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1 Introduction

The topic of this treatise, Voronoi diagrams, differs from other areas of computational
geometry, in that its origin dates back to the 17th century. In his book on the
principles of philosophy [87], R. Descartes claims that the solar system consists of
vortices. His illustrations show a decomposition of space into convex regions, each
consisting of matter revolving round one of the fixed stars; see fig. 1.

Figure 1: Descartes’ decomposition of space into vortices.

Even though Descartes has not explicitly defined the extension of these regions,
the underlying idea seems to be the following. Let a space M , and a set S of sites p
in M be given, together with a notion of the influence a site p exerts on a point x of
M . Then the region of p consists of all points x for which the influence of p is the
strongest, over all s ∈ S.

This concept has independently emerged, and proven useful, in various fields of
science. Different names particular to the respective field have been used, such as
medial axis transform in biology and physiology, Wigner-Seitz zones in chemistry and
physics, domains of action in crystallography, and Thiessen polygons in meteorology
and geography. The mathematicians Dirichlet [95] and Voronoi [253, 252] were the
first to formally introduce this concept. They used it for the study of quadratic forms;
here the sites are integer lattice points, and influence is measured by the Euclidean
distance. The resulting structure has been called Dirichlet tessellation or Voronoi
diagram, which has become its standard name today.
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Voronoi [253] was the first to consider the dual of this structure, where any two
point sites are connected whose regions have a boundary in common. Later, Delau-
nay [86] obtained the same by defining that two point sites are connected iff (i. e. if
and only if) they lie on a circle whose interior contains no point of S. After him,
the dual of the Voronoi diagram has been denoted Delaunay tessellation or Delaunay
triangulation.

Besides its applications in other fields of science, the Voronoi diagram and its dual
can be used for solving numerous, and surprisingly different, geometric problems.
Moreover, these structures are very appealing, and a lot of research has been devoted
to their study (about one out of 16 papers in computational geometry), ever since
Shamos and Hoey [232] introduced them to the field.

The reader interested in a complete overview over the existing literature should
consult the book by Okabe et al. [210] who list more than 600 papers, and the surveys
by Aurenhammer [27], Bernal [39], and Fortune [124]. Also, chapters 5 and 6 of
Preparata and Shamos [215] and chapter 13 of Edelsbrunner [104] could be consulted.
Within this treatise, we cannot review all known results and applications. Instead,
we are trying to highlight the intrinsic potential of Voronoi diagrams, that lies in its
structural properties, in the existence of efficient algorithms for its construction, and
in its adaptability.

We start in section 2 with a simple case: the Voronoi diagram and the Delau-
nay triangulation of n points in the plane, under the Euclidean distance. We state
elementary structural properties that follow directly from the definitions. Further
properties will be revealed in section 3, where different algorithmic schemes for com-
puting these structures are presented. In section 4 we complete our presentation of
the classical two-dimensional case, and turn to generalizations. Next, in section 5,
important geometric applications of the Voronoi diagram and the Delaunay triangu-
lation are discussed. The reader who is interested mainly in these applications can
proceed directly to section 5, after section 2. Finally, section 6 concludes our survey
and mentions some open problems.

2 Definitions and elementary properties

Throughout this section we denote by S a set of n ≥ 3 point sites p, q, r, . . . in the

plane. For points p = (p1, p2) and x = (x1, x2) let d(p, x) =
√

(p1 − x1)2 + (p2 − x2)2

denote their Euclidean distance. By pq we denote the line segment from p to q. The
closure of a set A will be denoted by A.

Definition 2.1 For p, q ∈ S let

B(p, q) = {x | d(p, x) = d(q, x)}
be the bisector of p and q. B(p, q) is the perpendicular line through the center of the
line segment pq. It separates the halfplane

D(p, q) = {x | d(p, x) < d(q, x)}
containing p from the halfplane D(q, p) containing q. We call

VR(p, S) =
⋂

q∈S,q 6=p

D(p, q)
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the Voronoi region of p with respect to S. Finally, the Voronoi diagram of S is defined
by

V (S) =
⋃

p,q∈S,p 6=q

VR(p, S) ∩ VR(q, S).

By definition, each Voronoi region VR(p, S) is the intersection of n − 1 open
halfplanes containing the site p. Therefore, VR(p, S) is open and convex. Different
Voronoi regions are disjoint.

The common boundary of two Voronoi regions belongs to V (S) and is called a
Voronoi edge, if it contains more than one point. If the Voronoi edge e borders the
regions of p and q then e ⊂ B(p, q) holds. Endpoints of Voronoi edges are called
Voronoi vertices; they belong to the common boundary of three or more Voronoi
regions.

Γ

Figure 2: A Voronoi diagram of 11 points in the Euclidean plane.

There is an intuitive way of looking at the Voronoi diagram V (S). Let x be an
arbitrary point in the plane. We center a circle, C, at x and let its radius grow, from
0 on. At some stage the expanding circle will, for the first time, hit one or more sites
of S. Now there are three different cases.

Lemma 2.1 If the circle C expanding from x hits exactly one site, p, then x belongs to
VR(p, S). If C hits exactly two sites, p and q, then x is an interior point of a Voronoi
edge separating the regions of p and q. If C hits three or more sites simultaneously,
then x is a Voronoi vertex adjacent to those regions whose sites have been hit.

Proof. If only site p is hit then p is the unique element of S closest to x. Consequently,
x ∈ D(p, r) holds for each site r ∈ S with r 6= p. If C hits exactly p and q, then
x is contained in each halfplane D(p, r), D(q, r), where r 6∈ {p, q}, and in B(p, q),
the common boundary of D(p, q) and D(q, p). By definition 2.1, x belongs to the
closure of the regions of both p and q, but of no other site in S. In the third case, the
argument is analogous. 2
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This lemma shows that the Voronoi regions form a decomposition of the plane;
see fig. 2.

Conversely, if we imagine n circles expanding from the sites at the same speed,
the fate of each point x of the plane is determined by those sites whose circles reach
x first. This ”expanding waves” view has been systematically used by Chew and
Drysdale [66] and Thurston [248].

The Voronoi vertices are of degree at least three, by lemma 2.1. Vertices of degree
higher than three do not occur if no four point sites are cocircular. The Voronoi
diagram V (S) is disconnected if all point sites are collinear; in this case it consists of
parallel lines.

C(x)

p

q

l

B(p,q)x

RL

Figure 3: As x moves to the right, the intersection of circle C(x) with the left halfplane
shrinks, while C(x) ∩ R grows.

From the Voronoi diagram of S one can easily derive the convex hull of S, i. e. the
boundary of the smallest convex set containing S.

Lemma 2.2 A point p of S lies on the convex hull of S iff its Voronoi region VR(p, S)
is unbounded.

Proof. The Voronoi region of p is unbounded iff there exists some point q ∈ S such
that V (S) contains an unbounded piece of B(p, q) as a Voronoi edge. Let x ∈ B(p, q),
and let C(x) denote the circle through p and q centered at x, as shown in fig. 3. Point
x belongs to V (S) iff C(x) contains no other site. As we move x to the right along
B(p, q), the part of C(x) contained in halfplane R keeps growing. If there is another
site r in R, it will eventually be reached by C(x), causing the Voronoi edge to end at
x. Otherwise, all other sites of S must be contained in the closure of the left halfplane
L. Then p and q both lie on the convex hull of S. 2

Sometimes it is convenient to imagine a simple closed curve Γ around the “inter-
esting” part of the Voronoi diagram, so large that it intersects only the unbounded
Voronoi edges; see fig. 2. While walking along Γ, the vertices of the convex hull of S
can be reported in cyclic order. After removing the halflines outside Γ, a connected
embedded planar graph with n + 1 faces results. Its faces are the n Voronoi regions
and the unbounded face outside Γ. We call this graph the finite Voronoi diagram.

One virtue of the Voronoi diagram is its small size.
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Lemma 2.3 The Voronoi diagram V (S) has O(n) many edges and vertices. The
average number of edges in the boundary of a Voronoi region is less than 6.

Proof. By the Euler formula (see e. g. [129]) for planar graphs, the following re-
lation holds for the numbers v, e, f , and c of vertices, edges, faces, and connected
components.

v − e + f = 1 + c.

We apply this formula to the finite Voronoi diagram. Each vertex has at least three
incident edges; by adding up we obtain e ≥ 3v/2, because each edge is counted twice.
Substituting this inequality together with c = 1 and f = n + 1 yields

v ≤ 2n − 2 and e ≤ 3n − 3.

Adding up the numbers of edges contained in the boundaries of all n+1 faces results
in 2e ≤ 6n − 6 because each edge is again counted twice. Thus, the average number
of edges in a region’s boundary is bounded by (6n−6)/(n+1) < 6. The same bounds
apply to V (S). 2

Now we turn to the Delaunay tessellation. In general, a triangulation of S is a
planar graph with vertex set S and straight line edges, which is maximal in the sense
that no further straight line edge can be added without crossing other edges.

Each triangulation of S contains the edges of the convex hull of S. Its bounded
faces are triangles, due to maximality. Their number equals 2n − k − 2, where k
denotes the size of the convex hull. We call a subset of edges of a triangulation a
tessellation of S if it contains the edges of the convex hull, and if each point of S has
at least two adjacent edges.

Definition 2.2 The Delaunay tessellation DT(S) is obtained by connecting with a
line segment any two points p, q of S for which a circle C exists that passes through p
and q and does not contain any other site of S in its interior or boundary. The edges
of DT(S) are called Delaunay edges.

The following equivalent characterization is a direct consequence of lemma 2.1.

Lemma 2.4 Two points of S are joined by a Delaunay edge iff their Voronoi regions
are edge-adjacent.

Since each Voronoi region has at least two neighbors, at least two Delaunay edges
must emanate from each point of S. By the proof of lemma 2.2, each edge of the
convex hull of S is Delaunay. Finally, two Delaunay edges can only intersect at
their endpoints, because they allow for circumcircles whose respective closures do not
contain other sites. This shows that DT(S) is in fact a tessellation of S.

Two Voronoi regions can share at most one Voronoi edge, by convexity. Therefore,
lemma 2.4 implies that DT(S) is the graph–theoretical dual of V (S), realized by
straight line edges.

An example is depicted in fig. 4; the Voronoi diagram V (S) is drawn by solid
lines, and DT(S) by dashed lines. Note that a Voronoi vertex (like w) need not be
contained in its associated face of DT(S). The sites p, q, r, s are cocircular, giving rise
to a Voronoi vertex v of degree 4. Consequently, its corresponding Delaunay face is
bordered by four edges. This cannot happen if the points of S are in general position.
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DT(S)

V(S)
w

p

s

v
r

q

Figure 4: Voronoi diagram and Delaunay tessellation.

Theorem 2.1 If no four points of S are cocircular then DT(S), the dual of the
Voronoi diagram V (S), is a triangulation of S, called the Delaunay triangulation.
Three points of S give rise to a Delaunay triangle iff their circumcircle does not
contain a point of S in its interior.

3 Algorithms

In this section we present several ways of computing the Voronoi diagram and its dual,
the Delaunay tesselation. For simplicity, we assume of the n point sites of S that no
four of them are cocircular, and that no three of them are collinear. According to
theorem 2.1 we can then refer to DT(S) as to the Delaunay triangulation. All algo-
rithms presented herein can be made to run without the general position assumption.
Also, they can be generalized to metrics other than the Euclidean, and to sites other
than points. This will be discussed in subsections 4.5 and 4.4.

Data structures well suited for working with planar graphs like the Voronoi dia-
gram are the doubly connected edge list , DCEL, by Muller and Preparata [201], and
the quad edge structure by Guibas and Stolfi [136]. In either structure, a record is
associated with each edge e that stores the following information: the names of the
two endpoints of e; references to the edges clockwise or counterclockwise next to e
about its endpoints; finally, the names of the faces to the left and to the right of e.
The space requirement of both structures is O(n).

Either structure allows to efficiently traverse the edges adjacent to a given ver-
tex, and the edges bounding a face. The quad edge structure offers the additional
advantage of describing, at the same time, a planar graph and its dual, so that it can
be used for constructing both the Voronoi diagram and the Delaunay triangulation.
From the DCEL of V (S) we can derive the set of triangles constituing the Delaunay
triangulation in linear time. Conversely, from the set of all Delaunay triangles the
DCEL of the Voronoi diagram can be constructed in time O(n). Therefore, each al-
gorithm for computing one of the two structures can be used for computing the other
one, within O(n) extra time.

It is convenient to store structures describing the finite Voronoi diagram, as in-
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troduced before lemma 2.3, so that the convex hull of the point sites can be easily
reported by traversing the bounding curve Γ; see fig. 2.

3.1 A lower bound

Before constructing the Voronoi diagram we want to establish a lower bound for its
computational complexity.

Suppose that n real numbers x1, . . . , xn are given. From the Voronoi diagram of
the point set S = {pi = (xi, xi

2) | 1 ≤ i ≤ n} one can derive, in linear time, the
vertices of the convex hull of S, in counterclockwise order. From the leftmost point
in S on, this vertex sequence contains all points pi, sorted by increasing values of xi;
see fig. 5 (i).

pi

pj

yi

yj

Y

X
iε
n

(ii)(i)

p2

p5

p1

x2 x5 x1 x4x6 x3

p4

p3

Y=X2

Y

X

p6

Figure 5: Proving the Ω(n log n) lower bound for constructing the Voronoi diagram
(i) by transformation from sorting, and (ii) by transformation from ε-closeness.

This argument due to Shamos [231] shows that constructing the convex hull and,
a fortiori , computing the Voronoi diagram, is at least as difficult as sorting n real
numbers, which requires Θ(n log n) time in the algebraic computation tree model.

However, a fine point is lost in this reduction. After sorting n points by their
x-values, their convex hull can be computed in linear time [101], whereas sorting
does not help in constructing the Voronoi diagram. The following result has been
independently found by Djidjev and Lingas [96] and by Zhu and Mirzaian [262].

Theorem 3.1 It takes time Ω(n log n) to construct the Voronoi diagram of n points
p1, . . . , pn whose x-coordinates are strictly increasing.

Proof. By reduction from the ε-closeness problem which is known to be in Θ(n log n).
Let y1, . . . , yn be positive real numbers, and let ε > 0. The question is if there exist
i 6= j such that |yi−yj| < ε holds. We form the sequence of points pi = (iε/n, yi), 1 ≤
i ≤ n, and compute their Voronoi diagram; see fig. 5 (ii). In time O(n), we can
determine the Voronoi regions that are intersected by the y-axis, in bottom-up order
(such techniques will be detailed in subsection 3.3.)
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If, for each pi, its projection onto the y-axis lies in the Voronoi region of pi then
the values yi are available in sorted order, and we can easily answer the question.
Otherwise, there is a point pi whose projection lies in the region of some other point
pj . Because of

|yi − yj| ≤ d((0, yi), pj) < d((0, yi), pi) =
iε

n
≤ ε,

in this case the answer is positive. 2

On the other hand, sorting n arbitrary point sites by x-coordinates is not made
easier by their Voronoi diagram, as Seidel [225] has shown.

With definition 2.1 in mind one could think of computing each Voronoi region
as the intersection of n − 1 halfplanes. This would take time Θ(n log n) per region,
see [215]. In the following subsections we describe various algorithms that compute
the whole Voronoi diagram within this time; due to theorem 3.1, these algorithms are
worst-case optimal.

3.2 Incremental construction

A natural idea first studied by Green and Sibson [133] is to construct the Voronoi
diagram by incremental insertion, i. e. to obtain V (S) from V (S \ {p}) by inserting
the site p. As the region of p can have up to n − 1 edges, for n = |S|, this leads
to a runtime of O(n2). Several authors fine-tuned the technique of inserting Voronoi
regions, and efficient and numerically robust implementations are available nowadays;
see Ohya et al. [209] and Sugihara and Iri [242]. In fact, runtimes of O(n) can be
expected for well distributed sets of sites.

The insertion process is, maybe, better described, and implemented in the dual
environment, for the Delaunay triangulation: construct DTi = DT({p1, . . . , pi−1, pi})
by inserting the site pi into DTi−1. The advantage over a direct construction of V(S)
is that Voronoi vertices that appear in intermediate diagrams but not in the final one
need not be constructed and stored. We follow Guibas and Stolfi [136] and construct
DTi by exchanging edges, using Lawson’s [175] original edge flipping procedure, until
all edges invalidated by pi have been removed.

To this end, it is useful to extend the notion of triangle to the unbounded face of the
Delaunay triangulation. If pq is an edge of the convex hull of S we call the supporting
halfplane H not containing S an infinite triangle with edge pq. Its circumcircle is
H itself, the limit of all circles through p and q whose center tend to infinity within
H ; compare fig. 3. As a consequence, each edge of a Delaunay triangulation is now
adjacent to two triangles.

Those triangles of DTi−1 (finite or infinite) whose circumcircles contain the new
site, pi, are said to be in conflict with pi. According to theorem 2.1, they will no
longer be Delaunay triangles.

Let qr be an edge of DTi−1, and let T (q, r, t) be the triangle adjacent to qr that lies
on the other side of qr than pi; see fig. 6. If its circumcircle C(q, r, t) contains pi then
each circle through q, r contains at least one of pi, t; see fig. 3 again. Consequently,
qr cannot belong to DTi, due to definition 2.2. Instead, pit will be a new Delaunay
edge, because there exists a circle contained in C(q, r, t) that contains only pi and t
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in its interior or boundary. This process of replacing edge qr by pit is called an edge
flip.

pi

q

t

r

C(pi,t)

C(q,r,t)

Figure 6: If triangle T (q, r, t) is in conflict with pi then former Delaunay edge qr must
be replaced by pit.

The necessary edge flips can be carried out efficiently if we know the triangle
T (q, s, r) of DTi−1 that contains pi, see fig. 7. The line segments connecting pi to q, r,
and s will be new Delaunay edges, by the same argument from above. Next, we check
if e. g. edge qr must be flipped. If so, the edges qt and tr are tested, and so on. We
continue until no further edge currently forming a triangle with, but not containing
pi, needs to be flipped, and obtain DTi.

Lemma 3.1 If the triangle of DTi−1 containing pi is known, the structural work
needed for computing DTi from DTi−1 is proportional to the degree d of pi in DTi.

Proof. Continued edge flipping replaces d−2 conflicting triangles of DTi−1 by d new
triangles in DTi that are adjacent to pi; compare fig. 7. 2

(i) (ii) (iii)

SF
s

q

t

r

pi

F

SF
s

q

t

r

pi

s

q

t

r

pi

T

Figure 7: Updating DTi−1 after inserting the new site pi. In (ii) the new Delaunay
edges connecting pi to q, r, s have been added, and edge qr has already been flipped.
Two more flips are necessary before the final state shown in (iii) is reached.

Lemma 3.1 yields an obvious O(n2) time algorithm for constructing the Delau-
nay triangulation of n points: we can determine the triangle of DTi−1 containing pi
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within linear time, by inspecting all candidates. Moreover, the degree of pi is trivially
bounded by n.

The last argument is quite crude. There can be single vertices in DTi that do have
a high degree, but their average degree is bounded by 6, as lemma 2.3 and lemma 2.4
show.

This fact calls for randomization. Suppose we pick pn at random in S, then
choose pn−1 randomly from S −{pn}, and so on. The result is a random permutation
(p1, p2, . . . , pn) of the site set S.

If we insert the sites in this order, each vertex of DTi has the same chance of being
pi. Consequently, the expected value of the degree of pi is O(1), and the expected
total number of structural changes in the construction of DTn is only O(n), due to
lemma 3.1.

In order to find the triangle that contains pi it is sufficient to inspect all triangles
that are in conflict with pi. The following lemma shows that the expected total
number of all conflicting triangles so far constructed is only logarithmic.

Lemma 3.2 For each h < i, let dh denote the expected number of triangles in DTh \
DTh−1 that are in conflict with pi. Then,

i−1∑
h=1

dh = O(log i).

Proof. Let C denote the set of triangles of DTh that are in conflict with pi. A
triangle T ∈ C belongs to DTh \ DTh−1 iff it has ph as a vertex. As ph is randomly
chosen in DTh, this happens with probability 3/h. Thus, the expected number of
triangles in C \DTh−1 equals 3 · |C|/h. Since the expected size of C is less than 6 we
have dh < 18/h, hence

∑i−1
h=1 dh < 18

∑i−1
h=1 1/h = Θ(log i). 2

Suppose that T is a triangle of DTi adjacent to pi, see fig. 7 (iii). Its edge sr is in
DTi−1 adjacent to two triangles: To its father , F , that has been in conflict with pi;
and to its stepfather , SF, who is still present in DTi. Any further site in conflict with
T must be in conflict with its father or with its stepfather, as illustrated by fig. 8.

This property can be exploited for quickly accessing all conflicting triangles. The
Delaunay tree due to Boissonnat and Teillaud [46] is a directed acyclic graph that
contains one node for each Delaunay triangle ever created during the incremental
construction. Pointers run from fathers and stepfathers to their sons. The triangles
of DT3 are the sons of a dummy root node.

When pi+1 must be inserted, a Delaunay tree including all triangles up to DTi is
available. We start at its root and descend as long as the current triangle is in conflict
with pi+1. The above property guarantees that each conflicting triangle of DTi will
be found.

The expected number of steps this search requires is O(log i), due to lemma 3.2.
Once DTi+1 has been computed, the Delaunay tree can easily be updated to include
the new triangles.

Thus, we have the following result.

Theorem 3.2 The Delaunay triangulation of a set of n points in the plane can be
constructed in expected time O(n logn), using expected linear space. The average is
taken over the different orders of inserting the n sites.
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F

T

SF

pi

s r

Figure 8: The circumcirle of T is contained in the union of the circumcircles of F and
SF.

As a nice feature, the insertion algorithm is on-line. That is, it is capable of
constructing DTi from DTi−1 without knowledge of pi+1, . . . , pn.

Note also that we did not make any assumptions concerning the distribution of
the sites in the plane; the incremental algorithm achieves its O(n log n) time bound
for every possible input set. Only under a “poor” insertion order can a quadratic
number of structural changes occur, but this is unlikely.

Randomized geometric algorithms are presented in more detail e. g. by Mulmu-
ley [204, 205]. Though conceptually simple, they tend to be tricky to analyze. Since
Clarkson and Shor [74] introduced their technique, many researchers have been work-
ing on generalizing and simplifying the methods used. To mention but a few results,
Boissonnat et. al. [43] and Guibas et. al. [134] have refined the methods of storing the
past in order to locate new conflicts quickly, Clarkson et. al. [73] have generalized and
simplified the analytic framework, and Seidel [230] systematically applied the tech-
nique of backward analysis first used by Chew [62]. The method in [134] for storing
the past is briefly described in subsection 4.3.3 for constructing a generalized planar
Voronoi diagram.

If the set S of sites can be expected to be well distributed in the plane, bucketing
techniques for accessing the triangle that contains a new site pi have been used for
speed-up. Joe [152], who implemented Sloan’s algorithm [238], and Su and Drys-
dale [240], who used a variant of Bentley et al.’s spiral search [36], report on fast
experimental runtimes.

The arising issues of numerical stability have been addressed in Fortune [123],
Sugihara [241], and Jünger et al. [153].

A technique similar to incremental insertion is incremental search. It starts with
a single Delaunay triangle, and then incrementally discovers new ones, by growing
triangles from edges of previously discovered triangles. This basic idea is used, e.g., in
Maus [188] and in Dwyer [103]. It leads to efficient expected-time Delaunay algorithms
in higher dimensions; see [103].

The paper [240] gives a thorough experimental comparison of available Delaunay
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triangulation algorithms.

3.3 Divide & conquer

The first deterministic worst-case optimal algorithm for computing the Voronoi di-
agram has been presented by Shamos and Hoey [232]. In their divide & conquer
approach, the set of point sites, S, is split by a dividing line into subsets L and R
of about the same sizes. Then, the Voronoi diagrams V (L) and V (R) are computed
recursively. The essential part is in finding the split line, and in merging V (L) and
V (R), to obtain V (S). If these tasks can be carried out in time O(n) then the overall
running time is O(n logn).

During the recursion, vertical or horizontal split lines can be easily found if the
sites in S are sorted by their x- and y-coordinates beforehand.

The merge step involves computing the set B(L, R) of all Voronoi edges of V (S)
that separate regions of sites in L from regions of sites in R.

Suppose that the split line is vertical, and that L lies to its left.

Lemma 3.3 The edges of B(L, R) form a single y-monotone polygonal chain. In
V (S), the regions of all sites in L are to the left of B(L, R), whereas the regions of
the sites of R are to its right.

Proof. Let b be an arbitrary edge of B(L, R), and let l ∈ L and r ∈ R be the sites
whose regions are adjacent to b. Since l has a smaller x-coordinate than r, b cannot
be horizontal, and the region of l must be to its left. 2

Thus, V (S) can be obtained by glueing together B(L, R), the part of V (L) to the
left of B(L, R), and the part of V (R) to its right; see fig. 9, where V (R) is depicted
by dashed lines.

The polygonal chain B(L, R) is constructed by finding a starting edge at infinity,
and by tracing B(L, R) through V (L) and V (R).

Due to Shamos and Hoey [232], an unbounded starting edge of B(L, R) can be
found in O(n) time by determining a line tangent to the convex hulls of L and R,
respectively. Here we describe an alternative method by Chew and Drysdale [66] since
that method also works for generalized Voronoi diagrams (subsection 4.5.2). The
unbounded regions of V (L) and V (R) are scanned simultaneously in cyclic order. For
each non–empty intersection VR(l, L)∩VR(r, R), we test if it contains an unbounded
piece of B(l, r). If so, this must be an edge of B(L, R), by definition 2.1. Since
B(L, R) has two unbounded edges, by Lemma 3.3, this search will be successful. It
takes time |V (L)| + |V (R)| = O(n).

Now we describe how B(L, R) is traced. Suppose that the current edge b of B(L, R)
has just entered the region VR(l, L) at point v while running within VR(r, R), see
fig. 10. We determine the points vL and vR where b leaves the regions of l resp. of
r. The point vL is found by scanning the boundary of VR(l, L) counterclockwise,
starting from v. In our example, vR is closer to v than vL, so that it must be the
endpoint of edge b.

From vR, B(L, R) continues with an edge b2 separating l and r2. Now we have
to determine the points vL,2 and vR,2 where b2 hits the boundaries of the regions of
l and r2. The crucial observation is that vL,2 cannot be situated on the boundary
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V(R)V(L)

b

B(L,R)

Figure 9: Merging V (L) and V (R) into V (S).

segment of VR(l, L) from v to vL that we have just scanned; this can be infered from
the convexity of VR(l, S). Therefore, we need to scan the boundary of VR(l, L) only
from vL on, in counterclockwise direction.

The same reasoning applies to V (R); only here, region boundaries are scanned
clockwise.

Even though the same region might be visited by B(L, R) several times, none
of its edges is scanned more than once. The edges of V (L) that are scanned all lie
to the right of B(L, R). This part of V (L), together with B(L, R), forms a planar
graph each of whose faces contains at least one edge of B(L, R) in its boundary. As a
consequence of lemma 2.3, the size of this graph does not exceed the size of B(L, R),
times a constant. The same holds for V (R). Therefore, the cost of constructing
B(L, R) is bounded by its size, once a starting edge is given.

This leads to the following result.

Theorem 3.3 The divide & conquer algorithm allows the Voronoi diagram of n point
sites in the plane to be constructed within time O(n log n) and linear space, in the
worst case. Both bounds are optimal.

Of course, the divide & conquer paradigm can also be applied to the computation
of the Delaunay triangulation DT(S). Guibas and Stolfi [136] give an implementation
that uses the quad-edge data structure and only two geometric primitives, an orien-
tation test and an in-circle test. Fortune [123] showed how to perform these tests
accurately with finite precision.

Dwyer’s implementation [102] uses vertical and horizontal split lines in turn, and
Katajainen and Koppinen’s [156] merges square buckets in a quad-tree order. Both
papers report on favorable results.
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B(r2,r3)

B(r,r2)

Figure 10: Computing the chain B(L, R).

Divide & conquer algorithms are candidates allowing for efficient parallelization.
Several theoretically efficient algorithms for computing in parallel the Voronoi diagram
or the Delaunay triangulation have been proposed. We refer to the recent paper by
Blelloch et al. [41] for references and for a practical parallel algorithm for computing
DT (S). They highlight an algorithm by Edelsbrunner and Shi [116] that uses the
lifting map for S (see subsection 3.5) to construct a chain of Delaunay edges that
divides S. They show experimentally that their implementation is comparable in
work to the best sequential algorithms.

3.4 Sweep

The well–known line sweep algorithm by Bentley and Ottmann [34] computes the
intersections of n line segments in the plane by moving a vertical line, H , across the
plane. The line segments currently intersected by H are stored in bottom-up order.
This order must be updated whenever H reaches an endpoint of a line segment, or an
intersection point. To discover the intersection points in time, it is sufficient to check,
after each update of the order, those pairs of line segments that have just become
neighbors on H .

It is tempting to apply the same approach to Voronoi diagrams, by keeping track
of the Voronoi edges that are currently intersected by the vertical sweep line. The
problem is in discovering new Voronoi regions in time. By the time the sweep line
hits a new site it has been intersecting Voronoi edges of its region for a while.

Fortune [125] was the first to find a way around this difficulty. He suggested a
planar transformation under which each point site becomes the leftmost point of its
Voronoi region, so that it will be the first point hit during a left–to–right sweep. His
transformation does not change the combinatorial structure of the Voronoi diagram.

Later, Seidel [228] and Cole [75] have shown how to avoid this transformation.
They consider the Voronoi diagram of the point sites to the left of the sweep line H
and of H itself, considered an additional site; see fig. 11. Because the bisector of a
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line and a non–incident point is a parabola, the boundary of the Voronoi region of H
is a connected chain of parabola segments whose top- and bottommost edges tend to
infinity. This chain is called the wavefront , W .

Let p be a point site to the left of H . Any point to the left of or on the parabola
B(p, H) is not farther to p than to H ; hence, it is a fortiori closer to p than to any
site to the right of H . Consequently, as the sweep line moves on to the right, the
waves must follow because the sets D(pi, H) grow. On the other hand, each Voronoi
edge to the left of W that currently separates the regions of two point sites pi, pj will
be (part of) a Voronoi edge in V (S).

p1

p2

p4

W W'

p3

p5

p1

p2

p3

p5

p4

p6

v

v'

H H'

v

p6

Figure 11: Voronoi diagrams of the sweep line, H , and of the points to its left.

During the sweep, there are two types of events that cause the structure of the
wavefront to change, namely when a new wave appears in W , or when an old wave
disappears. The first happens each time the sweep line hits a new site, e. g. p6 in
fig. 11. At that very moment B(H, p6) is a horizontal line through p6, according to
definition 2.1. A little later, its left halfline unfolds into a parabola that must be
inserted into the wavefront by glueing it onto the wave of p4 (which now contributes
two segments to W .)

Let p, q be two point sites whose waves are neighbors in W . Their bisector, B(p, q),
gives rise to a Voronoi edge to the left of W . Its prolongation into the region of H is
called a spike. In fig. 11 spikes are depicted as dashed lines; one can think of them as
tracks along which the waves are moving. A wave disappears from W when it arrives
at the point where its two adjacent spikes intersect. Its former neighbors become now
adjacent in the wavefront.

In fig. 11, the wave of p3 would disappear at point v, if the new site, p6, did not
exist. But after the wave of p6 has been inserted, there will be a previous event at v′,
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where the lower part of the wave of p4 disppears.
While keeping track of the wavefront one can easily maintain the Voronoi diagram

of H and of the point sites to its left. As soon as all point sites have been detected
and all spike intersections have been processed, V (S) is obtained by removing the
wavefront and extending all spikes to infinity.

Even though one wave may contribute several segments to the wavefront, the
following holds.

Lemma 3.4 The size of the wavefront is O(n).

Proof. Since any two parabolic bisectors B(p, H), B(q, H) can cross at most twice,
the size of the wavefront is bounded by λ2(n) = 2n − 1, where λs(n) denotes the
maximum length of a Davenport–Schinzel sequence over n symbols in which no two
symbols appear s times each in alternating positions; see [21]. 2

The wavefront can be implemented by a balanced binary tree that stores the
segments in bottom–up order. This enables us to insert a wave, or remove a wave
segment, in time O(log n).

Before the sweep starts, the point sites are sorted by increasing x-coordinates and
inserted into an event queue. After each update of the wavefront, newly adjacent
spikes are tested for intersection. If they intersect at some point v, we insert into the
event queue the time, i. e. the position x of the sweep line, when the wave segment
between the two spikes arrives at v. Since the point v is a Voronoi vertex of V (S),
there are only O(n) many events caused by spike intersections. In addition, each
of the n sites causes an event. For each active spike we need to store only its first
intersection event. Thus, the size of the event queue never exceeds O(n). We obtain
the following result.

Theorem 3.4 Plane sweep provides an alternative way of computing the Voronoi
diagram of n points in the plane within O(n log n) time and linear space.

McAllister et al. [190] have pointed out a subtle difference between the sweep
technique and the two methods mentioned before. The divide & conquer algorithm
computes Θ(n log n) many vertices, even though only a linear number of them appears
in the final diagram. The randomized incremental construction method performs an
expected Θ(n log n) number of conflict tests. Both tasks, constructing a Voronoi
vertex and testing a subset of sites for conflict, are usually handled by subroutines
that deal directly with point coordinates, bisector equations etc. They can become
quite costly if we consider sites more general than points, and distance measures more
general than the Euclidean distance; see sections 4.4, 4.5, and 4.6.

The sweep algorithm, on the other hand, processes only O(n) many spike events.

3.5 Lifting to 3-space

The following approach employs the powerful method of geometric transformation.
Let P = {(x1, x2, x3) | x2

1 + x2
2 = x3} denote the paraboloid depicted in fig. 12.

For each point x = (x1, x2) in the plane, let x′ = (x1, x2, x
2
1 + x2

2) denote its lifted
image on P .
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Lemma 3.5 Let C be a circle in the plane. Then C ′ is a planar curve on the
paraboloid P .

Proof. Suppose that C is given by the equation

r2 = (x1 − c1)
2 + (x2 − c2)

2 = x2
1 + x2

2 − 2x1c1 − 2x2c2 + c2
1 + c2

2.

By substituing x2
1 + x2

2 = x3 we obtain

x3 − 2x1c1 − 2x2c2 + c2
1 + c2

2 − r2 = 0

for the points of C ′. This equation defines a plane in 3-space. 2

E
Z

C'

C
p

p'

q

q'

r

r'

x3=x1
2+x2

2

Figure 12: Lifting circles onto the paraboloid.

This lemma has an interesting consequence. By the lower convex hull of a set
of points in 3-space we mean that part of the convex hull which is visible from the
(x1, x2)-plane.

Theorem 3.5 The Delaunay triangulation of S equals the projection onto the (x1, x2)-
plane of the lower convex hull of S ′.

Proof. Let p, q, r denote three point sites of S. By lemma 3.5, the lifted image, C ′,
of their circumcircle C lies on a plane, E, that cannot be vertical. Under the lifting
mapping, the points inside C correspond to the points on the paraboloid P that lie
below the plane E.

By theorem 2.1, p, q, r define a triangle of the Delaunay triangulation iff their
circumcircle contains no further site. Equivalently, no lifted site s′ is below the plane
E that passes through p′, q′, r′. But this means that p′, q′, r′ define a face of the lower
convex hull of S ′. 2

Because there exist O(n logn) time algorithms for computing the convex hull of
n points in 3-space, see e. g. Preparata and Shamos [215], we have obtained another
optimal algorithm for the Voronoi diagram.

The connection between Voronoi diagrams and convex hulls has first been studied
by Brown [49] who used the inversion transform. The simpler lifting mapping has
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been used, e.g., in Edelsbrunner and Seidel [113]. We shall see several applications
and generalizations in subsection 4.3. In [113] also the following fact is observed.

For each point p of S, consider the paraboloid Pp = {(x1, x2, x3) | (x1 − p1)
2 +

(x2 − p2)
2 = x3}. If these paraboloids were opaque, and of pairwise different colors,

an observer looking from x3 = −∞ upwards would see the Voronoi diagram V (S). In
fact, the projection x = (x1, x2) of a point (x1, x2, x3) ∈ Pp ∩ Pq belongs to B(p, q);
and there is no site s closer to x than p and q iff (x1, x2, x3) lies below all paraboloids
Ps.

Instead of the paraboloids Pp one could use the surfaces {(x1, x2, f((x1 − p1)
2 +

(x2 − p2)
2))} generated by any function f that is strictly increasing. For example,

f(x) =
√

x gives rise to cones of slope 45◦ with apices at the sites. This setting
illustrates the concept of circles expanding from the sites at equal speed, as mentioned
after the proof of lemma 2.1. Coordinate x3 represents time.

In order to visualize a Voronoi diagram on a graphic screen one can feed the n
surfaces to a z-buffer, and eliminate by brute force those parts not visible from below.

Finally, we would like to mention a nice connection between the two ways of
obtaining the Voronoi diagram by means of paraboloids explained above; it goes back
to [113]. For a point w = (w1, w2, w3), let ¬w denote its mirror image (w1, w2,−w3).
If we apply to 3-space the mapping which sends x to (x1, x2, x3−(x1−p1)

2−(x2−p2)
2)

then each paraboloid Pp corresponds to the tangent plane of the paraboloid ¬P at
the point ¬(p′); compare the plane equation derived in the proof of lemma 3.5, letting
c = p and r = 0.

4 Generalizations and structural properties

4.1 Characterization of Voronoi diagrams

The process of constructing the Voronoi diagram for n point sites can be seen as an
assignment of a planar convex region to each of the sites, according to the nearest-
neighbor rule. We now address the following, in some sense inverse, question: Given
a partition of the plane into n convex regions (which are then neccessarily polygonal),
do there exist sites, one for each region, such that the nearest-neighbor rule is fulfilled?
In other words, when is a given convex partition the Voronoi diagram of some set of
sites?

Whether a given set of sites induces a given convex partition as its Voronoi diagram
is, of course, easy to decide by exploiting symmetry properties among the sites. For
the same reason, it is easy to check whether a given triangulation is Delaunay, by
exploiting the empty circumcircle property of its triangles, stated in theorem 2.1.
Conditions for a given graph to be isomorphic to the Delaunay triangulation of some
set of sites are mentioned, e.g., in the survey article by Fortune [124]. Below we
concentrate on the recognition of Voronoi diagrams without knowing the sites.

Questions of this kind arise in facility location and in the recognition of biological
growth models (as report, e.g., in Suzuki and Iri [245]) and, in particular, in the
so-called gerrymander problem mentioned in Ash and Bolker [20]: When the sites
are regarded as polling places and election law requires that each person votes at
the respective closest polling place, the election districts form a Voronoi diagram. If
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the legislature draws the district lines first, how can we tell whether election law is
satisfied?

Let Ri and Rj be two of the given regions. Assume that they share a common
edge, and let hij be the line containing that edge. Further, let σij denote the reflection
at line hij .

Lemma 4.1 A convex partition R1, . . . , Rn of the plane defines a Voronoi diagram
if and only if there exists a point pi for each region Ri such that

(1) pi ∈ Ri (containment condition),

(2) σij(pi) = pj (reflection condition).

Proof. If we do have a Voronoi diagram then its defining sites exist and obviously
fulfil (1) and (2). To prove the converse, assume that points p1, . . . , pn fulfilling both
conditions exist. Take any region Ri and any point x therin. We show that d(x, pi)
is minimum.

To get a contradiction, suppose pj , j 6= i, is closest to x. Consider an edge of Rj

that is intersected by xpj , and let Rk be the region adjacent to Rj at that edge; see
fig. 13. Note that k = i may happen. By convexity of Rj and by (1), the line hjk

separates pj from x. Hence by (2) we get d(x, pk) < d(x, pj), a contradiction.
We conclude that pi is closest to x among p1, . . . , pn which implies that Ri is the

region of pi in the Voronoi diagram V ({p1, . . . , pn}). 2

jk

k

j

j

i

h

R

R

p

p

x

Figure 13: Region Ri must be closest to x.

Based on lemma 4.1, the recognition problem can now be formulated as a linear
programming problem; see Hartvigsen [138]. We first exploit the reflection condition
to get a system of linear equations.

Reflection at a line is an affine transformation, so we may write σij(x) as Aijx+bij ,
for appropriate matrix Aij and vector bij . Let R1, . . . , Rn be a permutation of the
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regions such that Ri and Ri+1 are adjacent, for 1 ≤ i < n. To get a linear system in
x, set

p1 = x

p2 = A12x + b12 := C2x + d2

p3 = A23(A12x + b12) + b23 := C3x + d3

and so on. This expresses all points pi in terms of p1 by using n−1 adjacencies among
the regions. Each of the remaining adjacencies now gives an equation of the form

Aij(Cix + di) + bij = Cjx + dj .

This system has at most 3n−3−(n−1) = 2n−2 equations by lemma 2.3. If it has no
solution, or a unique solution, then we are done. In the former case, we cannot have
a Voronoi diagram. In the latter, we get the coordinates of the first candidate site
pi = x. The corresponding other sites are obtained simply by reflection. It remains
to test these sites for containment in their regions.

Setting up the system, solving it, and testing for containment can be accomplished
in time O(n) by standard methods. Note that only the equations of the lines bound-
ing the regions and the adjacency information among the regions are needed. No
coordinates of the region vertices are required. This is particularly interesting for
the recognition problem in higher dimensions, to which the method above generalizes
naturally.

The solution space of the linear system above may have dimension 1 or 2. Fig. 14
reveals that certain symmetries among the regions lead to situations of that kind.
Now the containment condition is exploited to get, in addition, a set of inequalities
for x.

Consider each region Ri as the intersection of all halfplanes bounded by the lines
hij . Then pi ∈ Ri gives a set of inequalities of the form

pT
i tij ≤ aij

which, by plugging in pi = Cix + di, yields

(CT
i tij)x ≤ aij − dT

i tij .

Finding a feasible solution of the corresponding linear program means finding a pos-
sible site p1 = x for R1 which, by reflection, gives all the desired sites. Since we
deal with a linear program with O(n) constraints and of constant dimension (actually
two), also only linear time (Megiddo [193]) is spent in this more complicated case.

Theorem 4.1 Let C be a partition of 2-space into n convex regions, given by half-
planes supporting the regions and by adjacencies among regions. O(n) time suffices
for deciding whether C is a Voronoi diagram, and also for restoring a suitable set of
sites in case of its existence.
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Figure 14: Sites might be taken in the polygonal areas.

This result is clearly optimal, and the underlying method easy to program. A gen-
eralization to higher dimensions is straightforward. Still, the method has to be used
with care as even a slight deviation from the correct Voronoi diagram (stemming
from imprecise measurement or numerical errors) will cause the method to classify C
as non-Voronoi. Suzuki and Iri [245] give a completely different method capable of
approximating C by a Voronoi diagram.

Lemma 4.1 extends to more general Voronoi-like partitions. The characterizing
configuration of points is commonly called a reciprocal figure. A nice survey on this
subject is Ash et al. [19]. Reciprocal figures play a role in recognizing seemingly
unrelated properties of a convex partition C, for instance checking equilibrium states
of C, see Crapo and Whiteley [77], and finding polyhedra whose boundaries project to
C, see Aurenhammer [23]. The relationship between Voronoi diagrams and polyhedra
in one dimension higher will be described in subsection 4.3.2.

4.2 Optimization properties of Delaunay triangulations

The Delaunay triangulation, DT(S), of a set S of n sites in 2-space possesses a host
of nice and useful properties many of which are well known and understood nowa-
days. As being the geometric dual of the Voronoi diagram V (S), DT(S) comprises the
proximity information inherent to S in a compact manner. Apart from the present
subsection, various properties of DT(S) and their applications are described in sec-
tion 5 and, in particular, in subsection 5.2. Here we look at DT(S) as a triangulation
per se and concentrate on parameters which are optimized by DT(S) over all possible
triangulations of the point set S.
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Recall that a triangulation T of S is a maximal set of non-crossing line segments
spanned by the sites in S. Let us call T locally Delaunay if, for each of its convex
quadrilaterals Q, the corresponding two triangles have circumcircles empty of vertices
of Q. Clearly, DT(S) is locally Delaunay because all circumcircles for its triangles
are empty of sites; see theorem 2.1. Interestingly, the local property also implies the
global one.

Theorem 4.2 If a triangulation of S is locally Delaunay then it equals DT(S).

Proof. Let T be a triangulation of S and assume that T is locally Delaunay. We
show that, for each triangle ∆ of T , its circumcircle C(∆) is empty of sites in S.

Assuming the contrary, let s ∈ C(∆) for some s ∈ S and some ∆ in T . Observe
s /∈ ∆ and let e be the edge of ∆ closest to s. Suppose, w.l.o.g., that (∆, s, e)
maximizes the angle at s spanned by e, for all such triples (triangle, site, edge).

See fig. 15. Because of s, e cannot be an edge of the convex hull of S. Let triangle
∆′ be adjacent to ∆ at e, and let s′ be the third vertex of ∆′. As T is locally Delaunay,
s′ /∈ C(∆), hence s 6= s′. Further, observe s ∈ C(∆′), and let e′ be the edge of ∆′

closest to s. The angle at s spanned by e′ is larger than that spanned by e, which
gives a contradiction. 2

C

C’

s’

e

e’

s

Figure 15: Angle spanned by e cannot be maximum.

An edge flip in a triangulation T of S is the exchange of the two diagonals in one of
T ’s convex quadrilaterals; see subsection 3.2. Call an edge flip good if – after the flip
– the triangulation inside the quadrilateral is locally Delaunay. Repeated exchange of
diagonals of the same quadrilateral always produces an alternating sequence of good
and not good flips. Theorem 4.2 now can be used to prove that DT(S) optimizes var-
ious quality measures, by showing that each good flip increases quality. Any sequence
of good flips then terminates at the global optimum, the Delaunay triangulation.

One of the most prominent quality measures concerns the angles occuring in a
triangulation. Recall that the number of edges (and thus of triangles) does not depend
on the way of triangulating S , and let t be the number of triangles for S. The
equiangularity of a triangulation is defined to be the sorted list of angles (α1, . . . , α3t)
of its triangles. A triangulation is called equiangular if it possesses lexicographically
largest equiangularity among all possible triangulations for S.
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Figure 16: Equiangularity and empty circle property.

As a matter of fact, every good flip increases equiangularity. Fig. 16 gives evidence
for this fact. Lawson [175] called a triangulation locally equiangular if no flip can in-
crease equiangularity. Locally equiangular thus is equivalent to locally Delaunay.
Sibson [235] first proved theorem 4.2, showing that locally equiangular triangulations
are Delaunay and hence unique. Edelsbrunner [104] observed that DT(S) is equian-
gular (in the global sense) as the global property implies the local one.

In case of cocircularities among the sites, DT(S) is not a full triangulation; see
section 2. Mount and Saalfeld [200] showed that DT(S) can be completed by retaining
local equiangularity, in O(n logn) time.

Theorem 4.3 Let S be a finite set of sites in 2-space. A triangulation of S is equian-
gular only if it is a completion of DT(S).

The equiangular triangulation obviously maximizes the minimum angle of all tri-
angles. This property is desirable for applications to terrain modelling or to the
finite element method, as was first observed in Lawson [175] and McLain [191]. By
theorem 4.3, such triangulations can be computed in O(n logn) time by Delaunay
triangulation algorithms, see section 3.

Only recently, it has been observed that several other parameters are optimized
by DT(S). All the properties listed below can be proved by observing that every good
edge flip locally optimizes the respective parameter.

Consider the smallest enclosing circle for each triangle in a triangulation, and
measure coarseness by the largest such circle that arises. As a matter of fact, DT(S)
minimizes coarseness among all possible triangulations for S. We may define coarse-
ness also by taking smallest enclosing circles rather than circumcircles. (Note that
the smallest enclosing circle differs from the circumcircle iff the triangle is obtuse.)
D’Azevedo and Simpson [79] proved that DT(S) minimizes coarseness in this sense,
and Rajan [217] showed that this property of Delaunay triangulations – unlike others
– generalizes to higher dimensions.

Similarly, fatness of a triangulation may be defined as the sum of inradii of its
triangles. Lambert [173] showed that DT(S) maximizes fatness, or equivalently, the
mean inradius.

Given an individual function value (height) h(p) for each site p ∈ S, every tri-
angulation T of S defines a triangular surface in 3-space. The roughness of such a
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surface may be measured by ∑
∆∈T

|∆|(α2 + β2)

with |∆| being the area of ∆, and α, β being the slopes of the corresponding triangle
in 3-space. In other words, roughness is the integral of the squared gradients. As
has been shown by Rippa [220], roughness is minimum for the surface obtained from
DT(S), for any fixed heights h(p). For a simpler proof, see Powar [214].

Let us mention that, in addition, DT(S) provides a means for smoothing the cor-
responding triangular surface. As was shown in Sibson [236], each point x within the
convex hull of S can be expressed as the weighted mass center of its Delaunay neigh-
bors p in DT(S ∪ {x}). Weights wp(x) can be computed from area properties of the
corresponding Voronoi diagram, and as functions of x, are continuously differentiable;
see also Farin [121]. The corresponding interpolant to the spatial points (p, h(p)) is
given by

φ(x) =
∑
p∈S

wp(x)h(p).

This useful property of DT(S) is shown to generalizes to regular triangulations (duals
of power diagrams for S, cf. subsection 4.3.2), and to higher-order Voronoi diagrams
(subsection 4.3.3) in Aurenhammer [25].

On the negative side, DT(S) in general fails to fulfill optimization criteria similar
to those mentionend above, such as minimizing the maximum angle, or minimizing
the longest edge. Edelsbrunner et al. [119] [117] give near-quadratic time algorithms
for computing triangulations optimal in that sense. DT(S) is not even locally short ,
in the sense that it does not always include the shorter diagonal for each of its convex
quadrilaterals.

Kirkpatrick [161] proved that DT(S) may differ arbitrarily strongly from a minimum-
weight triangulation, which is defined to have minimum total edge length. Computing
a minimum-weight triangulation is an important and interesting problem, whose com-
plexity status is unknown; see Garey and Johnson [127]. Subsets of edges of DT(S)
which always have to belong to a minimum-weight triangulation are exhibited in
subsection 5.2.3.

On the other hand, the widely used greedy triangulation, which is obtained by in-
serting non-crossing edges in increasing length order, can be constructed from DT(S)
in O(n) time, by a recent result in Levcopoulos and Krznaric [184].

Finally, let us mention that the Delaunay triangulation avoids an undesirable
property that might be shared by other triangulations. Fix a point v in the plane,
called the viewpoint. For two triangles ∆ and ∆′ in a given triangulation, write ∆ <
∆′ if ∆ fully or partially hides ∆′ as seen from v. This defines a partial relation, called
the in-front/behind relation, on the triangles. De Floriani et al. [81] observed that
this relation is acyclic if the triangulation is Delaunay. An example of a triangulation
which is cyclic in spite of being minimum-weight can be found in Aichholzer et al. [10].

Edelsbrunner [105] generalized the result in [81] for regular triangulations in d
dimensions, a class that includes Delaunay triangulations as a special case; see sub-
section 4.3.2. An application stems from a popular algorithm in computer graphics
that eliminates hidden objects by first partially ordering the objects according to the
in-front/behind relation and then displaying them from back to front, thereby over-
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painting invisible parts. In particular, this algorithm will work well for α-shapes in
3-space, discussed in subsection 5.2.2.

For a systematic treatment of planar triangulations, the reader is refered to the
theses by Tan [246] and Lambert [174], respectively.

4.3 Higher dimensions, power diagrams, and order-k dia-

grams

In order to meet practical needs, the concept of Voronoi diagram has been modified
and generalized in many ways, for example by changing the underlying space, the dis-
tance function used, or the shape of the sites. Subsections 4.3 to 4.6 give a systematic
treatment of generalized Voronoi diagrams.

The most obvious generalization is to d-space, for d ≥ 3. Several nice properties
of the Voronoi diagram are retained (e.g., the convexity of the regions) while others
are lost (e.g., the linear size). Voronoi diagrams in d-space are closely related to
geometric objects in (d + 1)-space. These relationships, and their structural and
algorithmic implications, are discussed in the present subsection.

4.3.1 Voronoi diagrams and Delaunay tesselations in 3-space

Let us consider Voronoi diagrams in 3-space first. Let S be a set of n point sites
in 3-space. The bisector of two sites p, q ∈ S is the perpendicular plane through
the midpoint of the line segment pq. The region VR(p, S) of a site p ∈ S is the
intersection of halfspaces bounded by bisectors, and thus is a 3-dimensional convex
polyhedron. The boundary of VR(p, S) consists of facets (maximal subsets within the
same bisector), of edges (maximal line segments in the boundary of facets), and of
vertices (endpoints of edges). The regions, facets, edges, and vertices of V (S) define
a cell complex in 3-space. This cell complex is face-to-face: if two regions have a
non-empty intersection f , then f is a face (facet, edge, or vertex) of both regions. As
an appropriate data structure for storing a 3-dimensional cell complex we mention
the facet-edge structure in Dobkin and Laszlo [99].

The number of facets of VR(p, S) is at most n − 1, at most one for each site
q ∈ S \ {p}. Hence, by the Eulerian polyhedron formula, the number of edges and
vertices of VR(p, S) is O(n), too. This shows that the total number of components
of the diagram V (S) in 3-space is O(n2). In fact, there are configurations S that
force each pair of regions of V (S) to share a facet, thus achieving their maximum

possible number of
(

n
2

)
; see, e.g., Dewdney and Vranch [89]. This fact sometimes

makes Voronoi diagrams in 3-space less useful compared to 2-space. On the other
hand, Dwyer [103] showed that the expected size of V (S) in d-space is only O(n),
provided S is drawn uniformly at random in the unit ball. This result indicates that
high-dimensional Voronoi diagrams will be small in many practical situations.

In analogy to the 2-dimensional case, the Delaunay tesselation DT(S) in 3-space
is defined as the geometric dual of V (S). It contains a tetrahedron for each vertex, a
triangle for each edge, and an edge for each facet, of V (S). Equivalently, DT(S) may
be defined using the empty sphere property, by including a tetrahedron spanned by
S as Delaunay iff its circumsphere is empty of sites in S. The circumcenters of these
empty spheres are just the vertices of V (S). DT(S) is a partition of the convex hull
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of S into tetrahedra, provided S is in general position, which will be assumed in the
sequel. Note that the edges of DT(S) may form the complete graph on S.

Among the various proposed methods for constructing V (S) in 3-space, incre-
mental insertion of sites (cf. subsection 3.2) is most intuitive and easy to implement.
Basically, two different techniques for integrating a new site p into V (S) have been
applied. The more obvious method first determines all facets of the region of p in the
new diagram, V (S ∪ {p}), and then deletes the parts of V (S) interior to this region;
see e.g. Watson [256], Field [122], and Tanemura et al. [247]. Inagaki et al. [148]
describe a robust implementation of this method.

In the dual environment, this amounts to detecting and removing all tetrahedra of
DT(S) whose circumspheres contain p, and then filling the ’hole’ with empty-sphere
tetrahedra with p as apex, to obtain DT(S ∪ {p}).

Joe [151], Rajan [217], and Edelsbrunner and Shah [115] follow a different and
numerically more stable approach. Like in the planar case, after having added a
site to the current Delaunay tesselation, certain flips changing the local tetrahedral
structure are performed in order to achieve local Delaunayhood. The existence of such
a sequence of flips is less trivial, however. Joe [150] demonstrated that no flipping
sequence might exist that turns an arbitrary tetrahedral tesselation for S into DT(S).

Let us focus on a single flip. Recall that in 2-space, there are exactly two ways of
triangulating four sites in convex position, and a flip changes one into the other. In
3-space there are also two ways of tetrahedralizing five sites in convex position, and
a flip per definition exchanges them. Note, however, that the flip will replace two
tetrahedra by three or vice versa; see fig. 17. This indicates an important difference
between triangulations in 2-space and tetrahedral tesselations in 3-space: The number
of tetrahedra does depend on the way of tetrahedralizing S. It may vary from Θ(n)
to Θ(n2).

Figure 17: Two–into–three tetrahedra flip for five sites.

After having added a site p ∈ S to the current Delaunay tesselation, the tetrahe-
dron containing p is split into four tetrahedra with apex p, in the obvious way. The
algorithm first considers the four triangles opposite to p, that is, the bases of the
tetrahedra with apex p.

Generally, each triangle ∆ of the tesselation is shared by two tetrahedra T and T ′

which, in turn, are spanned by five sites. Three of them span ∆, and the remaining
two sites q and q′ belong to T and T ′, respectively. ∆ is called locally Delaunay if
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the circumsphere of T does not enclose q′ (or, equivalently, if the circumsphere of T ′

does not enclose q). A third tetrahedron might be spanned by these five sites. ∆ is
called flippable if the union of these two or three tetrahedra is convex.

For each triangle ∆ opposite to p, the algorithm now performs the flip that involves
the five sites corresponding to ∆, provided ∆ is flippable and not locally Delaunay.
Thereby, new triangles become opposite to p and possibly have to be flipped, too.
This seqence of flips terminates in the Delaunay tesselation that includes p.

The algorithm works locally and thus is elegant and relatively easy to understand.
The runtime is O(n2) which is optimal in the worst case. Still, the incremental
approach has its drawbacks. It might construct quadratically large intermediate tes-
selations, in spite of the possibly linear size of the final tesselation. This unpleasant
phenomenon even cannot be overcome by inserting the sites in random order. In
fact, proving the existence of an – in this sense – efficient insertion order is an open
problem.

Another difficulty stems from finding the starting tetrahedron that contains a
newly inserted site. Search may be based on the construction history of the tesselation
[115] or on bucketing techniques [152].

The algorithm can be found in much more detail in [115], including correctness
proofs and a data structure for storing tetrahedral tesselations. Rajan [217] and
Edelsbrunner and Shah [115] discuss the d-dimensional variant, and the latter pa-
per generalizes the algorithm to so-called regular triangulations (subsection 4.3.2).
Joe [152] provides an efficient implementation in 3-space, and Cignoni et al. [70] pro-
pose a hybrid method that works in general d-space and efficiently combines insertion,
divide & conquer, and bucketing.

4.3.2 Power diagrams and convex hulls

Voronoi diagrams are intimately related to geometric objects in higher dimensions.
This fact, along with one of its algorithmic applications, has already been addressed in
subsection 3.5. Here, we base the discussion on a generalization of Voronoi diagrams
called power diagrams; the geometric correspondences to be described extend to that
type in a natural manner. We refer to d dimensions in order to point out the general
validity of the results.

Consider a set S of n point sites in d-space. Assume that each point in S has
assigned an individual weight w(p). In some sense, w(p) measures the capability of p
to influence its neighborhood. This is expressed by the power function

pow(x, p) = (x − p)T (x − p) − w(p)

of a point x in d-space with respect to a site p ∈ S.
A nice geometric interpretation is the following. For positive weights, a weighted

site p can be viewed as a sphere with center p and radius
√

w(p); for a point x outside

this sphere, pow(x, p) > 0, and
√

pow(x, p) expresses the distance of x to the touching
point of a line tangent to the sphere and through x.

The locus of equal power with respect to two weighted sites p and q is a hyper-
plane called the power hyperplane of p and q. Let h(p, q) denote the closed halfspace
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bounded by this hyperplane and containing the points of less power with respect to
p. The power cell of p is given by

cell(p) =
⋂

q∈S\{p}
h(p, q).

In analogy to the classical Voronoi regions, the power cells define a partition of d-
space into convex polyhedra, the so-called power diagram, PD(S), of S. See fig. 18
for a planar example. PD(S) coincides with the Voronoi diagram of S if all weights
are the same. In contrast to Voronoi regions, power cells might be empty if general
weights are used; see cell(p) in fig. 18.

p

Figure 18: Power diagram for circles in the plane.

PD(S) is a face-to-face cell complex in d-space that consists of polyhedral faces of
various dimensions j, for 0 ≤ j ≤ d. In the non-degenerate case, exactly d + 1 edges,(

d+1
2

)
facets (faces of dimension d− 1), and d+1 cells meet at each vertex of PD(S).

For storing a d-dimensional cell complex, the cell-tuple structure in Brisson [48] seems
appropriate. This data structure represents the incidence and ordering information
in a cell complex in a simple uniform way.

When each weighted site p ∈ S is interpreted as the sphere σp = (p,
√

w(p)),
we can make the following nice observation. The part of σp that contributes to the
union of all these spheres,

⋃
p∈S σp, is just the part of σp within cell(p). This means

that PD(S) defines a partition of this union into simply-shaped and algorithmically
tractable pieces. Several algorithms concerning the union (and also the intersection)
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of spheres are based on this partition; see Avis et al. [32], Aurenhammer [24], and
Edelsbrunner [106].

Power diagrams (and thus Voronoi diagrams) are, in a strong sense, equivalent
to the boundaries of convex polyhedra in one dimension higher. This is a fact with
far-ranging implications and has been observed in Brown [49], Klee [164], Edelsbrun-
ner and Seidel [113], Paschinger [213], and Aurenhammer [22]. The power function
pow(x, p) can be expressed by the hyperplane

π(p) : xd+1 = 2xT p − pT p + w(p)

in (d + 1)-space, in the sense that a point x lies in cell(p) of PD(S) iff, at x, π(p) is
vertically above all hyperplanes π(q) for q ∈ S \ {p}. Hence PD(S) corresponds, by
vertical projection, to the upper envelope of these hyperplanes, which is the surface
of a convex polyhedron, Π(S), in (d + 1)-space. Conversely, it is not difficult to see
that every upper envelope of n non-vertical hyperplanes in (d + 1)-space corresponds
to the power diagram of n appropriately weighted sites in d-space.

The following upper bound is a direct consequence of the upper bound theorem for
convex polyhedra proved in McMullen [192]. The bound is trivially sharp for power
diagrams, but is achieved also for Voronoi diagrams, as was shown in Seidel [224].

Theorem 4.4 Let S be a set of n point sites in d-space. Any power diagram for S,
and in particular, the Voronoi diagram for S, realizes at most fj faces of dimension
j, for

fj =
a∑

i=0

(
i

j

)(
n − d + i − 2

i

)
+

b∑
i=0

(
d − i + 1

j

)(
n − d + i − 2

i

)
,

where a = dd
2
e and b = bd

2
c. The numbers fj are O(nd d

2
e), for 0 ≤ j ≤ d − 1.

For algorithmic issues, power diagrams can be brought in connection to convex
hulls in (d + 1)-space, by exploiting a duality (actually, polarity) between upper
envelopes of hyperplanes (or intersections of upper halfspaces) and convex hulls of
points. This connection is best described by generalizing the lifting map in subsec-
tion 3.5 to weighted points. A site p ∈ S with weight w(p) is transformed into the
point

λ(p) =

(
p

pT p − w(p)

)

in (d + 1)-space. There is a interelation called polarity between the transforms λ and
π. The point λ(p) is called the pole of the hyperplane π(p) which, in turn, is called
the polar hyperplane of λ(p). Polarity defines a one-to-one correspondence between
arbitrary points and non-vertical hyperplanes in (d + 1)-space. It is well known that
polarity preserves the relative position of points and hyperplanes.

To show the connection to convex hulls, consider an arbitrary face f of the poly-
hedron Π(S). Let f be the intersection of m = d−j+1 hyperplanes π(p1), . . . , π(pm),
such that f is of dimension j. Each point x ∈ f lies on these but above all other
hyperplanes π(q) defined by S. Hence the polar hyperplane of x has the points
λ(p1), . . . , λ(pm) on it and the remaining points λ(q) above it. This shows that the
points λ(p1), . . . , λ(pm) span a face of dimension d− j of the convex hull of the point
set {λ(p) | p ∈ S}.
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We conclude that each j-dimensional face of Π(S), and thus of PD(S), is rep-
resented by a (d − j)-dimensional face of this convex hull. This implies a duality
between power diagrams in d-space and convex hulls in (d + 1)-space.

In the special case of an unweighted point set S in the plane, the parts of the convex
hull that are visible from the plane project to the vertices, edges, and triangles of the
Delaunay triangulation of S, and we obtain theorem 3.5 of section 3.5. A triangulation
which can be obtained by projecting a convex hull is called a regular triangulation
in Edelsbrunner and Shah [115]. Regular triangulations are just those being dual to
planar power diagrams.

Once the convex hull of {λ(p) | p ∈ S} has been computed, the faces of PD(S), as
well as their incidence and ordering relations, can be obtained in time proportional
to the size of PD(S).

Theorem 4.5 Let Cd+1(n) be the time needed to compute a convex hull of n points
in (d+1)-space. A power diagram (and in particular, the Voronoi diagram) of a given
n-point set in d-space can be computed in Cd+1(n) time.

Worst-case optimal convex hull algorithms working in general dimensions have
been designed by Clarkson and Shor [74], Seidel [229], and Chazelle [58], yielding

Cd+1(n) = O(n logn + nd d
2
e). So theorem 4.5 is asymptotically optimal in the worst

case. Note, however, that power diagrams in d-space may as well have a fairly small
size, O(n), which emphasizes the use of output-sensitive convex hull algorithms. The
algorithm in Seidel [226] achieves Cd+1(n) = O(n2 + f log f), where f is the total
number of faces of the convex hull constructed. The latest achievements are C4 =
O((n + f) log2 f) in Chan et al. [56] and C5 = O((n + f) log3 f) in Amato and
Ramos [15].

Space constraints preclude our discussion of power diagrams. Still, some remarks
are in order to point out their central role within the context of Voronoi diagrams.
For a detailed discussion and references, see Aurenhammer and Imai [30].

The regions of a Voronoi diagram are usually defined by a set of sites and a distance
function. If the regions are polyhedral, then any such Voronoi diagram can be shown
to be the power diagram of a suitable set of weighted point sites. For instance, this
is the case for the furthest site Voronoi diagram, whose regions consist of all points
having the same furthest site in the given set.

A polyhedral cell complex in d-space is called simple if exactly d + 1 cells meet
at each vertex. For example, the Voronoi diagram of a set of point sites in d-space
is simple if no d + 2 sites are co-spherical. If d ≥ 3, any simple cell complex can be
shown to be a power diagram.

The class of power diagrams is closed under taking cross-sections with a hyper-
plane. That is, the diagram obtained from intersecting a power diagram in d-space
with a hyperplane is again a power diagram, in (d − 1)-space. Moreover, the class of
power diagrams is closed under the modifications to higher order defined in subsec-
tion 4.3.3.

Several generalized Voronoi diagrams in d-space have an embedding in a power
diagram in (d+1)-space, in the sense that they can be obtained by intersecting a power
diagram with certain simple geometric objects and then projecting the intersection.
For example, the additively weighted Voronoi diagram (i.e., the closest-point Voronoi
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diagram for spheres, or the Johnson-Mehl model), and the multiplicatively weighted
Voronoi diagram (or the Apollonius model) have this property.

In all situations mentioned above, a set of weighted sites for the corresponding
power diagram can be computed easily. Thus general methods of handling Voronoi
diagrams and cell complexes become available. For example, the Voronoi diagram
for spheres in 3-space, and the multiplicatively weighted Voronoi diagram in the
plane, can both be computed in O(n2) time which is optimal. The latter diagram is
investigated in detail in Aurenhammer and Edelsbrunner [28] and in Sakamoto and
Takagi [223].

4.3.3 Higher-order Voronoi diagrams and arrangements

Higher-order Voronoi diagrams are natural and useful generalizations of classical
Voronoi diagrams. Given a set S of n point sites in d-space, and an integer k between
1 and n−1, the order-k Voronoi diagram of S, Vk(S), partitions the space into regions
such that each point within a fixed region has the same k closest sites. V1(S) just is
the classical Voronoi diagram of S.

The regions of Vk(S) are convex polyhedra, as they arise as the intersection of
halfspaces bounded by symmetry hyperplanes of the sites. A subset M of k sites in
S has a non-empty region in Vk(S) iff there is a sphere that encloses M but no site in
S \M . In fact, the region of M in Vk(S) just is the set of centers of all such spheres.

Fig. 19 illustrates a planar order-2 Voronoi diagram. Two differences to the clas-
sical Voronoi diagram are apparent. A region need not contain its defining sites, and
the bisector of two sites may contribute more than one facet.

q

p

Figure 19: Region of {p, q} in V2(S).
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In the extreme case of k = n−1, the furthest-site Voronoi diagram of S is obtained.
It contains, for each site p ∈ S, the region of all points x for which p is the furthest
site in S. Exact upper bounds on the size of furthest-site Voronoi diagrams in d-space
are derived in Seidel [227].

The family of all higher-order Voronoi diagrams for a given set S of sites in d-space
is closely related to an arrangement of hyperplanes in (d+1)-space; see Edelsbrunner
and Seidel [113]. We describe this relationship in the more general setting of power
diagrams, by defining an order-k power diagram, PDk(S), for a set S of weighted
point sites in an analogous way. See Aurenhammer [22] [27] for more details.

Recall from subsection 4.3.2 that the power function with respect to a site p ∈ S
can be expressed by a hyperplane π(p) in (d + 1)-space.

The set of hyperplanes {π(p) | p ∈ S} dissects (d + 1)-space into a polyhedral cell
complex called an arrangement . Arrangement cells are convex, and can be classified
according to their relative position with respect to the hyperplanes in {π(p) | p ∈ S}.
A cell C is said to be of level k if exactly k hyperplanes are vertically above C. For
example, the upper envelope of {π(p) | p ∈ S} bounds the only cell, Π(S), of level 0.
All cells of level 1 share some facet with Π(S), so that their vertical projection gives
the (order-1) power diagram PD(S).

More generally, the cells of level k project to the regions of PDk(S), for each k
between 1 and n − 1. To see this, let x be a point in some k-level cell C. Then k
hyperplanes π(p1), . . . , π(pk) are above x, and n − k hyperplanes π(pk+1), . . . , π(pn)
are below x. That means that, for the vertical projection x′ of x onto d-space, we
have pow(x′, pi) < pow(x′, pj) for 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. Hence x′ is a point
in the region of {p1, . . . , pk} in PDk(S).

Hyperplane arrangements are well-investigated objects, concerning their combina-
torial as well as their algorithmic complexity; see Edelsbrunner et al. [112] [114]. We
obtain:

Theorem 4.6 Let S be a set of n (weighted or unweighted) point sites in d-space.
The family of all higher-order power diagrams (or Voronoi diagrams) for S realizes a
total of Θ(nd+1) faces, and it can be computed in optimal Θ(nd+1) time.

Clarkson and Shor [74] proved that the number of arrangement cells with levels up to
a given value of k is O(nbd/2ckdd/2e). The collection of these cells can be constructed
within this time for d ≥ 4, with the algorithm in Mulmuley [202]. A modification by
Agarwal et al. [2] achieves roughly O(nk2) time also in 3-space. An output-sensitive
construction algorithm is given in Mulmuley [203]. All these results apply to families
of order-k diagrams in one dimension lower.

Most practical applications ask for the computation of a single order-k Voronoi
diagram Vk(S) in the plane, for a given value of k. (Typically, k does not depend on
|S| = n but is a small constant.) As for the classical Voronoi diagram V (S), edges
are pieces of perpendicular bisectors of sites. Vertices are centers of circles that pass
through three sites. However, these circles are no longer empty; they enclose either
k − 1 or k − 2 sites. Lee [180] showed that this diagram has O(k(n − k)) regions,
edges, and vertices. It is easy to see that the regions of V2(S) are in one-to-one
correspondence with the edges of V (S). Hence V2(S) realizes at most 3n − 6 regions
in the plane.
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Considerable efforts have been made to compute the single planar order-k Voronoi
diagram efficiently. Different approaches have been taken in Lee [180], Chazelle and
Edelsbrunner [59], Aurenhammer [26], Clarkson [71], and Agarwal et al. [2]. In the
last two papers randomized runtimes of O(kn1+ε) and (roughly) O(k(n − k) log n)
are achieved, respectively, which is close to optimal. Below we describe a (roughly)
O(k2(n − k) log n) time randomized incremental algorithm by Aurenhammer and
Schwarzkopf [31], that can be modified to handle arbitrary on-line sequences of site
insertions, site deletions, and k-nearest neighbor queries. Though not being most
time efficient, the algorithm profits by its simplicity and flexibility.

The heart of the algorithm is a duality transform that relates the diagram Vk(S)
to a certain convex hull in 3-space. This transform allows us to insert and also delete
sites in a simple fashion by computing convex hulls. Let M ⊂ S be any subset of k
sites. M is transformed into a point q(M) in 3-space, by taking the centroid of M
and lifting it up vertically. More precisely,

q(M) =
1

k


∑

p∈M

p,
∑
p∈M

pT p


 .

Now consider the set Qk(S) of all points that can be obtained from S in this way.
That is, Qk(S) = {q(M) | M ⊂ S}.
Lemma 4.2 The part of the convex hull of Qk(S) that is visible from the plane is
dual to Vk(S).

The lemma can be proved by first mapping each k-subset M of S into a non-
vertical plane π(M) in 3-space,

π(M) : x3 =
2

k

∑
p∈M

xT p − 1

k

∑
p∈M

pT p,

and then considering the upper envelope Πk(S) of all these planes. It is not difficult
to show that the facets of Πk(S) project vertically to the regions of Vk(S). The lemma
follows from observing the polarity (cf. subsection 4.3.2) between the planes π(M)
and the points q(M).

To construct Vk(S), we could just compute Qk(S), determine its convex hull, and
then dualize its triangles, edges, and vertices that are visible from the plane. However,
Qk(S) contains a point for each k-subset of S, and thus has cardinality

(
n
k

)
= Θ(nk).

Only O(k(n − k)) points lie on the convex hull, as Vk(S) has this many regions.
We use randomized incremental insertion of sites in order to compute this convex

hull efficiently. Let S = {p1, . . . , pn}, and let Ci denote the visible part of the convex
hull of Qk({p1, . . . , pi}), for k + 1 ≤ i ≤ n. Points of Qk(S) lying on the triangular
surface Ci are called corners of Ci.

We start by determining Ck+1. Qk({p1, . . . , pk+1}) contains k + 1 points which
can be calculated in time O(k), so O(k log k) time suffices. The generic step of the
algorithm is the insertion of site pi into Ci−1, for i ≥ k + 2.

(1) Identify all triangles of Ci−1 which are destroyed by pi and cut them out. Let B
be the set of corners on the boundary of the hole.
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(2) Calculate the set P of all new corners created by pi.

(3) Compute the convex hull of P ∪ B, and fill the hole with the visible part Γi of
this convex hull. This gives Ci.

Each triangle ∆ of Ci−1 is dual to a vertex of Vk(S). This vertex is the center of a
circle that passes through three sites in S. ∆ will be destroyed if this circle encloses
pi. The destroyed triangles of Ci−1 form a connected surface Σi−1. Hence, if we know
one of them in advance, Σi−1 can be identified in time proportional to the number ni

of its triangles. Moreover, the set P of new corners can be calculated easily from the
edges of Σi−1, as each such edge gives rise to a unique corner.

Lemma 4.3 Given Ci−1 we can construct Ci in time O(ni log ni), provided we know
a triangle of Ci−1 that is destroyed by pi.

When looking for a starting triangle of Σi−1, we profit from another nice property
of the duality transform: If the vertical projection ∆′ of a triangle ∆ of Ci−1 contains
pi then ∆ is destroyed by the insertion of pi. This leaves us with the problem of
locating pi in the triangulation given by the planar projection of Ci−1.

In fact, we get the desired point-location structure nearly for free. Adapting a
technique used in Guibas et al. [134] for constructing Delaunay triangulations, we
do not remove the triangles of Ci−1 that get destroyed by the insertion of pi, but
mark them as old. When marked old, each triangle gets a pointer to the newly
constructed part Γi of Ci. The next site then is located by scanning through the
’construction history’ of Ci. The structure for point location within each surface Γj,
j ≤ i, which is needed in addition, is a byproduct of the randomized incremental
convex hull algorithm in [134], which we used for computing Γj.

In summary, the order-k Voronoi diagram for n sites in the plane can be computed
in expected time O(k2(n−k)) log n+nk log3 n), and optimal O(k(n−k)) deterministic
space, by an online randomized incremental algorithm.

Full details and the following extensions are given in [31]. Deletion of a site
can be done reversely to insertion, again by computing a convex hull. The history-
based point location structure used by the algorithm can be adapted to support k-
nearest neighbor queries (see subsection 5.1.1). A dynamic data structure is obtained,
allowing for insertions and deletions of sites in expected time O(k2 log n+k log2 n), and
k-nearest neighbor queries in expected time O(k log2 n). This promises a satisfactory
performance for small values of k.

4.4 Generalized sites

It is commonly agreed that most geometric scenarios can be modeled with sufficient
accuracy by polygonal objects. Two typical and prominent examples are the descrip-
tion of the workspace of a robot moving in the plane, and the geometric information
contained in a geographical map. In both applications, robot motion planning and
geographical information systems, the availability of proximity information for the
scenario is crucial. This is among the reasons why considerable attention has been
paid to the study of Voronoi diagrams for polygonal objects.
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Still, in some applications the scenario can be modeled more appropriately when
curved objects, for instance, circular arcs are also allowed. Many Voronoi diagram
algorithms working for line segments can be modified to work for curved objects as
well.

4.4.1 Line segment Voronoi diagram and medial axis

Let G be a planar straight line graph on n points in the plane, that is, a set of non-
crossing line segments spanned by these points. For instance, G might be a tree, or
a collection of disjoint line segments or polygons, or a complete triangulation of the
points. The number of segments of G is maximum, 3n − 6, in the last case. We will
discuss several types of diagrams for planar straight line graphs in the present and
following subsections.

The classical type is the (closest point) Voronoi diagram, V (G), of G. It consists of
all points in the plane which have more than one closest segment in G. V (G) is known
under different names in different areas, for example, as the line Voronoi diagram or
skeleton of G, or as the medial axis when G is a simple polygon. Applications in
such diverse areas as biology, geography, pattern recognition, computer graphics, and
motion planning exist; see e.g. Kirkpatrick [160] and Lee [179] for references.

See fig. 20. V (G) is formed by straight line edges and parabolically curved edges,

Figure 20: Line segment Voronoi diagram

both shown as dashed lines. Straight edges are part of either the perpendicular
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bisector of two segment endpoints, or of the angular bisector of two segments. Curved
edges consist of points equidistant from a segment endpoint and a segment’s interior.
There are two types of vertices, namely of type 2 having degree two, and of type 3
having degree three (provided G is in general position). Both are equidistant from
a triple of objects (segment or segment endpoint), but for type-2 vertices the triple
contains a segment along with one of its endpoints.

Together with G’s segments, the edges of V (G) partition the plane into regions.
These can be refined by introducing certain normals through segment endpoints
(shown dotted in fig 20), in order to delineate faces each of which is closest to a
particular segment or segment endpoint. Two such normals start at each segment
endpoint where G forms a reflex angle, and also at each terminal of G which is an
endpoint belonging to only one segment in G. A normal ends either at a type-2 vertex
of V (G) or extends to infinity.

It is well known that the number of faces, edges and vertices of V (G) is linear in
n, the number of segment endpoints for G. The number of vertices is shown to be at
most 4n−3 in Lee and Drysdale [181]. An exact bound, that also counts the ’infinite’
vertices at unbounded edges and segment normals, is given below.

Lemma 4.4 Let G be a planar straight line graph on n points in the plane, and let
G realize t terminals and r reflex angles. The number of (finite and infinite) vertices
of V (G) is exactly 2n + t + r − 2.

Proof. Suppose first that G consists of e disjoint segments (that do not touch at
their endpoints). Then there are e regions, and each type-3 vertex belongs to three of
them. By the Euler formula for planar graphs, there are exactly 2e− 2 such vertices,
if we also count those at infinity. To count the number of type-2 vertices, observe
that each segment endpoint is a terminal and gives rise to two segment normals each
of which, in turn, yields one (finite or infinite) vertex of type 2. Hence there are 4e
such vertices, and 6e − 2 vertices in total.

Now let G be a general planar straight line graph with e segments. We simulate
G by disjoint segments, by shortening each segment slightly such that the segment
endpoints are in general position. Then we subtract from 6e−2 the number of vertices
which have been generated by this simulation.

Consider an endpoint p that is incident to d ≥ 2 segments of G. Obviously, p
gives rise to d copies in the simulation.

The Voronoi diagram of these copies has d−2 finite vertices, which are new vertices
of type 3. As the sum of the degrees d ≥ 2 in G is 2e − t, we get 2e − t − 2(n − t)
new vertices in this way.

Each convex angle at p gives rise to two new normals emanating at the respective
copies of p, and thus to two (finite) type-2 vertices. A possible reflex angle at p
gives rise to one (finite or infinite) type-3 vertex, on the perpendicular bisector of the
corresponding copies of p. There are r reflex angles in G, and thus 2e − t− r convex
angles. This gives r + 2(2e − t − r) new vertices in addition.

The lemma follows by simple arithmetic. 2

Surprisingly, the number of edges of G does not influence the bound in lemma 4.4.
The maximum number of vertices, 3n − 2, is achieved, for example, if G is a set of
disjoint segments (t = n and r = 0), or if G is a simple polygon P (t = 0 and r = n).
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In the latter case, the majority of applications concerns the part of V (P ) interior
to P . This part is commonly called the medial axis of P . The medial axis of an n-gon
with r reflex interior angles has a tree-like structure and realizes exactly n + r − 2
vertices and at most 2(n+r)−3 edges. Lee [179] first mentioned this bound, and also
listed some applications of the medial axis. An interesting application to NC pocket
machining is described in Held [139].

Several algorithms for computing V (G), for general or restricted planar straight
line graphs G, have been proposed and tested for practical efficiency. V (G) can be
computed in O(n logn) time and O(n) space by divide & conquer (Kirkpatrick [160],
Lee [179], and Yap [261]), plane sweep (Fortune [125]), and randomized incremental
insertion (Boissonnat et al. [43] and Klein et al. [169]).

Burnikel et al. [51] give an overview of existing methods, and discuss implemen-
tation details of an algorithm in Sugihara et al. [243] that first inserts all segment
endpoints, and then all the segments, of G in random order. An algorithm of com-
parable simplicity and practical efficiency (though with a worst-case running time
of O(n2)) is given in Gold et al. [130]. They first construct a Voronoi diagram for
point sites by selecting one endpoint for each segment, and then maintain the diagram
while expanding the endpoints, one by one, to their corresponding segments. During
an expansion, the resulting topological updates in the diagram can be carried out
efficiently. In fact, Voronoi diagrams for moving point sites are well-studied concepts;
see e.g. Guibas et al. [135] and Roos [221].

An efficient O(n log2 n) work parallel algorithm for computing V (G) is given in
Goodrich et al. [132]. This is improved to O(log n) parallel (randomized) time using
O(n) processors in Rajesekaran and Ramaswami [218]. (The latter result also implies
an optimal parallel construction method for the classical Voronoi diagram.)

If G is a connected graph then V (G) can be computed in randomized time
O(n log∗ n); see Devillers [88]. Recently, O(n) time randomized, and deterministic,
algorithms for the medial axis of a simple polygon have been designed by Klein and
Lingas [168] and Chin et al. [68], settling open questions of long standing. The case
of a convex polygon is considerably easier; see subsection 4.4.3.

Some of the algorithms above also work for curved objects. The plane-sweep algo-
rithm in Fortune [125] elegantly handles arbitrary sets of circles (i.e., the additively
weighted Voronoi diagram, or Johnson-Mehl model) without modification from the
point site case. Yap [261] allows sets of disjoint segments of arbitrary degree-two
curves. A randomized incremental algorithm for general curved objects is given in
Alt and Schwarzkopf [12]. They show that complicated curved objects can be parti-
tioned into ’harmless’ ones by introducing new points. All these algorithms achieve
an optimal running time, O(n log n).

In dimensions more than two, the known results are sparse. The complexity of the
Voronoi diagram for n line segments in d-space may be as large as Ω(nd−1), as was
observed by Aronov [17]. By the relationship of Voronoi diagrams to lower envelopes
of hypersurfaces (see subsection 4.6), the results in Sharir [234] imply an upper bound
of roughly O(nd). No better upper bounds are known even for line segments in 3-
space.

The Voronoi diagram for n spheres in d-space has a size of only O(nbd/2c+1), by
its relationship to power diagrams proved in Aurenhammer and Imai [30].
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A case of particular interest in several applications is the medial axis M(P ) of a
(generally non-convex) polyhedron P in 3-space. M(P ) contains pieces of parabolic
and hyperbolic surfaces and thus has a fairly complicated structure. A practical and
numerically stable algorithm for computing M(P ) is proposed in Milenkovic [197].

4.4.2 Straight skeletons

In comparison to the Voronoi diagram for point sites, which is composed of straight
edges, the occurrence of curved edges in the line segment Voronoi diagram V (G) is
a disadvantage in the computer representation and construction, and sometimes also
in the application, of V (G).

There have been several attempts to linearize and simplify V (G), mainly for the
sake of efficient point location and motion planning; see Canny and Donald [54], Kao
and Mount [154], de Berg et al. [80], and McAllister et al. [190]. The compact Voronoi
diagram in [190] is particularly suited to these applications. It is defined for the case
where G is a set of k disjoint convex polygons. Its size is only O(k), rather than O(n),
and it can be computed in time O(k log n); see subsection 5.1.1 for more details.

As a different alternative to V (G), we now describe the straight skeleton, S(G),
of a planar straight line graph G. This structure is introduced, and discussed in
much more detail, in Aichholzer and Aurenhammer [9]. S(G) is composed of angular
bisectors and thus does not contain curved edges. In general, its size is even less than
that of V (G). Beside its use as a type of skeleton for G, S(G) applies, for example,
to the reconstruction of terrains from a given geographical map as will be sketched
later.

S(G) is defined as the interference pattern of certain wavefronts propagated from
the segments and segment endpoints of G. Let F be a connected component (called
a figure) of G. Imagine F as being surrounded by a belt of (infinitesimally small)
width ε. For example, a single segment s gives rise to a rectangle of length |s| + 2ε
and width 2ε, and a simple polygon P gives rise to two homothetic copies of P with
minimum distance 2ε. In general, if F partitions the plane into c connected faces
then F gives rise to c simple polygons called wavefronts for F .

The wavefronts arising from all the figures of G are now propagated simultanously,
at the same speed, and in a self-parallel manner. Wavefront vertices move on angular
bisectors of wavefront edges which, in turn, may increase or decrease in length dur-
ing the propagation. This situation continues as long as wavefronts do not change
combinatorially. Basically, there are two types of changes.

(1) Edge event : A wavefront edge collapses to length zero. (The wavefront may
vanish due to three simultanous edge events.)

(2) Split event : A wavefront edge splits due to interference or self-interference. In
the former case, two wavefronts merge into one, whereas a wavefront splits into two
in the latter case.

After either type of event, we are left with a new set of wavefronts which are
propagated recursively.

The edges of S(G) are just the pieces of angular bisectors traced out by wavefront
vertices. Each vertex of S(G) corresponds to an edge event or to a split event. S(G)
is a unique structure defining a polygonal partition of the plane; see fig. 21.
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Figure 21: Straight skeleton

During the propagation, each wavefront edge e sweeps across a certain area which
we call the face of e. Each segment of G gives rise to two wavefront edges and thus
to two faces, one on each side of the segment. Each terminal of G (endpoint of degree
one) gives rise to one face. Faces can be shown to be monotone polygons and thus
are simply connected. This gives a total of 2m+ t = O(n) faces, if G realizes m edges
and t terminals. There is also an exact bound on the number of vertices of S(G).

Lemma 4.5 Let G be a planar straight line graph on n points, t of which are termi-
nals. The number of (finite and infinite) vertices of S(G) is exactly 2n + t − 2.

From lemma 4.4 in the previous subsection it is apparent that S(G) has r vertices
less than V (G) if G has r reflex angles. In particular, if G is a simple polygon with
r reflex interior angles, then the part of S(G) interior to G is a tree with only n − 2
vertices, whereas the medial axis of G has n + r − 2 vertices.

A wavefront model similar to that yielding S(G) is sometimes used to define the
Voronoi diagram V (G) of G (cf. the expanding waves view in section 2). There, the
propagation speed of all points on the wavefront is the same, whereas, in the model
for S(G), speed is controlled by the angle between wavefront edges. This behaviour
may make S(G) completely different from the Voronoi diagram of G. It can be shown
that, without prior knowledge of its structure, S(G) cannot be defined by means
of distances from G. Moreover, S(G) does not fit into the framework of abstract
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Voronoi diagrams described in subsection 4.6: The bisecting curve for two segments
of G would be the interference pattern of the rectangular wavefronts they send out,
but these curves do not fulfill condition (ii) in definition 4.2.

As a consequence, the well-developed machinery for constructing Voronoi diagrams
(see section 3) does not apply to S(G). An algorithm that simulates the wavefront
propagation by maintaining a triangulation of the wavefront vertices is given in [9].
The method is simple and practically efficient but has a worst-case running time of
O(n2 log n).

S(G) has a three-dimensional interpretation, obtained by defining the height of
a point x in the plane as the unique time when x is reached by a wavefront. In
this way, S(G) lifts up to a polygonal surface ΣG, where points on G have height
zero. In a geographical application, G may delineate rivers, lakes, and coasts, and ΣG

represents a corresponding terrain with fixed slope. ΣG has the nice property that
every raindrop that hits a terrain facet f runs off to the segment or terminal of G
defining f ; see Aichholzer et al. [8]. This may have applications in the study of rain
water fall and its impact on the floodings caused by rivers in a given geographic area.

The concept of S(G) can be generalized by tuning the propagation speed or angle
of the individual wavefront edges, in order to achieve prescribed facet slopes for ΣG, or
individual elevations for the terrain points on G. The size of S(G), and its construction
algorithm, remain unaffected.

When restricted to the interior of a simple polygon P , ΣP is used in [8] as a canon-
ical construction of a roof of given slope above P . For rectilinear (and axis-aligned)
polygons P , the medial axis of P in the L∞-metric will do the job. S(P ) coincides
with this structure for such polygons, and thus generalizes this roof construction
technique to general shapes of P .

Straight skeletons can be generalized to higher dimensions without much difficul-
ties. They retain their piecewise-linear shape and thus, for example, offer a simpler
alternative to the medial axis of a non-convex polyhedron in 3-space.

4.4.3 Convex polygons

Voronoi diagrams for a single convex polygon have a particularly simple structure.
Taylor-made algorithms for their construction have been designed.

Let C be a convex n-gon in the plane. The medial axis M(C) of C is a tree whose
edges are pieces of angular bisectors of C’s sides. In fact, M(C) coincides with the
part of the straight skeleton S(C) interior to C. M(C) realizes exactly n faces, n− 2
vertices, and 2n − 3 edges.

There is a simple randomized incremental algorithm by Chew [62] that computes
M(C) in O(n) time. The algorithm first removes, in random order, the halfplanes
whose intersection is C. Removing a halfplane means removing the corresponding side
e, and extending the two sides adjacent to e so that they become adjacent in the new
convex polygon. This can be done in constant time per side. The adjacency history
of C is stored. That is, for each removed side e, one of its formerly adjacent sides
is recorded. In a second stage, the sides are put back in reversed (still randomized)
order, and the medial axis is maintained during these insertions.

Let us focus on the insertion of the i-th side ei. We have to integrate the face,
f(ei), of ei into the medial axis of the i − 1 sides that have been inserted before ei.
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From the adjacency history, we already know a sides e′ of the current polygon that
will be adjacent to ei after its insertion. Hence we know that the angular bisector of
ei and e′ will contribute an edge to f(ei).

Having a starting edge available in O(1) time, the face f(ei) now can be con-
structed in time proportional to its size. We construct f(ei) edge by edge, by simply
tracing and deleting parts of the old medial axis interior to f(ei). As the medial axis
of an i-gon has 2i−3 edges, and each edge belongs to two faces, the expected number
of edges of a randomly chosen face is less than 4. Thus f(ei) can be constructed in
constant expected time, which gives an O(n) randomized algorithm for computing
M(C).

The same technique also applies to the Voronoi diagram for the vertices of a
convex n-gon C, that is, to the Voronoi diagram of a set S of n point sites in convex
position. By lemma 2.2, all regions in V (S) are unbounded, and the edges of V (S)
form a tree. Hence V (S) has the same numbers of edges and (finite) vertices as the
medial axis of C.

For each p ∈ S, its region VR(p, S) shares an unbounded edge with the regions
VR(p′, S) and VR(p′′, S), where p′ and p′′ are adjacent to p on the convex hull of
S (which is the polygon C). An adjacency history can be computed in O(n) time,
by removing the sites in random order and maintaining their convex hull. For each
site that is re-inserted, the expected number of edges is less than 4. So an O(n)
randomized construction algorithm is obtained.

The diagrams V (S) and M(C) can also be computed in deterministic linear time;
see Aggarwal et al. [4]. The details of this algorithm are much more involved, however.

4.4.4 Constrained Voronoi diagrams and Delaunay triangulations

In certain situations, unconstrained proximity among a set of sites is not enough
information to meet practical needs. There might be reasons for not considering two
sites as neighbors although they are geometrically close to each other. For example,
two cities that are geographically close but separated by high mountains might be
far from each other from the point of view of a truck driver. The concepts described
below have been designed to model constrained proximity among a set of sites.

Let S be a set of n point sites in the plane, and let L be a set of non-crossing line
segments spanned by S. Note that |L| ≤ 3n − 6. The segments in L are viewed as
obstacles: we define the bounded distance between two points x and y in the plane as

b(x, y) =

{
d(x, y) if xy ∩ L = ∅
∞ otherwise

where d stands for the Euclidean distance. In the resulting bounded Voronoi diagram
V (S, L), regions of sites that are close but not visible from each other are clipped
by segments in L. Regions of sites being segment endpoints are nonconvex near the
corresponding segment; see fig. 22.

The dual of V (S, L) is not a full triangulation of S, even if the segments in L
are included. However, V (S, L) can be modified to dualize into a triangulation which
includes L and, under this restriction, is as much ’Delaunay’ as possible.

The modification is simple but nice. For each segment ` ∈ L, the regions clipped
by ` from the right are extended to the left of `, as if only the sites of these regions were
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Figure 22: Bounded Voronoi diagram extended, and its dual

present. The regions clipped by ` from the left are extended similarly; see fig. 22.
Of course, extended regions may overlap now, so they fail to define a partition of
the plane. If we dualize now by connecting sites of regions that share an edge, a
full triangulation that includes L is obtained: the constrained Delaunay triangulation
DT(S, L). It is clear that the number of edges of DT(S, L) is at most 3n − 6, and
that, in general, the number of edges of V (S, L) is even less. Hence both structures
have a linear size.

The original definition of DT(S, L) in Lee and Lin [182] is based on a modification
of the empty circle property: DT(S, L) contains L and, in addition, all edges between
sites p, q ∈ S that have b(p, q) < ∞ and that lie on a circle enclosing only sites r ∈ S
with at least one of b(r, p), b(r, q) = ∞.

Algorithms for computing V (S, L) and DT(S, L) have been proposed in Lee and
Lin [182], Chew [63], Wang and Schubert [255], Wang [254], Seidel [228], and Kao
and Mount [155]. The last two methods seem best suited to implementation. For an
application of DT(S, L) to quality mesh generation see Chew [65].

We sketch the O(n log n) time plane sweep approach in [228]. If only V (S, L) is
required then the plane sweep algorithm described in subsection 3.4 can be applied
without much modification. If DT(S, L) is desired then the extensions of V (S, L)
as described above are computed in addition. To this end, an additional sweep is
carried out for each segment ` ∈ L. The sweep starts from the line through ` in both
directions. It constructs, on the left side of this line, the (usual) Voronoi diagram of
the sites whose regions in V (S, L) are clipped by ` from the right, and vice versa.

The special case where S and L are the sets of vertices, and sides, of a simple
polygon has received special attention, mainly because of its applications to visibility
problems in polygons. The bounded Voronoi diagram V (S, L) is constructable in
O(n) randomized time in this case; see Klein and Lingas [166]. If the L1-metric
instead of the Euclidean metric is used to measure distances, the same authors [168]
give a deterministic linear time algorithm. Both algorithms, as well as the linear time
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medial axis algorithms in [167] and in [68], first decompose the polygon into smaller
parts called histograms. These are polygons whose vertices, when considered in cyclic
order, appear in sorted order in some direction.

An alternative concept that forces a set L of line segments spanned by S into
DT(S) is the conforming Delaunay triangulation. For each segment ` ∈ L that does
not appear in DT(S), new sites on ` are added such that ` becomes expressible as
the union of Delaunay edges in DT(S ∪ C), where C is the total set of added sites.
For several site adding algorithms, |C| depends on the size as well as on the geometry
of L. See, e.g., the survey article by Bern and Eppstein [37] and references therein.
Edelsbrunner and Tan [118] show that |C| = O(k2n) is always sufficient, and construct
a set of sites with this size in time O(k2n + n2), for k = |L|.

A different, and more complicated, type of constrained Voronoi diagram is the
geodesic Voronoi diagram. Here, the distance between a point site p and a point x in
the plane is equal to the length of the shortest obstacle-avoiding path between p and
x. The obstacles are usually modeled by a set of non-crossing line segments. If all
segment endpoints are sites then the bounded Voronoi diagram is obtained. However,
this is typically not the case. The fact that computing geodesic distances is not a
constant-time operation complicates the construction of geodesic Voronoi diagrams.
The only known subquadratic algorithm is by Mitchell [198]. An O((n + k) log(n +
k)) time algorithm for the geodesic Voronoi diagram of k sites inside a simple n-
gon is given in Papadopoulou and Lee [212], improving over an earlier approach in
Aronov [16].

4.5 Generalized spaces and distances

So far we have maily discussed Voronoi diagrams of sites in d-space, that are defined
with respect to the Euclidean distance function. Now we want to generalize both the
space in which the sites are situated and the distance measure used; but we shall only
discuss the case of point sites.

The main questions are which of the structural properties the standard Voronoi
diagram enjoys will be preserved, and will the remaining properties be strong enough
to apply one of the algorithmic approaches for computing the Voronoi diagram intro-
duced in section 3.

4.5.1 Generalized spaces

Since the surface of earth is not flat, it seems very natural to ask about Voronoi
diagrams of point sites on curved surfaces in 3-space. The distance between two
points on the surface is the minimum Euclidean length of a curve that connects the
points and runs entirely inside the surface. Such a curve will be called a shortest path.

Brown [50] has addressed the Voronoi diagram of points on the surface of the two-
dimensional sphere. Here great circles play the role of lines in the Euclidean plane. In
fact, the bisector of two points is a great circle, and the shortest paths are segments
of great circles, too. (One can show that the only other metric space in which all
bisector segments are shortest paths is the hyperbolic space; see Busemann [52]).

For each pair of antipodal points on the sphere there is a continuum of shortest
paths connecting them. But this does not affect the Voronoi diagram of n points;
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it can be computed in optimal O(n log n) time and linear space, by adaption of the
algorithms mentioned in section 3.

Quite different is the situation on the surface of a cone. In order to determine
the bisector of two points, p and q, we can cut the cone along a halfline emanating
from the apex, and unfold it; in fig. 23 the halfline diametrically opposed to p has
been chosen. Since curve length does not change in this process, each shortest path
on the cone that does not cross the cut is transformed into a shortest path in the
plane, i. e. into a line segment. In order to represent those shortest paths that cross
the cut, we add to the unfolded cone two more copies, as shown in fig. 23 (ii). Now
the shortest path on the cone from some point x to site q corresponds to the shortest
one of the line segments qx, q′x, and q′′x. This explains why the unfolded bisector
B(p, q) consists of segments of the planar bisectors of p, q and p, q′.

In spite of this strong connection to the plane, the Voronoi diagram of points on a
cone has structural properties surprisingly different from the planar Voronoi diagram.
If the unfolded cone forms a wedge of angle less than 180◦ then the bisector of two
points can be a closed curve. If three points p, q, r are placed, in this order, on a
halfline emanating from the apex of such a cone, the bisector B(q, r) fully encircles
B(p, q) which in turn encircles the apex. This causes the Voronoi region of q in
V ({p, q, r}) to be not simply connected.

Also, the closures of two Voronoi regions can have more than one Voronoi edge in
common. Such a situation is shown in fig. 24, on the unfolded cone. The bisectors of

q'
p'

p''
q''

p

q

p
q

q'
p

p

q

(i) (ii)

Figure 23: A cone sliced and unfolded, showing the bisector of p and q.

the three points cross twice, at the Voronoi vertices v and w; the latter happens to
lie on the cut. (It is interesting to observe that none of these phenomena occurs on
the sphere, although there, too, bisectors are closed curves and cross twice.)

Despite these fundamental differences to the plane, the Voronoi diagram of n
points on the surface of a cone can be constructed in optimal time and space, using
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Figure 24: The common border of the Voronoi regions of q and r consists of two
Voronoi edges.

a sweep circle that expands from the apex; see Dehne and Klein [83]. This approach
works without unfolding the cone.

Mazón and Recio [189] have independently pointed out the algebraic background
of the unfolding procedure illustrated by fig. 23 (i), and obtained the following gen-
eralization. Let P denote the Euclidean plane or two-dimensional sphere, and let G
be a discrete group of motions on P : a group of bijections that leave the distance
between any pair of points of P invariant, such that for each point p ∈ P there exists
a constant c satisfying

p 6= g(p) =⇒ |p − g(p)| ≥ c

for all motions g ∈ G.
Examples in the plane are the group generated by a rotation of rational angle

about some given point, or the group generated by two translations that move each
point a fixed distance to the right and a fixed distance upwards, respectively. In the
19th century, mathematicians have completely classified all discrete groups.

Two points p, p′ ∈ P are equivalent if there exists a motion in G that takes p
to p′; the equivalence class, [p], of p is called the orbit of p. The quotient space,
P/G, consists of all orbits. In order to geometrically represent P/G one starts with
a connected subset of P that contains a representative out of every orbit; equivalent
points must be on the boundary. Such a set is called a fundamental domain, if it is
convex. The following lemma provides a nice way of obtaining a fundamental domain;
a proof can be found in Ehrlich and Im Hof [120].

Lemma 4.6 Let p be a point of P that is left fixed only by the unit element of G.
Then its Voronoi region VR(p, [p]) is a fundamental domain.

In fig. 23 (ii), for example, the point set {p, p′, p′′} is the orbit of p under a clockwise
rotation by 120◦. The Voronoi region VR(p, {p, p′, p′′}) equals the master copy of the
unfolded cone, as drawn by solid lines. Each interior point x is the only point of [x]
contained in this region, only the points on the boundary (i. e. the cut) of the unfolded
cone are mapped into each other by rotation. If we identify these two halflines we
obtain the cone depicted in fig. 23 (i), a model of the quotient space of the Euclidean
plane over the cyclic group of order 3.
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In a similar way we would obtain a rectangle as fundamental domain of the group
of two translations mentioned above, and identifying opposite edges would result in
a torus .

If we want to compute the Voronoi diagram of a set S of point sites on a surface
associated with such a quotient space P/G, we can proceed as follows. Let S0 denote
a set of representatives of S in a fundamental domain D ⊂ P . First, we compute the
Voronoi diagram V ([S0]), where [S0] denotes the union of the orbits of the elements
of S0, an infinite but periodic set. Due to [189], V ([S0]) can be obtained by applying
the motions in G to the Voronoi diagram of a finite set of points of S0 and translated
copies of S0.

Theorem 4.7 There exists a finite subset U of [S0] such that V ([S0]) = [V (U) ∩ D]
holds.

If one removes from V ([S0]) all Voronoi edges that separate points of the same orbit
and intersects the resulting structure with the fundamental domain D, the desired
diagram V (S) results, after identifying equivalent points. Although the set S0 can be
constructed effectively, it seems hard to establish an upper bound for the efficiency
of this step.

To mention a few other spaces considered, Ehrlich and Im Hof [120] have studied,
from a differential geometrist’s point of view, structural properties of the Voronoi
diagram in such Riemannian manifolds where any two points are connected by a
unique shortest path.

In order to compute the Voronoi diagram of n points on a polyhedral surface in
3-space containing m vertices, one can make use of its discrete structure and apply
the continuous Dijkstra technique usually employed for computing shortest paths. It
allows the Voronoi diagram to be computed in O(N2 log N) time and O(N2) space,
where N = max(m, n); see Mitchell et al. [199].

4.5.2 Convex distance functions

In numerous applications does the Euclidean metric not provide an appropriate way
of measuring distance. In the following subsections we consider the Voronoi diagram
of point sites under distance measures different from the Euclidean metric. We start
with convex distance functions, a concept that generalizes the Euclidean distance but
slightly. Whereas this generalization does not cause serious difficulties in the plane,
surprising changes will occur as we move to 3-space.

Let C denote a compact, convex set in the plane that contains the origin in its
interior. Then a convex distance function can be defined in the following way. In
order to measure the distance from a point p to some point q, the set C is translated
by the vector p. The half line from p through q intersects the boundary of C at a
unique point q′; see fig. 25. Now one puts

dC(p, q) =
d(p, q)

d(p, q′)
.

By definition, C equals the unit circle of d, that is, the set of all points q satisfying
dC(0, q) ≤ 1. The value of dC(p, q) does not change if both p and q are translated
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Figure 25: By dC(p, q) = d(p,q)
d(p,p′) a convex distance function dC with unit circle C is

defined.

by the same vector. One can show that the triangle inequality dC(p, r) ≤ dC(p, q) +
dC(q, r) is fulfilled, with equality holding for collinear points p, q, r. In general, we
have dC(p, q) = dC′(q, p), where C ′ denotes the reflected image of C about the origin.
We can define the Voronoi diagram based on an arbitrary convex distance function
by associating with each site p all points x of the plane such that dC(p, x) < dC(q, x)
holds for all other sites q.

If the set C is symmetric about the origin then dC is called a symmetric convex
distance function. This is equivalent to saying that the function q 7→ dC(0, q) is a
norm in the plane.

Well-known is the family of Lp (or: Minkowski) norms, 1 ≤ p < ∞, defined by
the equation

Lp(q, r) = p

√
|q1 − r1|p + |q2 − r2|p for q = (q1, q2), r = (r1, r2).

Whereas L2 is the Euclidean distance, L1(q, r) = |q1 − r1| + |q2 − r2| is called the
Manhattan distance of q and r, because it equals the minimum length of a path from
q to r that follows a rectangular grid. Its unit circle is shown in fig. 26 (i). If index p

10

1

(i) B(p,q) (ii)

p
p

q q

B(p,q)(iii)

Figure 26: Unit circle and bisectors of the Manhattan distance L1.

tends to ∞, the value of Lp(q, r) converges to L∞(q, r) = max(|q1− r1|, |q2− r2|). The
unit circle of L∞ equals the aligned square [−1, 1]2; therefore, L1 and L∞ are related
by a 45◦ rotation of the plane.

In fig. 26 (ii) the bisector of two points under the Manhattan distance L1 is shown.
Another possible situation can be obtained by rotating picture (ii) by 90◦. If p and q
are the diagonal vertices of an aligned square then their bisector B(p, q) is no longer
a curve: it consists of two quarterplanes connected by a line segment; see fig. 26 (iii).

In general, if the unit circle C is strictly convex , that is, if its boundary contains no
line segment, this phenomenon cannot occur. For a strictly convex distance function

47



dC , each bisector B(p, q) is a curve homeomorphic to a line. Also, the strict triangle
inequality holds: We have dC(p, r) < dC(p, q) + dC(q, r) unless p, q, r are collinear.
Moreover, two circles with respect to dC intersect in at most two points, and two
bisectors B(p, q), B(p, r) intersect in at most one point; proofs can be found in Icking
et al. [146].

If C is not strictly convex then there are points p, q whose bisector contains two-
dimensional pieces. In this case one can choose from the set B(p, q) a curve that
separates p and q, and use this curve as the bisector. In fig. 26 (iii), for example, one
could proceed as if p and q were slightly moved apart in y-direction and use the curve
drawn by solid lines as their bisector. In general, bisecting curves can be chosen as
follows. We assume that the point sites in S are linearly ordered. If p < q then the
common boundary of D(q, p) and B(p, q) is chosen, i. e. the set B(p, q) is added to
the region of p with respect to q. This choice leads to a consistent definition of the
Voronoi diagram.

Voronoi regions based on convex distance functions are in general not convex, as
the example of the Manhattan distance shows. But they are still star-shaped , as seen
from their sites: For each point x ∈ D(p, q), the line segment px is also contained in
D(p, q). This follows from a more general fact shown in lemma 4.8 below.

The star-shapedness of the Voronoi regions, together with the convexity of the
circles, is a property strong enough for applying the divide & conquer algorithm;
cf. subsection 3.3. Hwang [145], Lee [178], and Lee and Wong [183] have studied
the Voronoi diagram based on Lp norms; they provided algorithms that run within
O(n log n) many steps. Here and in the sequel, a step not only denotes a single oper-
ation of a Real Random Access Machine (cf. [215]) but also an elementary operation
like computing the intersection of two bisector curves.

Widmayer et al. [258] have described an optimal algorithm for computing the
Voronoi diagram of a distance function based on a convex m-gon, C. This generalizes
the Manhattan distance to an environment where motions are restricted to a finite
set of orientations given by the rays from the origin through the vertices of C.

Eventually, Chew and Drysdale [66] have shown how to construct, in O(n logn)
many steps, the Voronoi diagram based on an arbitrary convex distance function in
the plane, using divide & conquer. One crucial point is in the merge step. If we use
a split line to subdivide the site set S into subsets L and R, the set B(L, R) of all
Voronoi edges of V (S) that separate L-regions from R-regions need not be connected,
but it must be acyclic. Each of its connected components is an unbounded chain, not
a loop. Therefore, a starting edge of each component can be found at infinity, as in
the Euclidean case.

Skyum [237] has shown how to construct the dual of the Voronoi diagram based on
a convex distance function using the sweep line approach, in O(n logn) many steps.

It is well known that each symmetric convex distance function dC is equivalent
to the Euclidean distance d, in the sense that for suitable constants a and A, the
inequalities

a · d(p, q) ≤ dC(p, q) ≤ A · d(p, q)

hold for all points p, q. In particular, a sequence of points pi converges to some limit
point p under dC iff it does so under the Euclidean distance. One might wonder if
these similarities cause the Voronoi diagrams of d and dC to have similar combinatorial
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structures. A counterexample is shown in fig. 27; the regions of p and q are adjacent
under L2 but not under L1.

p
q p

q

Figure 27: Four point sites whose Voronoi diagrams based on the Manhattan and the
Euclidean distance have a different combinatorial structure.

Corbalán et al. [76] have provided systematic answers to the above question. Let
dC , dD denote two symmetric, strictly convex distance functions whose unit circles are
smooth. If for each set S of at most 4 points in the plane, VdC

(S) and VdD
(S) have

the same structure as embedded planar graphs, then D must be a scaled version of C.
More generally, if for each set S of at most 4 points the Voronoi diagram VdC

(S) has
the same combinatorial structure as VdD

(f(S)), for some bijection f of the plane, then
f is linear and f(C) = D holds, up to scaling. Conversely, if f is a linear bijection of
the plane then the Voronoi diagram of f(S) with respect to the convex set f(C) can
be obtained by applying f to VdC

(S), for each site set S.
The image of the Euclidean circle under a linear bijection is an ellipse. The

above result implies that convex distance functions based on ellipses are the only
ones whose Voronoi diagrams can be obtained from the Euclidean Voronoi diagram
of a transformed set of sites. The following theorem gives an even stronger reason
why such a reduction is not possible for unit circles other than ellipses.

Theorem 4.8 Let C be a strictly convex, compact set, symmetric about the origin,
which is not an ellipse. Then there exists a set of 9 points in the plane whose Voronoi
diagram with respect to dC has a structure no Euclidean Voronoi diagram can achieve.

In the proof given in [76] a Voronoi diagram based on dC is constructed whose dual
is either of the topological shape shown in fig. 28 (i), or of similar type. Let us assume
that it can be realized by a Euclidean Delaunay tessellation; cf. section 2. Since r
lies outside the circumcircle of q, s, z we have β + β ′ < π; see fig. 28 (ii). Similarly,
δ + δ′ < π holds. Since p lies on the circumcircle of w, q, z we have α + α′ = π, and
γ+γ′ = π holds for the same reason. The primed angles at z add up to 2π. Therefore,
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Figure 28: The graph shown in (i) is not a Euclidean Delaunay tessellation. In (ii)
we have β + β ′ < π iff r lies outside the circle. Equality holds iff r lies on the circle.

we obtain
α + β + γ + δ < 2π.

But this is impossible because the points different from z must be in convex position
(the convex hull of a point set equals the boundary of the unbounded face of its
Delaunay triangulation) so that each of the angles at p, r, t, v includes an angle of the
rectangle drawn by dashed lines. These angles add up to 2π.

The definitions of a convex distance function and of the Lp-norms stated above can
easily be extended to dimensions higher than 2. In the remainder of this subsection
we study convex distance functions in 3-space. Such a distance function is based on
a convex, compact set C in 3-space which contains the origin in its interior. We call
such a unit sphere C good if it is, in addition, strictly convex, symmetric, and smooth.

Some of the pleasant properties of 2-dimensional convex distance functions have
their counterparts in 3-space. For example, the bisector B(p, q) of two points is a
surface homeomorphic to the plane, and two such bisector surfaces B(p, q), B(p, r)
have an intersection homeomorphic to the line, or empty. In these aspects, convex
distance functions in 3-space do not differ from the 3-dimensional Euclidean distance.
But whereas a Euclidean sphere is uniquely determined by four points in space, this
is no longer true for convex distance functions. In Icking et al. [146] the following
result has been shown.

Theorem 4.9 For each n > 0 there exist a good convex set C and 4 points in 3-
space such that there are 2n + 1 homothetic copies of C containing these points in
their boundaries. This number does not decrease as the 4 points are independently
moved within small neighborhoods.

The center v of a scaled and translated copy of C containing p, q, r, s in its bound-
ary is of the same dC distance to each of these points. Hence, v is a Voronoi vertex
in the diagram VdC

({p, q, r, s}). Therefore, theorem 4.9 implies that there exists no
upper bound to the number of vertices of the Voronoi diagram of 4 points in 3-space,
that holds for arbitrary convex distance functions.
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If it is known that for a particular convex distance function dC no more than k
homothetic copies of C can pass through any four points in general position, then the
complexity of the Voronoi diagram of n points based on dC is in O(kn4), because at
least 4 Voronoi regions meet at a Voronoi vertex. As an explicit function of k and n,
nothing better than this trivial bound seems to be known, which is conjectured to be
far off. For the Euclidean distance, for example, k = 1 holds, and the true complexity
is Θ(n2); see subsection 4.3.1.

Since the Lp norms are defined by algebraic equations of degree p, it is possible
to say more about their Voronoi diagrams. From a general result by Sharir [234] on
lower envelopes it follows that the complexity of the Voronoi diagram of n points in
d-space under Lp is in O(nd+ε). However, the constant in O tends to ∞, as p grows.

Lê [176] has obtained the following result on the number of Lp spheres that can
pass through a set of given points. The proof uses results from the theory of additive
complexity, see Benedetti and Risler [33]. This and the subsequent results require
that the sites be in general position.

Theorem 4.10 There exists an upper bound to the number of Lp spheres in d-space
that can pass through d + 1 given points, which depends only on d but not on p.

More is known only for special cases. Recently, Boissonnat et. al. [45] have shown
the following.

Theorem 4.11 The Voronoi diagram of n points in 3-space based on the L1 norm
is of complexity Θ(n2). The Voronoi diagrams of n points in d-space based on L∞ or
on a simplex as the unit sphere are both of complexity Θ(ndd/2e).

The unit spheres for the L∞ and L1 norm are hypercubes and crosspolytopes (i. e. du-
als of hypercubes), respectively. In contrast to hypercubes, crosspolytopes have a
large number of facets in high dimensions, which partially explains why tight bounds
for L1-diagrams are only available for dimensions up to three.

Whereas for the complexity of the Voronoi diagram of a set of lines in 3-space
under the Euclidean distance only an O(n3+ε) upper bound is known (see [234]),
Chew et. al. [67] were able to provide a smaller bound for lines under a polyhedral
convex distance function.

Theorem 4.12 Let C denote a convex polyhedron of constant complexity in 3-space.
Then the Voronoi diagram of n lines based on dC is of complexity O(n2α(n) log n). A
lower bound is given by Ω(n2α(n)).

Here α(n) denotes the extremely slowly growing inverse of the Ackermann func-
tion.

4.5.3 Nice metrics

Convex distance functions do not apply to environments where the distance between
two points can change under translations. This happens in the presence of obsta-
cles, or in cities whose streets do not form a regular grid. In order to model such
environments in a realistic way we can use the concept of a metric.
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In this subsection we consider point sites in the plane, and Voronoi diagrams that
are based on a metric, m. It associates with any two points, p and q, a non-negative
real number m(p, q) which equals 0 iff p = q. Moreover, m(p, q) = m(q, p), and the
triangle inequality m(p, r) ≤ m(p, q) + m(q, r) holds.

General metrics are quite a powerful modeling tool. Suppose there is an air-lift
between two points a, b in the plane. Then

m(p, q) = min




d(p, q)
d(p, a) + f + d(b, q)
d(p, b) + f + d(a, q)

describes how fast one can travel from p to q; we assume that going by car takes
time equal to the Euclidean distance, d, whereas the flight takes time f < d(a, b).
It is easy to verify that the function m is a metric in the plane (we could warp the
plane so that a and b have Euclidean distance f in 3-space, and glue on a straight
handle connecting them; the function m describes the lengths of shortest paths in the
resulting space).

Voronoi regions with respect to this metric m need not be connected. Suppose site
q lies on the line segment ab, as shown in fig. 29. In order to construct the Voronoi
diagram of the two sites a and q we use the expanding waves approach mentioned

r-f

b

Dm(a,q)

Dm(a,q)Dm(a,q)

bq

r-fr

HB(a,q)

Dm(q,a)
Dm(a,q)

a

Figure 29: If there is an air line connecting a and b, the Voronoi region of a with
respect to q is disconnected.

in section 2, and let two Euclidean circles expand from a and q at the same speed.
Their intersections form the Euclidean bisector B(a, q). As soon as the radius of
these circles has reached f , the duration of the flight from a to b, a new circle starts
growing from b. Subsequently, its radius is always by f smaller than the radius r of
the other two circles. The intersections of the circles expanding from q and from b
form a hyperbola, H ; it is the locus of all points x satisfying d(q, x) − f = d(b, x).

Such Voronoi diagrams of points with additive weights are also known as the
Johnson-Mehl model or Voronoi diagrams of circles; compare the end of subsec-
tion 4.4.1. They have been studied e. g. by Lee and Drysdale [181] and Sharir [233].
Fortune [125] has shown how to construct them in time O(n log n) using the sweep
line approach.

Clearly, the region of a with respect to metric m, Dm(a, q), consists of the two
parts shaded in fig. 29; they are not connected. In order to exclude such phenomena
we restrict ourselves to a subclass of metrics introduced in Klein and Wood [170].
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Definition 4.1 A metric m in the plane is called nice if it enjoys the following
properties.

1. A sequence pi converges to p under m iff this holds under the Euclidean distance;
the case p = ∞ is included.

2. For any two points p, r there exists a point q different from p and r such that
m(p, r) = m(p, q) + m(q, r) holds.

3. For any two points p, q is the common boundary of Dm(q, p) and Bm(p, q) a
curve homeomorphic to the line. It is called a bisector curve, Jm(p, q).

4. The intersection of two bisector curves Jm(p, q), Jm(p, r) consists of only finitely
many connected components.

Each symmetric, strictly convex distance function is a nice metric. Conversely,
if a nice metric m is invariant under translations, and if m(p, r) = m(p, q) + m(q, r)
holds for any three consecutive points p, q, r on a line, then m is a convex distance
function.

Whereas in definition 4.1 properties (iii) and (iv) are of technical nature, (i) and
(ii) have an important structural consequence, due to results by Menger [196].

Lemma 4.7 Let m be a nice metric in the plane. Then for any two points p, r
there exists a path π connecting them, such that for each point q on π the equality
m(p, r) = m(p, q) + m(q, r) holds.

Such paths are called m-straight ; they are true generalizations of straight lines in
the Euclidean distance: If one defines the m-length of a path π in a way analogous to
the Euclidean path length (i. e., by adding up the m-distances between consecutive
points on π, making the resolution arbitrarily fine) then the m-straight paths from p
to r are precisely the paths of minimum m-length, which equals m(p, r).

Voronoi diagrams based on nice metrics have a nice structural property.

Lemma 4.8 Let m be a nice metric. Then each Voronoi region VRm(p, S) is con-
nected: Each m-straight path π from p to some point x ∈ VRm(p, S) is fully contained
in VRm(p, S). That is, the Voronoi regions under a nice metric m are m-star-shaped
as seen from their sites.

Proof. Suppose that some point y on π does not belong to VRm(p, S). Then there
must be a site q ∈ S different from p such that m(q, y) ≤ m(p, y) holds, and by the
straightness of π we obtain

m(p, x) = m(p, y) + m(y, x)

≥ m(q, y) + m(y, x) ≥ m(q, x),

a contradiction to the fact that x lies in the Voronoi region of p. This shows that π
is in fact contained in VRm(p, S). Lemma 4.7 ensures that for each x in the region of
p at least one such m-straight path from p to x exists. Consequently, VRm(p, S) is a
connected set. 2
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Clearly, in the example of the air-lift metric, property (ii) of definition 4.1 is
violated: All points q satisfying m(a, b) = m(a, q) + m(q, b) that are not equal to one
of the two airports, a and b, are in mid air!

Examples of nice metrics are composite metrics that result from assigning different
convex distance functions to the regions of a planar subdivision, or the Karlsruhe (or:
Moscow ) metric; see Klein [165]. Here a center point, 0, is fixed and only such paths
are allowed that consist of pieces of circles around 0 and of pieces of radii from 0. The
Karlsruhe metric m(p, q) denotes the minimum Euclidean length of an allowed path
from p to q.

It depends on the angle between p and q if the shortest connecting path runs
through the center, or around it; see fig. 30 (i). The bisector of two points consists of
up to eight segments that are pieces of straight lines or hyperbolae if written in polar
coordinates. In (ii), the Voronoi diagram of 8 point sites under the Karlsruhe metric
is shown.

p

q1

q2

0

114,59

(i) (ii)

0

Figure 30: The shortest path in the Karlsruhe metric runs through the center iff the
angle between p and q exceeds 114, 59 . . .◦. In (ii) a Voronoi diagram in the Karlsruhe
metric is shown.

Whereas the star-shapedness of the Voronoi regions is preserved, the example of
the Karlsruhe metric m shows that the convexity of the Euclidean Voronoi regions
has no counterpart in nice metrics. In fig. 31 the Voronoi diagram of 4 point sites on
the same radius is shown. There exists exactly one m-straight path connecting the
points x, y of the Voronoi region of q, but this path is not contained in the region of
q.

That the Voronoi regions under a nice metric m are m-star-shaped is a property
strong enough for computing the Voronoi diagram efficiently. The following has been
shown by Dehne and Klein [84].

Theorem 4.13 The Voronoi diagram of n point sites under a nice metric in the
plane can be constructed within O(n log n) many steps, using the sweep line approach.

It is also possible to apply the randomized incremental construction method in-
troduced in subsection 3.2, or the divide & conquer technique. With the latter a new
difficulty arises: If we use a line to subdivide S into subsets L and R then the set
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Figure 31: The unique shortest path between x and y does not stay within the region
of q.

Bm(L, R) of Voronoi edges separating L-regions from R-regions can contain cycles
that would not be detected during the merge phase.

In [165] two criteria have been introduced for Bm(L, R) to be acyclic. For example,
if the m-circles are simply-connected we can use, as a divider of S, any curve l
homeomorphic to the line whose intersection with all m-circles is connected (possibly
empty). This generalizes a result by Chew and Drysdale [66] on convex distance
functions, where each straight line possesses this property.

4.6 General Voronoi diagrams

One might wonder if there exist some intrinsic properties most Voronoi diagrams have
in common, and if these properties are a foundation strong enough for a unifying
approach to the definition and to the construction of Voronoi diagrams.

Edelsbrunner and Seidel [113] have introduced a very general approach. It does
not explicitly use the concepts of sites and distance functions. Rather, the site set,
S, is a mere set of indices {p, q, . . .}. A fixed domain, X, is given, and for each p ∈ S
a real-valued function fp : X → R. The graph

Hp = {(x, fp(x)) | x ∈ X}

of fp can be considered a hypersurface in the space X ×R. Now the Voronoi diagram
of (S, {fp | p ∈ S}) is defined to be the projection onto X of the lower envelope

L = {(x, min
p∈S

fp(x)) | x ∈ X}

of the arrangement {Hp | p ∈ S} of hypersurfaces.
At the end of subsection 3.5 we have already studied an example of this approach:

If S denotes a set of points in D = R2, and if the functions fp are defined by
fp(x) = d(p, x), we obtain an arrangement of cones whose lower envelope projects onto
the Euclidean Voronoi diagram of S. More importantly, subsection 4.3.2 shows that
linear functions fp exist whose envelope projects onto the Voronoi (or power) diagram
of S. Moreover, the order-k Voronoi (or power) regions of S are the projections of
certain cells of the corresponding arrangement, see subsection 4.3.3.

To establish this connection between Voronoi diagrams and arrangements of hy-
persurfaces in a space one dimension higher is one of the great advantages of this
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approach. As one implication, an upper bound of O(nd+ε) on the combinatorial com-
plexity of general classes of Voronoi diagrams follows from a result in Sharir [234] on
envelopes of hypersurfaces; see subsections 4.4.1 and 4.5.2.

A different approach to planar Voronoi diagrams has been suggested in Klein [165].
Again, there are no physical sites but an index set, S. Instead of distance functions
or their graphs in 3-space, bisecting curves are used as primary objects.

Let us assume that for any two different indices p, q in S, a bisecting curve J(p, q) =
J(q, p) homeomorphic to the line is given, which cuts the plane into two unbounded,
open domains, D(p, q) and D(q, p). In the subsequent pictures, the index p denotes
the “halfplane” D(p, q).

As in definition 2.1, the Voronoi region VR(p, S) is defined as the intersection
of the open domains D(p, q), where q ∈ S \ {p}. The Voronoi diagram V (S) of
{J(p, q) | p, q ∈ S and p 6= q} is defined as the union of all boundaries at least two
Voronoi regions have in common. V (S) is called the abstract Voronoi diagram with
respect to the bisecting curves J(p, q).

Definition 4.2 The system J = {J(p, q) | p, q ∈ S and p 6= q}) is called admissible
iff for each subset S ′ of S of size at least 3 the following conditions are fulfiled.

1. The Voronoi regions VR(p, S ′) are pathwise connected.

2. Each point of the plane lies in a Voronoi region VR(p, S ′), or on the Voronoi
diagram V (S ′).

3. The intersection of two curves J(p, q) and J(p, r) consists of only finitely many
components.

From these conditions important structural properties of “concrete” Voronoi di-
agrams can be derived, as the following example shows. For simplicity, we assume
that two bisecting curves cross transversally wherever they intersect.

Lemma 4.9 Let J be an admissible system, and suppose that J(p, q) and J(p, r)
cross at the point x. Then J(q, r) also passes through x, in the way shown in fig. 32.

Proof. In a suitable neighborhood of x the curves J(p, q) and J(p, r) run as depicted
in fig. 32 (i). Let S ′ = {p, q, r}. Precisely the shaded area belongs to VR(p, S ′),
by definition of the abstract Voronoi diagram. Point y is not contained in VR(r, S ′)
because it lies in D(p, r). By moving y a little we can make sure that it is not on the
curve J(q, r). Now condition (ii) of definition 4.2 implies y ∈ VR(q, S ′). Similarly, z
must belong to the Voronoi region of r. But if, in each neighborhood of x, points of
VR(q, S ′) ⊂ D(q, r) and of VR(r, S ′) ⊂ D(r, q) can be found in the wedges containing
y and z, respectively, then J(q, r) must run through x in the way shown in picture
(ii) of fig. 32. 2

The finite abstract Voronoi diagram (i. e. the result of encircling it with a closed
curve Γ, as proposed in section 2) is a 2-connected planar graph with at most n + 1
faces, all of whose vertices have degree at least 3 (exactly 3 for the vertices on Γ).
Each such graph can be obtained as an abstract Voronoi diagram.
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Figure 32: Where two related bisecting curves J(p, q), J(p, r) meet, the third one,
J(q, r), also passes through, like in a Euclidean Voronoi diagram.

One can show that definition 4.2 holds for all subsets S ′ of S if it is satisfied
for each subset S ′ of size 3. The conditions are met, for example, by the bisectors
of power diagrams (subsection 4.3.2), of sites with respect to a nice metric in the
plane (subsection 4.5.3), of sites with additive weights, and of non-intersecting line
segments or convex polygons (subsection 4.4.1); see Meiser [195]. Not covered by
this approach are e. g. non-convex polygonal sites, or point sites with multiplicative
weights (the Apollonius model); in either case the bisector curves can be closed, rather
than homeomorphic to the line.

Another example has been provided by Abellanas et al. [1]. They studied disjoint
compact, convex sites in the plane and their Hausdorff Voronoi diagram based on a
convex distance function dC , which puts each point x in the Voronoi region of the
first site that is fully contained in a circle C expanding from x; cf. subsection 4.5.2.
It can be shown that the resulting regions are pathwise connected. If, in addition, all
convex sets have semi-algebraic boundaries then also property (iii) in definition 4.2 is
fulfiled.

Of the four algorithmic methods mentioned in section 3 for computing the Eu-
clidean Voronoi diagram, two have been adapted to abstract Voronoi diagrams. How
to generalize the divide & conquer approach has been shown in [165]. As in the case
of nice metrics (subsection 4.5.3) one has to assume that the index set, S, can recur-
sively be split into subsets L and R such that B(L, R), the set of edges separating
L- from R-regions, contains no cycle, in order to find the starting edges of B(L, R)
at infinity. Once a starting edge has been found, B(L, R) can be traced efficiently,
because abstract Voronoi regions are pathwise connected; no stronger properties, like
star-shapedness or convexity, are needed. This is illustrated in fig. 33, which should
be compared to fig. 10.

It has been shown in Mehlhorn et al. [194] and in Klein et al. [169] that one
can, without further assumptions, apply the randomized incremental construction
technique to abstract Voronoi diagrams.
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Figure 33: If J(p, q2) ran like this, the disconnected shaded areas would both belong
to VR(p, {p, p1, q2}), a contradiction! Therefore, the first point, vL,2, on the boundary
of VR(p, L) can still be found by scanning the boundary from vL on counterclockwise.

Theorem 4.14 The abstract Voronoi diagram of an admissible system J = {J(p, q) |
p, q ∈ S and p 6= q}), where |S| = n, can be constructed within expected O(n logn)
many steps and expected space O(n), by randomized incremental construction.

This algorithm provides a universal tool that can be used for computing all types
of concrete Voronoi diagrams whose bisector curves have the properties required in
definition 4.2. To adapt the algorithm to a special type one has to implement only
certain elementary operations on bisector curves. For example, it is sufficient to have
a subroutine that accepts 5 elements of S as input, and returns the graph structure
of their abstract Voronoi diagram. All numerical computations can be kept to this
subroutine.

It seems difficult to apply the sweep approach to abstract Voronoi diagrams. One
reason is the absence of sites whose detection by the sweep line could indicate that a
new region must be started.

Abstract Voronoi diagrams can also be thought of as lower envelopes, in the sense
mentioned at the beginning of this subsection. Namely, for each point x not situated
on a bisecting curve, the relation

p <x q ⇔ x ∈ D(p, q)

defines a total ordering on S. If we construct a set of surfaces Hp, p ∈ S, in 3-space
such that Hp is below Hq iff p <x q holds, then the projection of their lower envelope
equals the abstract Voronoi diagram.

The concept of abstract Voronoi diagrams has been generalized to 3-space in
Lê [177], under structural restrictions; for example, any two bisecting surfaces J(p, q),
J(p, r) must have an intersection homeomorphic to a line, or empty. These assump-
tions apply e. g. to convex distance functions whose unit sphere is an ellipsoid; com-
pare subsection 4.5.2.

Rasch [219] has introduced abstract inverse (or: furthest-site, order n−1) Voronoi
diagrams in the plane; cf. subsection 4.3.3. Here the region of p is defined as the
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intersection of all open domains D(q, p), where q ∈ S \ {p}. In contradistinction to
the Euclidean case, the resulting regions are in general not pathwise connected; a
situation that could also arise in the concrete furthest site diagram of line segments
is shown in fig. 34.

q
p

q
p

p
q

r

r

q
p

Figure 34: An inverse abstract Voronoi diagram. The region of p is not connected.

If the admissible system J is such that none of the regular abstract Voronoi
regions is empty then the inverse diagram with respect to J is a tree of complexity
O(n). It can be constructed within expected O(n log n) many steps and expected
linear storage.

5 Geometric applications

This section is devoted to some of the numerous applications of the Voronoi diagram
V (S) and its dual, the Delaunay triangulation DT(S), in solving geometric problems.
Some applications have been mentioned previously, mostly along with generalizations
of the classical type. Applications in relation to optimization properties of the De-
launay triangulation can be found in subsection 4.2.

Whereas distance is implicitly involved in almost all applications of the Voronoi
diagram, we start with some examples of “pure” distance problems. These distance
problems are, apart from their direct use in practical applications that will be men-
tioned occasionally, frequently arising subroutines in more involved geometric algo-
rithms.

5.1 Distance problems

Unless otherwise stated, the following problems address point sites in the plane under
the standard Euclidean distance. However, most solutions can be generalized, at least
to convex distance functions; see subsection 4.5.2.

5.1.1 Post office

Our first example is the post office (or: nearest neighbor) problem mentioned in the
seminal paper [232] by Shamos and Hoey. Given a set of n sites (post offices) in the
plane, determine, for an arbitrary query point x, the post office closest to x.

The Voronoi diagram of the post offices represents the locus approach to the post
office problem: it partitions the plane into regions whose points x have identical
nearest post offices.
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It remains to quickly determine the region that contains the query point, x. This
point location problem has received a lot of interest in computational geometry. Here
we sketch an elementary solution first mentioned in Dobkin and Lipton [100], called
the slab method .

Through each Voronoi vertex a horizontal line is drawn. These extra lines partition
the Voronoi regions into triangles and trapezoids. By construction, no horizontal
“slab” between two consecutive lines contains a Voronoi vertex in its interior, so
that all crossing Voronoi edges are ordered within the slab. To locate a query point,
x = (x1, x2), we use one binary search for x2 among the slabs, and another one for
x1 among the edge segments of the slab found. This gives us O(log n) query time, at
quadratic storage cost.

There are more efficient techniques like e. g. Kirkpatrick [162] or Edelsbrunner
et al. [109] that need only linear storage and can be derived in linear time from
the Voronoi diagram. Together with any of the optimal Voronoi diagram algorithms
presented in section 3 this yields the following solution to the post office problem.

Theorem 5.1 Given a set S of n point sites in the plane, one can, within O(n logn)
time and linear storage, construct a data structure that supports nearest neighbor
queries: for an arbitrary query point x, its nearest neighbor in S can be found in time
O(log n).

Storing the history of the Voronoi diagram during incremetal insertion (cf. subsec-
tion 3.2) even obviates the need of processing the diagram for point location. Guibas
et al. [134] showed that nearest neighbor queries are supported in (expected) time
O(log2 n) by the resulting structure.

Analogously, the order-k Voronoi diagram introduced in subsection 4.3.3 can be
used for finding the k nearest neighbors in S of a query point x. Aurenhammer
and Schwarzkopf [31] generalized the practical approach in [134], obtaining a dy-
namic structure with expected query time O(k log2 n), that allows both insertion and
deletion of sites, at a space requirement of O(k(n − k)); see also subsection 4.3.3. A
sophisticated technique of compacting order-k Voronoi diagrams in Aggarwal et al. [5]
achieves optimal query time O(k + log n) and space O(n), but with high constants.

The locus approach also works for more general sites and distance measures. Let
us assume that the site set, S, consists of k non-intersecting convex polygons with
n edges in total. The bisector of two sites is composed of O(n) many straight or
parabolic segments; if we also count the endpoints of such segments as vertices (of
degree 2), then the Voronoi diagram of the k convex polygons is of complexity Θ(n),
as lemma 4.4 shows. It could be constructed in time O(n logn) by first computing
the line segment Voronoi diagram of the polygon edges (see subsection 4.4.1), and
then joining those regions that belong to parts of the same convex polygon.

A more efficient structure for solving the post office problem of k disjoint convex
polygons has been introduced in McAllister et al. [190]. Using only O(k) many line
segments, it partitions the plane into regions bounded by at most 6 edges each. With
each region one or two sites are associated: for any point x in the region, one of them
is the nearest neighbor of x in S.

This planar straight line graph can be defined quite easily. Its vertices are the
O(k) original Voronoi vertices defined by the k polygonal sites, plus, for each Voronoi
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Figure 35: A linear subdivision of size O(k) for solving the post office problem of
convex polygons.

vertex v of 3 sites, the closest points to v on their respective boundaries. Straight line
edges run from each vertex v to its closest points and, around the boundary of each
site, between the points closest to its Voronoi vertices; see fig. 35. For each site C
in extreme position, a halfline to infinity is added all of whose points have the same
closest point on the boundary of C.

Theorem 5.2 Given a set S of k disjoint convex polygonal sites in the plane with a
total of n edges, one can, within O(k log n) time and O(k) storage, construct a data
structure that allows nearest neighbor queries to be answered within time O(log n).

The essential task is in constructing the O(k) many original Voronoi vertices of the
k polygons spending only O(log n) time on each vertex. This can be achieved by a
clever adaption of the sweep line approach described in subsection 3.4, and by means
of a subroutine that computes, in O(log n) time, the Voronoi vertex of three convex
polygons. The subroutine uses the tentative prune and search technique described in
Kirkpatrick and Snoeyink [159].

The same approach works for convex distance functions; see subsection 4.5.2.

5.1.2 Nearest neighbors and the closest pair

Another distance problem the Voronoi diagram directly solves is the all nearest neigh-
bors problem: For each point site in the set S, a nearest neighbor in S is required.
An example is shown in fig. 36; arrows are pointing from each site towards its nearest
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neighbor. For sites in general position the resulting nearest neighbor graph is a forest
of trees each of whose vertices is of outdegree 1 and indegree at most 6.

The solution offered by the Voronoi diagram is based on the following fact.

Figure 36: The nearest neighbor graph of 11 points.

Lemma 5.1 Let S = P ∪ Q be a disjoint decomposition of the point set S, and let
p0 ∈ P and q0 ∈ Q be such that

d(p0, q0) = min
p∈P,q∈Q

d(p, q).

Then the Voronoi regions of p0 and q0 are edge-adjacent in V (S).

Proof. Otherwise, the line segment p0q0 contains a point z that belongs to the closure
of some Voronoi region VR(r, S), where r 6= p0, q0. Let us assume that r belongs to
Q; the case r ∈ P is symmetric. From z ∈ VR(r, S) follows d(z, r) ≤ d(z, q0), hence

d(p0, r) ≤ d(p0, z) + d(z, r)

≤ d(p0, z) + d(z, q0) = d(p0, q0) ≤ d(p0, r)

by minimality of d(p0, q0). Hence, equality must hold, and we obtain d(p0, r) =
d(p0, q0) and d(z, r) = d(z, q0).

But since p0 lies on the bisector B(q0, r), each point z in the interior of q0p0 is
strictly closer to q0 than to r, a contradiction. 2

If we apply lemma 5.1 to the subsets {p} and S \ {p} it follows that the nearest
neighbor of p is sitting in a neighboring Voronoi region (i. e. it is a Delaunay neighbor).
Therefore, it is sufficient to inspect, for each p ∈ S, all neighbors of p in the Voronoi
diagram, and select the closest of them. This way, each edge of V (S) will be accessed
twice. Since their total number is linear, due to lemma 2.3, we can solve the all
nearest neighbor problem by constructing the Voronoi diagram.
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Theorem 5.3 Given a set S of n points in the plane, O(n log n) time and linear
space are sufficient for determining, for each p ∈ S, a nearest neigbor in S.

Once for each p its nearest neighbor in S is known, we can easily determine a pair
of points whose distance is a minimum.

Corollary 5.1 The closest pair among n points in the plane can be determined within
O(n log n) time and linear space.

Hinrichs et al. [142] have shown that it suffices to maintain certain parts of the
Voronoi diagram by a sweep algorithm (cf. subsection 3.4), in order to detect the
closest pair.

Whereas finding the closest pair seems an easier task than constructing the Voronoi
diagram, it still has an Ω(n log n) lower bound, by reduction from the ε-closeness
problem; compare theorem 3.1.

In dimension d, constructing the Voronoi diagram is no longer the method of
choice for finding the closest pair, due to its exponentially increasing size; see subsec-
tion 4.3.2. Already in 1976, Bentley and Shamos [35] provided an O(n logn) algorithm
for arbitrary fixed dimensions. Golin et al. [131] showed that randomization plus use
of the floor fuction (which is forbidden in the algebraic decision tree model of com-
putation) allows the closest pair of n points in d-space to be found within expected
O(n) time, for any fixed d.

The problem of finding the closest pair of n points can be generalized to reporting
the k closest pairs in S, for some number k ≤

(
n
2

)
. A brute-force solution would

sort all interpoint distances in time O(n2 log n) and then report the k smallest. Time
O(n2) is sufficient if one uses the selection method for finding, in time O(m), the k-th
smallest of m objects. Smid [239] has shown how to enumerate the O(n2/3) smallest
distances in time O(n logn) and linear space.

A simple yet elegant solution using the Delaunay triangulation DT(S) of S has
been provided by Dickerson et al. [90]. Their approach is as follows.

The closest pair in S corresponds to the shortest edge of the Delaunay triangu-
lation DT(S), as lemma 5.1 shows. But the k-th closest pair (p, q) need not define
an edge of DT(S), not even for small values of k. However, there exists a path of
Delaunay edges connecting p and q that are of length smaller than d(p, q) each.

This can be used for proving the following elegant algorithm correct. It maintains
a queue Q of pairs of points by distance. Initially, Q contains all Delaunay neighbors.
In the i-th step, the closest pair (p, q) in Q is removed and reported i-th closest.
Then, for all Delaunay edges op satisfying d(o, p) ≤ d(p, q), the pair (o, q) is inserted
into Q; similarly, each pair (p, r) is added to Q where qr is a Delaunay edge of length
at most d(p, q).

The performance of this algorithm is stated in the next theorem.

Theorem 5.4 The k closest pairs of a set S of n points can be computed in time
O((n + k) log n) and space O(n + k).

A similar approach even works efficiently in higher dimensions. Dickerson and
Eppstein [91] showed that several interdistance enumeration problems for a point set
S in d-space can be solved by means of DT(S). The prohibitive size of DT(S) in
d-space is reduced by augmenting S to have a linear-size, bounded degree Delaunay
triangulation, with the method of Bern et al. [38].
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5.1.3 Largest empty and smallest enclosing circle

Suppose someone wants to build a new residence within a given area, as far away as
possible from each of n sources of disturbance.

If the area is modeled by a convex polygon A over m vertices, and the disturbing
sites by a point set S, we are looking for the largest circle with center in A that does
not contain a point of S. The task of determining this circle has been named the
largest empty circle problem.

Shamos and Hoey [232] observed that this circle must have its center at a Voronoi
vertex of V (S), or at the intersection of a Voronoi edge with the boundary of A, or
at a vertex of P . For, if a circle C with center x ∈ A contains no p ∈ S, not even
on its boundary, we blow it up until it does. If its boundary now contains three sites
then x is a Voronoi vertex; see lemma 2.1. If there are two sites on its boundary, x
lies on a Voronoi edge. In this case we move x along their bisector away from the two
sites until the expanding circle hits a third site, or x hits the boundary of A. If, in
the beginning, only one point site p ∈ S lies on the boundary of C then we expand
C, while keeping its boundary in contact with p, until x reaches a vertex of A, or one
of the before-mentioned events occurs.

This observation leads to the following result.

Theorem 5.5 The largest circle not containing a point of S, whose center lies inside
a convex polygon A, can be found within O((m+n) log n) time and linear space. Here,
m denotes the number of vertices of A, and n is the size of S.

Proof. We spend O(n log n) time on constructing the Voronoi diagram V (S) and a
point location structure, as mentioned in subsection 5.1.1, so that O(m log n) total
time is sufficient for finding, for each vertex of A, its nearest neighbor in S. The
largest empty circles centered at the Voronoi vertices can be determined in constant
time each. Finally, we can trace the convex boundary of A through the Voronoi
diagram, in order to detect its intersections with the Voronoi edges, in time O(n+m).

2

The smallest enclosing circle problem asks for the circle of minimum radius that
encloses a given set S of n points in the plane. Applications are the placement of
a least powerful transmitter station that can reach a given set of locations, or the
placement of a plant that minimizes the maximum distance to the customers.

As was observed in Bhattacharya and Toussaint [40], there are two cases. Either
the smallest enclosing circle contains three points of S on its boundary, or it runs
through two antipodal points whose distance equals the diameter of S.

From the convex hull of S its diameter, together with a pair of points realizing
it, can be derived in linear time; then it can be checked if the smallest circle through
these points contains S.

Otherwise, the center v of the smallest enclosing circle C must be a vertex of
the furthest site (or: order n − 1) Voronoi diagram introduced in subsection 4.3.3.
Namely, the three sites on the boundary of C are furthest from v.

This yields an O(n log n) algorithm for computing the smallest enclosing circle.
The linear programming technique by Megiddo [193] is more efficient: For fixed di-
mension d it allows the smallest sphere enclosing n points in d-space to be constructed
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in time O(n). A more practical way of achieving linear (randomized) time is the el-
egant minidisk algorithm by Welzl [257]; here the constant in O has been shown to
be a subexponential function of d by Matoušek et al. [186].

5.2 Subgraphs of Delaunay triangulations

The Delaunay triangulation DT(S) of a set S of n point sites contains, as subgraphs,
various structures with diverse applications. One example, the nearest-neighbor graph
of S, has already been discussed in subsection 5.1.2. Efficient algorithms for com-
puting these structures follow from the fact that DT(S) has size O(n), and can be
constructed in O(n log n) time, in the plane. This positive effect is partially lost in
higher dimensions as DT(S) may be the complete graph on S.

5.2.1 Minimum spanning trees and cycles

A minimum spanning tree, MST(S), of S is a planar straight line graph on S which
is connected and has minimum total edge length. This structure plays an important
role, for instance, in transportation problems, pattern recognition, and clustering.
Shamos and Hoey [232] first observed the connection to Delaunay triangulations.

Lemma 5.2 MST(S) is a subgraph of DT(S).

Proof. Let e be an edge of MST(S). Removal of e splits MST(S) into two subtrees,
and S into two subsets S1 and S2. Clearly, e is the shortest edge connecting S1 and
S2. A shorter edge, if existent, would lead to a spanning tree shorter than MST(S).
It follows that the circle C with diameter e is empty of sites in S. A site enclosed by
C would have to belong to either S1 or S2, leading to a connection between S1 and
S2 shorter than e. By definition 2.2 in section 2, C proves e Delaunay. 2

We thus can select the n− 1 edges of MST(S) from the O(n) edges of DT(S), rather

than from all the
(

n
2

)
edges spanned by S, by standard application of Kruskal’s [171]

or Prim’s [216] greedy algorithms. Edges are considered in increasing length order,
and an edge is classified as a tree edge if it does not violate acyclicity. An O(n logn)
time algorithm for computing MST(S) is obtained.

Lemma 5.2 generalizes to metrics different from the Euclidean (for example L1, see
Hwang [145]), and to higher dimensions. When staying in the plane, equally efficient
algorithms result. In higher dimensions, however, DT(S) may not be of much use for
the construction of MST(S), because of the possibly quadratic size. Subquadratic
worst-case time algorithms for computing MST(S) in d-space exist (Yao [259] and
Agarwal et al. [3]), but it still remains open whether an O(n log n) time algorithm
can be developed, at least for 3-space.

A traveling salesman tour , TST(S), for a set S of point sites in the plane is a
minimum length cycle passing through all the sites. It is known that TST(S) is
no subgraph of DT(S), in general. Dillencourt [92] showed that DT(S) need not
even contain any cycle through all sites in S (a Hamiltonian cycle), and that finding
Hamiltonian cycles in Delaunay triangulations is NP-complete [94]. He also gives a
partial explanation for the fact that DT(S) is Hamiltonian in most cases [93].
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Another optimization graph which is known to be not part of DT(S) is a minimum
length matching for S; see Akl [11]. However, DT(S) is guaranteed to contain some
perfect matching, see Dillencourt [93], a property not shared by all triangulations of
S.

Finding a traveling salesman tour has been shown to be NP-complete in Papadim-
itriou [211], but a factor-2 length approximation of TST(S) can be found easily using
MST(S). Let A(S) be a cycle through S that results from traversing MST(S) in
preorder. Rosenkrantz et al. [222] observed the following. Let |X| be the total length
of a set X of edges.

Lemma 5.3 |A(S)| < 2 · |TST(S)|.
Proof. When traversing each edge of MST(S) twice, a tour longer than A(S) is
obtained. Hence |A(S)| < 2 · |MST(S)|. To see |MST(S)| < |TST(S)|, note that
removing an edge from TST(S) leaves a path which is some, but not neccessarily the
minimum, spanning tree of S. 2

A(S) can be constructed in linear time from MST(S). A more sophisticated con-
struction of a spanning cycle by means of MST(S) is given in Christofides [69]. An
approximation factor of 1.5 is achieved, at an expense of roughly O(n2

√
n) in con-

struction time.

Another NP-complete problem, which has a factor-2 approximation by means of
MST(S), is the construction of optimal radii graphs; see Huang [143]. Let R be a
real-valued vector that associates each site p ∈ S with an individual radius rp > 0.
The corresponding radii graph, GR(S), contains an edge between two sites p, q ∈ S
iff d(p, q) ≤ min{rp, rq}. The optimization problem now asks for a radii vector R∗

such that GR∗(S) is connected and |R∗| =
∑

p∈S r∗p is minimum. Radii graphs have
applications in the design of radio networks.

Consider the vector R that takes, as a radius for each site p ∈ S, the length of the
longest edge of MST(S) incident to p. Then GR(S) is connected; it contains MST(S)
as a subgraph.

Lemma 5.4 |R| < 2 · |R∗|
Proof. Let e = (p, q) be some edge of MST(S). Then e appears at most twice as a
radius in R, namely if e is the longest edge incident to p and the longest edge incident
to q. This gives |R| < 2 · |MST(S)|.

To verify |MST(S)| ≤ |R∗|, let us consider GR∗(S). As being connected, this
graph contains some spanning tree, T . We may orient the edges of T such that each
site p ∈ S (except one) has a unique edge ep of T pointing at it. As ep is also an edge
of GR∗(S), we have r∗p ≥ |ep|. Hence |R∗| > |T | ≥ |MST(S)|. 2

Lemma 5.4 remains true for more general measures |R| =
∑

p∈S f(rp), for any increas-
ing function f . This is because MST(S) also minimizes

∑
e∈T f(|e|), for all spanning

trees T of S. The case f(r) = r2 is relevant to the application mentioned above, as
the received power of a radio terminal decreases with the square of the distance.
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5.2.2 α-shapes

Extracting the shape of a given set S of point sites in the plane is a problem that
arises, for example, in data visualization and pattern recognition. To some extent,
the shape of S is reflected by the convex hull of S. The edges of the convex hull are
part of the Delaunay triangulation DT(S). The concept of α-shape, introduced in
Edelsbrunner et al. [110] (see also [104]), generalizes the convex hull of S for the sake
of better shape approximation, while still remaining a subgraph of DT(S).

For α > 0, the α-shape α(S) of S is defined to contain an edge between sites
p, q ∈ S iff there is some disc of radius α that avoids S and has p and q on its
boundary. By definition 2.2 in section 2, α(S) is always part of DT(S) and thus has
only O(n) edges.

For α being sufficiently large, the convex hull of S is obtained. The smaller is
the value of α, the finer is the level of resolution of the shape of S; see fig. 37. α(S)
contains no edges if α is smaller than the distance of the closest pair in S.

Figure 37: α-shapes for different values of α.

The definition of α(S) can be extended to negative values of α, by requiring that
the discs of radius −α fully contain S. In this case, approximations of the shape of
S more crude than the convex hull are obtained, and the edges of α(S) appear in the
dual triangulation of the furthest-site Voronoi diagram of S; see subsection 4.3.3.

It follows that all the edges of the whole family of α-shapes for S, for −∞ <
α < ∞, are contained in two triangulations of size O(n). For each triangulation edge
e, an interval of activity can be specified, containing all values of α such that α(S)
contains e. These activity intervals can be computed in O(n log n) time, and allow us
to extract α(S) for an input value α in O(n) time.

Another nice feature of α-shapes is their flexibility. The notion of α-shape, along
with its relationship to Delaunay triangulations, nicely generalizes to higher dimen-
sions. α-shapes in 3-space are of particular interest, and implementations have been
used in several areas of science and engineering; see Edelsbrunner and Mücke [111].

Also, the concept of α-shape can be generalized to represent different levels of
detail at different parts of space; see Edelsbrunner [107]. This is achieved by weighting
the sites in the given set S individually. The corresponding weighted α-shapes are
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subgraphs of the regular triangulation for the weighted set S which, in turn, is the
dual of the power diagram for this set; see subsection 4.3.2. The combinatorial and
algorithmic properties of weighted α-shapes are similar to that of their unweighted
counterparts.

A different approach for reconstructing shapes in 3-space by means of Delaunay
triangulations is persued in Boissonnat and Geiger [44]. They exploit additional
information on the sites available in certain applications, namely that S is contained
in k parallel planes (corresponding to cross sections of the object to be reconstructed).
The Delaunay edges connecting sites in neighbored planes can be computed in an
output-sensitive manner; see Boissonnat et al. [42]. The edges describing the final
shape are selected according to several criteria. Geiger [128] reports that satisfactory
shapes are produced even for complicated medical images.

5.2.3 β-skeletons

Another family of graphs, defined by empty discs and thus consisting of subgraphs of
DT(S), is the family of β-skeletons of a set S of point sites. β-skeletons have been
introduced in Kirkpatrick and Radke [163] as a class of empty neighborhood graphs,
and have recently received increased attention because of their relation to minimum-
weight triangulations. Actually, in [163] both a circle-based and a lune-based version
of β-skeletons are proposed. Here we will consider only the former, as defined below.

In contrast to α-shapes, the radii of the empty discs defining a β-skeleton are not
fixed but depend on the interpoint distances in S. Let p, q ∈ S. For β ≥ 1, the edge
(p, q) is included in the β-skeleton β(S) iff the two discs of diameter β · d(p, q) that
pass through both p and q are empty of sites in S. See fig. 38.

Figure 38: β-skeleton for β = 1.2

Note that β(S) is a subgraph of β ′(S) if β > β ′. For β = 1, the Gabriel graph of S
is obtained. Whereas β(S) may be disconnected for any β > 1, the Gabriel graph is
always connected as it contains the minimum spanning tree of S as a subgraph; cf. the
proof of lemma 5.2. It is easy to see that the Gabriel graph just consists of those edges
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of DT(S) that cross their dual Voronoi edges. This observation yields an O(n logn)
algorithm for its construction. In fact, general β-skeletons can be constructed from
DT(S) in linear time; see Jaromczyk et al. [149] and Lingas [185]. Gabriel graphs
have proved useful in the processing of geographical data; see Gabriel and Sokal [126]
and Matula and Sokal [187].

Recently it has been realized that, for β large enough, β(S) is contained in the
minimum-weight triangulation, MWT(S), of S (a triangulation having minimum total
edge length). The original bound β ≥ √

2 in Keil [158] has been improved in Cheng
and Xu [61] to β > 1.1768, which is close to the value 2/

√
3 for which a counterexample

is known. Apart from the edges of the convex hull of S, only the shortest edge in S
has been known to be part of MWT(S) before.

One of the heuristics for the intriguing problem of constructing MWT(S) first
computes β(S), for the smallest admissable value of β. The obtained k connected
components of β(S) then can be completed length-optimally to a triangulation, using
dynamic programming, in O(nk+2) time; see Cheng et al. [60]. Thus, if β(S) is
connected or has only a constant number of components, MWT(S) can be constructed
in polynomial time. Unfortunately, k tends to be linear in n.

A slight modification of the empty neighborhood of an edge in S gives rise to the
class of relative neighborhood graphs for S. Applications in pattern recognition are
reported in Toussaint [249]. These graphs are also constructable in O(n logn) time
by exploiting their containment in DT(S); see Supowit [244] and Kirkpatrick and
Radke [163].

5.2.4 Shortest paths

Let S be a set of n point sites in the plane. A (connected) planar straight line graph
G on S is said to have dilation t if, for any p, q ∈ S, the length of the shortest path in
G between p and q is at most t · d(p, q). In this case, G is also called a t-spanner (of
the complete Euclidean graph) for S. Sparse t-spanners that have only O(n) edges
are of special interest in the field of robotics.

The minimum spanning tree MST(S), though being optimally sparse, may have
dilation Θ(n). In contrast, DT(S) is sparse but ’sufficiently connected’ to exhibit
constant dilation, independently from the size n of S. Consequently, good spanners
for S can be constructed in O(n logn) time. A dilation of t ≈ 5 for DT(S) is proved
in Dobkin et al. [98], a result which has been strengthened to t ≈ 2.5 in Keil and
Gutwin [157]. An easy lower bound is t ≥ π/2.

Surprisingly, better upper bounds can be achieved by taking the Delaunay dual
of generalized Voronoi diagrams. The convex distance function (subsection 4.5.2)
whose unit circle is an equilateral triangle leads to a triangulation with t = 2. This
was shown in Chew [64], along with the following result concerning the constrained
Delaunay triangulation (subsection 4.4) for the L1-metric: There is always a path
between two given sites, whose length is at most

√
10 times the geodesic distance with

respect to the constraining line segments. This yields an O(n log n) time algorithm
for computing constant approximations of optimal paths in the presence of polygonal
obstacles.

Alternative triangulations of S are known to exhibit good spanner properties.
Examples are the greedy triangulation and the minimum-weight triangulation; see
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Das and Joseph [78]. However, only for DT(S) are there algorithms available that
are worst-case efficient and easy to implement.

In higher dimensions, DT(S) may loose its sparseness and thus is of minor interest
for computing spanners. Different techniques have been used with success; see e.g.
Vaidya [251] and Chandra et al. [57].

5.3 Geometric clustering

Clustering a set of data means finding subsets (called clusters) whose in-class members
are similar, and whose cross-class members are dissimilar, according to a predefined
similarity measure. Data clustering is important in diverse areas of science, and
various techniques have been developed; see e.g. Hartigan [137]. In many situations,
similarity of objects has a geometric interpretation in terms of distances between
points in d-space.

The rôle of Voronoi diagrams in the context of clustering is manyfold. For certain
applications, the relevant cluster structure among the objects is well reflected, in a
direct manner, by the structure of the Voronoi diagram of the corresponding point
sites; see e.g. Ahuja [7]. For instance, dense subsets of sites give rise to Voronoi
regions of small area (or volume). Regions of sites in a homogeous cluster will have
similar shape. For clusters having a direction-sensitive density, the regions will exhibit
an extreme width in the corresponding direction.

Perhaps more important is the fact that numerous types of optimal clusterings are
induced by Voronoi diagrams, and/or can be computed by first computing a Voronoi
diagram, for a certain set of sites. This set need not coincide with the set of points
to be clustered.

A general distiction is between off-line and on-line clustering methods. The former
methods assume the availability of the whole data set before starting, whereas the
latter cluster the data upon arrival, according to an on-line classification rule. Though
Voronoi diagrams play a role in on-line clustering, see e.g. Hertz et al. [140], we restrict
attention to off-line methods below.

5.3.1 Partitional clusterings

Let P be a set of n points in d-space. A k-clustering of P is a partition of P into k
subsets (clusters) C1, . . . , Ck. The dissimilarity of a single cluster C is measured by an
appropriate intra-cluster criterion µ(C), which may be variance, diameter, radius, etc.
The dissimilarity of the whole clustering, in turn, is expressed as a (usually monotone)
function f of µ(C1), . . . , µ(Ck), called the inter-cluster criterion. Common examples
for f are the maximum or the sum. C1, . . . , Ck is called optimal if f(µ(C1), . . . , µ(Ck))
is minimal for all possible k-clusterings of P .

If k is part of the input, the problem of finding an optimal k-clustering is NP-
complete in general, even in the plane; see Capoyleas et al. [55] for references. For
fixed k, polynomial-time algorithms are known for various criteria. This is due to the
fact that optimal clusters are separable in a certain sense, and in several cases are
induced by the regions of (generalized) Voronoi diagrams. This approach was first
systematically used in [55].
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A common intra-cluster criterion is variance,

µ(C) =
1

|C|
∑

p,q∈C

d(p, q)2.

Variance can be rewritten as
∑

p∈C d(p, s(C))2, with s(C) being the centroid (mass
center) of C. Note that s(C) is the point x in d-space that minimizes the squared dis-
tance

∑
p∈C d(p, x)2 to C. Hence, if the inter-cluster criterion f is sum, the clustering

problem is equivalent to the k-centroid problem: Given a set P of points to be clus-
tered, find a set S of k sites (cluster centroids) that minimizes

∑
p∈P d(p, S)2, where

d(p, S) is the distance from p to the closest site in S. This implies that the optimal
k-clustering C∗

1 , . . . , C
∗
k has the following nice property; see Boros and Hammer [47].

For 1 ≤ i ≤ k, C∗
i is contained in the region of s(C∗

i ) in the Voronoi diagram of
S = {s(C∗

1 ), . . . , s(C∗
k)}.

The candidates for an optimal k-clustering of P thus are the possible partitions
of P induced by a Voronoi diagram of k point sites. The number of such partitions
is nO(dk) in d-space; see Inaba et al. [147]. This implies a polynomial-time algorithm
for computing an optimal k-clustering for fixed k, which proceeds by enumerating all
candidate solutions and comparing their dissimilarities.

The problem becomes considerably easier when a set S of k ’cluster centers’ is
fixed in advance. A clustering minimizing the sum of the squared distances of the
clusters to their centers is easily found by constructing the Voronoi diagram of S. Of
more interest is the case where the sizes of the k clusters are prescribed. Now a cor-
responding optimal clustering is induced by a power diagram of S (subsection 4.3.2),
a fact which leads to an algorithm with roughly O(k2n) runtime if P is a set of n
points in the plane; see Aurenhammer et al. [29].

In Inaba et al. [147], optimal k-clusterings for the intra-cluster measure µ(C) =∑
p,q∈C d(p, q)2 (like variance, but without division by |C|) are considered. Again,

these clusterings are induced by a kind of power diagram of the cluster centroids,
weighted additively by |C| and multiplicatively by µ(C).

Another popular measure µ(C) is the radius of the smallest sphere enclosing C.
If maximum is taken as the inter-cluster criterion, the k-center problem is obtained:
Find a set S of k centers such that rS = maxp∈P d(p, S) is minimized. In other
words, choose a set S of centers such that P can be covered by k spheres of minimum
radius rS. (This simplifies to the smallest enclosing sphere problem for k = 1; see
subsection 5.1.3). It is easy to see that the Voronoi diagram of S gives rise to optimal
clusters. Capoyleas et al. [55] observed that an optimal k-clustering for µ, for any
monotone increasing inter-cluster criterion f , is induced by the power diagram of the
enclosing spheres.

For both intra-cluster measures µ above, polynomial-time algorithms for fixed k
result from considering the nO(dk) candidate clusterings.

For k = 2, the ’Voronoi property’ of the 2-centroid or 2-center problem just means
linear separability of the two optimal clusters. However, linear separability for all
pairs of clusters in a given clustering does not always imply that this clustering has a
realization by means of Voronoi or power diagrams. An example is the intra-cluster
criterion diameter in 2-space [55].

The problem of constructing linearly (or circularly) separable clusterings in the
plane, where each cluster C of P is separable by a straight line (or circle) from P \C,
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is addressed in Dehne and Noltemeier [85] and Heusinger and Noltemeier [141]. They
give a polynomial-time algorithm for deciding the existence, and finding an optimal
clustering, with prescribed cluster sizes. A correspondence between separable clusters
and regions of higher-order Voronoi diagrams for P (subsection 4.3.3) is exploited.

The order-k Voronoi diagram, Vk(P ), of P is also useful for selecting from P a
k-sized cluster C∗ of minimal dissimilarity µ(C∗). This approach is persued in Dobkin
et al. [97] and Aggarwal et al. [6]. For instance, if µ is variance, C∗ has a non-empty
region in Vk(P ). If µ is diameter, C∗ is contained in a subset of P having a non-empty
region in V3k−3(P ). These properties hold in arbitrary d-space and, in the plane, lead
to efficient cluster selection algorithms. Moreover, if µ(C) measures the perimeter of
the axis-aligned enclosing square, or rectangle, of a cluster C, higher-order Voronoi
diagrams in the L∞-metric (subsection 4.5.2) yield improved solutions. Except for
the diameter case, the running time of all these algorithms is dominated by the cost
of computing an order-k diagram in the plane.

5.3.2 Hierarchical clusterings

Hierarchical methods are based solely on a given inter-cluster distance δ. They cluster
a set S of n points as follows. Initially, each point is considered to be a cluster itself.
As long as there are two or more clusters, a pair C, C ′ of clusters is joined into one
cluster if δ(C, C ′) is minimum for all cluster pairs.

A frequently used inter-cluster distance is the single-linkage distance

δ(C, C ′) = min{d(p, q) | p ∈ C, q ∈ C ′}.

As was pointed out in Shamos and Hoey [232], constructing the single-linkage hierar-
chy for S just means simulating the greedy algorithm of Kruskal [171] for computing
the minimum spanning tree MST(S) of S . We thus obtain a time bound of O(n logn)
in the plane, and subquadratic bounds in d-space; see subsection 5.2.1.

After having performed n − k steps in constructing the hierarchy (that is, after
having added the n − k shortest edges to MST(S)), the intermediate k-clustering
C1, . . . , Ck is optimal in the following sense; see Asano et al. [18]: It maximizes the
minimum single-linkage distance between the clusters, for all possible k-clusterings of
S.

The practical value of single-linkage clusterings is, however, restricted by the fact
that the produced clusters tend to exhibit large dissimilarity in terms of variance,
radius, and diameter. To remedy this deficiency, other inter-cluster distances have
been used. Among them is the complete-linkage distance

δ(C, C ′) = max{d(p, q) | p ∈ C, q ∈ C ′}.

Constructing the complete-linkage hierarchy for S efficiently is much more elusive. A
direct approch leads to an O(n3) time and O(n) space algorithm in general d-space.
(The frequently cited O(n2) time insertion algorithm in Defays [82] only approximates
the hierarchy. Its output depends on the insertion order.)

In the plane, it seems of advantage to use, as an auxiliary structure, the Voronoi
diagram of the intermediate clusters C1, . . . , Ck, defined by the Hausdorff distance
h(x, C) = max{d(x, p) | p ∈ C} of a point x to a cluster C; see e.g. Edelsbrunner et
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al. [108] and Huttenlocher et al. [144]. Unfortunately, the closest pair of clusters does
not necessarily yield adjacent regions in this diagram.

Recently, an O(n log2 n) time algorithm has been given in Krznaric and Levcopou-
los [172]. Among other structures, they use the Delaunay triangulation DT(S) and
the furthest-site Voronoi diagram of the points in the intermediate clusters Ci. They
also show that approximations of the complete-linkage hierarchy for S can be obtained
from DT(S) in O(n) time.

5.4 Motion planning

Suppose that for a disc-shaped robot centered at some start point, s, a motion to
some target point, t, must be planned in the presence of n line segments as obstacles.
We assume that the line segments are pairwise disjoint, and that there are four line
segments enclosing the scene, as shown in fig. 39. While the robot is navigating

z(t)

z(s)
l(t)

t' t

ss'

Figure 39: Moving a disk from s to t in the presence of barriers is faciliated by their
Voronoi diagram.

through a gap between two line segments, l1 and l2, at each position x its “clearence”,
i. e. its distance

d(x, li) = min{d(x, y); y ∈ li}
to the obstacles, should be a maximum. This goal is achieved if the robot maintains
the same distance to either segment! In other words, the robot should follow the
bisector B(l1, l2) of the line segments l1 and l2 until its distance to another obstacle
gets smaller than d(x, li).

Roughly, this observation implies that the robot should walk along the edges of
the Voronoi diagram V (S) of the line segments in S = {l1, . . . , ln}. This diagram is
connected, due to the four surrounding line segments.

If start and target point are both lying on V (S), the motion planning task imme-
diately reduces to a discrete graph problem: After labeling each edge of V (S) with
its minimum distance to its two sites, and adding s and t as new vertices to V (S),
a breadth first search from s will find, within O(n) time, a path to t in V (S) whose
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minimum label is a maximum. If this value exceeds the robot’s radius, a collision-free
motion has been found.

If the target point, t, does not lie on V (S), we first determine the line segment l(t)
whose Voronoi region contains t; to this end, point location techniques as mentioned
in subsection 5.1.1 can be applied. Next, we find the point z(t) on l(t) that is closest
to t; see fig. 39. If its distance to t is less than the robot’s radius then the robot
cannot be placed at t and no motion from s to t exists. Otherwise, we consider the
ray from z(t) through t. It hits a point t′ on V (S) which serves as an intermediate
target point.

Similarly a point s′ can be defined if the original start point, s, does not lie on
V (S).

Theorem 5.6 The robot can move from s to t without collision iff its radius does not
exceed one of the distances d(z(t), t) and d(z(s), s), and if there exists a collision-free
motion from s′ to t′ along edges of the Voronoi diagram V (S).

Proof. Suppose the conditions are fulfiled. Then the straight motion from s to s′

does not cause a collision since the robot’s distance to its closest obstacle is ever
increasing. The same holds for t and t′. Combining these pieces with a safe motion
from s′ to t′ yields the desired result. Conversely, let us assume that a path π from s
to r exists along which the robot can move without hitting one of the line segments.

The mapping f : t 7→ t′ can be extended not only to s but to all points x of the
scene (leaving fixed exactly the points of V (S)). One can show that f is continuous.
Consequently, path π is mapped by f onto a path π′ in V (S) that runs from s′ to t′.
For each point x on π its corresponding point x′ on π′ is even farther away from its
closest obstacle. 2

This “retraction” approach has first been taken by Ó’Dúnlaing and Yap [208].
The Voronoi diagram of n line segments plus a structure suitable for point location
in V (S) can be preprocessed in time O(n log n) time. Afterwards, for each pair (s, t)
of start and target point, the above method can find a safe motion from s to t within
time O(n), if it exists, or report otherwise.

If approximating the robot’s shape by a disc is not accurate enough, a compact
convex set C can be used, with some fixed reference point in its interior. As long as
only translational motions are considered, the retraction approach still works; only the
Voronoi diagram of the obstacles must now be based on the convex distance function
defined by the convex set C∗ that results from reflecting C about the reference point;
compare subsection 4.5.2.

If the scene consists of polygonal obstacles the same situation occurs as in the
post office problem; see subsection 5.1.1: Even though the number k of obstacles may
be small, the complexity of their Voronoi diagram increases in proportion with their
total number n of edges. Again, the piecewise-linear approximation of the Voronoi
diagram by McAllister et al. [190] comes to the rescue; it is of complexity O(k) and
can be constructed within time O(k log n) for the Euclidean distance, and in time
O(k log n log m) for a distance function based on a convex m-gon (that is, for solving
the translational motion planning problem of a convex robot with m edges).

If the robot is also allowed rotational motions, Voronoi diagrams can still be
applied. Ó’Dúnlaing et al. [206, 207] have studied the problem of moving a line
segment amidst polygonal obstacles.
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Further results on the use of Voronoi diagrams in motion planning can be found
in the surveys [13, 14] by Alt and Yap, in Yap [260], and in Canny [53, 54].

6 Concluding remarks and open problems

Although this treatise is quite long and, as we believe, reasonably comprehensive, we
are aware that we did not cover all aspects of the Voronoi diagram and related topics.
Below are some topics that we feel are important and interesting but that have not
been treated in detail here.

A significant stream of research concerns the stochastic properties of Voronoi di-
agrams for randomly distributed sites. Motivation stems from their relevance in the
natural and social sciences. The interested reader is refered to chapters 5 and 8 of
Okabe et al. [210] for a comprehensive treatment. Also, the survey paper [27] could
be consulted for a brief overview. In the present survey, randomization enters only
in the design of efficient construction algorithms. We decided not to include more
stochastic aspects because their relevance to computational geometry is less strong.

In view of the large scope of applications of Voronoi diagrams, fast construction
is an important issue. Parallelization is a tool to reach this goal. We did not discuss
parallel methods for constructing Voronoi diagrams in detail.

Though a host of applications of the Voronoi diagram has been covered, applica-
tions in the natural and social sciences have been mentioned only marginally. The
book by Okabe et al. [210] puts strong emphasis on these applications, which led us,
as being no experts in these areas, to refer to this book instead.

Finally let us mention, out of many interesting open problems concerning Voronoi
diagrams, a few that seem most important to us in view of their practical applications.

Among the few algorithmic problems for planar Voronoi diagrams that have not
been solved in a satisfactory manner is the computation of the geodesic Voronoi
diagram (subsection 4.4.4). Apart from the instance of simple polygons [212], the
only known subquadratic solution is [198]. Is there a simple and practically efficient
construction method, with a good theoretical bound, O(n log n)?

The insert & flip algorithms for computing Delaunay triangulations in 3-space
(subsection 4.3.1) in [151], [217], and [115] are simple and elegant, but suffer from
the fact that intermediate triangulations might be quite large compared to the final
result. This cannot happen if the set of sites to be inserted is well distributed, but
this requirement need not be met in typical applications like contour modeling. Does
there always exist an ’output-sensitive’ insertion order not running into the above
problem?

Despite its importance in practice, the minimum spanning tree in 3-space (sub-
section 5.2.1) has eluded efficient construction so far. The existing subquadratic
solutions [259], [3], are far from easy implementation. A partial answer are the effi-
cient expected-time and approximation algorithms in [72], [250]. Is there a practical
and worst-case efficient algorithm for computing exact minimum spanning trees in
3-space?
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