A Winding Number and Point-in-Polygon Algorithm

David G. Alciatore*
Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523

(303) 491-6589
e-mail: alciator@mardigras.lance.colostate.edu

Rick Miranda
Department of Mathematics
Colorado State University

This paper presents an efficient axis-crossing algorithm for determining the winding
number of a closed planar polygon about a given point. The winding number
mathematically measures the number of times a polygon encloses a point. The polygon is
defined by a set of ordered vertices and need not be a simple polygon (i.e., the sides may
intersect). Knowledge of the winding number immediately determines whether or not a
point lies within the polygon and also determines the sense of the polygon (clockwise or
counterclockwise). The point-in-polygon problem is such a fundamental geometric
problem and has such wide-ranging applications that an efficient numerical algorithm is an
invaluable tool. Although point-in-polygon algorithms abound in the literature, none
provide the complete information that the winding number offers.

INTRODUCTION

A fundamental problem encountered in two-dimensional ¢omiputation geometry is
determining whether a given point lies within given closed polygon. Some applications of
this include: ray tracing (determining if a ray pierces a.surface) [1]; painting simulation
(determining points on surface that a paint fan pattein covers) [2}; robotics (determining if a
point is within the reachable workspace of a robot) [3]; acoustics (determining points at
which sounds wave are considered to be reflected by walls) [4]; geosciences (contouring a
data set) [5]; computer graphics surface triangulation from serial section contours
(getermining if a contour in one serial section overlaps a contour in the previous section)
[6]; etc.

A large amount of literature addresses this simple geometric problem [2-13, 15].
Most of the algorithms presented in the literature deal only with special cases of the
problem. A common assumption is that the polygon is convex, and algorithms for this
case exist which have logarithmic efficiency [10, 11]. Most of the point-in-polygon
algorithms presented in the literature assume that the polygon is simple (i.e., has non-

intersecting sides). Although this is an important and common case, there is little
discussion of generalizing these algorithms to a non-simple case.

This paper proposes the use of the polygon's winding number as the basis of a
point-in-polygon algorithm. The winding number of a polygon (contour) C about a point
x, w, measures not only whether C encloses x, but also how many times and in which
orientation C "winds around" x. In particular,

0 if x is not inside C
w=<{n>0 if C winds around X n times counterclockwise
n<0 if C winds around x (-n) times clockwise %))

The winding number can be rigorously defined as a contour integral in the complex plane
[14]:

w=-L, ldz where z=x+1iy 3}
2nigz

Note that the winding number is not defined when the point X is on the polygon C. In this
paper, we present an axis-crossing algorithm for computing the winding number of C
about x which avoids numerical approximation of the above integral.

~ Axis crossing methods have been presented in the literature [4, 7, 12] for the point-
in-polygon algorithm; and in [15], the winding number is defined using axis crossings.
However, in [15], no algorithm or implementation details are presented for computing the
winding number. Moreover, the data structure suggested in [15] for dealing with closed
polygons is quite sophisticated and complex (a signed multiset of states encoding position
and attitude at each point of a motion traversing the polygon); this level of detail is
unnecessary for our restricted but important and common application. Finally, in [15], a
point-in-polygon test is described, but it utilizes a "sweep number" concept instead of
directly applying the winding number results. :

We present a concise, complete, and efficient winding number algorithm using a
common and simple data structure for a polygon (ordered set of vertices). This algorithm
can be used directly as a point-in-polygon test: if the winding number is nonzero, the point
is in the polygon. As noted above, the winding number gives information even for non-
simple polygons and can also be used to determine the orientation of the polygon.

THE AXIS-CROSSING METHOD

The axis-crossing method can be used to efficiently determine the winding number
of a closed polygon C about a point x. The notation to be used follows:

x=(x,,¥,) €R? the point in question.
Vi, Vas ¥ =(XY5) the ordered vertices of C.
V,u=V, C= UViVm the closed polygon to be tested.

il

Since the point-in-polygon test is invariant under horizontal and vertical translation,
the geometry may be translated so that the point x is at the origin. This simply amounts to
replacing the vertices v; with (v; - x) , for each i, at the beginning of the algorithm.

Therefore the algorithm can be presented in this special case with x as the origin with no
loss in generality.

Figure 1 illustrates three types of point-in-polygon test situations which this
algorithm is designed to handle. For example, for the polygons in Figure 1, w = -1 for
(a), w = 0 for (b), and w = 2 for (c). We assume that x is not on C: this special case can
be detected and handled either during or before the algorithm.

C vs
C
v, v,
e« X
v, v, Vo Yi A\
(a) convex C (b) non-convex C (c) convoluted C

Figure 1 Point-in-Polygon Situations

The axis-crossing method for determining the winding number consists of
traversing the polygon keeping track of direction and frequency of crossing with the
positive x-axis. Refer to Figure 2 for an illustration of the terminology. Briefly speaking,
each time the polygon winds around the origin, the positive x-axis must be crossed; a
crossing from below represents a counterclockwise winding, and from above a clockwise

winding.

C

Ry - . * Vi+l
positive x-axis

Figure 2 Axis-Crossing Method Terminology

The first step in the axis-crossing method is to initialize the winding number w to
zero. Then, for each segment of the polygon, determine whether that segment crosses the
positive x-axis, and in which direction. If the crossing is from below, increment w by one;

if the crossing is from above, decrement w by one. After proceeding through all of the
segments of the polygon, w will equal the winding number of the polygon about the origin.

Thus for each vertex v; in the polygon the winding number is updated according to the
direction and intersection of v,v,,, and the positive x-axis. This is illustrated in the first
two cases in Figure 3.

Viu
x=(0,0) f
- w=w+1
positive x- axis /
Vi
Vi
x=(0,0 /
L , w=w-1
positi ve x-axis /
Vi
v

i+l

x=(0,0) v, & f
-

w=w+ 1/2
positive x-axis Vi
v;
\f
x=(0,0) v, @ /
\» w=w-1/2
positi ve x- axis Vis
Via
x=(0,0) \A Vi
—e - w unchanged

positive x-axis

Figure 3 Winding Number Update Criterion

For digitized data of limited resolution and sometimes in cases of computer round-
off, it is quite possible that one of the coordinates of a vertex in the polygon is identical to a
coordinate of the test point x. Therefore it is conceivable that after translating the data so
that x is the origin, one or more of the vertices may exactly lic on the positive x-axis. Many

algorithms presented in the literature ignore this case. The last three cases in Figure 3
illustrate this phenomenon. Essentially, if one of the ends of a polygon segment lies on the
positive x-axis, the winding number should be incremented or decremented by one-half,
depending on the direction.

Pseudocode which implements the axis-crossing method follows:

Input: vertices v; (i = 1 to n) of the polygon C.
Qutput: winding number w of polygon C about point x.

0.) Replace each v, by (v; —x).
1.) Initialize w = 0.

2.) Foreach vertex v; (i=1 to n) in the polygon C:

if (y;y;,; <0)then [v,v,,, crosses the x-axis]

Yi (xm - xi)

Set r=x, +
(Yi - Yi+1)

[r is the x-coordinate of the intersection of v,v,,, and the x-axis]

1

if (r > 0) then [v;v,., crosses positive x-axis]

1

if (y;<0)then w=w+1lelse w=w~1

else if ((y; =0) and (x; > 0)) then [v, is on the positive x-axis]
if (y;,,, >0)thenw=w+12elsew=w-1/2

else if ((y;,; =0) and (x;,, >0)) then [v;,, is on the positive x-axis]
if (y;<0)thenw=w+12else w=w-1/2

3.) Return w = winding number of C about x.

CONCLUSIONS

Presented here is a detailed axis-crossing algorithm for determining the winding
number of a polygon about a point. As was shown, this number provides an efficient
solution to the point-in-polygon problem with O(n) complexity (where n is the number of
polygon vertices). It deals with the general case of non-simple and/or non-convex
polygons and it can also be used to determine the orientation (clockwise or
counterclockwise) of the polygon.

REFERENCES

(1]
[2]

(3]

4]

(5]

[6]

71

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

Arvo, J., editor, Graphics Gems I, Academic Press, 1991, pp. 247-263

Freund, M., A. Traver, and D. Alciatore, "Simulation of Multiple Nozzle Surface
Finishing Operations", ASME Technical Paper No. 91-PET-33, 1991.

Ng, D., "Determining Workspace Boundaries of Articulated Robot Arms,” Masters
Thesis, Colorado State University, to appear December, 1993.

Kulowski, A., "Optimization of a Point-in-Polygon Algorithm for Computer Models
of Sound Field in Rooms," Applied Acoustics, V. 35, 1992, pp. 63-74.

Salomon, K., "An Efficient Poinfin-Polygon Algorithm," Computers and
Geosciences, V.4, 1978, pp. 173-178.

Miranda, R., Fedde, C., McCracken, T., "Triangulating Between Parallel Splitting
Polygons Using a Simplicial Algorithm", Proceedings of the Biostereometrics
Conference, Boston, Mass, 1990.

Anderson, K., "Simple Algorithm for Positioning a Point Close to a Boundary,"
Mathematical Geology, V. 8, N. 1, 1976, pp.105-106.

Davis, M. and David, M., "An Algorithm for Finding the Position of Point Relative
to a Fixed Boundary," Journal of Mathematical Geology, V. 12, N. 1, 1980,
pp.61-68.

Hall, J., "PTLOC — A FORTRAN Subroutine For Determining the Position of Point
Relative to a Closed Boundary," Journal of Mathematical Geology, V.7, N. 1,
1975, pp.75-79.

Larkin, B., "An ANSI C Routine to Determine if a Point is Within a Specified
Convex Polygon in Logarithmic Time," Computers and Geosciences, V. 17, N. 6,
1991, pp. 841-847.

Lee, D. and Preparata, F., "Computational Geometry — A Survey," IEEE
Transactions on Computers, V. C-33, N. 12, 1984, pp. 1072-1101.

Shimrat, M., "Position of Point Relative to Polygon," Communications of the
ACM, V.5,N. 8, Algorithm 112, 1962, pg. 434.

Yamaguchi, F., Niizeki, M., Fukunaga, H., "Two Robust Point-in-Polygon Tests
Based on the 4x4 Determinant Method,"” Advances in Design Automation, V. 1,
Computer-aided and Computational Design, 1990, pp.89-95.

Churchill, R., lex Variabl Applications, 2nd ed., McGraw-Hill, New
York, 1960.

Guibas, L., Ramshaw, L., and Stolfi, J., "A Kinetic Framework for Computational
Geometry," Proceedings of the 24th Annual Symposium on Foundations of
Computer Science, November, 1983, pp. 100-111.

