Point Inside Polygon Test

Scott Schaefer

Point Inside Polygon Test

• Given a point, determine if it lies inside a polygon or not

Ray Test

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon

Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex

Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex

Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex
 - Ray parallel to edge

• One winding = inside

Requirements

- Oriented edges
- Edges can be processed in any order

Computing Winding Number

- Given unit normal *n*
- Compute $\frac{n \cdot ((p_1 - x) \times (p_2 - x))}{|p_1 - x||p_2 - x|}$ $= \frac{|n||p_1 - x||p_2 - x|\sin(\theta)}{|p_1 - x||p_2 - x|}$ $= \sin(\theta)$

Computing Winding Number

- Given unit normal *n*
- $\theta = 0$
- For each edge (p_1, p_2) $\theta + = \sin^{-1} \left(\frac{n \cdot ((p_1 - x) \times (p_2 - x)))}{|p_1 - x||p_2 - x|} \right)$
- If $|\theta| > \pi$, then inside

Advantages

- Extends to 3D!
- Numerically stable
- Even works on models with holes (sort of)
- No ray casting

