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Abstract-We survey the state of the art of computational
geometry, a discipline that deals with the complexity of geometric
problems within the framework of the analysis of algorithms. This
newly emerged area of activities has found numerous applications
in various other disciplines, such as computer-aided design,
computer graphics, operations research, pattern recognition,
robotics, and statistics. Five major problem areas -convex hulls,
intersections, searching, proximity, and combinatorial opti-
mizations- are discussed. Seven algorithmic techniques
incremental construction, plane-sweep, locus, divide-and-
conquer, geometric transformation, prune-and-search, and
dynamization- are each illustrated with an example. A collection
of problem transformations to establish lower bounds for geo-
metric problems in the algebraic computation/decision model is
also included.

Index Terms -Algebraic computation tree, analysis of algo-
rithms, combinatorial optimization, computational complexity,
computational geometry, convex hull, divide and conquer, dyna-
mization, geometric transformation, plane sweep, proximity.

I. INTRODUCTION

C OMPUTATIONAL geometry, as it stands nowadays,
is concerned with the computational complexity of

geometric problems within the framework of analysis of al-
gorithms. The phrase, however, has been used in at least
two other connotations. Bezier [47], Forrest [146], and
Riesenfeld [299] have studied geometric modeling by means
of spline curves and surfaces, a topic that is closer to numer-
ical analysis than it is to geometry, and Forrest refers to
this discipline as "computational geometry." In their book
entitled Perceptrons (of which the subtitle is also Com-
putational Geometry), Minsky and Papert [264] deal with the
complexity of predicates that recognize certain geometric
properties, such as convexity. The intent of their work was to
identify the capabilities of large retinas composed of simple
circuits to perform pattern recognition tasks.
We shall concentrate on the prevailing connotation of com-

putational geometry, which has now become a discipline by
itself in algorithm design and analysis. A large number of
applications areas such as pattern recognition [328], com-
puter graphics [268], image processing [286], operations
research, statistics [41], [314], computer-aided design, ro-
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botics, etc., have been the incubation bed of the discipline
since they provide inherently geometric problems for which
efficient algorithms have to be developed. These problems
include the Euclidean traveling salesman, minimum span-
ning tree, linear programming, and hosts of others. Algo-
rithmic studies of these and other problems have appeared in
the scientific literature with an increasing intensity in the past
two decades and a growing number of researchers have been
attracted to this discipline, christened "Computational
Geometry" in a paper by Shamos [313] in 1975. Because the
research results on the subject are spread in the literature, it
is appropriate at this time to survey in some detail this disci-
pline. The bibliography of Edelsbrunner and van Leeuwen
[139] is a good source for locating most of the articles related
to this field up to the Summer of 1982; a more complete and
detailed digest of computational geometry is due to appear as
a textbook in the near future [295].

According to the nature of the geometric objects involved,
we can identify basically five categories into which the entire
collection of geometric problems can be conveniently classi-
fied, i.e., convexity, intersection, geometric searching,
proximity, and optimization. As far as problem solving tech-
niques developed to date, we can identify seven major para-
digms, i.e., incremental construction, plane-sweep, locus,
divide-and-conquer, geometric transformations, prune-and-
search, and dynamization. We shall briefly illustrate each of
these paradigms by an example. Before proceeding, how-
ever, it is appropriate to carefully discuss the model of com-
putation and the measures of complexity.
Models of Computation: The usually adopted com-

putational model is a random access machine (RAM), similar
to that described in' [1] with the added feature of real number
arithmetics. That is, in this machine each memory location
can hold a real number and each arithmetic operation, such as
addition, multiplication, and division, can be performed in
unit time. Depending on the problems at hand, we have vari-
ous other primitive operations, like computing the intersec-
tion of two straight lines, or computing the distance between
two points. These primitive operations are all assumed to
take constant time to execute. Basically, we can categorize
geometric problems into two classes, conventionally called
"computation" and "decision." A computation problem re-
quires the construction of some geometric object satisfying a
given property, whereas a decision problem tests whether a
geometric object possesses or not a given property. For any
instance of computation problem we can almost always trans-
form it into a corresponding instance of decision problem,
and a lower bound for the decision problem can then be used

0018-9340/84/1200-1072$01.00 © 1984 IEEE

1072



LEE AND PREPARATA: COMPUTATIONAL GEOMETRY

to establish a lower bound for the computation problem. (See
Section III-F for more details about problem transformations
and lower bounds.) Thus, we may restrict ourselves to the
appropriate computation model for decision problems: this is
the so-called algebraic decision tree [26], [108], [296], [298]
model of computation. This model of computation will be
adopted throughout, unless otherwise specified, in order to
establish a lower bound on the computation time for decision
problems and their associated computation problems.
An algebraic computation tree [26] on a set of variables

V = {x1, x2 ... , xn} where xi ER, is a binary tree T with a-
function that assigns the following.

1) To any node vwith exactly one son (simple node) an op-
erational instruction of the formf,: = f, #fu2, orf, := c
fl,, orfg = \ where vi (i = 1, 2) is an ancestor of v in T,
orf,, e V, # e1{+, -, x,/}, and c ER is a constant.

2) To any node v with two sons (branching node) a com-
parison instruction of the formf,1 > 0, orfvl < 0, orfgl = 0
where vl is an ancestor of v in T orfvl E V.

3) To any leaf an output YES or NO.
Let W C Rn be any set. The membership problem (a deci-

sion problem) for W is to decide if point x = (x, x2,.* ,xn) e
Rn belongs to W. Given any x, the program traverses a path
P(x) in T starting from the root. At each simple node the
associated arithmetic operation is executed, and at each
branching node a branching is made according to the outcome
of the comparison at the node. When a leaf is reached, the
answer YES or NO is returned. It is assumed that whenever
a node v is encountered and its associated operation is a
division, the denominator is nonzero, and that when it is a
square root operation, the operand is nonnegative. The com-
putation tree T is said to solve the membership problem if the
answer returned is correct for every input x E Rn. The com-
plexity of T, denoted C(T), is defined to be the maximum of
cost (x, T) for any x where cost (x, T) is the number of nodes
traversed in the path P (x) in T. The complexity of the deci-
sion problem for W, denoted C(W), is the minimum of C(T)
for any algebraic computation tree T that solves the mem-
bership problem.
A different formulation of the algebraic computation tree

is the so-called dth order (algebraic) decision tree [324] for
determining if x E W C R'. A dth order decision tree is one
in which each node of the tree has the form of a comparison
f(x) ? 0 wheref is a polynomial of the input of degree at most
d and ? e {<, >,=}. When d equals 1, the decision tree
becomes a linear decision tree, on which several lower
boundproofs arebased [99], [107], [108], [298], [349], [352].

Time and Space Complexities: The time and space used by
an algorithm are two major measures for the efficiency of the
algorithm. Normally, we count only the number of key op-
erations, such as comparisons, performed by the algorithm
and-express it as a function of input size. In doing so, we must
ensure that the number of unaccounted-for operations is pro-
portional to that of key operations so that the running time of
the algorithm is within a constant factor of the estimated one.
As for the space requirement, we count the maximum amount
of storage ever needed during the execution of the algorithm.
This, too, is expressed as a function of input size. The stan-

dard notation has been suggested by Knuth [204], and is
given below.
O (f(n)) denotes the set of all functions g(n) such that there

exist positive constants C and no with |g(n)| ' Cf(n) for all
n . n0;

fl(f(n)) denotes the set of all functions g(n) such that there
exist positive constants C and no with g(n) . Cf(n) for all
n -no;

0(f(n)) denotes the set of all functions g(n) such that
there exist positive constants C, C', and no with Cf(n) '
g(n) ' C'f(n) for all n - no;

o(f(n)) denotes the set of all functions g(n) such thatfor all
constants C there is an no with g(n) ' Cf(n) for all n ' no.

There are two types of analyses: worst case and expected
case. For the worst case analysis we seek the maximum
amount of time/space used by the algorithm for all possible
inputs. For the expected case analysis we normally assume a
certain probabilistic distribution on the input and study the
performance of the algorithm for any input drawn from the
distribution. Mostly, we are interested in the asymptotic
analysis, i.e., the behavior of the algorithm as the input size
approaches infinity. Since expected case analysis is usually
harder to tackle, and moreover the probabilistic assumption
sometimes is difficult to justify, emphasis will be placed on
the worst case analysis. Unless otherwise specified, we shall
consider only worst case analyses.

II. PROBLEM SOLVING TECHNIQUES

We now give an example for each of the seven major,
problem solving techniques mentioned above.

A. Incremental Construction

This is the simplest and most intuitive problem solving
technique and is also known as the iterative greedy method.
The main idea is that we construct or compute the solution in
an iterative manner. An analog to this technique that is better
known is that of sorting-by-insertion [203], in which the
sorted list is obtained by inserting one by one the elements
into the partial sorted list. Specific examples follow.

Consider the problem of computing the line arrangements
in the plane. That is, given a set H of n straight lines in the
plane, compute the partition of the plane induced by H. The
obvious approach is to construct the partition by considering
one line at a time and building up the partition iteratively
[86], [133]. In Fig. 1, when line i is inserted, we need to
traverse the regions that are cut by the line and construct the
new partition at the same time. As it turns out, the approach
takes 0 (n2) time and is asymptotically optimal in the sense
that the total running time is proportional to the space re-
quired to represent the partition. Furthermore, the approach
generalizes to higher dimensions [133]. Since this technique
is self-explanatory, we omit the description of the algorithm
and state the result as a theorem.
Theorem 1: The problem of computing the arrangement

of n lines in the plane can be solved in 0 (n2) time by the
incremental construction technique.
As another example for which the incremental approach
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Line

Fig. 1. Construction of line arrangement.

works well, and in fact can be shown to be optimal, consider
the problem of finding the convex hull of a set of points in the
plane (cf. Section II-D). We simply consider the points one

at a time and construct the convex hull of the points on the fly.
If the next point lies in the convex hull just constructed, it is
ignored. Otherwise, it is an extreme point and the convex hull
must be updated by computing the two extreme supporting
lines anchored at the new poiit~ See [21], [221], [291] for an

optimal implementation of this approach. Although these two
examples illustrate that the incremental construction tech-
nique yields optimal solutions, it is normally not the case for
the majority of the problems considered in the literature.

B. Plane Sweep

As the term suggests, the scheme is primarily suited for
2-dimensional problems, but 'ts generalization to higher di-
mensions is straightforward. See, for example, [50]. This
technique is also know as the scan-line method in computer
graphics [268], and is used for a variety of applications, such
as shading, polygon filling, among others [58], [215], [286].
For ease of illustration we shall describe the scheme in con-

nection with a specific example and indicate the main fea-
tures associated with it.

Consider the problem of reporting all intersecting pairs
among a set of horizontal and vertical line segments. Let S
denote the set of line segments, S = {si, 2, ' s*,} such that
si is either horizontal or vertical; if si is horizontal, it is
specified by (xil, xi2; yi), and if si is vertical, it is specified by
(xi; Yi], Yi2) where x's and y's are x- and y -coordinates of the
endpoints of each segment. (For simplicity, no two segments
are collinear.) Imagine we "sweep" a vertical line across the
plane from left to right (or a horizontal line from top to
bottom) and report an intersecting pair of segments as we

reach their common point in the sweep. It is obvious that
no new intersecting pairs will be found between the x-

coordinates of endpoints of segments. In other words, those
abscissas are special positions at which intersections may

occur apd they are called "event points" [269], [295]. Ob-
serve also that a sweep line at abscissa x partitions the set of
segments into three subsets, SI, S2, and S3 where SI is the set
of segments lying entirely to the left of the sweep line, S2 is
the set of segments intersecting the sweep line, and S3 the set
of segments lying entirely to the right of the sweep line. The
set SI of segments will not play any role in the "future" of the
left-to-right sweep, i.e., for sweep lines at x' > x; the set S2

contains the "active" segments, which may be part of the
output, i.e., may intersect at a later time a segment in S3; and
S3 is the set which has not played any role up to this point. The
key of this technique is to maintain "relevant" information at
each event point about the active segments in S2. As soon as
a segment becomes active, it is kept as part of the relevant
information, and when it is past the sweep line, it is deleted.
'For our example the relevant information is just the se-

quence of the ordinates of all active segments, stored in a
height-balanced tree [1]. If the next "event" corresponds to a
vertical segment, this segment is used to query the "status"
data structure and all horizontal segments whose y's lie in the
interval defined by the vertical query segment are reported to
intersect it. If the next event corresponds to the left endpoint
of a horizontal segment, the horizontal segment becomes
active and is inserted into the tree; otherwise, the event is the
right endpoint of a horizontal segment, which is therefore to
be deleted from the tree. The correctness of this algorithm
can be easily established. From the performance viewpoint
since at each event point we need to perform an insertion, or
a deletion, or a report, each requiring 0 (log n) time (plus
output in case of reporting), the total time is 0 (n log n + k)
where k is the number of intersecting pairs reported. We have
the following theorem.
Theorem 2: The problem of reporting all k intersecting

pairs of line segments among a set of n horizontal and vertical
line segments can be solved in 0 (n log n + k) time by the
plane-sweep technique.

In summary, there are two basic data structures associated
with this plane-sweep technique, i.e., i) the event point
schedule, which is a sequence of abscissas, ordered from left
to right, and ii) the sweep line status, which is an appropriate
description of the relevant information of the geometric ob-
jects at the sweep line. Note that the data structures may be
different under various situations and that the event point
schedule may be dynamically updated during the execution
of the algorithm. For the example discussed above, the event
point schedule is a fixed ordered list, and the sweep line
status is realized as a height-balanced tree. Plane-sweep ap-
plications for which the event point schedule is dynamically
changing can be found in [38], [63], [229], [269]; in this
case, a priority queue [1] of some kind is normally used.

C. Locus

This method is mostly associated with geometric searching
problems in the so-called repetitive mode (an arbitrarily long
sequence of queries on a fixed file), in which queries of a
given kind are to be handled efficiently [278]. For example,
we want to preprocess a set S of points in the plane so that a
query, known as range searching query, calling for the report
of points in S that lie in the interior of a rectangular window,
can be -answered quickly. Using this method, we would
like to partition the query space into "cells" such that all
points in a give;n cell generate the same response to a query.
More formally, we partition the space into a number of
"'equivalence" classes, whose underlying relation is de-
pendent on the problem itself. -Consider, for example, the
2-dimensional dominance problem, which is given below.

174



LEE AND PREPARATA: COMPUTATIONAL GEOMETRY

2-Dimensional Dominance Problem: Given a set S of n
points, P1,P2, ,P,, in the plane, with preprocessing al-
lowed, find the number of points in S dominated by a given
point q. (A pointp is said to be dominated by a point q if both
x- and y-coordinates of p are no greater than those of q,
respectively.)
We show how the locus method enables one to answer the

query in 0(log n) time, which is optimal. First we define a
relation T in R 2 such that (p, q) in R2 is in T if the subsets of
S dominated by p and by q, respectively, are identical. The
relation T, being an equivalence relation, will induce a
partition of the plane into, in general, (n + 1)2 equivalence
classes. Geometrically, if we draw vertical and horizontal
lines through each point in S, these n vertical and horizontal
lines will partition the plane into (n + 1)2 cells. Each cell is an
equivalence class since for any two points in a cell the subsets
of S dominated by these two points are identical. Thus, the
problem becomes an instance of point-location problem-
locate the query point in the cells -and the cell in which
the query point lies will contain the solution to the problem
(an integer). Since two binary searches suffice to locate any
query point in the 0(n2) cells defined above, we have the
following theorem.
Theorem 3: The 2-dimensional dominance problem can

be solved in 0 (log n) time with 0(n 2) preprocessing time and
space using the locus method.

Other problems for which the locus method is applicable
are nearest neighbor searching [147], [157], [354], shortest
path finding in the presence of obstacles [229], [327], etc.

D. Divide-and-Conquer

This is a classical problem solving technique and has
proven its value for geometric problems as well [30], [40],
[42], [83], [172], [174], [198], [205], [220], [228], [293],
[315]. This technique normally involves partitioning of the
original problem into several subproblems, recursively solv-
ing each subproblem, and then combining the solutions to the
subproblems to obtain the solution to the original problem. A
well known example for which the technique works is the
convex hull problem. That is, given a set S of n points in the
plane, find the convex hull of S (the smallest convex set
containing S). A divide-and-conquer algorithm for com-
puting the convex hull of S is given below. Here we assume
that the input is just a collection of points specified by their
x - and y -coordinates, and the output is a sequence of points
on the convex hull. Note that the convex hull of a planar point
set is just a convex polygon. So the output is a sequence of
vertices, say, in clockwise order, of the convex polygon.

Algorithm Convex Hull (S):
If Is < 2 then return (S)
else begin

divide S into SI and S2 such that S, = L1/2JiS|
and SI U S2 = S;

S := CONVEX HULL (S,);
S = CONVEX HULL (S2);
T:= MERGE(S', S");,
return (T)

end.

where MERGE(S', S"), the "conquer" step, is a procedure that
combines two convex polygons into one, i.e., computes the
convex hull of their union. It has been shown [293], [313],
[316] that the union can be found in time 0(IS'|+IS"I) (see
Problem 3.1.2 in Section III). The analysis of the divide-
and-conquer algorithm is relatively easy. Let T(n) denote the
time for the algorithm CONVEX HULL where n = ISI. Then
assuming that n is a power of 2, we have the following
recurrence relation:

T(l) = constant

T(n) 2T(n/2) + M(n/2, n/2)

whereM (s, t) denotes the time for computing the convex hull
of the union of two convex polygons with s and t vertices,
respectively. Since M(n/2,n/2) = 0(n), then T(n) =
0(n log n). Thus, we have the following theorem.
Theorem 4: The convex hull problem for a set of n points

in the plane can be solved in 0 (n log n) time by the divide-
and-conquer technique.

E. Geometric Transformations

The application of a convenient transformation to the geo-
metric objects can be frequently resorted to in oder to trans-
form a given problem into an equivalent problem. Sometimes
a transformation in the d-dimensional space maps points to
points, and in other cases it maps k-dimensional varieties to
(d-1-k)-dimensional varieties. It is an important class of the
latter type- known as polarity or duality- which has been
recently used very successfully in several applications. The
basic reason for this success is that the transformed problem
appeals more directly to intuition and is therefore more sug-
gestive of efficient algorithms.
We shall give a specific example illustrating this point.

Consider the intersection problem of n half-planes in the
plane. That is, given n half-planes, each specified as a linear
constraint of the form y ' aix + bi or y ' aix + bi, find
their intersection. Since the intersection is a convex polygon,
which may or may not be bounded, the problem can be solved
by a divide-and-conquer algorithm, in which the conquer step
is the problem of finding the intersection of two convex
polygons. Since intersecting two convex polygons can be
done in linear time, the divide-and-conquer algorithm runs in
0(n log n) time [313], [317]. However, we shall use a geo-
metric transformation to solve this problem within the same
time bound, for the bound is optimal [315] to within a con-
stant factor under a model of computation that allows analytic
functions of the input [155] or under the algebraic computa-
tion tree model of Ben-Or [26].

First of all, let us assume that no lines of the input that
define half-planes are vertical. (This can always be done by
rotating the coordinate axes.) Let us call a half-plane a lower
half-plane if its boundary line is above the open half-plane
and an upper half-plane otherwise. Thus, a lower half-plane
is of the form y ' aix + bi, and an upper half-plane is of the
form y > a x + bi.
The geometric transformation employed is a point-to-line

mapping, known as polarity. A polarity in the plane (and,
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with obvious generalization, in any number of dimensions) not compete I

makes reference to a conic, a second-degree curve. This More recentl)
conic can be chosen in a number of convenient ways. If, for a novel multi(
example, we choose the conic as the parabola y = x2/2, then as prune-and-
point (a, b) is mapped to line y = ax - b and vice versa for the linear
(polarity is always involutory). If (a, b) is external to the fixed [257], [
parabola, its image, called dual or polar, is the line passing is double-exp
by the points of contact of the supporting lines from (a, b) to technique sev
the parabola. This transformation preserves incidence, i.e., solved efficie
if point (c, d) is on line y = ex - f, then the same holds also rability proble
for their duals: point (e,f) is on line y = cx - d. disjoint sets,

Consider now the problem of finding the intersection of the these two sets
lower half-planes. Note that a lower half-plane k is redun- n points Pi =
dant if and only if there exist two lower half-planes i and j linear functi
such that i) the boundary line Lk is above the point p where imizing maxi
the boundary lines Li and Lj of half-planes i and j intersect, 1-center prob]
and ii) the slope of Lk is between the slopes of lines Li and Lj. hypersphere e
In the dual plane there is a corresponding statement. Note that be solved in
we transform the lines that define half-planes into points in be extended
the dual plane. A point Pk, the transform of line Lk, in the dual problems. Th
plane is redundant if and only if there exist two points pi and lems solvable
pj such that i) Pk is below the line Lp which is the transform in [257].
of the intersection of lines Li and Lj, and ii) the x -coordinate We shall n(
of Pk is between those of points pi and pj. In other words, a nique in two d
point in the dual plane is redundant if and only if it is directly formulated as
below a line segment determined by two points. With this it
can be shown [61] that the nonredundant upper half-planes minimize
correspond to those points on the bottom chain of the convex subject to
hull of the points in the dual plane. Since the convex hull can
be computed in 0 (n log n) time, the intersection of n upper The method d
half-planes can be found in 0 (n log n) time. Similarly, the those constrai
intersection of n lower half-planes can also be found in of the feasible
O (n log n) time. Once the intersections of upper half-planes first apply a I
and lower half-planes are found, the intersection of the two so that the obj
unbounded polygons can be found in linear time by, say, the coordinates,
plane sweep technique since the edges that define the inter- problem redu
section are ordered. Thus, we have the following theorem. linear convex
Theorem 5: The intersection of n half-planes can be found is that since

in 0(n log n) time by a geometric transformation. tremizing abs
Note that this transformation technique can be easily ex- vex function,

tended to higher dimensions. In particular, the intersection linear constra
of n upper half-spaces can be found in 0 (n log n) time by At first, oi
computing the bottom portion of the convex hull of the points without loss
in the dual space using the algorithm due to Preparata and
Hong [293]. General schemes for finding the intersection of minimize
n arbitrary half-spaces in 0 (n log n) time can be found in subject to
[294] (see also [117]). For details and applications of geo-
metric transformations see, for example, [61], [62], [71], where ai = (
[86], [132], [133], [265], [295]. we have to c

F. Prune-and-Search
convex polyg
straints (see

This approach, used by Megiddo [257]-[259] and three classes,
Dyer [118], is primarily used to solve optimization problems negative, or r
and has shown its power in yielding efficient algorithms for where the se
a number of geometric optimization problems, one of which respectively,
is the well-known linear programming problem. A brilliant upward-conv
polynomial time algorithm, developed some time ago by delimiting th4
Khachian [195], is mainly of theoretic interest since it can- transformed t

with the more practical simplex method [96].
y, Megiddo and Dyer, independently, proposed
dimensional search technique, that we classify
-search here, to obtain a linear time algorithm
programming problem when the dimension is
259]. Note, however, that the time complexity
ionential in the number of dimensions. With this
veral geometric optimization problems can be
ently. Specifically we quote: the linear sepa-
em, i.e., given n points in R d organized into two
find a hyperplane, if it exists, that separates
the Chebyshev regression problem, i.e., given
(xil,xi2, *,xid) ERd, i = 1, 2, n, find a

ion f(xI,x2,.*. ,Xd) = fI'l ajxj + ad min-
[I1J2'I ajxij + ad - Xidl, i = 1,2, . ,n}; the
lem, i.e., given n points in Rd, find the smallest
nclosing these n points. All these problems can
O(n) time when d is fixed. The technique can
to solve optimization quadratic programming
ie details of the extension and other related prob-
by the technique, or similar ones, can be found

ow give a brief sketch of this remarkable tech-
Jimensions. The linear programming problem is
s follows:

ax + by

aix + biy + ci <0 , i = 1,2, ,n.

liscards not only redundant constraints, but also
,ints that are guaranteed not to contain a vertex
e region extremizing the objective function. We
linear transformation to the points of the plane
jective function becomes equal to one of the two
say, the ordinate of the plane. At this point the
Ices to finding the extreme value of a piecewise
X function of the abscissa. The key feature then
all we want is the identification of the ex-

,cissa, we need not explicitly construct this con-

, which remains implicitly defined by a set of
Lints.
ne sets Y = ax + by and X = x. Assuming,
of generality, that b # 0, we have:

y

aiX + i3iY + ci <00

,ai - (a/b)bi), and P3i = bi/b. In this new form
compute the smallest Y of the vertices of the
Jon P (feasible region) determined by the con-
Fig. 2). The n constraints are partitioned into
1,IoI_, 1+, depending upon whether f3i is zero,
positive., Set Io determines an X-interval [ul, U2]
lution is to be sought, while sets l and I+,
define, in an implicit manner, downward- and
rex piecewise linear functions F_(X) and F+(X)
.e feasible region. Thus, the original problem is
to
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U1 U2

Fig. 2. Illustration of the feasible region defined by a set of
linear constraints.

minimize F_(X)
subject to F-(X) c F+(X)

U1I X U 2.

The values of F_(X) and F+(X) at any X can be computed in
time 0 (n), as can their slopes. Thus, within this time bound,
for any X' E [uI, u2] one of the following conclusions can be
reached: i) X' is infeasible, and there is no solution to the
problem; ii) X' is infeasible and we know on which side ofX'
(right or left) any feasible value of X may lie; iii) X' is
feasible and we know on which side of X' the minimum of
F (X) lies; and iv) X' achieves the minimum of F_(X). Cases
i) and iv) represent final solutions.
To choose X' we partition both I, and l into pairs of

constraints (straight lines) and determine the abscissas Xij
of their intersection. If Xij 0 [ul, u2], one constraint can be
immediately eliminated as redundant. For the set of Xij E

[U1, U2], we find in time 0 (n) [ 1], [ 111], [306] their median
Xit, and evaluate F+(X") and F_(X"). Then, by the above
argument, half of the Xij's lie in a region not containing the
extremizing value, so that one constraint of the pair can be
eliminated. In this manner for each evaluation of F+(X) and
F_(X) a fixed fraction a of the currently retained constraints
can be eliminated. This leads to the conclusion that in
log,l,(,a)n stages the size of the set of retained constraints
becomes sufficiently small to allow a direct solution. Since
the time spent is Cn + Can + Ca 2n + -.. = 0(n), for
some constant C, we have the following conclusion.
Theorem 6: The 2-dimensional linear programming prob-

lem with n constraints can be solved in 0(n) time.

G. Dynamization Technique
(Static-to-Dynamic Transformation)

The techniques are developed for problems whose data-
base is changing over (discrete) time. The idea is to make use

of good data structures for a static (fixed) database and add
to them certain dynamization mechanisms so that insertions
or deletions of elements- in the database can be accom-

modated efficiently.
As before, we shall describe the general approach by an

example. The example falls in the category of geometric
searching problems. A typical searching problem is the
membership problem, i.e., given a set F of objects, is x a

member of F? If F is the set of reals, we might be inter-

ested in the nearest neighbor of x, i.e., the element in F
which is closest to x. This is known in the literature as best
match [64], [156] or nearest neighbor searching [-147], [157],
[171], [354] problem. More formally, a general query is a
question containing a variable of type T I and is asked of a set
of elements of type T2, and the answer is of type T3. In
the membership query, TI and T2 are the same and T3 is
Boolean; while in the nearest neighbor query, T 1, T2, and T3
are all identical, i.e., reals. The query Q can be viewed as a
mapping from TI and subsets of T2 to T3, i.e., Q :Tl x
2T2 , T3, [39], [304].
The class of geometric searching problems to which dy-

namization techniques are applicable is the so-called de-
composable searching problems, defined below.

Definition [29]: A searching problem with query opera-
tion Q is decomposable if there exists an efficiently com-
putable binary (associative and commutative) operator @
satisfying the condition

Q (x, A U B) = @(Q (x, A), Q (x, B)) .

It is easy to see that both examples given above are de-
composable.

For a searching problem we have a certain data structure
for the set of elements on which the searching is performed.
Associated with a data structure A there are three cost mea-
sures, i.e.,

1) PA(N), the preprocessing time required to build A,
2) QA(N), the query time required to search A, and
3) SA(N), the storage required to represent A

where N denotes the number of elements of the set repre-
sented in A.

Dynamization involves some kind of transformation that
converts a static data structure into a dynamic one, allowing
insertion or deletion of elements. Let us consider the problem
of nearest neighbor searching in the plane. Given a set of n
points in the plane, find the nearest neighbor of a query point
x. We have for the static version of this problem the fol-
lowing performance measures: PA(n) = 0(n log n),
QA(n) = 0(log n), and SA(n) = 0(n) where A is, for ex-
ample, any of the data structures of Lipton and Tarjan [242],
Kirkpatrick [197], or Edelsbrunner et,al. [128]. Now let us
see how we can convert the data structure A into a dynamic
one, denoted D, to support insertions, deletions, and queries.
There are a number of dynamization techniques [121], [164],
[166], [248], [262], [263], [276], [279], [280], [282],
[304],[339],[340],[341] known in the literature, but
we shall describe the technique developed by van Leeuwen
and Wood [341], which provides the general flavor of
the approach.
The general principle is to organize the file as a collection

of separate data structures, so that each update can be con-
fined to one (or, possibly, a fixed small number) of them;
however, to avoid shifting the burden to the query activity,
one must refrain from excessive fragmentation since queries
normally involve the entire collection. With this general
idea, let {Xk}k.1 be a sequence of increasing integers, called
switchpoints where Xk is divisible by k and xk+l/(k + 1) >
xk/k. Let xo = 0, Yk = xk/k, and let n denote the current size
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of the point set. The point set is partitioned into a collec-
tion of subsets, each organized into a separate static data
structure. For a given k, called the level, the dynamic data
structure D consists of (k + 1) structures of the same type
A: k of them, called blocks, have sizes comprised between Yk
and Yk+l, whereas one, called dump, has size between 0
and (Yk+l - 1). Each such structure B is equipped with a
counter s(B) determining its status as "low," "partial," or
"full," depending upon whether s(B) = Yk, Yk < s(B) <
Yk+l, or s(B) = Yk+l, respectively.

As mentioned earlier, the query involves all (k + 1) struc-
tures, for a total query time 0 (kQA (Yk+ 1)) since Yk+1 is a
bound to their sizes. More delicate is the handling of updates
where, to control the cost, it is necessary to control the maxi-
mum size of the data structures. Insertions are easier since
they can all be made in the dump; deletions may occur any-
where, and it may be necessary to follow up a deletion in a
block with a transfer from another block (specifically, from
a partial block if the deletion occurred in a low block). Of
course, the static data structures must be supplemented by a
dictionary [1] of size n to identify in time C (n) the block
where the deletion is to occur. In all cases, the cost of an up-
date is 0 (UA (Yk,+1) + C (n)) since yk+I is the maximum size of
the static structures. We now note that large variations of n
are accompanied by more moderate variations of the param-
eter k. Indeed, when all blocks are full at level k, we switch
to level k + 1 by the time the dump size also reaches Yk+1I
This is done by including the dump in the collection of blocks
(making for a total of k + 1 blocks), renaming them from
"full" status to-"low" status and initializing a new dump with
0 elements. Notice that when we switch from level k to level
k + 1, we have exactly (k + l)Yk+I = Xk+1 points in the set.
On the other hand, when the set size goes from Xk to Xk- 1, we
switch from level k to level k - 1 by an analogous process
where a block is degraded to be the dump. It can be shown
[341] that level switching can be correctly accomplished in
time 0(1). We summarize the above discussion in the fol-
lowing theorem.
Theorem 7: Any static data structure A used for a de-

composable searching problem can be transformed into a
dynamic data structure D for the same problem with the
following performance. If Xk ' n <Xk+1, the query time
QD((n) for D is QD((n) = 0(kQA(Yk+l)). The update time
UD (n) (deletion or insertion) for D is UD (n) = 0 (C ( n) +
UA(Yk+1)). The space required is SD(n) = 0 (kSA (yk+ 6)

If we choose, for example, the switchpoints Xk to be the
first multiple of k that is greater than or equal to 2k, then k is
about log2 n, and Yk is about n/log2 n. Since there exists a
data structure A for nearest neighbor searching with
QA((n) = 0 (log n) and UA(n) = PA(n) = 0 (n log n)
[197], [242], we have the following corollary.

Corollary 1: The nearest neighbor searching problem in
the plane can be solved in 0 (log2 n) query time and 0(n)
update time. (Note that C(n) in our case is 0(log n).)

There are several other dynamization schemes that deal
with various query-time/space and query-time/update-time

sequence of switchpoints were chosen, different query time
and update time would result. The interested reader is re-

ferred to the aforementioned references for details.

III. CLASSES OF PROBLEMS

In this section we shall survey each of the problem classes
we have mentioned in the Introduction.

A. Convex Hulls

The problem of the convex hull is not only central to
practical applications, but is also the vehicle for the solution
of a number of other significant questions in computational
geometry.
Problem 3.1.1 (Convex hull): Given a set S of n points in

d-dimensional space, find its convex hull. (The convex hull
of a set is the smallest convex set that contains the set; the
boundary of the convex hull of S is denoted CH(S).)
The convex hull problem, particularly for a set of points in

the plane, has been studied extensively and has applications
in pattern recognition [5], [115], image processing [301],
and stock cutting and allocation [152]. We have seen in
Section II-D that this problem can be solved by divide-and-
conquer in 0 (n log n) time. There is a long list of articles
containing results on the convex hull of a planar point
set [3], [4], [6], [7], [31], [32], [42], [66], [68], [120], [167],
[184], [293], [310], [313]. Their running times are either
0 (n log n) or 0 (nH) where H is the number of points on

the convex hull, except for [68] and [310], which deal with
higher dimensional convex polytopes.
We remark here that the output of the planar convex hull

problem is an ordered list of vertices on the convex hull.
Therefore, 0 (n log n) time is both sufficient and necessary

(cf. Lemma 3.6.2).
We begin by briefly reviewing two early approaches to the

solution of this problem, the Graham's scan [167] and
the Jarvis' march [184]. These two schemes contain many
seminal ideas for this topic. See [333], in which credit is
attributed to Bass and Schubert [25] for giving the first
convex hull finding algorithm.

Graham's- Scan: Graham, in one of the first papers deal-
ing with geometric problems [ 167], presented an 0 (n log n)
algorithm to compute the convex hull of n points in the plane.
The algorithm works as follows. First, an internal point 0 is
chosen arbitrarily, e.g., the centroid of three noncollinear
given points. Second, the data points are sorted in angular
order about the point 0. Then a point is selected that is
known to be on the convex hull, e.g., the point %b with the
minimum y -coordinate (and maximum x -coordinate, if there
are ties). Suppose that the points are maintained as a sorted
list tvi, v* I, counterclockwise around the origin, such
that vi = NExT(vi-I),i = 1,2, * * * ,n and v% = tb. Pointer
PREv gives the reverse clockwise order. We now perform a

counterclockwise scan of the vertices, taking three points at
a time. We say that the three points t, u, v form a left turn, if
v lies strictly to the left of the directed line from t to u. The

tradeoffs. For instance, in the current scheme if a different
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begin v := q;
while NEXT(V) 0 tb do

if v, NEXT(V), NEXT(NEXT(V)) form a left turn
then v := NEXT(V)
else begin

DELETE NEXT(v);
if v tb then v: = PREV(V)

end
end

That is, whenever a left turn is encountered, we advance;
otherwise, the middle point NExT(v) is not on the convex hull
and should be deleted (and never reexamined). When a dele-
tion occurs, we backtrack to verify if v is still a hull vertex.
So we either advance in the list or backtrack on the hull. Since
each step takes a constant time, the. scan is pompleted in
linear time. The entire algorithm therefore runs in 0 (n log n)
time, the sorting step being dominant.
Jarvis'March: Observing that, independent of the final

convex hull, the Graham's algorithm always takes 0(n log n)
time, Jarvis presented an alternative solution to the convex
hull problern that runs in time 0 (nH) whereH is the number
of vertices on the hull [ 184]. Therefore, if H = o (log n),
Jarvis' algorithm is better than Graham's. The approach
taken by Jarvis is suggestive of the idea of "gift-wrapping,"
also applicable to the technique of [681. Starting with a
point u that is known to be on the convex hull (as in Graham's
scan), in linear time we find the next point v such that the
edge iu7v is on the convex hull, i.e., all the remaining points
must lie on one side of the directed line containing i v. After
v has been found, the same technique is applied to locate the
next point w such that v, w- is a hull edge, and so on until we
"wrap" back to the starting point u. It is easy to see that the
number of iterations needed is exactly the number of vertices
on the convex hull, so the total time is 0(nH) since each
iteration costs 0(n) time.

Another interesting method, susceptible of a 3-dimensional
generalization, is based on divide-and-conquer [293], [315].
After subdividing the given point set into two subsets of
approximately equal size, and recursively finding their
convex hulls, the merge step is represented by the following
problemn.
Problem 3.1.2 (Union of two disjoint convex polygons):

Given two disjoint convex polygons P and Q with p and q
vertices, respectively, find their convex hull.

This problemn is solved in [293] by finding the common
supporting lines of P and Q where a supporting line of a
polygon P is a straight line that has at least one point in
common with P and all vertices ofP lying on the same side.
Since P and Q are, by hypothesis, disjoint, P and Q have just
two supporting lines with both P and Q on the same side,
which can be found in time O(p + q).
By shrinking Q to a single point, we obtain a straight-

forward solution of the following additional problem.
Problem 3.1.3 (Supporting lines of a convex polygon):

Given a convex polygon P with n vertices and a point u
external to P, find the two supporting lines of P passing by
U.

This problem, which is trivial without preprocessing, be-
comes more interesting in the repetitive mode, and can be
solved in time 0 (log n) by a clever adaptation of binary
search [316].
Some of the ideas presented above were elegantly co-

alesced in a new interesting convex hull technique recently
developed by Kirkpatrick and Seidel [198]. Their method is
a combination- of the divide-and-conquer and prune-and-
search approaches, and runs in time 0 (n log H), which is
also asymptotically optimal [199]. The algorithm constructs
separately the upper and the lower hulls, i.e., the two hull
chains delimited by leftmost and rightmost vertices. Because
of symmetry we shall only consider the upper hull. At first,
the point set S is subdivided into two subsets of approxi-
mately equal sizes; but then, instead of recursively construc-
ting the upper hull of the two halves and computing their
common supporting line (referred to as their upper bri4ge),
they first construct this bridge and then separately construct
the upper hulls of the subsets, respectively, to the left and to
the right of the leftmost and rightmost endpoints of the bridge
(bridge points). The key of the technique is an efficient way
to construct the bridge, to be discussed below; first we give
a less informal sketch of the algorithm. IfM1 and M2 denote
the indexes of the points of S with the leftmost and rightmost
abscissae (all abscissae are assumed distinct for simplicity),
the upper hull is constructed by -a call CONNECT(M1, M2; S) of
the following procedure:

Procedure CONNECT (min, max; A)
begin

1. Find a vertical line x = m dividing A into two
halves.

2. (i, j) := BRIDGE(A,m)
(Comment: i and j are the indexes of the bridge
points p, and pj lying, respectively, to the left and
right of the vertical line.)

3. LetA1 = {p inA such thatx(p) <x (pi)}
Let A2 = {p in A such that x(p) > x(pj)}

4. If i = min then print (i)
else CONNECT(min, i; Al);

ifj = max then print (j)
else coNNEcr(j, max; A2)

end

The running time of CONNECT depends upon that of the
function BRIDGE. The latter, however, is easily recognized to
be a linear programming problem in two variables and n
constraints. Indeed the bridge belongs to a straight line L*
such that each point of S is below L * and whose intersection
with the line x = m is minimum. Thus, letting L:
y ax + b, we have

minimize (ma + b)

subject to x a + b . yj, j 1,=2, * * n.

By using the prune-and-search techniques of [118] and [257]
outlined in Section II-F, this problem can be solved in 0(n)
time. Noting that the median finding of step 1 of COCT
also uses time 0(n) and denoting by h the number of upper
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hull edges, the running time T(n, h) Of CONNECT iS governed
by the following recurrence relation:

T(n, h) = cn if h = 1,

= cn + maxh,+h2=h(T(n/2,hl) + T(n/2,h2))

if h > 1, c some constant.

It is not difficult to see that T(n, h) is 0(n log h). Thus, in
0 (n log h) time we can obtain the upper hull. By a similar
scheme the lower convex hull is computed, so that the upper

bound 0 (n log H) is readily established for the overall run-

ning time. See also [254] for a modification of the algorithm
in [198] that gives a better expected-case performance.

In dimensions d - 3, we have the following results.
Reference [8] gives an algorithm for constructing- the
3-dimensional convex hull without a timing analysis. [185]
gives an 0 (nF) time algorithm where F is the number of
faces on the 3-dimensional convex hull, by an approach
similar to [184]. Reference [293] gives an optimal time
(O (n log n)) divide-and-conquer algorithm for the 2- and
3-dimensional convex hull problems. [68] and [310] give an

algorithm for the convex hull problem in dimensions d ! 3;
the algorithm in [185] is just the specialization to d = 3 of
the technique of [68] and the algorithm in [310] is optimal for
even dimensions.

Reference [42] gives a linear expected-time algorithm for
the planar convex hull problem. See also [97] for a survey on

linear expected-time convex hull algorithms.
We conclude this section with a-survey of a few additional

problems related to the notion of convex hull.
Problem 3.1.4 (Convex hull of a simple polygon): Given

a simple polygon with n vertices in the plane, find its convex
hull.
The fact that the points are given as a sequence of vertices

on a simple polygon enables us to solve this problem in linear
time [48], [168], [214], [249], [334].
Problem 3.1.5 (Convex polygon inclusion): Given a con-

vex polygon P with n vertices, with preprocessing allowed,
determine if a query point u is in P.

This problem can be solved quite easily by taking an in-

terior point 0 of P as the origin, arranging the vertices of P
in a binary search tree (since the vertices of P are ordered
around 0), and performing a binary search to locate the
sector in which the query point lies. (A sector is the region
defined by the origin 0 and two consecutive vertices of P.)
Once the sector is identified, a single comparison against the
edge of P in the sector suffices to determine if the point is in
the interior of the polygon.

Problem 3.1.6 (On-line convex hull): Given n points,
PI,P2,. ,Pn, arriving in sequence one at a time, find the
convex hull of P,P2, pi} when pi arrives.

A straightforward approach which computes the convex

hull each time a new point arrives is certainly correct but runs

in time I,=2 0 (i log i) which is 0 (n log n). The question is
whether we can do better. It turns out that, by using con-

vexity, an 0(n log n) time algorithm can be designed, with
0 (log n) time being sufficient to construct the new convex

hull for each newly arrived point [291]. The main idea is to

arrange the vertices of the current convex hull in a binary tree
of some kind, and for each new point pi to determine first if
it is inside the current hull. If it is, we ignore it; otherwise,
we find the two supporting lines from pi to the current hull.
The hull is then updated by removing the appropriate subset
of vertices comprised between the two supporting lines and
introducing pi as a new hull vertex. The polygon inclusion
test, the identification of the supporting lines, and the re-
moval of nonhull vertices can all be done in O(log i) time.
For details see [291]. A simpler alternative method can be
found in [21], [221].
A natural question to address at this point is what happens

when deletions of points are allowed. In this case we can no
longer obliterate those points that have been declared not on
the convex hull since they may reappear as hull vertices when
a hull point is deleted. Thus, we have the following problem.
Problem 3.1.7 (Maintenance of convex hull): Given a se-

quence of points, Pi, P2. , Pn, some of which correspond
to deletions and some of which correspond to insertions,
maintain their convex hull.

This problem has been elegantly solved by Overmars and
van Leeuwen [281]. They have shown that the convex hull
can be maintained in 0 (log2 n) time per insertion or deletion.
Problem 3.1.8 (Depth and convex layers of a set): Given

a set S of n points in the plane, find the sequence
(CH (Si)Ii = 1,2, ,d) where SO = S, and Si Si-I -
V(CH(Si ,1)), i 1, 2,.* ,d where V(CH (T)) denotes the
set of vertices of CH(T), and Sd = V(CH(Sd)). The depth of
the set is d, i.e., the number of convex layers resulting from
the above process.
The problem arises in statistical estimation, where the

"observations" (points) lying on the outer layers of convex
hulls represent outliers or "noise" and should be excluded
from being used for estimation purposes. An 0 (n2) algorithm
can be easily obtained by modifying Jarvis' algorithm. With
Overmars and van Leeuwen's algorithm [281] the worst
case bound can be improved to 0 (n log2 n). Recently,
Chazelle [75] has obtained an optimal O(n log n) algorithm
for this problem. The result has an-application in half-planar
range searching problem and in computing the depth of any
given point. (The depth in S of a query point is defined to be
the number of convex layers of S that enclose it.) By prepro-
cessing the convex layers, the depth of a query point can be
determined by locating the point in the regions between con-
secutive layers (cf. Problem 3.3.10).
No efficient algorithm, other than the obvious one, is

known for computing the convex layers of a point set in
dimensions d 2 3.

B. Intersections
Intersection problems and,their variations arise in many

disciplines, such as ar'chitect*ral design-, computer graphics,
pattern recognition, etc. An architectural design cannot place
two inpenetrable objects to share a common region. When
displaying objects on a 2-dimensional display device, ob-
scured portions (or intersecting portions) should be elimi-
nated to enhance realism, a long standing problem known as
hidden line/surface elimination problem [268]. In integrated

1080



LEE AND PREPARATA: COMPUTATIONAL GEOMETRY

circuit design two distinct components must be separated by Inside a slab,
a certain distance, and the detection of whether or not the i ea trppezoid
separation rule is obeyed can be cast as an instance of inter- I _a t
section problems; since the task may involve thousands of
objects, fast algorithms for detecting or reporting intersecting
or overlapping objects are needed. Another motivation for
studying the complexity of intersection algorithms is that
light may be shed on the inherent complexity of fundamental
geometric problems. For example, how difficult is it to de-
cide if a given polygon with n vertices is simple (simplicity

Fig. 3. Vertical strips defined by the vertices of two convex polygons.test) or how much time iS needed to determine if any two of
n given objects in the plane, such as polygons, line segments,
etc., intersect (intersection detection)? Both problems ordered set. This order is maintained in any vertical strip not
are solvable in 0 (n log n) time [317]; this result is optimal containing intersections or segment endpoints. If any two
under the algebraic computation tree [261 model (with certain segments intersect, then they must be adjacent to each other
primitive operations) for the latter problem, whereas for during the plane-sweep process. Thus, whenever a li'ne seg-
the former problem it is still open whether fl(n log n) is a ment becomes "active," the line segment is checked against
lower bound. its two neighbors for intersection; and whenever a line seg-

ment terminates, its two neighbors (they are now adjacent)
standard form, i.e., P = (vo, ,I ,V-) and (vi,v,+ 1) is are checked for intersection. Since we perform at most n
an edge, for i = 0, 1, , n - I, v, = vO, so that the in- insertions and n deletions, and each operation can be solved
terior of the polygon lies to the left as the edges are traversed. in 0 (log n) time (the intersection check takes 0 (1) time), the
answer as to which two objects intersect if they intersect at total time is 0 (n log n), which is optimal (cf. Lemma
all). It is plausible that detection is easier than construction, 3.6.4). It follows that the simplicity test problem, i.e.,
and substantiating evidence is provided in [82]. We now determining if a given polygon is simple, takes O(n log n)
discuss a category of significant intersection problems. In the time, and the problem of determining if any two of n given
following we assume that when a simple polygon P is given, circles intersect can also be solved in 0 (n log n) time.
the polygon is specified by a sequence of vertices in its Problem 3.2.4 (Polygon intersection detection): Given
standard form, i.e., P (b, vI, , an-) and (vi, v1+1) is an two simple polygons P and Q with m and n vertices, re-
edge, for i = 0, * , n - 1, vn = , so that the interior of spectively, determine if they intersect.
the polygon lies to the left as the edges are traversed. Two polygons intersect if either an edge of one polygon

Problem 3.2.1 (Intersection of convex polygons): Given intersects an edge of the other or one is totally contained
two convex polygons P and Q with m and n vertices, inside the other. The former can be detected in 0 (N log N)
respectively, compute their intersection. time where N = m + n, and the latter can be solved in

This problem can be solved by the plane-sweep technique O (m + n) time, by taking an arbitrary vertex ofP and Q and
in O (m + n) optimal time [317] by observing that the inter- checking for inclusion in the other polygon since if polygon
section of each polygon with the vertical strip comprised P contains polygon Q, it must contain any vertex of Q. Thus,
between two successive event points is, in general, a trape- the total time is 0 (N log N).
zoid (possibly empty or degenerating to a triangle), and that (The' point enclosure problem, i.e., determining if a
the computation of the intersection of two trapezoids takes point p lies in a polygon Q, can be viewed as an intersection
0(1) time (Fig. 3). An alternative method has been pro- problem, i.e., isp n Q = 0, and can be solved inlineartime
posed in [273]. [313].) Note that if both P and Q are convex, the problem can
Problem 3.2.2 (Intersection of star-shaped polygons): be solved in 0 (log N) time [82].

'Given two star-shaped polygons with m and n vertices, Problem 3.2.5 (Segment intersection reporting): Given'n
re.spectively, find their intersection. (A polygon, P is a star- line segments find all intersecting pairs.
shaped if there exists at least one point q 'in P such that every This is a typical intersection reporting problem. The
point of P is visible fromq, i.e., the line segment connecting plane-sweep technique works here equally well. An
q and any point of P lies entirely in P.') 0((n + k) log n) time and 0(n + k) space algorithm

This problem, however, requires Ql(mn) time since the where k is the number of intersecting pairs reported, can be
intersection may consist of 0(mn) disjoint componpits. found in'[381'.By carefully implementing the event point
Thus, a general polygon intersection problem requires qua- schedule which is changing over time, Brown [63] has shown
dratic time in the worst case. that the storage space can be reduced to O(n). Recently,
Problem 3.2.3 (Segment intersection detection): Given n Chazelle[76] has, obtained an O(n log2 n/log log n + k)

line segments in the plane, determine if any two intersect. time and 0 (n + k) space algorithm, the first known solution
This problem can be solved by the plane-sweep technique- of the general problem with time complexity proportional to

in 0(n log n) time [317]. The algorithm is based on the the output size k.
following idea. Consider a vertical sweep line L. L cuts some Problem 3.2.6 (Segment intersection counting): Given n
of the line segments, and these intersections form a totally line segments find the number of intersecting pairs.
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This problem is different from Problem 3.2.5 in that it
only calls for counting rather than reporting intersecting
pairs. Obviously, any construction algorithm can be used to
solve the corresponding counting problem. But since the pa-
rameter k, which is the output size, can be too large (O(n2)
in our case), it may not be efficient. Chazelle in the same
paper [76] cited earlier has obtained an 0(n"695) time and
O(n) space algorithm.
Problem 3.2.7 (Half-plane intersection construction):

Given n half-planes in the plane, compute their common
intersection.
One can show that the intersection of n half-planes can

be found in 0(n log n) time by divide-and-conquer since
the conquer step is just an instance of Problem 3.2. 1, which
can be solved in linear time. The bound is optimal (see
Section III-F).
Problem 3.2.8 (Kernel of a polygon): Given a simple

polygon with n vertices, find its kernel. (The kernel is the
intersection of n half-planes, each of which lies to the left of
the line containing a polygon edge and oriented as the edge
in the standard representation of the polygon.)

Certainly, the kernel can be found in 0 (n log n) time by
simply applying the algorithm for computing the intersection
of half-planes. However, the fact that these n half-planes are
not arbitrary but "determined" by the edges of the simple
polygon enables one to obtain a 0(n) algorithm [227].
Problem 3.2.9 (Convex polyhedra intersection construc-

tion): Given two convex polyhedra P and Q with m and
n vertices, find their intersection.

This is yet another example for which the geometric trans-
formation technique, known as duality, can be successfully
resorted to. Muller and Preparata [265] have obtained an
0 (N log N) time algorithm where N = m + n. Dyer also
has developed an O(N log N) algorithm for this problem
[117]. An entirely different and elegant space-sweep tech-
nique has been recently proposed in [176] to solve this
problem within the same time bound.
Problem 3.2.10 (Convex polyhedra intersection detec-

tion): Given two convex polyhedra P and Q with m and
n vertices, respectively, determine if they intersect.
The algorithms for the corresponding intersection con-

struction problem certainly work for this case. However,
since we only need to provide a witness (a point in the inter-
section) to this problem if indeed the polyhedra intersect, we
expect to have a faster solution. Dobkin and Kirkpatrick give
an 0(n) algorithm for this problem in [104], in which they
also credit Dyer with an independently discovered linear time
solution. If the polyhedra have been preprocessed, sublinear
(in fact, polylogarithmic) solutions can be obtained [82],
[103], [105]. Similar statements can be made about the
convex polygon intersection detection problem. See [2], [57]
for other methods for interference detection among solids.
Problem 3.2.11 (Half-space intersection construction):

Given n half-spaces in three dimensions, compute their
common intersection.

This can obviously be solved by divide-and-conquer in
0 (n log2 n) time since the conquer step is an instance of

Problem 3.2.9, which can be solved in 0(n log n) time.
Preparata and Muller [294] make use of the geometric trans-
formation technique and the separating half-plane algorithm
(see Problem 3.5.2) to obtain an optimal 0(n log n) algo-
rithm for this problem.
Problem 3.2.12 (Rectangle intersection reporting):

Given n isothetic rectangles, i.e., rectangles whose sides are
parallel to coordinate axes, find all k intersecting pairs.

This problem arises in the design of VLSI circuitry. Each
rectangle is used to model a circuitry component and certain
design rules must be adhered to [24], [35], [46], [126], [207],
[250], [251], [320]. Optimal (O(n log n + k) time and
0 (n) space) algorithms have been obtained independently by
McCreight [250] and Edelsbrunner [123]. They both use the
plane-sweep technique in connection with a novel data struc-
ture, called interval tree, to maintain the sweep-line status.
The same time and space bounds can be achieved using the
divide-and-conquer technique [174], [220]. Making use of
segment trees [28], [292], Chazelle and Incerpi [87] also
develop an algorithm with the same bounds. Furthermore,
the technique, called unravelling of segment trees in [87],
can be generalized to higher dimensions as discussed
below. By transforming this problem into a batched sequence
of queries, insertions, and deletions Edelsbrunner and
Overmars [136] also obtain similar results.
Problem 3.2.13 (d-Range intersection reporting): Given

n isothetic hyperrectangles in d-dimensional space, d > 2,
find all k intersecting pairs.

Six and Wood obtained an 0(n logd` n + k) time and
0(n logd-l n) space algorithm [321], whose time bound
was later improved by Edelsbrunner [126] to 0(n logd-2 n).
Within the same time bound Chazelle and Incerpi [87] and
Edelsbrunner and Overmars [136] have reduced the space
bound down to 0(n), which is optimal.
Problem 3.2.14 (d-Range intersection counting): Given n

isothetic hyperrectangles in d-dimensional space, d - 1,
find the number of intersecting pairs.

Unlike the segment intersection counting problem,
this problem can be solved in 0(n logd-I n) time and
0 (n logd-2 n) space by slightly modifying the intersection re-
porting algorithm [321 ]. We remark that the algorithm in [87]
cannot be adapted to solve the counting problem efficiently.
Problem 3.2.15 (Rectangle containment reporting):

Given n isothetic rectangles, find all k containment pairs.
This problem is first studied in [336] where an

0(n log2 n + k) time and 0 (n log2 n) space algorithm is
reported. Lee and Wong [234], and independently Edel-
sbrunner [ 122], obtained the same result using a geometric
transformation that maps a d-dimensional problem to a
2d-dimensionalproblem,ford :- .LeeandPreparata[228]
later used divide-and-conquer to improve the space bound to
0(n). This problem has been shown to be equivalent to the
4-dimensional dominance problem [135], [228] (cf.
Section II-C).
Problem 3.2.16 (Polygon containment detection): Given

two polygons P and Q with m and n vertices, respectively,
with rotation or translation allowed determine ifQ contains P.
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Chazelle[71] has obtained several algorithms for this prob-
lem, involving general polygons, convex polygons, etc. If
both P and Q are general polygons, it can be solved in
O(m3n3(m + n) log (m + n)) time; and when Q is convex,
the problem can be solved in 0 (mn2) time.
Problem 3.2.17 (Visibility polygon from a point): Given

a set of disjoint polygons in the plane and a point q, find
the portion of the boundary of these polygons that is visible
from q.

This is an instance of the hidden-line elimination problem
in computer graphics. The hidden-line or hidden-surface
problem has been extensively studied [65], [152], [153],
[159], [326]. If the set consists of a single simple polygon, at
least two linear time algorithms are known [143], [218]. The
technique used is similar to Graham's scan in that an initial
point visible from q is first determined and then by using the
property of simplicity, the vertices of P are scanned and
the portions of P that are not visible from q are eliminated.
In the case where the set consists of m disjoint convex
polygons with n edges in total and F denotes the output
size, this problem can be solved in 0(m log n + F) [221].
Edelsbrunner et al. [138] also examine this problem and
discuss the maintenance of the visibility polygons when in-
sertions or deletions are allowed, as well as the issue of
coherence when the viewing direction or the points are
allowed to move.
Problem 3.2.18 (Visibility polygon from an edge): Given

a simple polygon P with n vertices and an edge e of P,
find the portion of the boundary of P that is visible from e.
(A point q in P is visiblefrom the edge e if there exists a point
r on e such that the line segment q, r does not intersect the
boundary of P.)
The edge-visibility problem was first studied by Avis and

Toussaint [22]. They presented an 0 (n) algorithm for deter-
mining if P is visible, called weakly visible in [22], from an
edge e. It is shown in [22] that the boundary of P is visible
from e if and only if the interior ofP is visible from e, while
the problem of determining the visibility polygon in 0(n)
time is posed as an open problem. An 0 (n log n) algorithm
has been obtained independently by El Gindy [142] and Lee
and Lin [223]. Chazelle and Guibas [85] have also obtained
an O(n log n) time algorithm using the polygon cutting
theorem [70].

There are other problems pertaining to the measure, the
perimeter, the contour, or the number of connected compo-
nents of a union of isothetic rectangles or other geometric
objects, such as squares and circles [87], [134], [172], [178],
[179], [182], [183], [239]-[241], [323], [342]. However, the
intersections between sets of objects have not received
adequate attention. For example, given two sets of line seg-
ments, find all intersecting pairs whose members do not
belong to the same set. A recent article by Mairson and
Stolfi [246] reports an optimal algorithm, i.e., 0 (n log n + k)
time and 0(n) space, for this problem where it has been
assumed that no two segments of the same set intersect. Thus,
it follows [246] that the intersection of two simple polygons
can be found in 0(n log n + k) time.

C. Geometric Searching Problems

In this section we shall present a collection of geometric
searching problems. A searching problem consists of query-
ing a certain database and gathering a response from the
database. The database is composed of certain geometric
objects and is normally structured so as to aid the searching
process. There are two types of queries, one-time queries and
repetitive queries, as classified by Preparata and Shamos
[295]. The former type is referred to as single shot, and the
latter as repetitive mode. Depending on whether the database
is fixed or susceptible of being updated, we have two types
of environments, static and dynamic, respectively. Single-
shot queries are of less interest than the repetitive mode ones.
In the latter, we have basically four cost measures in terms of
the size n of the database, and of the size F of the query
response.

1) Query time Q (n, F), the time needed to resond to a
query.

2) Storage S(n), the amount of space required by the
structured database.

3) Preprocessing time P(n), the time needed to organize
the database into suitable forms to facilitate searching.

4) Update times, insertion time I(n) and deletion time
D(n), the times needed to insert or delete an entry, re-
spectively. These measures are meaningful only for dynamic
databases; if I(n) = 6(D(n)), then we refer to the update
time U(n) = O(I(n)) = O(D(n)).
The problems to be described next are formulated in the

plane setting. Generalizations to the d-dimensional space
will be mentioned where appropriate; in this case the cost
measures will bear a subscript d each.
Problem 3.3.1 (Range search counting): Given n points

in the plane, find the number of points that lie in a given
(query) rectangle, -specified as a range product (a,, a2) x
(b,, b2). That is, find the number v of points p = (x, y) such
that a, ' x . a2, b, ' y ' b2. (Note that F, the response
size, is a single integer.)

This problem can be solved by the locus method discussed
in Section II-B. Let the corners of the query rectangle be
A, B, C, and D, with coordinates (a,, b2), (a,, b,), (a2, bl),
and (a2, b2), respectively, and denote by Dom(q) the number
of points dominated by a point q. Since the number of points
in the query rectangle is equal to Dom(D) - Dom(A) -
Dom(C) + Dom(B), four searches locating the corners of
the query rectangle in the O(n 2) cells of the plane are suf-
ficient. (Locating a point consists of two binary searches, one
locating the point in the vertical strips and the other in the
horizontal strips.) Thus, we have Q(n) = 0(log n),
S(n) = P(n) = O(n 2) . In d dimensions the locus method,
or cell method, generalizes to yield the result: Qd(n) -
0 (log n) and Sd(n) = Pd(n) = 0(nd).

Bentley introduced a data structure, called range tree, to
solve range searching problems. With this structure Lueker
and Willard [244], [344], [347], Lee and Wong [233], and
Bentley and Shamos [41] were able to obtain the following
result for the range search counting problem in d dimensions,
d - 2: Qd (n ) =0 (logd n), Pd(n) = Sd(n) =

1083



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 12, DECEMBER 1984

O (n log`I n). The range tree structure will be described
below.
Problem 3.3.2 (Range search reporting): Given n points

in the plane, report all points that lie in a given (query)
rectangle. (The query is specified in the same way as in
Problem 3.3. 1.)

This problem has an obvious application in database sys-
tems. In a database of the records of the employees of a
company, each record may have multiple attributes, such as
age, salary, etc., and can be considered as a point in the
d-dimensional space where each attribute is identified with a
coordinate and d is the number of attributes. A typical range
search problem in two dimensions consists of retrieving all
the employees whose ages are within a given range and
whose salaries are within another. There are a number of
research contributions to this subject. A survey of algorithms
and data structures for range searching by Bentley and
Friedman describes the state-of-the-art as of 1979 [34]. A
result for this problem and also for its counting counterpart,
which is based on the range tree, is due to Willard [346] and
has the following performance: Qd(n, F) = 0 (logd-I n + F),
Pd(n) = Sd(n) = 0(n logd-l n). See [158] for a different
technique achieving the same bounds. The space bound has
later been improved by a log log n factor by Chazelle [74].
This improvement, however, holds only for the reporting
problem.
The range tree structure suggests the shape of a "pyramid"

and is commonly referred to as a tree of trees. We shall start
with the structure for the 1-dimensional case and then define
recursively the trees for the d-dimensional case from the trees
for the (d - 1)-dimensional case. The 1-dimensional range
tree is a sorted array, i.e., an array or list of records sorted in
increasing order of the values of the first coordinate. The
range tree in two dimensions is an ordinary balanced binary
search tree arranged according to the second coordinate of
each record. Each leaf is assigned one record and each node
is assigned the records in its subtree; in addition, each node
is augmented with a 1-dimensional range tree, organizing the
records assigned to the node according to theirfirst coordi-
nate. This shows that at level i the n records are approxi-
mately equally partitioned among 2' nodes; this partitioning
continues for approximately log2 n levels, and is con-
veniently stopped when the record sets are so small that they
can be comfortably searched by brute force. The same idea
generalizes to higher dimensions, so that in d dimensions we
have a balanced binary search tree on the dth coordinate and
each node is associated with a (d -1)-dimensional range
tree on the (d - 1)-dimensional records assigned to the
node.
The search algorithm is recursive, and, without loss of

generality, we shall describe the 2-dimensional case. Each
node in the tree represents a range in the y-dimension. When
visiting a node we first compare the y-range of the query to
the y-range of the node. If the node's y-range is entirely
within the query's, then we search the sorted array stored at
the node for all points in the query's x-range. If the query's
y -range is entirely below the discriminating value of the
node, we recursively visit the left subtree. If the query's

range is entirely above the discriminating value, we recur-
sively visit the right subtree. Otherwise (the range contains
the discriminating value), we visit both subtrees.
The analysis of the planar range tree is somewhat compli-

cated. Since there are log2 n levels and each level has
n points, the total storage required is 0(n log n). (Prepro-
cessing can also be performed in 0 (n log n) time.) As for the
query time, the analysis shows that at most two sorted array
searches are done at each level of the tree, each of cost
0 (log n), so the total cost is 0 (log2 n), plus the retrieval
time. Thus, we have P (n) = S (n) = 0 (n log n) and
Q (n, F) = 0 (log2 n + F). Generalizing the above argu-
ments, we have for the d-dimensional range search reporting
problem the following: Pd(n) = Sd(n) = 0 (n logd- n) and
Qd(n, F)= 0(logd n + F).
A clever observation leads to a log n factor improvement

in the query time. Referring again to the 2-dimensional case,
it is readily realized that there is considerable redundancy in
the search of the sorted arrays for the x-dimension since
the set of each node is a subset of the sets of its ancestors.
With this idea, the arrays of all nodes, save the root, are
replaced by lists; the x-range search is done exclusively in
the 1-dimensional structure associated with the root, and
location in each offspring is done by pointers. In this manner
Qd(n,F) = 0(logd-l n + F) can be achieved [344],
[346], [347].

Other data structures for the range search reporting prob-
lem can be found in [27], [37], [43], [231].
We note that data structures discussed above do not allow

insertions or deletions of records. However, by using the
dynamization techniques (cf. Section II-G) the range tree
structure can be adapted to work in a dynamic environment
since the range searching problems are decomposable in the
sense of Bentley [29]. If only insertions are allowed starting
from an empty database, it is shown in [39], [304] that
the following performance can be achieved: Pd(n) =
0(n logdn), Sd(n) = 0(n logdI n), and Qd(n,F) =

O (logd± l n + F) where n is the current number of executed
insertions. In [244] Lueker and Willard have improved the
query time by a log n factor while keeping the other two
measures unaltered even when deletions are allowed.
In [347] it is shown how to guarantee fast times for
each individual update, rather than only over a sequence
of such operations. Specifically, the following performance
can be obtained: Qd(n,F) = 0(logd n + F), Sd(n) =
O (n logd-1 n), and insertion and deletion times are Id(n) =
0 (logd n), and Dd(n) = Id(n)/log n, respectively [283]. By
increasing the deletion time by a log n factor Edelsbrunner
was able to reduce the query time by a log n factor [125].
There are other dynamization results with various query-
time/space or query-time/update-time tradeoffs. (Consult
the list of references given in Section IL-G.) Fredman has
shown that, under a restricted model, Q(n logd n) is a lower
bound on the complexity of performing sequences of n up-
dates and retrievals [151]. Instead of using tree structures to
mechanize the range searching problem, Bolour has de-
scribed a hashing technique, called box-array hashing in
[52], and obtained reasonably fast solutions, on the average,
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to the range searching problem when the query domain is
within prescribed bounds.
Problem 3.3.3 (Polygon-range retrieval): Given n points

in the plane, with preprocessing allowed, find all the points
within a given query polygon with k sides.

This is a fairly general searching problem. In [345] Willard
has devised a data structure, called polygon tree, and has
shown that the problem can be solved in time Q (n, F) =

0(kn077 + F) and P(n) = 0(n2) in the worst case (this can

be reduced to P (n) = 0 (n log2 n) in the expected case); the
storage space is S(n) = 0(n). In the case of a counting
search, 0 (kn077) query time also suffices. These results have
been improved to Q(n,F) = O(kn0695 + F) and 0(n0695)
for the reporting and counting problems, respectively, using
a new data structure, called the conjugation tree [141].
An interesting simplification of the problem is the half-

plane retrieval problem [140], in which the query polygon
becomes a half-plane. Previous results for this problem in-
clude [131] with S(n) = 0(n3), Q(n,F) = 0(log n + F),
[141] with S(n) = 0(n), Q(n) = 0(n0695 + F), and [345],
of course. A most recent result [86] that combines the idea of
geometric transforms and convex layers (Problem 3.1.8)
shows that the problem can be solved in optimal time
Q(n) = 0(log n + F) with S(n) = 0(n) and P(n) =

0 (n log n). However, the technique of [86] cannot be used
to solve the corresponding counting problem within the same
bounds. This question remains open. For half-space retrieval
problem Yao [353] has obtained a solution wih S (n) = 0 (n)
and Q (n, F) = 0 (n093 + F) using octant trees; the query

time has later been improved to O(n0916) by Dobkin and
Edelsbrunner [101]. With 0(n4) space the problem can be
solved in 0 (log n + F) time [95]. In fact, Cole and Yap [95]
have shown that with 0 (dn2d-') space, 0 (2 log n) time
suffices.
Problem 3.3.4 (Fixed-disk retrieval): Given n points in

the plane, with preprocessing allowed, find all the points
within a query disk of fixed radius and arbitrary center.

This problem is also known as the fixed-radius near neigh-
bor searching problem. Using the locus method, Bentley and
Maurer [36] gave an algorithm with the following per-

formance: Q(n,F) = 0(log n + F), P(n) = S(n) =

O(n3). Chazelle [73] has improved both the preprocessing
time and storage to O(n2 log n). The space requirement is
further improved to 0(n2) [128]. Most recently, with O(n2)
preprocessing time Chazelle and Edelesbrunner [84] have
reported an optimal (O(n) space and 0 (log n + F) time)
algorithm for this problem.
Problem 3.3.5 (Variable-disk retrieval): Given n points

in the plane, with preprocessing allowed, find all the points
within a disk of arbitrary radius and center.
Yao has obtained an 0 (n098 + F) query time algorithm

with linear space and 0(n4) preprocessing time [353], the
first technique exhibiting an o(n) worst case time. Cole
and Yap [95] have obtained an 0(n log3 n) space and
0 (log n + F) time algorithm; the space bound has been
improved to 0 (n (log n log log n )2) [80].

In the above range searching problems the objects in the
database are points of space. Interesting range searching

1085

problems arise when the geometric objects are of more com-
plex nature, such as line segments or polygons. Below we
shall consider these significant generalizations.
Problem 3.3.6 (Range search reporting in a set of line

segments): Given a set of n line segments in the plane, find
all the line segments that have nonempty intersection with a
given rectangle.

This problem is known as window clipping in computer
graphics [268]. Overmars [277] and Edelsbrunner et al.
[137] have obtained an elegant solution for the problem that
even allows updates with Q(n,F) = 0(log2 n + F),
U(n) = O (log2 n), and S (n) = 0 (n log n). If the window
is to move in a fixed direction parallel to one of the coordinate
axes, the line segments whose status with respect to the
window has changed can be determined in Q(n, k) =
O (log2 n + k) where k is the total number of such segments.
Problem 3.3.7 (Orthogonal intersection searching):

Given a set of n orthogonal objects, find all the objects that
intersect a given orthogonal object. (An orthogonal object of
dimension d is the Cartesian product of d intervals, each of
which may reduce to a single value. For instance, a point, an
isothetic rectangle, and a horizontal or vertical line segment
are orthogonal objects.)

This class of searching includes Problems 3.3. 1 and 3.3.2.
The inverse range searching, or point enclosure problem,
i.e., given n isothetic rectangles, find the rectangles that
enclose a query point, also belongs to the class. Vaishnavi
[335] gives a data structure that supports searching
in 0(log n + F) query time with P(n) = S(n) =
O (n log2 n). Chazelle [74] gives an optimal algorithm for
this problem, i.e., O(n) space and O(log n + F) time.
Using the dynamization technique of Overmars and van
Leeuwen [279], [282], the dynamic point enclosure problem
can be solved in Q(n,F) = O(log3 n + F) time with
I(n) = O (log3 n ), D (n ) = 0(log2 n),and S(n) =
O (n log2 n). The orthogonal line segment intersection
searching problem requests, for given n horizontal and ver-
tical line segments, to find all segments intersecting a given
orthogonal segment, and was investigated by Vaishnavi and
Wood [337], who gave an 0(log n + F) query time algo-
rithm with 0 (n log n) preprocessing and space. The space
bound can be reduced to O(n) [74]. If the set of distinct
coordinate values is of cardinality 0 (n) and when insertions
or deletions of segments are allowed, McCreight presents a
dynamic data structure [251] for this problem which requires
0(n) space with Q(n,F) = O(log2 n + F) and U(n) =
O(log2 n); and Lipski and Papadimitriou [239] provide
an algorithm with Q(n,F) = O(log n log log n + F),
U(n) = 0(log n log log n), and S(n) = 0(n log n).
For the general dynamic problem Edelsbrunner [124] gives
an algorithm with Q(n,F) = 0(log2 n + F), U(n) =
O (log2 n), and S(n) = O(n log n). The rectangle inter-
section searching problem, however, deals with isothetic
rectangles, and is considered by Lee and Wong [234] and
Edelsbrunner [122, 123]. By transforming this problem in
d dimensions to an instance of a range search reporting
problem in 2d dimensions, Lee and Wong [234] give an
algorithm with Qd(n,F) = 0(log2d-l n + F), Pd(n) =
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Sd(n) = 0 (n log2d- I n). Edelsbrunner [122], [123] gener-
alizes to d dimensions his results on the reporting of all
intersecting pairs of rectangles (cf. Problem 3.2. 12) and im-
proves the preprocessing and space bounds of [234] to
Pd(n) = 0(n logd n) and Sd(n) = O(n logd- n).

Edelsbrunner and Maurer [129] have recently unified all
the previous approaches to solving this class of intersection
searching problems and obtained the following results. For
the static problem, there exists a data structure achieving the
following performance: Qd(n, F) = 0 (logd-l n + F) and
Pd(n) = Sd(n) = 0(n logd n). The space bound has been
improved to 0(n logd- n/log log n) [85]. For the dynamic
problem, there exists a dynamic data structure achieving the
following performance: Qd(n,F) = O(logd n + F),
Sd(n) = 0(n logd n), and Ud(n) = 0(logd n). See also
[124], [158] for more details.
Problem 3.3.8 (Stabbing set and stabbing number):

Given a set of n objects in the space and a query object, report
the set of objects intersecting the query object (stabbing set)
or simply find its cardinality (stabbing number) [173].
The choice of such exotic name comes from its 2-dimen-

sional instance where the objects (e.g., polygons) lie in
the plane and the query object is a point identified with
a "needle" orthogonal to the plane. If the objects are or-
thogonal, then we rediscover the orthogonal intersection
reporting and counting problems, respectively. In [ 131 ] gen-
eral solutions with Q(n,F) = 0(log n + F) and Q(n) =
O (log n) for the stabbing set and stabbing number problems,
respectively, are given, but preprocessing costs and times are
very high. In 1-dimensional space if the objects are intervals
and query is a point, optimal solutions, i.e., 0(log n + F)
query time for the stabbing set problem [74], [122], [250] and
O (log n) for the stabbing number problem [129], [164] have
been obtained. Several instances of this problem are cur-
rently being investigated. For example, the stabbing number
problem for a set of n polygons whose sides have a constant
number of orientations can be solved in 0 (log n) query time
and O(n log n) preprocessing and storage [173]. Edel-
sbrunner et al. [132] have given an algorithm for finding a
stabbing line which intersects each of n given line segments.
The algorithm runs in 0 (n log n) time and requires 0(n)
space; an 0 (log n) time algorithm is also given to determine
if any given line is a stabbing line. The problems of finding
which or how many line segments intersect a given line seg-
ment and of finding which or how many polygons with
bounded number of edges contain a given query point can be
answered in 0(n0695) time [102]. Reference [74] gives an
algorithm for reporting the line segments intersecting a given
line segment with P (n) = 0 (n 2 log n), S(n) = 0(n2), and
Q(n,F)= 0(log n + F).
Problem 3.3.9 (Polygon inte-rsecton searching): Given a

set of simple polygons, each with a bounded number of
edges, find the polygons whose intersection with a query
polygon of the same type is nonempty.

This is the most general intersection searching problem of
its kind, of which most of the problems in the plane given
before are special cases. The problem, by suitable trans-
formations [131], can be reduced to three subproblems, each

of which is a generalization of its counterpart in orthogonal
intersection searching (Problem 3.3.7), i.e., of the inverse
range searching problem, of the orthogonal line segment in-
tersection searching problem, and of the range searching
problem. The three subproblems are as follows: i) given a
point, find its stabbing set of polygons; ii) given a line
segment, find its stabbing set of line segments; and iii) given
a polygon, find all the points it contains. Problem i) can be
solved by point location (cf. Problem 3.3.10 below), prob-
lem ii) by geometric transformation, and problem iii) by
answering a bounded number of triangular range search
queries, all in time O(log n + F). The preprocessing and
storage costs can be as high as 0 (n7) [131] . Recently Dobkin
and Edelsbrunner [102] have studied this problem and ob-
tained sublinear query-time solutions.
Problem 3.3.10 (Point location): Given a planar sub-

division with n edges, find the region of the subdivision that
contains a query point. (The subdivision can be regarded as
a collection of polygons and we look for the polygon whose
intersection with the query point is nonempty.)

This is regarded as one of the fundamental searching prob-
lems in computational geometry. It arises in many disci-
plines. In pattern classification, for instance, one wishes to
classify a query pattern in a finite set of classes. Patterns are
mapped to points of some space, which is partitioned into
regions, each corresponding to a specific class. The classi-
fication is done by locating the region in which the query
pattern lies and the name of the corresponding class will be
the answer.

Dobkin and Lipton [ 106] were probably the first to give an
O(log n) time algorithm for locating a point in a multi-
dimensional subdivision [297]. Their method is based on the
idea of partitioning the space into slabs (slab method), and
is best described in two dimensions (see also [295], [315]).
See [78] for a generalization of the Dobkin-Lipton tech-
nique [106]. Suppose we have a planar subdivision where
each region is delimited by straight-line edges. The graph is
referred to as planar straight-line graph, PSLG for short,
in [295]. Assume for simplicity that no two vertices of the
graph have identical ordinate and draw a horizontal line
through each vertex. Two such consecutive lines form a slab
(a horizontal strip of the plane), in which no two edges in the
PSLG interesect (Fig. 4). Note that in each slab the edges
form a total ordering. The point location problem can be
solved by two consecutive binary searches, one locating the
query point in a slab and the other locating it within the slab,
in 0(log n) total time. Each slab is organized as a binary
search tree, with total storage 0(n2); preprocessing can also
be done in 0 (n2) time [295]. The generalization of the meth-
od to higher dimensional space is straightforward. Because of
its high preprocessing and storage cost, however, several
improvements were later proposed. The chain method of
Lee and Preparata [225] runs in Q (n) = 0 (log2 n) time
with P (n) = 0 (n log n) and S (n) = 0 (n). Lipton and
Tarjan [242] proposed an extremely sophisticated algorithm,
based on the planar separator theorem, achieving optimal
performance, i.e., Q (n) = 0 (log n), P (n) = 0 (n log n),
and S(n) = O(n). Unfortunately, the Lipton-Tarjan tech-
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Fig. 4. Within a slab no two segments intersect.

nique is merely of theoretical interest. Preparata [292] later
proposed a new scheme, now known as median-guided
trapezoid method, which solves the problem in optimal
query time, i.e., O(log n), but requires P(n) = S(n)
O(n log n). Kirkpatrick [197] made use of triangulations to
obtain a hierarchical representation of the PSLG with
0 (log n) levels of triangulations, each being a refinement of
the other, yielding a more practical optimal algorithm with
0(log n) query time, O(n log n) preprocessing time,
and 0(n) storage. All of the above techniques, except
Kirklpatrick's, can handle planar subdivisions with suitable
curvilinear edges; another algorithm with similar capabilities
has been proposed by Edelsbrunner and Maurer [ 130] and has
the following performance: Q (n) = 0 (log3 n), P(n) =

O(n log n), and S(n) = O(n). A recent report by Edahiro
et al. [119] contains a comprehensive comparison, including
actual running times, of the above point-location algorithms.
Recently, a new optimal technique, and perhaps the most
practical method available today, has been proposed in [128]:
its key idea is the adaptation of philosophy of layering [346],
improved to 0(n) space in [74], to the Lee-Preparata
chain method [225]. Chazelle [77] has obtained an 0 (log2 n)
time and 0(n) space algorithm for locating a point in a

3-dimensional complex with O(n) vertices.

D. Proximity and Related Problems

Geometric objects, such as points and circles, are used to
model physical entities in the real world. In some cases we

would like to have access to a suitable neighborhood of the
objects. For instance, in air traffic control we wish to keep
track of the closest two aircrafts; when aircrafts are modeled
as points moving in space, we want to find the closest pair of
points at a certain point in time. We shall first list a number
of problems, some of which may appear unrelated, and de-
scribe a geometric construct, called a Voronoi diagram,
which can be used to solve these problems within the same

order of the time spent for computing the diagram. Some
proximity related problems are given afterwards.
1) Basic Proximity Problems:
Problem 3.4.1 (Closest pair): Given n points in the

plane, find two points that are closest.
It is obvious that the generalization of the problem in k

dimensions, k 2 1, can be solved in 0 (kn2) time by com-

paring all interpoint distances. In one dimension, we can

solve the problem easily in 0 (n log n) time by a preliminary
sorting. It turns out that sorting does not generalize to higher

dimensions. Using the divide-and-conquer technique,
Bentley and Shamos [40] showed that 0 (n log n) time is
sufficient to solve this problem in dimensions k - 1, and the
time bound is optimal (see Section Ill-F). An average-case
study of this problem is presented in [45] where also an
optimal average-case algorithm is illustrated. See [93],
[158], [189] for other related results.
Problem 3.4.2 (All nearest neighbors): Given n points in

the plane, find for each point a nearest neighbor (other than
itself).
Problem 3.4.3 (Euclidean minimum spanning tree, EM-

ST): Given n points in the plane, find a tree that interconnects
all the points with minimum total edge length.

This problem has an obvious application in computer net-
working where we want to interconnect all the computers at
minimum cost. This formulation, however, forbids the addi-
tion of extra points. If additional points, called Steiner
points, are allowed, the problem becomes the minimal
Steiner tree problem, which has been shown to be NP-
hard [160]. Note also that the EMST problem can be cast as
a graph-theoretic problem, in which the weight of each edge
is the distance between the two terminal vertices of the edge.
In [90] several spanning tree algorithms have been illus-
trated. In general, the minimum spanning tree problem for a
graph with n vertices requires Q(n2) time, for the minimum
weight edge must be in the tree and there are 0 (n2) indepen-
dent weights in the input; however, the Euclidean metric
properties can be exploited so as to solve the EMST problem
in O(n log n) time.
Problem 3.4.4 (Triangulation): Given n points in the

plane, construct a planar graph on the set of points such that
each face within their convex hull is a triangle.

This problem arises in numerical interpolation of bivariate
data [208]-[210], [253], [289] where the function values are
known at irregularly spaced points, and in the finite element
method [67]. A triangulation of these n points can be used to
approximate the function value at a new point as the inter-
polation of the function values at the vertices of the triangle
containing the new point.
Problem 3.4.5 (Nearest neighbor search): Given n points

in the plane, with preprocessing allowed, find the nearest
neighbor of a query point.

This problem, also known as the "post office problem,"
arises in pattern classification [115] where the nearest neigh-
bor decision rule is used to classify a new sample into the
class to which its nearest neighbor belongs, and in informa-
tion retrieval where the record that best matches the query
record is retrieved [64], [156]. See, for example, [264] and
[ 116] for other "distance" measures used in the nearest neigh-
bor search problems.
Problem 3.4.6 (k Nearest neighbors search): The same

as Problem 3.4.5, except that the k nearest neighbors
are sought.

2) The Voronoi Diagram: The above problems can be
solved by resorting to the locus method mentioned in
Section II-C. Given a set S of n points {Pi, P2, , pPn}, we
shall compute the Voronoi diagram [300] of S, denoted
Vor(S), which partitions the plane into n "equivalence"
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classes, each of which corresponds to a point. Specifically,
the equivalence class corresponding to pi is the Voronoi poly-
gon V(p1), which is formally defined as V(p1) = {r r in R2
and d(r, pi) ' d(r,pj), j + i}. In other words, V(pi) is the
locus of points that are as close to pi as any other point of S
and can also be defined as the intersection of the half-planes
nij H (pi, pj) whereH (pi, p,) is the half-plane determined by
the perpendicular bisector of pjp and containing pi. Thus,
the Voronoi diagram of a set of n points is just a collection
of n Voronoi (convex) polygons, one for each point. The
diagram is also called Thiessen polygons [59]. The following
is a catalog of properties of the Voronoi diagram (see, e.g.,
[211], [212], [316]), which can be derived under the sim-
plifying assumption that no four points of the given set are
cocircular. (See Fig. 5 for a Voronoi diagram of a set of
16 points.) i) Every vertex, called Voronoi point, of the
Voronoi diagram has degree three. ii) Every nearest neighbor
pj of each pointp, defines an edge of V(pi), which is a portion
of the perpendicular bisector of pppj. iii) V(pi) is an un-
bounded polygon if and only if the point pi is on the convex
hull of the set S. iv) The straight-line dual of the Voronoi
diagram is a triangulation of S. The triangulation is also
known as Delaunay triangulation and Dirichlet tessellation
[55]. v) The numbers of edges and vertices in the Voronoi
diagram Vor(S) are both O(n) where n = IS|.

Construction of the Voronoi Diagram: The Voronoi dia-
gram of a set S of n points in the plane can be constructed in
0 (n log n) time using the divide-and-conquer technique. We
first divide set S into two halves S, and S2, separated by a
vertical line L, with S, lying to the left ofL and S2 to the right.
We then' recursively construct the Voronoi diagrams for the
two subsets of points and complete the computation by merg-
ing these two diagrams into the final Voronoi diagram. With
property iii) one can derive that each unbounded edge of the
Voronoi diagram belongs to the perpendicular bisector of a
convex hull edge. Since the convex hulls of S, and S2
are disjoint, their two common supporting lines (see
Problem 3.1.3) correspond, respectively, to two unbounded
edges of the Voronoi diagram Vor(S). These two edges be-
long to a polygonal line oa, called the separating chain,
which plays a crucial role in the merge step. Indeed, cr par-
titions the plane into two (unbounded) regions, RI and R2,
lying, respectively, to the left and to the right of or. It can be
shown that Vor(S) = (Vor(S) n R1) U (Vor(S2) n R2),
thereby providing a merging technique. The construction
of or is done edge-by-edge, starting from one of the two
unbounded edges. In this process, the property that each
Voronoi polygon is convex is used crucially to show that
each edge of Vor(SI) U Vor(S2) is inspected at most a fixed
number of times, thereby obtaining a merge algorithm
running in time proportional to their total number of edges,
i.e., in time O(ISiI + S21) = O(n) [196],[211],[212].
Therefore, the total time for constructing the Voronoi dia-
gram for a set S of n points is 0 (n log n), which is optimal
(see Section III-F).
Brown has demonstrated an interesting linkage between

Voronoi diagrams and convex hulls. In [61], [62] he
presented an alternative 0 (n log n) algorithm for con-

Fig. 5. The Voronoi diagram for a set of 16 points.

structing the Voronoi diagram, by transforming the problem
of constructing a planar Voronoi diagram for an n-point set
to the construction of the convex hull of n points in
3-dimensional space via a geometric transformation known
as inversion. The technique is general, i.e., the Voronoi
diagram in k-dimensional space can be obtained from
a convex hull in (k + 1)-dimensional space (see [61] for
more details).
Once the Voronoi diagram is available, the closest-pair

problem, the all-nearest-neighbor-problem, and the trian-
gulation problem can all be solved in 0 (n) time as follows.
Obtain the straight-line dual graph by scanning each
edge of the Voronoi diagram; since the dual graph is 'a trian-
gulation and the total number of edges in Vor(S) is 0(n)
[properties iv) and v)], the process takes 0(n) time. From
property ii) we also have that the closest pair is identified
with an edge of the triangulation and, similarly, the nearest
neighbor of each point is given by an edge of the trian-
gulation; therefore, both problems can be solved in 0(n)
time. It has been shown [316] that the EMST is a subgraph of
the Delaunay triangulation. So the EMST problem can also
be solved in additional 0(n) time using the algorithm of
Cheriton and Tarjan [90]. As for the nearest neighbor search
problem, all we need to do is to find the Voronoi polygon in
which the new point lies. The search is therefore a point-
location problem, as discussed in Section III-C, and can be
carried out in 0 (log n) time (cf. Problem 3.3.10).

Extensions of the Voronoi Diagram: There has been a
number of extensions and generalizations of the Voronoi
diagram. The Voronoi diagram discussed above refers to
the Euclidean metric (i.e., the so-called L2-metric in
Minkowski's formulation). The definition of the Voronoi
diagram can be easily extended'to the L -metric where
1 c p < 00 [212], and the diagram can still be constructed in
0 (n log n) time, if we allow that the computation of the pth
root can be done in constant time. The notion of spanning tree
can also be extended to the Lp-metric [177], [232]. We note
that the Voronoi diagram under the Li-metric is not unique,
and as a consequence, its dual graph is not a Delaunay
triangulation. The Delaunay triangulation is a (unique) trian-
gulation such that the circumcircle of each triangle does not
contain any other point in its interior. Thus, to compute the
Delaunay triangulation under the LI-metric we cannot rely
on the Voronoi diagram and a direct approach is needed.
An 0(n log n) algorithm that computes the Delaunay
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triangulation directly is given in [230].
The second extension consists of considering the Voronoi

diagram of a set of objects other than points. In [211], [222]
the Voronoi diagram-for a set of line segments or circles is
considered and an 0 (n log2 n) time algorithm is given for its
construction. The time bound was later improved by Kirk-
patrick toO (n log n) [196]. The medial axis [115] of a simple
polygon, known as the skeleton, turns out to be part of
the Voronoi diagram of the simple polygon [217], [290]. The
Voronoi diagram of line segments or circles under the
L2-metric consists of edges that are not, in general, straight-
line segments. (They may include arcs of either parabolas or
hyperbolas.) However, a recent result [183] (and indepen-
dently, [16]) shows that the Voronoi diagram of a set of n
circles in the Laguerre geometry consists of straight-line
edges and is computable in 0(n log n) time. This particular
diagram is useful for computing the connected components of
the set of disks, for computing the contour of the union of
disks, and for testing if' a point lies inside the union or not.
The third extension focuses on the fact that in the Voronoi

diagram discussed so far each polygon- is the locus of points
nearest to one point. To be more precise the diagram should
be termed the nearest neighbor Voronoi diagram. Shamos
and Hoey [316] considered the order-k Voronoi diagram of a
set of points where each polygon of the diagram is associated
with k points, k ' 1, with the property that for any point
inside the polygon its k nearest neighbors are precisely the
associated k points. With the order-k diagram the k-nearest
neighbors search problem can be solved in 0(log n + k)
time; in this expression the first term accounts for point lo-
cation and the second term for reporting the answer. Proper-
ties and a method for the construction of the order-k Voronoi
diagram can be found in [133], [216], [316]. At the other end
of the spectrum (from the nearest neighbor Voronoi diagram)
is the farthest neighbor Voronoi diagram, which is actually
the order-(n - 1) Voronoi diagram. The farthest neighbor
Voronoi diagram for n points can be constructed in
0(n log n) time [213], [315] -and can be used to solve the
diameter problem (see below) and the- 1-center problem in
0 (n) time.
The fourth extension is to associate each point with a posi-

tive weight, resulting in a "weighted" Voronoi diagram [53].
The weighted Voronoi diagram consists of n "regions," each
of which is the locus of points whose weighted distance to a
given point is minimum. In [ 17] it is shown that the "regions"
associated with each point may not be connected and in fact,
there can be 0(n2) edges and vertices in the diagram. An
0(n2) algorithm for constructing such a weighted diagram
can be found in [17].
The last extension consists of generalizing the diagram or

triangulation to higher dimensions. Some results in this re-
gard can be found in [20], [51], [60],[200], [311], [343].
With the connection between the d-dimensional Voronoi dia-
grams and the (d + 1)-dimensional convex hulls [61], and
the convex hull algorithm given by Seidel [310], an efficient
solution to the construction of the Voronoi diagrams in higher
dimensions can be obtained. The minimum spanning tree
problem in higher dimensions has also been addressed (see
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[33], [98], [158], [192], [267], [351]), but remains an out-
standing subject for research.

3) Other Proximity Problems:
Problem 3.4.7 (Closest pairfor convex polygons): Given

a convex polygon in the plane, find the two closest vertices.
Problem 3.4.8 (All nearest neighbors for convex poly-

gons): Given a convex polygon in the plane, find the nearest
neighbor for each vertex.

Exploiting the- convexity of the polygon, Lee and Preparata
have provided a linear time algorithm [226], [348] for these
two problems. However, whether or not the closest pair of
vertices of a simple polygon with n vertices can be found in
o(n log n) time remains an open question. The known lower-
bound proof (cf. Lemma 3.6.5) does not apply to this case
since the vertices are given in a known order.
Problem 3.4.9 (Farthest pair or diameter problem):

Given n points in the plane, find the two that are the farthest
apart.

This problem arises in clustering [175] and image process-
ing [322]. Since the farthest pair of points must be on the
convex hull, the problem can be solved in O(n) time in
1-dimension and in O(n log n) time in 2-dimension [295],
[313], both results being optimal (see Section Ill-F); the
2-dimensional method consists of computing in O(n log n)
time the convex hull of the n points, and then searching in
O(n) time for the two farthest points with the rotating
calipers as given in [316], [330]. Note that the closest pair
problem requires Ql(n log n) time in all dimensions d 1.
For the farthest pair problem in higher dimensions, d 3,
Yao [351] has obtained an o(n2) algorithm. (Specifically, the
time bound is T(n,d) = 0(n2-a(d)(log n)1-a(d)) where
a (d) = 2-d+ 1). For d = 3 the time bound can be improved to
0 ((n log n)18).) Whether or not the gap between T(n, d) and
Ql(n log n) can be reduced is an open question.
Problem 3.4.10 (Diameter problem for simple polygon):

Given a simple polygon with n vertices, find the two that are
farthest apart.

This problem can be solved in 0 (n) time since the convex
hull of the simple polygon can be constructed in O(n) time
and the farthest pair of a convex polygon can be found in
linear time. Thus, convexity plays an important role here as
well. But whether it can also help in 3 dimensions remains to
be seen. Specifically, there is no known algorithm for finding
the diameter of a convex polyhedron in less than
0 ((n log n)' 8) time [351 ]. Note that the farthest pair problem
for simple polygons is simpler (at least no harder) than the
closest pair problem for simple polygons.

The following problems are of somewhat different type in
that they deal with the distance between two point sets. The
distance between two sets A and B of points is normally
defined as the minimum distance between a point in A and a
point in B, namely, d(A, B) = minatninb d (a, b) where a in
A, b in B, and d are the Euclidean distance. With this defini-
tion d (A, B) = d(B, A). Another measure that is of interest is
the Hausdorff distance [170], which is not symmetric. The
Hausdorff distance from A to B is maxaminb d (a, b), and the
Hausdorff distance between two sets A and B is equal to
max{d(A,B), d(B,A)}.



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 12, DECEMBER 1984

Problem 3.4.11 (Closest pair between sets): Given two
sets A and B (with m and n points, respectively, if A
and B are finite) find two points, one from each set, that
are closest.

If A and B are both finite, this problem can be solved in
0(N log N) time where N = m + n, by means of the
Voronoi diagram. That is, each point a in A is located in
Vor(B ) and each b in B is located in Vor(A ), resulting in total
time 0 (m log n + n log m) time after both diagrams have
been computed. Note that the time bound is optimal
(cf. Lemma 3.6.11).
When the points are the vertices either of a simple polygon

or of a convex polygon, faster solutions are expected.
Reference [14] discusses the Hausdorff distance between two
convex polygons and gives an 0(n) time algorithm; [49]
gives an 0 (n log n) algorithm for computing the farthest
pair between two sets and an 0(n) algorithm for the same
problern when the point sets form each a convex polygon.
Reference [308] considers the problem of finding the closest
pair of points between two convex polygons (two nonfinite
sets), and gives an 0(log2 n) time algorithm; this result was
later improved to 0(log n) [91], [127]. To find the closest
pair of vertices of two convex polygons, 0(n) time is both
sufficient and necessary [92], [252], [331].
Problem 3.4.12 (Fixed-radius near neighbor): Given a

constant d > 0 and n points in the plane, find for each point
the neighbors within the distance d.

This problem arises in molecular graphics, cluster analysis,
and data transmission [44]. Using the locus method, Bentley
et al. [44] have shown that this problem under the L,-metric
and sparsity condition, i.e., no more than a constant number
c of points are in the hypersphere of diameter d, can be solved
in 0 (3kkn (log n + c)) time where k is the dimension. When
the sparsity condition is removed, they show that the total
number of distance calculations is 3kF where F is the total
number of near neighbor pairs, i.e., the output size.
Problem 3.4.13 (Shortest path problem with obstacles):

Given n geometric objects in the plane (called "obstacles")
and two designated points s and t, find a shortest path
between s and t which does not cross the interior of any
obstacle.
Two instances of this problem have been studied in [229],

both solvable in. time 0 (n log n). In the first case the obsta-
cles are the boundary edges of a simple polygon containing
both s and t; in the second case, s and t are arbitrary points
in the plane and the obstacles are a collection of parallel
segments. In [224] an 0 (n2 log n) algorithm for this problem
in which the obstacles are n disks is presented. Tompa [327]
examines this problem in the context of wire routing. See
[206], [243], [309], [318] for other results along this line.

4) Polygon Decompositions Problems: Polygon decom-
position problems have applications to pattern recognition.
To facilitate the process of recognizing a shape a frequent
strategy is to decompose the shape into simple parts
("primitives") and compare them to the library entries via
some similarity measure [274]. Often the primitives are re-
stricted to some particular types, such as convex polygons,
star-shaped polygons, etc. In [328], Toussaint calls this class
of decomposition component-directed (see [328], [329] for

more references). Notice also that "triangulation" is a prob-
lem in this class. There are situations in which certain calcu-
lations are difficult for general polygons but easy for convex
polygons; in this case, it is to our advantage to decompose
a general simple polygon into convex parts and perform
computations on each part. This is the approach taken by
Ahuja et al. [2] for the detection of interference or collision
of polygons.

Basically, there are two types of decompositions: par-
tition, which disallows overlapping of component parts, and
covering, which does allow overlapping parts. Sometimes
additional vertices, called Steiner points, may be introduced
to obtain decompositions with the minimum number of parts.
A recent survey by Keil and Sack [194] discusses minimal
decompositions in great detail.
Problem 3.4.14 (Triangulation of a simple polygon):

Given a simple polygon P with n edges, decompose its
interior into triangles.
A pioneering work is due to Garey et al. [ 162] and runs in

0 (n log n) time. The algorithm consists of two phases. In the
first phase the polygon P is partitioned into a number of
monotone polygons in 0 (n log n) time. (A polygon Q is
monotone if there exists a line L such that the boundary of Q
can be divided into two chains of edges and each chain is
intersected at most once by any line orthogonal to L.) The
second phase is a linear time algorithm for partitioning each
monotone polygon into triangles. Other 0(n log n) time
triangulation algorithms are reported in [70], [334]. Recent-
ly, Chazelle and Incerpi have introduced a useful notion,
called sinuosity of P [88], which is the number of times
the boundary of P alternates between complete spirals of
opposite directions, and obtained a divide-and-conquer algo-
rithm for triangulating a simple polygon P in time 0 (n log s)
where s is the sinuosity of P. Whether or not triangulating a
simple polygon can be done in 0(n) time remains an open
problem. If holes are allowed, then it has been shown that
fl(n log n) time is necessary [12].
Problem 3.4.15 (Triangulation of a star-shaped poly-

gon): Given a star-shaped polygon with n edges, decompose
its interior into triangles.

Schoone and van Leeuwen [307] give an 0(n) time algo-
rithm for this problem. In fact, more generally, any L -convex
polygon can be triangulated in linear time [144].
Problem 3.4.16 (Quadrilaterization of a rectilinear poly-

gon): Given a rectilinear polygon with n edges, decompose
its interior into convex quadrilaterals.
A simple polygon does not always admit a quadrilateriza-

tion, but a rectilinear polygon always does [ 188]. Sack [302]
has shown that any rectilinear polygon with n edges can be
partitioned into convex quadrilaterals in 0 (n log n) time. It
is an open problem if o(n log n) time is possible. If the
rectilinear polygon is monotone or star shaped, then its
quadrilaterization can be found in linear time [303].
Problem 3.4.17 (Decomposition of a simple polygon into

star-shaped polygons): Given a simple polygon P with
n edges, decompose its interior into star-shaped polygons.

Avis and Toussaint give an 0 (n log n) time for this prob-
lem [23]. They first find a triangulation of P and then per-
form a 3-coloring of the vertices of P so that no adjacent
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vertices in the triangulation receive the same color. Based on
the coloring, they remove all diagonals incident upon verti-
ces of a given color, thereby obtaining a star-shaped par-
tition. If a minimal partition is sought, Keil [193], using a
dynamic programming technique, gives an 0 (n 5N2 log n)
algorithm where N denotes the number of reflex vertices
(whose internal angle is greater than 1800).
Problem 3.4.18 (Decomposition of a simple polygon into

convex parts): Given a simple polygon P with n edges, find
a decomposition of its interior into convex polygons.

If Steiner points are allowed, Chazelle [69] gives an
O(n + N2 log(n/N)) time algorithm where N denotes the
number of reflex vertices. Chazelle and Dobkin [81] have
also presented an 0 (n6) algorithm for finding a minimal par-
tition of P into convex parts. The result was later improved
to O(n + N3) [69]. In 3 dimensions an 0(nN3) algorithm is
presented in [79] and the algorithm produces O(N2) convex
parts, which is shown to be worst-case optimal. Asano and
Asano [9] have obtained an O(n3) time algorithm for par-
titioning P into a minimum number of trapezoids with two
horizontal sides. The bound has been improved to 0 (n 2) [10] .
If no Steiner points are allowed, Feng and Pavlidis [145]
describe an 0 (nN3) algorithm and Greene [169] gives an
O(n log n) algorithm for partitioning P into convex parts
(not necessarily minimum). However, if a minimal partition
is sought, there are two algorithms reported with running
times 0(n2N2) [169] and 0(N2n log n) [193].

There are decompositions with other objective functions.
For example, the problem of finding in polynomial time a
minimum weight triangulation, i.e., a triangulation with
minimum total edge length of a set of n points in the plane,
is still an open problem [161]. But interestingly enough, the
minimum weight triangulation of a simple polygon can be
done in 0 (n 3) time [ 163], [202]. For results along this line the
reader is referred to [193] and to the survey [194].
Problem 3.4.19 (Decomposition of rectilinear polygon in-

to rectangles): Given a rectilinear polygon RP with n sides,
decompose its interior into rectangles.
The minimal partition problem is elegantly solved by

Lipski [237] in 0 (n312 log n log log n) time, with Steiner
points allowed. Independently, Imai and Asano have solved
the same problem in 0(n312 log n) time [180], [181]. Both
algorithms make use of maximum matching of a bipartite
intersection graph of a set of vertical and horizontal line
segments and require O(n log n) space.
Problem 3.4.20 (Decomposition ofpolygons with- holes):

Given a simple polygon P with "holes" in its interior, decom-
pose its interior into simpler parts. (A hole is itself a simple
polygon and cannot contain holes.)

It turns out that polygons with holes are much more diffi-
cult to decompose into simpler components, such as convex,
star-shaped, or monotone parts. When Steiner points are al-
lowed, partitioning a simple polygon with holes into a
minimal number of triangles or convex parts [236] or into a
minimal number of trapezoids with two horizontal sides [9]
are both NP-hard problems. An 0 (n2+h) algorithm [10] has
been obtained to partition a simple polygon with n vertices
and h holes into a minimal number of trapezoids with two
horizontal sides. With Steiner points, the minimal covering

of a simple polygon with convex parts, star-shaped, or spiral
components is NP-hard [274]. We note that neither minimal
covering nor minimal partition is known to be in NP.
However, both problems have been shown to be decidable
[72], [271 ]. Without Steiner points, both minimal covering
and partitioning of a simple polygon with holes into convex,
star-shaped, or spiral components are NP-hard [193],
[236], [274].
Problem 3.4.21 (Decomposition of rectilinear polygons

with holes into rectangles): Given a rectilinear polygon with
rectilinear holes, decompose its interior into rectangles.
The minimal covering version of this problem is NP-

hard [247]. However, the problem of finding the minimal
partition is solvable in 0(n512) time [238], [270] by means of
maximum bipartite matching techniques. In the paper [181]
Imai and Asano give an 0 (n 312 log n) time algorithm for this
problem. If the holes can degenerate to points, the minimal
partition problem becomes NP-hard [236].

Since most of the minimal decomposition or partition
problems are presently intractable, good heuristics are there-
fore of interest. Only a few results with known performance
bounds are available [9]-[11].
Problem 3.4.22 (Delaunay decomposition of simple poly-

gons): Given a simple polygon P with n vertices, find a
decomposition based on the Delaunay triangulation, i.e.,
with the property that the circumcircle of each triangle does
not contain any other vertex ofP visible from any of the three
vertices of the triangle.

This is a generalization of the Delaunay triangulation of a
planar point set discussed in Section III-D-2. In [211] an
0 (n2) algorithm is given, based on the notion of a visibility
graph VG (P) of the set of vertices of P. The graph VG (P) has
the same vertex set as P and two vertices are connected by an
edge if the line segment determined by the two vertices does
not intersect the boundary of P.

E. Geometric Optimization Problems

This section covers geometric problems of a combinatorial
nature that are also frequently considered in the context of
graph theory or optimization. The Euclidean minimum span-
ning tree problem (Problem 3.4.3), for example, is one such
instance whose graph-theoretic counterpart is better known.
As computational geometry evolved, the metric instances of
such optimization problems were studied, with the objective
to obtain more efficient algorithms. However, there are prob-
lems whose geometric instantiation does not seem to offer
any advantage; the Euclidean traveling salesman problem
and minimal Steiner tree problem are two notorious examples
(they both remain NP-hard [160], [284]). The following is a
list of geometric optimization problems that have received
considerable attention in the past decade. Obviously, a large
number of optimization problems has not yet been addressed.
Problem 3.5.1 (Linear programming): Given n half-

spaces in d dimensions and a vector x = (xl,x2 . ,Xd)I
find a point v = (vI, v2, * * , Vd) that belongs to the inter-
section of the half-spaces such that x1v, + x2v2 + . . . + XdVd
is maximized.

This is one of the best known problems in operations re-
search and has a long -history [96]. This problem in two
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dimensions can be easily solved in O(n log n) time [313],
[317] by finding the intersection of n half-planes (Prob-
lem 3.2.7). An optimal O(n) time solution to this problem
is represented by the elegant method of Dyer [118] and
Megiddo [257], which we have described in some detail in
Section 1I-F. The problem in higher dimensions can also be
solved in O(n) time when the dimensionality is fixed [259].
Dobkin et al. [109] have shown that the linear programming
problem is Log-space hard for P. Dobkin and Reiss [112]
recently introduced the notion of LP-complete, i.e., a prob-
lem is said to be LP-complete if and only if it is polynomially
transformable to the problem of linear programming and vice
versa, and have described a class of LP-complete problems.
Problem 3.5.2 (2-Dimensional linear separability):

Given two sets P and Q of points in the plane with m and
n points, respectively, determine if there exists a line that
separates the two sets.

This problem has applications in statistics and pattern
recognition [115]. Qbserving that P and Q are linearly sepa-
rable if and only if the intersection of the convex hulls of P
and Q is empty, Shamos [313] gives an O(N log N) time
algorithm where N = m + n by computing the two convex
hulls in two dimensions and testing if they intersect. The
same approach can be used in three dimensions and the
same bound holds [293]. If the two point sets form convex
polyhedra, Muller and Preparata [265] and'later Dobkin and
Kirkpatrick [104] have obtained linear algorithms to find a
plane separating the two convex polyhedra, if it exists. How-
ever, the technique of Dyer [118] and Megiddo [257] can be
used to find the separating line and plane of any two sets P
and Q in 2- and 3-dimensions in 0(N) time. In general, a
separating hyperplane can be found in 0(N) time for any
fixed number of dimensions [259]. A recursive method for
finding a separating hyperplane is given in [187].
Problem 3.5.3 (Smallest enclosing circle): Given n

points in the plane, find the smallest circle that encloses all
the points.

This problem is known as the 1-center problem in location
theory [ 148]. The problem can be solved easily in 0 (n log n)
time [316] by means of the farthest neighbor Voronoi diagram
of these n points (cf. Section III-D). Using the prune-and-
search approach, Megiddo [257] has obtained an O(n) time
algorithm for finding the smallest enclosing hypersphere.
Problem 3.5.4 (Smallest enclosing rectangle): Given a

set of n points in the plane, find the smallest (area) rectangle
enclosing the set.

This problem can be solved in 0 (n log n) time and is
based on the observation, due to Freeman and Shapira [ 154],
that the minimum rectangle must have a side parallel to an
edge of the convex hull of S. After the convex hull is con-
structed in 0 (n log n) time, the minimum rectangle can be
found in 0 (n) time using the caliper method [313], [330]. No
o(n log n) time algorithm is known for this problem. We
note that this problem is related to the Euclidean -line center
problem, i.e., given a set S of n points in the plane, find a
straight line L such that the maximum Euclidean distance
from the points in S-L is minimized; the similarity resides in
the fact that the line L must be parallel to an edge of the
convex hull of S. It is shown in [235] that 0 (n log n) time is

both necessary and sufficient for the 1-line center problem.
Problem 3.5.5 (Smallest enclosing triangle): Given a set

S of n points in the plane, find the smallest (area) triangle
enclosing the set.

Klee and Laskowski [201] recently studied the problem of
finding all local minima among all the triangles enclosing a
convex polygon with'n vertices and gave an 0 (n log2 n) time
algorithm. (A triangle T is a local minimum if there exists
a c > 0 such that the area of T' is no less than that of T for
each enclosing triangle T' at Hausdorff distance (cf.
Section III-D) less than c from T.) An optimal 0(n) algorithm
is later given by O'Rourke et al. [272] for finding the small-
est enclosing triangle for convex polygons with n vertices.
Problem 3.5.6 (Largest empty circle): Given a set S of n

points in the plane, find the largest circle whose center lies
within the convex hull of S and which does not contain any
point of S in its interior.

This problem has an application in facility location where
one wishes to place, for example, a dump site in a residential
area so that the minimum distance from the site to a house-
hold is maximized. This problem can be solved in optimal
time 0(n log n) using the Voronoi diagram of S [313], [332].
The largest empty (isothetic) square problem can also be
solved in 0(n log n) time using the Voronoi diagram in
L.-metric [212], [232].

Problem 3.5.7 (Largest empty rectangle): Given a set S
of n points within a rectangle, find the largest (area) rec-
tangle similar to the given rectangle that does not contain any
point of S in its interior.

This problem is first studied in [266] where an 0 (n2) worst
case time and an 0 (n log2 n) expected time algorithms are
given. In [83] the worst case time has been improved to
0 (n log3 n) by means of a divide-and-conquer algorithm and
of a modified version of the Voronoi diagram. The problem
of finding a largest arbitrarily oriented rectangle seems much
more difficult.

There are other results for similar geometric optimization
problems. Dobkin et al. [100] discuss, among others, the
smallest perimeter k-gon problem, i.e., the problem of find-
ing a polygon with k vertices chosen from the given set of
points whose perimeter is minimum, and show that the prob-
lem is NP-hard when k is fl(nc). For fixed k, the problem can
be solved in 0 (n log n) time. Note that when k equals 2, the
problem becomes the closest pair problem (Problem 3.4.1).
In [56] an 0 (n log n) time algorithm for finding the maxi-
mum perimeter triangle, and an 0 (kn log n + n log2 n) al-
gorithm for finding the maximum perimeter or area k-gon,
for general k, are given. The largest area triangle and quadri-
lateral with vertices chosen from those of a convex polygon
can be found in linear time [113], [315]; the smallest area
triangle with vertices chosen from a given set of n points can
be found in 0 (n2 log2 n) time [110]; this has been later im-
proved to 0(n2) [86], [133]. Finding the smallest enclosing
ellipse is the subject of recent work by Silverman and Titter-'
ington [319] and Post [287], [288].
Next we consider two general location problems

p -center problem and p -median problem- which are more
commonly cast in graph-theoretic terms and have been shown
to be NP-hard [ 190], [191] . The Euclidean p -center problem
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is formally defined as follows. Given a set S of points
{PI,P2,* ,p,n} in the plane with wi the weight of p,, find a
set F ofp points, known as centers, such that the maximum
"distance" between the sets S and F of points is minimized,
i.e., minimize maxi minj wid(pi, qj) where pi in S, qj in F,
and d(f, qj) is the Euclidean distance between points pi and
qj. The p-median problem, on the other hand, seeks to
minimize the sum, rather than the maximum, of distances
between the sets S and F. The Euclidean p -center problem is
a standard minimax problem and the smallest enclosing circle
problem is just the unweighted 1-center problem. As has been
observed in the past, to prove NP-hardness of a geometric
problem is more complicated than of its graph-theoretic
counterpart [160], [284]. Nevertheless, these two problems
have recently been shown to be also NP-hard [260]. In fact,
even an approximation solution to the Euclidean p -center
problem remains NP-hard, and a similar statement holds for
the rectilinear p-center problem [260]. The following prob-
lem is also NP-complete [260].
Problem 3.5.8 (Disk cover): Given n points in the plane

and p disks of the same radius r, determine if there exists a
placement of these p disks so as to cover all the points, i.e.,
any given point lies inside at least one disk.

Consequently, the problem of determining the minimum
number of disks of the same radius r that can cover n given
points is also NP-hard. Papadimitriou has shown that the
Euclidean p -median problem, in which the set F is restricted
to be a subset of S, is NP-hard [285]. We note that the
p-center problem in one dimension can be solved in
0 (n log n) time [149] and the p-median problem can be
solved in 0(n2p) time [261].
We conclude this section with some variants of the above

location problems. The smallest bomb problem [315], [325],
i.e., find the smallest disk that covers at least k of the n givlen
points, can be solved in time 0 (k2n log n) [216]; an approxi-
mation algorithm for this problem, generalizable to higher
dimensions, is given in [325]. Thefixed-size bomb placement
problem, i.e., find a placement of the given disk in the plane
so that the number (or the total weight) of points covered by
the disk is maximized, can be solved in 0(n2) time [89],
which represents an improvement over an earlier algorithm
[114] running in 0 (n2 log n) time. If disks are replaced
by rectangles, then the fixed-size rectangle placement
problem can be solved in optimal time 0(n log n) in two
dimensions [179] and in 0(nd-1) time in d dimensions,
d > 2 [219]. The weighted 1-center problem in the plane can
be solved in 0 (n log2 n) time [255]. More efficient algo-
rithms can be obtained in the LI-metric [256]. Cole [94] has
recently shown that the weighted 1-center problem can be
solved in 0 (n log n) time. An interesting problem would be
whether or not this is the best possible for the problem.
(Recall that the unweighted 1-center problem can be solved
in 0(n) time [257].) Other combinatorial optimization prob-
lems, such as matching of 2n points in the plane, have also
been studied. A survey done by Avis [ 19] discusses heuristics
forXthe matching problems in some detail.

F. Problem Transformations and Lower Bounds

In this section we summarize a few complexity results that

have been established either by a direct argument on the
height of the computation/decision tree, or by problem trans-
formations (to be defined below). We first state a few basic
results without proofs.

Fact 1: (Membership) Given a set S of n objects, to
determine if a particular object belongs to S requires at
least IFlog2 n] tests in the worst case. This is the so-called
information-theoretic bound for any membership problem
[54].
Fact 2: (Sorting) Given n elements from a totally ordered

set, the problem of sorting these n elements in order requires
at least fl(n log n) comparisons under any comparison-based
or decision-tree model of computation (DTM for short)
[1]. This bound can be viewed as an information-theoretic
bound since we look for a particular permutation in a
set of n! possible permutations of these n elements and
Flog2 n!] = fl(n log n).
Fact 3: (Dimension embedding) If a problem in d dimen-

sions requiresf(n) time, then the problem in k dimensions,
k > d, also requiresf(n) time (see, e.g. [18]).

Definition: Given two problems A and B, A is said to be
f(n)-transformable to B, if any instance of A can be trans-
formed into an instance of B and the solution to the instance
of B can be transformed back to a solution to the instance of
A within 0 (f(n)) time where n is the size of problem A.
Lemma 3.6.1 [315]: Suppose problem A is g(n)-

transformable to problem B. If A is known to require f(n)
time under a certain model of computation, then B requires
at least f(n) - cg (n) time, for some constant c > 0. If B is
solvable in f(n) time, then A is solvable in f(n) + c 'g (n)
time, for some constant c' > 0.
As we mentioned before, we shall use the algebraic com-

putation tree (ACT for short) of Ben-Or [26] as our primary
computation model, possibly augmented with a number of
primitive operations such as testing on which side of a di-
rected line a point lies, all assumed to be executable in con-
stant time. A first-order ACT is referred to as a linear com-
putation tree (LCT). The following problems can be shown to
require fl(n log n) time under the ACT model of com-
putation [26].
Element Uniqueness Problem [108]: Given n numbers,

determine if they are all distinct.
Set Equality and Inclusion Problem [298]: Given two sets

A = {xl,x2, * * ,xn} and B = {Y1,Y2,* , Yn}, determine if
A = B orA C B.

Set Disjointness Problem [298]: Given two sets A =
{xI, x2, * , xn} and B = {Y1,Y2, , Yn}, determine if
A nB =0.

Extreme Points Problem [324], [350]: Given n points in
the plane, does their convex hull possess n vertices?

E-Closeness Problem [1501: Given n real numbers, deter-
mine if any two are within E of each other where E is a fixed
parameter of the problem.
Measure Problem [150]: Given n intervals on the real

line, compute the union of these n intervals. (This follows
from the fact that E-closeness problem is 0(n)-transformable
to it.)

interval Compactness Problem [305]: Given n intervals
on the real line, determine if the union of these n intervals is
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itself an interval.
The following problem requires fl(n log n) time under the

LCT model of computation.
Even Distribution Problem [245]: Given n numbers

and a fixed parameter c > 0, determine if they are evenly
distributed with spacing c. (A set of reals {xl, x2, , x4 is
said to be evenly distributed with spacing c > 0, if there
exists a permutation p of {1, 2, , n} such that xp(l) c
xp(2) <* c Xp(n) and Oc xp(i+) - xp(i) --cc, for if

1,2, -,n- 1.)
We now make use of Lemma 3.6.1 to sketch the proof of

some additional lower bounds. Seidel [312] gives a few lower
bound results for problems where certain additional geo-
metric information possessed by the input does not lead to
more efficient solutions.
Lemma 3.6.2 [3151, [316]: The convex hull problem of n

points in the plane requires fl(n log n) time in the ACT
model.

Proof: By 0(n)-transformation from sorting. The
transformation is as follows. Given n positive numbers
xI, x2, * *, xn, we map each number to a point on the parabola
y = x2, i.e., xi is mapped to the pointpi = (xi, x7). Since the
convex hull ofPI,P, ,' *p,n can be reported in order starting
from the point with the smallest x-coordinate, any convex
hull algorithm can sort [Fig. 6(a)].
Lemma 3.6.3 [317]: The half-plane intersection construc-

tion problem for n half-planes requires fl(n log n) time in the
ACT model.

Proof: By 0(n)-transformation from sorting. Given n
real numbers xI,x2,'. ,x,, we map each number xi to a
half-plane Hi containing the origin and determined by the
tangent to the parabola y = x2 with slope 2xi, i.e., xi is
mapped to y - 2xix - x2 [Fig. 6(b)]. Since the intersection
of half-planes is a convex polygon whose successive edges
are ordered by slope, any algorithm that constructs the inter-
section can sort.
Lemma 3.6.4 [317]: The intersection detection problem

for n intervals on the real line requires fl(n log n) time in the
ACT model.

Proof: By 0(n)-transformation from element unique-
ness. Indeed each number in the input of the element unique-
ness problem can be considered as a degenerate interval.
Lemma 3.6.5 [316]: The closest pair problem for n points

on the real line requires fl(n log n) time in the ACT model.
Proof: By 0(n)-transformation from element

uniqueness.
Even if the points of the problem are known to be distinct

a priori, the problem still requires fl(n log n) time, by
0(n)-transformation from the e-closeness problem.
Lemma 3.6.6 [61]:' The diameter problem for n points in

the plane requires fl(n log n) time in the ACT model.
Proof: By 0(n)-transformation from set disjointness.

GiventwosetsA = {xl,x2, ... Xn} and B = {YI, Y2, * *, Yn}
where x, and yi are in the interval (0,1), we map these
numbers onto the circumference of a unit circle centered at
the origin as follows. First consider the set of points
S = {pI Pi = (xi, 1)} and T = {qeiqI = (-y,-1)}, for
i= 1, 2,.. ,n. Next we apply the transform to map
each point (x, y) in S and T into the point (x/\/7-y2,

'Dobkin and Munro have independently proved the lemma.

Parabola y=x2 Parabola y=x'

y2x1x-x'

(a) (b)
Fig. 6. Mappings of numbers xi to points on parabola y = x2 or to

half-planes whose boundary lines are tangent to the parabola.

(-Y( /-1)

(xi ,1)

m(Xi/,Xj/ 2,l/I)
I * X

Fig. 7. Mapping of numbers onto the unit circle x2 + y2 = 1.

y/ x2+ 2) on the unit circle (Fig. 7). This effectively
maps a number in A onto a point in the first quadrant of the
unit circle and a number in B- onto a point in the third quad-
rant. Then it is immediate that the diameter of the set of points
on the circle is 2 if and only if A and B are not disjoint.
Lemma 3.6.7 [235]: The discrete 1-center problem for n

points, i.e., given n points in the plane, find the point
(the center) whose maximum distance to the remaining
n - 1 points is minimized, requires fQ(n log n) time in the
ACT model.

Proof: By 0(n)-transformation from set equality.
Consider the mapping of two sets A and B of n numbers in
(0, 1), as given in the previous lemma. Since the distance
realized by the center and its farthest neighbor is 2 if and only
if the two sets A and B are equal, the claim follows.
Lemma 3.6.8 [313]: The Euclidean minimum spanning

tree (EMST) problem for n points in the plane requires
fl(n log n) in the ACT model.

Proof: By 0(n)-transformation from sorting. Given n
numbers x1, x2, * *, Xn to be sorted, we map xi to the point
pi = (xi, 0) on the x-axis, for i = 1, 2,.. , n. Reporting the
EMST of these n points gives the ordered sequence of these
points, whence any EMST algorithm can sort.
Remark: The closest pair problem is also 0(n)-

transformable to the EMST problem since the edge between
the two closest points must belong to the tree. Hence, this
provides an alternative proof of the fl(n log n) lower bound
for the EMST problem.
Lemma 3.6.9 [313]: The triangulation problem of

n points in the plane requires fl(n log n) time in the
ACT model.

Proof: By 0(n)-transformation from sorting. Given
n numbers, we map them to n points on the x-axis as in
Lemma 3.6.8. Adding to the set of n points a point not on the
x-axis will yield a set whose triangulation can be reported so
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as to give the ordered sequence of the x-coordinates of
the points on the x-axis. Hence, any triangulation algorithm
can sort.
Lemma 3.6.10 [205], [338]: The maxima problem for n

points in the plane, i.e., finding all maxima of n points in the
plane, requires f1(n log n) time in the DTM. (A point
p = (x, y) in the plane is a maximum if there exists no other
point q = (s, t) such that x ' s and y ' t.)

Proof: By 0(n)-transformation from sorting. Given n
distinct numbers xl, x2, , xn, we map them to points on the
line L with equation x + y = c for some constant c, i.e., xi
is mapped to point pi on L with (xi, yi) as the x - and y -
coordinates. Note that each pointpi is a maximum. To deter-
mine that pi is a maximum the algorithm must be able to
decide that there exists no point pj, j f i, such that xi < xj
and yi < yj. This is equivalent to saying that for all j 7 i
either xi < xj or xi > xj, that is, for each pair xi andxj the
algorithm must have detected their ordering.
Lemma 3.6.11: The minimum distance between two lin-

early separable point sets of size n each requires fl(n log n)
time in the ACT model.

Proof: By O(n)-transformation from set disjointness.
Giventwo setsA = {a,I a2, .* an} andB = {b,, b2, * bn}
where ai and bi are reals, we map these numbers to two
linearly separable sets of points as follows. Let the numibers
inA be mapped to points in setP = {(a , O) I i = 1,2, n
and let the numbers in B be mapped to points in set
Q = {(bi, 1) I i = 1,2, *., n}. It is easily seen that sets A
and B have a common element if and only if the distance
between sets P and Q is 1.
Lemma 3.6.12 [305]: The visibility problem of n hori-

zontal line segments, i.e., given n horizontal line segments,
determine if any two line segments are mutually visible,
requires fl(n log n) in the ACT model. (Two horizontal line
segments are said to be mutually visible if there exists a
vertical line segment connecting two points of these segments
without intersecting any other line segment.)

Proof: By 0(n)-transformation from interval com-
pactness. Given n intervals II,9 I2 , In, we map each inter-
val Ij to a horizontal line segment Hj of the same length at
ordinate j. Next we add to this set of segments two new
horizontal segments whose lengths are equal to the distance
between the rightmost and the leftmost endpoints of the inter-
vals and are situated at y = 0 and y = n + 1, respectively.
Then these two new horizontal segments are mutually visible
if and only if the union of the intervals is not an interval.
Lemma 3.6.13: The point-on-line problem,2 i.e., given n

points and n lines in the plane, determine if any point lies on
any line, requires fl(n log n) time in the ACT model.

Proof: By 0(n)-transformation from set disjointness.
Given two sets A = {xI, x2, * ,x}andB = {YI,Y2, * Yn}
where xi and yi are in the interval (O, 1), we map them on the
unit circle as in Lemma 3.6.6. Then we convert the set of
points corresponding to B into a set of n lines that pass
through the origin and the points. It is obvious that the point-
on-line problem has an answer YES if and only if the sets A
and B are not disjoint.
Lemma 3.6.14: The collinearity problem, i.e., given n

points in the plane, determine if any three are collinear,
2Hopcroft, private communication.

requires Ql(n log n) time in the ACT model.
Proof: By 0(n)-transformation from set disjointness.

Given two sets A and B of n numbers in (0, 1), we perform
the mapping as in the previous lemma and add the origin to
the set. The resulting set of 2n + 1 points has three collinear
points if and only if A and B are not disjoint.
Lemma 3.6.15 [245], [295]: The maximum gap problem,

i.e., given n points on the real line, find the maximum gap
defined by two consecutive points, requires Ql(n log n) time
in the LCT model.

Proof: By 0 (n)-transformation from even distribution.
Indeed, we can compare the distance of the gap to the pa-
rameter c of the even distribution problem in constant time.
Remark: In our computation model the use of floor func-

tion as one of the primitive functions is ruled out. Note that
Gonzalez has obtained an 0 (n) time algorithm for this prob-
lem with the aid of the floor function ([ 165], see also [295]).
Lemma 3.6.16: The densest semicircle problem [186],

i.e., given n points on a circle, find a closed semicircle
containing the maximum number of these points, requires
fl(n log n) time in the ACT model.

Proof: By 0(n)-transformation from element unique-
ness. Given n numbers xl,x2,... ,xn, map xi to the two
points (l/y,,x,/y), and (-l/y, -xi/yi) where yi =

1 ± -4. Then the numbers are distinct if and only if the
densest closed semicircle contains exactly n + 1 points.
Lemma 3.6.17 [313], [315]: The construction of the Vo-

ronoi diagram of a set of n points in the plane requires
fk(n log n) time in the ACT model.

Proof: We can transform a number of problems to it.
Take, for example, the closest pair problem. Since the two
closest points must define an edge in the Voronoi diagram,
we can use the diagram to solve the closest pair problem.
Lemma 3.6.18: The largest empty circle problem in the

plane, i.e., given n points, find the largest circle whose
center is in the convex hull and which does not contain
any point in its interior, requires fl(n log n) time in the
LCT model.

Proof: This is just the maximum gap problem (3.6.15)
in two dimensions.

IV. CONCLUSION

We have surveyed the state-of-the-art of a newly emerged
discipline known as computational geometry. The survey
is intended to be as broad as possible, although there are
a number of research findings that are not included in
this paper. The problem areas and the techniques are not
outlined in their finest detail, but are described as accurately
as possible.

There are several open problems, most of which have been
mentioned in the article. The new notion of dynamic com-
putational geometry [15], [2751 where objects involved are
moving over (continuous) time, for example, is one of the
research directions that deserve further investigation. Pres-
ently, the primary emphasis in computational geometry is on
the asymptotic performance of algorithms. In order to ac-
celerate the already occurring technological transfer, it is
recommended that increasing attention be paid to the non-
asymptotic behavior of algorithms, i.e., to their performance
for "small" problem sizes. Comparisons, such as [13], of the
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running times of various algorithms whose constants are hid-
den in the big-Oh notation (asymptotic analysis), for prac-
tical values of input size, are much needed.
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