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� Introduction

Computational geometry is� in its broadest sense� the study of geometric problems
from a computational point of view� At the core of the �eld is a set of techniques for
the design and analysis of geometric algorithms� These algorithms often operate on�
and are guided by� a set of data structures that are ubiquitous in geometric computing�
These include arrangements� Voronoi diagrams� and Delaunay triangulations� It is
the purpose of this paper to present a tutorial introduction to these basic geometric
data structures�

The material for this paper is assembled from lectures that the author has given in
his computational geometry courses at the Massachusetts Institute of Technology and
at Stanford University over the past four years� The lectures were scribed by students
and then revised by the author� A list of the students who contributed their notes
appears at the end of the paper� Additional material on the data structures presented
here can be found in the standard texts Computational Geometry� An Introduction�
by F� P� Preparata and M� I� Shamos �Springer�Verlag� ����	� and Algorithms in
Combinatorial Geometry by H� Edelsbrunner �Springer�Verlag� ���
	� as well as in
the additional references at the end of the paper�

�This work by Leonidas Guibas has been supported by grants from Digital Equipment� Toshiba�
and Mitsubishi Corporations�
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Let us end this brief introduction by noting that the excitement of computa�
tional geometry is due to a combination of factors� deep connections with classical
mathematics and theoretical computer science on the one hand� and many ties with
applications on the other� Indeed� the origins of the discipline clearly lie in geo�
metric questions that arose in areas such as computer graphics and solid modeling�
computer�aided design� robotics� computer vision� etc� Not only have these more
applied areas been a source of problems and inspiration for computational geometry
but� conversely� several techniques from computational geometry have been found
useful in practice as well� The level of mathematical sophistication needed for work
in the �eld has risen sharply in the last four to �ve years� Nevertheless� many of the
new algorithms are simple and practical to implement�it is only their analysis that
requires advanced mathematical tools�

Because of the tutorial nature of this write�up� few references are given in the
main body of the text� The papers on which this exposition is based are listed in the
bibliography section at the end�

� Arrangements of Lines in the Plane

Computation Model

We need to de�ne the model of computation we will use to analyze our algorithms�
Our computing machine will be assumed to have an unbounded random�access mem�
ory �Although it
s unbounded� we will frequently worry about how much space we are
actually using�	 that is separated� for convenience� into an Integer Bank I and a Real
Bank R� We can read or write any location by indexing into the memory� denoted
I�j� or R�j�� where j is an integer� Note that indirection is allowed� as in R�I�I�j����
We will assume we can perform all standard arithmetic operations �addition� multi�
plication� modulo� etc�	 in constant time� Operations on real numbers �and the real
number memory	 are in�nite precision�

At this point� we may start worrying about this model� because the assumptions
for arithmetic operations� in�nite precision reals� and possibly huge integers allow
all sorts of strange and completely impractical algorithms� �For example� you could
encode a huge pre�computed table as a large integer or an in�nite�precision real�	 To
address these concerns� we add two caveats to the model� which will prevent any of
this weirdness� ��	 integers cannot be too big� i�e� if the input is size n� there must be
some polynomial P �n	 that bounds the legal values of integers� and ��	 the operations
we allow in constant time must be algebraic� so a square root is �ne� for example� but
an arctangent isn
t�

While this model of computation is a theoretically reasonable one� there are still
some practical problems� The basic problem is the in�nite�precision numbers� On
a real computer� the �oating�point representation introduces round�o� error� so the
laws of real arithmetic don
t quite hold for �oating�point numbers� In many appli�
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Figure �� The duality �a� b	 �� y � ax � b preserves aboveness�

cations� this problem is insigni�cant� In computational geometry� however� we are
blending combinatorics and numerics� so a small round�o� error may throw an al�
gorithm completely o�� �For example� consider an algorithm that branches on the
sign of some value� A small perturbation that changes a ���� to a ����� may cause
a completely di�erent computation to occur�	 If we try to use integers or rationals
instead� we no longer have round�o� error� but we lose the closure property of real
numbers� the intersection of a circle and a line de�ned on integer coordinates� for
example� can be not only non�integral� but non�rational as well� Dealing with these
issues is currently an active area of research�

Duality

We continue with a brief introduction to some geometric dualities between points and
lines� We denote the dual of a point P by D�P 	 and the dual of a line l by D�l	�

The �rst duality we consider maps a point �a� b	 to the line y � ax�b� and the line
y � �x � �� to the point ���� �	� This duality maintains incidence between points
and lines� i�e� point P is on line l if and only if point D�l	 is on line D�P 	� Let
s
check this claim� Point �a� b	 is on line y � �x � � if and only if b � �a � �� Thus�
b � �a � � tells us how far the point is above the line� In the dual case� we check
point ���� �	 against line y � ax � b and �nd that the distance is � � �a� b� which
is exactly the negative of the distance in the primal� This duality preserves not only
incidence� but the relationship �and distance	 of aboveness� �See Figure ��	 Another
nice property of this duality is that the x coordinate of a point corresponds to the
slope of the dual line� Unfortunately� this duality doesn
t allow vertical lines�

Let
s consider a second duality �which does handle vertical lines	� Map a point
�a� b	 to the line ax � by � � � �� and a line �x � �y � � � � to the point ��� �	�
This duality also has a nice geometric interpretation� The point �a� b	 maps to a line
with x�intercept ���a and y�intercept ���b� �See Figure ��	 Therefore� the line from
the origin to �a� b	 is perpendicular to the dual line� Furthermore� since triangle M is

similar to triangle N � we have m
a

� ��a
n

� which shows that the distance from a point
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Figure �� The duality �a� b	 �� ax � by � � � � inverts distance to the origin�

to the origin is the reciprocal of the distance from the dual line to the origin�

A little thought shows that� although the second duality can handle vertical lines�
it doesn
t handle lines through the origin� which the �rst duality could� A natural
question is �Is there a duality that can handle any line�� The answer turns out to
be no� unless you go to a projective plane with a line at in�nity� However� there are
plenty more dualities to choose from� �We direct any interested reader to the works
of H�S�M� Coxeter�	 Why should we bother with all these dualities� Many times we
have problems dealing with a collection of points �or lines	� Sometimes� working in
the dual turns out to be much easier than the original problem� We
ll see an example
of this later�
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Figure �� An Arrangement of Lines on the Plane

Arrangements

With the background material out of the way� we start on our �rst topic in com�
putational geometry� line arrangements on the plane� Intuitively� the problem is�
given n straight lines on the plane� determine how they partition the plane and
how the pieces �t together� �See Figure ��	 Formally� an arrangement consists of
cells� ��dimensional cells called �vertices�� ��dimensional cells called �edges�� and
��dimensional cells called �regions� or �faces�� Many problems in computational
geometry can be viewed as arrangement problems�

Suppose we have n lines� How many vertices are there in the arrangement� Well�
every two lines will intersect to produce a vertex� so the number is just

�
n
�

�
� At this

point� the reader may object� �What if some lines are parallel or concurrent�� In our
discussion� we will consider things to be in �general position�� In this case� we assume
that no � lines are parallel and no � lines are concurrent� In some other cases� we
will also assume no vertical or horizontal lines� �In real life� we can perturb the input
slightly to put things in general position�	 General position yields combinatorially
larger results than the specialized degenerate cases� so it makes sense to do our
analysis this way�

How many edges are there� Each line gets chopped into n edges by the other n��
lines� so there are n� total edges� How many faces� Each vertex is the bottom vertex
of a face� This gives

�
n
�

�
faces� In addition� there are n� � faces at the bottom of the

arrangement that don
t have bottom vertices� Therefore� the total number of faces is
just

�
n
�

�
� n � ��

Here is a problem to think about� In the above arrangement� vertices and edges
are nice� simple objects� but the faces can get messy� �You can keep track of a vertex
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Figure �� Extending �threads� from each vertex triangulates an arrangement�

as just a pair of coordinates and an edge as just a pair of vertices� but you may
need up to n edges to de�ne a face�	 In many applications� we want to have faces
of bounded complexity� This modi�cation is called a �triangulated arrangement��
One way to produce a triangulated arrangement is to take a normal arrangement and
extend a �thread� up and down from each vertex until it hits a line� �See Figure ��	
Now� each face is a trapezoid� which only needs � edges to describe� �One might be
tempted to call what we just did �trapezoidalization� as opposed to �triangulation��
In general� we
ll use �triangulation� to refer to any scheme to reduce the faces to
�nite complexity�	 The question is� �How many trapezoids do you get��

More Counting

The correct solution is �
�
n
�

�
� n � �� We arrive at this result by noting that each

thread breaks an existing face into two and that each vertex produces two threads�
giving �

�
n
�

�
�
�
n
�

�
� n � ��

Returning to the original �non�triangulated	 problem� we note that a face can
have as few as � and as many as n edges� How many edges does an average face have�
Each edge counts toward both faces that it touches� so we have twice the number of
edges divided by the number of faces or �n���

�
n
�

�
� n� �	� which is approximately ��

Now� suppose we add a new line to the arrangement of n lines� What faces of the
original arrangement do we touch� These faces are called the �zone� or the �horizon�
of the new line� �See Figure ��	 Let
s do some more counting� How many faces are
there in a zone� Since we can intersect each of the original lines exactly once� and
each time we do this� we touch exactly one new face� there are n� � faces in the zone
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Figure �� The zone of the darker line consists of the marked faces�

of a line�

A harder problem is counting the number of edges �or vertices	 in a zone� We
can get a quick upper bound by noting that each face can have at most n edges� and
there are n � � faces in the zone� yielding an O�n�	 upper bound� Since the average
number of edges per face is � and the number of faces is n � �� we might wishfully
hope to get a linear bound� This argument� however� isn
t logically valid since the
average we computed was over all faces� so a given line might just run into the bad
ones� A careful argument� though� does give us a linear bound� This argument is the
Zone Theorem�

The Zone Theorem

We
re actually only dealing with the Zone Theorem �also known as the Horizon The�
orem	 for lines on the plane� The Zone Theorem states�

Theorem �� The zone of a straight line intersecting an arrangement of n straight
lines in the plane has at most �n edges� The same bound holds for the number of
vertices as well�

Proof� Without loss of generality� we can assume the new line is horizontal� �If not�
we can always rotate our head slightly until it is�	 Let
s only count the right edges of
the faces of the zone� �Remember we
re in general position� so every edge of a face is
either a right edge or a left edge�	 If we can bound the number of right edges by �n�
we can then stand on our heads and apply the same argument to get the left edges�
Combining the two counts will give us the desired �n bound�






Figure �� Introducing the dashed line creates the � additional marked edges�

Suppose we introduce the n lines of the arrangement one�at�a�time� ordered from
right to left by the intersection point of the line with the zone line� Each time we
introduce an additional line� we can create at most � new right edges� since the new
line introduces one new right edge and splits two previous ones� �See Figure ��	 Above
and below the intersection points� the already�added lines shield the new line from
having any further e�ect on the zone� Thus� we have the �n bound on right edges�
QED

�We mention that applying this argument even more carefully gives a bound of
�n� �� and that an even more precise argument gives a slightly lower bound� about
���n�	

So� we have the Zone Theorem� Who cares� Well� we can use the Zone Theorem
to create an e�cient incremental method of computing arrangements� Suppose we
have an arrangement �like Figure �	 and we want to add an additional line �like the
dark one in Figure �	� we can compute the new arrangement by putting our left hand
on the wall of the zone and walking around the zone� marking o� faces whenever we
cross the new line� �See Figure 
�	 �This is called a �labyrinth� walk� since you can
get out of certain kinds of mazes this way�	 By the Zone Theorem� the cost of this
walk is linear� Thus� we can add a line to an arrangement in linear time� yielding
an O�n�	 incremental algorithm to construct an arrangement� which is optimal up
to a constant factor� This example nicely illustrates an application of combinatorial
geometry �the Zone Theorem	 to computational geometry �the incremental method	�
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Figure 
� Walking around the zone follows the dashed line�

Some Applications

Now let
s look at some applications of arrangements� In vision� we are frequently given
a bunch of points on the plane and asked if there are a bunch on a line� �In robotics�
this same problem arises in three dimensions� because we
ll be looking for solid sur�
faces based on sensor input� Also� collinear points screw up certain algorithms� so it
s
important to be able to �nd them�	

Obviously� we can look at every set of � points and check if they
re collinear� This
process requires time

�
n
�

�
� O�n�	� The only known lower bound for this problem is

��n log n	� By taking the dual of the points and looking for three concurrent lines�
we can solve this problem in time O�n�	� This result is the best known for the last
�� years and is an open area for research�

Let
s generalize this problem� Given a bunch of points� what is the smallest area
triangle de�ned by three of them� We claim that again� by duality� we can get an
O�n�	 algorithm as opposed to the ��n�	 obvious one� Fix any two points� The
smallest triangle is given by the closest point to the line determined by those two
points� By similar triangles� we can use the distance in the vertical direction� rather
than the true distance� Recall that our �rst duality preserves vertical distance� So�
in the primal we take any two points� consider the line they determine� and �nd the
nearest point to that line� In the dual� we take any two lines� consider the point
they determine �the intersection vertex	� and �nd the nearest line to that point� But
the problem in the dual is exactly the problem of �nding the shortest �thread� in a
triangulated arrangement We can dualize the points in linear time� Constructing
the arrangement takes an additional O�n�	 time� So we need to be able to �nd the
shortest thread in O�n�	 time as well in order to achieve the desired O�n�	 overall
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bound�

To �nd the shortest thread� one possibility is to merge the vertices of the upper
and lower edges of each face� walking along both at the same time� to compute the
length of all the threads through a face� Since the total number of edges is quadratic�
this method clearly gives us the desired bound�

Another possibility is to walk around each face� computing the threads for each
one as we go� At �rst glance� this method appears to be quartic� since there are O�n�	
faces� each face has O�n	 edges� and each step of the walk will require checking the
O�n	 other edges of the current face� A more careful analysis� however� shows that
the cost is equal toX
�faces f	

X
�edges of f	

X
�other edges of f	

� �
X

lines l

X
edges of faces incident on l

�
X

lines l
Zone�l	

� O�n�	

by interchanging the order of summation and applying the trusty Zone Theorem�

Let us note that the O�n�	 method we just described require ��n�	 space� Is there
a more e�cient methond space�wise� The answer is yes� by using a new paradigm
called �Line Sweeping�� in which we sweep a vertical line across the arrangement�
only keeping track of the zone of this sweep line� This gives us an algorithm with
O�n� log n	 time and O�n	 space directly� Further re�nements bring the bounds to
O�n�	 time and O�n	 space� as we will see�

� Topological Sweeps for Computing Arrangements

Topological vs� Linear Sweeps

There is a very simple algorithm for computing the arrangement of n lines in the x�
y�plane� based on the �line�sweeping� paradigm� For lack of space� we do not present
the details here� Intuitively� the algorithm takes a �vertical� �perpendicular to the
x�axis	 line in the plane and �sweeps� it along the x�axis� As the sweep proceeds�
changes in the order in which the di�erent lines crossed the sweep line are noted� and
thus the complete arrangement is determined� Unfortunately� the algorithm implicitly
�sorts� the n� intersection points according to their x�coordinates� and consequently�
its running time was O�n� lg n	� In addition� the algorithm makes use of balanced�tree
data structures� and consequently is not easy to implement�

We now consider a variation of the sweep algorithm which replaces the sweep
line with a �topological� wavefront� The algorithm has O�n�	 running time� yet still
requires only O�n	 working space� The algorithm is also easier to implement� since
only array data structures are needed� Throughout the lecture� we assume that the
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Figure �� The cut c�� c�� c�� c�� c� de�nes the indicated topological line� The shaded
region indicates the convex polygonal region de�ned by c� and c��

set of n lines is nondegenerate� i�e�� no three lines cross at a single point� and no lines
are vertical �perpendicular to the x�axis	�

Topological Lines

The de�nition of the desired wavefront makes use of the �above� ordering de�
scribed in the previous lecture� Speci�cally� a topological line is de�ned by an ordered
sequence of edges c�� c�� � � � � cn�� such that c� borders the top �as de�ned by the
�above� ordering	 region� cn�� borders the bottom region� and each adjacent pair of
edges �ci� ci��	 is such that ci and ci�� lie on a single convex polygonal region in the
plane� and ci is before ci�� in the �above� ordering� Figure � shows a topological line
for a simple set of � lines� The shaded region indicates the convex polygonal region
shared by edges c� and c�� Formally� the sequence of edged de�ning a topological line
is called a cut�

Observe that each of the n lines in the plane must have exactly one segment in
any cut� If two segments of a single line were in a single cut� then it would be possible
to show that a cycle exists in the �above� ordering� Consequently� a line in the plane
can have at most a single edge in any cut� since it was shown previously that such
a cycle cannot exist� In addition� each line must have at least one segment in every
cut� since a cut essentially de�nes a path from the top region to the bottom region
�crossing over each of the segments in the cut	 and every line separates the top and
bottom regions�
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(a) (b)

Figure �� An elementary step removes two edges from a cut� and replaces them with
two new edges� as shown�

A cut C is said to be to the left of another cut C �� if for every line l in the plane�
the segment of l in C is to the left of the segment of l in C �� Using this ordering� it
is possible to de�ne a leftmost cut and a rightmost cut�

Topological Sweeps

The topological sweep algorithm essentially computes a sequence of cuts C�� C�� � � � ��
Ck� where C� is the leftmost cut� Ck is the rightmost cut� and each adjacent pair of
cuts �Ci� Ci��	 is such that Ci is to the left of Ci��� Each Ci�� is computed from Ci

with a simple transformation� Speci�cally� if there exists in Ci a pair of adjacent edges
that share a right endpoint� as shown in Figure ��a	� then the cut Ci�� is obtained
by locally replacing the adjacent pair of edges in Ci with the pair of edges indicated
in Figure ��b	� This replacement is called an elementary step� Observe that applying
an elementary step to a cut Ci is guaranteed to result in a cut Ci�� which is to the
left of Ci�

Computing the sequence of cuts C�� C�� � � � � Ck can clearly be done� as long as it
can be shown that each cut Ci in the sequence contains at least one point where an
elementary step can be applied� Fortunately� it is possible to show that the leftmost
right endpoint of all the edges in any cut Ci must be such a point� Let the point p
be the leftmost right endpoint of the edges in cut Ci� and assume for the purposes
of contradiction� that p is the right endpoint of only a single edge c in Ci� i�e�� an
elementary step cannot be applied to p� The fact that p is an endpoint implies that
the line containing c must cross some other line l at point p� Now� consider the point
p� that is the right endpoint of the segment c� of l that appears in Ci �we argued
earlier that each line must have a segment in any cut	� If the segment c� appears after
the segment c in the cut Ci� then it possible to show that p� must be the left of p�
which is clearly a contradiction� In particular� the spatial relationship between p and
p� must be similar to that shown in Figure ���a	� or else it can be easily argued that
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Figure ���

the �above� ordering contains a cycle� which previously was shown to be impossible�
Similarly� if the segment c� appears before the segment c in the cut Ci� then the spatial
relationship between p and p� must be similar to that shown in Figure ���b	� and once
again� the contradictory conclusion that p� is to the left of p can be drawn� Thus�
since c� must either appear before or after c in Ci� p must be right endpoint of two
segments in Ci� and consequently is a point where an elementary step can be applied�
The preceding argument is not valid for the rightmost cut of the arrangement� but
this is of no consequence� since the rightmost cut is always the last in the sequence
C�� C�� � � � � Ck�

Since it is always possible to �nd a pair of edges that share a right endpoint� and
given the fact that each line in the plane must have exactly one segment in each
cut� it becomes apparent that each cut essentially speci�es a permutation of the lines
in the plane �the leftmost cut corresponds to the permutation that lists all lines in
inverse�slope order	� while each elementary step corresponds to a transposition of two
adjacent lines in a particular permutation� In the algorithm using the �vertical� sweep
line� the order of the transpositions was determined by the x�coordinate ordering
of all the intersections of the n lines� By switching to a topological sweep line� it
becomes possible to perform the transposition on any suitable pair of edges� while
still obtaining the desired arrangement� By eliminating the need to compute the x�
coordinate ordering� it is possible to reduce the amount of time needed to compute
the arrangement�

Horizon Trees

At this point� the overall structure of the topological sweep algorithm is easily stated�
The algorithm begins with the leftmost cut� and maintains a �bag� of points that
elementary steps can be applied to� The algorithm then proceeds to pull a point
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from the bag� perform an elementary step� check for new points that belong in the
bag� and add any new points that are discovered� What remains to be described�
are methods for generating the leftmost cut� and �nding new points that belong in
the bag� Observe� that the need to identify new points for the bag is particularly
troublesome� since a naive search would result in a �elementary step� that took O�n	
time to perform� and an algorithms that was O�n�	 overall� Fortunately� both these
tasks can be performed using a complementary pair of data structures� the upper and
lower horizon trees� By making use of horizon trees� the amortized time required for
each elementary step is constant�

The upper �lower� horizon tree of a cut c�� c�� � � � � cn�� is constructed by extending
the edges in the cut to the right� and �killing� edges as they intersect� In particular�
whenever two extended edges intersect� the edge of lower �higher	 slope no longer
continues to be extended� while edge of higher �lower	 slope continues on to the right�
Formally� if the edges c�� c�� � � � � cn�� are part of the lines l�� l�� � � � � ln��� then a point
p on line li is part of the upper horizon tree� if

� p is above all lines lj� where j � i� and

� p is below all lines lk� where k � i and lk is of greater slope than li�

Similarly� a point p on line li is part of the lower horizon tree� if

� p is below all lines lj� where j � i� and

� p is above all lines lk� where k � i and lk is of lesser slope than li�

Figure �� shows the upper and lower horizon trees for a simple cut� Observe� that
the upper horizon tree is not a tree� but rather a forest of two trees� This �di�culty�
can be remedied by adding a �vertical� line at ��� which collects the forest into a
single tree� In addition� observe that �as is true in general	 the intersection of the
upper and lower horizon trees for the cut is the cut itself� Consequently� the cut can
be extracted from the upper and lower horizon trees� by simply taking for each line
in the plane the shorter of the two edges that exist for the line in the upper and lower
trees�

Intuitively� updating the horizon trees after an elementary step is straightforward�
Consider the upper horizon tree shown in Figure ��� The circled point is where the
elementary step is to be performed� Updating the upper horizon tree consists of
removing the edges that approach the point from the left� extending the darkened
line to the right until it intersects another �branch� of the current horizon tree� and
adding the resulting segment to the new horizon tree� The most di�cult part of
the update is the search for the point where the extended line intersects the current
horizon tree� Fortunately� this search can be accomplished by taking the edge� in the
current tree� corresponding to the next edge in the current cut� and then searching
back toward the root of the tree for the edge that intersects the extended line�
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Figure ��� Upper and lower horizon trees for the indicated topological line�

Computing the upper horizon tree for the leftmost cut is accomplished in a similar
fashion� Simply presort the lines in reverse slope order� and incrementally construct
the initial horizon tree by �inserting� the lines� in sorted order� with the update
routine just described� Since newly inserted lines act as �shields� which prevent some
parts of the tree from ever being examined during subsequent insertions� the total
time to construct the initial upper horizon tree is O�n	 overall� The construction of
the initial lower horizon tree is similar�
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Figure ��� The basic update procedure for the upper horizon tree� Performing and
elementary step on the circled point requires extending the darkened line� and search�
ing along the �bay� to �nd where the extended line intersects the current tree� The
�nal upper horizon tree is shown to the right�

Figure ��� Basic charging scheme for bay traversals� The circled point indicates
the site of the elementary step being performed� while the broken line indicates the
parallel support line that separates the bay into edges whose slopes are greater!less
than the slope of the line being extended�
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Figure ��� The fact that line l�� charges line l� in one bay traversal implies that l��

shields the portion of l� �darkened	 to the left of point p from being touched by any
previous bay traversal�

All that remains to be shown� is that the search for new intersection points can
be accomplished in amortized constant time� Essentially� what needs to be shown is
that the time to perform all such searches is O�n�	 total� This can be accomplished
by arguing that the time to perform all the searches associated with the �extension�
of a particular line l is O�n	� Consider the search associated with the update of the
upper horizon tree after a particular elementary step where line l is being extended�
The search traverses a sequence of edges� which de�nes a �bay� of the current horizon
tree� The time required for each �hop� of the traversal� is charged to individual lines
in the following fashion� If the hop is from a edge c to a edge c�� and the slope of
c is greater than the slop of line l� then the time to perform the hop is charged to
the line containing c�� Alternately� if the slope of c is less than the slope of l� then
the time for the hop is charged to the line containing c� Since the slopes of segments
must increase monotonically with the traversal� this charging scheme is guaranteed
to account for all the time needed to perform the traversal� except possibly for the
time needed for the �rst and last hops� Since� however� this accounts for at most a
constant amount of error per traversal� it will be of no consequence� This charging
scheme is depicted graphically in Figure ���

The key to the argument� is to show that each line in the plane is charged at most
once during all the traversals that are associated with the elementary steps on points
of a particular line l� Consider a line l� that has been charged for a hop to it from
another line l��� If p is the point where l� and l�� intersect� then clearly� no segment
of l� that begins to the left of p can be traversed during any search associated with
a previous extension of l� To see this� simply note that the part of l�� to the left of p
e�ectively �shields� all points on l� to the left of p from any previous searches� This
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Figure ��� The fact that some previous traversal of a bay traversed an edge of l� that
began to the right of point p implies the existence of a line like l���� which shields p�
and thus� implies a very di�erent form �darkened	 for the current traversal�

fact is depicted graphically in Figure ��� In addition� no segment of l� that begins to
the right of p can be traversed during any search associated with a previous extension
of l� If such a segment were traversed in some previous search� then there would have
to exist a line l��� that intersected l� at a point below l� as shown in Figure ��� Observe�
however� that such a line l��� would �shield� the point p� thus contradicting the premise
that l� was charged by l��� Similar arguments demonstrate that a line charged for a
hop from it can also never have been charged during any previous search associated
with an extension of line l� Consequently� since the above arguments hold even if the
charge to line l� is the last associated with all the extensions of line l� each line in
the plane can be charged at most once� This in turn implies that the time need to
perform all the searches is O�n�	 total� and thus� that computing the arrangement of
the n lines can be done in O�n�	 time with a topological sweep�

� Davenport�Scchinzel Sequences

Arrangements of Line Segments

When dealing with arrangements of lines� we needed only a single parameter �the
number of lines	 to calculate the exact number of vertices� edges� and faces� This
is clearly not good enough for line segments� since an arrangement of n segments
can have anywhere from n to n� edges� Sometimes in order to analyze a geometric
structure� we will need to add extra parameters relating to the output� In this case�
we are interested in three parameters�

� n� the number of line segments

��



Figure ��� An arrangement with n � �� k � �� c � ��

� k� the number of intersections between segments� where � � k �
�
n
�

�
� c� the number of connected components in the arrangement

Using these parameters� we can determine the exact number of vertices� edges�
and faces in the arrangement� As before� we will assume that there are no degen�
eracies �i�e� no three segments ever coincide� and segments do not intersect at their
endpoints	� Under these conditions there is one vertex for each endpoint� plus one
for each intersection� For edges there are n initially� and each intersection adds two
more �one for each of the segments that it splits	� Hence we have

v � �n � k

e � n � �k�

To count faces we make use of Euler
s Theorem �one of many	 which says that
v � f � e � c � � for any planar graph� �The constant at the end depends on the
topological properties of the space the graph is embedded into�	 Applying this to
arrangements of line segments� we get

f � k � n � c � ��

The arrangement of �gure �� has �� vertices� �� edges� and � faces �one of which is
the outer face	�

Lower Envelopes

We are interested in calculating upper bounds on the complexity of single faces and
zones� just as we did for arrangements of lines� A useful concept in calculating these
bounds is the lower envelope of an arrangement� which can be de�ned as the portion
of the arrangement visible from z � �� �see �gure �
	� The complexity of the lower
envelope is simply the number of segment portions which are visible�
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Figure �
� The lower envelope of three line segments�

Consider looking at the arrangement from below at z � ��� If no segments
intersect� then the lower envelope can change only when we see an endpoint� giving
an O�n	 upper bound on the complexity� Similarly� in the general case an upper
bound is the number of endpoints and intersections that we can see� So far the only
upper bound that we have proven is the trivial bound �n � k � O�n�	� It turns out
that we can do much better�

Theorem �� The lower envelope complexity of an arrangement of n line segments is
O�n��n		�

where ��n	 is the extremely slow�growing inverse of the Ackermann function �a con�
stant for all practical purposes	� A separate construction� not described here� actually
achieves this upper bound� Thus the lower envelope complexity of an arrangement of
n line segments is ��n��n		� The same technique we will use below shows that this
is also the worst�case complexity of a single face�

Davenport�Schinzel Sequences

Given an alphabet " � fa�b�c�� � � g of n symbols� a sequence � is a �nite string of
symbols from " �i�e� � � "�	� A subsequence of � is a sequence obtained by deleting
some symbols from ��� A substring of � is a sequence obtained by taking a consecutive
group �possibly empty	 of symbols from ���

A Davenport#Schinzel sequence is a sequence where no two symbols are allowed
to alternate more than a speci�c number of times� More precisely� for s � � we say
a sequence � is an �n� s	 Davenport#Schinzel sequence �hereafter an �n� s	�sequence	
i��

� For every a � "� aa is not a substring of �� In other words� every two adjacent
symbols are distinct�

�For example� warm and ten are subsequences of watermelon�
�Like in the ad� usa is a substring of wausau�
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� For every pair of distinct symbols a� b � "� the sequence of s � � alternating
a
s and b
s is not a subsequence of �� Thus aba is forbidden if s � �� abab is
forbidden if s � �� ababa is forbidden if s � �� and so on�

We are interested in estimating �s�n	� the maximum length of any �n� s	�sequence�
As an initial exercise� it is easy to check that this function is bounded� i�e� �s�n	 ��
for all s and n�

When s � � no symbol may appear twice� thus ���n	 � n� A slightly trickier
argument shows that ���n	 � �n� �� achieved by � � ab� � �yzy� � �ba or abacad� � �aza�
The �rst di�cult case is s � �� where ���n	 � O�n��n		� We present below a �simple�
proof of this result due to Peter Shor�

How does this relate to lower envelopes� Two line segments can intersect in at
most one place� It is easy to check that while the subsequence abab can occur in the
lower envelope� the subsequence ababa cannot �it requires two intersections	� Thus
the sequence of segments in the lower envelope is an �n� �	�sequence �recall �gure �
	�
The proof of Theorem � reduces to proving the bound on ���n	 mentioned above�

Lower envelopes and Davenport#Schinzel sequences arise naturally in many geo�
metric problems� Often we will be dealing with geometric primitives where there is
some small constant bound on the number of intersections between any pair �eg� line
segments� circles� polynomials	� The lower envelope of a collection of such primitives
will be a Davenport#Schinzel sequence of some small order� Fortunately� �s�n	 is
�almost� linear for every s� ie� it is the product of n and some very slow�growing
function� For example� ���n	 � ��n���n�	�

The Ackermann Function

Here we review the Ackermann function �which grows faster than any primitive re�
cursive function	� For each k � �� we de�ne a function Ak on the positive integers�

A��n	 � �n ��	

Ak���n	 � A
�n�
k ��	 ��	

where f �n� denotes the function f iterated n times� For example

A��n	 � �n�

A��n	 � �� ��
� �
��
� a tower

of n �
s�

A��n	 � �� ��
� �
��
� � � �

�
��
o

� g� �z �
n towers

��

and so on �becoming increasingly di�cult to typeset	� De�ne the Ackermann function
by diagonalization�

A�n	 � An�n	� ��	
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De�ne the inverse functions in the natural way�

�k�n	 � min fj � � � Ak�j	 � ng� ��	

��n	 � min fj � � � A�j	 � ng� ��	

For example ���n	 � dn��e� ���n	 � dlg ne �lg denotes the base � logarithm	� and
���n	 � lg� n �the number of times we need to apply lg to n to get at or below �	�
Since A��	 � �� and A��	 � A�������	 is much larger than any realistic number�
for practical purposes we can assume ��n	 � �� From the de�nitions we note the
following easy consequences�

Claim �� For all positive integers n and k�

�i� Ak�n	 � n� and Ak�n	 is strictly increasing in n�

�ii� Ak��	 � �� Ak��	 � �� Ak��	 � k�

�iii� ���n��n	 � ��n	�

�iv� if n � �� ��n	 � ���n����n	 � ��

�v� ���n����n	 � ��

�vi� �k���n	 � min fl � � � �
�l�
k �n	 � �g�

An Upper Bound Recurrence

Hereafter we �x s � �� and our goal is to bound ���n	� Given a �n� �	�sequence �� we
want to partition it up somehow into a sequence of chains� which are substrings of
distinct symbols �hence any chain has length at most n	� Let m denote the number
of chains in our partition�

Claim �� Any �n� �	�sequence � has a partition into m � �n� � chains�

Proof� Given �� we construct our chain partition greedily from left to right� starting
a new chain only when we come to a symbol already in the current chain� We now
show this partition has at most �n� � chains�

Consider the last symbol of each chain� Suppose a symbol y appears last in three
di�erent chains� Then the symbol x immediately after the middle y begins a chain�
Since we built the chains greedily� x must also occur in the chain containing the middle
y� giving us the forbidden subsequence yxyxy ��gure ��	�

Thus every symbol appears at most twice as the last in a chain� so there are at
most �n chains� To improve this to �n� �� note that the �rst chain has at least two
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x y xy y

Figure ��� A symbol appearing last in three di�erent chains�

symbols� Consider the second�last symbol of the �rst chain� and the same argument
shows that it cannot occur last in two other chains� �

We have already shown ���n	 � �n�� Our re�ned analysis of ���n	 will recursively
need to keep track of m� so we de�ne 	�m�n	 to be the maximum length of a �n� �	�
sequence with a partition into at most m chains� Thus ���n	 � 	��n � �� n	� We
note the trivial bound 	�m�n	 � mn� which we will use as a base case when m � ��

Theorem �� Given n�m� and � � b � m� there exists a partition n � n��� � ��nb�n�
such that

	�m�n	 � 	�b� �� n�	 �
bX

i	�

	�dm�be� ni	 � �m � �n��

Proof� Let � be a maximum length m�chain �n� �	�sequence� We begin by cutting
� into b blocks� each consisting of c � dm�be consecutive chains each �the last block
may have less than c chains	� We call a symbol internal if it appears in only one
block� otherwise we call it external� Let ni denote the number of internal symbols in
the i�th block� and let n� denote the number of external symbols� this gives us our
partition of n�

Consider the subsequence of internal symbols in the i�th block� This subsequence
would be an �ni� �	�sequence except that it may have repetitions� Since repetitions
may only occur at chain boundaries� we may delete at most one symbol at each bound�
ary within the block to remove all repetitions� After these deletions� the remaining
symbols are an �ni� �	�sequence� and hence there are at most 	�c� ni	 internal symbols
left in the block� Summing over all blocks� at most m internal symbols are deleted�
and at most

Pb
i	� 	�c� ni	 internal symbols remain in the �ni� �	�subsequences�

Now we need to count the external symbols� We divide the appearances of the
external symbols into three kinds� middle� �rst� and last appearances� An occurrence
of x is a middle appearance if x occurs in both an earlier and a later block� An
occurrence of x is a �rst appearance if x does not appear in any earlier block� since x

is external� x must appear in a later block� Last appearances are de�ned symmetrically
��gure ��	�

Consider the subsequence of middle appearances of external symbols� First we
need to �x any repetitions� as before� we need delete at most one symbol per chain
boundary� for at most m deletions� Call the resulting sequence ���

Claim �� No symbol of �� appears twice in the same block�
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Figure ��� First� middle� and last appearances of x�

x

block block block

xyy y

first last

Figure ��� A symbol of �� appearing twice in the same block�

Proof� If x appeared twice in the same block of ��� then some other external
symbol y must appear between these two occurences in ��� Since this y is a middle
appearance in �� y also appears in earlier and later blocks of �� giving us the forbidden
subsequence yxyxy in � ��gure ��	� �

Thus the b blocks of � have become chains for ��� Since no symbol of �� appears
in the �rst or last block� �� has a decomposition into at most b� � chains� Hence ��

has length at most 	�b� �� n�	�

Now all we have left to count are the �rst and last appearances of external symbols�
We argue a bound on �rst appearances� last appearances are handled symmetrically�
Consider the subsequence of all �rst appearances of external symbols� As before�
eliminate all repetitions using at most m deletions� let �FIRST be the resulting sequence�

Claim �� The sequence �FIRST is an �n�� �	�sequence�

Proof� Suppose xyxy appears as a subsequence of �FIRST for some distinct external
symbols x and y� Then these four appearances must all occur in the same block of
� �since all �rst appearances of a symbol occur in the same block	� Since the x
s are
�rst appearances� there must be another appearance of x in a later block� giving us
the forbidden subsequence xyxyx in �� �

Thus �FIRST has length at most ���n
�	 � �n�� so there are at most �n� � m �rst

appearances of external symbols altogether� Likewise for last appearances� We have
accounted for all the symbols of �� so adding all the terms proves the recurrence� �
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Analyzing the Recurrence

Given the diagonal de�nition of the Ackermann function� we should expect some kind
of iterated argument to prove a bound including ��n	 as a factor� In e�ect we prove
a sequence of bounds� each bound depending on the previous� which converge to our
desired bound� We prove a series of bounds for k � � of the form

	�m�n	 � 	k�m�n	
def
� ck�k�m	 �m � dkn ��	

where ck and dk are sequences of constants to be determined below�

Claim 	� Lets �x k � �� Suppose we know 	�m�n	 � 	k�m�n	� Then 	�m�n	 �
	k���m�n	� where ck�� � ck � � and dk�� � dk � ��

Proof� Consider the recurrence of theorem � if we choose b � dm��k�m	e� so each
block has at most dm�be � �k�m	 chains� Then

	�m�n	 � 	�bm��k�m	c� n�	 �
bX

i	�

	��k�m	� ni	 � �m � �n��

To analyze this equation �when m � �	� we apply our bound 	k to the �rst term and
recurse on the b summed terms� The recursion stops when we reach m � �� at which
point we apply the naive bound 	��� n�	 � �n��

We view the recursion as a tree� non�leaf nodes of this tree partitions its sequence�
symbols� and chains among its children� At a given node v of the recursion tree� let
mv denote the number of chains at that node� and �when v is not a leaf	 let n�v denote
the number of external symbols found when we recurse at v�

At the root of the tree �level �	 we have all m chains and all n symbols� At each
node v in the next level of the tree �level �	 we have mv � �k�m	 chains and ni symbols

�where i here indexes the child	� At each node v in level � we have mv � �
���
k �m	

chains� and so on� down to level l � � �the leaves of the recursion	 where we have

mv � �
�l���
k �m	 � � chains per leaf� By claim � �parts �ii	 and �vi		� we know that

l � �k���m	�

To bound 	�m�n	� we need to sum up the sequence lengths at all the leaves plus
the nonrecursive terms �	�bmv��k�mv	c� �n�v� and �mv	 at all the interior nodes v of
the tree� We consider these interior terms �rst�

�n�v� Since a symbol becomes external at most once in the entire tree� we have
P

v n
�
v

� n� Thus summing �n�v over all v gives us at most �n�

�mv� Since the chains at one level i are all disjoint� we know
P

level imv � m�
Summing �mv gives us at most �m per level� for an overall total of at most
��k���m	 �m�
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	�bmv��k�mv	c� n�v	�
This is where we apply our given 	k bound� We estimate

	�bmv��k�mv	c� n�v	 � 	k�bmv��k�mv	c� n�v	
� ck �k�bmv��k�mv	c	 � bmv��k�mv	c� dkn

�
v

� ck �k�mv	 � bmv��k�mv	c� dkn
�
v

� ckmv � dkn
�
v�

To sum this over all interior nodes v� we reapply the estimates of the last two
cases� getting the bound ck�k���m	 �m � dkn�

Now the leaf terms are easy to count up� since di�erent leaves count disjoint sets
of symbols and have at most mv � � chains each� the leaf terms altogether contribute
at most �n at the bottom of the unfolded recurrence�

Adding everything up gives 	�m�n	 � �n � ��k���m	 �m � ck�k���m	 �m � dkn
� �n � ck���k���m	 �m � dk��n � 	k���m�n	� �

We are almost done� we just need to show how to get started with values for c�
and d�� and also how to choose a good value for k to balance n�

Claim 
� 	�m�n	 � 	��m�n	 � c�mdlgme � d�n� where c� � � and d� � ��

Proof� We follow a simpli�ed version of the previous argument� We take b � � on
each step� Since we divide the sequence into only two blocks� there are no middle
appearances of external symbols �i�e� �� is empty	� so we have the simpler recurrence

	�m�n	 �
�X

i	�

	�dm��e� ni	 � �m � �n��

where the �m in the general theorem may be reduced to �m in this special case� Our
recurrence tree has leaves at level l � � where l � ���m	 � dlgme� Now summing
terms as before �again getting �n from the leaves	� we get the claimed bound� �

Corollary ��� For every k � �� 	�m�n	 � ��k � �	�k�m	 �m � ��k � �	n�

Theorem ��� ���n	 � O�n � ��n		�

Proof� Setting m � �n� we have ���n	 � 	�m�n	 � O�k��k�m	 � m � n		 �
O�k �k�n	 � n	 for all k � �� It now su�ces to take k just large enough so that
�k�n	 � O��	� By part �v	 of claim �� it su�ces to take k � ��n	 � �� �
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� Arrangements in Higher Dimensions

Overview

Until now� we have looked at arrangements of lines in the plane� We shall now take a
short digression and consider higher dimensional versions of the problem� After some
de�nitions� this lecture will be dedicated to generalizing the zone theorem to higher
dimensions�

De�nitions

De�nition ��� Ed is the d�dimensional Euclidean space�

De�nition ��� A hyperplane in Ed is a d� � dimensional linear subspace�

De�nition ��� A k��at is a k�dimensional linear subspace� An intersection of d� k
hyperplanes forms a k��at�

De�nition ��� The codimension of a k�dimensional subspace of Ed is d� k�

Counting Objects in the Arrangement

Recall that an arrangement of lines in the plane creates the following structures�
objects of dimension � �vertices	� of dimension � �edges	� and of dimension � �faces	�
A similar phenomenon takes place in an arrangement of n hyperplanes in Ed� only
now structures of all dimensions between � and d� collectively called faces� are created�
We will carry over a lot of the terminology from � dimensions� ��dimensional objects
�points	 will be called vertices� ��dimensional objects are edges� �d � �	�dimensional
objects are called facets� d dimensional objects are called cells� The terms facet and
cell make a great deal of sense if we consider the case d � �� i�e� the arrangement
is a collections of planes in ��dimensional space� As in the ��dimensional case� each
facet is part of the boundary of a cell� and in general each face of dimension i is a
boundary of a face of dimension i � ��

We begin as we did in the ��dimensional case� by studying the number of vertices
formed� Assuming no degeneracies� each group of d hyperplanes intersects to de�ne
a single vertex� Thus the number of vertices is just the number of ways to choose
d hyperplanes from the arrangement� i�e�

�
n
d

�
� Counting higher dimensional faces

requires more work�

Lemma ��� The number of cells in an arrangement of n hyperplanes in Ed is	
n

d



�

	
n

d� �



� � � ��

	
n

�



�

	
n

�




�




Proof� Recall the ��dimensional proof� We let each vertex correspond to the face
of which it was the bottom vertex� which gave

�
n
�

�
faces� and we then had to count

the faces with no bottom vertex� namely those which were unbounded below� To do
this� we drew a horizontal line below all the vertices� It clearly passed through n� �
faces� since it intersected each line in the arrangement exactly once� and entered a
new face at each intersection� This gave the result we needed� To generalize to the d
dimensional case� do the same thing� Each cell bounded from below corresponds to a
vertex� namely the lowest vertex in that cell �where �lowest� is measured according to
the last dimension	� It remains to count the unbounded cells� If we draw a hyperplane
H perpendicular to the last dimension and below all the vertices� our n hyperplanes
in Ed each intersect H in a �d � �	�dimensional space� Thus these n hyperplanes
impose an arrangement of n �d� �	�dimensional hyperplanes in H� Each cell in this
arrangement corresponds to one of the unbounded cells in the original arrangement�
The result then follows by induction� �

Lemma ��� The number of faces of codimension k in an arrangement of hyperplanes
in Ed is� 	

n

k


 X
��j�d�k

	
n� k

j



�

Proof� Each such face �lives in� some �d�k	��at� The total number of such faces

is thus equal to the total number of �d�k	��ats� namely
�
n
k

�
� times the number of faces

living in a single �at� This can be determined using the previous theorem� because
for each such �d � k	��at� which is an intersection of k hyperplanes� the remaining
n � k hyperplanes impose an arrangement in that �at� namely an arrangement of
n � k hyperplanes in d � k dimensions� Each cell �from the perspective of this new
arrangement	 is a �d� k	 dimensional face of the original arrangement� �

This number of faces can be written more cleanly as

dX
j	k

	
n

j


	
j

k



�

The Zone Theorem in Higher Dimensions

We now come to the main topic of this lecture� namely the zone theorem in higher
dimensions�

Theorem �	 
The Zone Theorem�� The zone of a hyperplane in an arrangement
of n hyperplanes in Ed has complexity ��nd��	� counting all faces of all dimensions�

Proof� Let H be the original set of n hyperplanes� and A�H	 the arrangement
de�ned by them� We consider some new hyperplane b and want to study the cells
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which are in the zone of b in H� written zone�b�H	� Let

zk�b�H	 �
X

c�zone�b�H�

�the number of faces of codimension k in c	

zk�n� d	 � max
b�H

zk�b�H	�

Our goal is to show that zk�n� d	 � O�nd��	 �showing the corresponding lower bound
is left as an exercise	� We will do this by �rst proving and then analyzing the following
recursion� which we claim holds for every d � �� � � k � d� and n � k�

zk�n� d	 � n

n� k
�zk�n� d� �	 � zk�n� �� d� �		� �
	

A caveat� by counting over all cells individually� we are actually overcounting the
zone complexity� since� e�g� a vertex appears in many cells� and so we count it many
times� To identify each counting of a given face� de�ne a border of codimension k
to be a pair �f� C	 where f is a k�codimensional face and C is a cell that has f as
a boundary� Since we will count the total number of borders� our result is actually
stronger than just counting the total complexity� But the bound is shown to hold
even with this overcounting� This is fortunate� since often we need to overcount for
applications in precisely this way�

We will prove Equation 
 by induction on the number of hyperplanes in the
arrangement� Let H be some arrangement� and let b be the new hyperplane� For
each hyperplane h � H� we will consider the e�ect of removing h� Let H�h denote
the arrangement induced by H in the hyperplane h� i�e� the �d � �	�dimensional
arrangement of hyperplanes fj 	 h j j � Hg� Consider the quantity

zk�b�H � fhg	 � zk�b 	 h�H�h	

We claim that this counts all the borders �f� C	 of codimension k in zone�b�H	 with
f 
� h� To see this� consider what happens when we remove h from the arrangement�
Since f is not in h� f remains part of the zone� although it may now merge with some
other faces from which it was previously separated by h� Consider some cell C in b
s
zone with h removed� If h does not cut C� then every border in C in the original
arrangement is counted by the �rst term in the above equation� The same holds true
if h does cut C� but only one of the two resulting cells is in the zone of b� This is true
since for any border which is cut by h� one of the two resulting borders is a border
for the cell not in b
s zone� The only case which can cause trouble is if both of the
cells formed by h splitting C are in the zone of b� But for this to happen h must hit
b within C� This being the case� the second term counts what happens� each border
such that both halves are seen by b forms �by intersection with h	 a k�codimensional
border in the zone of b in the arrangement of H�h�

Now apply this argument to each of the n planes in h� Each time we remove a
hyperplane� we count all the borders not in that hyperplane using the above equation�
Thus each border is counted once each time we remove a hyperplane which does
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not contain it� Since the border is in a �d � k	��at� which is an intersection of k
hyperplanes� this happens n� k times� Thus

�n� k	zk�b�H	 �
X
h�H

�zk�b�H � fhg	 � zk�b 	 h�H�h		

� X
h�H

�zk�n� �� d	 � zk�n� �� d� �		

� n�zk�n� �� d	 � zk�n� �� d� �		�

Since the proof holds for any choice of arrangement� it must hold for the arrange�
ment which gives the maximum count� Equation 
 then follows�

It remains to analyze the inequality in Equation 
� This is straightforward� If we
let

wk�n� d	 �
�n� k	 

n 
zk�n� d	 � O�

zk�n� d	

nk
	

Then our recurrence becomes

wk�n� d	 � wk�n� �� d	 � wk�n� �� d� �	� ��	

We will now prove the result by induction on n and d� We have already proved the
two dimensional zone theorem� which tells us that for d � �� zk�n� �	 � O�n	� This
gives the base case for the induction� Now assume we have proved the result for d���
and prove it for d� Assume �rst that k � d� �� Unwinding the recurrence gives

wk�n� d	 �
nX

j	�

wk�j� d� �	 � wk�d� d	�

Note that wk�d� d	 is just a constant �though it depends on d	� By our induction
hypothesis� wk�n� d	 � O�nd���k	� We can thus rewrite the equation as

wk�n� d	 �
nX

j	�

O�jd���k	 � O��	

� O�nd���k	�

and the result for zk follows� What remains are the cases k � d or k � d � ��
Unfortunately� the above recurrence isn
t powerful enough�solving it for these values
of k overestimates the result by a factor of log n� We thus turn to a di�erent tool�
Euler
s Theorem�

De�nition �
� For a cell c� let gk�c	 be the number of facets of codimension k
bounding c�

Theorem �� 
Euler�s Theorem��

dX
i	�

���	d�kgk�c	 �

�
� if c is unbounded
� otherwise�

��



If we apply this theorem to our arrangement� and sum over all cells in the zone� we
get

dX
k	�

���	d�kzk�b�H	 � ��

If we now move all the zk whose values we have already bounded to the right side of
the equation� we get

zd���b�H	� zd�b�H	 �
d��X
k	�

���	d�kzk�b�H	

� O�nd��	�

Note that zd�� is the number of edges and zd the number of vertices of the ar�
rangement� We therefore claim that

dzd�b�H	 � �zd���b�H	

To see this� observe that a given vertex is at the end of at least d edges� since a vertex
is the intersection of d hyperplanes� the intersection of any d� � of these hyperplanes
forms an edge with the vertex as an endpoint� On the other hand� every edge can
have at most two vertices as endpoints� Thus the left hand side is an undercount of
the number of edge�endpoint pairs� since each vertex is in at least d such pairs� On
the other hand� the right hand side is an overcount of the number of such pairs� since
each edge is in at most two of them�

Combining these two equations gives

��� ��d	zd���b�H	 � zd���b�H	� zd�b�H	

� O�nd��	�

Therefore zd���b�H	 � O�nd��	� and similarly zd�

�

� Voronoi Diagrams and Delaunay Triangulations

This section deals with two methods of solving proximity problems� Voronoi diagrams
and Delaunay Triangulation� These fundamental diagrams are duals of one another�
We will begin by presenting some preliminary facts about these diagrams�

Voronoi Diagrams

We are given n sites �points	 in the plane� for any given point� we wish to know
which site �or sites	 is closest� This problem has been referred to as the �post�o�ce
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4 sites4 sites3 sites2 sites1 site

Figure ��� Some simple Voronoi diagrams for n � � sites�

problem� in Knuth� Volume �� It generates a subdivision of the plane� with each
region corresponding to the locus of all points closest to a particular site� This
partitioning of the plane is called the Voronoi diagram�

It is worth considering a few simple cases �see �gure ��	� If there is only one site�
then the entire plane is one region� If there are two distinct sites A and B� then there
are three distinct regions� the points equidistant from the two sites �the perpendicular
bisector of the segment between the sites	� the locus of points closest to A� and the
locus of points closest to B� If there are three sites �not collinear	� we have three
unbounded regions divided by three rays from a central vertex �point	� this central
vertex is equidistant from all three sites �i�e�� it is the center of the circle through the
sites	� and the rays lie on the bisectors of the segments joining the sites� If there are
four sites� there are two topologically distinct �and nondegenerate�	 cases� if the four
sites are in convex position� then all four regions are unbounded� If one of the four
sites is surrounded by the other three� then there is one bounded face �a triangle	
corresponding to the surrounded site�

What distinguishes these two cases� Note that sites on the convex hull of the
sites give rise to in�nite regions� while those sites within the convex hull correspond
to �nite regions�

Claim ��� A site x has an unbounded region if and only if x lies on the convex hull
of the sites�

Proof� If x is a site on the convex hull� then we may take a supporting line l through
x such that all the sites lie on the same side of l� Then every point on a ray normal
to l going away from the hull has x as its nearest point� hence� the Voronoi region
of x is unbounded since it contains this ray� �Note this argument even applies in the
degenerate case when there are three collinear sites on the hull	�

Conversely� if site x has an unbounded region� then since the region is convex� it
must contain an in�nite ray emanating from x� Taking the line l through x normal
to this ray� we see that every other site y must lie on the other side of l �otherwise by
going out su�ciently far on the ray� we would �nd a point closer to y than to x	� �

�Loosely speaking� the arrangement of sites is nondegenerate if no su�ciently small perturbation
of the sites changes the topology of the diagram� For Voronoi and Delaunay diagrams non�degeneracy
means that no two sites are identical� no three sites are collinear� and no four sites are co�circular�
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Figure ��� The Voronoi diagram �solid	 and the Delaunay diagram �dashed	��

Claim ��� All the Voronoi regions are convex�

Proof� Fix a site x� For every other site y� the Voronoi region of x is contained
in the half�plane of points that are at least as close to x as they are to y� Thus�
the Voronoi region of x is exactly the intersection of all such half�planes for di�erent
sites y� Since each half�plane is convex and the intersection of convex regions is also
convex� the Voronoi region of x is convex� Note this argument also shows that the
boundary of the Voronoi region of x is polygonal �i�e�� it is bounded by line segments
or rays	� �

Note that each vertex or edge of the Voronoi diagram depends on only a bounded
number of the sites� a vertex is de�ned by its three nearest sites� and an edge is
de�ned by four sites # the two sites on whose bisector it lies� and two other sites
delimiting its extent� This ��nite dependency� property will arise in many other
settings in geometric algorithms� Thus� if we compute the coordinates of one of the
vertices of the diagram� those coordinates are low degree rational functions in the
coordinates of the three sites that de�ne it� But still it would be useful to compute
a diagram with no �new� real numbers� and this motivates the Delaunay diagram�

Delaunay Triangulations

The Delaunay triangulation is the graph theoretic dual� topological dual� or the com�
binatorial theoretic dual of the Voronoi diagram �see �gure ��	� the vertices of the
Delaunay triangulation are the sites �corresponding to the regions of the Voronoi
diagram	� and we connect two sites with an edge in the Delaunay triangulation i�
their Voronoi regions share an edge �thus� the two diagrams have the same number
of edges� although the Delaunay triangulation has no unbounded edges	� Thus� a
vertex in the Voronoi diagram corresponds to a Delaunay triangle� a Voronoi edge
to a Delaunay edge� and a Voronoi face to a Delaunay vertex �site	� Note� however�
that dual edges of the two graphs do not necessarily intersect� Furthermore� we may

�This �gure swiped from page ��� of �GS	
��
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Figure ��� Two circles cannot cross at � points�

recover the Voronoi diagram by reversing the process� Note there are no $new
 real
numbers needed to describe the Delaunay triangulation�

We now prove various simple properties of the Delaunay triangulation� In par�
ticular� we present the notion that site�free circles through two or three sites are
�witnesses to Delaunay�hood� for edges or triangles� respectively�

Claim ��� For every edge ab in the Delaunay triangulation� there is a circle� called
a witness� through sites a and b that contains no other site� The converse is also true�

Proof� Since a and b are connected� their Voronoi regions must share an edge� Take
a point p in the interior of this edge� then a and b are the same distance r from p�
and all other sites are further away� Hence� the circle of radius r about p su�ces�

Conversely� the existence of a circle through a and b with all other sites strictly
outside implies that the center of the circle is on a boundary edge between the Voronoi
regions of a and b� �

Claim ��� The Delaunay triangulation is planar�

Proof� It su�ces to prove that no two edges may cross� Suppose edges ab and xy
appear in the Delaunay triangulation� and these edges cross� Then there is a circle
through a and b not containing x or y� and likewise there is a circle through x and
y not containing a or b� But then these two distinct circles must intersect at four
points� which is impossible� See �gure ��� �

Various other properties may also be argued� If abc is a triangle in the Delaunay
triangulation� then no other site lies inside its circumcircle� and conversely�

We now turn to counting problems� We will assume non�degeneracy �i�e�� no four
points are co�circular� no three points are collinear	� We will make precise claims
about the number of edges and triangles in the triangulation�

Let n be the number of sites� t the number of triangles� and e the number of edges�
From Euler
s Theorem for connected planar graphs� we have

n� e � t � � � �
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or
n� e � t � �

where t�� is the number of faces �each triangle is a face and so is the single unbounded
face	� We need one more parameter to describe the arrangement� Since each edge
belongs to two faces� we have �t � k � �e� where k is the number of sites on the
convex hull� Solving� we have

e � ��n� �	� k�

t � ��n� �	� k�

By duality� the Voronoi diagram will have e edges �bounded or unbounded	 and t ver�
tices� Hence� these graphs have only linear complexity in the size of the input� which
will be very important to the computational complexity of various planar proximity
problems� For example� this linear complexity implies that the corresponding data
structures can be stored in O�n	 space and that the arrangement can be computed in
O�n logn	 time� However� this only holds for two dimensions� For the d�dimensional

case� we have O�nb d��
� c	 complexity�

The Delaunay triangulation is somewhat more intuitive than the Voronoi dia�
grams� so we will tend to use the Delaunay triangulation in this write�up� Another
comment� Since the triangulation starts with numerical data and ends up with com�
binatorial output �e�g� a graph	� complications may arise due to round�o� errors�
etc�

Delaunay triangulations are used in many applications �e�g�� �nite element analy�
sis� interpolation	� This triangulation is especially useful because it is easy to compute
and it provides a �nice� triangulation �i�e�� the smallest angle in the triangulation is
the largest possible	�

Suppose we have n sites� and someone claims a given triangulation is a Delaunay
triangulation� How much work do we have to do to verify the claim� If for each site
and each triangle we verify that the site is not in the circumcircle of the triangle� then
this is clearly su�cient� Unfortunately� this is an O�n�	 time algorithm�

Delaunay proved a remarkable theorem� that it su�ces to only check adjacent
triangles� so that the veri�cation may be performed in linear time�

Theorem ��� Given a triangulation of n sites such that for every pair of adjacent
triangles abc and bcd� a is not in the circumcircle of bcd� then that triangulation is
the Delaunay triangulation�

Proof� First� we de�ne the �power� of a point with respect to a circle� Given a
point x and a circle C� draw a line l through x that intersects C at two points a and
b� Then the power of the point is xa �xb �here xa denotes the distance from x to a	� It
turns out that this quantity is independent of the line chosen� Furthermore� given a
suitable choice of signs for distances along the line� the sign of the power determines
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Figure ��� The power of point x with respect to the circle is ax � bx� which is inde�
pendent of the choice of line l�
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Figure ��� The power of x with respect to lmn is less than the power of x with respect
to klm�

whether x is inside� outside� or on the circle �the usual convention makes the power
positive i� x is outside the circle	�

Take a triangle abc of the given triangulation and a site x that lies on the opposite
side of �say	 line bc� If the neighboring triangle to abc along bc is xbc� then we are
done by assumption�

Otherwise� consider the line connecting site x to a point d in the interior of triangle
abc� As we move along xd from x to d� we pass through a sequence of triangles� starting
with a triangle having x as a vertex �call it vwx	 and ending with triangle abc�

Now consider the sequence of circumcircles of these triangles� We start with the
circumcircle of vwx where the power of x is � �since x is on the circle	� We claim
that the power of x can only increase as we move to circumcircles of triangles further
away from x� This claim implies that the power of x with respect to the circumcircle
of abc must be positive� so that x is not in the circumcircle of abc� which is what we
wanted to prove�

We now argue our claim informally� Given adjacent triangles lmn and klm on
the line from x to d �see �gure ��	� consider their circumcircles� These circumcircles
are both members of the family of circles through l and m� and we may continuously
�push� the circumcircle of lmn away from site n until it reaches site k� During this
push operation� both intersection points of the circle with xd move further away from
x� hence the power of x increases� �
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� Geometric Primitives and A Delaunay Triangu�

lation Algorithm

In the �rst part of this lecture� we are going to introduce two geometric primitives
which enable us to extract some fundamental combinatorial properties of points� In
the second part� we will introduce an algorithm based on the divide and conquer idea
for the Delaunay triangulation�

Geometric Primitives

Computational geometry problems are characterized by relations among geometric
entities �vertices� edges� ���	 and many of these relations can be described quantita�
tively by real numbers� But many geometric algorithms are combinatorial by nature�
So we need to have a conversion scheme� Geometric primitives are used to extract
combinatorial information from the input real numbers� the geometric primitives will
map the real numbers to bits �hence these primitives may also be called predicates	�
The nice thing about using geometric primitives is that the complexity of these prim�
itives is constant�

More precisely� these geometric primitives will depend on the signs of certain
determinants� Thus the primitives will actually have three values� one of f���� �g�
These correspond to true� false� and degenerate� If we assume our input points are in
general position� then � �the degenerate case	 will never occur� and it is convenient to
specify our algorithms under this assumption� In principle we should specify robust
algorithms which also correctly handle the degenerate cases� but we avoid this for
brevity of exposition�

The CCW Primitive

Our �rst geometric primitive is CCW � Given three points A� B and C� CCW tells us
whether these three points are in counterclockwise order around their common circle
by computing the sign of the determinant�������

xA yA �
xB yB �
xC yC �

�������
If the sign is positive then A�B�C are in counterclockwise order� if the sign is negative
then A�B�C are clockwise in order� if it is zero� then A�B�C are collinear �see
�gure ��	�

Note that to determine the sign of a determinant is as expensive as to calculate
its value�

An interesting question is� given n points and the
�
n
�

�
sign bits corresponding

to the
�
n
�

�
di�erent triangles� how many of the bits are independent� It turns
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Figure ��� Three points in counterclockwise order
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(XBC) = +
(XCA) = +

(ABC) = +

Figure �
� Dependence of the sign bits

out that only ��n logn	 of them are independent� For example� �gure �
 shows
that if CCW �X�A�B	� CCW �X�B�C	� and CCW �X�C�A	 are all positive� then
CCW �A�B�C	 must be positive as well�

We may apply the CCW primitive to the convex hull problem� Given n points�
the convex hull problem is to �nd all the extreme point in order around the hull� A
point x is not an extreme point of the convex hull if and only if if x is in the interior
of triangle formed by three other points� i�e� i� we can �nd A�B�C with their CCW
sign bits as in �gure �
� Similarly we can recover the order of points around the hull
using CCW � hence we can construct the convex hull using only CCW �

But the CCW primitive is not su�cient for computing the Voronoi Diagram or
the Delaunay Triangulation� In some arrangements each of the

�
n
�

�
triangles have the

same CCW bits but the n points have non�isomorphic Voronoi Diagrams� see �gure ��
for an example �with n � �	� Our next primitive will be su�cient for constructing
the Voronoi Diagram and the Delaunay Triangulation�

B 
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D

A

B

A

Figure ��� Point sets with the same CCW bits but di�erent Voronoi Diagrams
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InCircle(A,B,C,D)

< 0     if  D is in  the circle

= 0     if  D  is on the circle

> 0     if  D  is outside the circle

Figure ��� The InCircle primitive

The InCircle Primitive

Given � points A�B�C�D� the primitive InCircle�A�B�C�D	 is true if and only if D
is in the left face of the oriented circle through A�B�C� The left face is the interior of
the circle if CCW �A�B�C	� otherwise the left face is the exterior of the circle� Thus
if we take A�B�C in counterclockwise order� InCircle tells us whether D is in their
circle �see �gure ��	�

Note that there is a degenerate situation if D is on the circle� or if all four points
are collinear� Curiously the situation is not degenerate when A�B�C are collinear
and D is o� their line� since there is still a de�nable left face of the line�

Theorem ��� The value of InCircle�A�B�C�D	 is given by the sign of the determi�
nant

det �

���������
xA yA x�A � y�A �
xB yB x�B � y�B �
xC yC x�C � y�C �
xD yD x�D � y�D �

���������
Before proving the theorem� we prove the following lemma�

Lemma ��� InCircle�A�B�C�D	 is degenerate if and only if the value of the above
determinant is 	�

Proof� We project a point in the plane to a point on the hyperbolic paraboloid
z � x� � y� by mapping �see �gure ��	�

� � �x� y	 ��� �x� y� x� � y�	

Points A�B�C and D are mapped to points A�� B�� C � and D� on the parabolic sur�
face� We claim that points ABCD are cocircular if and only if points A�B�C �D� are
coplanar�

Suppose �rst that the points are cocircular� Let �p� q	 be the center of circle
ABCD and r be radius� we have the circle equation�

�x� p	� � �y � q	� � r� � �
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Figure ��� The projection of cocircular points on the parabola

that is
���p	x � ���q	y � ��	�x� � y�	 � �p� � q� � r�	��	 � �

The equation holds for the coordinate pairs �xA� yA	� �xB� yB	� �xC � yC	� and �xD� yD	�
Therefore there is a linear dependence on the columns of the determinant det and its
value must be zero� �Similarly� if the four points are collinear� then there is a linear
dependence among the �rst� second� and fourth columns of det�	

Conversely� suppose the determinant is zero� i�e�� the four columns are linearly
dependent� If there is a linear dependency not involving the third column� then the
four points are collinear� Otherwise� the third column may be written as a linear
combination of the other three columns� i�e� there are constants a� b� and c such that
A�B�C�D all lie on the curve

x� � y� � ax � by � c

By completing the squares in this equation� we see that it is in fact a circle centered
at ��a����b��	� hence the points are cocircular� �

To complete the proof the theorem� interpret the sign of the determinant as the
sign of the volume of tetrahedron A�B�C �D�� Since the parabolic surface is convex�
the interior of the circle ABC projects to points below the plane A�B�C � and the
exterior of the circle projects to points above the plane� hence as we move D� the sign
of the determinant changes when we cross the circle� Now we only need to check the
sign in one speci�c situation to �nish the proof �omitted	� �

When we apply the InCircle test in our Delaunay Triangulation algorithms� we
may face a degenerate situation if some four points are cocircular �see �gure ��	�
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Figure ��� Two possible Delaunay edges for four cocircular points

L R

Figure ��� The structure of the cross edges

For simplicity when we present our algorithms we will assume that the points are in
general position� no three points are collinear and no four points are cocircular�

A Divide and Conquer Algorithm

In what follows�we present an algorithm to compute the Delaunay triangulation �and
Voronoi diagram	 of n sites in the plane� and analyze its complexity� Suppose we have
n sites in the plane S�� � � � � Sn� Sort them by x#coordinate �in case of equal x sort
by y	 and then �as divide and conquer algorithms typically work	 divide them in two
equal halves� the left one �denoted by L	 and the right one �R	� compute recursively
the Delaunay diagrams of L and R� and then recombine� The recursion stops when
n � � or n � � since in these cases the diagram is easy �also our quad�edge structure
cannot represent a single point 	� As usual the merge step needs to be analyzed in
more detail� During this step we have to delete some edges and add some others�
Clearly we will delete some L#L �or R#R	 edges� and we will add only L#R �called
sometime cross	 edges� Indeed no new L#L �or R#R	 edge can be added� since such
edges would have already been Delaunay�

We can think of the cross edges ordered in ascending y#order and the algorithm
that we present will produce them in this order� The �rst cross edge will be the lower
common tangent of the convex hull of L and the convex hull of R� similarly the last
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Figure ��� Finding the lower common tangent

cross edge will be their upper common tangent� Thus we can begin �nding the lower
common tangent� To �nd it we use this algorithm�

�� Start from the edge e connecting the rightmost site of L with the leftmost site
of R�

�� While e is not a lower tangent to R� move its right endpoint counterclockwise
around the hull of R�

�� While e is not a lower tangent to L� move its left endpoint clockwise around
the hull of L�

�� If e is not yet the common lower tangent then go to step ��

This algorithm ends with the lower common tangent of L and R� and takes only linear
time �since it passes each hull edge at most once	�

Lemma �	� Any two consecutive cross edges share a common vertex�

Proof� Since the Delaunay diagram is a triangulation and the cross edges are ex�
actly the Delaunay edges crossing a vertical line� two consecutive cross edges must
belong to a triangular face and thus share a common vertex� �

A consequence of this lemma is that if we start from a known cross edge �let us
call it basel	� its successor will be an edge going from one of the vertices of basel to a
neighbor of the other vertex lying above basel� We can think of a circular bubble that
has basel as a chord and rises through that cord until it meets a new site� the edge
connecting this site to the vertex of basel in the opposite half will be the next cross
edge� This process continues until our bubble becomes the upper common tangent of
L and R �see �gure ��	�
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Figure ��� The rising bubble

To �nd this edge� the following two lemmas are useful� Here Us�AB	 denotes the
upper halfplane determined by AB� Ls�AB	 the lower halfplane� Hs�AB	 either of
upper or lower and Cir�XY Z	 denotes the interior of the circle through the three
points X� Y� Z�

Lemma �
� Let AB be an edge� For any point M and N� we always have Cir�ABM		
Hs�AB	 � Cir�ABN	 	 Hs�AB	 or Cir�ABM	 	 Hs�AB	 � Cir�ABN	 	 Hs�AB	

Proof� The proof is trivial and is omitted here� �

Lemma ��� Let AB be the basel edge and letNi i � �� � � � � k� be the L�neighbors of A
in Hs�AB	 in counterclockwise order� then the succession %i � Cir�ABNi		Hs�AB	
is unimodal in the sense that there is some j such that for � � i � j we have %i � %i��

while for j � i � k we have %i � %i���

Proof� For each circle ANiNi�� let Xi be its intersection with line AB� We claim
the sequence of points Xi move monotonically toward A� Consider � consecutive
neighbors Ni��� Ni� Ni�� of A� The point Ni�� is not inside the circle ANi��Ni� for
otherwise ANi could not have been a Delaunay edge in L� Thus we have to push
circle ANi��Ni through chord ANi to reach point Ni��� and the intersection with AB
moves toward A� proving our claim�

The lemma is now proved by observing that while Xi is to the right of B� B is
inside the circle ANiNi�� or equivalently Ni�� is inside the circumcircle ABNi� so
%i � %i��� After Xi moves to the left of B� a similar argument shows that Ni�� is
outside the circle ABNi� so %i � %i��� �

We can prove an analogous lemma for the R�neighbors of B� and in this way we
can �nd two candidates �one for each side	 to be the next cross edge� A �nal test
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between the two candidates will give us the next cross edge� The following lemma
formally proves this result�

Lemma ��� Suppose AB is the previous Delaunay edge� AM and BN are two new
candidates� Assume BN is the one to be picked �i�e�� N is inside Cir�ABM�� Then we
claim that BN is the new Delaunay edge�

Proof� First we show that no vertices in Ls�AB	 is inside of Cir�ABN	� As�
sume ABC was the last Delaunay triangle� Since Cir�ABC	 does not contain N�
Cir�ABC	 	 Ls�AB	 � Ls�ABN	 	 Ls�AB	� ABC implies that no vertices are in
Cir�ABC	 	 Ls�AB	� So no vertices are in Ls�ABN	 	 Ls�AB	� So no vertices in
Ls�AB	 are inside of Cir�ABN	� Now we claim that no vertices in Us�AB	 are in
Cir�ABN	� Since M is outside of Cir�ABN	� Cir�ABM	 	 Us�AB	 � Ls�ABN	 	
Us�AB	� But we know that all vertices in L 	 Us�AB	 are not inside of Us�AB	 	
Cir�ABN	 and all vertices in R	Us�AB	 are not inside of Cir�ABM		Us�AB	� this
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implies that all vertices in Us�AB	 are not in Ls�ABN	 	 Us�AB	� This completes
the proof� �

Now we are going to analyze the time complexity for the algorithm� Suppose A
s
candidate is Nj� The unimodularity proved in the lemma allows us to �nd Nj in
j comparisons� by searching until the �rst �local minimum� going counterclockwise
around A� Furthermore the edges ANi for i � j can be immediately deleted �even if
B
s candidate won over Nj	 because we know that these edges cannot be part of the
merged Delaunay diagram �B prevents them	�

Thus the cost of searching through the candidate vertices can be charged to the
deleted edges �all other costs are clearly linear	� Since the old triangulations had a
linear number of edges� this gives us linear time overall to �nd all the cross edges�
completing the merge� Since the �rst part of the merge ��nding the lower common
tangent	 was also linear time� the entire merge process takes O�n	 time� and the time
complexity of the algorithm is O�n log n	 �Note that the initial sorting step needs to
be done only once	�

� Randomized Incremental Algorithm for Delau�

nay Triangulations

In the previous lecture we discussed a divide�and�conquer algorithm to �nd the Delau�
nay triangulation of a set of sites� In this lecture we present a randomized incremental
algorithm for the same problem� We will �rst discuss the basic incremental algorithm
�without introducing randomization	� We will then randomize the algorithm to im�
prove its expected running time�

A Basic Incremental Algorithm

The idea in our incremental method is to add the sites in some sequence to the current
set and update the Delaunay triangulation of the set of sites to re�ect the addition of
the new site� For convenience in describing the algorithm� we add three hypothetical
sites at the very beginning� they are chosen such that they form a very large triangle
that contains all the other sites� If we make this triangle large enough� it will clearly
not a�ect the Delaunay triangulation of the original sites�

We now de�ne our incremental Delaunay triangulation algorithm� starting with
the triangle on these three sites� adding the other sites in some order� and updating
the Delaunay triangulation after each addition�

Suppose that we add a new site S� Assuming non�degeneracies� it will be inside
a triangle� The idea is to locate the triangle that the new site falls into� link the new
site to the three vertices of the enclosing triangle� and reconsider the Delaunayhood
of the edges of the enclosing triangle� if such an edge fails the circle test� the edge is
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Figure �
� The wave of suspect edges

�ipped� and the test�and��ip procedure continues for edges further out�

Let XY Z be the old Delaunay triangle containing S� with circumcircle C� Then
the new edges SX� SY � and SZ are Delaunay� the circle passing through S and
tangent to C at X is a site�free witness for the Delaunayhood of the edge SX �we
can argue analogously for SY and SZ	�

The edges XY � XZ� Y Z are suspect since we do not know if they pass the InCircle
test with respect to S and the triangle on their other side� We have to check these
suspect edges� if an edge fails the InCircle test then it will be swapped� creating a
new Delaunay edge emanating from S and creating two new suspect edges that must
now be tested� We call this the �wave of suspicion� spreading from the newly inserted
site S �illustrated in Fig �
	�

We will now prove a worst case upper�bound on the running time of the algorithm
over all possible locations of the sites and all possible sequences of insertions of the
sites�

Lemma ��� When a new site S is inserted� no edge is tested more than once�

Proof� The wave of suspect edges moves away from S to the edges on the convex
hull �which are always Delaunay	� and all the new edges �forming a star around S	
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are never suspect� �

When the wave stops all the edges pass the InCircle test� so the triangulation is
again Delaunay� The previous lemma tells us that each insertion needs at most O�n	
time� so the total time required by the algorithm is O�n�	�

It is possible to construct example input sequences which achieve this quadratic
running time �we leave that as an exercise	� We will now see that this algorithm has
much better O�n lgn	 expected running time when the input sites are inserted in a
random order�

Randomizing the Incremental Method

We saw that the obvious sequential incremental method may create O�n�	 Delaunay
triangles during the running of the algorithm� To try to achieve O�n logn	 time we
need to randomize� The algorithm is very easy� Given a set of sites� we simply choose
a random ordering of the sites and add them one at a time� updating the Delaunay
triangulation as already described� Note that we have not yet described a way of
locating the triangle in which the new site lies �we will do this in the next section	�

We observe that the total amount of work performed during the algorithm is
related to the number of Delaunay triangles that ever arise during the running of the
algorithm� We will prove that the expected number of such triangles is ��n	�

Theorem ��� If 
 is the expected number of Delaunay triangles that ever arise
during the running of the algorithm� then 
 � O�n	� In fact� 
 � �n� ��Hn � �����
where Hn � � � �

�
� �

�
� � � �� �

n
�

Proof� For a triangle 
 de�ned by three sites� let w�
	 denote the scope of the
triangle� the number of sites inside the circumcircle of 
� Let Tj be the number of
triangles of scope j �so in particular T� is the number of triangles in the �nal Delaunay
triangulation	� Then
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X
�

Pr�at some point of the algorithm� 
 appears as Delaunay�

If w�
	 � j� then 
 appears as Delaunay sometime during the algorithm i� the three
sites de�ning 
 are chosen before any of the j sites inside its circumcircle� Thus

Pr�
 appears as Delaunay� �
� j 

�j � �	 
�

�

�j � �	�j � �	�j � �	

and


 �
n��X
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Now� suppose we choose r of the sites at random and look at the Delaunay triangula�
tion of this r�set� The expected number of triangles in this triangulation is �r�hr���
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where hr is the expected number of sites �from among the r�set	 on the convex hull
of the r�set�
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r �n� r	 
� �r � �	 �n� k � r	 

�n� k � �	 

This is true for all r� It turns out that the r value that makes this formula as small
as possible is �n

k��
� Thus� T�k � O�n�k � �	�	� �

To �nish the proof of the theorem we recall the technique often used to simplify
integrals� namely integration by parts� Here we do a summation by parts�


 �
n��X
j	�

�

�j � �	�j � �	�j � �	
Tj

� T� �
n��X
j	�

�

�j � �	�j � �	�j � �	
�T�j � T�j��	

� T� � ��
X
j��

T�j
�j � �	�j � �	�j � �	�j � �	

� T� �
X
j��

O�n�j � �	�	

�j � �	�j � �	�j � �	�j � �	

� T� � O�
X
j��

n

j�
	

� O�n	

�

��



E�cient Randomized Point�Location

While insertion of a particular site can take O�n	 time in the worst case� we showed
that if sites are inserted in random order� the expected overall running time of the
update part of the incremental algorithm for constructing the Delaunay triangula�
tion is O�n	� We are yet to describe a crucial part of our randomized incremental
algorithm� namely� locating the triangle in which the new site falls�

In order to obtain an overall e�cient algorithm for the randomized incremental
construction of the Delaunay triangulation� we need an e�cient algorithm for locating
the triangle that contains a new site� We will give an algorithm for this point�location
problem that contributes an overall randomized time complexity of O�n logn	� result�
ing in an overall randomized time complexity of O�n logn	� This bound is optimal�
since sorting is O�n	 reducible to computing the Delaunay triangulation� and sorting
is known to have a lower bound of ��n log n	 in the randomized time complexity
model�

The trick to achieving an e�cient algorithm for the point�location problem is to
keep a history of the construction of the triangulation� We can think of this history
as consisting of a stack of paper triangles glued on top of one another�

Given a history of the construction� the algorithm for �nding the triangle in the
current triangulation containing a query point P is as follows� Assume we know that
the triangle T contains point P at some step in the construction of the triangulation�
If T is present in the �nal triangulation� we are done� Otherwise� T will be split in
one of two ways� either a new point of the triangulation is added into the triangle T �
in which case T will be split into three children� or one of the edges of T gets �ipped�
in which case T will be split into two children �see Figure ��	� In both cases� it takes
only constant time to determine which �child� of T contains the query point P �

In order to prove that the overall running time of the point�location part of the
algorithm for the incremental construction of the Delaunay triangulation is O�n logn	
on the average� we need to obtain a bound on the number of triangles examined during
each of the point�locations� In the �stack of paper triangles metaphor�� we need to
estimate the average thickness of the stack of paper triangles that are glued on top
of one another at each site�

Lemma ���
nX
i	�

E�& of triangles crossed during the i�th insertion	 � O�n logn	

Note that this lemma does not establish that any speci�c point�location query can be
carried out in expected time O�logn	 �why�	�

Proof� We will carry out an amortized analysis� We will relate the number of
triangles crossed during the search to the number Tj of triangles of scope j �remember
that the scope of a triangle is the number of sites contained in the circumcircle of
that triangle	�
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Figure ��� The di�erent ways in which a Delaunay triangle can get split during the
incremental construction of the Delaunay triangulation�

Assume that we are trying to locate the triangle containing point P and that
we have already localized point P in the triangle XY Z� If XY Z is part of the
�nal Delaunay triangulation� we can ignore it in the count �there are only O�n	
such triangles	� �Please refer to Figure �� for a rough sketch of the geometry of the
situation�	

Consider now the point at which triangle XY Z gets destroyed by the insertion of
a site W during the incremental construction of the Delaunay triangulation� There
are two possible ways in which this can happen� Either W gets inserted into the
interior of the triangle XY Z� or the triangle XY Z gets destroyed because one of the
edges of the triangle �ips during the construction� In the �rst case� we know that
XY Z must have been Delaunay before the insertion of the site W into its interior�
and P is obviously contained in its circumcircle� so we simply charge the scope of
XY Z with it�
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In the second case� let XW be the edge that replaces Y Z� Now� depending on
which way the �wave of suspect edges� has arrived at the edge Y Z� either XY Z or
WYZ was Delaunay before the �ip� If XY Z was Delaunay� we can again simply
charge P to its scope� If WYZ was Delaunay before the �ip� the evidence against its
Delaunayhood must have come from site X� But if X is contained in the circumcircle
of WYZ� so is P � and we can charge P against the scope of the Delaunay triangle
WYZ�

Therefore� we can charge every crossing to an event of the form that P is con�
tained in the circumcircle of a triangle that was Delaunay at some point during the
construction� And� if P charges the circumcircle of some triangle� it is easy to see
that it can do so only once�

Therefore� we obtain�

nX
i	�

E�& of triangles crossed during the ith insertion	

� E�
X

scopes of all Delaunay triangles that ever arose	

� E�
n��X
j	�

j Tj
�j � �	�j � �	�j � �	

	

This last expression is easily seen to be O�n logn	�we use the same technique
we used for obtaining the O�n	 bound on the number of triangles formed during the
construction� Roughly� the above expression is of the form

Pn Tj
j�

� if we consider the
number T�j of triangles of scope less than or equal to j� this sum can be rewritten

to be roughly of the form
Pn T�j

j�
� Using our previous results for T�j� this expression

takes on the form
Pn nj�

j�
� n

Pn �
j

� O�n logn	� �

With this lemma� and the above observation about the cost of locating subtrian�
gles� we can therefore state the following theorem�

Theorem ��� The expected overall cost of point�location for the randomized incre�
mental construction of the Delaunay triangulation is O�n logn	�

Convex Hulls and Delaunay Triangulations

In the previous lecture we introduced a correspondence between the sites of ��space to
points on a paraboloid in ��dimensions such that the mapping satis�es some special
properties� Recall that we project a point in the plane to a point on the hyperbolic
paraboloid z � x� � y� by mapping �see �gure ��	�

� � �x� y	 ��� �x� y� x� � y�	

Points A�B�C and D are mapped to points A�� B�� C � and D� on the parabolic surface�
We proved that points ABCD are cocircular if and only if points A�B�C �D� are
coplanar�

��



z

y

x

λ (x,y)

Figure ��� The projection of cocircular points on the parabola

This implies that every circle in the plane maps to a planar curve on the paraboloid
�the intersection of some plane with the paraboloid	�

Our construction has another nice property� Suppose we are given a triangle
formed by three sites in the plane� which maps to three points on the paraboloid�
From our construction� it easily follows that a fourth site lies inside the circle formed
by the three sites in the plane i� the mapped point lies below the plane formed by
the three points in ��space� This means that Delaunay triangles in the plane �whose
circumcircles are empty	 map to triangles in ��space which don
t have any point below
them� In other words� a Delaunay triangle maps to a lower convex hull triangle of
the mapped set of points in ��space�

Hence� the problem of �nding the Delaunay Triangulation of a set of points reduces
to that of �nding the lower convex hull of a set of points on a paraboloid in three
dimensions� It turns out that this correspondence extends to arbitrary dimensions�
That is� the problem of �nding the Delaunay diagram of n points in d dimensions
corresponds to the problem of �nding the convex hull of n points in d� � dimensions�
We do not prove this claim here� although it is very straightforward�

Applications

Computing the Voronoi diagram and Delaunay triangulation is useful not only for its
own sake� but also is an important part of many other e�cient geometric algorithms�

For example� the edge connecting the closest pair of sites in a collection of sites
is a Delaunay edge� Finding the closest pair is therefore reducible to �nding the
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minimum length Delaunay edge�

Finding all nearest neighbors is similarly easily accomplished starting with the
Delaunay triangulation� because all edges connecting a site and its nearest neighbor
must be Delaunay�

As a �nal example consider the computation of the Euclidean Minimum Spanning
Tree �EMST	� The EMST must be a subset of the Delaunay triangulation �considered
as a graph	� and can be obtained from it by application of a minimum spanning
tree �MST	 graph algorithm� In fact� all the known EMST algorithms with good
complexity compute the Delaunay triangulation �rst�
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