A Winding Number and Point-in-Polygon Algorithm
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This paper presents an efficient axis-crossing algorithm for determining the winding
number of a closed planar polygon about a given point. The winding number
mathematically measures the number of times a polygon encloses a point. The polygon is
defined by a set of ordered vertices and need not be a simple polygon (i.e., the sides may
intersect). Knowledge of the winding number immediately determines whether or not a
point lies within the polygon and also determines the sense of the polygon (clockwise or
counterclockwise). The point-in-polygon problem is such a fundamental geometric
problem and has such wide-ranging applications that an efficient numerical algorithm is an
invaluable tool. Although point-in-polygon algorithms abound in the literature, none
provide the complete information that the winding number offers.

INTRODUCTION

A fundamental problem encountered in two-dimensional ¢omiputation geometry is
determining whether a given point lies within given closed polygon. Some applications of
this include: ray tracing (determining if a ray pierces a.surface) [1]; painting simulation
(determining points on surface that a paint fan pattein covers) [2}; robotics (determining if a
point is within the reachable workspace of a robot) [3]; acoustics (determining points at
which sounds wave are considered to be reflected by walls) [4]; geosciences (contouring a
data set) [5]; computer graphics surface triangulation from serial section contours
(getermining if a contour in one serial section overlaps a contour in the previous section)
[6]; etc.

A large amount of literature addresses this simple geometric problem [2-13, 15].
Most of the algorithms presented in the literature deal only with special cases of the
problem. A common assumption is that the polygon is convex, and algorithms for this
case exist which have logarithmic efficiency [10, 11]. Most of the point-in-polygon
algorithms presented in the literature assume that the polygon is simple (i.e., has non-

intersecting sides). Although this is an important and common case, there is little
discussion of generalizing these algorithms to a non-simple case.

This paper proposes the use of the polygon's winding number as the basis of a
point-in-polygon algorithm. The winding number of a polygon (contour) C about a point
x, w, measures not only whether C encloses x, but also how many times and in which
orientation C "winds around" x. In particular,




0 if x is not inside C
w=<{n>0 if C winds around X n times counterclockwise
n<0 if C winds around x (-n) times clockwise %))

The winding number can be rigorously defined as a contour integral in the complex plane
[14]:

w=-L, ldz where z=x+1iy 3}
2nigz

Note that the winding number is not defined when the point X is on the polygon C. In this
paper, we present an axis-crossing algorithm for computing the winding number of C
about x which avoids numerical approximation of the above integral.

~ Axis crossing methods have been presented in the literature [4, 7, 12] for the point-
in-polygon algorithm; and in [15], the winding number is defined using axis crossings.
However, in [15], no algorithm or implementation details are presented for computing the
winding number. Moreover, the data structure suggested in [15] for dealing with closed
polygons is quite sophisticated and complex (a signed multiset of states encoding position
and attitude at each point of a motion traversing the polygon); this level of detail is
unnecessary for our restricted but important and common application. Finally, in [15], a
point-in-polygon test is described, but it utilizes a "sweep number" concept instead of
directly applying the winding number results. :

We present a concise, complete, and efficient winding number algorithm using a
common and simple data structure for a polygon (ordered set of vertices). This algorithm
can be used directly as a point-in-polygon test: if the winding number is nonzero, the point
is in the polygon. As noted above, the winding number gives information even for non-
simple polygons and can also be used to determine the orientation of the polygon.

THE AXIS-CROSSING METHOD

The axis-crossing method can be used to efficiently determine the winding number
of a closed polygon C about a point x. The notation to be used follows:

x=(x,,¥,) €R? the point in question.
Vi, Vas ¥ =(XY5) the ordered vertices of C.
V,u=V, C= UViVm the closed polygon to be tested.

il

Since the point-in-polygon test is invariant under horizontal and vertical translation,
the geometry may be translated so that the point x is at the origin. This simply amounts to
replacing the vertices v; with (v; - x) , for each i, at the beginning of the algorithm.

Therefore the algorithm can be presented in this special case with x as the origin with no
loss in generality.




Figure 1 illustrates three types of point-in-polygon test situations which this
algorithm is designed to handle. For example, for the polygons in Figure 1, w = -1 for
(a), w = 0 for (b), and w = 2 for (c). We assume that x is not on C: this special case can
be detected and handled either during or before the algorithm.
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C
v, v,
e« X
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(a) convex C (b) non-convex C (c) convoluted C

Figure 1 Point-in-Polygon Situations

The axis-crossing method for determining the winding number consists of
traversing the polygon keeping track of direction and frequency of crossing with the
positive x-axis. Refer to Figure 2 for an illustration of the terminology. Briefly speaking,
each time the polygon winds around the origin, the positive x-axis must be crossed; a
crossing from below represents a counterclockwise winding, and from above a clockwise

winding.

C

Ry - . * Vi+l
positive x-axis

Figure 2 Axis-Crossing Method Terminology

The first step in the axis-crossing method is to initialize the winding number w to
zero. Then, for each segment of the polygon, determine whether that segment crosses the
positive x-axis, and in which direction. If the crossing is from below, increment w by one;




if the crossing is from above, decrement w by one. After proceeding through all of the
segments of the polygon, w will equal the winding number of the polygon about the origin.

Thus for each vertex v; in the polygon the winding number is updated according to the
direction and intersection of v,v,,, and the positive x-axis. This is illustrated in the first
two cases in Figure 3.
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Figure 3 Winding Number Update Criterion

For digitized data of limited resolution and sometimes in cases of computer round-
off, it is quite possible that one of the coordinates of a vertex in the polygon is identical to a
coordinate of the test point x. Therefore it is conceivable that after translating the data so
that x is the origin, one or more of the vertices may exactly lic on the positive x-axis. Many




algorithms presented in the literature ignore this case. The last three cases in Figure 3
illustrate this phenomenon. Essentially, if one of the ends of a polygon segment lies on the
positive x-axis, the winding number should be incremented or decremented by one-half,
depending on the direction.

Pseudocode which implements the axis-crossing method follows:

Input: vertices v; (i = 1 to n) of the polygon C.
Qutput: winding number w of polygon C about point x.

0.)  Replace each v, by (v; —x).
1.) Initialize w = 0.

2.)  Foreach vertex v; (i=1 to n) in the polygon C:

if (y;y;,; <0)then [v,v,,, crosses the x-axis]

Yi (xm - xi)

Set r=x, +
(Yi - Yi+1)

[r is the x-coordinate of the intersection of v,v,,, and the x-axis]

1

if (r > 0) then [v;v,., crosses positive x-axis]

1

if (y;<0)then w=w+1lelse w=w~1

else if ((y; =0) and (x; > 0) ) then [ v, is on the positive x-axis]
if (y;,,, >0)thenw=w+12elsew=w-1/2

else if ((y;,; =0) and (x;,, >0) ) then [ v;,, is on the positive x-axis]
if (y;<0)thenw=w+12else w=w-1/2

3.)  Return w = winding number of C about x.

CONCLUSIONS

Presented here is a detailed axis-crossing algorithm for determining the winding
number of a polygon about a point. As was shown, this number provides an efficient
solution to the point-in-polygon problem with O(n) complexity (where n is the number of
polygon vertices). It deals with the general case of non-simple and/or non-convex
polygons and it can also be used to determine the orientation (clockwise or
counterclockwise) of the polygon.
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