirement, or just a function that would
be nice to have but is absent.

It is no secret that defects occur in the SLC from the beginning of the
concept phase through the final removal of the software system from use.
It is expected that each defect found be corrected. The recording and track-
ing of defects ensure that all defects found are, in fact, addressed. Defect
analysis applies to all defects and is intended to lead to the correction of
current deficiencies and the elimination of defects in the future. Analysis of
defects is the primary road to defect reduction. It can show where we
started, where we are, and where we are going.

87

Defect analysis is the bridge between the product-oriented software
quality control (QC) activities and the process-oriented software quality as-
surance (QA) activities of the SQS. Defect analysis is a combination of de-
tecting product flaws, so they can be removed, and the analysis of defect
and error data, so future defects can be prevented. Defect reporting, track-
ing, and removal are adjuncts to configuration control (see Chapter 6).

While it is useful to analyze defects in a system as it is being developed,
analysis of long-term trends also should be conducted to give clues to weak
areas in the software development process. An accumulating history of de-
fect data can indicate where modifications to the software development
process can be effective. It is those problem analyses that provide the
bridge from QC (detecting product errors) to QA (detecting process
weaknesses).

This chapter concentrates its attention on the QA application of defect
analysis and the metrics that can be developed.

5.1 Analysis concepts
Defect analysis is the discipline of measuring software development and
use. The measures can come from surveys, defect data, schedule and
budget plans and records, system characteristics, help line usage, and so
on. Each organization will discover and determine the sources of measure-
ments best suited to its own needs and situations.

Metrics, an essential part of any SQS, are relationships between meas-
ures that turn measurement data into applicable, quality management infor-
mation. However, metrics are too often merely an exercise in collecting
numbers without developing any useful information. The role of the QA
practitioner is to bring to decision-making, action-capable managers the in-
formation they need to beneficially affect the software development proc-
ess, and metrics are useful only when they contribute to that information
base.

5.1.1 Measures
A number, for example, 6 or 1,000, is not a metric. It is merely a number,
usually with no information value. When we add a dimension to the
number, such as lines of code (LOC) or critical errors (CEs), we have cre-
ated a measure, more descriptive than a number by itself but still without
significant utility. Six CEs and 1,000 LOC are both measures, but they
hold no information until we relate them to something.

Practical Guide to Software Quality Management

88

5.1.2 Metrics
In this text, a metric is defined as the ratio of, or relationship between, two
measures. Thus, a defect density of 6 CEs per 1,000 LOC (KLOC) begins
to take on the characteristic of information. Ratios of metrics finally reach
real information status. We might compare a defect density of 6 CE/KLOC
before institution of software inspections to a defect density of 2
CE/KLOC after inspections have begun.

Defect metrics are, not surprisingly, those metrics composed of meas-
ures dealing with defects. The measures might include the number of soft-
ware system failures, calls made to the help line, time spent recoding after a
failure, and cost of lost sales after a bad press review based on too many er-
rors found by the reviewer. The list could go on and on. A typical defect
metric is the number of problem reports closed versus the number of new
problem reports recorded.

Nondefect metrics are just that: metrics that are not based on defects.
Budget overruns, schedule shortfall, size of the software system in LOC or
function points, module complexity, cost of computer time, and the like,
are representative of nondefect measures. Nondefect measures are com-
bined to develop nondefect metrics. An example of a nondefect metric
might be LOC developed per person-month.

5.1.3 Product analysis
Product analysis is the first area for most organizations to begin to measure.
Error frequency, software product size, development cost, number of tests
run successfully, and the like, are often the kinds of things measured in the
beginning. Most of these product metrics can be developed directly from
the software trouble reports (STRs) and project planning documentation.
Product metrics deal with the attributes of a product, defect characteristics,
and other data about the product.

Using product metrics, the software QC practitioner can locate error-
prone areas of the code, design weaknesses, testing flaws, and so on. Prod-
uct metrics also help the QA practitioner to identify efforts that can
beneficially affect the specific product being analyzed. In the longer run,
product analysis will build up a body of information that can be applied to
process-oriented analyses.

5.1.4 Process analysis
It is the goal of the software QA practitioner to improve the process by
which the various software products are produced. Process understanding
and improvement depend heavily on the results of product analysis. As
each product is reviewed, tested, operated, and maintained, a history of its

Defect analysis

89

defects and changes can be kept. By itself, the record of analysis of defect
and nondefect data for a single product will not be especially useful on a
process basis. It is the continuing analysis of data on multiple products that
leads to the body of information that describes the process. At this point,
the software QA practitioner can begin to describe the process and its
behavior.

Analysis of defect detection methods and their results can give insight
into their value. Comparing when and how defects are detected as opposed
to when they were introduced into the software products is one view of
that process. Comparison of budget and schedule actual values with esti-
mates reflects on the estimation and management processes. Analysis of de-
fect types gives insights into the development process strengths and
weaknesses. Tracking the levels of the costs of the quality program versus
its effects provides information quality process. Once an understanding of
the behavior of the process is achieved, intentional modification to the
process will result in identifiable changes in the products it produces. In
that way, the software QA practitioner is able to suggest beneficial process
changes based on data and information rather than on guesses.

For example, if defect records show that walkthroughs are finding
more defects than testing, the quality practitioner may do further research
to determine if the walkthroughs are finding most of the defects and that
fewer exist for testing to uncover, or if the testing process is not sufficiently
robust.

5.2 Locating data
The collection of data, in the form of measures, is a necessary task if we are
to develop metrics. Most data come from easily available sources, such as
budget and schedule reports, defect reports, personnel counts, help line
call records, and the like. The data usually reflect defect experience, pro-
ject planning and status, and user response to the system.

5.2.1 Defect reporting
When software systems and programming staffs typically were small, the
usual method of trouble reporting was to note the location of the defect on
a listing or note pad and give it to the person responsible for repair. Docu-
mentation defects were merely marked in the margins and passed back to
the author for action. As organizations have grown, and software and its de-
fects have become more complex, those old methods are inadequate. In
many cases, though, they have not been replaced with more organized, reli-
able techniques. It is clear that the more information that can be recorded

Practical Guide to Software Quality Management

90

about a particular defect, the easier it will be to solve. The older methods
did not, in general, prompt the reporter for as much information as was
available to be written down.

Figure 5.1 depicts a typical STR. The actual format of the form is less
important than the content. Also of less importance is the medium of the
form; many organizations report troubles directly online for interactive
processing and broad, instant distribution.

It can be seen that the STR in Figure 5.1 is a combined document/soft-
ware defect report. While many organizations maintain both a document
and a software defect processing system, there is much to suggest that such
a separation is unnecessary. Using the same form and then, logically, the
same processing system, eliminates duplication of effort. Further, all defect
reports would be in the same system and database for easier recording,
tracking, and trend analysis.

The STR form shown in Figure 5.1, when used to report documenta-
tion defects, would ask for data about the specific location and the wording
of the defective area. It then would call for a suggested rewording for cor-
rection of the documentation defect, in addition to the simple “what’s
wrong” statement. In that way, the corrector can read the trouble report
and, with the suggested solution at hand, get a more positive picture of
what the reviewer had in mind. This is a great deterrent to the comment
“wrong” and also can help avoid the response “nothing wrong.” By the in-
clusion of the requirement for a concise statement of the defect and a sug-
gested solution, both the author and the reviewer would have ownership of
the results.

As a tool to report software defects, the STR includes data to be pro-
vided by both the initiator (who can be anyone involved with the software
throughout its life cycle) and the corrector. Not only does it call for loca-
tion, circumstances, and visible data values from the initiator, it asks for
classification information such as the priority of the repair, criticality of the
defect, and the original source of the defect (coding error, requirements
deficiency, etc.). That classification information can be correlated later and
can often serve to highlight weak portions of the software development
process that should receive management attention. Such correlations can
also indicate, at the start of new projects, potential problem areas that
should be given to more senior personnel, be targeted for tighter controls,
or receive more frequent reviews and testing during development.

Defect analysis

91

5.2.2 Other data
Other, nondefect measures are available from many sources. During devel-
opment of the software system, project planning and status data are avail-
able, including budget, schedule, and size estimates (LOC, function
points, pages counts, etc.).

After installation of the system, data can be collected regarding cus-
tomer satisfaction, functions most used and most ignored, return on invest-
ment, requirements met or not met, and so on.

SUBMITTED BY

SUBSYSTEM

UNIT

DOCUMENT NO.

LINE NO.

PROPOSED SOLUTION:

TEL. NO.ORG.

TEL. NO.ORG.

PROBLEM ACCEPTED PROBLEM REJECTED PROBLEM COMBINED WITH

DISPOSITION:

RESPONSE BY

DISPOSITION ACCEPTED DISPOSITION REJECTED

PROBLEM APPEARS IN:

SYSTEM

MODULE

DOCUMENT

PAGE NO. PARA

PROBLEM DESCRIPTION:

CONTROL NO.

DATE TIME

SOURCE - R D C T O

PHASE - R D C T O

METHOD - Q W I D T A U

PRIORITY - E H M L PAGE OF

TYPE - A I L D

SEVERITY - C S M T

EST: HRS $

ACT: HRS $

SOFTWARE TROUBLE REPORT

Figure 5.1
Sample software
trouble report.

Practical Guide to Software Quality Management

92

5.3 Defect repair and closure
An important aspect of the trouble report, in whatever manner it is imple-
mented, is that it provides a means to ensure that each defect is addressed
and the solution recorded. The closure of trouble reports should follow a
prescribed procedure. Defects that are reported but never resolved can re-
surface at a later, perhaps much more damaging or expensive, point in the
SLC. The software quality practitioner has the responsibility to monitor all
open trouble reports and keep management informed as to their status. In
that way, there is less chance for a defect to escape notice and become lost.
There is also a check and balance with the developers to be sure that they
are not letting defects go unheeded in favor of further development
activities.

The form in Figure 5.1 provides for recording the disposition of the
defect. The trouble report is not considered closed until that area has been
filled in. Defects can get lost in the system if they are not tracked to their
closure and reported as finished. Each organization should have standards
that govern the reporting and tracking of defects. One of these standards
should specify the length of time a defect may remain unaddressed before
further activity is halted and the defect specifically addressed. The use of
online defect recording and status reporting can make that task quite easy
and give it increased visibility.

Each trouble report, for either documentation or software in general,
should provide a forward reference to the formal record of disposition of
the defect and its resolution. As stated, the defect reports can provide for
directly recording the defect dispositions. In some organizations, there is a
separate report for the disposition of a defect correction or change. One
format for a separate record is the software change notice (SCN), shown in
Figure 5.2. The SCN could be used if a separate form is required to for-
mally implement the change. In that way, the report-fix-implement-report
loop is closed, and a complete trail is formed of the treatment of each re-
ported defect.

The closure of a trouble report usually describes the action taken to
correct the defect. Of course, not all trouble reports are correct themselves.
There can be instances in which what was perceived as a defect was not a
defect at all. Perhaps an incorrect keystroke caused a result that looked like
a software defect. The trouble report still exists, however, and even though
there is no change spelled out, the report must be formally closed. As a side
observation, should later correlation of defect data show a high number of
“no-defect” trouble reports, some attention may be needed to the topic of
defect reporting itself.

Defect analysis

93

In projects under formal configuration management (CM), trouble re-
port closures that require CM processing, especially approval of the
change before implementation (see Section 6.3.2), will reflect any CM ac-
tion involved. The defect tracking activity will show when the defect and
its planned solution were presented for CM processing, what was done,
and the results. Once CM approval has been obtained, the defect returns
to the regular processing path for implementation.

SOFTWARE CHANGE NOTICE

SCN #: DATE:

STR / DTR # MODULE/ DOCUMENT TO BE CHANGED REGRESSION TEST BY:

AUTHORIZED BY:

INSTALLED BY:

CM APPROVAL:

PAGE OFFigure 5.2
Sample software

change notice.

Practical Guide to Software Quality Management

94

Figure 1.6 depicted a typical defect reporting, tracking, and closure
procedure. Each organization will have some version of this procedure that
is suited to its own situation, but all aspects of this procedure should be
present. In some of the topics covered in this text, the breadth of applica-
tion of the topic within a given organization or project is left up to the dis-
cretion of the organization or project. Defect reporting and tracking are
sufficiently important topics that only the actual technique used for each of
the activities is seen as discretionary. The presence of a complete defect re-
porting and tracking system is not optional in an effective SQS. Figure 5.3
is an example of a typical defect processing, with its forms and connections
to other SQS functions.

Defect
found;
defect
report
generated

STR
Defect
analyzed and
corrected

SCN

Software
change
approved

Software
change
installed

Quality
assurance
notified

Defect
analysis
performed

Metrics
results

Software
process(es)
improved

Configuration
control
notified

STR
Configuration
baseline
updated

SCN SCN

SCN SCN

SCN

Figure 5.3 Defect processing example.

Defect analysis

95

5.4 Selecting metrics
The goals of the SQS lead to questions about defects and their effects.
Those questions, in turn, lead to metrics that may provide defect informa-
tion. The metrics lead finally to the measures that must be collected.

5.4.1 Available metrics
It is possible to create any number of metrics. In the most trivial sense,
every measure can be combined with every other measure to create a met-
ric. Metrics, in and of themselves, are not the goal of a beneficial SQS. Just
because one organization uses a metric does not mean that metric will have
meaning for another organization. An organization that does not use CICS
will not be interested in a metric expressing CICS availability. One that
uses LOC as their size measure will not want to compute function points
per person-month.

Other metrics may be too advanced for some organizations. Organiza-
tions just starting to develop metrics will likely be ready to monitor open
and closed problem reports. They are not likely to use metrics that attempt
to express the validity of the software system development estimation algo-
rithm until they have been using metrics for some time. In the case of esti-
mation, a new metrics-using organization may not even have a repeatable
method of estimating the size and cost of software systems development.

The selection of specific metrics to develop is a function of the goals of
the SQS. This text does not intend to imply that there are certain metrics
that all organizations should use. This section merely introduces a few sam-
ple metrics that some organizations have found useful. (A more detailed dis-
cussion of specific metrics is given in Section 5.4.3.) The metrics identified
here are not all-inclusive by any means. They are intended to give the new
defect analyst or SQS implementer ideas of what metrics to use and what
questions to ask.

5.4.2 Applicable metrics
Most metrics are either product oriented or process oriented.

Product-oriented metrics
Of significant interest to software QA practitioners is the product defect ex-
perience of the current software development project and its predecessors.
For a given software product, defect experience can indicate its progress to-
ward readiness for implementation. Some metrics can lead to identification
of error-prone modules or subsystems. Other metrics indicate the reduc-
tion in defect detection as the defects are found and removed.

Practical Guide to Software Quality Management

96

Rework generally is considered to be any work that is redone because
it was not done correctly the first time. Most frequent causes of rework are
corrections needed to resolve defects or noncompliance with standards.
Monitoring rework metrics can help the software QA practitioner demon-
strate the advisability of better project planning and closer attention to
requirements.

Process-oriented metrics
Of historical interest are much the same set of metrics, but for the body of
software products already completed rather than for just the current pro-
ject or products. Long-term defect experience helps us understand the
development process and its stability, predictability, and level of improv-
ability. The software QA practitioner will track trends in defect detection
and correction as indicators of process maturity.

Productivity metrics give indications of process effectiveness, quality
of estimation techniques, quality of defect detection techniques, and the
like. Some are based on defects, some on nondefect data.

Trend analysis is the long-term comparison of measures and metrics to
determine how a process is behaving. Statistical process control, error de-
tection rates, output over time, cost of quality, and help line usage are all
examples of measures and metrics that can be studied over a period of
time. Such study looks for trends that will describe the development proc-
ess or its reaction to intentional change. The use of process control charts
for software can help describe the behavior of the development process.
The charts can also help us to identify process behavior changes in re-
sponse to intentional changes made to the process.

Cost of quality
The cost of quality (COQ) is often used as a measure of the value of the
SQS. By combining the costs of resources expended to prevent errors from
happening and to appraise the quality of a product, we can find the cost of
achieving quality (COA). This value is added to the costs of resources ex-
pended because quality was not achieved—the cost of failure (COF). The
sum of COA + COF represents the cost of quality.

Prevention costs include such items as training, the purchase of a meth-
odology, the purchase of automated tools, planning, standards develop-
ment, and other similar items. These are costs incurred to reduce the
likelihood that an error will be made in the first place.

Appraisal costs result, for the most part, from reviews and testing.
These costs are those incurred in the search for errors once the product
has been produced.

Defect analysis

97

Failure costs are incurred when a product manifests an error. It is im-
portant to recognize that only the first review of a product or the first test of
a piece of code counts as an appraisal cost. Any rereviewing or retesting re-
quired because a defect has been found and corrected is a COF. This is a
cost that would not have been incurred had the task been done correctly
the first time.

Failure costs include the cost of rework, penalties, overtime, reruns of
applications that fail in production, lawsuits, lost customers, lost revenues,
and a myriad of other costs. The COF in most companies may be found to
contribute half to three-quarters of each dollar spent on the overall COQ.

Table 5.1 presents some typical components of the COQ.

Table 5.1
COQ

contributors

COQ category Representative contributing costs

Prevention Training and education, configuration management, planning,
standards

Appraisal Reviews (until defect found), testing (until defect found)

Failure Rework (rewriting specifications and plans, rereviewing after
defect correction, retesting after defect correction, scrapping
project, customer complaint handling, lost customers, missed
opportunities

5.4.3 SQS goal-oriented metrics
There is an unending list of metrics that can be developed. It is important
that the organizational goals and those of the SQS be understood before
metrics are haphazardly chosen and applied. The metrics types mentioned
so far are reasonably considered by an organization just beginning to use
metrics in its SQS. As each organization grows in experience with its SQS,
additional goals, questions, and metrics will become useful. More ad-
vanced metrics will come to light as the SQS is applied over time.

Table 5.2 suggests possible goals of the SQS and some representative
metrics that could apply or be beneficial in reaching those goals.

None of the metrics suggested in Table 5.2 is to be construed to be re-
quired or even desirable for all organizations. No text on metrics could
cover the vast array of potential metrics available to the developer of an
SQS. Even less likely is that a text could guess the exact set of metrics that
would apply to every possible organization. The intention of this chapter is
to identify typical metrics so that the implementing organization will see
the types of concerns that its SQS could address.

Practical Guide to Software Quality Management

98

SQS goal Applicable metric

Improved defect management COQ changes/SQS implementation schedule
Cost of rejected software (scrap)/total project cost
Cost of defect corrections/cost of defect detection
Defect density/software product
Defect density/life cycle phase
Defects found by reviews/defects found by testing
User-detected defects/developer-detected defects
STRs closed/total STRs opened
STRs remaining open/STRs closed
STRs open and closed/time period
Mean time between failures
Software product reliability
Help line calls/software product

Improved requirements Changed requirements/total requirements
Implemented requirements/total requirements
Requirements errors/total errors

Improved defect detection Tests run successfully/total tests planned
Defects found by reviews/defects found by testing
Defect density/software product
User-detected defects/developer-detected defects

Improved developer
productivity

KLOC or function points/person-month
Schedule or budget “actuals”/estimates
Budget expenditures/schedule status
Mean time to repair a defect
Defects incorrectly corrected/total defects
Software product defects/software product
complexity

Improved estimation
techniques

Schedule or budget “actuals”/estimates
Mean time to repair a defect
Budget expenditures/schedule status

Increased data center
throughput

Incorrect corrections/total corrections
Mean time to repair a defect
User-detected defects/developer-detected defectsTable 5.2

Goals and metrics

Defect analysis

99

5.5 Collecting measurements
Once it has been decided which metrics are to be used, attention can be
turned to the collection of the necessary measures. From the point of view
of the SQS, most measures will be related to defects.

5.5.1 Classification of defects
As defects are detected, analyzed, and corrected, many data are available
that are of use to the software QA practitioner. Classification of defects aids
in the use of defect data to guide defect resolution now and to identify soft-
ware development process weaknesses or predict problem areas in the fu-
ture. That is the connection, or bridge, between software QC—finding and
fixing defects—and software QA—analyzing and improving the develop-
ment process. Defects can and do occur in any phase of the SLC. The data
gathered with respect to defect classification can direct additional testing of
software, point out inherent anomalies in requirements or design, call atten-
tion to needs for enhancements to operational software, and give guidance
in the correction of current defects.

Defects can be classified according to their various basic characteristics
(see Figure 5.1), which should include, at least:

• Severity of the defect if it is encountered in operation;

• Priority of immediate repair;

• Source (life cycle phase) of the defect;

• Type of defect;

• Phase (life cycle phase) in which the defect was found;

• Method by which the defect was found;

• Estimated and actual costs to repair the defect.

The severity of a defect is an indication of the impact of not fixing it im-
mediately. A defect that presents a life-threatening situation or could result
in the loss of property if not fixed is a severe defect indeed. On the other
hand, some defects may result in a wrong answer from a calculation but
not hold up further testing until they are corrected. Such defects would be
fairly nonsevere until they began to affect the test program itself. (This
shows that some factors are a function of situation as well as immediate
impact.)

Related to and sometimes dependent on the severity of a defect is the
repair priority assigned to it. Usually a life-threatening defect will be ad-
dressed immediately, and a noninterfering defect will be addressed when

Practical Guide to Software Quality Management

100

there is time. That rule, of course, is not hard and fast. There will be occa-
sions in which a severe defect can be isolated so that work can continue in
other areas. Some defects may be of such complexity or wide-reaching
effect that they cannot be repaired without extended study or serious im-
pact on resources. These defects may be addressed immediately but re-
quire a solution that is a long time in coming. Recognition that work can
continue while the defect in question is being solved can give it a lower pri-
ority. Other factors may affect the priority as well, not the least of which is
visibility. A relatively minor defect in the screen format may become a top
priority if it is in a highly visible demonstration that will affect the future
funding of a software project.

A piece of classification data that often is overlooked is the source, or
genesis, of the defect. This is an indication of where the original error was
made and where the defect entered the product. It also points up areas in
the SDLC that may profit from increased attention by software quality
practitioners. When later correlation of defects shows a high concentration
of defects that can be traced back to the requirements, it is probably wise to
spend more effort in the generation and review of requirements in future
projects. Likewise, a preponderance of coding errors may indicate the need
for better programmer training. By looking at the data collected on multi-
ple projects, the QA practitioner can suggest to management changes that
affect the process of software development. New data from projects begun
after the process changes have been made can provide information of the
effectiveness of those modifications.

The type of defect encountered is one indication of weakness in de-
sign, implementation, or even support software. Input/output defects are
those that involve the transfer of data into or out from the object, module,
or other part of the software system. Those transfers may be internal to the
system or external to the software, as with a key entry or printer action. In-
put/output-type defects, when seen frequently, may suggest an operating
system that is difficult to use. Arithmetic defects are problems in computa-
tions that may indicate weak support routines or less than desirable coding
practices. Arithmetic defects are also caused by incorrect requirements,
such as specifying an equation incorrectly. Control defects occur primarily
in decisions within the software. Indexed loops, wrong exits from decision
points within the software, and improper transfers of control between ob-
jects or modules are examples of the control type of defect. Control defects
often are indicative of design or requirements deficiencies.

Two additional characteristics are less defects-based and more indica-
tive of the benefit of the detection techniques being used. Where they are
found, that is, in what part of the SLC, can be compared with the source to
evaluate the various review methods being used. How they are found per-
mits direct comparisons of the efficiency of the different methods and can

Defect analysis

101

also indicate those defect detection methods that are more successful
against the various types and sources of defects.

Finally, the estimated and actual costs to repair lead to evaluations of
the estimation techniques employed and can be useful in the calculation of
COQ.

5.5.2 Other defect measures
Certainly not all the measures will be restricted to defect classifications.
Countless other defect-related measures can be made. The following list is
not intended to be complete but just to suggest some potentially useful
measures.

• Number of defects;

• Defect frequencies;

• STRs open and resolved;

• Time between defect detections;

• Defects resulting from correction of previous defects;

• Size of change;

• Incorrect defect reports (incorrect information on STRs).

The number and frequencies of defects can be used to detect defect-
prone products or processes. Those measures usually are taken with refer-
ence to specific parts of the system of its documentation. Once the system
is in production, those counts may be used to monitor the maturity of the
system or its need for maintenance. Modules or documents with higher
than average defect counts may be in need of redesign or rewriting. In addi-
tion, high defect counts or frequencies in a particular product may permit
us to redeploy our defect detection efforts.

Defects tend to clump. A QC adage is that if you find a defect, look in
the same area for more. Since our defect detection resources are always lim-
ited, this adage can give us clues as to where to concentrate QC activities.
High counts or frequencies spread more or less evenly across the products
may indicate a development process problem. The QA practitioner should
always be alert to process flaws that may be indicated by inordinate defect
experience.

Open and resolved STR counts can be used to determine defect detec-
tion and correction productivity, identify poor defect analysis and isolation
methods, detect flawed defect correction techniques, and so on. The
number of resolved STRs can be compared to the number of newly
opened or still open STRs to monitor correction activities.

Practical Guide to Software Quality Management

102

The time between defect detections, either directly indicated by date
and time or via mean time to failure, can be used in several ways. Longer
times may indicate a reduced defect level. They may also indicate reduced
defect detection success or effort. Stable or shorter times might indicate the
addition of defects during modifications. They could also be indicative of
increased defect detection efforts or improved detection processes.

Defects resulting from the resolution of other defects are known to be
frequent. This measure will aid in the identification of poor defect resolu-
tion processes or insufficient QC of software modifications.

The size of the change is often one of the comparative measures used
to develop various metrics. In combination with other measures, size can
be a normalizing factor. We do not want to compare data from small, short
projects with data from large or long schedule projects. Such comparisons
are often invalid and can lead to erroneous conclusions. For example, if
two projects both have 10 STRs opened per day, we might presume that
the defect levels were about equal. When we see that the first project is only
a three-month project involving two people, and the second is a three-year
project with 25 participants, we probably come to a rather different conclu-
sion about the projects’ respective defect levels.

Not all reported defects are defects. In some cases, the detected opera-
tion of the system is not wrong, just unexpected, for example, incorrect ex-
pected results in the test case or an inexperienced user. In other cases, the
data entered on the STR may be incorrect: wrong module name, incorrect
document reference, wrong version, and so on. The QA practitioner will
want to determine what causes the incorrect STRs. Training of users or de-
fect reporters may be necessary, or better user documentation might be the
answer. In any case, it is not productive to try to correct defects based on
incorrect reports.

5.5.3 Nondefect measures
Defect analysis depends on defect data, but defect data alone are not suffi-
cient for most metrics. Nondefect data are usually the basis for product and
process metrics. In some cases, they form the whole metric, as was noted in
Section 5.4.2.

Some nondefect measures are readily available and are in “hard” num-
bers; for example, project size, budget and schedule figures, clock and
processor time, and the number of people involved in an activity. These
measures can be taken directly, and no interpretation of them is usually
needed.

For the software quality practitioner, some measures are not available
in hard numbers but rely on quantification of subjective data. These “soft”
measures might include customer impressions, perceived quality on some

Defect analysis

103

subjective scale, and estimates of quality. Soft measures should be used
with care, for there is often no precise way to quantify or validate them.

Derived measures include those that we cannot determine through
either hard or soft means. An example of a derived measure might be qual-
ity, which ranks as good (a soft measure) since 90 users out of 100 (a hard
measure) do not return survey forms and thus must not be dissatisfied.
Great care must be exercised with measures such as these. Only organiza-
tions with significant experience in metrics should consider using derived
measures.

5.6 Quality Tools
The representation of measures and metrics can take many forms. Even
their collection must be considered. The following tools are most often
used for measure collection and measure and metric use.

• Tally sheet;

• Scatter diagram;

• Graph;

• Histogram;

• Pareto diagram;

• Flowchart;

• Cause and effect diagram;

• Statistical control charts (process control charts).

None of these tools is new. Hardware quality practitioners have been
using them for many years. Some, such as the tally sheet and the scatter dia-
gram, have been used in software quality activities regularly. Others, like
the cause and effect diagram and statistical control charts, are relatively
new to software quality applications.

5.6.1 Tally sheet
The tally sheet is the simplest form of data collection. Each occurrence of
some event or situation is tallied as it happens or is detected. The example
in Figure 5.4 depicts a collection of data for defects detected in several
modules of software being reviewed. Note that this is merely a collection of
“detected defects” data. Taken by itself, the collection gives little or no in-
formation about the modules beyond pure defect counts. It is usually
beneficial to chart or graph the numbers for comparison.

Practical Guide to Software Quality Management

104

5.6.2 Scatter diagram
Figure 5.5 presents the data from the tally sheet in a more “mathematical”
form. The numbers are the same, but some people find this representation
more understandable. The scatter diagram gives a visual comparison of the
numbers from the tally sheet. Sometimes it is useful to plot the trend line or
least squares curve, which summarizes the scattered points. The dashed
line represents an estimate of the data trend.

5.6.3 Graph
In its simplest form, a graph is just a scatter diagram with the points con-
nected. Continuing the defect count example, Figure 5.6 is a graphical rep-

Module Defect count (x five) Total

1 20
2 30
3 54
4 27
5 40
6 52
7 90
8 35
9 43
10 12
11 31
12 53

Plus 2
Plus 4

Plus 2

Plus 3
Plus 2
Plus 1
Plus 3Figure 5.4

Sample tally sheet.

0

10

20

30

40

50

60

70

80

90

•
•

•

•
•

•

•

• •

•
•

•

1 2 3 4 5 6 7 8 9 10 11 12Figure 5.5
Scatter diagram.

Defect analysis

105

resentation of the numbers on the tally sheet. Graphs are often preferred
for observing the progress of a process or activity with respect to time. Con-
tinuing the example, modules 1–12 may have been completed in the time
sequence shown. More information, such as calendar dates or complexity
can be shown in a graph. We might discover that module 7 was highly com-
plex, while module 12 was completed near year’s end.

5.6.4 Histogram
A histogram is similar to a graph, but instead of the points being connected
with a line, they are shown as vertical (or horizontal) bars whose lengths
represent the numbers. Figure 5.7 is a histogram of the tally sheet data. His-
tograms are often precursors to Pareto charts. Histograms are sometimes
expanded to have the width represent an additional condition such as size
or effort.

0

10

20

30

40

50

60

70

80

90

•
•

•

•
•

•

•

• •

•
•

•

1 2 3 4 5 6 7 8 9 10 11 12Figure 5.6
Graph.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12Figure 5.7
Histogram.

Practical Guide to Software Quality Management

106

5.6.5 Pareto diagram
In the nineteenth century, economist Vilfredo Pareto determined that ap-
proximately 80% of his country’s wealth was controlled by about 20% of
the population. Thus was born the 80/20 rule. Although originally di-
rected toward economics, the 80/20 rule has come to be used in many ap-
plications, including software quality management. The 80/20 rule in
software quality management suggests that we pay attention to the prod-
ucts that account for 80 or so percent of the defects. Admittedly not mathe-
matically precise, it serves as a good guide to the application of quality
effort.

The Pareto diagram is the histogram arranged in (usually) descending
order of bar height. Figure 5.8 is the Pareto representation of the tally sheet
numbers. Also indicated is the approximate 80% point. The software qual-
ity practitioner could use a Pareto diagram to prioritize an examination of
the causes for the defect numbers associated with each module.

5.6.6 Flowchart
Flowcharts are diagrams that permit users to describe processes. They are
not used to represent data but rather the way in which things are done.
Manufacturing, sales, banking, military, software, in fact nearly all proc-
esses have been described with flowcharts. The software QA practitioner
will use the flowchart to depict the various processes used in software de-
velopment, maintenance, operation, and improvement. As the metrics be-
gin to suggest flaws in one or another process, the flowchart can help

0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

100

7 3 12 6 9 5 8 11 2 4 1 10

Pareto’s 80%
Work on these
firstFigure 5.8

Pareto diagram.

Defect analysis

107

isolate the part of the process that is flawed. Figure 5.9 depicts the format
for a typical flowchart.

Continuing our example, the development process for each module
might be flowcharted in a search for differences that might account for the
variations in the defect rates. Alternatively, the defect detection processes
might be flowcharted in a search for their variations and the reasons for
their differing results.

5.6.7 Cause and effect diagram
Another diagram used to locate process flaws is the cause and effect dia-
gram. Defect detection and correction is responsible for eliminating the de-
fect. Cause and effect diagrams are used to determine the actual cause of a
defect. In that way, not only is the defect itself eliminated, but the situation
that permitted it to be introduced is also eliminated, so it will not occur
again.

The cause and effect diagram, an example of which is shown in
Figure 5.10, is also called the Ishikawa diagram, after Professor Kaoru
Ishikawa, who introduced it in Japan, and the root cause diagram. Note
that neither the flowchart nor the cause and effect diagram is not used to de-
pict data. Rather, they help describe processes and analyze defect causes.

In our example, based on the high defect rate for module 7, the soft-
ware quality practitioner might use the cause and effect diagram to seek out
the specific causes for the high defect rate, rather than just guessing.

An Aid to Understanding the Process

Figure 5.9
Flowchart.

Practical Guide to Software Quality Management

108

Coupled with the knowledge of the module’s complexity, the time of
year of its creation, the type(s) of defect detection methods applied, flow-
charts of the development and defect detection processes, and, perhaps,
its cost and schedule variations from expectations, the cause and effect dia-
gram can assist the quality practitioner in the analysis. One arm might
represent all the potential effects of calendar dates, another the effects
of schedule or budget changes, still another the effects of requirements
changes, and so on. The user of the cause and effect diagram tries to exam-
ine each potential cause until the actual root cause of the situation is discov-
ered. The diagram serves to document each potential cause examined and
its relationship to other potential causes.

5.6.8 Process control charts
Walter Shewhart, in 1931, applied the laws of statistics to production proc-
esses and discovered that the process behavior can be plotted. He then
showed how the process can be controlled and that control monitored.

Run charts
Run charts depict the statistical behavior of a process. Shewhart intended
that a run chart be used to show when a process was stable or “in control.”
It is not based on the intended or target behavior of the process but its ac-
tual behavior. Figure 5.11 shows a basic process control chart. The center
line is the mean level of the described characteristic (perhaps the error rate
for a given software system). The upper line is the upper control limit
(UCL) and indicates the presence of special causes of defects. The lower
line is the lower control limit (LCL) and also reflects special causes, this
time because the product is better than it has to be. Shewhart set the UCL
and LCL as functions of the mean and standard deviation for the popula-
tion being plotted.

Effect

Possible causes

Possible causes
Figure 5.10

Cause and effect
diagram.

Defect analysis

109

The idea of evaluating process behavior using a run chart is depicted
in Figure 5.12. A process that has an error rate falling consistently between
the control limits (as in the first section of Figure 5.12) is said to be in con-
trol. An occasional point outside the limits identifies a special case, a target
for cause and effect analysis. In general, however, the process is considered
sound and repeatable. The second section of Figure 5.12 shows the case in
which the points falls randomly around the mean. That process is said to
be out of control. Changes to the process are not likely to be identified with
changes in the results. The third section of Figure 5.12 shows a process in
control but drifting. In the manufacturing world, we might conclude that a
tool was getting worn. In software, we might suspect that a defect detection
technique was improving (the drift implies we are finding more defects) or
that the development process was degenerating (and letting more defects
into the products).

Continuous process improvement might be depicted as in Figure 5.13.
Based on the Japanese concept of kaizen, the process is continually im-
proved. As a result, the control limits, still functions of the mean and the
standard deviation, tend to move closer to the mean.

Error
rate

Upper
control
limit
Mean

Lower
control
limit

TimeFigure 5.11
Basic run chart.

In control Out of control Trend

Error
rate

Upper
control
limit

Mean

Lower
control
limit

TimeFigure 5.12
Process behavior.

Practical Guide to Software Quality Management

110

Acceptance control charts
Acceptance control charts are not based on statistical determination of the
mean and control limits. These charts use the desired value, called the tar-
get, as the center line. The UCL and LCL are chosen based on permissible
variation, not statistical variation.

In software terms, when depicting defects, we would like all three lines
to lie on the zero-defects line. And that is the ultimate long-term goal of the
SQS. In the meantime, and in the real world, there are other pressures that
slow our attainment of the zero-defect goal. Just as in the hardware world
of Shewhart, costs and risks will define the realistic levels for the target and
the control levels. In economic terms, we might say that the UCL is the
level at which the customer will no longer accept the product, and the
LCL the level at which the costs of finding further defects exceed the costs
incurred if the defect occurs in the use of the software. Stated still another
way, the UCL defines “how bad I dare to make it,” and the LCL defines
“how good I can afford to make it.”

Acceptance control charts are not as statistically valid as run charts,
but they do not require the large sample and population sizes on which run
charts usually are based. Acceptance control charts are more easily adapted
to the uses of the software QA practitioner, however. Figure 5.14 com-
bines the acceptance control chart, the kaizen concept, the desire for zero
defects, and economic reality into a typical software process control chart.
In this chart, the LCL is set as close to zero as is economically feasible. The
centerline, the target defect rate, starts at the current experienced value and
slopes downward at the goal rate of the SQS. At the same time, the UCL is
more sharply sloped to motivate process improvement.

Error
rate

Upper
control
limit
Mean

Lower
control
limit

Continuous improvementFigure 5.13
Kaizen concept.

Defect analysis

111

5.7 Implementing defect analysis
The creation of a metrics program starts with the determination of the re-
quirements or reason for measuring something. Just as in the development
of software, defining the problem we wish to solve is the first step. Once we
know what information we might want, we can begin to determine what
measures can lead us to our objective.

It is unfortunate that there are few, if any, metrics in common use in
the industry. Even those measures that many organizations use, LOC, func-
tion points, error counts, time, and so on, are not defined industrywide. In
effect, each organization that counts something counts it in its own way.
For that reason, when one company claims to have one error per thousand
delivered LOC, another company may have no idea as to how they com-
pare. The reason is that there is no commonly accepted definition of either
“error” or “lines of code.”

The solution may be for a given company to design its metrics pro-
gram for its own situation. When the company has a metrics set that is pre-
senting the company with information about its software processes, it
might offer those measures to the industry as guidelines. At some point,
other companies may adopt and adapt those metrics, and a de facto stand-
ard may be born. The IEEE has published a standard covering the estab-
lishment of a metrics program (IEEE Standard 1061-1992). It would
certainly be a starting point for a company just starting to develop their
own program.

5.7.1 Rules
There are a few simple but important rules to be observed in the design
and implementation of a defect analysis and metrics program. Many pro-
grams are started, but most fail in the first year or so. The primary reason
for failed programs is failure to observe the following vital considerations:

Error
rate

Upper
control
limit

Target

Lower
Figure 5.14
Toward zero

defects.

Practical Guide to Software Quality Management

112

• The program must be instigated and supported from the top of the
organization down.

• The metrics must support quality as quality is seen from the custom-
ers’ perspective.

• The measurements must not interfere with the performance of
assigned work.

• The people being measured must have a role in defining the meas-
urements and methods.

Support from top management is necessary, because as measurements
are begun they must be seen to be of interest to top management. If manage-
ment does not use the metrics, ignores the results of the program, does not
provide for the costs of data collections and metrics development, and is
not visibly committed to the success of the metrics program, the rest of the
organization will soon conclude that metrics do not matter.

Metrics that are developed for the sake of metrics usually will not be
used. Metrics that are not used become targets for elimination. The metrics
developed must be based on defects and other data that will lead to better
customer satisfaction. If the program does not result in increased customer
satisfaction, the costs eventually will be determined to be wasted. That is al-
most always the end of the program.

Even when top management supports the defect analysis or metrics
program, if it gets in the way of job performance, the workers will not coop-
erate. The persons conducting the data gathering must remember that the
rest of the people are busy with the jobs to which they are assigned. They
are being paid to do their work, not the measurer’s. When pressures
mount, the assigned task gets attention, not additional side tasks that do
not appear in the worker’s job description.

It should not be a surprise that if you are going to measure my produc-
tivity, the defect history of my work, and things of that nature, I want some
influence over or at least a full understanding of what is measured, how the
data are collected, and what the metrics and their use will be. Perhaps even
worse than non-customer-focused metrics are those that are used for per-
sonnel evaluations and comparisons. Especially damaging to the metrics
program is defect data that are construed to reflect the performance of the
workers. When that is the case, the program will not survive as a useful ac-
tivity. It must always be remembered that “you get what you measure.”
If my defect data are going to be used against me, I will make very few
accurate defect data available to the software quality practitioner or
management.

Defect analysis

113

5.7.2 Designing the program
A defect analysis or metrics program should be treated exactly the same as
the development of software. It is a project, has requirements, must be de-
signed, “coded,” tested, implemented, and maintained. A simple five-step
approach can be used to define and start the program:

1. Define the goals of the program.

2. Ask questions about the use of the program and metrics.

3. Identify the metrics to be developed and used.

4. Identify the measures that must be made to gather the data for the
metrics.

5. Plan the data collection, metrics development, and metrics
application.

It has been stated that the defect analysis or metrics program must have
established goals before anything else is done. That is analogous to the set-
ting of vision and mission statements for the organization. The goals of the
program lead to questions about customer attitude, product quality, defect
experience, process improvement opportunities, and the like. The answers
to the questions give insight into what kinds of metrics will be of value. If
we are just interested in defect analysis, one set of metrics may emerge. If
we are interested in improved quality and processes, a larger set of metrics
will be recognized. In every case, the organization must perform these
steps in the context of its own maturity, business, and capabilities.

Once the metrics that will be needed have been defined, the data and
required measurements can be defined as well. It was noted earlier that
some data consists of hard numbers that are collectable directly. Other data
are soft, or subjective, in the form of opinions, guesses, feelings, and so on.
The soft data must be quantified for use with the hard data. The organiza-
tion must determine the quantification methods and how precise they be-
lieve the quantifications to be.

Throughout the process of defining goals, asking questions, and identi-
fying metrics and measures, the people whose work and products will be
the subjects of the measures must be involved. Acceptance of the program
is not the only thing requiring the participation of the people being meas-
ured. The persons doing the work are the closest to all the things being
measured—their effort, products, processes, defects, and
so on. They often can suggest metrics and measures that have even more
utility than those conceived by the software quality practitioners. If the pro-

Practical Guide to Software Quality Management

114

gram is to succeed, it is imperative that the voice of the workers be solicited
and heard.

5.7.3 Metric characteristics
If the SQS and the metrics program have requirements, so have the metrics
themselves. Measures and their resulting metrics must be easy to gather
and develop. Measures that require extensive investigation or complicated
collection methods will tend to be poorly collected (at least at the begin-
ning of the program). Section 5.4 suggested that many useful metrics com-
prise easily collected measures. Those measures and metrics should form
the basis of the beginning metrics program. As experience and maturity are
gained, more sophisticated metrics and measures can be adopted. In the be-
ginning, “keep it simple” is a good motto.

Metrics also must be easy to understand and apply. It may be possible
to determine the number of defects per thousand LOC written from
10:00 PM to 11:00 PM on a cloudy Friday the thirteenth by developers in
Bangalore, India, compared to the same data for developers in Fort Wayne,
Indiana. Whether there is useful information in that metric is another ques-
tion. If there is information, of what use is it? As metrics become more so-
phisticated, their understandability often becomes more difficult. Many of
the metrics being converted from hardware to software quality applications
must be redefined for use on software. Those metrics generally are applica-
ble after their adaptation but frequently require very large sample sizes to
be meaningful. Again, the new metrics program must be useful. Utility of
the metrics being developed is more important than whether they are the
most complete set of metrics.

Validity of the metrics is another key point. Do the metrics correctly
reflect their target situation? An example was given in Section 5.5.2 of the
need to consider the size of the project in a given situation. Metrics that are
sensitive to parameters other than those in the direct equation may not
reflect the real situation. Software is tested to determine if all its require-
ments have been corrected addressed. Metrics, too, need to be tested to en-
sure that they present the information we want and do so correctly and
repeatably. Careful definition of each of the data terms being used, spe-
cification of exact data collection methods to be used, and precise equation
for the metrics can only reduce the likelihood that the metric is developed
incorrectly. The real question being asked is whether the metric is the cor-
rect one for the desired application. It must be shown that the metric actu-
ally applies to the situation in which we are interested. Is the metric in
support of the original goals of the program? Does it address the organiza-
tions concerns? Does it give us information we need and do not have else-
where? The comparison of defects between Bangalore and Fort Wayne

Defect analysis

115

may be available and precise, but if we really don’t have a need for that
comparison or know what to do with it, it is not beneficial to develop it.

5.8 Summary
Defects can and do occur in any phase of the SLC. The recording and
tracking of defects in the software make sure that all found defects are, in
fact, addressed. An important aspect of the trouble report, in whatever
manner it is implemented, is that it provides a means to ensure that each de-
fect is addressed and the solution recorded.

Changes require careful control. Every time a change is made, there is
the chance that a new defect will be introduced with the change. In projects
under formal CM, trouble report closures that require CM processing, es-
pecially formal change approval, will reflect any CM action involved.

Classification of defects aids in the use of defect data to guide defect
resolution now and to identify software development process weaknesses.
Future problem areas also can be predicted by using error or defect trend
analysis.

As defects are found and eliminated, a body of data about the defects
can be accumulated. These data become input for QA analysis. Such analy-
sis as trends and metrics can be conducted to help depict the development
process in use and its potential weaknesses. While finding and fixing de-
fects is the QC role, and defect analysis aids in the repair of defects, the QA
practitioner needs defect data to help identify potential process flaws. The
defect data also are useful as empirical information that can aid decision-
making, action-capable management in its process modifications.

5.9 The next step
No text can cover the entire scope of software metrics, but these two are
good starting points:

• Practical Implementation of Software Metrics by Paul Goodman
(New York: McGraw-Hill, 1993).

• Practical Software Metrics for Project Management and Process Im-
provement by R. B. Grady (Englewood Cliffs, NJ: Prentice-Hall,
1992).

Practical Guide to Software Quality Management

116

Additional Reading

Blakemore, John, The Quality Solution, Melbourne: Information Australia,
1989.

Feigenbaum, Armand V., Total Quality Control, New York: McGraw-Hill,
1991.

Humphrey, Watts S., Managing the Software Process, Reading, MA:
Addison-Wesley, 1989.

Jones, Capers, Applied Software Measurement, New York: McGraw-Hill,
1991.

Kan, Stephen H., Metric and Models in Software Quality Engineering,
Reading, MA: Addison-Wesley, 1995.

Logothetis, N., Managing for Total Quality, Englewood Cliffs, NJ:
Prentice-Hall, 1992.

McConnell, John, The Seven Tools of TQC, 4th Ed., Manly Vale, Australia:
Delaware Books, 1992.

Musa, John D., Anthony Iannino, and Kazuhira Okumoto, Software
Reliability Measurement, Prediction, Application, New York:
McGraw-Hill, 1987.

Defect analysis

117

Practical Guide to Software Quality Management

Chapter 6
Configuration management

CM is the discipline that ensures that the state of the software at
any given time is known and reconstructable. CM is a discipline
that covers hardware as well as software, but in this text CM will

be limited to software unless specifically stated otherwise.
CM comprises three basic elements: configuration identification

(CID), configuration control (CC), and configuration accounting (CA).
While each element may be invoked without the others, CM is incomplete
in the absence of any of them.

CID provides a method for specifically and uniquely identifying each
instance (e.g., release, version) of a given software product or set of prod-
ucts. By the use of a standard naming convention that allows for the iden-
tification of every instance of the product, each new draft of a document or
each new compilation of a unit can be specifically identified.

119

CC is the element that ensures that each change to an instance of the
product is known, authorized, and documented. CC includes the activities
of the change control board (CCB), which reviews and authorizes changes
to the documents and code as increasingly formal control is placed on the
developing software system. The software library may also be included as a
function of CC.

CA serves to maintain track of the status of each instance of the prod-
uct. This function becomes increasingly important as units and modules
are integrated into subsystems and systems. It is obvious that the specific
parts of a given system must be known so the system itself can be known.
CA is also the element that assigns and tracks the status of each baseline of
the requirements, design, code, and so on, as the software effort proceeds.
Another growing requirement for configuration accounting is the case of a
basic product that is adapted for use in multiple installations, each with
slight variations in the total requirements set.

Figure 6.1 presents an overview of CM processing.

Configuration
identification

Identified
configuration

items

Configuration control

Product
description

Approved
changes

Configuration
(status)

accounting

Baselines
and records

Changes

Baselines

Control
procedures

Figure 6.1
Configuration
management

overview.

Practical Guide to Software Quality Management

120

6.1 Configuration management components
Traditionally, CM has included identification of the items to be configura-
tion managed, control of the changes to the identified items, and mainte-
nance of the status of each item.

6.1.1 Configuration identification
Configuration identification permits unique and uniform naming of each
component and product of the total software system down to the lowest
separable level.

Any system, including a software system, is separable into smaller and
smaller parts down to some desirable, manageable level. In this text, the
lowest level of a software system—that is, the smallest component that can
be assembled or compiled—is called the unit. Increasingly larger compo-
nents are the module, the subsystem (there may be more than one level of
subsystem, depending on the size of the system), and finally the system it-
self. The documentation goes through a similar separation, from the origi-
nal requirements statement to the individual module and unit design
specifications, the code, and the test procedures.

Each of these subdivisions, code components, and documents will go
through multiple issues as they are developed. The primary issue usually is
called a release. This is a formal issue and usually represents a baseline. Af-
ter a release has been issued, updates to the release are made, often called
versions. Versions represent significant changes to the release but not
wholesale modification or replacement. Finally, in some large systems,
there may be reissues of versions that may be little more than recompiles or
document updates to make editorial or minor corrections. These low-level
issues may be called editions. The actual terms used are up to the individ-
ual organizations. As in most areas of software engineering, there are no in-
dustrywide standard names for these levels of products. Figure 6.2 shows
an example of a hierarchical structure of these product levels.

It is clear that the management of all of the subdivisions and issues is
critical to the development and delivery of a quality software system. The
first step in the CM of all the various subdivisions and issues is to give each
a unique identifier. That is the role of CID.

Configuration management

121

As each product—a component of code or a document—comes into be-
ing, it must be assigned an identifier that will depict its instance, its “par-
ent” (the next larger component of which it is a part), and its “age” (when
it was created). In that way, users of the product can be sure they have the
exact issue that is appropriate for their use. As shown in Figure 6.2, each
level carries the name of its parent for continuity in identification. Not
all identification schemes carry this information, as will be seen in
Section 6.2.1.

6.1.2 Configuration control
CC ensures that all—and only—approved changes are made to the baseline.

Once a baseline has been established, all changes to it must be acted
on with increasing formality and control. Early in the development, there
normally are few products to consider as changes are made. There is, for
example, usually only one requirements document. Changes to that one
document early in the requirements phase may be easy to track and record
and so may require less formal control than the entire system during accep-
tance testing. As the system becomes more and more subdivided into its
lower level products or component parts, defects become more expensive
to correct. Therefore, control of changes becomes more stringent.

When the software system is under formal CM, changes are proposed
in a formal manner, for example, a change request form or an STR. These
requested changes are reviewed by a software CCB, which evaluates such
things as impact on other software components, cost, and schedule. Ap-
proved changes are then prepared and tested, and, if successful, they are
implemented into the affected component by means of an SCN (as de-
scribed in Section 6.3.3). The SCN gives formal notice that the software or
a document has been changed. The SCN is also notification to the CA ele-
ment that a change has been made to the current baseline.

Edition

Release

Version Version

1.0

1.1

1.1.1
Figure 6.2

Documentation
levels.

Practical Guide to Software Quality Management

122

It is the intent of all of CM, but especially CC, to be sure that the soft-
ware products (the code and the documentation) stay in step with one an-
other and that no changes are made without proper consideration and
approval. It is one role of the software quality practitioner to verify that the
CM program is sufficient to accomplish that task and that it is being
followed.

6.1.3 Configuration accounting
CA maintains and records the status of each baseline and its history. It may
also be called on to account for multiple instances of the products, such as
those in Figure 6.2.

Baselines
The establishment of a baseline generally occurs as the result of a major
phase-end review. The importance of a base line is that it represents the
starting point for all changes as the product evolves. As shown in
Figure 6.3, there are five commonly recognized baselines that should be
established. These baselines and their phase-end reviews are:

• Functional baseline (SRR);

• Allocated baseline (PDR);

• Design baseline (CDR);

• Product baseline (TRR);

• Operational baseline (FA/PA).

Informal inprocess baselines are established if they are necessary for a
particular development consideration.

Phases Baselines

Defining

Designing

Implementing

Testing

Maintaining

Functional

Allocated
Design

Product

Operational

Operational
(evolving)

SRR

PDR
CDR

TRR

FA
PA

Figure 6.3
Common baselines.

Configuration management

123

Instances
Instances of a product may occur when changes occur, variations evolve, or
the software product exists in multiple forms.

The simplest instances are those that happen each time a product un-
dergoes any change. Quite often, especially during the development of
drafts of a document, those instances are not recorded and “disappear.”
Only when CM is required do the instances take on names and recorded
existence. New instances arising from the modification of an existing prod-
uct—usually as a result of a correction or an enhancement—are called suc-
cessors. Figure 6.4 depicts the creation of a successor.

When different installations of a software system require minor vari-
ations in the functional or other requirements, but the basic system is in-
tact, variants are created, as depicted in Figure 6.5. CM of variants is
extremely important in situations such as the same software running on
various platforms and having to perform identical functions with slightly
different, platform-dependent differences. Another instance of variants
might be weapon system software running on identical computational plat-
forms but on different weapons platforms such as aircraft versus shipboard
installations. Graphical user interfaces and client-server installations often
need slight modifications to permit implementation on multiple hardware
configurations without affecting the users’ perception of software
performance.

Starting
instance

C I
A1212
version 1

C I
A1212
version 2

Revision
process

Approved
changes

Resulting
instance

Successors are revised instances of an item

Figure 6.4
Successors.

Practical Guide to Software Quality Management

124

Equivalents are multiple instances of a product in which the content is
identical. Equivalents normally are associated with multiple copies of a
product, such as purchased applications that are reproduced on disks or
other media. Equivalents also are created when a document or software ap-
plication is copied from a floppy to a hard disk, for example. The specific
medium of the equivalent is not a factor, other than to those customers who
want a specific medium. The key to equivalence is identical content, not
medium. Figure 6.6 shows equivalents on various media.

Variants are alternative versions of an item

Item
design 1

Item
design 2

Basic
functional
requirements

User 1
special
needs

User 2
special
needs

Figure 6.5
Variants.

Equivalents must have identical content
but may exist in different media

Master

Copy n

Copy 2

Copy 1

Figure 6.6
Equivalents.

Configuration management

125

CA keeps track of the instances of individual products and their rela-
tion to the established baselines. It also records which smaller or lower
level components make up each higher level component; that is, which spe-
cific units go together to make up which specific module. Further, CA re-
cords all approved changes made to the current baseline. Accounting for
all approved, but outstanding, changes also is provided. In that way, the
CM requirement for providing reconstructability is met.

6.2 Configuration identification
CID involves selecting the items to be configuration managed and giving
each of them a unique identifier or name.

6.2.1 Configuration item
Each component of the software is a manageable configuration item (CI).
Each project will decide the level of component that will become the lowest
managed item.

A CI is any product—any component of the software, documentation,
code, and, in some cases, storage medium (e.g., memory chip)—that has a
unique CID. Thus, CID can be applied to everything produced during the
SLC. In fact, for most large-scale software systems, that is true. Compilers
and assemblers usually are constructed so as to append an updated CID to
each new assembly or compilation.

Each CI must have a unique identifier to differentiate it from all its
predecessors and successors. The identifier should show the CI’s parent;
that is, the next higher level of configuration and the specific issue at that
level. There must also be a clear indication of the status of the CI. The CID
must show at least the release, the version, and, if used, the edition of the
CI. In documentation, that generally is a simple document name followed
by an issue indicator. For code CIs, it is much more important to show the
sequence of compilation or assembly, so that work can be performed on
the most recent or up-to-date instance of the CI. As integration proceeds
and delivery is made, the situation be comes more critical. The software
system being tested must be exactly known, down to the unit level, so that
when changes are made, only the correct instance of each component is
affected.

In the simplest form of identification, each CI is sequentially num-
bered, starting with 1 and continuing until the last CI has been created.
This system fulfills the requirement of unique identifiers for each instance
of each CI, but there is little “intelligence” contained in the name. Clearly,
a table of numbers versus the CIs would be needed to indicate which prod-

Practical Guide to Software Quality Management

126

uct was which. This base-level naming scheme would be suitable for only
the smallest of software projects. In a slightly more informational scheme, a
date-and-time-of-creation tag could be used. This scheme presumes that
two CIs cannot be created at the same instant. As in the case of the sequen-
tial numbering approach, though, a table showing the correspondence be-
tween a specific name and the exact CI to which it applies would be
required.

Figure 6.7 depicts two examples of those simple schemes as well as a
much more elaborate identification scheme that is more likely to be of the
type most software projects would use. In the third scheme, each level of
the system has its identifier included in the name. With some care, a certain
amount of intelligence can be built into such a naming approach. The char-
acters chosen for each level name can be related to the level so the user can
recognize products without an elaborate cross-reference table. Of course, if
the number of CIs is large, a reference list may be necessary just to keep
track of what the codes in each field stand for.

An intelligent scheme is one in which
characters are assigned to describe
selected characteristics of the product

Character meaning is position dependent

XXX Y ZZZZ WW UU TT SS

Project

Product type

Product identifier

Storage medium Installation site

Release

Version

Edition

A simple scheme is one in which
the name is not intended to convey
any information about the item other
than a unique identifier

Examples

- 0001 (Sequence)

- 8401271042
(Date-time; elements
cannot occur in
parallel)

Figure 6.7
Naming schemes.

Configuration management

127

In any case, the CID must be suited to the software system being devel-
oped. Clearly, very large software systems will require more elaborate nam-
ing schemes than very small systems. Further, the CID should, to the
extent possible, be based on a standard CID method throughout the or-
ganization. Using a single scheme throughout the organization makes it eas-
ier for the CM practitioner to operate on more than one project at a time.
Having a separate naming approach for each project, or even groups of sev-
eral projects, increases complexity unnecessarily.

6.2.2 Release
A release is a major instance or issue of a product. A release usually occurs
at a milestone and often is the baseline of the product as defined at that
milestone. Once the software is placed into operation, a release represents
an entire new issue of the software product. The term release is usually ap-
plied to the reissue of a product at its highest level.

6.2.3 Version
Each time a component is formally reissued, recompiled, or assembled for
inclusion in its parent, a new version of all higher level components is
created.

The concept of version is usually rather subjective and reflects the
needs of the organization and the project. In general, a new version is cre-
ated any time there is a major update to a component. A revision to a docu-
ment is usually considered to be a new version. (This is a smaller case than
the release, which is the issuance of the document with all revisions to all
components fully integrated.) A new compilation of a code component for
inclusion in the next higher level component is also generally considered to
be a new version.

Each component of a system, down to the unit level, can be considered
to be a replaceable part of the whole. A code CI at the unit level is a part of
a code CI at the module level. A module is a part of a subsystem, and so on.
There is a less clear inclusive relationship between documents, but the
same principle applies. A design specification describes the detailed re-
sponse to some portion of the requirements. Design changes may be an
affect related requirements. In a document, a chapter or major section is
clearly a part of the whole document.

When a large (large is a subjective term, sometimes determined by an
arbitrary standard suitable to the software of the organization) number of
changes is made as a group, a new version is created. This is often associ-
ated with a set of changes to a functional aspect of the software. For exam-
ple, if a new module is introduced into a subsystem, a new version of the

Practical Guide to Software Quality Management

128

subsystem is created. If a new chapter or major section is inserted into a
document, a new version of that document is created. Changes that correct
defects but do not change the basic design or functional intent of the com-
ponent might not warrant the designation of a new version.

6.2.4 Edition
Some organizations may find it useful to define a third level of product in-
stance, called the edition. Each time any component of a system is recre-
ated, a new edition is formed.

The creation of a new edition is any action that changes any compo-
nent of the system. While this is a true statement, not all projects or organi-
zations use this concept for CID. On small projects, it is sometimes not
worth the extra effort to manage the configuration at that level. In most
cases, though, the information is available if it is wanted. Most compilers
and assemblers now include type of new edition indication as a part of their
normal processing, even if it is only a date and time record.

The use of the edition is important with larger systems since several
editions of the whole system may exist at any one time. Remember that any
variation in any component is also a variation in every superior level of
which that component is a part. Thus, if a change is made to a unit, that
change must be reflected in the CID of every level above that unit all the
way to the system level if integration is in progress.

At some point, there are sufficient editions present within a version to
make the creation of a new version appropriate. Thus, a new issue of the
component will be made with the version identifier increased and the edi-
tion identifier reset to its starting point. The new version will also cause rip-
ples up through the system, since its change must be reflected by all
components of which it is a part. Whether the superior components be-
come new releases, versions, or editions is a decision based on the overall
CM philosophy for the project or the organization.

6.3 Configuration control
CC is that part of CM concerned with the processing, approving, and in-
stallation of changes to the software products.

6.3.1 Change processing
Without an effective change processing mechanism, the software easily can
become unidentifiable and unmanageable. Change processing mechanisms

Configuration management

129

must be effective (“effective” does not necessarily mean complicated or bu-
reaucratic). Figure 6.8 presents a simple process for incorporating changes.

Changes come from two sources: defect corrections and enhance-
ments. To the change processing system, it matters little which source is in-
volved. Each change must be requested, prepared, tested, approved, and
implemented. It is the change processing activity that ensures that all re-
quired steps have been taken.

Once the software is baselined, all changes are referenced to the base-
line in effect. It is important that all changes be controlled so that their
effects can be tracked. The control of the changes depends on the stage in
the SLC, various organizational factors, standards, and project priorities.
The customer, who may have to pay for the changes, also is interested in
change processing. The trail of the change, from its inception as the result
of a defect or an enhancement request, must be clear. All steps in the
change process are important; ignoring or skipping one or more of them
can introduce mistakes, thus necessitating further changes.

Defects make changes necessary. Obviously, changes are the methods
by which defects are corrected. The full defect tracking process was dis-
cussed in Chapter 5, so suffice it to recognize here that the change process
is not limited to defect correction alone.

Enhancements are a major source of changes as the deployed software
matures and new capabilities are needed. There are many cases in which
the software system is implemented in a phased manner, starting with a

Evaluate
request

C

Suggester

Identify
need

A

Request
change

B

Not
approved

A = Anyone
B = STR
C = CCB
D = Developer
E = CM
F = Librarian

External
constraints

Design
change

D

Create
need

D

Document
change

E

Incorporate
change

F

Approved

Figure 6.8
Incorporating

changes.

Practical Guide to Software Quality Management

130

smaller capability and gradually adding functions until the full required sys-
tem is available. These changes are processed in the same manner as de-
fects; that is, they are proposed, designed and tested, approved, and
implemented.

The software CCB can be seen here as playing an important role. It is
the CCB that makes the final determination as to whether the change is
made at all and, if so, when it will be made. The CCB is responsible for
making sure that changes are carefully analyzed and that all associated soft-
ware effects are considered. The software quality practitioner is usually a
member of the CCB and so can report on the quality aspects of the change
and whether the quality requirements have been met.

Figures 5.1 and 5.2 showed examples of forms designed for the pur-
pose of initiating and tracking a change through its processing. Change
processing also often uses automated tools, such as spreadsheets, database
management systems, and full CM systems, to assist in the management of
changes.

6.3.2 Change control boards
The software CCB is the final approval authority for the implementation of
software changes. Coordination of changes and their intercomponent
effects is the responsibility of this body.

The size and membership of the CCB depend on the standards of the
organization and the needs of the project. All affected functions should be
represented on the CCB so it can adequately review requested changes. In
most cases, members come from each functional area (usually at the sub-
system level), CA, CC, and the hardware areas involved, if appropriate. In
addition, the software quality practitioner is expected to be a member of
the CCB. In some organizations, a representative of the internal audit
group is also an appropriate member.

Size is a factor in the efficacy of the CCB. If the group is too large,
things may not get done in a timely manner. If, on the other hand, the
proper areas are not represented, changes may be approved that adversely
affect other parts of the system.

It is the responsibility of the CCB to review all proposed changes for
their correctness and their effect on the baseline. Interactions with other
parts of the software system are considered, as well as impacts on the sched-
ule and cost. Especially in the case of cost and schedule, the customer is a
necessary member of the CCB. There also may be cases in which a change
will affect the system requirements. In those cases, the customer or user
must be present to agree that the change and its impact are permissible.

The impact of the change on the documentation is also considered by
the CCB. Any change that affects higher level components probably also

Configuration management

131

affects the documentation of that level. Some changes may affect documen-
tation all the way back to the requirements of the system. If the documenta-
tion is not updated as changes are made, the task of the software maintainer
is made much more difficult. If the documentation is not up to date, the
maintainer must regenerate it before beginning useful work on the next
change.

There are instances where multiple CCBs are convened. That may be
especially true in the case of very large or multiple-contractor projects. At
the software development level, an informal CCB may review changes
within subsystems and the overall system as the changes are proposed.
These informal boards serve to prepare the changes for the more formal
software CCB to which the changes will be submitted for final approval. At
the same time, there is likely to be a hardware CCB working with the pro-
posed changes to equipment involved in the system.

In the case of large systems involving hardware as well as software,
there will be hardware CCBs paralleling the software CCBs. In addition,
there will be an overall system CCB to review changes that affect perform-
ance, cost, schedule, hardware-software interface, and other global con-
cerns beyond the scope of the lower CCBs. In the case of multiple CCBs, it
is imperative that a written description of the relationships among the
CCBs be prepared. That will ensure that there are no conflicts over author-
ity and that no areas of concern are left unheeded.

The software quality representative to the CCB must make certain that
all software quality system requirements for the project are being met. Of
particular interest to the software quality representative will be the test
plans for a change and the regression tests on the rest of the system to en-
sure that no unexpected impacts are being felt. Changes are to be tested to
the same, or even greater, rigor as original development.

6.3.3 Software libraries
Ultimate access to configuration-controlled code is through the software
library.

The software library is the repository of the official issues of all docu-
ments and code. The librarian is responsible for the control of the
baselined system and all current issues of the documents and code. There
must be formal procedures for the entry of a particular issue of a compo-
nent into the library. Equally formal procedures are used to gain access to
the official issues of the components.

Provisions will be made for authors and programmers to access work-
ing copies of the official issues but not to enter them back into the current li-
brary. There will also be procedures for maintaining cognizance of which

Practical Guide to Software Quality Management

132

working copies are being used, so that two changes are not being made to
the same component at the same time without knowledge of the changers.

Once the formal change procedures have been followed, and the CCB
has authorized the implementation of a change, an SCN will be generated
that tells the librarian to update the current official issue of the affected
component. In a well-controlled library, the SCN is the only way to effect a
change to the baselined system. Finally, it is the library that prepares the
full system for formal delivery to the customer. Along the way, the library
will prepare official issues for testing and operation. (Figure 5.2 suggested
a format for an SCN.)

As reuse of existing software products becomes more prevalent, the
software library’s responsibilities usually are increased to include the man-
agement and control of reusable items. Not only the item or product itself
but the applicable documentation describing the item and its appropriate
usage must be available and configuration managed. Reuse of items usually
requires some sort of modification to the item so that it correctly fits its new
use. Those modifications create variants of the item, which will be man-
aged and controlled just like the original. It is worth repeating that each in-
stance of any CI or product must be carefully managed and its status and
baseline records maintained.

It is frequently the additional task of the library to be the repository of
all documentation for the software system. In some cases, even contracts
and correspondence between the organization and the customer are kept
in the central library. The use of the library as a documentation center is
an effective way of ensuring that copies of requirements and design docu-
ments are available when needed and are of the most current issue.

6.4 Configuration accounting
Baselines mark major CI status levels of the software. However, while the
creation of baselines is of major importance in CA, the baselines only form
the basis for the actual accounting process.

6.4.1 Baselines
As shown in Figure 6.3, several baselines can be identified, but three of
them are most common. Each baseline usually is associated with a major re-
view marking the end of an SDLC phase. Again, there is no industrywide
standard for the names of the baselines. The names used here are common
in the defense arena.

The functional baseline is established at the SRR. At that point in the
SDLC, the requirements have been documented and reviewed, at the end

Configuration management

133

of the requirements phase, for compliance with the criteria discussed in
Chapter 3. The functions that will perform the processing necessary to
achieve the requirements in a hardware/software system are analyzed and
assigned to the hardware and the software as appropriate. Documenting of
the software requirements specifies the tasks assigned to the software and
what the software is going to do in performing those tasks.

The requirements are then allocated to functions and the design proc-
ess determines how each requirement is going to be fulfilled. This phase is
typically called preliminary design and may not be necessary for simple
software projects. When it is included in the system development method-
ology, it culminates in the PDR. The conclusion of the PDR results in the
allocated baseline.

At the end of the full design phase, the “code-to” design has been com-
pleted. It is validated in the CDR, which determines the design baseline.
It is the design baseline that determines the specification for the coding
activities.

Prior to acceptance testing on which user approval of the product is
based, an analysis of the results of all preceding testing is performed. On
the satisfactory completion of the TRR, the product baseline is established.
The product baseline is that instance of the software that will undergo ac-
ceptance testing.

At the end of acceptance testing and installation of the software and on
completion of the FA and PA, the operational baseline is established. The
operational baseline identifies the software as it is going to be delivered to
the user or customer. It is occasionally called the “as-built” baseline, since
it represents the actual system being delivered. (This is frequently not the
system that was originally specified in the initial requirements documenta-
tion.) After installation of the software system, the operational baseline will
continue to evolve as the software is maintained and enhanced throughout
its useful life.

Other baselines have various names and are instituted for specific pur-
poses within the organization. There are no hard and fast rules about how
many baselines there should be (other than those that are called out in soft-
ware development contracts). Each project or organization will determine
the applicable level of control needed for the project and will then impose
those baselines that fulfill the control needs.

Baselines are defined so that change control may be instituted. The
baseline determines the point of departure for all changes to a given status.
It is a fixed reference point and all changes are made to that reference
point. As CM is imposed with increasing rigor, the baselines become more
important as well. It is obvious that if the basis for changes is not known,
there is a good chance that the wrong component or instance of the compo-

Practical Guide to Software Quality Management

134

nent will be changed. There is also the danger that two changes may be
made to the same part of a component without the knowledge of each other.

6.4.2 Accounting
Given the baselines and the imposition of CC, the CA element keeps track
of the status of the software as it goes through the SDLC and operation. Re-
cords of all changes, reviews, and action items affecting the configuration of
the software are maintained by CA.

CA must monitor such things as the baselines themselves, where and
how they were established, and by whose authority. CA maintains the re-
cords of changes made to the current baseline and notes the date of the
change request, action of the CCB, status of the change in progress, and
data about the ultimate installation of the change.

Instance coordination
An important record maintained by CA is the exact composition of each in-
stance of each software component. The name, release, version, and edi-
tion of each product and each of its subordinate components are closely
monitored so that when changes are made, all CIDs of affected compo-
nents can be updated. Not only is this important in the changing of soft-
ware components, but it is critical to the coherence of the testing and
delivery activities. To test and accept one version of a component and then
deliver a different version is not conducive to quality software development
or installation.

Figure 6.9 depicts a situation in which different versions of products
were delivered. In this case, without more information, the user would not
know whether the products were internally consistent. Rigorous CA will
lessen the likelihood that incompatible instances of related software prod-
ucts will be delivered and used.

? ? CODE
ver 6.8

R
E
Q
T
S

ver.
1.3

D
E
S
I
G
N

ver.
2.1Figure 6.9

Mismatched
products.

Configuration management

135

Instance tracking
As newer technologies, such as client-servers, are implemented, the role of
CM, especially CA, becomes even more important. In the mainframe envi-
ronments still in use throughout the world, most software products exist in
only one or two instances. CM is important but not as heavily taxed as in
the newer, distributed information processing installations. It is critical to
keep track of environmental software such as operating systems, languages,
database managers, and so on, so that applications will be subject to the en-
vironments for which they were prepared.

Multiple application instances are also frequently present in distrib-
uted systems. CM, particularly CA, must ensure that the expected in-
stances of processing applications are called by the user. Maintenance of
the environments and applications also depend on CM to ensure that
modifications are correct for the product concerned and are applied to the
intended products. Coordination of modifications between variants of
products becomes a serious concern.

6.5 Summary
CM is the discipline that ensures that the state of the software at any given
time is known and reconstructable. It is composed of three basic elements:
identification, accounting, and control.

CID permits the uniform naming of each software component and
product, down to the lowest separable level.

Baselines, specific points of departure for a new set of development ac-
tivities and changes, are constructed by the CA portion of CM. CA main-
tains and records the status of each baseline and its history. Baselines mark
major CI status levels during the SLC. They are usually associated with ma-
jor milestone events (such as formal reviews) in the development cycle.

CC ensures that all approved changes are made to the software. It has
the equally significant obligation to ensure that no changes that have not
been properly approved are made.

A CI is any product of the software development process that is to be
configuration managed. Each CI must have a unique identifier to differenti-
ate it from all the other software development products and other instances
of the item itself.

Ultimate access to the SLC products, so that changes can be made, is
through the software library, which is the repository of the official, ap-
proved issues of all documents and code. Changes to the products of the
software development process come from two main sources: defect correc-
tion and enhancements. Without an effective change processing mecha-
nism, the software can easily become unidentifiable and unmanageable.

Practical Guide to Software Quality Management

136

Coordination of changes and their intercomponent effects is the task of
the CCB. The CCB is responsible for determining that all effects of the pro-
posed change have been anticipated and reconciled. Especially important
is the control that the CCB exercises over the creation of new instances or
versions of the various software system products. Once CM has been im-
posed on the project, it is the CCB that has the authority to approve
changes and to permit the updating of the various issues of the products. It
is the responsibility of the software quality practitioner to monitor the func-
tioning of the CCBs.

6.6 The next step
To begin your CM program or to see if it is up to date, consult the follow-
ing texts:

• Software Configuration Management by H. Ron Berlack (New
York: John Wiley & Sons, 1992).

• Implementing Configuration Management: Hardware, Software and
Firmware, 2nd Ed., by Fletcher J. Buckley (New York: IEEE Press,
1995).

Additional Reading

Babich, W. A., Software Configuration Management Coordination for
Team Productivity, Reading, MA: Addison-Wesley, 1986.

Compton, Stephen B., and Guy R. Conner, Configuration Management
for Software, New York: Van Nostrand Reinhold, 1994.

Daniels, M. A., Principles of Configuration Management, Advanced
Applications Consultants, North Babylon, NY, 1985.

Pressman, Roger S., Making Software Engineering Happen: A Guide to
Instituting the Technology, Englewood Cliffs, NJ: Prentice-Hall, 1988.

Configuration management

137

Practical Guide to Software Quality Management

Chapter 7
Associated quality concerns

Some issues, while of concern to the software quality practitioner, are
usually outside the practitioner’s direct responsibility and authority.
Nonetheless, they have no less impact on the quality of the software

system. This chapter discusses four important software quality issues.
The role of the software quality practitioner with respect to these is-

sues is to ensure that decision-making, action-capable management is
aware of their importance and impact on the software system during its de-
velopment and after its implementation. These important issues are secu-
rity, education of developer and users, management of vendors, and
maintenance of the software after implementation.

139

7.1 Security
Security is an issue that is frequently overlooked until it has been breached,
either in the loss of or damage to critical data or in a loss to the data center
itself.

Security has three main aspects. Two of these aspects deal primarily
with data: the security of the database and the security of data being trans-
mitted to other data centers. The third aspect is that of the data center itself
and the protection of the resources contained therein.

The software quality practitioner has the responsibility not to protect
the data or the data center but to make management aware of the need for
or inadequacies in security provisions.

7.1.1 Database security
The software quality concern of data security is that the data used by the
software be protected.

Database security is twofold. The data being processed must be cor-
rect, and, in many cases, restricted in its dissemination. Many things affect
the quality of output from software. Not the least of those is the quality of
the data that the software is processing. The quality of the data is affected
in several ways. The correctness of the data to be input, the correctness of
the inputting process, the correctness of the processing, and, of interest to
security, the safety of the data from modification before and after process-
ing are all database security issues.

Data modification can be in the form of inadvertent change by an incor-
rectly operating hardware or software system outside the system under con-
sideration. It can be caused by something as simple to detect as the
mounting of the wrong tape or disk pack or as difficult to trace as faulty cli-
ent-server communication. From a security point of view, it also can be the
result of intentional tampering. A disgruntled employee who passes a mag-
net over the edges of a tape to scramble the stored images and the hacker
who finds his or her way into the system and knowingly or unknowingly
changes the database can be a threat to the quality of the software system
output. Large distributed computing installations often are victims of the
complexity of data storage and access activities. While usually not responsi-
ble for the design or implementation of the database system, the quality
practitioner should be aware of the increasing security concerns as the sys-
tems become more widely disbursed or complex.

The physical destruction of data falls into the area of data center secu-
rity, which will be discussed later. Modification of the data while they are
part of the system is the concern of data security provisions.

Practical Guide to Software Quality Management

140

Database security generally is imposed through the use of various pass-
word and access restriction techniques. Most commonly, a specific pass-
word is assigned to each individual who has access to the software system.
When someone attempts to use the system, the system asks for identifica-
tion in the form of a password. If the user can provide the correct pass-
word, he or she is allowed to use the system. A record of the access usually
is kept by a transaction recording routine so that if untoward results are en-
countered, they can be “backed out” by a reversal of the actions taken. Fur-
ther, any damage to the data can be traced to the perpetrator by means of
the password that was used.

This scheme works only up to a point. If care is not taken, passwords
can be used by unauthorized persons for access to the system. For that rea-
son, many systems now use multiple levels of password protection. One
password may let the user access the system as a whole, while another pass-
word is needed to access the database. Further restrictions on who can
read the data in the database and who can add to it or change it often are in-
voked. Selective protection of the data also is used. Understanding data-
bases and the logical and physical data models will help the quality
practitioner recommend effective security methods.

A typical system of data protection is shown in Figure 7.1. The first
control is an unlisted telephone number that accesses the computer. A user
who has the telephone number and reaches the computer must then iden-
tify himself or herself to the computer to get access to any system at all.
Having passed that hurdle and selected a system to use, the user must pass
another identification test to get a specific system to permit any activity. In
Figure 7.1, the primary system utilizes a remote subsystem that also is pass-
word protected. Finally, the database at that point is in read-only mode.
To change or manipulate the data, special password characteristics would
have to have been present during the three sign-on procedures. In that
way, better than average control has been exercised over who can use the
software and manipulate the data.

Another concern of database security is the dissemination of the data
in the database or the output. Whether or not someone intends to harm the
data, there are, in most companies, data that are sensitive to the operation
or competitive tactics of the company. If those data can be accessed by a
competitor, valuable business interests could be damaged. For that reason,
as well as the validity of the data, all database accesses should be candidates
for protection.

Associated quality concerns

141

7.1.2 Teleprocessing security
The data within the corporate or intercompany telecommunications net-
work also are a security concern.

Data contained within a database are vulnerable to unauthorized access
but not to the extent of data transmitted through a data network. Data net-
works include such things as simple, remotely actuated processing tasks
all the way to interbank transfers of vast sums of money. Simple password
schemes are rarely satisfactory in these cases. To be sure, they are neces-
sary as a starting point, but much more protection is needed as the value of
the data being transmitted increases.

Two concerns are of importance in regard to telecommunications.
The first concern, usually outside the control of a company, is the quality
of the transmission medium. Data can be lost or jumbled simply because
the carrier is noisy or breaks down, as depicted in Figure 7.2. Defenses
against that type of threat include parity checking or check sum calcula-
tions with retransmission if the data and the parity or checksums do not co-
incide. Other more elaborate data validity algorithms are available for more
critical or sensitive data transmissions.

Unauthorized access to the data is the other main concern of transmis-
sion security. As data are being transmitted, they can be monitored, modi-
fied, or even redirected from their original destination to some other
location. Care must be taken to ensure that the data transmitted get to their
destination correctly and without outside eavesdropping. The methods
used to prevent unauthorized data access usually involve encryption to pro-
tect the data (Figure 7.3) and end-to-end protocols that make sure the data
get to their intended destination.

Password

Modem Unlisted
number

Access
code

Figure 7.1
Dialup data
protection.

Practical Guide to Software Quality Management

142

Modem

Modem

?

?

Figure 7.2
Interruption.

Modem

Modem

• – • – • – • – – – – • • • – • •

Figure 7.3
Encryption.

Associated quality concerns

143

Encryption can be performed by the transmission system software or
by hardware specially designed for that purpose. Industries in the defense
arena use highly sophisticated cryptographic equipment, while other com-
panies need only basic encryption algorithms for their transmissions.

As in the case of prevention of loss due to faulty network media, the
use of check sums, parity checking, and other data validity methods are em-
ployed to try to ensure that the data have not been damaged or tampered
with during transmission.

Prevention of the diversion of data from the intended destination to an
alternative one is controlled through end-to-end protocols that keep both
ends of the transmission aware of the activity. Should the destination end
not receive the data it is expecting, the sending end is notified and transmis-
sion is terminated until the interference is identified and counteracted.

It is the responsibility of software quality to monitor data security pro-
visions and keep management informed as to their adequacy.

7.1.3 Viruses
A recent entry into the threat scenario is the computer virus. A virus is soft-
ware that is attached to a legitimate application or data set. It then can do
relatively benign, nuisance acts like blanking a screen or printing a message
announcing its presence. It also can be intended, like some more recent vi-
ruses, to be malignant, in that it intentionally destroys software or data.
Some viruses can even erase a full hard disk.

A virus usually is introduced as an attachment to software that, often in
violation of copyright laws, is shared among users. Downloading software
from a bulletin board is one of the more frequent virus infection methods.
Data disks used on an infected system can carry the virus back to an other-
wise healthy system, as shown in Figure 7.4.

Some viruses do not act immediately. They can be programmed to
wait for a specific date, like the famous Michelangelo virus, or, perhaps,

Figure 7.4
Virus introduction.

Practical Guide to Software Quality Management

144

some specific processing action. At the preprogrammed time, the virus acti-
vates the mischief or damage it is intended to inflict.

Many antiviral packages are available. Unfortunately, the antiviral “vac-
cines” can fight only those viruses that have been identified. New viruses
can cause damage before antiviral software is available.

The best defense against viruses, although not altogether foolproof, is
to use only software fresh from the publisher or vendor. Pirated software—
software that has not been properly acquired—is a common source of
infection.

7.1.4 Risk analysis
The best software systems in the world are not useful if they cannot be run.
That may seem like a rather basic concept, but the security of the data cen-
ter itself is often the last concern of an organization. The data center is at
constant risk from fire and water damage; any precautions taken usually are
in that area. Beyond that, most data centers overlook the potential for inter-
rupted processing due to severe damage. Unfortunately, few data centers
make provisions for temporary processing facilities in case of damage to the
center.

A formal risk analysis will expose the various types of damage to which
a specific data center is vulnerable and the degree of protection that is
appropriate.

Many physical risks may threaten a particular data center. Fire, of
course is the most widely acknowledged threat, and provisions are nearly
universal for prevention, detection, and extinguishing of fire. A second
commonly recognized threat is water, usually from above, in the form of
rain leakage or a burst water pipe. There, too, provisions for detection and
protection are common. Unfortunately, protection frequently stops there
because other risks are not recognized or given credence. A risk analysis
can point out additional threats against which protection may be required.

A risk analysis may show the potential for severe weather damage that
is a real factor in hurricane and tornado regions and in areas where heavy
snow can damage roofs. The potential for fire damage may be shown to ex-
ist not only within the data center but immediately outside it, such as in ad-
jacent warehouses or office areas. The proximity of landing aircraft or
railroad sidings presents the possibility of damage from accidents outside
the center. Electrical power transmission lines in the immediate vicinity
could break in a storm and fall onto or into the data center.

Intentional damage is a real threat, as well. One data center was
flooded by a recently discharged employee who went to the top floor of the
building and opened the fire hose connection. That occurred on a week-
end, when the bulk of the building was deserted. By the time the basement

Associated quality concerns

145

data center first noticed the presence of water, there was sufficient water on
the way to flood the center to a depth of five feet. A risk analysis per formed
prior to the installation of the data center may have warned against its being
placed in the basement, where water would have nowhere else to go. A sec-
ond data center had no thought of intentional damage being done to it until
a terrorist bomb destroyed a nearby data center. Again, risk analysis could
have shown the danger of building the data center in that particular
location.

Not all risks are preventable. In fact, some are inevitable, so no real pre-
vention can be provided. Others will cause such little negative effect as to
be ignored. Each risk must, however, be identified before such judgments
can be made. Risk analyses help the diligent data center determine the best
places to spend its protection dollars. Determining that a particular factor
is of little or negligible risk is as important as finding those factors that do
present risk. Once the risks and their costs of occurrence are known, pre-
ventive or protective action can be taken.

7.1.5 Disaster recovery
A specific plan of recovery should be developed and tested to ensure con-
tinued operation in the case of damage to the data center.

Even the best risk analysis, prevention, detection, and correction are
not always enough to avoid damage that can prevent the data center from
operating for some period of time. Many companies are now so dependent
on their data processing facility that even a shutdown of a few days could
be life threatening to the organization. Yet the majority of companies have
done little or no effective planning for the eventuality of major damage to
their data centers. Sometimes a company will enter into a mutual assistance
agreement with a neighboring data center. Each agrees to perform emer-
gency processing for the other in the event of a disaster to one of them.
What they often fail to recognize is that each of them is already processing
at or near the capacity of their own data center and has no time or re-
sources to spare for the other’s needs. Another fault with that approach is
that the two companies often are in close physical proximity. Although that
makes assistance more convenient from a travel and logistics viewpoint, if
the disaster suffered by one of them was the result of a storm or serious acci-
dent like a falling airplane, the odds are high that the backup center also
suffered significant damage. Now both of them are without alternative
facilities.

One answer to these threats is the remote, alternative processing site.
A major company may provide its own site, which it keeps in reserve for an
emergency. The reserve site normally is used for interruptable processing
that can be set aside in the case of a disaster. However, because a reserve

Practical Guide to Software Quality Management

146

site is an expensive proposition, many companies enroll in disaster recov-
ery backup cooperatives. These cooperatives provide facilities of varying
resources at which a member company can perform emergency processing
until its own center is repaired or rebuilt.

Two conditions must be in place to augment the backup processing
center approach. The first condition, usually in place for other reasons, is
the remote storage of critical data in some location away from the data cen-
ter proper. That way, if something happens to a current processing run or
the current database, a backup set of files is available from which the cur-
rent situation can be reconstructed. The backup files should be generated
no less frequently than daily, and the place in which they are stored should
be well protected from damage and from unauthorized access as a part of
the overall data security scheme.

The second necessity in a disaster recovery program is a comprehen-
sive set of tests of the procedures that will enable emergency processing to
commence at the remote backup site. All aspects of the plan, from the origi-
nal notification of the proper company authorities that a disaster has oc-
curred through the actual implementation of the emergency processing
software systems at the backup site should be rehearsed on a regular basis.
Most backup cooperatives provide each member installation with a certain
number of test hours each year, which need to be augmented by a series of
tests of the preparations leading up to the move to the backup site. Notifica-
tion procedures, access to the backup files, transportation to the backup
site, security for the damaged data center to prevent further damage, provi-
sion for the acquisition of new or repaired data processing equipment both
for the backup site and the damaged data center, provisions for telecommu-
nications if required, and other types of preparations should be thoroughly
documented and tested along with the actual operation at the backup site.

Software quality practitioners are natural conductors for the tests,
since they must ensure that the disaster recovery plan is in place and that
the emergency processing results are correct. Further, software quality is
the reporting agency to management on the status of disaster recovery
provisions.

7.2 Education
Education of personnel in the proper performance of their tasks is impor-
tant to the production and use of quality software systems.

Education, while rarely provided by the software quality group, is a
necessary step in the provision of a quality product. The software quality
practitioner has as one responsibility the monitoring of the educational ac-
tivities that surround the development and use of software systems. Educa-

Associated quality concerns

147

tion is one of the elements of the SQS that is most often delegated to an-
other group in the company. While software quality practitioners will
monitor and report on the educational status with regard to each develop-
ment project, they rarely are the educating facility. Most companies utilize
an inhouse education group, video courses, outside instructors, outside
seminars, and hands-on or on-the-job education and training methods.

Programmers must be taught the proper use of programming lan-
guages and software development facilities for their assignments. Users
must be taught the proper ways to use the software system and its results.
The operations personnel need to learn the correct procedures for running
the system. And, finally, the various support groups, including software
quality, must be educated in the proper performance of their tasks.

7.2.1 Developer education
The production of a quality software system depends heavily on the per-
formance of the producers.

Developers—the designers, analysts, coders, and testers—must know
their jobs in order to contribute to the production of a quality software sys-
tem. All the participants must have the proper training and background to
permit them to do their jobs correctly. Inadequate education, missing expe-
rience, and lack of training all can contribute to lower than acceptable per-
formance and, thus, lower than acceptable quality in the end product.

It is obvious that a system designer who knows little about the system
being designed can bring little insight into the solution of the problem.
To expect a designer well schooled in accounting systems to be a top per-
former on a radar guidance system without specific education in radar
theory and practice would be an invitation to a product with questionable
reliability.

New techniques for design and programming are being developed at a
rapid pace. While not every new technique can or should be applied to
every project, the more experience and education in the various techniques
that a staff has, the more likely it is that the best approach will be taken.
Some techniques, like structured design and programming, have been
widely accepted as the standard approach to be taken in all cases. Newer
techniques are beginning to show that, while it is a fine methodology in
many situations, structured design and programming are not always the
best methods. Techniques such as rapid prototyping, automated design,
and program design languages are being shown to be superior in a growing
number of applications. Better techniques usually mean better results and
higher productivity. Education of the development staff can lead to the im-
plementation of that software development methodology best suited for the
specific application.

Practical Guide to Software Quality Management

148

Equally important to the development of quality software systems is
the fluency of the programming and coding personnel in the language in
which the system is being written. One of the more important education
concerns of the software quality practitioner is that the developers be
knowledgeable in the language to be used for the system. While emphasis
generally is on the coders, it is also important that the designers and testers
be well trained in the language. That way, the designers can express design
considerations in terms more understandable to the coders and help the
testers understand the intricacies of the code itself.

Another area of educational concern is the background environment to
be used during the development. Such things as operating systems and da-
tabase management systems greatly affect the design and implementation of
the software and should be well understood by the developers. Failure of
the developers to recognize the various characteristics of the software envi-
ronment can cause many headaches later in operation and testing. Even the
operation of the desktop terminal cannot be overlooked in the educational
process. Software development is a labor-intensive activity, and many
tools, techniques, and methodologies are coming forth. Computer-aided
software engineering; object-oriented techniques; client-server and distrib-
uted processing; local-, wide-, and municipal-area networks; value-added
networks; test tools; database management applications; visual develop-
ment languages; graphical user interfaces; and the like are all areas of chal-
lenge to the information technology developer. The quality of the
development and the productivity of the developers depend to a large ex-
tent on the level of education, training, and experience of the developers.

7.2.2 Support training
Support includes both the development environment that must be main-
tained and the ancillary activities such as software quality, configuration
management, testing, and security.

As already mentioned, developers need to be schooled in the program-
ming environment, such as the operating system and the database manage-
ment system. They need to know how the environment is going to affect
the software being developed and vice versa. Care must be taken, though,
that the personnel charged with the creation and maintenance of that envi-
ronment are well educated in their tasks. In addition, the developers must
be well educated in the specific development methodology to be used on a
given project. Development methodologies such as structured and object-
oriented analysis and design techniques and fourth-generation languages
require detailed understanding if they are to be applied beneficially.

As Figure 7.5 shows, the development staff is at the center of and is
supported by a much larger environment. Failures in any of the surround-

Associated quality concerns

149

ing fields can seriously affect the ability of the developers to accomplish
their assigned tasks.

The area commonly known as systems programming includes the oper-
ating systems and various language systems. Without them, there is no
software development at all and effectively no maintenance. The software
quality practitioner is responsible for ensuring that an adequate and ongo-
ing education program is provided for the systems programming staff.

Database administration, security measures, and telecommunications
are also present in most organizations. Poorly trained or inexperienced per-
sonnel in those groups also must receive the necessary training and educa-
tion to keep them able to cope with the advances being made in those
disciplines and the growing dependence of the total organization on them.

The testing group is a frequently overlooked area for education. The
test group should be knowledgeable in the system as a whole, the program-
ming language being used, and the programming environment. Armed
with such information and knowledge, the testers are able to see areas of
potential weakness in the code and can test for those weaknesses.

Finally, software quality practitioners cannot ignore themselves in en-
suring that all software personnel have adequate education and training for

Operating
system

Platform

La
ng

ua
ge

Use
r co

nc
er

ns

Con
fig

ur
ati

on

man
ag

em
en

t Q
uality

management

Training

Developer

M
et

ho
do

lo
gy

Figure 7.5
Developer’s world.

Practical Guide to Software Quality Management

150

their jobs. The software quality people must know how to review docu-
ments, the standards being imposed on the various projects, how to com-
municate their findings upward to management, how to accomplish the
various audits for which they are responsible, and all the rest of the SQS
tasks.

7.2.3 User education
The best system will not perform well if incorrectly used. It is worth restat-
ing that if the users of a system do not have full knowledge of how to use
the system, the system will not perform up to its capabilities. The system
may be underused, which effectively wastes some of the effort put into its
creation. It may not work at all, making the whole system a waste. Worst of
all, incorrect use of the system may negatively affect other systems being
run; sometimes even to the extent of bringing a halt to the whole process-
ing activity. It should be clear that user education is at least as important as
developer education.

The two main areas of user education are the inputting of data and the
use of the outputs from the system. Data input includes starting the system
and telling it what it is required to do for any particular processing exer-
cise. Some systems need only be started, and they then perform a series of
preset functions. Such things as process control or standard data reduction
systems may fall into that category. Knowing how to start the system is the
important point. Other systems require parameters or additional data to be
provided. Payroll systems, for example, need to have time records input
and may have to have parameters, such as special bonus equation values,
entered. The proper provision of existing databases is important in both
cases. Finally, some systems are interactive, and the user must respond to
the system while it is running, perhaps by providing additional input or by
giving directions based on the system’s computations or questions. A sim-
ple example is the word processing package on which this text was gener-
ated. The user entered text into the package, and the package occasionally
asked for directions on what to do in certain situations, like reaching the
limit of the working memory allotment.

The use of the produced information is of equal importance. If a secu-
rity system detects an attempted breach of the secure area, the user must
have full instructions as to what action to take. That is true whether the
breach attempted is of a data security system or of a building. If the system
has not been designed to respond with some action on its own, the user
must take the appropriate action.

More often, though, the output is in the form of business or scientific
data in one format or another. Business users and users of scientific data
must understand what they are receiving and what to do with it. At other

Associated quality concerns

151

times, education in the use of the output will be as simple as informing the
user to whom a particular printer report is to go. Whatever the specific sys-
tem requires, though, with respect to inputs and outputs, the user must be
properly trained in its usage.

Other user educational considerations include such things as the limits
of the system. These may involve valid input data limits, number of entries
that the system can accept at one time, speed of input, limits on the size or
type of outputs, access control passwords, frequency of usage in a particu-
lar time period, and so on. Each user must be aware of the capabilities built
into the system so those capabilities are not violated or underused. Asking
more of the system that it can provide may lead to crashes, while under-
utilization may lead to underestimation on future projects.

Dr. W. Edwards Deming was a strong proponent of employee training
and development. Implementation of new software products and systems
normally brings change to the way users perform their jobs, or the environ-
ment in which they work. New jobs and tasks may be created, while exist-
ing jobs and tasks may be vastly altered or even eliminated. Management
of this type of change offers many educational and development
opportunities.

The software quality practitioners’ role in user education is much the
same as their role in developer education; that is, the monitoring of the user
education plans and progress so the proper education is provided. Soft-
ware quality practitioners may even take the education themselves as a part
of the acceptance test procedures. By exercising the system in the same
manner as the intended users, the test team often can find flaws not only in
the software but also in the educational programs.

7.2.4 Operations training
If a system is not run properly, results are suspect and users cannot rely on
the information provided.

Operation includes everything from computer power-up to report de-
livery. Virtually anything and anyone outside the user at the terminal at his
or her desk can be thought of as the domain of the operations organization.
Operations loads the data media, starts the various applications, monitors
throughput, puts paper in the printer, delivers the reports to their intended
recipients, and keeps the operational environment sufficient for the proc-
essing load being demanded by the developers and users. Training in this
area encompasses an extremely wide range of activities. And, of course,
there is a correspondingly wide range of potential problems if the person-
nel are not properly and completely trained in their functions.

In the early days of computer centers, the operations group had to con-
tend with only the running of jobs. The jobs generally were run in the or-

Practical Guide to Software Quality Management

152

der in which they were submitted, and the reports were placed in a mail-
box-like slot for someone to retrieve. As the computing industry has ma-
tured, the complexity of the computer center activities has increased
manyfold. Multiple processors are running multiple jobs, many of which
are submitted at the same time with multiple priorities. Those processors
in turn may be generating multiple outputs on multiple media. Operations
personnel must be knowledgeable in job sequencing, computing hardware
operation, data entry and validation, report distribution, remote job entry
and computing, security, job control languages, defect reporting and cor-
rection, long-range and short-range facilities planning, space allocation,
safety, and a multitude of other considerations. Training must be provided
in most of these fields, since on-the-job training often takes too long for a
new person to become proficient and productive.

In some cases, generally in very large and very small data centers, on-
the-job training is feasible. In a large shop, new employees are assigned to
small, specialized tasks such as tape or disk loading and unloading. They
are then rotated through the various tasks. A small shop usually has a sim-
ple small-scale computer whose operation can be learned quickly. A small
shop also has a correspondingly small set of applications with which to
deal. The bulk of computer centers, however, include multiple central
processing units and several types of data media. When experienced per-
sonnel cannot be hired, they must be trained by the organization.

The software quality practitioners should monitor the operations activ-
ity and the levels of training present within it. Close coordination with the
manager of the operations area will ensure that the proper training is pro-
vided to the operations personnel.

7.2.5 Education delivery
Various educational needs are met in different ways, but there are five ma-
jor methods of delivering the needed education. Each method is applicable
to one or more of the education and training needs discussed so far. These
methods are:

• On-the-job or hands-on training;

• Formal classes;

• Seminars;

• Video tapes;

• Demonstrations.

Developer education should include all the methods that are suited to
the individuals’ needs. On-the-job training is the slowest method for most

Associated quality concerns

153

development tasks, but it can be of value to the new employee who has had
some formal education in computer programming, computer science, or
the specific application area being developed. Formal classes, either in an
actual classroom atmosphere or through video tapes, are valuable to both
the learning of new applications areas and the gaining of familiarity with fea-
tures of new development environments. Languages are best learned
through a formal classroom experience coupled with hands-on exercises.
New design techniques are often the subject of seminars and video tapes.
Demonstrations can be used to show how new equipment, such as worksta-
tions or desktop terminals, is to be utilized.

Support personnel have much the same education needs as do the de-
velopers, though in different areas, of course. The methods that seem to
best serve support education are similar to those for developers. Class-
rooms are appropriate for operating system and language familiarization as
well as database operation. For highly experienced personnel, seminars
and video tapes are sometimes sufficient. If the subject to be learned is an
extension of a system already in place in the organization, hands-on experi-
ence and demonstrations can be used.

User education can sometimes be provided with demonstrations or in-
house seminars, even on-the-job learning if the system is simple or similar
to or an extension of existing systems. New, large-scale systems frequently
need formal classroom education when the range of user opportunities is
wide or there is much user system interaction. In the latter case, hands-on
experiences are justified as well. Video tapes are less useful unless they are
an adjunct to demonstrations or formal classroom presentations.

Operations training almost always is a series of demonstrations of the
proper way to perform a particular task. This method is usually enhanced
by hands-on or on-the-job training. For new equipment, formal classroom
and video tape presentations are often appropriate. When new environ-
ment systems (operating systems, languages, database management sys-
tems, and the like) are being installed, more formal training is needed, and
the classroom may again be the preferred method. Finally, hands-on experi-
ence and demonstrations will be an almost regular part of the routine in a
large data center as additional data storage media are installed and enhance-
ments to the environment are made.

Once more, it should be emphasized that the role of the software qual-
ity practitioner in the training of personnel is monitoring and reporting the
status of the various training situations. The actual delivery of the educa-
tion and training is normally the responsibility of the education department
or the individual group, such as development or operations. The software
quality practitioner keeps management aware of the need for education and
training and their status. Table 7.1 suggests typical types and sources of

Practical Guide to Software Quality Management

154

training and the recipients for whom they may be suited. There are no hard
and fast rules; each organization must use the means at their disposal.

Training need Recipient Training source

Table 7.1
Training needs

and sources

Application area Developer Classroom

Design methods Developer
Quality group
Developer

Classroom
Demonstration
Vendor

Operating system Developer Vendor

Database management
system

Data administrator Vendor

Language Developer Classroom

Testing Tester Seminar, on-the-job training

SQS Quality group
Developer

Seminar
Demonstration

Operations Operator Demonstration

Application use User
Customer service

Demonstration, classroom
Classroom

Networks Developer
User

Seminar, demonstration
Demonstration

7.3 Vendor management
Purchasing software often is a risky business at best. While there are many
reasons for an organization to buy software rather than write it inhouse, the
role of the software quality practitioner often is reduced. Thus, the risks in-
crease that the software will not meet its requirements.

When software is purchased, much, if not all, control over develop-
ment is lost. The risks run from slightly more than those for inhouse devel-
opment all the way to “what you see is what you get.” The role of the
software quality practitioner changes when software is purchased. Since
visibility into the development process is diminished, if not lost altogether,
other avenues must be found to investigate and ascertain software quality.
The software quality practitioner must be innovative in selecting quality
methods to apply and firm in insisting that those methods be applied.

Associated quality concerns

155

There are many packages and methodologies that can help with software
product acquisition, but the basic quality concerns remain the same.

Three basic types of software purchase are available: off the shelf, tai-
lored, and new development. Each type presents a different challenge to
the software quality practitioner. Visibility and influence over the develop-
ment process change as each type of purchase is exercised. Table 7.2 gives
examples of purchased software and quality approaches that could be ap-
plied to them.

Table 7.2
Quality

approaches to
purchased

software

Type Source Quality approach

Graphics application Off the shelf Vendor reputation, trial use
period

Database manager Off the shelf Vendor reputation, trial use
period

Operating system Vendor Trial use period, vendor
maintenance

Tailored application Application customizer Partial purchaser SQS, test
records, vendor maintenance

Contracted application Third-party developer Full purchaser SQS, vendor
maintenance

Each type of purchase presents different maintenance situations. Who
will maintain the purchased software is an important consideration for the
software quality practitioner in evaluating purchased software.

7.3.1 Off-the-shelf software
Purchasing off-the-shelf software allows little or no insight into the proc-
esses involved in its development.

Software purchased off the shelf, for example, an operating system, a
compiler, or a database management system, whether for a mainframe or a
portable computer, usually comes as is. Usually there are no guarantees
and sometimes blunt denials of any liability on the part of the vendor.
This type of software offers the greatest challenge to software quality
practitioners.

Few traditional quality assurance steps can be taken with off-the-shelf
software. Often, the only evidence of a vendor’s software development
process is its reputation in the marketplace. The quality and the availability
of documentation can also provide clues. However, even in the best of

Practical Guide to Software Quality Management

156

cases, visibility into the development process is dim and unreliable. Soft-
ware quality practitioners must resort to emphasis on other aspects of soft-
ware development in order to do their job.

The primary step is to clearly identify the requirements for the soft-
ware package that is needed. Software quality practitioners must make
every effort to determine what the organizational needs are for a software
purchase. For example, many database packages exist for personal comput-
ers. If a company or organization decided to provide its employees with
personal computer workstations, including a database package, software
quality practitioners would have to urge as much specificity in the require-
ments of the database as could be determined. Once the actual, intended
usage and application of the database package were determined, evaluation
of candidate vendors and their products could commence. At this point,
the process is no different from traditional software development. Until the
software requirements are known, software development or, in this case,
purchase should not begin.

Having settled on the requirements, vendor and product evaluation
can begin. Vendors with the reputation of developing sound packages and
packages that best appear to meet the requirements will be identified.
When one or more possible packages have been identified, two more SQS
activities should take place: the specific testing of the packages and consid-
eration of future maintenance. Either or both of these actions may be im-
possible for a given vendor or product. In that case, the product should be
dismissed.

The vendor should provide for a period of real-world use of a potential
package. Most acceptable vendors will allow a trial use period in which the
buyer has a chance to see if the product really meets the requirements for it.
Unless there are serious, overriding conditions, software quality practitio-
ners should counsel against purchase of off-the-shelf software from a ven-
dor who will not allow such a test. Test or demonstration portions of many
packages also are available for trial use. Some vendors sell the demonstra-
tion package and give credit for the demonstration package price against
the purchase of the full software package.

When permitted by licensing terms or provisions, reverse engineering
techniques can be applied to establish design methods or data models.
These can then be assessed for compliance to the approved requirements.
Such techniques, however, must be undertaken only when the vendor
grants permission. The quality practitioner should alert management that
carrying out such activities without permission may result in legal action on
the part of the vendor for copyright infringement.

The second action is the review of vendor software maintenance provi-
sions. A package that provides for vendor support, free updates when la-
tent defects are found and corrected, reduced cost for new versions offering

Associated quality concerns

157

enhanced capability, and the like, should receive special attention. Ven-
dors who agree to nothing, once the package has been bought, should be
viewed with a suspicious eye by software quality practitioners. The most
likely case is a negotiated agreement as to the costs involved in various
kinds of maintenance situations. Again, the marketplace reputation of the
vendor should influence that activity.

All in all, purchase of off-the-shelf packages is risk intensive. Of course
there are situations when it is the proper method of providing software ca-
pability to the users. Software quality practitioners must recognize the risks
involved, however, and act to reduce those risks with whatever means are
available.

7.3.2 Tailored shells
Software often can be purchased as a shell, which is generic and off the
shelf. Its advantage is that the purchaser’s unique needs are custom built
into the shell and the total package tailored to the specific application.

As in pure off-the-shelf software, software quality practitioners will
have little influence over the generic shell portion. The shells usually are
prebuilt and act as a foundation for the customized software that will be
added. The software quality practitioner should encourage negotiation of
development control over the customized portions.

The reputation of the vendor often is a good clue in this type of soft-
ware purchase, just as it is for off-the-shelf software. During early evalu-
ation of potential vendors and shells, software quality practitioners can
review marketplace reports to help identify leading vendors for particular
applications.

After-purchase maintenance also must be considered. Unlike most off-
the-shelf software, a purchaser may be able to take over some or all of the
maintenance of a tailored package. Cost of source documentation for the
shell, postpurchase vendor maintenance announcements, and the buyer’s
ability to maintain the software should be investigated by the software qual-
ity practitioner and corresponding recommendations made to management.

It is entirely acceptable to request that the vendor’s proprietary source
code be placed in escrow against the possibility that the vendor becomes
unwilling or unable to continue maintenance of the software. In such an
event, the customer would receive the code from the escrow and take over
maintenance at that point. In some cases, the source code would become
the property of the customer after some contractually agreed period of
time. In that way, the vendor’s proprietary property is protected, and the
customer is at less risk of loss of maintainability of important software.

Testing of the tailored portion of the software is commonplace, so the
software quality practitioner’s main concerns in this area are the quality of

Practical Guide to Software Quality Management

158

the software requirements and the adequacy of the test program. Software
quality practitioners must urge the adequate statement of requirements for
the software and then ascertain that the test program will, while finding de-
fects, give confidence that the software meets the requirements.

Finally, software quality practitioners should encourage management
to secure warranties or guarantees with respect to at least the custom por-
tions of the software.

7.3.3 Contracted new development
Purchase of total software packages, developed as new software for a spe-
cific buyer, provides the greatest opportunity for involvement of the pur-
chaser’s software quality practitioners.

The purchase of or contract for the development of a new software
package is similar to an inhouse development effort. All the same activities
in the software development process must be accomplished under the aus-
pices of the software quality practitioners. It is expected that the buyer’s
software quality requirements will cause the invocation of at least as strin-
gent software quality requirements on the vendor as are followed by the
buyer. Even when more strict software quality requirements are placed on
the vendor, the buyer’s software quality practitioner’s visibility is probably
hampered.

Remembering that the purchase of new software permits (in fact, re-
quires) the buyer to specify all the software requirements, the software
quality practitioner should be certain to have all the quality program
requirements included in the contract. Not only should the vendor be
contractually required to provide a strong software quality program, the
buyer’s software quality requirements must demand visibility into that pro-
gram and its conduct. The buyer must have the right to conduct regular
scheduled and unscheduled reviews and audits of the vendor’s develop-
ment process and controls at the vendor’s facility. Too often, these reviews
and audits are held at the buyer’s facility and amount to little more than
“dog and pony shows” at which the buyer is assured that everything is fine.
Only later does the buyer discover that costs are overrun, schedules have
slipped, and the software doesn’t work. The buyer’s software quality practi-
tioners must be provided the contractual right to visibility into the vendor’s
activities.

Maintenance of the software continues to be a concern of software qual-
ity practitioners. If the vendor will be contracted to maintain the software,
software quality practitioners should continue their regular level of visibil-
ity into the vendor’s processes. When maintenance will become the respon-
sibility of the buyer, software quality practitioners must be sure that

Associated quality concerns

159

training, documentation, and the inhouse facility to maintain the software
are in place prior to delivery of the new software.

Finally, software quality practitioners should be sure that all new soft-
ware being purchased is subject to rigorous, requirements-based accep-
tance testing prior to approval and acceptance by the buyer.

7.4 Maintenance
A frequently quoted “fact” of the software industry is that something like
70% of the SLC is devoted to maintenance. There may be empirical data
somewhere to back this up, or it may just be someone’s off-the-cuff observa-
tion. The important thing is that it indicates that many companies expend a
large share of their software resources in maintenance activities.

The heavy majority of effort in the SLC is expended in the mainte-
nance phase. While maintenance is considered to be composed of both de-
fect correction and enhancements to the original system, most maintenance
is the result of requirements or design deficiency or planned obsolescence.
(Planned obsolescence is usually termed “phased implementation.”) Cer-
tainly there will be occurrences of latent coding defects that remained hid-
den through the testing process, but the majority of defects usually are
found to be faulty requirements and design.

Two points about maintenance should be made. First, except for the
very simple correction of a very simple coding defect, maintenance is usu-
ally a repeat of the SDLC activities. Second, the cost of maintenance is al-
most never clearly known or recorded.

The role of software quality practitioners is also twofold: (1) monitor-
ing the SDLC-type activities the same as was done in original develop-
ment, and (2) trying to help management realize the true cost of the
maintenance effort. Once management can see and understand the cost of
maintenance, the task of justifying the SQS activities will become much
more achievable.

7.4.1 Types of maintenance
The four broad categories of maintenance are repairs, polishing, enhance-
ments, and adaptations.

Repairs are necessary to resolve latent defects that survived the best ef-
forts of the testing program and improvements to make the system do those
things that were wanted but were left out of the original requirements or de-
sign. As shown in Figure 7.6, repair of actual defects that were found after
the system was placed in full operation account for about 20% of the main-
tenance activity. Another percentage is the result of additions made to

Practical Guide to Software Quality Management

160

bring the system up to the level of capability originally desired, which
might be called polishing. Little definitive data exist to express the degree
of effort expended in making those changes, but at least a portion of the en-
hancement number will include requirements corrections as well as new
requirements.

Enhancements, shown as the largest category in Figure 7.6, are those
changes to give the system capabilities that were not originally foreseen.
Often, enhancements come at the request of the user, who finds that addi-
tional capabilities would be desirable. While new requirements and needs
frequently do arise over the life of a software system, it is likely that many
corrections are identified as enhancements. Requirements that were over-
looked or ignored during the original development often come back as en-
hancements. That may happen even though they probably were caused by
errors in the requirements analysis or design portions of development.
Maintenance that is termed an enhancement should not include any change
that helps the system perform as it should have originally.

Adaptations, another large category, are generally in response to chang-
ing environmental conditions or the outside world. Environmental condi-
tions might include a change to a different computer or a new operating
system. Outside conditions could include a change in government regula-
tions relating to an insurance or banking system.

Software quality practitioners must be closely involved in the mainte-
nance activity to ensure that proper control of the software and documenta-
tion configurations is enforced. In a protracted maintenance period, the
loss of control of the configuration can mean the introduction of new de-
fects as the existing ones are found and corrected. Software quality practi-

Enhance
~50%

Remainder

Includes
implementation-based

Adapt
~25%

Repair
~20%P

o
l
i
s
h

Figure 7.6
Maintenance types.

Associated quality concerns

161

tioners will monitor and audit the defect reporting and tracking system re-
ports and ensure that the configuration management function is in opera-
tion throughout the maintenance period.

Repairs
Repairs reflect defects from all sources. Repairs are the changes made for
every defect, from the simplest latent coding mistake, such as a misspelled
data name, to a requirements deficiency. While repairs consume a minority
percentage of the overall SLC costs, they do represent the most expensive
tasks. Defects that must be repaired in the maintenance phase almost al-
ways affect more than just the code. Those requirements that were known
but not addressed should be categorized as defects and processed as
repairs.

Each repair will result in the reentry of the development cycle, as
shown in Figure 7.7. Each repair must go through the full life cycle as the
requirements of the repair are determined: design, code, test, and imple-
mentation. The type and the impact of the defect will determine how far
back into the development products the repair will reach. In the large ma-
jority of cases, the ramifications go back through code to design and some-
times requirements. That in turn means corrections to documentation,
sometimes corrections to other parts of the system to accommodate the
repair, testing of the changed areas, and regression testing of the entire sys-
tem. The cost of repairing a requirements defect in the maintenance phase
is often 90 to 100 times the cost to repair the defect if it had been found in
the requirements phase.

Estimates are that about a third of all corrections themselves introduce
new defects. Introduction of new defects is the case especially when short
cuts are taken in the repair process. If configuration management proce-
dures are skipped or testing is slipshod or incomplete, the chances of intro-
ducing a new defect are greatly magnified.

Polishing
Polishing may be some of the most difficult of maintenance to perform.
Most polishing is performed to increase the operating speed of an applica-
tion or to reduce its memory requirements. Quite often, these changes can
be extremely far reaching, as loops are removed from the code to increase
speed added to the code to reduce size. When both goals are present, large-
scale reengineering of the system may be required. The software quality
practitioner should be sure that all participants in the polishing mainte-
nance activities are aware of the breadth of the effects their changes may
have.

Practical Guide to Software Quality Management

162

Enhancements
Enhancements usually follow the full SDLC. Enhancements occur because
the original requirements did not address some need of the user or cus-
tomer. They are limited to those needs that become visible or recognized
after the system has been installed and running. Enhancements cover the
addition of new capabilities and the removal of obsolete capabilities.

Again, Figure 7.7 shows the return path to the SDLC. Enhancements
always reenter the SDLC at the requirements phase, since new require-
ments almost always are involved, and the entire SDLC traversed. New
development planning must take place, which must include planning for
the transition to the improved system once it is ready. There also may be
some consideration given to provision of the needed capabilities until the
software is ready to support them. The entire SDLC is then followed, just
as in the original development. Testing and configuration management

Requirements

Design

Code

Implement

Test

Maintain

Repairs and
enhancements

Figure 7.7
Repeating

the life cycle.

Associated quality concerns

163

play a large role in the enhancement process, just as they do in the repairs
process. Regression testing is especially important, as well.

The software quality practitioner has the same set of functions in the
repair and enhancement processes as in the original development. Since
the SDLC is being followed, so must the SQS procedures.

Adaptations
Adaptations are the modification of capabilities to meet changes from out-
side the original system. Activities include changes to meet new govern-
ment regulations, modifications to company procedures, inclusions of new
products, and similar conditions that did not exist at the time of the devel-
opment of the original system.

Adaptations also include those changes made to accommodate imple-
mentation approaches. A typical type of implementation approach is
phased implementation, which usually is done when the schedule or the
complexity of the system will not permit implementation of the entire capa-
bility of the system all at once. The adaptations are the changes to the
“edges” of the implemented software to interface with the next phase of
software being implemented. Since some of the total software system
has been missing up to this point, something has been done to allow the
existing software to operate until the new software is added. Those allow-
ances must be removed when the next software is ready for implementation.

Most often, the problem is in the development planning for the system.
Resources, generally schedule resources, are miscalculated and run out be-
fore the system is ready for implementation. In that case, the system is parti-
tioned into functional groups that can be implemented one or a few at a
time. Some subset of the system is installed, and then, at a later time, addi-
tional system partitions are installed piecemeal until the full system is in
place. This has the advantage of permitting more attention to the various
phases of the SDLC, but it usually is a repair in the context of this chapter.

Only in those cases where there was good reason at the outset to plan
for a phased implementation can an adaptation not be considered a repair.
One case would be an experimental system in which each step is a major
evaluation—and possible termination—point of the development. Other
cases would be those in which the system has a large number of outside in-
terfaces that become available at inconvenient times or where the complex-
ity of the system dictates that smaller sections be installed one by one. It is
probably appropriate to exclude these cases from the realm of maintenance
altogether, since they were planned to occur from the beginning of the
project.

Adaptations carry significant risk in some cases. There is small risk
when the adaptation takes the form of a simple change to a job entry rou-

Practical Guide to Software Quality Management

164

tine or a spreadsheet formula. They become more threatening when they
entail modifications as great as database reconfiguration. Software quality
practitioners must monitor adaptations as closely as the other
types of maintenance.

7.4.2 Documentation
Regardless of why or where the SDLC is reentered, it is essential that the
system documentation be maintained. It cannot be stressed too much that
the documentation of the system is the key to the ease of repair or enhance-
ment. The better the documentation, the more easily the maintenance per-
sonnel can find and correct a defect or properly install an enhancement. If
the needed documentation is lacking, the maintainer must either recreate it
or try to find the affected portion of the system through detective work.
When the issues of the documents for the various phases are out of step,
the maintainer has more work to do in the documentation of his or her
work as well.

If more than one change is in progress at the same time, such as both
an enhancement and a repair, poor documentation practices may allow
the two activities to operate on different issues of the system or to conflict
with each other. If the documentation is up to date and correct, both main-
tainers can recognize any areas of overlap in their work and can work to-
gether during the change process rather than creating another defect that
must be repaired.

Software quality practitioners perform an important monitoring and re-
porting function in the maintenance phase by keeping management in-
formed as to the quality and status of the documentation.

7.4.3 Regression testing
The software quality practitioner has an additional concern in the main-
tenance phase, that of ensuring that regression testing is accomplished.
While the software quality practitioner must monitor the regular SDLC
testing function, the maintenance phase introduces the regression testing
activity. Although the SDLC is used to create repairs and enhancements,
they normally affect only a portion of the entire system. Once the change
has been tested for its own correctness, the full system must undergo over-
all testing to ensure that the changes have not had some unexpected nega-
tive effect on the operation of the system as a full entity.

Regression testing should be a part of the overall test plan developed
for the system during its original SDLC. As the system acceptance test is
designed, and data for the test are prepared, a subset of the acceptance
test data should be preserved for future regression tests. The expected

Associated quality concerns

165

and actual results also should be preserved. In that way, the correct perfor-
mance of the original system is known. When regression testing is needed,
the same test data that were used for the acceptance test are used. The origi-
nal results should be received from unchanged parts of the system, show-
ing that unintentional changes have not been made or new defects
introduced.

For those changed portions of the system, new regression test data
must be prepared for use in future change activity. The software quality
practitioner has the responsibility of ensuring that the regression tests are
prepared in the beginning, and that they are kept up to date during the full
SLC. Further, the practitioner must ensure that all differences from the ex-
pected results of the regression tests are accounted for.

7.5 Summary
Security has three main aspects; the database, data transmission, and the
physical data center itself. Most companies could not last long without
data being processed. Should the data become corrupted, lost, or known
outside the company, much commercial harm could result.

The failure of the data center, no matter what the cause, can also have
great negative effect on the viability of the enterprise. A disaster recovery
plan should be developed and tested by the organization, with the software
quality practitioner monitoring the plans for completeness and feasibility.

As systems increase in size and complexity and as companies rely more
and more on their software systems, the security aspects of quality become
more important. The software quality practitioner has the responsibility to
make management aware of the need for security procedures.

Education, while rarely provided by the software quality practitioner,
is a necessary step in the provision of a quality product. It is one of the ele-
ments of the SQS that is most often delegated to another group within the
company.

Fluency of the programming and coding personnel in the language in
which the system is being written is very important. So, too, is familiarity
with the background environment to be used during the development.

Training for the support environment must not be overlooked. Sys-
tems programming (the operating systems and compiler-assembler soft-
ware), database administration, and the testing group should be
thoroughly trained in their tasks. The software quality practitioners must
not forget themselves in ensuring that all software personnel have adequate
knowledge in their responsibilities.

If the users do not have the proper education in the system’s use, the
system may perform inadequately and be seen as less than acceptable. The

Practical Guide to Software Quality Management

166

operations staff, too, must be schooled in the operation of the system for it
to supply the expected outputs.

The software quality practitioner must keep management aware of the
needs for training and education.

All purchased software presents risks that are not present in software
developed inhouse. Software quality practitioners must be innovative in
identifying the various risks attendant to the different types of software pur-
chase. Software quality practitioners must be equally innovative in finding
ways to meet and blunt those risks.

There must be an awareness not only of the developmental risks,
but also of the maintenance requirements for the software after delivery.
Training of the maintainers, suitable maintenance-oriented documentation,
and the hardware and software facilities to support software maintenance
must be available. Placing the vendor’s proprietary source code in escrow
should be considered. The software quality practitioner has the responsi-
bility to ascertain the availability and sufficiency of software maintenance
needs. Should there be a lack in that area, it is the task of the software qual-
ity practitioner to make management aware of any needs.

The heavy majority of effort in the SLC is expended in the mainte-
nance phase. Repairs make up a significant portion, if not the majority, of
the maintenance effort. Repairs include fixing latent defects that survived
the testing program and implementing enhancements or improvements re-
quired to make the system perform those tasks that were wanted but were
left out of the original requirements or design. True enhancements are
those additions or modifications that enable the software to perform func-
tions not originally wanted or needed.

Software quality practitioners must be closely involved in the mainte-
nance activity to ensure that proper control of the software and documenta-
tion configurations is enforced and that regression testing is fully
performed. The software quality practitioner has the responsibility of en-
suring that the regression tests are prepared in the beginning and that they
are kept up to date during the full SLC.

Software quality practitioners perform an important monitoring and re-
porting function in the maintenance phase by keeping management in-
formed as to the quality and status of the documentation and code.

7.6 The next step
To find out more about several of the topics in this chapter, see Implement-
ing Software Engineering Practices by Fletcher J. Buckley
(New York: John Wiley & Sons, 1989).

Associated quality concerns

167

Additional Reading

Bryan, W. L., and S. G. Siegel, Software Product Assurance, New York:
Elsevier, 1988.

Guide International, Quality Assurance of Purchased Packages—GPP 145,
Guide International, Chicago, IL, 1986.

Lobel, Jerome, Foiling the System Breakers, New York: McGraw-Hill,
1986.

McConn, Charlotte Eudy, Business Computer Systems: Design,
Programming, and Maintenance With Case Studies, Englewood Cliffs, NJ:
Prentice-Hall, 1989.

Westwater, Keith, The Earthquake Business Plan, Ministry of Civil
Defence, Wellington, NZ, 1990.

Practical Guide to Software Quality Management

168

Practical Guide to Software Quality Management

Chapter 8
Software documentation

Documentation is the record of the translation from the user’s
needs to the software that satisfies those needs and instructions for
the operation and use of the software.

A vast portion of the software being developed lacks adequate records
of how it got where it is. The original requirements are poorly stated, de-
sign just evolved as it went along, code tends to simulate the design rather
than implement it, testing is based on showing that the code works rather
than that it meets the requirements, and user documentation is incomplete
to a fault. The SQS can play a large role in the improvement of this
situation.

Documentation is like the markers along a highway. Looking ahead, it
provides a trail to follow toward the destination. Looking back, it provides
a record of the trip thus far. Each phase of the SDLC prepares the “direc-
tions” for the next phase in the form of some sort of documentation. Those
same documents are the record of what has happened during the phase it-

169

self. The requirements phase is directed by the statement of needs from the
concept exploration phase. The design phase is directed by the require-
ments document, which is a record of the activities of the requirements
phase. In turn, the design documentation directs the coding phase while
recording the design phase, and so on. In parallel with the development
phases, the testing documentation is prepared, leading to the testing effort
the way requirements documentation leads to coding.

Software documentation comprises management, development, test,
and user documentation. It is intended to follow the evolution of the soft-
ware as it progresses through the SLC.

It is important to note that once a document has been written and ap-
proved, it still can—and must—change. As the development proceeds, er-
rors, defects, incomplete specifications, and necessary additions and
deletions will become known. If the documentation is to serve its purpose
on a continuing basis, it must be kept current. Many software projects have
suffered serious problems, not because the documentation was poorly writ-
ten in the first place, but because it was allowed to fall behind the actual
situation as development continued. In the later phases, when it was
needed to support testing or maintenance, it was no longer current and
thus not useful. The actual approved requirements were no longer reliably
documented, the design specification had fallen behind the actual code im-
plementation, and there was no way to accurately trace the code back to
the requirements. In almost every case like that, the user winds up with a
software system that does something, but not what was actually needed or
wanted.

Finally, the documentation is the basis for CM. If the documentation
starts out poorly or is allowed to degenerate with respect to the ongoing de-
velopment activities, the software is out of control. CM loses visibility into
what was required and how that has changed. Once the software develop-
ment effort is out of control, the end result of that development usually is
not predictable, verifiable, or maintainable.

Table 8.1 offers recommendations for minimum documentation for
various project sizes. Other project factors, such as visibility, criticality,
and complexity, will influence the selection of documents in each case.
(Appendixes A through I include outlines for the primary documents.)

Practical Guide to Software Quality Management

170

Table 8.1
Software

documentation
recommendations

Project size Recommended documents

Small project Requirements specification
Design description (as-built design)
Test report
Plans: software development, SQS, CM

Medium project All small-project documents
Preliminary design
Detailed design (build-to design)
Test plan

Large project All medium-project documents
Test cases (and scenarios)
Interface requirements and design

Any size project Database requirements and design
User manual
Operations manual
Maintenance plan
Training plan

8.1 Management documents
Every software development project is going to be managed in some way.
A plan will be prepared, in one form or another, that lays out the expected
schedule and resources. Effort will be expended to review and test the soft-
ware, at least at the end before delivery, and the components of the soft-
ware will be identified so that the delivered software and its components
are known.

The following management documents are common to all software de-
velopment projects:

• Software development plan;

• SQS plan;

• CM plan.

These documents are the overall software development process con-
trol documents. Their size and depth of detail will vary with the size and
complexity of the system being developed. They may even be merged into
a single document for small projects. Even so, the content, describing how
the development project will be managed and controlled, must be present
for each software development project. It should not be surprising that the

Software documentation

171

more formal the planning and its documentation, the more complete and
effective it will be. Thus, creation of the software development plan (SDP),
the SQS plan (SQSP), and the CM plan (CMP)is a necessary part of each
software development project.

These plans for a project leading to 500,000 LOC probably would
cost more than a whole 500-line project. Therefore, the level of detail and
control included in each plan must reflect the size and complexity of the
project at hand.

8.1.1 Software development plan
The SDP is the document that lays out the management approach to the
software project. In its most basic form, the SDP will include the schedule
and resource needs for the project. The milest ones for tracking the pro-
gress of the project will be specified, probably as a pictorial of the SDLC.
The personnel loading also will be shown so that the required expertise
and skills can be available when they are needed. The SDP should specify
hardware and environmental needs, such as computer time, special test fa-
cilities, compilers and linkers, and other systems.

For simple systems, the material covering the SQS and CM may be in-
cluded as separate sections in the SDP. As system complexity grows, so
does the SDP. More and more detail is required to cover the larger scale of
the software development activity. Schedules must contain intermediate
checkpoints or milestones, personnel loading will become more varied and
complicated, and test support facilities will become more elaborate. The
SDP will also begin to address software quality and CM to a level of detail
that precludes their inclusion as SDP sections.

The more elaborate the software system, the more it probably inter-
faces with other systems and the outside world. While any interfaces are
presented in requirements documentation, provision for their involvement
in testing must be ensured and scheduled in the SDP.

Larger systems may require enough people or facilities to justify spe-
cial offices or test laboratories. If so, those must be presented in the SDP,
to ensure their availability.

Budget control becomes more important as the size of the system
grows. The SDP is the appropriate place to present budget considerations
and to specify control mechanisms in support of the normal, companywide
cost accounting system.

While the software quality practitioner obviously does not generate the
SDP, the practitioner has the responsibility for reviewing it against SDP
standards and ensuring that all appropriate information is present. Defi-
ciencies detected by the software quality practitioner and any other SDP
reviews should be corrected before the project is permitted to commence.

Practical Guide to Software Quality Management

172

The software quality practitioner also monitors the software development
activities against the SDP. Deviations are reported so management can take
corrective action.

Most corrective action will be to correct the software development
process where it has strayed from the plan. Some corrections will be made
to the SDP to keep it current with changes in the project. The software
quality practitioner will review those changes to ensure that contracted re-
quirements are not being violated and that the plan still complies with the
standards for it.

See Appendix A for a sample SDP outline.

8.1.2 SQS plan
The SQSP addresses the activities to be performed on the project in sup-
port of the quest for quality software. Being careful not to exceed the re-
quirements of the customer, company standards, or the SDP, the SQSP
will discuss all the activities to be performed on all of the various SLC prod-
ucts. A sample format for an SQSP is shown in Appendix B.

Remember that a software quality group is not necessary for the SQS
functions to be performed. Thus, the various software quality functions
will be assigned, through the SQSP, to be the organizational entities that
will perform those functions. All activities to be accomplished in the
software quality area should receive the same personnel, resource, and
schedule discussion as in the overall SDP, and any special tools and meth-
odologies should be discussed. The SQSP may be combined with the
CMP for medium-sized efforts.

Whatever the format of the SQSP, it is important that the document
(or its information if in another document) be complete and approved by
management and the producers. The SQSP becomes the charter for the
SQS functions for the particular project when approved by management.
It lays out the entire SQS and how it will be implemented.

Without the involvement of and approval by the software developers,
the SQSP can be a recipe for ineffectiveness and frustration on the part of
the software quality practitioners. Without the cooperation of the develop-
ers, software quality practitioners can be severely hampered in their at
tempts to conduct the review and monitoring activities for which they are
responsible. Involving the development organizations in the generation
and approval of the SQSP can encourage their cooperation as the project
progresses.

The software quality practitioners also must monitor their own plan
and their activities according to that plan. Any deviation from the plan or
any indication of inadequacy of the plan must be corrected. The software
quality practitioner will monitor all the software management and develop-

Software documentation

173

ment activities. It is certain that management and the developers will be
watching the software quality practitioners to be sure they perform accord-
ing to the plan, the whole plan, and nothing but the plan.

8.1.3 Configuration management plan
CM, as discussed in Chapter 6, is a threefold discipline. Each of the three
activities should be discussed in its own section of the CMP. The methods,
requirements levied on the producers, contracted requirements, and tools
to be used for software CM all should be spelled out. (See Appendix C for
a sample format for a CMP.)

If the project is small, the necessary information may be included in
the SDP. On medium-sized projects, it may be appropriate to combine the
CMP information with the SQSP in a single, dual-purpose document.

While some of the information may be in the personnel and resource
sections of the SDP, CM-specific information must be presented in the
CMP. Schedule s for baselining, major reviews, and auditing should be
shown either on the overall project schedule or on the CM schedule.

Any special tools or resources needed to support CM must be called
out in the CMP. Another topic that may appear in the CMP is the opera-
tion of the software development library, which is the repository of all soft-
ware product master copies. If not discussed elsewhere (e.g., the SDP or
SQSP), the library, its responsibilities, functions, and so forth, should be
presented in the CMP.

As with the SDP, the software quality practitioner has the responsibil-
ity to review the CMP before its release and adoption. The software quality
practitioner should make sure that the CMP is complete and appropriate
for the project as well as that it meets any specified format and content
standards. Software quality practitioners must also review the CM activi-
ties on an ongoing basis. The reviews will ascertain whether the activities
described in the plan are being performed and if they are still appropriate
for the project.

8.1.4 Additional plans
As software becomes an increasingly critical part of our lives, additional
plans may be required for some software system development efforts. Such
plans might include the systems engineering plan, risk management plan,
safety plan, and maintenance plan. These plans certainly are not required
for all development projects. It is the responsibility of the quality practitio-
ner to evaluate their necessity for each new project and to recommend their
preparation when appropriate.

Practical Guide to Software Quality Management

174

8.2 Development documents
Each SDLC phase produces development-oriented documentation.
These documents are the statements of the increasingly complete solution
for the user’s needs as development proceeds. Development documenta-
tion covers the SDLC and tracks the software from the requirements that
grow out of the concept exploration phase through the installation phase.
This series of documents, each serving as the basis for the succeeding level,
permits the producers to determine when they have completed the task and
the testers to determine whether the software complies with the intended
requirements.

The primary development documents are as follows:

• Requirements specification;

• Preliminary design;

• Detailed design (build to);

• Design description (as built);

• Database specification(s);

• Interface specification(s).

There are many formats for each of the basic development documents.
The format for each basic SLC document is less important than the con-
tent of the document. Further, the necessity for some specific documents
depends on the size and complexity of the specific project. In some cases,
the required information can be provided in a higher level document.
Thus, the actual format and content specifications will be a function of the
individual organization and the documentation standards that have been
adopted.

The requirements document is intended to fully define the overall func-
tion to be performed or problem to be solved. It is a mandatory document,
without which the project should not even be started. Until the customer
or user has clearly stated what is to be provided, the producer has insuffi-
cient information with which to start work. Without a clear statement of
what is wanted of the software, there is no way to determine completion or
how completion is to be achieved.

Design documents, both preliminary and detailed, describe in increas-
ing detail the method by which the problem or function is being addressed.
Prior to coding, the design must be such that the coder does not need to
make any “I think they meant this” decisions. After coding and testing, a
final design document should be published, which is the “as-built” docu-
ment that will be used by the software maintainers after installation.

Software documentation

175

8.2.1 Requirements specification
The requirements specification is the keystone of all software documenta-
tion. It is the statement of what the software system is to provide. It de-
scribes the problem to be solved, any restrictions or constraints on
performance or environment, time and size restraints, specific require-
ments levied on inputs and outputs, and any other information that is nec-
essary for the complete specification of the problem or function. Without
this complete specification of what the software is to accomplish, the pro-
ducer is put in the position of having to make requirements decisions as the
design progresses. That removes some of the control of the system from
the customer and may result in the customer not receiving what was ex-
pected. Viewed another way, the producer is also in the position of being
unable to provide anything acceptable to the customer who says, “That’s
not what I asked for.” Appendix D shows a general format for a require-
ments document.

There are many ways that errors or faulty requirements creep into the
requirements document. It is the role of the software quality practitioner to
carefully review the requirements document, both for adherence to the for-
mat standards for the document and for the correctness of its content. The
latter may pose a problem to some practitioners who do not have the appro-
priate expertise to adequately review the document for technical content.
In those cases, outside reviewers may be used, or the development group
may be called on to provide a review of the requirements before they ac-
cept the development task.

In addition to being correct, requirements must meet at least five other
critical criteria: they must be necessary, complete, measurable, unambigu-
ous, and consistent (both internally and with external interfaces).

Correctness
Correctness of the requirements is of primary concern, both to the cus-
tomer and to the producer. The description of what is wanted and the sur-
rounding needs and constraints must be stated correctly if the development
is to result in an acceptable product. The use of an equation that is not cor-
rect for the situation or addressing a government regulation incorrectly will
result in a system that does not meet the needs of the customer, even
though it might comply with the requirements as stated.

Necessity
A requirement that places unnecessary restrictions or demands on a soft-
ware system also raises the cost in time and money at no advantage to the
system. Such things as overly stringent timing, unnecessary precision in cal-
culations, unjustifiably tight memory restrictions, excessive processing ca-

Practical Guide to Software Quality Management

176

pability, and the like, sometimes creep into requirements. They may sound
nice or seem necessary at the outset, but unnecessary requirements can
cause poor development later on. The requirement for a check processing
capability of 200,000 per day may sound fine, but if it is for a small bank
that actually needs to process only 50,000 checks a day, it will add unnec-
essarily to the cost of the system and provide capability that will not be
used.

Completeness
Completeness may seem to be an obvious criterion for requirements, but it
is no less important for that. When a published requirements document
does not address the whole problem to be solved, the developer is usually
in store for surprises. Either a situation will arise during design or coding
that has no basis in the requirements, or the customer may ask where a de-
sired feature is after the producer thinks the job is done. At the very least,
the producer may be put into the position of having to add or to modify re-
quirements, actions that rightfully are the responsibility of the customer.

Measurability
Measurability is the key to testing. A requirement that cannot be measured
cannot be demonstrated by the test program. For example, a requirement
for “rapid response time” clearly is faulty. What exactly does “rapid”
mean? Another example is a requirement to “process multiple targets.”
“Multiple” is undefined and therefore cannot be measured or demon-
strated. Requirements that cannot be measured introduce opportunities for
conflict at all points in the SDLC, particularly at system demonstration and
acceptance time.

A two-second response time that seems adequately “rapid” to the de-
veloper may be unacceptably slow in the eyes of the customer. “Multiple”
may mean 20 to the developer but only 10 to the customer, who does not
want to pay for the extra capability.

Unambiguity
Unambiguous requirements leave nothing to the imagination of the pro-
ducer. There is no need to guess what the customer really meant or
wanted. A requirement for a response time of no more than two seconds
sounds like a good, measurable requirement. It is ambiguous, however, in
that it does not state the point at which the measurement of two seconds is
to begin or to end. A major source of ambiguity is such familiarity with a
subject that one forgets that others may not know all the jargon or have in-
sider information. Sometimes the requirements writer presumes that “eve-
rybody knows that.” Another source of ambiguity is weak wording.

Software documentation

177

Requirements must be worded in terms of the imperative verb shall. Verbs
such as should, may, or even will might show desire, but they do not dem-
onstrate intent. To say that a system “should” compute the square root of 3
implies that it might not.

Consistency
Finally, the criterion of consistency must be considered. Requirements
must be consistent within themselves and also with the world outside with
which they must interface. For example, the requirement in one section to
process 1,000 checks per hour is inconsistent with the requirement in an-
other section that calls for 10,000 checks in an eight-hour day. And both
those requirements are inconsistent with the outside world if the check han-
dling machinery to be used is capable of processing only 900 checks per
hour.

8.2.2 Design specifications
Preliminary and detailed design specifications depict how each require-
ment will be approached and satisfied by the software. Detailed design
specifications are of two types. The final design specification prior to cod-
ing can be considered the “build-to” design. It presents what the designers
believe to be the correct solution and response to the approved require-
ments. The design description, which reflects the software as it was actu-
ally completed, is often referred to as the “as-built” design.

As with the requirements, the design must demonstrate the criteria for
correctness, necessity, completeness, measurability and testability, lack of
ambiguity, and consistency. Further, the design must be traceable back to
the requirements. Each element of the design must be able to be shown
as satisfying some part of the requirements. In return, each requirement
must be able to be traced forward into the design. In that way, there is con-
fidence that the designers have not added or omitted anything during the
design process.

Regular formal and informal reviews of the design as it progresses are
held to ensure that the design is not straying from the requirements. The
reviews are also intended to show that the design is sound and adheres to
the various criteria. The software quality practitioner plays an instrumental
role in these reviews by ensuring, first of all, that they are, in fact, held. Soft-
ware quality practitioners do not necessarily have to attend informal re-
views, such as peer reviews, but the practitioners must be sure that the
reviews are taking place and are fruitful in the search for design defects.
Formal reviews may be chaired by software quality management, although
some organizations find it better to have someone from the project as the
chair. Software quality practitioners do have the responsibility to attend

Practical Guide to Software Quality Management

178

the formal reviews and report on their actions. The software quality practi-
tioner also is responsible for making sure that any and all action items re-
sulting from the reviews are fully addressed and closed and that full reports
are filed with management for any managerial action that may be necessary.

Preliminary design specification
The preliminary design (sometimes called the functional, architectural, or
external design) provides the initial breakdown of the requirements into
functional groups for further design efforts. Each functional group repre-
sents a major portion of the overall software system. The preliminary
design must specify the approach to be taken in the performance of the
function, the database requirements, and the interfaces with the other func-
tional groups in the system. It must also specify the interfaces with the ex-
ternal world, such as terminals, other computers, other software systems,
and so forth. Appendix E shows a sample format of a preliminary design
document.

Build-to design
The detailed design is a specific statement of how each part of the prelimi-
nary design will be implemented in code. The detailed design is often
called the build-to specification, since it is the input to the programming
staff for translation into the compiler language for implementation on the
target computer. This document must completely describe the design so
that programmers are not in the position of having to make design deci-
sions as they make the translation into compiler language. An example of a
format for a detailed design document is given in Appendix F.

As-built design
A final version of the detailed design document should be prepared after
the completion of the coding and testing processes. This usually is called
the as-built design or design description and represents the statement of
the design that was actually translated into code. It is an important docu-
ment for the future maintainers of the software system. It serves as the prod-
uct baseline from which all changes will be made for corrections of defects
found in operation of the system and for the addition of enhancements to
the software as they become necessary.

8.2.3 Other development documents
The larger the system, the more documentation is appropriate. Database
design and interface design documents may be needed.

Software documentation

179

Some documents are not always required as separate entities. The re-
quired content of the database design and the interface design documents
may be incorporated into the preliminary and detailed design documents
for small or noncomplex systems.

The role of the software quality practitioner is much the same whether
the database or interface discussions are part of larger documents or vol-
umes unto themselves. Software quality practitioners still must ascertain
that format and content standards are met. They also will ensure that the
documentation criteria are met and that the information is consistent with
itself and among documents.

There will be projects that have special documentation needs. Two
that arise most often are those projects that have many or complex inter-
faces, and those that involve the development of or significant interaction
with a database. When the system’s interfaces, either within the software
system or with the external world, are many or complicated, the prepara-
tion of interface requirements and interface design specifications should be
considered. These specifications can eliminate misunderstandings of the in-
terfaces that arise when each interface is described from one side in one
document and other sides in other documents. By combining all aspects of
each interface in a single place, all parties can see the full set of the inter-
faces’ descriptions

Database specifications are needed when the system being developed
either creates or causes significant modification to the database(s). Even
when a new or highly modified database is not the case, significant interac-
tion with the existing database(s) may benefit from a specialized database
document.

It should be remembered that the purpose of documentation is to de-
scribe how the user’s or customer’s requirements are being met and to en-
sure that the correct solution is being developed and implemented.

8.3 Test documentation
Test documentation includes all test program documents from the overall
test plan through the final test report. Test documentation is a parallel
effort, as shown in Figure 8.1. It starts with the original requirements state-
ment, like the development documentation. On the basis of the require-
ments, test plans, cases, scenarios, procedures, data, and results
documentation are generated as the SDLC progresses. (Chapter 4 ad-
dressed the topic of test documentation more fully.) Testing is docu-
mented through a series of increasingly specific documents, starting with
the test plan and including test cases, test scenarios, detailed test proce-
dures, test data, and test results. Test documentation spells out the se-

Practical Guide to Software Quality Management

180

quence of events by which compliance of the software with its require-
ments ultimately is demonstrated.

Software quality practitioners play a major role in the whole testing
process. They may, in fact, actually conduct the testing at the acceptance
level. Nonetheless, the software quality practitioner must carefully review
all of the test program to make sure it is sufficient to exercise the software in
a manner that will maximize the defect-finding capability of the tests. Re-
member that the goal of testing is the finding of defects. Software quality
practitioners must be sure that goal is being met. The second goal is to
demonstrate that the software performs as the approved requirements de-
mand. Software quality practitioners, together with the user or customer,
must review the testing and ascertain whether the software does perform as
required. When deficiencies are found, either in the tests or in the results,
the software quality practitioner is responsible for making sure the deficien-
cies are recognized by management so that appropriate action is taken.

8.3.1 Test plan
As shown in Figure 8.1 (and in Figure 4.3), test documentation begins
with the test plan (see Appendix G), which is based on the original require-
ments. In fact, the initial test planning is performed during the require-

Develop Test

Prelim.
design

Detail
design

Code

Test

Deliver

Proc Data

Test
scenario

Test
case

Reqmts

Test
plan

Figure 8.1
Software test
development.

Software documentation

181

ments phase. That not only gets the test activities off to an early start but
helps to ensure the measurability and testability of the requirements them-
selves. The test plan will grow and evolve, just as the requirements grow
and evolve, throughout the development life cycle, but it is important to be-
gin at this point to keep pace with the development of the code. Plans are
made for the expected test tools, data generators, simulators, and so on,
that are anticipated to be needed.

8.3.2 Test cases
As the design begins to mature and functions are identified, test cases (see
Appendix H) are correspondingly identified. These groups of individual
tests will be applied to major sections of the software. They are usually
based on logical groupings of requirements in much the same way as the
functional design is approached. Test scenarios are optional subsets of the
test cases. They provide for the simplification of complicated or lengthy
test cases.

8.3.3 Test data
Initial test data requirements are also identified at this time. Test data must
be provided, not to show that the software works as it was written, but that
it works as was intended by the requirements. That means that the test data
must cover as wide a spectrum of both legal and illegal values as possible.
Nominal values, as prescribed in the various design documentation, will
show only that the software meets nominal conditions. The object of test-
ing is to uncover defects in the software, so the test data must be carefully
chosen to present abnormal and incorrect inputs as well as expected inputs
to determine the response of the software to unexpected, borderline, and
erroneous conditions.

8.3.4 Test procedures
As the design and coding progress, test procedures (see Figure 4.4) are pre-
pared. Test procedures are the step-by-step actions to be taken during
each test. Every operator action, every data entry, and every expected re-
sponse is specified in a sequence of steps for a given test. In that way, the
exact conditions of the test are controlled, and each actual output or re-
sponse of the software can be compared against the expected result. Each
difference between the expected and actual results is recorded as a prob-
able defect and is analyzed to determine whether the software is performing
as required.

Practical Guide to Software Quality Management

182

8.3.5 Test reports
The test reports (see Appendix I) record what actually happens during
each test. They specify the expected and actual results and the conclusions
drawn from the results. Anomalies and the final disposition of the anoma-
lies are recorded. Test reports are the key factor in determining when test-
ing has reached its beneficial conclusion.

8.4 User documentation
The best software is not useful if the end user does not know how to use it.
User documentation may include, in addition to the user manuals, mainte-
nance, operator, training, and other project-specific documents, such as
the version description document. User documentation provides instruc-
tions to the end user of the software system. It addresses proper prepara-
tion and presentation of inputs, operating instructions, and directions for
the interpretation of the output data. It also may present operating instruc-
tions, training needs, descriptions of differences from one version to the
next, and maintenance information.

User documentation shows and tells the user how to make use of the
software system. It should discuss the system, specify the format and con-
tent of the inputs, and describe the outputs that are the result of the system
processing.

The software quality practitioner must take an active role in the review
and evaluation of user documentation. If the software cannot be used prop-
erly, it matters little if it is a “quality” product. The user documen-
tation must make proper use possible. Software quality practitioners
should make a test run of the user manual to see if the instructions make it
possible to actually use the system as it was meant to be used. That can
sometimes be made a part of the final acceptance or demonstration testing
or may be an individually conducted exercise. The important thing to be
accomplished is the verification that the user documentation does make
proper operation and use of the software possible.

8.4.1 Input requirements
With respect to input, the user documentation will tell the user what infor-
mation the system requires. It will present data formats, ranges of legal
values, schedules of input, and other information concerning the input
data. Such things as methods of input (e.g., hardware registers, keyboard
entries, data from other systems), where the data are to be submitted
(e.g., remote job entry, via a terminal), when the input is required

Software documentation

183

(e.g., every Thursday, when prompted), and other appropriate informa-
tion specific to the particular system must be available to the user in the
user manual.

8.4.2 Output description
Another important part of the user documentation is instructions on how
to interpret the results of the processing. Full descriptions of all outputs are
necessary. The documentation must, of course, contain instructions on
how to understand the displays or printouts that are created. In addition,
it must provide a complete and understandable description of all nonstan-
dard outputs, such as error messages, abnormal halts, loss of system “san-
ity,” and so on. Each of these situations or outputs will be described and
the proper response spelled out. If the system is running in a central or re-
mote data center, instructions for the distribution of hard-copy output will
be provided.

8.4.3 Operation instructions
The user documentation should include the operation instructions, as well
as pure user information; that is, it should contain details on how to actu-
ally make the system operate. Such information as how to load the system,
what storage media are required, special peripherals such as high-speed
printers or mass storage devices that are to be online, and how to bring the
system down when processing is complete may be included in the opera-
tors’ instructions. Whether this information is in the user manual or in a
separate document is usually a function of the size of the system and where
it is run (e.g., on a desktop computer or in the central data center). Some
installations may have documentation standards that specify where this in-
formation is to be provided.

An operator manual or similar document is often needed for compli-
cated systems that require the involvement of computer center personnel.
This involvement may be the mounting of tapes and disk packs, handling
of output forms or reports, sequencing of several systems into the proper
executional order, and so on. Many systems are self-sufficient once they
are initiated. In those cases, there may be few or no operator instructions.
Larger systems may, however, justify a separate operator manual to pro-
vide detailed information concerning the operation of the software system.

The software quality practitioner has the responsibility to review op-
erator documents for format and required content both at the initial release
and during the operation and maintenance phases of the SLC.

Practical Guide to Software Quality Management

184

8.4.4 Maintenance
Good maintenance documentation helps keep the software running and
up to date. The primary tool of the software maintainers is the body of soft-
ware documentation. Without clear and complete documentation of the
software, the maintainers must recreate the data on which they will base en-
hancement and correction actions. Of course, the single most important
document is the listing of the source and corresponding object code of the
software. Without that, maintainers must work backward from the object
code to recreate the source code or work in object code itself.

The next most important document is the final design description (or
as-built) document. This document, or its equivalent, together with the up-
to-date requirements and flowcharts or processing diagrams, explains to
the maintainer exactly what the software is supposed to contain and
how it is constructed. It is with these documents that maintainers study de-
fect reports and requests for system enhancements. The flow diagrams (in
whatever form is the standard for the specific installation) and the as-built
design document present the software system design and implementation
and describe what it does and how. The requirements describe the full en-
vironment into which the change must fit.

The maintenance portion of the user documentation contains informa-
tion of importance to the persons or persons who are to maintain the soft-
ware system. This portion usually contains the as-built design information,
descriptions of phased implementation modifications made and pending,
records of software changes made since implementation, and the like. Any-
thing that will make the work of software maintainers easier is appropriate
for inclusion in the maintenance portion of the user documentation.

In the evaluation of maintenance documentation, software quality
practitioners must be sensitive to the environment of the maintainer and
the documentation needs involved. Reviews of the maintenance documen-
tation should be attended by and heavily influenced by representatives of
the maintenance organization. Deficiencies noted in the maintenance docu-
mentation will be then be brought to the attention of management for
resolution.

8.5 Training documentation
Training documentation, when required, will address both developer and
user training. The more complicated and involved a system becomes, the
more likely it is that there will be people working on it who do not have
prior experience in one or more aspects of their tasks. Languages, program-
ming environments, and technical subjects are all areas in which develop-

Software documentation

185

ers may need new or further education and training. Likewise, the cus-
tomer or the user of the system may need to be trained.

Training documentation should be prepared any time there is a need
for formal or extensive informal training. The format and content of the
documents will vary according to need and application.

Software quality practitioners should evaluate the developer and user
training needs and be sure that training documentation is appropriate, pro-
vided, reviewed, compliant with existing standards, and applicable to the
project. Software quality practitioners probably will not perform the train-
ing or write the documents, but they must make management aware of any
training needs.

8.6 Documentation standards
A wide variety of documentation standards are available. In many compa-
nies and organizations the first thing that is standardized is documenta-
tion. That may be because documentation is the least favorite activity of
most software developers. It is the only product produced by a large por-
tion of the SLC and is usually the object of most of the complaints about a
system. Or perhaps it is the easiest to standardize since there are so many
standard examples from which to choose.

Industry organizations have published or are developing standards for
documentation, not only in the software field but also (and for a longer
time) in the hardware arena. For example, the IEEE has standards for sev-
eral software development documents (see Table 2.1). These standards
represent the consensus of a large portion of the computing industry. The
DoD and various other government agencies, such as NIST, have promul-
gated documentation standards both for general applications and for use in
particular situations or special computing environments.

In some cases, externally prepared standards can be used directly. Oth-
erwise, they can be modified to fit the needs of an individual organization.
Some standards often include very specific content and format instruc-
tions so that very little is left to the author except the information to be
documented. Others provide generic requirements or guidelines on which
an organization can build. Some companies are willing to share their docu-
mentation standards or at least give guidance in the area.

As in the case of standards in general (see Section 2.2), each company
or organization must develop or tailor documentation standards to meet its
own specific needs. Documentation standards, like anything else, must
serve the users of those standards, or they will be improperly followed or
ignored all together. It is incumbent on the software quality practitioner to
review documentation standards periodically to be sure they are up to date

Practical Guide to Software Quality Management

186

and appropriate for the organization. When they become inadequate or ob-
solete, the practitioner should prompt the standards coordinator to take ac-
tion to improve them.

8.7 Summary
Software documentation is composed of management, development, test,
and user documentation. It is intended to follow the evolution of the soft-
ware as it progress through the SLC. Each SDLC phase has a product or
products, which are the statements of the increasingly complete solution
for the user’s needs as development proceeds.

Documentation is like the markers along a highway. Looking ahead, it
provides a trail to follow toward the destination. Looking back, it provides
a record of the trip thus far. Each phase of the SDLC prepares the “direc-
tions” for the next phase in the form of some sort of documentation. These
same documents are the record of what has happened during the phase
itself.

The SDP is the document that lays out the management approach to
the software project. In its most basic form, it will include the schedule and
resource needs for the project. The methods, requirements levied on the
producers, contracted requirements, and tools to be used for software CM
should be defined and explained.

The SQSP addresses the activities to be performed on the project in
support of the quest for quality software. All activities to be accomplished
in the software quality area should receive the same personnel, resource,
and schedule discussion as in the overall SDP. Whatever the format of the
SQSP, it is important that this document (or its information if in another
document) be complete and approved by management and the developers.

The requirements document is the keystone of all software documenta-
tion. Preliminary and detailed design documents depict how each require-
ment will be approached and satisfied by the software. The preliminary
design provides the initial breakdown of the requirements into functional
groups for further design efforts. The detailed design is often called the
build-to specification. It is the input to the programming staff for transla-
tion into the compiler language for implementation on the target computer.
The final version of the detailed design is sometimes called the as-built
document, since it describes the software as it actually was delivered.

Test documentation includes all test program documents from the
overall test plan through the final test report.

User documentation tells the user how to make use of the software sys-
tem. The user documentation may include the operators’ instructions as
well as strictly user-oriented information.

Software documentation

187

The larger the system, the more documentation is appropriate. Data-
base design and interface design documents may be needed. Maintenance
and training may deserve separate and extensive treatment. Finally, there
may be a need for a separate operations manual.

8.8 The next step
Few texts written have been written about software documentation as a sub-
ject unto itself. However, since all software development, testing, and main-
tenance processes depend on the requirements, you can start with Software
Requirements: Analysis and Specification by Alan M. Davis (Englewood
Cliffs, NJ: Prentice-Hall, 1990).

Additional Reading

Buckley, F. J., Implementing Software Engineering Practices, New York:
John Wiley & Sons, 1989.

Guide International, Quality Requirements—GPP 217, Guide
International, Chicago, IL, 1989.

Hatley, Pirbhai, Strategies for Realtime System Specification, New York:
Dorset House, 1987.

Shumate, Ken, and Marilyn Keller, Software Specification and Design: A
Disciplined Approach for Real-Time Systems, New York: John Wiley &
Sons, 1992.

Vincent, James, Albert Waters, and John Sinclair, Software Quality
Assurance: Volume 1, Practice and Implementation, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

Practical Guide to Software Quality Management

188

Practical Guide to Software Quality Management

Chapter 9
Quality system implementation

Chapters 1 through 8 described the individual elements of the
SQS. Those elements must be assembled into a manageable whole
that will become the SQS. Figure 9.1 shows that all the elements

are connected and that the connections are formed through the overall
SQS. As it begins to implement the individual elements into the SQS, each
organization must select the method and order of implementation and en-
sure that sufficient support is present for a successful implementation and
that the SQS will become part of the new quality culture.

The key concerns in the implementation of the SQS include:

• Planning;

• The quality charter;

• Organizational culture change;

• The roles of the organization;

• Implementation and improvement.

189

9.1 Planning the implementation
The planning of an SQS should involve consideration of all the elements
discussed so far in this text. Many of the concerns of the SQS are depicted
in Figure 9.2. Prior to beginning any actual implementation, careful consid-
eration must be given to each step that will be taken. Those SQS elements
that are already in place or that are partially implemented must be recog-
nized and built on to the maximum extent compatible with the overall sys-
tem. Each activity must be assigned to the appropriate organizational entity
for execution. A period of training must be planned both for the implemen-
ters of the various portions of the plan and for the data processing organiza-
tion as a whole. Inclusion of each group to be monitored in the planning
process will benefit the overall system by instilling a sense of system owner-
ship in the whole organization.

The actual implementation of the SQSP requires careful planning and
scheduling. Starting with the definition of the charter of the software qual-
ity practitioners and ending with the SQS implementation strategy and exe-
cution, each step must be laid out and accomplished with the maximum
involvement of the affected groups. Even the best conceived system can fail
if it is implemented in the wrong way.

Standards

TestingReviews

Metrics

Vendor
control

Configuration
management

Security Training

SQS

Figure 9.1
Connecting

the elements.

Practical Guide to Software Quality Management

190

9.2 The quality charter
Without clear direction and support from management, an SQS faces an
uphill struggle.

Early in the planning stages of the SQS, a statement of what the system
will accomplish is necessary. In other words, the requirements for the sys-
tem must be established. Following that, the software quality group itself
must be recognized with a specific charter of its role, responsibilities,
authority, and organizational placement for the specific software develop-
ment project.

The sample charter in Appendix J defines the limits of the software
quality group’s activities. It describes the expectations of and degree of sup-
port by management for the group and its efforts. In so doing, the charter
formally demonstrates the commitment that management is making to the
software quality group and its system. The charter can also be the instru-
ment that describes the allocation of SQS functions and the organizational
groups to which they are assigned, although that often is a part of the imple-
mentation plan, which comes later.

Operating
systems

Security

TelecommunicationDatabase

Linkers and
loaders

Configuration
management Languages

SQS
concerns

Quality
management

Figure 9.2
Software quality

system concerns.

Quality system implementation

191

In summary, the charter is the written statement of management’s in-
tention to proceed with the SQS. With this document in hand, the soft-
ware quality group can go forward with a clearly defined role in the total
organization. Without it, there is no recourse when one or another of the
SQS activities is challenged or ignored.

9.3 Changing the organizational culture
Implementation of a successful SQS requires a change in the culture of
the organization with respect to quality. The key component of any culture
change is commitment, in this case, the commitment of the entire
organization.

9.3.1 Culture change
Changing a cultural is a four-step process.

Step 1 is the realization that the current situation, whatever is to be
changed, is no longer desired. This is the first step, because if the current
situation is desired, there is no basic motivation to change at all. An exam-
ple might be that all projects have excessive postimplementation defect
rates.

Step 2 is the determination that there is a situation better than the cur-
rent one. If the current situation is undesirable but is the “least worst” of all
available situations, the motivation to change still is not present. Since the
testing of the project prior to implementation is at the state of the art of the
organization’s testers, a preferred situation in the example might be full
user testing prior to implementation.

Step 3 is the determination that the preferred situation (found in
Step 2) is attainable. In some cases, there is a preferred situation, but “you
can’t get there from here.” At this point, even though the motivation to
change is present, the change cannot be completed. Continuing the exam-
ple, it is noted that full user testing is not feasible; they refuse, for whatever
reason, to do it.

Step 4 is taken when Steps 1 through 3 have been successful. There is
dissatisfaction with the current situation, and a better situation exists and is
attainable. Step 4 is the application of the commitment to attaining the pre-
ferred situation. In the case of implementing an SQS, it is the combined
commitment of management and the rest of the organization to expend the
required effort and to aim for doing things right the first time.

Practical Guide to Software Quality Management

192

9.3.2 Management commitment
A management involved in the planning and implementation of a program
is more likely to commit itself to that program.

Management is going to be asked to commit resources to the SQS. No
matter who carries out the individual activities represented by the eight ba-
sic elements of the system, there is a resource cost involved. Management
usually is sensitive to those costs and the payback that can be expected for
them. If there has been little or no management participation in the plan-
ning and development of the SQS, there will be little or no understanding
of the value to be expected from the expenditures.

The costs involved in an SQS include, in addition to the actual SQS
resource costs for personnel and so on, nontrivial costs to the project devel-
opment. Software quality activities will have an impact on the time and re-
sources required to develop the software product. In the experience of this
author, those costs could range from as little as 5% for a minimum SQS ap-
plication to as much as 20% for a fully applied SQS. Note that probably
not all the costs will be new costs. It is to be expected that at least some re-
sources were being expended for testing, configuration management, and
defect reporting and correction even before there was a formal SQS. In any
case, the costs to be incurred must be explained to management. If manage-
ment is a part of the planning for the system, they will have a much better
understanding of where these costs come from and what they will accom-
plish. Management must be given the opportunity to have direct inputs
into the SQS planning and must be recognized for those inputs.

Without management commitment, any program is unlikely to suc-
ceed. The charter is the demonstration of management’s commitment to
the SQS.

9.3.3 Organizational commitment
It often is observed that a quality program will not succeed without the
commitment of management. While management commitment is neces-
sary, it is not sufficient. Also required is the full commitment and support
of the organization, which must change its work habits to enable the suc-
cess of the SQS and the software quality program. The cultural orientation
of the organization must become one of “do it right the first time.” The soft-
ware quality practitioner must remember that the full set of changes cannot
be made in one fell swoop. “Do it right the first time” will take effect in
smaller steps of “do it more correctly sooner.” As this habit becomes en-
trenched, the organizational culture will begin to change.

As Figure 9.3 shows, there can be involvement without much effort,
but commitment requires much stronger support.

Quality system implementation

193

9.4 Organizational considerations
Software quality management is the discipline that maximizes the prob-
ability that a software system will conform to its requirements, as those re-
quirements are perceived by the user, on an ongoing basis.

Like a hardware quality system, the SQS is a measuring and monitor-
ing function. It is a set of activities intended to encourage and, to a degree,
enable conformance of the software to its requirements. Throughout this
text, reference has been made to the role of the software quality practitio-
ner. In general, this role has been one of monitoring the status of the soft-
ware development or some aspect surrounding that development. The
several aspects of the SQS, testing, education, security, and the others, are
all factors that influence the capability of the software to conform to its re-
quirements. The software quality practitioner’s role is to monitor the status
and progress of the organization with respect to those factors. Its findings
are reported to the level of management that has the authority to take any
necessary corrective action.

Two points are important here. First, software quality practitioners
may, but usually do not, perform all the various activities that the SQS
comprises or on which it reports. The software quality practitioner does
not write the documentation, perform the testing, teach the programming
courses, install disaster recovery procedures, and so forth. Those tasks

Consider veal scalloppini

The bull participates

The cow is involved

The calf is committed

Figure 9.3
True commitment.

Practical Guide to Software Quality Management

194

should be performed by that part of the organization best capable of per-
forming them. The role of the software quality practitioner is to ascertain
that those activities are being performed and whether that performance is
sufficient to permit the software to conform to its requirements.

The second point is that software quality practitioners are not an en-
forcement agency. A software quality practitioner reviews, inspects, evalu-
ates, measures, and then reports. The organizational level at which
software quality practitioners report can strongly affect the perceived value
of the reports that they generate and the influence they can exert over the
software development process. The task of enforcement is the responsibil-
ity of management. Only management has the authority to take corrective
action in the case of reported deficiencies.

While it is true that everyone should be responsible for the quality of
his or her own work, in most organizations the overall accountability for
software quality rests with one person. It is simplistic to say that the overall
accountability for software quality lies with the president, chairperson, or
CEO of the organization. Obviously, final accountability for everything in
the organization lies with that person. The question is, to what level has the
day-to-day, effective accountability been delegated? In most cases, the man-
ager of the data processing organization (whatever title that person might
have) has the delegated accountability. That is the person who can make
the enforcement decisions, weighing the inputs from the various concerned
areas such as software quality, development, and the user. The manager, in
turn, will delegate the quality tasks and their performance to those parts of
the organization that is best suited to accomplish them. Management must
weigh the severity of the deficiency, business factors, resource utilization,
schedule restrictions, political aspects, and other considerations surround-
ing the SLC and then make a decision as to the action that should be taken
for each specific situation. The reports received from software quality prac-
titioners are one form of input to this decision-making process. Certainly,
software quality practitioners may offer recommendations with the reports’
findings, but the enforcement actions are management’s to take.

9.4.1 SQS task performance
The best qualified entity of the organization should perform the day-to-day
quality system tasks.

Few activities in the purview of the SQS must be performed spe-
cifically by software quality practitioners. For that reason, it could be ar-
gued that there is no need to have a “group” called software quality at all.
The basis for that argument is that since everyone is responsible for the
quality of the software product a separate group is not needed for the SQS
tasks. If all persons involved in the specification, design, coding, testing,

Quality system implementation

195

and operations of the software were infallible, that might be a workable situ-
ation. Humans are not infallible, however; in spite of their best intentions
and efforts, they make errors, which cause defects. The intent of the SQS is
to help discover those defects and correct them as early as possible. In addi-
tion, the formation of a software quality group, or at least the identification
of a single accountable person, tends to focus attention on quality and
efforts to attain it. And, just as in a software development project, it is a
good idea to have a champion for the SQS. If that champion is a member of
senior management, so much the better.

The software quality group is responsible for making sure that the vari-
ous SQS tasks are performed. That does not mean that software quality is
always the proper group to actually perform those tasks. Remember, soft-
ware quality is a monitoring group. If there are tasks for which the software
quality group is qualified from a technical standpoint and there is no other
more logical group, software quality practitioners certainly may be as-
signed to the task. In some organizations, the practitioner does, in fact, per-
form all the elements of the SQS. In most companies, however, the bulk of
the tasks is handled outside the software quality group. Each function
should be assigned to the organizational entity that is “in the business.”
Educational needs should be filled by the training and education entity,
configuration management by the CM entity, and so forth. Each company
must review its own needs, priorities, and capabilities and then determine
the proper distribution of software quality tasks for its own situation. It
may even be advisable or necessary to bring outside consultants in for spe-
cific tasks, at times.

9.4.2 Reporting level
Software quality must be independent of the group(s) that it monitors and
thus should report to at least the same organizational level. Reporting at
lower managerial levels can dilute, even negate, the influence of the soft-
ware quality practitioner on the software development or maintenance
projects.

Figure 9.4 shows the least favorable structure and the one that should
not be used. In this case, software quality reports to the very person whose
group software quality is monitoring. It is unlikely that much useful report-
ing of noncompliance with standards, defect trends, or other insufficiencies
will reach the ears of the portion of management that can take the necessary
corrective action. Organizational independence from the groups being
monitored is the single most important consideration in the placement of
software quality.

Practical Guide to Software Quality Management

196

Figure 9.5 presents the best realistic compromise. It shows software
quality reporting at the same level as each of the other groups in the data
processing department. The manager of software quality is a peer with the
managers whose groups are being monitored. A common higher manager
is available to mediate any issues that cannot be resolved directly between
the affected managers.

The advantages of this scheme are as follows:

• The software quality practitioner reviews the work of peer groups.

• A single superior is available to mediate questions or disputes.

• The software quality practitioner is independent of each of the
groups to be monitored.

• The software quality practitioner is accessible to the other groups
for assistance.

An important aspect of the suggested reporting level is that the soft-
ware quality practitioner is specifically not a part of any of the groups that it
must monitor. When a situation that may need correction is found, it is re-
ported to the manager of the data processing organization directly, not
through an intermediate level.

Company
management

Other
functions

Engineering

Other
functions

Analysis

Project
management

Software
development

Software
quality

Figure 9.4
Least favorable

organization.

Quality system implementation

197

Another arrangement is shown in Figure 9.6. This particular reporting
scheme is sometimes found in manufacturing companies that have a very
strong and mature quality system. Software quality in these companies is a
recognized extension of the overall quality system. In this case, the soft-
ware quality practitioners report completely outside the data processing de-
partment and have a direct reporting line to top company management. A
potential drawback is that, except in large organizations with experience in
hardware product quality practices, this scheme may have the software
quality practitioners too far removed from the development organization to
be as effective on a day-to-day basis as is desirable. The success of this type
of reporting structure depends on the interaction between the software
quality group and data processing. If, in spite of the organizational separa-
tion, the software quality practitioner maintains a high degree of communi-
cation and rapport with the data processing groups, this can be a workable
solution. It is also a candidate arrangement when there is a strong matrix or-
ganizational structure for project management.

There are probably many different reporting arrangements that can be
envisioned. Most, though, if the software quality practitioner is at a lower
level than the groups being reviewed, do not support a strong SQS effort.
Some arrangements would place the software quality practitioner at a
higher level than the other groups. That can sometimes lead to conflict be-
cause the software quality group is perceived as having inordinate power.
Whatever the reporting structure chosen, software quality practitioners
will be most effective when they report to at least the same organizational
level as those groups whose activities they must monitor.

Data
processing

Applications Systems Network Database

Software
Operations Configuration

managementFigure 9.5
Acceptable

organization.

Practical Guide to Software Quality Management

198

9.5 Development organization participation
The development organizations that will be monitored by software quality
practitioners must have some say in the criteria and methods to be used.
Acceptance of the SQS by the rest of the organization is the critical factor
in the success or failure of the SQS.

Openness by software quality practitioners in the beginning of the sys-
tem will enhance openness by the developers later on. No one likes to feel
that someone is constantly looking over his or her shoulder. Yet that is ex-
actly the impression software quality practitioners can give if they have not
requested and welcomed participation and involvement by the develop-
ment groups in the preparation of the SQS. When the developers have
been a part of the overall planning and development the system, there will
be less resistance to the requests by software quality practitioners for infor-
mation about progress and status, let alone data on defects being found.

Participation by the developers can also help in the creation of more
meaningful measures of progress, trends, and areas in need of additional at-
tention from the SQS. Most people know their skills and limitations. If
they have the attitude that someone else is going to discover and “tattle” on
their weaker capabilities, there is resistance to exposing those areas. On the
other hand, if given the opportunity, most people will point out those areas
in which they feel they can use assistance. If that assistance is provided, a
growing trust is built, and fear and suspicion are reduced. By maintaining
close contact with and participation by the developers during the planning

Company
management

Other
functions

Project
management

Quality
management

Software
developmentEngineering

Software
qualityFigure 9.6

Alternative
organization.

Quality system implementation

199

and implementation of the SQS, the software quality group can build a feel-
ing of SQS ownership on the part of the developers.

9.6 Implementation strategies
There are several strategies for implementation of an SQS. Probably the
least effective methods are the ones that impose the SQS on the whole de-
velopment organization without regard to which stage each project is at in
its SDLC.

First is the all-at-once approach. In this case, the whole SQS is imple-
mented at one time. Each project is expected to stop what it is doing and to
bring the project in line with the new SQS requirements, whether or not
every requirement is meaningful. The result is usually a period of confu-
sion and a corresponding antagonism toward the SQS and the software
quality group. Faced with this negative attitude, the software quality group
has a very difficult time establishing itself and often fails and is disbanded.

Another poor method is the one-element-at-a-time approach. In this
case, a particular element is chosen for organizationwide implementation,
again without regard to the status of the various ongoing projects. Since
there is varied success based on the position of each project in its SLC, the
element tends to fade away due to decreasing application. When it is real-
ized that element is ineffective, the decision is made to try one of the others.
It, too, eventually fails. As each element is tried in turn, each faces the same
fate. Finally the decision is made to scrap the SQS because it obviously is
not effective.

Both these implementation methods can work if consideration is given
to each project to which they will be applied. There must be recognition
that each project will be in a different portion of its life cycle and thus will
have differing abilities, or needs, to comply with a new SQS. Provisions for
deviations from or waivers of specific requirements of the SQS based on
the projects’ needs must be allowed, which will make either method of im-
plementation much more likely to succeed.

9.6.1 Single-project implementation
The all-at-once approach can be successful when the SQS is to be applied
only to new projects.

One popular method of this type of implementation is to permit ongo-
ing projects to complete on their own and to concentrate the software qual-
ity practitioners’ efforts on new projects as they are begun. This has the
drawback that some projects may be less successful since none of the sys-
tem is formally applied to them. It has the advantage that no project has to

Practical Guide to Software Quality Management

200

change processes in the middle of its development. It is also likely that
there are some portions of the SQS that will be adopted by the ongoing
projects because they are seen to be of value and cause little disruption in
the project’s progress.

Another strong recommendation for this approach is in the data proc-
essing organization that experiences frequent project startup. Companies
like defense contractors, which often have several dissimilar contracts start-
ing and ending independently from one another, can use this method suc-
cessfully. It is often favored by software vendors, as well, because, again,
there is wide project-to-project separation.

9.6.2 Single-element implementation
The one-element-at-a-time implementation picks one SQS element to im-
pose on all projects, new and ongoing, but does so with careful considera-
tion of each project’s ability and need to conform to the element. This, too,
can be a successful method of implementation, but it requires careful
planning.

Two primary aspects of single-element implementation must be con-
sidered: the order of implementation and the project benefit. Some SQS
elements may add more value if implemented sooner, while some may actu-
ally have negative impact if implemented too soon.

Certainly, some elements are rather project-status independent. Por-
tions of the education and security elements can be implemented irrespec-
tive of project status. Others, like documentation or CM, may require
significant retrofitting of projects if implemented in the later phases of the
SDLC.

An advantage of the single-element approach is that each project has
the opportunity to benefit from at least a portion of the overall SQS as early
as possible. In that way, development personnel are able to see benefits of
the system and tend to be more supportive of elements that are introduced
later. A disadvantage is that new projects may not get the full benefit from
the SQS because some of its elements are not yet in place.

The most likely type of organization to use the single element ap-
proach is that in which most of the development is closely related, for
example, the more traditional inhouse data processing for financial and
business applications. Here, too, there is a rather steady flow of new pro-
jects, but they tend to be similar in nature. The single-element approach al-
lows each element to take root and become a routine part of the SDLC
before another element is introduced.

Quality system implementation

201

9.6.3 Combined implementation
A combination of the two methods can be the best answer in most cases.
As is the case in any discussion of methods or approaches, there is no sin-
gle, always correct situation.

The single-project and single-element approaches are clearly the ex-
tremes of the implementation method spectrum. The single-project ap-
proach would be successful in the information systems organization that
had no ongoing development projects to consider. The single-element ap-
proach could be the best answer if there is no new project activity. Neither
situation is likely to be the case in most organizations. The answer, obvi-
ously, is to fit the implementation method or combination of implementa-
tion methods to the actual experience of the particular organization and to
the specific projects being affected.

For new projects, it is almost always best to implement as much of the
total system as possible. Only those elements that, in a given organization,
would conflict with ongoing projects should be delayed. An example might
be a new form of database security system that would seriously affect an on-
going development effort. In most cases, however, new projects can be
started using the full SQS with little or no impact on the rest of the develop-
ment activity.

Ongoing projects can be the subject of various subsets of the full SQS,
depending on their status and needs. Projects late in the SDLC probably
would be unaffected by the imposition of new programmer training, but
could benefit from increased user training requirements. A project early in
the SDLC can be placed under more stringent configuration management
procedures without much impact on completed work. Each project must
be evaluated against the full SQS, and those elements that are feasible
should be implemented.

As the SQS is implemented and experience is gained with it, it should
be evaluated and modified as appropriate. The experiences of each project
should be considered and changes, additions, and deletions made. Provi-
sions for deviations and waivers will make the actual implementation of
each element to each project as smooth as possible. A study of the waivers
and deviations will show the modifications that may be needed in the over-
all system.

9.6.4 Adapting the SQS
It must be remembered that no one SQS is suited to all information sys-
tems organizations. The elements presented in this text are the building
blocks, but the organization itself is the architect of its specific SQS. Each
element will mean different things to different people. The various priori-

Practical Guide to Software Quality Management

202

ties, business considerations, political influences (both internal and exter-
nal), and many other factors will determine the provisions of the SQS for a
specific company.

In exactly the same manner, there will be adapting of the basic com-
pany SQS to meet the needs of each specific project. Contracts, visibility,
official sponsorship, and other factors will affect the final contents of the
project software quality plan and system.

It is desirable that each company develop a basic SQS. The SQS will
present the minimum software quality requirements that must be met by all
projects undertaken by the development groups. For each individual pro-
ject, additional requirements may be added as the basic system is tailored
to fit. The elimination of any portion or of the basic company SQS should
be permitted only in the most justifiable of circumstances. All adaptation
should be of an additive nature. The increase, not the reduction, of poten-
tial for quality software should be the goal.

9.7 SQS improvement
One of the goals of the SQS is to find ways in which to improve the devel-
opment and maintenance processes being applied to the software. Clearly,
the SQS and its implementation are also a process. As a process, the SQS,
too, is open to review, assessment, and improvement. Several process in-
vestigation and evaluation avenues apply to the software quality process.
Among the process evaluation approaches are:

• Assessment of the process;

• Certification of the process;

• Recognition of process quality.

The goal of assessments, certifications, and awards should go beyond
the single event. The results, winning or not, should serve as starting
points for intentional improvement of the quality system or practitioner. It
must be remembered that each of these events provides only a single snap-
shot of the situation at a specific time. Their real value is serving as bench-
marks from which improvement can be addressed and measured.

9.7.1 Assessment
The most widely known of the process assessment approaches is that devel-
oped by the SEI. Founded to provide software development process evalu-
ation for the DoD, the SEI has conceived the software CMM. While the
CMM is specifically intended for the assessment of the software develop-

Quality system implementation

203

ment process, it can be applied to the software quality process. By answer-
ing a series of questions about the process, an assignment of “maturity
level” is accomplished.

The quality system is an integral part of the level determination, and
some of the questions are intended to assess its effectiveness. The answers
to the quality system–oriented questions can give an idea of the maturity of
the quality process and indicate areas for its potential improvement.

9.7.2 Certification
Two types of certifications are directed specifically at the quality system:
organizational and personal.

Organizational certification can be based on the ISO 9000 series of
standards (see Section 2.2.1). The standards can be used inhouse as self-
evaluation or applied through assessments by third-party assessors. An
inhouse assessment cannot result in a recognized certification as can a third-
party assessment. The value of an inhouse assessment is that it gives a
picture of the effectiveness of the quality system within the needs and re-
sources of the organization. Third-party certification is of value when the
outside world needs to be considered or when absolute independence of
the assessors is desirable.

Personal certification of quality practitioners is available through the
American Society for Quality Control for most hardware quality applica-
tions. The software-oriented Quality Assurance Institute administers certi-
fications for both software quality analysts and software testers. Personal
certifications do not guarantee that the SQS will succeed, but they do offer
assurance that the software quality practitioners are capable of their tasks.

9.7.3 Awards
A number of awards for organizational quality system excellence are avail-
able throughout the world. Many countries now have national quality
awards such as the Malcolm Baldrige Award in the United States. Addition-
ally, several individual states also grant quality system excellence awards.
One such state award is the New York Excelsior Award. There are also
awards for individuals in the quality field, such as the Japanese Deming
Award, that can be presented to either organizations or individuals.

9.8 Summary
The software quality activities, like hardware quality activities, are a moni-
toring and reporting function. The role of the SQS is to monitor the status

Practical Guide to Software Quality Management

204

and progress of the software development and maintenance processes. It
then reports its findings to the level of management that has the authority
to take any necessary corrective action.

Implementation of an SQS requires planning by the software quality
group, and the involvement of the affected groups.

Early in the planning stages, a statement of what the system will accom-
plish is necessary. A charter will describe the expectations and the author-
ity of the SQS and group. Without management commitment, any quality
system is unlikely to succeed. The charter demonstrates management’s
commitment to the SQS.

Involvement of the development groups is also necessary to the suc-
cess of the SQS. Encouraging the groups to be monitored to have a say in
what the monitoring will comprise ensures that the system will be met with
reduced resistance when it is implemented.

Many system implementation schemes exist. No one approach is likely
to be useful in all cases. Likewise, no one SQS will be appropriate in every
case. Each system and its implementation must be tailored to the particular
company needs and the project being addressed.

It is desirable in the case of the SQS itself that a minimum set of quality
assurance functions be established. Each project may add to that minimum
set, but none may do less. In that way, all software projects are monitored
to some degree, and the likelihood of requirements compliance is raised.

Three important points should be made. First, software quality practi-
tioners may, but usually do not, perform the various activities that consti-
tute the SQS. The actual performance is carried out by those sections of
the overall organization best qualified to perform the tasks.

Second, the software quality practitioners are not an enforcement
agency. Only decision-making management has the authority to enforce
anything. Software quality practitioners only monitor and report.

Finally, software quality practitioners must be administratively and
financially independent of the groups performing the functions that the
practitioner is monitoring. Further, the software quality practitioner must
report to at least the same organizational level as the monitored groups.
That permits the software quality practitioner the freedom to report objec-
tively to management.

9.9 The next step
For a discussion of the implementation of a software quality program, see
Software Quality Assurance: Volume 1—Practice and Implementation by
James Vincent, Albert Waters, and John Sinclair (Englewood Cliffs, NJ:
Prentice-Hall, 1988).

Quality system implementation

205

Additional Reading

Arthur, L. J., Improving Software Quality: An Insider’s Guide to TQM,
New York: John Wiley & Sons, 1993.

Blakemore, John, The Quality Solution, Melbourne: Information
Australia, 1989.

Bossert, James L., Quality Function Deployment, Milwaukee, WI: ASQC
Press, 1991.

Curtis, Bill (ed.), Human Factors in Software Development, 2d Ed.,
Washington, DC: IEEE Computer Society Press, 1986.

Hromi, John D. (ed.), The Best On Quality, Milwaukee: ASQC Quality
Press, 1995.

Schmidt, Warren H., and Jerome P. Finnigan, TQManager: A Practical
Guide for Managing a Total Quality Organization, San Francisco:
Jossey-Bass, 1993.

Thayer, R. H. (ed.), Software Engineering Project Management,
Washington, DC: IEEE Computer Society Press, 1988.

Practical Guide to Software Quality Management

206

Elements of a Software Quality System: A Primer for Managers and EngineersPractical Guide to Software Quality Management

Appendixes

The appendixes contain samples of several of the documents de-
scribed and discussed in the text. They are offered as starting
points for the reader who needs to create, manage, or review such

documentation. Each outline or sample is attributed to the source where
appropriate.

207

Appendix A
Sample outline of software
development plan

(Source: IEEE Standard 1058.1-1987; used with permission.)

209

Title Page

Revision Chart

Preface

Table of Contents

List of Figures

List of Tables

1. Introduction
1.1 Project Overview
1.2 Project Deliverables
1.3 Evolution of the SPMP
1.4 Reference Materials
1.5 Definitions and Acronyms

2. Project Organization
2.1 Process Model
2.2 Organizational Structure
2.3 Organizational Boundaries and Interfaces
2.4 Project Responsibilities

3. Managerial Process
3.1 Management Objectives and Priorities
3.2 Assumptions, Dependencies, and Constraints
3.3 Risk Management
3.4 Monitoring and Controlling Mechanisms
3.5 Staffing Plan

4. Technical Process
4.1 Methods, Tools, and Techniques
4.2 Software Documentation
4.3 Project Support Functions

5. Work Packages, Schedule, and Budget
5.1 Work Packages
5.2 Dependencies
5.3 Resource Requirements

Practical Guide to Software Quality Management

210

5.4 Budget and Resource Allocation
5.5 Schedule

Additional Components

Index

Appendices

Appendix A: Sample outline of software development plan

211

Practical Guide to Software Quality Management

Appendix B
Sample outline of SQS plan

(Based on IEEE Standard 730.1-1989; used with permission.)

213

1. Purpose

2. Reference Documents

3. Management
3.1 Organization
3.2 Tasks
3.3 Responsibilities

4. Documentation
4.1 Purpose
4.2 Minimum Documentation

4.2.1 Software Requirements Specification
4.2.2 Software Design Description
4.2.3 Software Verification and Validation Plan
4.2.4 Software Verification and Validation Report
4.2.5 User Documentation
4.2.6 Configuration Management Plan

4.3 Other Documentation

5. Standards, Practices, Conventions, and Metrics
5.1 Purpose
5.2 Documentation, Logic, Coding, and Commentary

Standards and Conventions
5.3 Testing Standards, Conventions, and Practices
5.4 Metrics

6. Review and Audits
6.1 Purpose
6.2 Minimum Requirements

6.2.1 Software Requirements Review
6.2.2 Preliminary Design Review
6.2.3 Critical Design Review
6.2.4 Software Verification and Validation Review
6.2.5 Functional Audit
6.2.6 Physical Audit
6.2.7 Inprocess Reviews
6.2.8 Managerial Reviews
6.2.9 Configuration Management Plan Review

Practical Guide to Software Quality Management

214

6.2.10 Postmortem Review
6.3 Other Reviews and Audits

7. Test

8. Problem Reporting and Corrective Action
8.1 Practices and Procedures
8.2 Organizational Responsibilities

9. Tools, Techniques, and Methodologies

10. Code Control

11. Media Control

12. Supplier Control

13. Records Collection, Maintenance, and Retention

14. Training

15. Risk Management

Appendix B: Sample outline of SQS plan

215

Practical Guide to Software Quality Management

Appendix C
Sample outline of
configuration management plan

(Based on IEEE Standard 828-1990; used with permission.)

217

1. Introduction

2. SCM Management

3. SCM Activities
3.1 Configuration Identification
3.2 Configuration Control
3.3 Configuration Status Accepting
3.4 Configuration Audits and Reviews
3.5 Interface Control
3.6 Subcontractor/Vendor Control

4. Schedules

5. Resources

6. SCM Plan Maintenance

Practical Guide to Software Quality Management

218

Practical Guide to Software Quality Management

Appendix D
Sample outline of software
requirements specification

(Source: IEEE Standard 830-1993; used with permission.)

219

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependencies

3. Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communications Interfaces

3.2 Functional Requirements
3.2.1 Information Flows
3.2.2 Process Descriptions
3.2.3 Data Construct Specifications
3.2.4 Data Dictionary

3.3 Performance Requirements
3.4 Design Constraints
3.5 Software System Attributes
3.6 Other Requirements

Appendixes

Index

Practical Guide to Software Quality Management

220

Elements of a Software Quality System: A Primer for Managers and EngineersPractical Guide to Software Quality Management

Appendix E
Sample outline of software
preliminary design specification

(Adapted from IEEE Standard 1016-1987.)

221

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions and Acronyms

2. References

3. Functional Decomposition Descriptions
3.1 Function 1

3.1.1 Functional Components
3.1.2 Concurrent Processes
3.1.3 Data Components

.

.

.
3.n Function n

3.n.1 Functional Components
3.n.2 Concurrent Processes
3.n.3 Data Components

4. Dependency Descriptions
4.1 Interfunction Dependencies
4.2 Interprocess Dependencies
4.3 Data Dependencies

5. Interface Descriptions
5.1 Functional Interfaces

5.1.1 User Interfaces
5.1.2 Hardware Interfaces
5.1.3 Software Interfaces
5.1.4 Communications Interfaces

5.2 Process Interfaces

Practical Guide to Software Quality Management

222

Practical Guide to Software Quality ManagementSample outline of software detailed design specification

Appendix F
Sample outline of software
detailed design specification

(Adapted from IEEE Standard 1016-1987.)

223

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions and Acronyms

2. References

3. Detailed Decomposition Descriptions
3.1 Module Decomposition

3.1.1 Module 1 Description
.
.
.
3.1.n Module n Description

3.2 Concurrent Process Decomposition
3.2.1 Process 1 Description
.
.
.
3.2.m Process m Description

3.3 Data Decomposition
3.3.1 Data Entity 1 Description
.
.
.
3.3.p Data Entity p Description

4. Dependency Descriptions
4.1 Intermodule Dependencies
4.2 Interprocess Dependencies
4.3 Data Dependencies

5. Module Interface Descriptions
5.1 Module 1 Interfaces

5.1.1 User Interfaces
5.1.2 Hardware Interfaces

Practical Guide to Software Quality Management

224

5.1.3 Software Interfaces
5.1.4 Communications Interfaces

.

.

.
5.n Module n Interfaces

6. Process Interfaces
6.1 Process 1 Interfaces
.
.
.
6.m Process m Interfaces

7. Detailed Design
7.1 Module Detailed Design

7.1.1 Module 1 Detail
.
.
.
7.1.n Module n Detail

7.2 Data Detailed Design
7.2.1 Data Entity 1 Detail
.
.
.
7.2.p Data Entity p Detail

Appendix F: Sample outline of software detailed design specification

225

Practical Guide to Software Quality Management

Appendix G
Sample outline of test plan (system)

(Source: IEEE Standard 829-1983; used with permission.)

227

1. Test Plan Identifier

2. Introduction
2.1 Objectives
2.2 Background
2.3 Scope
2.4 References

3. Test Items
3.1 Program Modules
3.2 Job Control Procedures
3.3 User Procedures
3.4 Operator Procedures

4. Features To Be Tested

5. Feature Not To Be Tested

6. Approach
6.1 Conversion Testing
6.2 Job Stream Testing
6.3 Interface Testing
6.4 Security Testing
6.5 Recovery Testing
6.6 Performance Testing
6.7 Regression
6.8 Comprehensiveness
6.9 Constraints

7. Item Pass/Fail Criteria

8. Suspension Criteria and Resumption Requirements
8.1 Suspension Criteria
8.2 Resumption Requirements

9. Test Deliverables

10. Testing Tasks

11. Environmental Needs
11.1 Hardware
11.2 Software

Practical Guide to Software Quality Management

228

11.3 Security
11.4 Tools
11.5 Publications

12. Responsibilities
12.1 Test Group
12.2 User Department
12.3 Development Project Group

13. Staffing and Training Needs
13.1 Staffing
13.2 Training

14. Schedule

15. Risks and Contingencies

16. Approvals

Appendix G: Sample outline of test plan (system)

229

Practical Guide to Software Quality Management

Appendix H
Sample outline of test case

(Source: IEEE Standard 829-1983; used with permission.)

231

1. Test Case Specification Identifier

2. Test Items

3. Input Specifications

4. Output Specifications

5. Environmental Needs
5.1 Hardware
5.2 Software
5.3 Other

6. Special Procedural Requirements

7. Intercase Dependencies

Practical Guide to Software Quality Management

232

Practical Guide to Software Quality Management

Appendix I
Sample outline of test report

(Based on IEEE Standard 829-1983; used with permission.)

233

1. Test Report Identifier

2. Summary
2.1 Tested Items
2.2 Environment
2.3 Documentation References

3. Variances
3.1 Tested Item(s) Variances from Specifications
3.2 Test Design and Procedure Variances

4. Comprehensiveness Assessment

5. Summary of Results
5.1 Resolved Incidents
5.2 Unresolved Incidents

6. Evaluation
6.1 Test Item Limitations
6.2 Test Item Pass/Fail
6.3 Risk of Future Failure

7. Summary of Activities
7.1 Major Activities and Events
7.2 Resource Consumption

8. Approvals

Practical Guide to Software Quality Management

234

Practical Guide to Software Quality Management

Appendix J
Sample quality management charter

The information in this appendix was contributed in its entirety by an
organization that requested anonymity.

235

SCOPE:

It is the policy of the Management Information Service Organization to pro-
vide a SYSTEMS ASSURANCE function as an internal means of maintain-
ing the quality and effectiveness of applications, facilities, and services
provided by MIS.

A primary purpose of the Systems Assurance function is to assure that
adequate MIS policies, standards, and guidelines exist and are followed in
accordance with the company’s strategic direction. The major emphasis is
on the measuring and monitoring of the internal development and opera-
tional process at appropriate times ensuring quality systems and reduced
business risk.

In defining the scope of Systems Assurance, the following should be
highlighted:

1. The Systems Assurance function performs reviews from an
internal MIS perspective primarily evaluating the installed
systems development and methodology to assure through
reviews that systems are being designed and implemented
according to MIS policy, standards, and/or guidelines.

2. Reviews of operational systems will determine the effectiveness
of, and adherence to, policy and standards and design criteria
related to overall controls and security features.

3. Systems Assurance reviews will frequently be conducted on MIS
policies, procedures, standards and/or operating guidelines
without respect to a specific system. The internal coordination of
these procedures and standards from one MIS group to another
(i.e., Systems to D.P. Services) will be reviewed for effectiveness.

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [1 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Practical Guide to Software Quality Management

236

RESPONSIBILITY:

The Systems Assurance function is responsible for the following functions:

I. Systems Development Reviews

Conducts systems assurance phase reviews of MIS development projects
to assure ADHERENCE TO established MIS policies, procedures, stand-
ards and operating guidelines.

Systems Assurance reviews examining the adherence to established
procedures and standards relative to specific projects will be conducted on
a scheduled basis.

Selection of which systems will undergo an evaluation process will be
primarily based upon the significance of the application to business objec-
tives, operations, or strategic plans.

Selecting from the annual planned objectives of each group within
MIS, Systems Assurance reviews objectives with the appropriate MIS de-
velopment group’s management and confirms the systems assurance sched-
ule. On a quarterly basis, the schedule is reviewed with MIS management
and updated.

In conducting systems development reviews, a phased approach will
be followed. A review will be conducted at the completion of each of the
following phases: (See Sequence of Events.)

• Systems Design Alternatives (SDA)

• Systems External Specifications (SES)

• Systems Internal Specifications (SIS)

• Implementation Phase (IMPL)

• Post Implementation (PIR)

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [2 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Appendix J: Sample quality management charter

237

Each review will, when applicable, evaluate the following criteria:

• design meets business/project/economic objective

• conformance to standards/guidelines

• clarity of material

• operating efficiency

• adequacy of controls/security considerations

• presence of restart and recovery consideration

• file/data retentions

• conversion procedures

• test procedures

The Systems Assurance staff will have reasonable access to all the infor-
mation, records, and personnel of the project or activities under review.
Certain sensitive information may require user approval for access during
the review process. Systems will determine the need for user approval
prior to the start of the review.

Formal reports regarding accuracy of the findings and the achievability
of recommendations will be agreed to by both Systems Assurance and the
MIS area involved. (See Sequence of Events.)

Systems Assurance will follow-up to ensure that all recommendations
have a planned implementation date and are completed.

II. Standards Review

Systems Assurance develops and maintains program/plans for conducting
systems assurance reviews to assure the ADEQUACY OF MIS policies,
procedures, standards, and operating guidelines.

All MIS policies, procedures, standards, and operating guidelines in
effect will be utilized by Systems Assurance as the base from which to con-
duct their reviews.

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [3 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Practical Guide to Software Quality Management

238

As well as using this information as a base, there is an inherent respon-
sibility by Systems Assurance to recognize and report the need for change.
Recommendations will be provided to the appropriate MIS groups man-
agement for approval and implementation. The MIS groups are:

• DATA PROCESSING SERVICES

• SYSTEMS

• OFFICE INFORMATION SERVICES

• PLANNING & MIS SERVICES

Policies, procedures, standards and operating guidelines maintained
and utilized by these groups are subject to review and recommendations
provided by Systems Assurance.

III. Coordination-Audit

Upon notification by Internal Audit of EDP-related audit reports and
findings relative to MIS, the Systems Assurance function will review the
recommendations as they relate to MIS policies, standards and guidelines.

When applicable, Systems Assurance will review proposed
changes/improvements to policies and standards with MIS management.
A final report will be issued and the changes/improvements will be imple-
mented by the responsible MIS area.

IV. Management Review

Annually, key operational systems will be selected by Systems Assurance
for review to determine adherence to standards, procedures, and operating
guidelines.

One measure of selection would be based on the volume and fre-
quency of incidence requiring corrective action. Also, Data Center or Sys-

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [4 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Appendix J: Sample quality management charter

239

tems management can request a review based on their perspective of the
systems condition.

Included in these operational reviews will be the examination of contin-
gency planning and file/data retention to guarantee adequate backup
provisions.

Strategic planning responsibilities within MIS will necessitate inven-
tory type operational reviews to gain an insight into the current systems en-
vironment. Identification of the need to upgrade hardware and/or software
to be in line with future planning due to technology or standardization will
be recommended.

Acting in a MIS consultative capacity, selective reviews will be per-
formed to evaluate the MIS procedures, standards and guidelines being
followed.

V. Security Standards

Systems Assurance will interface with Data Services Security, Corporate
Safety, and Corporate Security through periodic meetings to share in the
establishment of uniform MIS safety and security standards and guidelines.

In response to MIS management requests, review of computer centers
and/or systems development departments will be performed. The review
will cover existing safety and security operational and maintenance ele-
ments within the facility. Recommendations will be made to enhance pro-
tection and control through new or revised procedures or additional
physical protection devices.

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [5 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Practical Guide to Software Quality Management

240

SYSTEMS ASSURANCE REVIEW—Each Review Phase:

1. Systems presents a phase review of a given project to the user
attended by Systems Assurance.

2. Documentation appropriate to the development phase is
reviewed and additional input is provided by Systems when
requested.

3. Findings and recommendations are drafted by Systems
Assurance.

4. Draft is given to Systems for review.

5. Systems Assurance meets with Systems to discuss and correct
report where required. Unresolved differences are brought to the
attention of progressive levels of authority within MIS for
resolution.

6. The report is formally issued to MIS management.

7. Systems drafts plans for implementation of recommendations
and indicates recommendations which will be deferred or are
considered impractical to implement as previously agreed.

8. Draft is given to Systems Assurance for review.

9. Systems Assurance meets with Systems to resolve differences and
finalize report.

10. Report is issued with signatures from both parties.

TITLE
PLANNING & MIS SERVICES – INTERNAL PRACTICES

NUMBER

SUBJECT
Management Information Services
System Assurance Charter

DATE REV.# SUPERSEDES PAGE [6 of 6]

SECTION
MIS Planning and Policy
Systems Assurance

Appendix J: Sample quality management charter

241

Practical Guide to Software Quality Management

Acronyms

ANSI American National Standards Institute

CA configuration accounting

CC configuration control

CCB change control board

CDR critical design review

CE critical error

CI configuration item

CID configuration identification

243

CM configuration management

CMM Capability Maturity Model

CMP configuration management plan

COA cost of achieving quality

COF cost of failure

COQ cost of quality

DoD Department of Defense

EIA Electronic Industries Association

FA functional audit

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

JTC 1 Joint Technical Committee One

KLOC thousands of LOC

LCL lower control limit

LOC lines of code

NIST National Insitute of Standards and Technology

PA physical audit

PDR preliminary design review

PIR postimplementation review

QA quality assurance

QC quality control

Practical Guide to Software Quality Management

244

RTM requirements traceability matrices

SC standards committee

SCN software change notice

SDLC software development life cycle

SDP software development plan

SEI Software Engineering Institute

SG standards group

SLC software life cycle

SQS software quality system

SQSP software quality system plan

SRR software requirements review

STR software trouble report

TRR test readiness review

UCL upper control limit

UDF unit development folder

Acronyms

245

Practical Guide to Software Quality Management

About the author

John W. Horch has an undergraduate degree in experimental statistics
and Master’s and Ph.D. degrees in information systems. He has been
active in the software field for more than 35 years, of which some 30

years have been in software quality management. Dr. Horch has been
granted professional certification as a software quality analyst, software
quality examiner, and systems professional.

With extensive experience in the defense arena, Dr. Horch has worked
on Army, Air Force, and Navy weapon systems in development, verifica-
tion and validation, and quality management assignments. He designed sys-
tems for inventory control, configuration status accounting, secure data
transmission, hardware test, and emulation of a military computer. He was
responsible for documentation, standards, and software quality manage-
ment on the Safeguard ABM system and was manager of systems integrity
for the International Systems Division of Sperry Univac. He also managed
the Verification and Validation Section for Teledyne Brown Engineering.

247

In the commercial area, Dr. Horch has developed and implemented
formal software quality programs for large organizations, implemented and
tested disaster recovery programs, performed detailed physical security
risk analyses, and audited software quality and development programs for
commercial enterprises.

Currently, in addition to international seminar and workshop presenta-
tions, Dr. Horch is active in verification and validation of documentation
and software development programs. He reviews developers’ software de-
velopment, documentation, and quality programs on behalf of government
and commercial clients.

Dr. Horch speaks regularly at conferences, symposia, and workshops
worldwide. He is one of the authors of IEEE Standards 983-1985, 1074-
1995, and 1074.1-1995 and of ISO/IEC IS 12207 and Australian Stand-
ard AS 3563-1988. He publishes on software quality management topics,
referees submitted papers for conferences and journals, and is a book re-
viewer for software-oriented technical magazines.

Active in several professional organizations, Dr. Horch is a former
member of the IEEE Standards Board and its Procedures Audit and New
Standards Committees. He chaired the IEEE Computer Society Software
Engineering Standards Subcommittee for seven years and was the first
IEEE CS representative to ISO/IEC JTC1/SC7. Dr. Horch is an ex officio
member of the board of advisors and has served as director of certification
activities for the Quality Assurance Institute. He was the founding chair
and is the immediate past chair of the Certification Board for Information
Quality Professionals. Dr. Horch is a senior member of the IEEE and the
ASQC and a member of the IEEE Computer Society, the Quality Assur-
ance Institute, and Toastmasters International.

Practical Guide to Software Quality Management

248

Practical Guide to Software QualityManagement

Index

Acceptance control charts, 111–12
Acceptance testing, 70–71, 84

defined, 70
as dry run, 71
performance of, 71
See also Testing

Activities, 2
Adaptations, 161, 164–65

defined, 161, 164
risk, 164
See also Maintenance

Algorithm analysis, 55
Allocated baseline, 123, 134
American National Standards Institute (ANSI), 39
American Society of Quality Control, 39
Application metrics, 96–98

cost of quality (COS), 97–98

process-oriented, 97
product-oriented, 96–97
See also Metrics

Arithmetic defects, 2
As-built design, 179
Assessments, 203–4
Audits, 10–11

defined, 2
functional (FA), 11, 52–53
inprocess, 51
physical (PA), 11, 52–53
of UDF, 11
See also Reviews

Audit trails, 83
Awards, 204

Back-out and restoration tests, 73–74

249

Baselines, 123
allocated, 123, 134
change control and, 134
defined, 133
design, 123, 134
functional, 123, 133–34
operational, 123, 134
product, 123, 134
See also Configuration accounting (CA)

Black box testing, 69
Build-to design, 179

Cause and effect diagrams, 108–9
defined, 108
illustrated, 109
See also Quality tools

Certification, 204
Change control boards (CCBs), 131–32

defined, 131
hardware, 132
multiple, 132
size of, 131
software, 131, 132
See also Configuration control (CC)

Change processing, 129–31
illustrated mechanism, 130
procedures, 13–14
sources for, 130
See also Configuration control (CC)

Clients, 2
Coding

languages, 32
standards, 32

Combined implementation, 202
Commitment

management, 193
organizational, 193
true, 194

Components, 2
Configuration accounting

(CA), 17, 119, 120, 123–26, 133–36
accounting, 135
baselines, 123, 133–35
defined, 120
instances, 124–26, 135–36
See also Configuration management (CM)

Configuration control
(CC), 16, 83, 119, 120, 122–23, 129–33

change control boards (CCBs), 131–32
change processing, 129–31
defined, 120
function of, 122, 123
software libraries, 132–33
See also Configuration management (CM)

Configuration identification
(CID), 16, 33, 119, 121–22, 126–29

configuration items (CIs), 126–28
defined, 119
documentation levels, 122
edition, 121, 129
release, 121, 128
version, 121, 128–29
See also Configuration management (CM)

Configuration items (CIs), 126–28
defined, 126
naming schemes, 127

Configuration management (CM), 15–17, 119–37
activities, 16
configuration accounting

(CA), 17, 119, 120, 123–26, 133–36
configuration control

(CC), 16, 119, 120, 122–23, 129–33
configuration identification

(CID), 16, 33, 119, 121–22, 126–29
defined, 15
documentation and, 170
elements, 119, 121–26
maintenance and, 21
overview, 120
plan (CMP), 174
plan sample outline, 217–18
quality practitioners and, 21
trouble report closures, 94

Consumers, 2
Contracted software, 19, 159–60

“dog and pony shows,” 159
maintenance, 159–60
See also Vendor management

Control defects. See Defects
Cost of achieving quality (COA), 97
Cost of failure (COF), 97–98
Cost of quality (COQ), 97–98

Practical Guide to Software Quality Management

250

contributors, 98
defined, 97
See also Metrics

Critical design review (CDR), 52, 58, 59
Critical errors (CEs), 88–89
Customers, 2

Database design review, 59
Database security, 140–42

components of, 140
dial up protection, 141, 142
techniques, 141
See also Security

Database specifications, 180
Defect analysis, 13–15, 87–117

concepts, 88–90
data location, 90–92
defined, 13, 87
detection, 90
implementing, 112–16
measures, 88, 100–104
metrics, 89, 96–99
process, 89–90
product, 89
program design, 114–15
purpose of, 14
rules, 112–13

Defects
arithmetic, 101
classification of, 100–102
control, 2, 101
correction of, 20
detection and correction, 13–14
frequency of, 102
location of, 101
method of finding, 101–2
number of, 102
processing example, 95
record of, 14
repair costs, 102
repairing, 93–95
repair priority of, 100
reporting, 90–92
severity of, 100
source of, 101
trend analysis, 13–15

tracking system, 95
types of, 101
See also Defect analysis

Design baseline, 123, 134
Design reviews, 58–59

CDR, 59
database, 59
defined, 58
interface, 59
PDR, 58–59
See also Documentation reviews

Design specification, 175, 178–79
as-built design, 179
build so design, 179
detailed sample outline, 223–25
preliminary, 179
preliminary outline, 221–22
See also Development documents

Detailed design specification, 179
defined, 179
sample outline, 223–25

Developers
defined, 148
education, 148–49
world of, 150

Development documents, 175–80
database specifications, 180
design specifications, 175, 178–79
interface specifications, 180
list of, 175
requirements specification, 175, 176–78
See also Documentation

Development organizations, 199–200
Disaster recovery, 146–47

alternative processing site and, 146–47
tests, 147
See also Security

Documentation, 21–22, 169–88
CM and, 170
components of, 170
defined, 169
depth of, 21–22
development, 175–80
levels, 122
maintenance, 165
management, 171–74

Index

251

Documentation (continued)
purpose of, 21
recommendations, 171
standards, 31, 186–87
test, 80, 180–83
test program, 82
training, 185–86
user, 183–85

Documentation reviews, 54–63
algorithm analysis, 55
design, 58–59
formal format, 55
format, 55
peer walkthrough, 54–55
requirements, 56–58
test, 60–61
user, 61–62
See also Documentation; Reviews

Editions, 129
defined, 121
use of, 129
See also Configuration identification (CID)

Education, 18, 147–55
delivery, 153–55
developer, 148–49
formal classes, 154
importance of, 147
needs, 155
on-the-job training, 153–54
operations training, 152–53
quality practitioner role in, 152
sources, 155
support training, 149–51
user, 151–52

Electronic Industries Association (EIA), 39
Emerging technologies, standards for, 36
Encryption, 143, 144
Enhancements, 161, 163–64

defined, 161
SDLC and, 163
See also Maintenance

Entities, 2
Equivalents

defined, 125
illustrated, 125

See also Configuration accounting (CA)
Event recorders, 81

Flowcharts, 107–8
defined, 107
illustrated, 108
See also Quality tools

Format reviews, 55
Functional audits (FAs), 11, 52–53
Functional baseline, 123, 133–34

Glass box testing. See Module testing
Government agencies, 39
Graphs, 105–6

defined, 105
illustrated, 106
See also Quality tools

Gray box testing. See Integration testing
Guidelines, 2

Histograms, 106

IEEE, 39
software development standards, 28
Standard 1061-1992, 112

Implementation, 23–24, 189–206
combined, 202
concerns, 189
development organization participation, 199–200
organizational considerations, 194–99
organizational culture and, 192–94
planning, 190
quality charter and, 191–92, 235–41
single-element, 201
single-project, 200–201
SQSP, 190
strategies, 200–203
See also SQS

Inhouse standards development, 40–42
ad hoc, 40–41
standards committees, 41–42
standards coordinator, 42
standards groups, 41
See also Standards

Inprocess reviews, 49–51
characteristics of, 50

Practical Guide to Software Quality Management

252

inprocess audits, 51
inspections, 51
peer reviews, 49–50
walkthroughs, 50–51
See also Reviews

Input/output defects, 2
Inspections, 10

characteristics of, 51
defined, 3
results of, 51
teams of, 51
See also Reviews

Instances, 124–26
coordination, 135
defined, 124
equivalents, 125
multiple application, 136
tracking, 136
variants, 124–25
See also Configuration accounting (CA)

Integration testing, 69–70, 84
defined, 69
result reporting, 70
result review, 70
See also Testing

Interface design review, 59
Interface specifications, 180
International Organization of Standardization.

See ISO
International standards, 37
ISO

ISO 9000 series, 3, 37
ISO 9001, 37

ISO/IEC/JTC1, 37

Lines of code (LOC), 88
Lower control limit (LCL), 109, 111

Maintenance, 20–21, 160–66
adaptations, 161, 164–65
configuration management during, 21
cost of, 160
documentation, 165
enhancements, 161, 163–64
polishing, 162–63
process, 20

quality practitioner role in, 160
regression testing, 165–66
repairs, 160–61, 162
standards, 44, 45
types of, 160–65
user documentation, 185

Management
commitment, 193
SQS implementation and, 24

Management documents, 171–74
additional plans, 174
CM plan, 171, 174
list of, 171
software development plans (SDPs), 171, 172–73
SQS plans, 171, 173–74
See also Documentation

Management reviews, 10
Measures, 88, 100–104

characteristics of, 115
collecting, 100–104
comparative, 103
defect classification, 100–102
defect frequency, 102
defect source, 101
defect type, 101
derived, 104
nondefect, 103–4
number of defects, 102
priority repair, 100–101
severity, 100
soft, 104
time between defect detections, 103
See also Defect analysis; Defects

Metrics, 96–99
application, 96–98
available, 96
characteristics, 115–16
cost of quality (COS), 97–98
damaging to, 113
defect, 89
design, 114–15
goals and, 99
IEEE standard, 112
process-oriented, 97
productivity, 97
product-oriented, 96–97

Index

253

Metrics (continued)
selecting, 96–99
SQS goal-oriented, 98–99
understanding/applying, 115
validity of, 115
See also Defect analysis

Modules, 121
defined, 3
See also Subsystems; Units

Module testing, 68–69
defect recording, 68
defined, 68
program, 68
results of, 82
review prior to, 69
See also Testing

Naming standards, 32–34
configuration identification, 33
hierarchy, 33
identifiers, 33
See also Standards

National Institute of Standards and Technology
(NIST), 39

Off-the-shelf software, 19, 156–58
quality assurance steps, 156
requirements, 157
reverse engineering techniques, 157
risk and, 158
See also Vendor management

Operating procedures, 34
Operational baseline, 123, 134
Operations

defined, 152
instructions, 184
training, 152–53, 154

Organization, 22–23
alternative, 199
commitment, 193
culture change, 192
development participation, 199–200
least favorable, 197
management commitment, 193
placement of quality practitioners in, 22
traditional style, 22

Pareto diagrams, 107
Path analyzers, 81–82
Peer reviews, 49–50

characteristics of, 50
defined, 3
results of, 49
See also Reviews

Peer walkthroughs, 54–55
Phase-end reviews, 52–54

critical design review (CDR), 52, 58, 59
illustrated, 53
postimplementation review (PIR), 52, 54
preliminary design review (PDR), 52, 58–59
software requirements review (SRR), 52
subject documents, 53
test readiness review (TRR), 52
See also Reviews

Phases, 3
Physical audits (PAs), 11, 52–53
Polishing, 162
Postimplementation review (PIR), 52, 54
Preliminary design review (PDR), 52, 58–59
Preliminary design specification, 179

defined, 179
sample outline, 221–22

Process
analysis, 89–90
assessment, 203–4
behavior, 110
defined, 3
reviews, 10

Process control charts, 109–12
acceptance, 111–12
run, 109–10
See also Quality tools

Process-oriented metrics, 97
Producers, 3
Product analysis, 89
Product baseline, 123, 134
Product-oriented metrics, 96–97
Products

defined, 3
mismatched, 135

Professional groups, 39
Programmer

education, 148–49

Practical Guide to Software Quality Management

254

testing, 83
Programs, 3
Protocols, standardization of, 34
Prototyping, 29–30

defined, 29
illustrated, 30
See also Software development life cycle (SDLC)

Quality, 87
defined, 3
in organization, 23

Quality assurance, 88
defect classification and, 100
defined, 3
practitioners, 96–97, 103

Quality charter, 191–92
defined, 191
responsibility, 237–40
sample, 235–41
scope, 236
systems assurance review, 241

Quality control, 47, 88
defect classification and, 100
defined, 4
insufficient, 103

Quality groups
defined, 4
in organization, 23

Quality management, 4
Quality practitioners, 25

configuration management and, 21
defined, 4
documentation reviews and, 62
education role, 152
in maintenance, 160
operations training and, 153
in organization, 22
reviews and, 48
role of, 18
standards coordinator, 44
in testing process, 85

Quality systems. See SQS
Quality tools, 104–12

cause and effect diagram, 108–9
flowchart, 107–8
graph, 105–6

histogram, 106
Pareto diagram, 107
process control charts, 109–12
scatter diagram, 105
tally sheet, 104–5

Recovery tests, 73
Regression tests, 72, 84

maintenance and, 165–66
results of, 166

Releases, 128
defined, 121
See also Configuration identification (CID)

Repairs, 160–61, 162
defined, 162
estimates, 162
results of, 162
See also Maintenance

Reporting
arrangements, 198
defect, 90–92
level, 196–99
test, 13, 183, 233–34
See also Software trouble reports (STRs)

Requirement reviews, 56–58
criteria, 56
defined, 56
purpose of, 57
See also Documentation reviews

Requirements
defined, 4
user documentation input, 183–85

Requirements specification, 175, 176–78
completeness, 177
consistency, 178
correctness, 176
measurability, 177
necessity, 176–77
sample outline of, 219–20
unambiguity, 177–78
See also Development documents

Requirements traceability matrices (RTMs), 74–76
defined, 74
illustrated, 75

Reviews, 9–11, 47–64
audits, 10–11, 51

Index

255

Reviews (continued)
critical design (CDR), 52, 58, 59
defined, 4
design, 58–60
documentation, 54–63
format, 55
inprocess, 49–51
inspections, 10, 51
management, 10
peer, 49–50
phase-end, 52–54
postimplementation (PIR), 52, 54
preliminary design (PDR), 52, 58–59
process, 10
purpose of, 48
quality practitioner role in, 48
requirements, 56–58
SDLC, 9–10
SDP, 172
software requirements (SRR), 52
subjects of, 54
test documentation, 60–61
test program, 82
test readiness (TRR), 52
types of, 49–54
user documentation, 61–62
walkthroughs, 10, 50–51

Risk analysis, 145–46
results of, 145
using, 146
See also Security

Run charts, 109–10
illustrated, 110
Kaizen concept, 110, 111
lower control limit (LCL), 109
process behavior, 110
upper control limit (UCL), 109
See also Quality tools

Scatter diagrams, 105
Security, 17, 140–47

database, 140–42
disaster recovery, 146–47
encryption, 143, 144
risk analysis and, 145–46
teleprocessing, 142–44

viruses and, 144–45
SEI CMM, 4
Simulators, 79, 81
Single-element implementation, 201
Single-project implementation, 200–201
Software

contracted, 19, 159–60
defined, 4
off-the-shelf, 19, 156–58
tailored-shell, 19, 158–59
types of, 19

Software change notice (SCN), 93
illustrated sample, 94
using, 93

Software development life cycle (SDLC)
defined, 4
phases, 29
reviews, 9–10
SQS and, 24

Software development methodology, 30
Software development plans (SDPs), 62, 171, 172–73

defined, 62, 172
reviewing, 172
sample outline for, 209–11
sections in, 172

Software Engineering Institute capability maturity
model. See SEI CMM

Software Engineering Standards Committee. See IEEE
Software libraries, 132–33
Software life cycle (SLC)

defined, 5
divisions, 6–7
phases, 29
standards, 8, 29
testing, 66, 67

Software quality system. See SQS
Software quality system plan. See SQS plan (SQSP)
Software requirements review (SRR), 52
Software systems, 5
Software trouble reports (STRs), 89

closure of, 93–94
counts, 102, 103
data, 91
form, 91
illustrated sample, 92
incorrect, 103

Practical Guide to Software Quality Management

256

open and resolved, 102
See also Reporting

SQS
adapting, 202–3
charter, 191–92, 235–41
configuration management, 15–17, 119–37
defect analysis, 13–15, 87–117
documentation, 21–22
education, 18, 147–55
elements, 1–26

connecting, 190
list of, 6

goals, 6, 25
implementation, 23–24, 189–206
improvement, 203–4
life cycle periods, 7
maintenance, 20–21, 160–66
management and, 24
organization and, 22–23
reviews, 9–11, 47–64
SDLC and, 24
security, 17, 140–47
standards, 7–9, 27–46
successful, 23
task performance, 195–96
testing, 11–13, 65–86
total, 5
vendor management, 18–19, 155–60

SQS plan (SQSP), 62, 173–74
defined, 173
sample outline of, 213–15

Standards, 7–9, 27–46
ad hoc, 40–41
areas for, 28–36
coding, 32
committees (SC), 41–42
compliance, 44–45
coordinator, 42, 44
cost of maintaining, 44
defined, 5
degree of, 27
documentation, 31
emerging technology, 36
enforcement, 44–45
external developers, 37–39
groups (SG), 41

importance of, 28
inhouse development of, 40–42
international, 37
maintaining, 44, 45
manual, 43
naming, 32–33
noncompliance to, 44–45
online, 44
operation procedure, 34
promulgation of, 43–45
protocol, 34
purchased, 39–40
reasons for, 9
selection of, 42–43
SLC, 8, 29
sources of, 8, 8–9, 28, 36–42
user development, 34–35

Standards Australia, AS 3563, 37
Stress tests, 72–73
Subsystems, 121

defined, 5
See also Modules; Units

Support training, 149–51

Tailored-shell software, 19, 158–59
after-purchase maintenance, 158
testing, 158–59
vendor reputation and, 158
See also Vendor management

Tally sheets, 104–5
defined, 104
illustrated, 105
See also Quality tools

Teleprocessing security, 142–44
encryption, 143, 144
interruption, 143
prevention, 144
See also Security

Test analysis, 80–81
Test cases, 76–78, 182

comparison of, 77
example, 77–78
review of, 78
sample outline, 231–32

Test data, 182
generators, 81

Index

257

Test data (continued)
scope of, 182

Test design, 11
Test documentation, 180–83

test cases, 182
test data, 182
test plan, 181–82
test procedures, 182
test reports, 182
See also Documentation

Test documentation reviews, 60–61
acceptance, 61
walkthroughs, 60
See also Documentation reviews

Testing, 11–13, 65–86
acceptance, 70
activities, 11
back-out and restoration, 73–74
data input, 78–79
development, 181
documentation, 80
execution of, 12–13
flow illustration, 76
goals of, 65
illustrated process, 12
integration, 69–70
module, 68–69
programmer, 83
recovery, 73
regression, 72, 165–66
results expectation, 80
SLC, 66, 67
stress, 72–73
tailored shells, 158–59
types of, 66, 67–74
unit, 67–68
user, 70–71
who performs, 83–85

Test plans, 11, 74–76, 74–82
growth of, 182
reviewing, 70
sample outline of, 227–29

Test procedures, 78, 182
Test program, 66

documentation, 82
reviewing, 82

Test readiness review (TRR), 52
Test reports, 13, 183

defined, 183
sample outline, 233–34
See also Reporting

Test tools, 81–82
availability, 82
event recorders, 81
path analyzers, 81–82
simulators, 81
test data generators, 81

Total quality, 5
Total quality systems

defined, 5
implementation of, 23–24

Training documentation, 185–86
defined, 185
preparation of, 186
See also Documentation

Trend analysis, 97

Unit development folders
audits of, 11
defined, 5

Units, 121
defined, 5
See also Modules; Subsystems

Unit testing, 67–68
defined, 67
expense of, 68
results of, 82
See also Testing

Upper control limit (UCL), 109, 111
User development

benefits of, 35
growing capability of, 35
standards, 34–35

User documentation, 183–85
input requirements, 183–84
maintenance, 185
operation instructions, 184
output description, 184
See also Documentation

User documentation reviews, 61–62
defined, 61
trial use, 61

Practical Guide to Software Quality Management

258

See also Documentation reviews
User education, 151–52

areas of, 151
in house seminars, 154
system limits and, 152
See also Education

User groups, 39
Users, 5
User testing, 70–71

defined, 70
review/execution of, 71
See also Testing

Variants, 124–25
defined, 124
illustrated, 125
See also Configuration accounting (CA)

Vendor management, 18–19
contracts, 159–60
off-the-shelf software, 156–58
tailored shells, 158–59

Versions, 128–29
concept of, 128
defined, 121
See also Configuration identification (CID)

Viruses, 144–45
defense against, 145
introduction of, 144
timed, 144–45
See also Security

Walkthroughs, 10, 50–51
characteristics of, 50
defined, 5
peer, 55–56
results of, 51
test review, 60
See also Reviews

White box testing. See Module testing

Index

259

	Preface xi
	Introduction xiii
	1 The elements of a complete software quality system 1
	1.1 Definitions 2
	1.2 The elements of a software quality system 6
	1.3 Additional Issues 19
	1.4 Summary 24
	1.5 The next step 25

	2 Standards 27
	2.1 Areas of standardization 28
	2.2 Sources of standards 36
	2.3 Selection of standards 42
	2.4 Promulgation of standards 43
	2.5 Summary 45
	2.6 The next step 46

	3 Reviews 47
	3.1 Types of reviews 49
	3.2 Review subjects 54
	3.3 Documentation reviews 54
	3.4 Summary 63
	3.5 The next step 64

	4 Testing 65
	4.1 Types of testing 67
	4.2 Test planning and conduct 74
	4.3 Who does the testing 83
	4.4 Summary 85
	4.5 The next step 86

	5 Defect analysis 87
	5.1 Analysis concepts 88
	5.2 Locating data 90
	5.3 Defect repair and closure 93
	5.4 Selecting metrics 96
	5.5 Collecting measurements 100
	5.6 Quality Tools 104
	5.7 Implementing defect analysis 112
	5.8 Summary 116
	5.9 The next step 116

	6 Configuration management 119
	6.1 Configuration management components 121
	6.2 Configuration identification 126
	6.3 Configuration control 129
	6.4 Configuration accounting 133
	6.5 Summary 136
	6.6 The next step 137

	7 Associated quality concerns 139
	7.1 Security 140
	7.2 Education 147
	7.3 Vendor management 155
	7.4 Maintenance 160
	7.5 Summary 166
	7.6 The next step 167

	8 Software documentation 169
	8.1 Management documents 171
	8.2 Development documents 175
	8.3 Test documentation 180
	8.4 User documentation 183
	8.5 Training documentation 185
	8.6 Documentation standards 186
	8.7 Summary 187
	8.8 The next step 188

	9 Quality system implementation 189
	9.1 Planning the implementation 190
	9.2 The quality charter 191
	9.3 Changing the organizational culture 192
	9.4 Organizational considerations 194
	9.5 Development organization participation 199
	9.6 Implementation strategies 200
	9.7 SQS improvement 203
	9.8 Summary 204
	9.9 The next step 205

	Appendixes 207
	A Sample outline of software development plan 209
	B Sample outline of SQS plan 213
	C Sample outline of configuration management plan 217
	D Sample outline of software requirements specification 219
	E Sample outline of software preliminary design specification 221
	F Sample outline of software detailed design specification 223
	G Sample outline of test plan (system) 227
	H Sample outline of test case 231
	I Sample outline of test report 233
	J Sample quality management charter 235

	Acronyms 243
	About the author 247
	Index 249

