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UNIT-I 
 

AUTOMATA 
 

 

Introduction 
 

Why do we study Theory of Computation ? 

 

• Importance of Theory of Computation 

• Languages 

• Languages and Problems 

 

 

What is Computation ? 

 

Sequence of mathematical operations ? 

 

– What are, and are not, mathematical operations? 

–  

• Sequence of well-defined operations 

•  

– How many operations ? 

 

• The fewer, the better. 

 

– Which operations ? 

–  

• The simpler, the better. 

 

 

What do we study in Theory of Computation ? 
 

 

• What is computable, and what is not ? 

 

 

 

• Basis of 

– Algorithm analysis 

–  

– Complexity theory 
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•            What a computer can and cannot do 

 

•            Are you trying to write a non-existing program? 

 

 

– Can you make your program more efficient? 

 

   What do we study in Complexity Theory ? 

 

 

• What is easy, and what is difficult, to compute ? 

 

       

• What is easy, and what is hard for computers to do? 

• Is your cryptograpic scheme safe? 

 

       Applications in Computer Science 

 

 

• Analysis of algorithms 

• Complexity Theory 

• Cryptography 

       

• Compilers 

• Circuit design 

 

 

    History of Theory of Computation 

 

• 1936 Alan Turing invented the Turing machine, and proved that there exists an 

unsolvable problem. 

•  

• 1940’s Stored-program computers were built.  

•  

• 1943 McCulloch and Pitts invented finite automata. 

•  

• 1956 Kleene invented regular expressions and proved the equivalence of regular 

expression and finite automata. 

 

•      1956 Chomsky defined Chomsky hierarchy, which organized languages 

recognized by different automata into hierarchical classes. 

•  

• 1959 Rabin and Scott introduced nondeterministic finite automata and proved its 

equivalence to (deterministic) finite automata. 

•  

• 1950’s-1960’s More works on languages, grammars, and compilers 



CS53 – THEORY OF COMPUTATION     © Einstein College of Engineering  
 

B.VIJAYAKUMAR B.E. M.Tech (PhD)  ©EINSTEIN COLLEGE OF ENGINEERING 

•  

• 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis and 

Stearns defined space complexity. 

•  

• 1971 Cook showed the first NP-complete problem, the satisfiability prooblem. 

•  

• 1972 Karp Showed many other NP-complete problems. 

 

 

    Alphabet and Strings 

 

 

 

• An alphabet is a finite, non-empty set of symbols.  

– {0,1 } is a binary alphabet. 

– { A, B, …, Z, a, b, …, z } is an English alphabet. 

–  

• A string over an alphabet  is a sequence of any number of symbols from . 

– 0, 1, 11, 00, and 01101 are strings over {0, 1 }. 

– Cat, CAT, and compute are strings over the English alphabet. 

–  

• An empty string, denoted by , is a string containing no symbol. 

•  

–  is a string over any alphabet. 

 

• The length of a string x, denoted by length(x), is the number of positions of 

symbols in the string. 

•  

Let Σ = {a, b, …, z} 

 

length(automata) = 8 

 

length(computation) = 11 

length(ε) = 0 

• x(i), denotes the symbol in the ith position of a string x, for 1 i  length(x). 

 

 

 

 

String Operations 

 

• Concatenation 

• Substring 

• Reversal 
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• The concatenation of strings x and y, denoted by xy or x y, is a string z such that:  

– z(i) = x(i) for 1  i  length(x) 

– z(i) = y(i) for length(x)<ilength(x)+length(y) 

 

• Example 

– automatacomputation = automatacomputation  

The concatenation of string x for n times, where n0, is denoted by xn 

– x0 =  

– x1 = x 

– x2 = x x 

– x3 = x x x 

–  … 

Substring 

 

 

Let x and y be strings over an alphabet Σ 

 The string x is a substring of y if there exist strings w and z over Σ such that y = w 

x z. 

– ε is a substring of every string. 

– For every string x, x is a substring of x itself. 

Example 

– ε, comput and computation are substrings of computation. 

 

Reversal 

 

Let x be a string over an alphabet Σ 

The reversal of the string x, denoted by x r, is a string such that  

– if x is ε, then xr is ε. 

– If a is in Σ, y is in Σ* and x = a y, then xr = yr a. 

(automata)r    

= (utomata)r a   

= (tomata)r ua 

= (omata)r tua   

= (mata)r otua   

= (ata)r motua 

= (ta)r amotua   

= (a)r tamotua    

= ()r atamotua 

 

• =  atamotua The set of strings created from any number (0 or 1 or …) of symbols 

in an alphabet  is denoted by *. 

•  

• That is, * = i=0 i 

– Let  = {0, 1}.   

– * = {, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }.  

–  
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• The set of strings created from at least one  symbol (1 or 2 or …) in an alphabet  

is denoted by +. 

 

• That is, +  =  i=1  i   

 

 

 =  i=0.. i - 0  

 =   i=0.. i - {} 

• Let  = {0, 1}. + = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }. 

 * and + are infinite sets. 

 

• A language over an alphabet Σ is a set of strings over Σ. 

– Let Σ = {0, 1} be the alphabet. 

– Le = {Σ* | the number  of 1’s in  is even}. 

– , 0, 00, 11, 000, 110, 101, 011, 0000, 1100, 1010, 1001, 0110, 0101, 

0011, … are in Le 

 

• Operations on LanguagesComplementation 

 

 

• Union 

• Intersection 

• Concatenation 

• Reversal 

• Closure 

 

 Complementation 
             Let L be a language over an alphabet Σ.   

                   The complementation of L, denoted byL, is Σ*–L. 

 

Example: 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even}. 

Le= {Σ* | the number  of 1’s in  is not even}. 

Le= {Σ* | the number  of 1’s in  is odd}. 

 

 

 

Union 

 

 

Let L1 and L2 be languages over an alphabet Σ.   

 The union of L1 and L2,   denoted by L1L2,   is {x | x is in L1 or L2}. 

Example: 

{x{0,1}*|x begins with 0}  {x{0,1}*|x ends with 0}  
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 = {x  {0,1}*| x begins or ends with 0} 

Intersection 

 

 

Let L1 and L2 be languages over an alphabet Σ. 

 The intersection of L1 and L2, denoted by L1L2, is { x | x is in L1 and L2}. 

Example: 

{ x{0,1}*| x begins with 0}  { x{0,1}*| x ends with 0}  

 = { x{0,1}*| x begins and ends with 0} 

 

 

 

 

Concatenation 

 

 

Let L1 and L2 be languages over an alphabet Σ.   

 The concatenation of L1 and L2, denoted by L1L2, is {w1w2| w1 is in L1 and w2 

is in L2}. 

Example 

   { x  {0,1}*| x begins with 0}{x  {0,1}*| x ends with 0}  

= { x  {0,1}*| x begins and ends with 0 and length(x)  2}  

    { x  {0,1}*| x ends with 0}{x  {0,1}*| x begins with 0}  

= { x  {0,1}*| x has 00 as a substring}  

 

Reversal 

 

Let L be a language over an alphabet Σ.   

The reversal of L, denoted by Lr, is {wr| w is in L}. 

Example 

{x  {0,1}*| x begins with 0} r 

 = {x  {0,1}*| x ends with 0}  

{x  {0,1}*| x has 00 as a substring} r  

 = {x  {0,1}*| x has 00 as a substring}  

 

 

 

 

 

 

Closure 

 
Let L be a language over an alphabet Σ.   

 The closure of L, denoted by L+, is { x |for an integer n  1, x = x1x2…xn and x1, 

x2 , …, xn are in L} 
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That is, L+ =  i= 1   Li 

 

 

 

Example: 

 

Let Σ = {0, 1} be the alphabet. 

Le = {Σ* | the number  of 1’s in  is even} 

Le+ = {Σ* | the number  of 1’s in  is even} = Le*  

 

Observation about Closure 

 

L+ = L*   {ε} ? 

 

Example: 

 

 

L = {Σ* | the number  of 1’s in  is even}  

L+ = {Σ* | the number  of 1’s in  is even} = Le*  

 

Why?  

L* = L+  {ε} ? 

 

• Languages and ProblemsProblem 

– Example: What are prime numbers > 20? 

–  

• Decision problem 

– Problem with a YES/NO answer 

– Example: Given a positive integer n, is n a prime number > 20? 

–  

• Language 

– Example: {n | n is a prime number > 20}  

  

 

 

 

 

 

 

 

 

Finite Automata 

 

 
 

A simple model of computation 
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• Deterministic finite automata (DFA) 

– How a DFA works 

– How to construct a DFA 

• Non-deterministic finite automata (NFA) 

– How an NFA works 

– How to construct an NFA 

• Equivalence of DFA and NFA 

• Closure properties of the class of languages accepted by FA 

 

 

Finite Automata (FA) 

 

                  

•  Read an input string from tape 

• Determine if the input string is in a language 

• Determine if the answer for the problem is “YES” or “NO” for the given input on 

the tape 

 

 

How does an FA work? 

 

• At the beginning,  

– an FA is in the start state (initial state) 

– its tape head points at the first cell 

•  For each move, FA 

– reads the symbol under its tape head 

– changes its state (according to the transition function) to the next state 

determined by the symbol read from the tape and its current state 

– move its tape head to the right one cell  

 

• When does an FA stop working? 

• When it reads all symbols on the tape 

• Then, it gives an answer if the input is in the specific language: 

– Answer “YES” if its last state is a final state 

– Answer “NO” if its last state is not a final state 
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• How to define a DFA 

•  

• a 5-tuple (Q, , , s, F), where 

– a set of states Q is a finite set 

– an alphabet  is a finite, non-empty set 

– a start state s in Q 

– a set of final states F contained in Q 

– a transition function  is a function Q    Q 

–  

• See formal definition 

 

 

 

 

 

 

Q a (q,a) 

S 0 s 

S 1 f 

F 0 f 

F 1 s 

s f 

0 1 0 

1 
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How an FA works 

 

 

Definition 

 

 

• Let M = (Q, , , s, F) be a DFA, and   *. We say M accepts  if  (s, ) 

*M (f, ), when f  F.  Otherwise, we say M rejects . 

 

 (s, 001101) *M (f, )  M accepts 001101 

 (s, 01001) *M (s, )   M  rejects  01001 

 

Language accepted by a DFA 

 

                  Let M = (Q, , , s, F ) be a DFA. The language accepted by M, denoted by 

L(M ) is the set of strings accepted by M.  That is, L(M) = {*|(s, ) *M (f, ) for 

some f  F } 

Example: 

• L(M) = {x  {0,1}* | the number of 1’s in x is odd}. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

s f 

0 1 0 

1 
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How to construct a DFA 

 

 

• Determine what a DFA need to memorize in order to recognize strings in the 

language.   

– Hint: the property of the strings in the language 

• Determine how many states are required to memorize what we want.  

– final state(s)  memorizes the property of the strings in the language.  

• Find out how the thing we memorize is changed once the next input symbol is 

read.   

– From this change, we get the transition function.   

 

 

Constructing a DFA: Example 

 

• Consider L= {{0,1}*|  has both 00 and 11 as substrings}.   

• Step 1: decide what a DFA need to memorize 

• Step 2: how many states do we need? 

• Step 3: construct the transition diagram 

 

 

Constructing a DFA: Example 

 

• Consider L= {{0,1}*|  represents a binary number divisible by 3}.   

– L = {0, 00, 11, 000, 011, 110, 0000, 0011, 0110, 1001, 00000, ...}.   

–  

• Step 1: decide what a DFA need to memorize 

– remembering that the portion of the string that has been read so far is 

divisible by 3  

–  

• Step 2: how many states do we need? 

•  

– 2 states remembering that 

• the string that has been read is divisible by 3 

• the string that has been read is indivisible by 3.  

 

 

  

– 3 states remembering that 

 

 

• the string that has been read is divisible by 3 

• the string that has been read - 1 is divisible by 3.   

• the string that has been read - 2 is divisible by 3.   
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Using 2 states 

 

 

 

• Reading a string w representing a number divisible by 3.  

– Next symbol is 0. w 0, which is 2*w, is also divisible by 3.   

• If w=9 is divisible by 3, so is 2*w=18.   

– Next symbol is 1. w 1, which is 2*w +1, may or may not be divisible by 3.   

• If 8 is indivisible by 3, so is 17. 

• If 4 is indivisible by 3, but 9 is divisible. 

• Using these two states is not sufficient. 

• Using 3 states 

• Each state remembers the remainder of the number divided by 3.   

• If the portion of the string that has been read so far, say w, represents the 

number whose remainder is 0 (or, 1, or 2),  

– If the next symbol is 0, what is the remainder of w 0? 

– If the next symbol is 1, what is the remainder of w 1? 

 

 

Current 

number 

Current 

remainder 

Next symbol New number New remainder 

3n 0 0 6n 0 

3n 0 1 6n+1 1 

3n+1 1 0 6n+2 2 

3n+1 1 1 6n+3 0 

3n+2 2 0 6n+4 1 

3n+2 2 1 6n+5 2 
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How to define an NFA 

 

• a 5-tuple (Q, , , s, F), where 

– a set of states Q is a finite set 

– an alphabet  is a finite, non-empty set 

– a start state s in Q 

– a set of final states F contained in Q 

– a transition function  is a function Q({})2Q 

• See formal definition 

 

 

Definition 

 

• Let M = (Q, , , s, F) be a non-deterministic finite automaton, and (q0, 0) and 

(q1, 1) be two configurations of M.   

• We say (q0, 0) yields (q1, 1) in one step, denoted by (q0, 0) M (q1, 1), if 

q1   (q0, a,), and 0=a 1, for some a    {}. 

 

 

Definition 

 

• Let M = (Q, , , s, F) be an NFA, and (q0, 0) and (q1, 1) be two 

configurations of M.  (q0, 0) yields (q1, 1) in zero step or more, denoted by 

(q0, 0) *M (q1, 1), if 

– q0= q1 and 0 = 1, or  

– (q0, 0) M (q2, 2) and (q2, 2) *M (q1, 1) for some q2 and 2. 

 

 

 

Definition 

• Let M = (Q, , , s, F) be an NFA, and   *. We say M accepts  if  (s, ) 

*M (f, ), when f  F.  Otherwise, we say M rejects . 

 

 

Language accepted by an NFA 
 

• Let M = (Q, , , s, F) be an NFA. 

• The language accepted by M, denoted by L(M) is the set of strings accepted by M.  

That is, L(M) = {*| (s,) *M (f, ) for some fF} 
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DFA and NFA are equivalent 

Md and Mn are equivalent    L(Md) = L(Mn). 

 

DFA and NFA are equivalent      

• For any DFA Md, there exists an NFA Mn such that Md and Mn are equivalent. 

(part 1) 

• For any NFA Mn, there exists a DFA Md such that Md and Mn are equivalent. 

(part 2) 

 

 

 

Part 1 of the equivalence proof 

 

 

• For any DFA Md, there exists an NFA Mn such that Md and Mn are equivalent 

 

Proof: Let Md be any DFA. We want to construct an NFA Mn such that L(Mn) = L(Md). 

 From the definitions of DFA and NFA, if M is a DFA then it is also an NFA. 

 Then, we let Mn = Md. 

 Thus, L(Md) = L(Mn).     

• For any NFA Mn, there exists a DFA Md such that Md and Mn are equivalent. 

 

 

 

 

Proof: Let Mn = (Q, , , s, F) be any NFA. We want to construct a DFA Md such that 

L(Md) = L(Mn). 

 First define the closure of q, denoted by E(q). 

 Second, construct a DFA Md=(2Q, , ', E(s), F') 

 Finally, prove            f  F  (s,) |-*Mn (f, )    f 'F '   (E(s), ) |-

*Md (f ' , ).   

 

 

 

 

Closure of state q 

• Let M = (Q, , , s, F) be an NFA, and qQ. 

• The closure of q, denoted by E(q), is  

– the set of states which can be reached from q without reading any symbol.  

– {pQ| (q, ) |-M* (p, )} 

• If an NFA is in a state q, it can also be in any state in the closure of q without 

reading any input symbol. 
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Example of closure 

 

Constructing the equivalent DFA 

Let Mn = (Q, , , s, F) be any NFA. We construct a DFA Md =(2Q, , ', E(s), F'), 

where : 

– '(q',a) =  {rE(p)| p  (q,a) } and  

– F' = {f  Q | f  F  }) 

 

 

E(q0) E(q1) E(q2) E(q3) E(q4) 

q0, q1, q2, q3  q1, q2, q3  q2 q3 q3,q4 

 

 

 

Prove property of  and ' 

Let Mn = (Q, , , s, F) be any NFA, and Md = (2Q, , ', E(s), F') be a DFA, where  

– '(q', a) =   {rE(p)| p(q,a)} and  

– F' = {f  Q | f  F  } 

Prove  ,  fF (s,) |-*Mn (f, )   f 'F ' (E(s), ) |-*Md (f', ) and ff'  by 

induction. 

Prove a more general statement  ,  p, qQ (p,) |-*Mn (q, )  (E(p), ) |-

*Md (q', ) and qq'. 

 

 

 

 

 

Proof 
Part I: 

For any string  in Σ*, and states q and r in Q, there exists R  Q such that  

 (q, ) *Mn (r, ε)  (E(q), ) *Md (R, ε) and rR. 

Basis:  

Let  be a string in Σ*, q and r be states in Q, and (q, ) *Mn  (r, ε) in 0 step. 

Because (q, ) *Mn  (r, ε) in 0 step, we know (1) q=r ,   and   (2) = ε. 

Then, (E(q), ) = (E(r), ε). 

Thus, (E(q), ) *Md (E(r), ε) .   

That is, there exists R=E(r) such that r  R and (E(q),) *Md (R, ε).  

Induction hypothesis: 

For any non-negative integer k,  string  in Σ*, and states q and r in Q, there exists R  

Q: 

 (q, ) *Mn (r, ε) in k steps -> (E(q), ) *Md (R, ε) and rR. 
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Induction step: 

Prove, for any non-negative integer k,  string  in Σ*, and states q and r in Q, there 

exists R  Q: 

 (q, ) *Mn (r, ε) in k+1 steps -> (E(q), ) *Md (R, ε) and rR. 

Let  be a string in Σ*, q and r be states in Q, and (q, ) *Mn  (r, ε) in k+1 steps. 

 

Because (q, ) *Mn (r, ε) in k+1 steps and k0, there exists a state p in Q and a string 

Σ* such that (q, ) *Mn (p, a) in k steps and (p, a) Mn (r, ε) for some a Σ{ε}.  

From the induction hypothesis and (q, ) *Mn (p, a) in k steps, we know that there  

 

exists PQ such that (E(q), ) *Md (P, a) and pP. 

Since (p, a) Mn (r, ε), r(p, a). 

From the definition of  of Md, E((p, a))  (P, a) because pP. 

 

 

Because r(p, a) and E((p, a))  (P, a), r(P, a). 

Then, for R=(P, a), (P, a) *Md (R, ε) and rR. 

Thus, (E(q), ) *Md (P, a) *Md (R, ε) and rR. 

 

 

Part II: 

For any string  in Σ*, and states q and r in Q, there exists R  Q such that rR and 

  (E(q), ) *Md (R, ε) -> (q, ) *Mn (r, ε). 

 

Proof 

 

Basis:  

Let  be a string in Σ*, q and r be states in Q, R be a subset of Q such that r  R and 

(E(q), ) *Md (R, ε) in 0 step. 

Because (E(q),) *Md (R, ε) in 0 step, E(q)=R and =ε. 

From the definition of E, (q, ε)=R because E(q)=R. 

Then, for any rR, (q, ) *Mn (r, ε).  

That is, there exists R=E(q) such that r  R and (q, ) *Mn (r, ε).  

Induction hypothesis: 

For any non-negative integer k,  string  in Σ*, and states q and r in Q, there exists R  

Q such that rR and: 

  (E(q), ) *Md(R, ε) in k steps ->(q, ) *Mn(r, ε). 

Induction step: 

Prove, for any non-negative integer k,  string  in Σ*, and states q and r in Q, there 

exists R  Q such that rR: 

 (E(q),)*Md(R, ε) in k+1 steps ->(q, ) *Mn(r, ε). 

 

Let  be a string in Σ*, q and r be states in Q, and (E(q), ) *Md  (R, ε) in k+1 steps. 
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Because (E(q), ) *Md  (R, ε) in k+1 steps and k0, there exists P2Q (i.e. PQ) and 

a string Σ* such that =a, (E(q), ) *Md (P,ε) in k steps and (P, a) Md (R, ε) for 

some aΣ.  

From the induction hypothesis and (E(q), ) *Md (P, ε) in k steps, we know that there 

exists pP such that (q, )*Mn(p,ε) (i.e. (q, a) *Mn (p, a) ). 

Since (P, a) Md (R, ε), there exists rR such that r= (p, a). 

Then, for some rR, (p, a) *Mn (r, ε). 

Thus, (q, ) *Mn (p, a) *Mn (r, ε) for some rR. 

 

Closure Properties 

 

• The class of languages accepted by FA’s is closed under the operations 

– Union 

– Concatenation 

– Complementation 

– Kleene’s star 

– Intersection 

The class of languages accepted by FA is closed under union. 

Proof: 

Let MA = (QA, Σ, A, sA, FA) and  

MB = (QB, Σ, B, sB, FB) be any FA. 

We construct an NFA M =  

(Q, Σ, , s, F) such that  

– Q = QA  QB  {s} 

–  = A  A  {(s, ε, {sA, sB})} 

– F = FA  FB  

To prove L(M) = L(MA) L(MB), we prove: 

I. For any string Σ*   L(MA) or L(MB)  L(M) & 

II. For any string Σ*   L(MA) and L(MB).  L(M) 

For I, consider (a) L(MA) or (b) L(MB). 

For (a), let L(MA).  

 From the definition of strings accepted by an FA, there is a state fA in FA such 

that (sA, ) |-*MA (fA, ε). 

 Because A,      (sA, ) |-*M (fA, ε) also. 

 Because sA(s,ε), (s, ) |-M (sA, ). 

 Thus, (s, ) |-M (sA, ) |-*M (fA, ε). 

 Because fA F, L(M). 

Similarly for (b). 

For (II), let L(MA)L(MB).  

Because (s, ε, {sA, sB}), either (s,) |-M (sA,) or (s, ) |-M (sB, ) only. 

Because L(MA), there exists no fA in FA such that (sA,) |-*MA (fA,ε). 

Because L(MB), there exists no fB in FB such that (sB, ) |-*MB (fB, ε). 

Since there is no transition between states in QA and QB in M, there exists no state f in 

F=FAFB such that (s, ) |-M (sA, ) |-*M (fA, ε) or (s, ) |-M (sB, ) |-*M (fB, ε).  
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That is, L(M). 

Thus, L(M) = L(MA)L(MB).  

 

 

Closure under concatenation 
 

The class of languages accepted by FA is closed under intersection. 

Proof: Let L1 and L2 be languages accepted by FA. 

L1  L2 = (L1 L2)  

By the closure property under complementation, there are FA acceptingL1 andL2. 

By the closure property under union, there is an FA acceptingL1 L2. 

By the closure property under complementation, there is an FA accepting(L1 L2). 

Thus, the class of languages accepted by FA is closed under intersection. 

Let MA = (QA, Σ, A, sA, FA) and  

MB = (QB, Σ, B, sB, FB) be any FA. 

We construct an NFA M = (Q, Σ, , s, F) such that  

– Q = QA  QB  

–  = A  A (i.e. ((qA,qB),a) = A(qA,a)B(qB,a)) 

– s = (sA, sB) 

– F = FA  FB  

 

 

 

 

– Check list 

 

 

Basic 

 Explain how DFA/NFA work (configuration, yield next configuration) 

 Find the language accepted by DFA/NFA 

 Construct DFA/NFA accepting a given language 

 Find closure of a state 

 Convert an NFA into a DFA 

 Prove a language accepted by FA 

 Construct FA from other FA’s  

 

 

Advanced 

 Prove DFA/NFA accepting a language 

 Prove properties of DFA/NFA 

 Configuration change 

 Under some modification 

 etc. 

 Prove some properties of languages accepted by DFA/NFA 

 Under some modification 

 Surprise! 
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UNIT: II : REGULAR EXPRESSIONS &LANGUAGES 

 

 
Regular Languages 

 

• Regular expressions 

• Regular languages 

• Equivalence between languages accepted by FA and regular languages 

• Closure Properties 

 

Regular Expressions 

 

               Regular expression over  alphabet  

•  is a regular expression. 

•  is a regular expression. 

• For any a, a is a regular expression. 

• If r1 and r2 are regular expressions, then 

– (r1 + r2)  is a regular expression.  

– (r1  r2) is a regular expression. 

– (r1* ) is a regular expression. 

• Nothing else is a regular expression. 

 

 

 

•  is a regular language corresponding to the regular expression . 

• {} is a regular language corresponding to the regular expression . 

• For any symbol a, {a} is a regular language corresponding to the regular 

expression a. 

• If L1 and L2 are regular languages corresponding to the regular expression r1 

and r2, then 

– L1L2, L1L2, and L1* are regular languages corresponding to (r1 + r2) 

, (r1  r2), and (r1*). 

 

 

Simple examples 
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Let = {0,1}. 

• {*| does not contain 1’s} 

– (0*)  

• {*| contains 1’s only} 

– (1(1*)) (which can can be denoted by (1+)) 

• * 

– ((0+1)*) 

• {*| contains only 0’s or only 1’s} 

– ((00*)+(11*)) 

 

 

Some more notations 

 

 

Let = {0,1}. 

• Parentheses in regular expressions can be omitted when the order of evaluation is 

clear. 

– ((0+1)*)  0+1* 

– ((0*)+(1*)) = 0* + 1* 

• For concatenation,  can be omitted. 

• r r r… r is denoted by rn. 

 

 

Let  = {0,1}. 

 

 

• {*|  contains odd number of 1’s} 

– 0*(10*10*)*10* 

• {*| any two 0’s in  are separated by three 1’s} 

– 1*(0111)*01* + 1* 

• {*|  is a binary number divisible by 4} 

– (0+1)*00 

• {*|  does not contain 11} 

– 0*(10+)* (1+) or (0+10)* (1+)  
 

 

 

 

 

Notation 

 

 

Let r be a regular expression.  

The regular language corresponding to the regular expression r is denoted by L(r). 
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Some rules for language operations 

 

    

Let r, s and t be languages over {0,1} 

      r +  =  + r = r 

r + s = s + r  

          r = r     = r 

          r = r   =  

r(s + t) = rs + rt 
r+ = r r* 

 

 

Rewrite rules for regular expressions 

 

 

Let r, s and t be regular expressions over {0,1}. 

 

     * =  

      * =  

(r + )+ = r*  

        r* = r*(r + ) = r* r* = (r*)* 

         (r*s*)* = (r + s)* 

 

 

Closure properties of the class of regular languages (Part 1) 

 

Theorem: The class of regular languages is closed under union, concatenation, and 

Kleene’s star. 

 

 

 

Proof: Let L1 and L2 be regular languages over . 

Then, there are regular expressions r1 and r2 corresponding to L1 and L2. 

By the definition of regular expression and regular languages, r1+r2 ,r1r2, and r1* are 

regular expressions corresponding to L1L2, L1L2, and L1*. 

Thus, the class of regular languages is closed under union, concatenation, and Kleene’s 

star. 
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Equivalence of language accepted by FA and regular languages 

  

 
 

To show that the languages accepted by FA and regular languages are equivalent, we 

need to prove: 

• For any regular language L, there exists an FA M such that L = L(M). 

• For any FA M, L(M) is a regular language. 

 

 

 

For any regular language L, there exists an FA M such that L = L(M) 

 

 

 

 

 

 

 

Proof: 

 

 

 Let L be a regular language. 

Then,  a regular expression r corresponding to L. 

We construct an NFA M, from the regular expression r, such that L=L(M). 

Basis:  

If r = , M is 

If r = , M is  

If r = {a} for some a  , M is 

 

 

 

Proof (cont’d) 

 
 

Induction hypotheses: Let r1 and r2 be regular expressions with 

less than n operations. And, there are NFA’s M1 and M2 accepting 
regular languages corresponding to L(r1) and L(r2). 

 

Induction step: Let r be a regular expression with n operations. 
We construct an NFA accepting L(r).   
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 r can be in the form of either r1+r2, r1r2, or r1*, for regular 

expressions r1 and r2 with less than n operations. 
 

 
If r = r1+r2, then M is  

 

 If r = r1r2, then M is  

 

 If r = r1*, then M is  

 

Therefore, there is an NFA accepting L(r) for any regular expression r. 
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Constructing NFA for regular expressions 
 

 

 
 

 

 
• Can these two states be merged? 

 NO 

• Be careful when you decide to 
merge some  

 
 
 

s 
 

• 0
*
(10

+
)

*
 

(1+) 



CS53 – THEORY OF COMPUTATION     © Einstein College of Engineering  
 

B.VIJAYAKUMAR B.E. M.Tech (PhD)  ©EINSTEIN COLLEGE OF ENGINEERING 

 
For any FA M, L(M) is a regular language 
 
 
 
 

Proof: Let M = (Q, , , q1, F) be an FA, where Q={qi| 1  i  n} for some 

positive integer n. 

 Let R(i, j, k) be the set of all strings in that drive M from state qi to 

state qj while passing through any state ql , for l  k. (i and j can be any 

states)  

 
  

 

Proof (cont’d) 

 

We prove that L(M) is a regular language by showing that there is a regular 

expression corresponding to L(M), by induction.  

Basis: R(i, j, 0) corresponds to a regular expression a if i j and a +  if i= j 

for some a. 

Induction hypotheses: Let R(i, j,k-1) correspond to a regular expression, for 

any i, j, k  n. 

 

Induction step: R(i, j, k) = R(i, j, k-1)  R(i, k, k-1) R(k, k, k-1)* R(k, j, k-1) 

also corresponds to a regular expression because R(i, j, k-1), R(i, k, k-1), R(k, 

k, k-1) and R(k, j, k-1) correspond to some regular expressions and union, 

concatenation, and Kleene’s star are allowed in regular expressions. 

Therefore, L(M) is also a regular language because L(M) = + R(1, f, n) for all 

qf in F.  

 

qj 

ql 

ql

' 
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Pumping Lemma 

 

 
Let L be a regular language.  

Then, there exists an integer n0 such that for every string x in L that |x|n, there are 

strings u, v, and w such that 

– x = u v w, 

– v  , 

– |u v|  n, and  

– for all k  0, u vk w is also in L 

 

Any language L is not a regular language if for any integer n0 , there is a string x in L 

such that |x|n, for any strings u, v, and w, 

– x  u v w, or 

– v = , or 

– Not (|u v|  n), or 

– there is k  0, u vk w is not in L 

 

 

Any language L is not a regular language if  

• for any integer n0 ,  

• there is a string x in L such that |x|n,  

• for any strings u, v and w, such that x = u v w, v  , and |u v|  n,  

– there is k  0, u vk w is not in L 

 

 

• Given a language L. 

• Let n be any integer 0 . 

• Choose a string x in L that |x|n. 

• Consider all possible ways to chop x into u, v and w such that v  , and |uv|  n. 

• For all possible u, v, and w, show that there is k  0 such that u vk w is not in L. 

• Then, we can conclude that L is not regular. 
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Prove {0i 1i| i  0} is not regular 

 
Let L = {0i1i| i  0}. 

Let n be any integer 0. 

Let x = 0n 1n.  

Make sure that x is in L and |x|n. 

The only possible way to chop x into u, v, and w such that v, and |u v|  n is: 

u = 0p, v = 0q, w = 0n-p-q 1n, where 0p<n and 0<qn  

Show that there is k  0, u vk w is not in L. 

u vk w = 0p 0qk 0n-p-q 1n = 0p+qk+(n-p-q) 1n = 0n+q(k-1) 1n 

If k  1, then n+q(k-1)  n and u vk w is not in L. 

Then, L is not regular. 

 

 

Let L = {0i1i| i  0}. 

Let n be any integer 0, and m= n/2. 

Let x = 0m 1m.  

Make sure that x is in L and |x|n. 

Possible ways to chop x into u, v, and w such that v  , and |u v|  n are: 

– u = 0p, v = 0q, w = 0m-p-q 1m, where 0p<m and 0<qm 

– u = 0p, v = 0 m-p 1q, w = 1m-q, where 0p<m and 0<qm 

– u = 0 m 1p, v = 1q, w = 1m-p-q, where 0p<m and 0<qm 

 

 

Show that there is k  0, u vk w is not in L. 
– u=0p, v=0q, w= 0m-p-q 1m, where where 0p<m and 0<qm 

 u vk w = 0p 0qk 0m-p-q 1m = 0m+q(k-1)1m is not in L if 

k1. 

– u=0p, v=0m-p 1q, w=1m-q, where where 0p<m and 0<qm 

 u vk w = 0p (0m-p 1q)k 1m-q is not in L if k  1. 

– u=0m 1p, v=1q, w=1m-p-q, where where 0p<m and 0<qm 

 u vk w = 0m 1p 1qk 1m-p-q = 0m 1m+q(k-1) is not in L if 

k1. 

Then, L is not regular. 
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Prove {1i|i is prime} is not regular 

 
 

 
Let L = {1i| i is prime}.    

Let n be any integer 0. 

Let p be a prime  n, and w = 1p.  

Only one possible way to chop w into x, y, and z such that y  , and |x y|  n is: 

x = 1q, y = 1r, z = 1p-q-r, where 0q<n and 0<r<n 

Show that there is k  0, x yk z is not in L. 

x yk z = 1q 1rk 1p-q-r = 1q+rk+(p-q-r) = 1p+r(k-1) 

If k=p+1, then p+r(k-1) = p(r+1), which is not a prime. 

Then, x yk z is not in L. 

Then, L is not regular. 

 

Using closure property 
 

Let  be a binary operation on languages and the class of regular languages is closed 

under . ( can be , , or -) 

• If L1 and L2 are regular, then L1L2 is regular. 

• If L1L2 is not regular, then L1 or L2 are not regular. 

• If L1L2 is not regular but L2 is regular, then L1 is not regular. 

 

 

Let L={w{0,1}*| the number of 0’s and 1’s in w are equal}. 

Let R= {0i1i| i  0}. 

R = 0*1*  L 

We already prove that R is not regular. 

But 0*1* is regular. 

Then, L is not regular. 

Let  be a unary operation on a language and the class of regular languages is closed 

under .  

( can be complement or *) 

• If L is regular, then L is regular. 

• If L is not regular, then L is not regular. 
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Prove that {w{0,1}*| the number of 0’s and 1’s in w are not 

equal} is not regular 

 
Let L = {w{0,1}*| the number of 0’s and 1’s in w are not equal}. 

Let R =L = {w{0,1}*| the number of 0’s and 1’s in w are equal}. 

We already prove that R is not regular. 

Then, L is not regular. 

 

 

Check list 

 

 Find the language described by a regular exp. 

 Construct regular exp. describing a given language 

 Convert a regular exp. into an FA  

 Convert an FA into a regular exp.  

 Prove a language is regular 

– By constructing a regular exp. 

– By constructing an FA 

– By using closure properties 

 

 Construct an FA or a regular exp. for the intersection, 

union, concatenation, complementation, and Kleene’s star 

of regular languages 

 Prove other closure properties of the class of regular lang 
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UNIT-III 

CONTEXT FREE GRAMMAR AND LANGUAGES 

Pushdown automata 

 

Pushdown automata differ from finite state machines in two ways: 

1. They can use the top of the stack to decide which transition to take.  

2. They can manipulate the stack as part of performing a transition.  

Pushdown automata choose a transition by indexing a table by input signal, current state, and the symbol at 

the top of the stack. This means that those three parameters completely determine the transition path that is 

chosen. Finite state machines just look at the input signal and the current state: they have no stack to work 

with. Pushdown automata add the stack as a parameter for choice. 

Pushdown automata can also manipulate the stack, as part of performing a transition. Finite state machines 

choose a new state, the result of following the transition. The manipulation can be to push a particular 

symbol to the top of the stack, or to pop off the top of the stack. The automaton can alternatively ignore the 

stack, and leave it as it is. The choice of manipulation (or no manipulation) is determined by the transition 

table. 

Put together: Given an input signal, current state, and stack symbol, the automaton can 

follow a transition to another state, and optionally manipulate (push or pop) the stack. 

In general pushdown automata may have several computations on a given input string, 

some of which may be halting in accepting configurations while others are not. Thus we 

have a model which is technically known as a "nondeterministic pushdown automaton" 

(NPDA). Nondeterminism means that there may be more than just one transition 

available to follow, given an input signal, state, and stack symbol. If in every situation 

only one transition is available as continuation of the computation, then the result is a 

deterministic pushdown automaton (DPDA), a strictly weaker device. 

If we allow a finite automaton access to two stacks instead of just one, we obtain a more 

powerful device, equivalent in power to a Turing machine. A linear bounded automaton 

is a device which is more powerful than a pushdown automaton but less so than a Turing 

machine. 

Pushdown automata are equivalent to context-free grammars: for every context-free 

grammar, there exists a pushdown automaton such that the language generated by the 

grammar is identical with the language generated by the automaton, which is easy to 

prove. The reverse is true, though harder to prove: for every pushdown automaton there 

exists a context-free grammar such that the language generated by the automaton is 

identical with the language generated by the grammar. 

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Linear_bounded_automaton
http://en.wikipedia.org/wiki/Context-free_grammars
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Formal Definition 

A PDA is formally defined as a 7-tuple: 

where 

 is a finite set of states  

 is a finite set which is called the input alphabet  

 is a finite set which is called the stack alphabet  

 is a mapping of into , the transition relation, where Γ * means "a finite (maybe 

empty) list of element of Γ" and denotes the empty string.  

 is the start state  

 is the initial stack symbol  

 is the set of accepting states  

An element is a transition of M. It has the intended meaning that M, in state , with on the 

input and with as topmost stack symbol, may read a, change the state to q, pop A, 

replacing it by pushing . The letter ε (epsilon) denotes the empty string and the 

component of the transition relation is used to formalize that the PDA can either read a 

letter from the input, or proceed leaving the input untouched. 

In many texts the transition relation is replaced by an (equivalent) formalization, where 

 is the transition function, mapping into finite subsets of .  

Here δ(p,a,A) contains all possible actions in state p with A on the stack, while reading 

a on the input. One writes for the function precisely when for the relation. Note that finite 

in this definition is essential. 

Computations 

 

 

a step of the pushdown automaton 

In order to formalize the semantics of the pushdown automaton a description of the 

current situation is introduced. Any 3-tuple is called an instantaneous description (ID) of 

M, which includes the current state, the part of the input tape that has not been read, and 

the contents of the stack (topmost symbol written first). The transition relation δ defines 

the step-relation of M on instantaneous descriptions. For instruction there exists a step , 

for every and every . 

In general pushdown automata are nondeterministic meaning that in a given 

instantaneous description (p,w,β) there may be several possible steps. Any of these steps 

http://en.wikipedia.org/wiki/Empty_string
http://en.wikipedia.org/wiki/Empty_string
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can be chosen in a computation. With the above definition in each step always a single 

symbol (top of the stack) is popped, replacing it with as many symbols as necessary. As a 

consequence no step is defined when the stack is empty. 

Computations of the pushdown automaton are sequences of steps. The computation starts 

in the initial state q0 with the initial stack symbol Z on the stack, and a string w on the 

input tape, thus with initial description (q0,w,Z). There are two modes of accepting. The 

pushdown automaton either accepts by final state, which means after reading its input the 

automaton reaches an accepting state (in F), or it accepts by empty stack (), which means 

after reading its input the automaton empties its stack. The first acceptance mode uses the 

internal memory (state), the second the external memory (stack). 

Formally one defines 

1. with and (final state)  

2. with (empty stack)  

Here represents the reflexive and transitive closure of the step relation meaning any 

number of consecutive steps (zero, one or more). 

For each single pushdown automaton these two languages need to have no relation: they 

may be equal but usually this is not the case. A specification of the automaton should also 

include the intended mode of acceptance. Taken over all pushdown automata both 

acceptance conditions define the same family of languages. 

Theorem. For each pushdown automaton M one may construct a pushdown automaton 

M' such that L(M) = N(M'), and vice versa, for each pushdown automaton M one may 

construct a pushdown automaton M' such that N(M) = L(M') 

The following is the formal description of the PDA which recognizes the language by 

final state: 

 

 

PDA for (by final state) 

, where 

Q = {p,q,r} 

Σ = {0,1} 

Γ = {A,Z} 
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F = {r} 

δ consists of the following six instructions: 

(p,0,Z,p,AZ), (p,0,A,p,AA), (p,ε,Z,q,Z), (p,ε,A,q,A), (q,1,A,q,ε), and 

(q,ε,Z,r,Z). 

In words, in state p for each symbol 0 read, one A is pushed onto the stack. Pushing 

symbol A on top of another A is formalized as replacing top A by AA. In state q for each 

symbol 1 read one A is popped. At any moment the automaton may move from state p to 

state q, while it may move from state q to accepting state r only when the stack consists 

of a single Z. 

There seems to be no generally used representation for PDA. Here we have depicted the 

instruction (p,a,A,q,α) by an edge from state p to state q labelled by a;A / α (read a; 

replace A by α). 

Understanding the computation process 

 
 

accepting computation for 0011 

The following illustrates how the above PDA computes on different input strings. The 

subscript M from the step symbol is here omitted. 

(a) Input string = 0011. There are various computations, depending on the moment the 

move from state p to state q is made. Only one of these is accepting. 

(i) . The final state is accepting, but the input is not accepted this way as it has not 

been read.  

(ii) . No further steps possible.  

(iii) . Accepting computation: ends in accepting state, while complete input has 

been read.  

(b) Input string = 00111. Again there are various computations. None of these is 

accepting. 

(i) . The final state is accepting, but the input is not accepted this way as it has not 

been read.  

(ii) . No further steps possible.  

(iii) . The final state is accepting, but the input is not accepted this way as it has 

not been (completely) read.  
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Pushdown Automata  

As Fig. 5.1 indicates, a pushdown automaton consists of three components: 1) an input 

tape, 2) a control unit and 3) a stack structure. The input tape consists of a linear 

configuration of cells each of which contains a character from an alphabet. This tape can 

be moved one cell at a time to the left. The stack is also a sequential structure that has a 

first element and grows in either direction from the other end. Contrary to the tape head 

associated with the input tape, the head positioned over the current stack element can 

read and write special stack characters from that position. The current stack element is 

always the top element of the stack, hence the name ``stack''. The control unit contains 

both tape heads and finds itself at any moment in a particular state.  

 

Figure 5.1: Conceptual Model of a Pushdown Automaton 

Definition  

A (non-deterministic) finite state pushdown automaton (abbreviated PDA or, when the 

context is clear, an automaton) is a 7-tuple = (X, Z, , R, zA, SA, ZF), where  

 X = {x1, ... , xm} is a finite set of input symbols. As above, it is also called an 

alphabet. The empty symbol is not a member of this set. It does, however, carry 

its usual meaning when encountered in the input.  

 Z = {z1, ... zn} is a finite set of states.  

 = {s1, ... , sp} is a finite set of stack symbols. In this case .  

 R ((X { })×Z× )×(Z× )) is the transition relation.  

 zA is the initial state.  

 SA is the initial stack symbol.  

 ZF K is a distinguished set of final states.  

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:pushdef
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Figure 5.3: Derivation of the String a3bc3 

 

 

Context-Free Languages  

As will be recalled from the last chapter there were two basic ways to determine whether 

a given string belongs to the language generated by some finite state automaton: One 

could verify that the string brings the automaton to a final state or one could derive, or, 

better, produce, the string in the regular grammar corresponding to the automaton. The 

same option holds for PDAs.  

Definition  

A context-free grammar is a grammar = (X, T, S, R) for which all rules, or 

productions, in R have the special form A , for A X - T and X*. 
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Additionally, for any two strings u, v X* write u v (u directly produces v ) if and 

only if (1) u = u1Au2 for u1, u2 X* and A X - T and (2) v = v1 v2 and A , 

X*, is a production from R. The reduction u v is also called a direct production. 

Finally, write u v for two strings u, v X* (u derives v) if there is a sequence u = u0 

u1 u2 ... un = v of direct productions ui ui+1 from R. The length of the 

derivation is n. The language generated by is {x T*|  S x}.  
 

 

Thus, the definition just articulates the reduction of A to in any context in which A 

occurs. It is trivial that every regular language is context-free. The obverse, as will be 

seen presently, is not true. Before proving the central theorem for this section two typical 

examples are given.  

Example 1  

Consider = (X, T, R, S) with T = {a, b} and X = {S, a, b, }. The productions, or 

grammar rules, are: S aSb  |  . Then it is clear that L( ) = {anbn|  n 0}. From 

the previous chapter it is known that this language is not regular.  

Example 2: A Grammar for Arithmetic Expressions  

Let  

X = {E, T, F, id, + , - ,*,/,(,), a, b, c}  

and T = {a, b, c, + , - ,*,/,(,)}. The start symbol S is E and the productions are as 

follows:  

E 
 
E + T  |  E - T  |  T   

T 
 
T*F  |  T/F  |  F   

F 
 
(E)  |  id   

id 
 
a  |  b  |  c   

 

 

Then the string (a + b)*c belongs to L( ). Indeed, it is easy to write down a derivation 

of this string:  

E 
 T T*F F*F (E)*F (E + T)*F 

  

  
 (T + T)*F (F + T)*F (id + T)*F (a + T)*F 

  

  
 (a + F)*F (a + id )*F (a + b)*F (a + b)*id (a + b)*c 
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The derivation just adduced is leftmost in the sense that the leftmost nonterminal was 

always substituted. Although derivations are in general by no means unique, the leftmost 

one is. The entire derivation can also be nicely represented in a tree form, as Fig. 5.4 

suggests.  

 

Figure 5.4: Derivation Tree for the Expression (a + b)*c 

The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the 

frontier of the tree consists of terminal symbols. The start symbol is the root and the 

derived symbols are nodes. The order of the tree is the maximal number of successor 

nodes for any given node. In this case, the tree has order 3. Finally, the height of the tree 

is the length of the longest path from the root to a leaf node, i.e. a node that has no 

successor. The string (a + b)*c obtained from the concatenation of the leaf nodes 

together from left to right is called the yield of the tree.  

The expected relation between pushdown automata and context-free languages is 

enunciated in the following theorem.  

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:tree
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Figure 5.5: Derivation of the String a2bcba2 

Conversely, assume is a PDA. To clarify the subsequent definitions the following 

discussion on the internal operation of is offered. The goal is, of course, to concoct a 

context-free grammar that executes a leftmost derivation of every string that accepts. If 

were as simple as the example in the first part of this proof, namely, that after pushing 

the very first nontrivial symbol (not SA) onto the stack remains in a single state z1, 

then it would be very straightforward to reverse the above process and construct from 

. Basically, if x is the input string write x = x ax , where x  is that part of x that has 

already been processed (a so-called prefix of x) and ax  is the rest of x whose first input 

symbol is a. Then the direct production of configurations of of the form (ax , z1, 

AA ) (x , z1, A ) corresponds to the grammar rule A a , resulting in the 

reduction x AA  xa A . Thus the sequence of stack moves from the above-

mentioned example commences with SA and, after popping that symbol, derives the 

string a2bcba2, as can be seen by inspecting the stack column in Fig. 5.5.  

Unfortunately, the general case is considerably more complicated, because 's state 

transitions also enter into the picture. Proceeding naively, one could reduce to a 2 state 

PDA of the aforementioned type by pushing pairs (z, A) of states and stack symbols 

from onto 's stack, thus imitating 's calculation of input strings. Thus, when 

is in state z and pushes A onto the stack, pushes (z, A) onto its stack. The reader is 

invited to pause to discover the fatal shortcoming of this method before reading further.  

The problem becomes immediately transparent when one considers what happens when 

pops a stack element (z, A). State z is no longer relevant for 's further operation-

 was in state z when A got pushed, but what state was in when the pop occurred? 

Therefore, it is necessary to push triples (z, A, z ), where z  is 's state when the pop 

takes place. Since it is not known what 's state z  is going to be when it pops A, has 

to guess what it is going to be, .i.e. it nondeterministically pushes (z, A, z ), where z  

Z is arbitrary. The only restriction is that when executing two (or more) push operations 

the unknown state z  must be manipulated consistently. This means if A1A2 is pushed, 

then after pops A1, or, equivalently, pops (z1, A1, z1 ), then finds itself in state 

z1 . Since does not use its own state information in imitating 's state transitions, 

's current state must be available in describing the next element of 's stack, or, in 

other words, better be in state z1  when popping A2 from its stack, and so must be of 

the form (z1 , A2, z2) for some (predicted) z2 Z. This train of thought will now be 

formalized.  

For simplicity, assume that pushes at most two symbols and that it has a single 

acceptance statei zF. A moment's reflection shows that these assumptions are not 

restrictive; but they do eliminate some extra preprocessing. The nonterminals of G are 

triples (z, A, z ) of states z, z  and a stack symbol A. The basic idea is to imitate what 

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:der1
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the machine undergoes in state z finally to pop symbol A and to wind up thereby in state 

z , having processed some string of input characters. Thus the rules for the sought-after 

context-free grammar are posited as follows:  

1. For the (extra) start symbol put S (zA, SA, zF).  

2. For each transition ((a, z, B),(z , C)) R put for each z1 Z  

(z, B, z1) a(z , C, z1)  

3. In case two symbols are pushed, i.e. ((a, z, B),(z , C1C2)) R, then put for each 

pair z1, z2 Z  

(z, B, z1) a(z , C1, z2)(z2, C2, z1).  

4. For each z Z put (z, , z) .  

It is important to notice the free choice of z1 and z1, z2 in rules 2. and 3. Consider, for 

example, processing the string a2bc2 from the PDA from Section 5.1. Then posit the start 

rule  

S (z1, SA, z3),  

since there is only one final state. Now mechanically translate each of the transitions 

from this PDA into their grammatical equivalents as shown in Table 5.1.  

Table 5.1: Translation of the PDA Transition Rules into Grammatical Productions 

Nr. Transition Function Nr Production 

1 ((a, zA, SA),(zA, SSA)) 1' (zA, SA, z') a(zA, S, z'')(z'', SA, z') 

2 ((a, zA, S),(zA, SS)) 2' (zA, S, w') a(zA, s, w'')(w'', s, w') 

3 ((b, zA, S),(z2, )) 3' (zA, S, v') b(z2, , v') 

4 ((c, z2, S),(z2, )) 4' (z2, S, u') c(z2, , u') 

5 ((c, z2, SA),(z3, )) 5' z2, SA, t') c(z3, , t') 
 

 

It is important to note that states z', z'', w', w'', v', u', t' can be chosen at will. 

Hopefully, a proper choice will lead to success in accordance with the philosophy of 

nondeterminism.  

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#sec:PDA
http://homepages.fh-regensburg.de/~zar39030/in/node6.html#tab:trans
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Properties of Context-Free Langauges  

Syntax Trees  

Tree representations of derivations, also known as syntax trees, were briefly introduced in 

the preceding section to promote intuition of derivations. Since these are such important 

tools for the investigation of context-free languages, they will be dealt with a little more 

systematically here.  

Definition  

Let = (X, T, R, S) be a context-free grammar. A syntax tree for this grammar consists 

of one of the following  

1. A single node x for an x T. This x is both root and leaf node.  

2. An edge  

 

corresponding to a production A R.  

3. A tree  

 

where the A1, A2, ... , An are the root nodes of syntax trees. Their yields are read 

from left to right.  

Ambiguity  

Until now the syntax trees were uniquely determined-even if the sequence of direct 

derivations were not. Separating the productions corresponding to the operator hierarchy, 

from weakest to strongest, in the expression grammar + , - ,*,/,() preserves this natural 

hierarchy. If this is not done, then syntax trees with a false evualation sequence are often 

the result. Suppose, for instance, that the rules of the expression grammar were written E 

E + E  |  E*E  |  id, then two different syntax trees are the result. If the first 

production E E + E were chosen then the result would be the tree  
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On the other hand, choosing the production E E*E first results in a syntax tree of an 

entirely different ilk.  

 

Thus this grammar is ambiguous, because it is possible to generate two different syntax 

trees for the expression a + b*c.  

Chomsky Normal Form  

Work with a given context-free grammar is greatly facilitated by putting it into a so-

called normal form. This provides some kind of regularity in the appearance of the right-

hand sides of grammar rules. One of the most important normal forms is the Chomsky 

normal form.  

Definition  

The context-free Grammar = (X, T, R, S) is said to be in Chomsky normal form if 

all grammar rules have the form  
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A a  |  BC, 
(5.1) 

 

 

for a T and B, C X - T. There is one exception. If L( ), then the single extra 

rule  

S  
(5.2) 

 

 

is permitted. If L( ) then production rule 5.2 is not allowed.  

1. vy (that is, v or y ).  

2. The length of vwy satisfies | vwy| n.  

3. For each integer k 0, it follows that uvkwykz L( ).  

Proof  

Assume that is in Chomsky normal form. For x L( ) consider the (binary) syntax 

tree for the derivation of x. Assume the height of this tree is h as illustrated in Fig. 5.6.  

 

Figure 5.6: Derivation Tree for the string x L( ) 

Then it follows that | x| 2h-2 + 2h-2 = 2h-1, i.e. the yield of the tree with height h is at 

most 2h-1. If has k nonterminal symbols, let n = 2k. Then let x L( ) be a string 

with | x| n. Thus the syntax tree for x has height at least k + 1, thus on the path from 

the root downwards that defines the height of the tree there are at least k + 2 nodes, i.e. at 

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#eq:rule
http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:ogd
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least k + 1 nonterminal symbols. It then follows that there is some nonterminal symbol A 

that appears at least twice. Consulting Fig. 5.7, it is seen that the partial derivation S 

uAz uvAyz obtains.  

 

Figure 5.7: Nonterminal A appears twice in the derivation of x 

If, now, both u and z were empty, then derivations of the form S uAz A would be 

possible, contrary to the assumption of Chomsky normal form. For the same reason either 

v or y are nonempty. If | vwy| > n then apply the procedure anew until the condition | 

vwy| n holds. Finally, since the derivation A vAy can be repeated as often as one 

pleases, it follows that S uAz uvAyz uv2Ay2z uv2wy2zi, etc. can be 

generated. This completes the proof.  

Example 1  

The language L = {aibici  |  i 1} is not context free.  

Proof  

Assume L were context-free. Then let n be the n from the preceding theorem and put x = 

anbncn. Ogden's lemma then provides the decomposition x = uvwyz with the stated 

properties. There are several cases to consider.  

Case 1 The string vy contains only a's. But then the string uwz L, which is 

impossible, because it contains fewer a's than b's and c's. .  

Case 2,3 vy contains only b's or c's. This case is similar to case 1.  

Case 4,5 vy contains only a's and b's or only b's or c's. Then it follows that uwz contains 

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:redtree
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more c's than a's and b's or more a's than b's and c's. This is again a contradiction.  

Since | vwy| n it is not possible that vy contain a's and c's.  

it is seen that the complements and are not in general context-free.  

Push Down Automata and Context-Free Grammars  

Definition  

An algorithm is called polynomial in case there is an integer k 2 such that the number 

of steps after which the algorithm halts is (nk). The argument n depends only on the 

input.  

Theorem 5..7   There is a polynomial algorithm that constructs to any given push down 

automaton a context-free grammar with L( ) = L( ). Conversely, there is a 

polynomial algorithm that constructs to any given context-free grammar a push down 

automaton with L( ) = L( ). 
Theorem 5..8   There is a polynomial algorithm that decides, given any context-free 

grammar G = (X, T, R, S) and x T* whether x L( ). 

Proof  

The proof of this theorem sometimes goes under the name CYK algorithm after their 

discoverers Cocke, Younger and Kasami. It proceeds as follows:  

1. Rewrite in Chomsky normal form. It is easily seen that this can be done in 

polynomial time.  

2. If x = x1x2
 ... xn, then for 0 i, j n put xij = xixi+1

 ... xi+j-1. It is noteworthy that 

| xij| = j. The idea is to determine all A X - T for which A xij. Thus set  

Vij = {A X - T  |  A xij}.  

1. For j = 1 it is readily seen that Vi1 = {A X - T  |  A xi}.  

2. For general j it is also seen that A Vij A xixi+1
 ... xi+j-1

A BC is a rule from R and B xi
 ... xi+k-1 and C xi+k

 ... xi+j-1 for 

some k = 1, 2, ... j - 1.  

Thus the algorithm can be formulated as follows:  
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for i : = 1 to n do 
 

 

Vi1 : = {A  X - T  |  A  xi  R}; 
 

for j : = 2 to n do 
 

for i : = 1 to n - j + 1 do begin 
 

 

Vij : = ; 
 

for k : = 1 to j - 1 do 
 

 

Vij : = Vij {A  X - T  |  A  BC,  B  Vik,  C  Vi+k, j-k}; 
 

end 

 

 

 

Figure 5.8: Diagonal Procedure for CYK Algorithm 

There is a nice interpretation of the innermost for loop. Formally one processes the pairs 

Vi1Vi+1, j-1, Vi2Vi+2, j-2, ... , Vi, j-1Vi+j-1, 1. As evidenced in Fig. 5.8 go down the ith column 

and simultaneously traverse the diagonal from Vi+1, j-1 up and to the right. The 

corresponding elements are compared with each other.  

Finally, it is seen that x L( ) S V1, n, because then S x1
 ... xn, where n = 

length(x).  

This technique of producing increasingly larger solutions from smaller ones is called 

dynamic programming.  

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:diag
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Example  

Consider the Grammar  

S   
AB  |  BC 

  

A   
BA  |  a 

  

B   
CC  |  b 

  

C   
AB  | a 

  

 

 

and the string x = baaba with n = 5. Then proceeding as above, the following triangular 

matrix results:  

b a a b a 

B A, C A, C B A, C 

S, A B S, C S, A   

 
B B     

 
S, A, C       

S, A, C         

Since S V15 it follows that x L( ). It is quite remarkable that the algorithm time is 

(n3). It is also remarkable that the CYK algorithm actually shows how to construct the 

derivation, which has great practical importance.  

Then it is easy to derive the string abc:  

 

S  aBC    abC abc 

 

Similarly, one derives the string a2b2c2:  

 

S  aSBC  a2BCBC   

   a2B2C2  a2bBC2   

   a2b2C2  a2b2cC a2b2c2 

   a2b2C2  a2b2cC a2b2c2 
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It is then a routine application of mathematical induction to prove the general formula S 

 anbncn.  

    
E + b*c T + b*c F + b*c id + b*c a + b*c. 

  

 

 

At each stage of the derivation the sentential form of the stage is of the form uv, where u 

X* and v T*. Tracing this derivation backwards, now proceed as follows: Starting 

from the leftmost input symbol reduce that symbol to a rule for which it is the right-hand 

side, in this case id a. Then reduce id to F, etc. until an E has been produced. All of 

the previous symbols are handles or right-hand sides of rules that allow successful (in the 

sense that the start symbol will eventually be produced). After E has been obtained, the 

next input symbol `+' is kept, or better, appended to E. Thus the sentential form `E +' is 

produced. This sentential form is called a viable prefix because there is a rule of the form 

E E + T (a trivial one). If it recognized that E + is a viable prefix, then, starting with 

the next input symbol, continue this process from that point onwards until the rest of the 

right-hand side has been produced, i.e. a handle has been found. Then reduce this handle 

to the left-hand side of the ``correct'' rule until the start symbol alone has been produced. 

This process can be nicely realized using a push-down automaton. Thus, proceeding from 

left to right on the input string, shift or push one or more input symbols onto the stack 

until a handle is found. The reduce or pop that handle from the stack and push the left-

hand side of the associated rule onto the stack. On a successful parse, if no reduction is 

presently forthcoming then the contents of the stack constitute a viable prefix for some 

rule yet to be determined. Another way of saying the same thing is that the contents of the 

stack, read from bottom up, are the prefix of a sentential form produced on the way back 

to the start symbol during a rightmost derivation.  

A correct parse of the string a + b*c as a sequence of shift/reduce actions is given in 

Table 5.3. Notice the decision to handle multiplication before addition is governed by 

``looking ahead'' one symbol.  

Table 5.3: Predictive Parse of the expression a + b*c 

Stack Input Action 

$ a + b*c$ Shift 

id$ + b*c$ Reduce 

F$ + b*c$ Reduce 

T$ + b*c$ Reduce 

E$ + b*c$ Reduce 

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#tab:aplus
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+ E$ b*c$ Shift 

b + E$ *c$ Shift 

id + E$ *c$ Reduce 

F + E$ *c$ Reduce 

T + E$ *c$ Reduce 

*T + E$ c$ Shift 

c*T + E$ $ Reduce 

id*T + E$ $ Reduce 

F*T + E$ $ Reduce 

T + E$ $ Reduce 

E$ $ Accept 
 

 

Stack Input Action 

$ a + b*c$ Shift 

id$ + b*c$ Reduce 

F$ + b*c$ Reduce 

T$ + b*c$ Reduce 

E$ + b*c$ Reduce 

+ E$ b*c$ Shift 

b + E$ *c$ Shift 

id + E$ *c$ Reduce 

F + E$ *c$ Reduce 

T + E$ *c$ Reduce 

*T + E$ c$ Shift 

c*T + E$ $ Reduce 

id*T + E$ $ Reduce 

F*T + E$ $ Reduce 

T + E$ $ Reduce 

E$ $ Accept 
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UNIT-IV 

 

PROPERTIES OF CONTEXT FREE LANGUAGES 

 

 

Turing Machines (TM) 

 
• Structure of Turing machines 

• Deterministic Turing machines (DTM) 

– Accepting a language 

– Computing a function 

• Composite Turing machines 

• Multitape Turing machines 

• Nondeterministic Turing machines (NTM) 

• Universal Turing machines (UTM) 

 

 

          

 

 

• Determine if an input x is in a Determine if an input x is in a language. 

– That is, answer if the answer of a problem P for the instance x is “yes”. 

• Compute a function  

– Given an input x, what is f(x)? 

– language. 

– That is, answer if the answer of a problem P for the instance x is “yes”. 

• Compute a function  

– Given an input x, what is f(x)? 

 

 

How does a TM work? 

 
• At the beginning,  

– A TM is in the start state (initial state) 

– its tape head points at the first cell 

– The tape contains , following by input string, and the rest of the tape 

contains . 

• For each move, a TM 

– reads the symbol under its tape head 
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– According to the transition function on the symbol read from the tape and 

its current state, the TM: 

• write a symbol on the tape 

• move its tape head to the left or right one cell or not  

• changes its state to the next state 

 

 
When does a TM stop working? 
 

 
• A TM stops working, 

– when it gets into the special state called halt state. (halts)  

• The output of the TM is on the tape. 

– when the tape head is on the leftmost cell and is moved to the left. (hangs)  

– when there is no next state. (hangs)  

 
How to define deterministic TM (DTM) 

 

 
• a quintuple (Q, , , , s), where 

– the set of states Q is finite, not containing halt state h,  

– the input alphabet  is a finite set of symbols not including the blank 

symbol ,  

– the tape alphabet  is a finite set of symbols containing , but not 

including the blank symbol ,  

– the start state s is in Q, and 

– the transition function  is a partial function from Q  ({})  Q{h} 

 ({})  {L, R, S}. 

 

 

 

Example of a DTM 

 

Definition 
• Let T = (Q, , , , s) be a DTM, and (q1, 1a11) and (q2, 2a22) be two 

configurations of T.   

 We say (q1, 1a11) yields (q2, 2a22) in one step, 

denoted by (q1, 1a11) T (q2, 2a22), if  

– (q1, a1) = (q2,a2,s), 1=2 and 1=2, 

– (q1, a1) = (q2,b,R), 2=1b and 1=a22, 
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– (q1, a1) = (q2,b,L), 1=2a2 and 2=b 

 

 

 
 

 

 
 

Definition 

 
• Let T=(Q, , , , s) be a DTM, and (q1, 1a11) and (q2, 2a22) be two 

configurations of T.   

 We say (q1, 1a11) yields (q2, 1a22) in zero step or 

more, denoted by (q1, 1a11) -*T (q2, 1a22), if  

– q1=q2, 1 =2, a1= a2, and 1= 2, or  

– (q1,1a11)-T (q, a) and (q, a)-*T (q2,1a22) for some q in Q, 

 and  in *, and a in . 

 

 

 

Yield in zero step or more: Example 

 

s,0001000) 
(p1,@0001000) 

(p2,@001000) 

(p2,@001000) 

(p3,@001000) 

(p4,@00100) 

(p4,@00100) 

(p1,@00100) 

(p2,@0100) (p4,@010) 

(p4,@010) 

(p1,@010) 

(p2,@10) 

(p2,@10) 

(p2,@10) 

(p3,@10) 
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(p4,@1) 

(p4,@1) 

(p1,@1) 

(q1,@) 

(q1,@) 

(q2,) 

(h ,1) 

 

(p2,@0100) 

(p3,@0100) 

 
 

TM accepting a language 

 

• Definition 
 Let T=(Q, , , , s) be a TM, and w*. 

 T accepts w if (s, , , w) |-T* (h, , , 1). 

 The language accepted by a TM T, denoted by L(T), is the 

set of strings accepted by T. 

 

 
L(T)={0n10n | n0} 

• T halts on 0n10n 

• T hangs on 0n+110n at p3 

• T hangs on 0n10n+1 at q1 

• T hangs on 0n 12 0n at q1 
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TM computing a function 
 

• Definition 

  

Let T=(Q, , , , s) be a TM, and f be a function from * to *.T computes f if, for any 

string w in *,  
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Example of TM Computing Function

1/1,L

0/0,L

p3p2

/1’,L

1/@,R

s p1

r2

/,R

0’/0,R
1’/1,R

/,L

/,S

0/0,R
1/1,R

q2 q1

r1

h

0’/0,R

1’/1,R

0/0,L 
1/1,L 
0’/0’,L 
1’/1’,L

0/0,L 
1/1,L 
0’/0’,L 
1’/1’,L

0/0,R
1/1,R/0’,L

0/@,R

@/1,R

@/0,R

  
 

 

 
• Let T1 and T2 be TM’s. 

• T1  T2 means executing T1 until T1 halts and then executing T2. 

• T1 -a T2 means executing T1 until T1 halts and if the symbol under the tape 

head when T1 halts is a then executing T2. 
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Nondeterministic TM 

 
•       An NTM starts working and stops working in the same way as a DTM. 

• Each move of an NTM can be nondeterministic. 

Each Move in an NTM 

 

•     reads the symbol under its tape head 

•  

• According to the transition relation on the symbol read from the tape and its 

current state, the TM choose one move nondeterministically to: 

– write a symbol on the tape 

– move its tape head to the left or right one cell or not  

– changes its state to the next state 

 

How to define nondeterministic TM (NTM) 

 
• a quintuple (Q, , , , s), where 

– the set of states Q is finite, and does not contain halt state h,  

– the input alphabet  is a finite set of symbols, not including the blank 

symbol ,  

– the tape alphabet  is a finite set of symbols containing , but not 

including the blank symbol ,  

– the start state s is in Q, and 

– the transition fn :Q({})2Q{h}({}){L,R,S}. 

 
Configuration of an NTM 
 

 Definition 

 
• Let T = (Q, , , , s) be an TM.  

 A configuration of T is an element of Q       

• Can be written as 
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– (q,l,a,r) or 

– (q,lar) Definition 

– Let T = (Q, , , , s) be an NTM, and (q1, 1a11) and (q2, 2a22) be 

two configurations of T.   

–  We say (q1, 1a11) yields (q2, 2a22) in one step, 

denoted by (q1, 1a11) T (q2, 2a22), if  

– (q2,a2,S)  (q1, a1), 1=2 and 1=2, 

– (q2,b,R)  (q1, a1), 2=1b and 1=a22, 

– (q2,b,L)  (q1, a1), 1=2a2 and 2=b1. 

–  
   

 

 
 

NTM accepting a language/computing a function 

 

• Definition 
 Let T = (Q, , , , s) be an NTM. 

 Let w* and f be a function from * to *. 

 T accepts w if (s, , , w) |-T* (h, , , 1). 

 The language accepted by a TM T, denoted by L(T), is the 

set of strings accepted by T. 

 T computes f if, for any string w in *, (s, , , w) |-T* 

(h, , , f(w)). 
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Example of NTM

• Let L={ww| w{0,1}*}

s

p u

q0 t0

r0

h

/@,R
0/0,L
1/1,L

@/,R

0/,
L

1/,L

0/0,L
1/1,L
/,L

0/@,R

/,
R

0/0,R
1/1,R

/,R

0/,L

1/,
L

q1 t1

r1

@/,R0/0,L
1/1,L
/,L

1/@
,R

0/0,R
1/1,R

/,R

@/,Lv

0/0,R
1/1,R

/@,L
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Multitape TM

• TM with more than one tape.

• Each tape has its own tape head.

• Each tape is independent.

CONTROL 

UNIT

TAPE

TAPE
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2-Tape Turing Machine 

 
• a quintuple (Q, , , , s), where 

– the set of states Q is finite, and does not contain the halt state h,  

– the input alphabet  is a finite set of symbols, not including the blank 

symbol ,  

– the tape alphabet  is a finite set of symbols containing , but not 

including the blank symbol ,  

– the start state s is in Q, and 

– the transition function  is a partial function from           Q  ({})2  

Q{h}  ({})2  {L, R, S}2  
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Example of 2-Tape Turing Machine

q2h

,/(,),(L,R)
s p1

p4

p2 p3
,/(,),(R,S)

0,/(0,),(R,S)
1,/(1,),(R,S)

0,/(0,0),(L,R)
1,/(1,1),(L,R)

,/(,),(R,S)

0,/(0,),(R,S)
1,/(1,),(R,S) 

,
/(

,
),(L

,L
)

0,0/(,),(L, L)
1,1/(,),(L, L)

,/(,),(R,R),/(1,),(L,L)

 
 

 

 
Equivalence of 2-tape TM and single-tape TM 

 

 

Theorem:  
 For any 2-tape TM T, there exists a single-tape TM M 

such that for any string  in *: 

– if T halts on  with  on its tape, then M halts on  with  on its tape, and 

– if T does not halt on , then M does not halt  



CS53 – THEORY OF COMPUTATION     © Einstein College of Engineering  
 

B.VIJAYAKUMAR B.E. M.Tech (PhD)  ©EINSTEIN COLLEGE OF ENGINEERING 

 

How 1-tape TM simulates 2-tape TM 

 
• Marking the position of each tape head in the content of the tape 

• Encode content of 2 tapes on 1 tape 

– When to convert 1-tape symbol into 2-tape symbol 

 

• Construct 1-tape TM simulating a transition in 2-tape TM 

• Convert the encoding of 2-tape symbols back to 1-tape symbols 
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Encoding 2 tapes in 1 tape

• New alphabet contains:
– old alphabet

– encoding of a symbol on tape 1 and a symbol on tape 2

– encoding of a symbol on tape 1 pointed by its tape head and a 
symbol on tape 2

– encoding of a symbol on tape 1 and a symbol on tape 2 pointed 
by its tape head 

– encoding of a symbol on tape 1 pointed by its tape head and a 
symbol on tape 2 pointed by its tape head 

 0 1 1 1 0  

 0 1 0 1   

 0 1 1 1 0  

 0 1 0 1   
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Tape format

c(b,) # c(a,) c(b,) c(c,) c(d,) …

What’s read on tape 1 and 2

seperator

Encoded tape content
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Simulating transitions in 2-tape TM in 1-tape TM

p q
a1,a2/(b1,b2),(d1,d2)

p

q

T_tape1 (a1,b1,d1)

T_tape2 (a2,b2,d2)

c(a1,a2)
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T_tape1(0,1,d)

S

#
/#

,R

c(?,x)/c(?,x),R

c(?,x)/c(?,x),R

c(0,?)/c(1,?),d
c(0,?)/c(1,?),d

It is not possible that 

c(1,?) is found because 
c(0,?) is wriiten in cell 1. 

c(
0
,x

)/
c(
0
,x

),
L 

0
/c

(0
,

),
L

? and x are 0, 1, or 

c(1,x)/c(1,x),L 
1/c(1,),L

c(
,x

)/c(
,x

),L


/c(

,
),L

Remember symbol 

under tape head in 
tape 1

#/#,L

#/#,L

#/#,L

not #/not #,L

not #/not #,L

not #/not #,L

c(?
,x

)/c(0
,x

),R

c(
?
,x

)/
c(

,x

),
R

c(?,x)/c(1,x),R

Convert 1-tape symbol 

into 2-tape symbol

Update the first cell

h

c(?,?)/c(?,?),R

 
 

 
 

Equivalence of 2-tape TM and single-tape TM 

 
Proof: 

 
Let T = (Q, , , , s) be a 2-tape TM.  

We construct a 1-tape TM M=(K, , ’, ’, s’) such that  

– ’ =   {c(a,b)| a,b are in {}}  {c(a,b)| a,b are in {}}  

{c(a,b)|a,b are in {}}  {c(a,b)|a,b are in {}}  {#} 

We need to prove that: 

– if T halts on  with output , then M halts on  with output , and 

 

if T does not halt on  

 

 
 

• If T loops, then M loops. 

• If T hangs in a state p, M hangs somewhere from p to the next state.  
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Equivalence of NTM and DTM 
 

Theorem:  
 
 
For any NTM Mn, there exists a DTM Md such that: 

– if Mn halts on input  with output , then Md halts on input  with output 

, and 

– if Mn does not halt on input , then Md does not halt on input . 

Proof: 

Let Mn = (Q, , , , s) be an NTM. 
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Construct a DTM equivalent to an NTM

WriteInitialConfiguration

Set WorkingTape

FindStateinCurrentConfiguration

WriteAllPossibleNextConfiguration

EraseCurrentConfiguration

FindNewConfiguration

h

a,h
a,q

a is any symbol, q is any state in Q Depend on Mn

Tape 1: simulate Mn’s tape

Tape 2: store configuration tree
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How Md works

s 0 1* 0 1  #

 0 01 1 

q0 1# 0 1  #

s 0 1# 0@ 1  #

Current state: s

- - -- -- - - *

@

Current state: q

0 1 q# 0 1  #

-- -- -- - - *

*

Current state: s

WriteInitialConfiguration

Set Working Tape

FindStateinCurrentConfiguration

WriteAllPossibleNex tConfiguration

EraseCurrentConfiguration

FindNewConfiguration

h

a,h a,q

s q
0/0,R/@,S /,R

Tape 2

Tape 1

 
 

 
 

 

 
• Then, there is a positive integer n such that the initial configuration (s, ) of Mn 

yeilds a halting configuration (h, ) in n steps. 

• From the construction of Md, the configuration (h, ) must appear on tape 2 at 

some time. 

• Then, Md must halt with  on tape 1. 

 

if Mn does not halt on input  

• Then, Mn cannot reach the halting configuration. That is, (s, ) never yields a 

halting configuration (h, ). 

• From the construction of Md, the configuration (h,) never appears on tape 2. 

• Then, Md never halt. 

 

 

 

Universal Turing Machine 
 

• Given the description of a DTM T and an input string z, a universal TM simulates 

how T works on input z. 

• What’s need to be done? 
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– How to describe T and z on tape 

• Use an encoding function 

– How to simulate T 

 
Encoding function 

 

 
• Let T=(Q, , , s) be a TM.  The encoding function e(T) is defined as follows: 

– e(T)=e(s)#e(), 

– e()=e(m1)#e(m2)#...#e(mn)#, where  = {m1, m2,..., mn} 

– e(m)=e(p),e(a),e(q),e(b),e(d), where m = (p, a, q, b, d) 

– e(z)=1e(z1)1e(z2)1…1e(zm)1, where z=z1z2…zm is a string 

– e()=0, e(ai)=0i+1, where ai is in  

– e(h)=0, e(qi)=0i+1, where qi is in Q 

– e(S)=0, e(L)=00, e(R)=000 

 

 

 

 

 

 

 

 

 

 

Example of Encoded TM 

 

 
• e()=0 , e(a1)=00 , e(a2)=000 

• e(h)=0, e(q1)=00, e(q2)=000 

• e(S)=0,  e(L)=00, e(R)=000 

• e(a1a1a2) = 1e()1e(a1)1e(a1)1e(a2)1e()1  

     = 101001001000101 
• e(m1) = (q1),e(a1),e(q2),e(a2),e(R)  

      = 00,00,000,000,000 

• e(m2) = e(q2),e(),e(h),e(),e(S)  

      =  000,0,0,0,0 

• e() = e(m1)#e(m2)#...#  

    = 00,00,000,000,000#000,0,0,0,0#...# 

• e(T) = e(s)#e()  

    = 00#00,00,000,000,000#000,0,0,0,0#...# 

• Input = e(Z)|e(T)| 
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 = 

101001001000101|00#00,00,000,000,000#000,0,0,0,0#...#| 

 

 

Jaruloj Chongstitvatana 2301379 Turing Machines 54

Universal Turing Machine

Tape 1: I/O tape, store the transition function of T and 
input of T

Tape 2: simulate T’s tape
Tape 3: store T’s state

CopyInputToTape2

CopyTape2ToTape1UpdateStateOnTape3 

UpdateTape2 FindRightMove

CopyStartStateToTape3

0

 (halt)
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How UTM Works

Copy InputToTape2

CopyTape2ToTape1UpdateStateOnTape3 

UpdateTape2 FindRightMov e

CopyStartStateToTape3

Not halt

halt0 0

1 0 0 1 0 1

1 0 0 1 0 1 | 0 0

# 0 0 , 0 0 , 0 0 0 , 0 0 0 , 0 0 0

# 0 0 0 , 0 , 0 , 0 , 0 # ... # |

Tape 1

Tape 3

Tape 2

1 0 0 0 1 0 1

0 0 00     

a2 
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Church-Turing Thesis 

 
• Turing machines are formal versions of algorithms. 

• No computational procedure will be considered an algorithm unless it 

can be presented as a Turing machine. 

 
 

Checklist 

     

• Construct a DTM, multitape TM, NTM accepting languages 
or computing function 

• Construct composite TM 

• Prove properties of languages accepted by specific TM 

• Prove the relationship between different types  
 

 

• Describe the relationship between TM and FA 

• Prove the relationship between TM and FA 
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UNIT -V 

 

Decidability 

 

 
             Decidable/Undecidable problems 

 
Accepting:  

 
Definition 

•                                   Let T = (Q, , , , s) be a TM. 

• T accepts a string w in *   if    

 (s,w) |-T* (h, 1) .  

 

• T accepts a language L* if, for any string w in L, T accepts w.  

 

                     

 

                   Characteristic function 

• For any language L*, the characteristic function of L is the function L(x) 

such that 

–  L(x) = 1  if x  L 

–  L(x) = 0 otherwise 

• Example 

Let L = {  {0,1}* | n1() <n0() <2n1() }, where nx() is the number of x’s in 

}. 

–  L() = 1  if n1() <n0() <2n1()  

–  L() = 0 otherwise 

 

 

 
Deciding: Definition 

                                      

• Let T = (Q, , , , s) be a TM. 

• T decides a language L* if T computes the characteristic function of L. 

• T decides a language L* if 

–  for any string w in L, T halts on w with output 1, 

–  for any string w inL, T halts on w with output  
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Accepting/Deciding: Example

1/,R

q2

h

q1


/1

,L
@

/
,R

/,L

S

p1

p4 p2

p3


/@

,R
0
/

,R

0/0,R
1/1,R


/

,L0/


,L

0/0,L
1/1,L


/

,R

TM accepting L={0n10n |n0}

If the input x is in L, 

T  halts with output 1.
If the input x is not in L, 

T  hangs.

r1
/,L

1/,L
/,L

r2

h

@
/

,R


/0
,L

/,L
0/,L
1/,L

TM decidinging L={0n10n |n0}

Hang when 

input = 02n

Hang when input 

= 0n+m …0n

Hang when input 

= 0n 1 … 0n+m

 
 

 

 
Recursively enumerable languages 

 

• A language L is recursively enumerable if there is a Turing machine T 

accepting L. 

• A language L is Turing-acceptable if there is a Turing machine T 

accepting L. 

• Example: 

 {0n10n|n0} is a recursively-enumerable 

language. 
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Recursive languages 

 

 
• A language L is recursive if there is a Turing machine T deciding L. 

• A language L is Turing-decidable if there is a Turing machine T 

deciding L. 

• Example: 

 {0n10n|n0} is a recursive language. 

 

 
Closure Properties of the Class of Recursive Languages 

 

          
Theorem:  

 

 

Let L be a recursive language over . Then,L is recursive. 

Proof: 

Let L be a recursive language over . 

Then, there exists a TM T computing L. 

Construct a tape TM M computing L. as follows: 

   T  TmoveRight  0 Twrite1 
           1     Twrite0 

Then,L is recursive. 

 
 
Closure Property Under Union 

 

 
Theorem: Let L1 and L2 be recursive languages over . Then, L1L2 is recursive. 

Proof:   

Let L1 and L2 be recursive languages over . 

Then, there exist TM’s T1 and T2 computing L1 and L2, respectively. 

Construct a 2-tape TM M as follows: 

 

 

 TcopyTape1ToTape2  T1  TmoveRight 0 TcopyTape2ToTape1   T2 



CS53 – THEORY OF COMPUTATION     © Einstein College of Engineering  
 

B.VIJAYAKUMAR B.E. M.Tech (PhD)  ©EINSTEIN COLLEGE OF ENGINEERING 

 
Closure Property Under Union 

 

 
 TcopyTape1ToTape2  T1  TmoveRight 0 TcopyTape2ToTape1   T2 

 

If the input w is not in L1 and L2, L1(w) and L2(w)=0. Thus, both T1 and T2 

must run, and M halts with output 0. 

If the input w is in L1, L1(w)=1. Thus, M halts with output 1. 

If the input w is not in L1 but is in L2, L1(w)=0 and L2(w)=1. Thus, M halts with 

output 1. 

That is, M computes characteristic function of L. 

Then, L1L2 is recursive. 

 

          

 
  
Closure Property Under Intersection 

      
Theorem: Let L1 and L2 be recursive languages over . Then, L1L2 is recursive. 

Proof: 

Let L1 and L2 be recursive languages over . 

Then, there exist TM’s T1 and T2 computing L1 and L2, respectively. 

 

 

Construct a 2-tape TM M as follows: 

 

 
 TcopyTape1ToTape2  T1  TmoveRight 1 TcopyTape2ToTape1   T2 

 

 

 

      TcopyTape1ToTape2  T1  TmoveRight  1 TcopyTape2ToTape1   T2 

 
If the input w is in L1L2, L1(w) and L2(w)=1. Thus, M halts with output 1. 

If the input w is not in L1, L1(w)=0. Thus, M halts with output 0. 

If the input w is in L1 but is not in L2, L1(w)=1 and L2(w)=0. Thus, M halts with 

output 0. 

That is, M computes characteristic function of L1L2. 

Then, L1L2 is recursive. 
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Closure Properties of the Class of Recursively Enumerable 
Languages 
 

 
       Theorem: Let L1 and L2 be recursively enumerable languages over . Then, L1L2 

is also recursively enumerable. 

Proof: 

Let L1 and L2 be recursively enumerable languages over . 

Then, there exist TM’s T1 and T2 accepting L1 and L2, respectively. 

Construct an NTM M as follows. 
 

Closure Property Under Union  

 

 

 
If w is in L1, but not in L2, then T1 in M runs and halts. 

If w is in not L1, but in L2, then T2 in M runs and halts. 

If w is in both L1 and L2, then either T1 or T2 runs and halts. 
For these 3 cases, M halts. 

If w is neither in L1 nor in L2, then either T1 or T2 runs but both never halt.  Then, M does not 

halt. 

Thus, M accepts L1L2.  That is, L1L2 is recursively enumerable. 

 

Closure Property Under Intersection  

 

 
Theorem: Let L1 and L2 be recursively enumerable languages over . Then, L1L2 is also 
recursively enumerable. 
Proof: 

Let L1 and L2 be recursively enumerable languages over . 
Then, there exist TM’s T1 and T2 accepting L1 and L2, respectively. 

Construct an NTM M as follows. 

 TcopyTape1ToTape2  T1  TmoveRight  1 TcopyTape2ToTape1   T2 
 

 
 

Closure Property Under Intersection  

 
If w is in not L1, then T1 in M does not halt. Then, M does not halt. 

If w is in L1, but not in L2, then T1 in M halts and  T2 can finally start, but does not halt. Then, 

M does not halt. 
If w is in both L1 and L2, then T1 in M halts and  T2 can finally start, and finally halt. Then, M 

halts. 

Thus, M accepts L1L2.  That is, L1L2 is recursively enumerable. 
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Closure Property Under Intersection (II)  

 

 

    Theorem: 

 

 Let L1 and L2 be recursively enumerable languages over . Then, L1L2 is also recursively 
enumerable. 
Proof: 

Let L1 and L2 be recursively enumerable languages over . 

Then, there exist DTM’s T1 =(Q1, , , 1, s1) and T2 =(Q2, , , 2, s2) accepting L1 and L2, 
respectively. 

Construct a 2-tape TM M which simulates T1 and T2 simultaneously.  Tape 1 represents T1’s 

tape and Tape 2 represents T2’s tape. 

 

 

 

Closure Property Under Intersection (II)  

 

 

Let M = ((Q1{h})(Q2{h}), , , , (s1,s2)) where  

– ((p1,p2),a1,a2) = ((q1,q2),b1,b2,d1,d2) for 1(p1,a1)=(q1,b1,d1) and 2(p2,a2 
)=(q2,b2,d2) 

– ((h,p2),a1,a2) = ((h,q2),a1,b2,S,d2) for all p2,a1,a2 and 2(p2,a2)=(q2,b2,d2) 

– ((p1,h),a1,a2) = ((q1,h),b1,a2,d1,S) for all p1,a1,a2 and 1(p1,a1)=(q1,b1,d1)  

– ((h,h),a1,a2) = (h,a1,a2,S,S) for all a1,a2 
If neither T1 nor T2 halt, M never gets to the state h. 

If T1 halts and T2 does not halt, M gets to the state (h,p). 

If T2 halts and T1 does not halt, M gets to the state (p,h).  
If both T1 and T2 halt, M finally gets to the state h. 

 

   Relationship Between the Classes of Recursively Enumerable and Recursive Languages 

 

 

 

Theorem: If L is a recursive language, then L is recursively enumerable. 
Proof: 

Let L be a recursive language over . 
Then, there is a TM T deciding L. 

Then, T also accepts L. 

Thus, L is recursively enumerable. 
 

 

 

Relationship between RE and Recursive Languages 

 

 

Theorem: Let L be a language. If L andL are recursively enumerable, then L is recursive. 
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Proof: 

Let L andL be recursively-enumerable languages over . 

Then, there are a TM T accepting L, and  a TMT acceptingL. 

For any string w in *, w is either in L or inL. 

That is, either T orT must halt on w, for any w in *. 
We construct an NTM M as follows: 

If w is in L, T halts on w and thus, M accepts w. 

If w is not in L,T halts on w and thus, M rejects w. 
Then, M computes the characteristic function of L.  Then, L is recursive. 

 

 

Decision Problems   

 

    

 

• A decision problem is a prob. whose ans. is either yes or no 

• A yes-instance (or no-instance) of a problem P is the instance of P whose answer is 

yes (or no, respectively) 

• A decision problem P can be encoded by fe over  as a language {fe(X)| X is a yes-

instance of P}. 

 

 

 

Encoding of decision problems 

 
 

• Is X a prime ?  

{1X | X is a prime} 
• Does TM T accept string e(T)? 

{e(T) | T is a TM accepting string e(T)} 

• Does TM T accept string w? 
{e(T)e(w) | T is a TM accepting string w} or  

{<T,w> | T is a TM accepting string w} 
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Decidable (or solvable) problems 
Definition: 

 If fe is a reasonable encoding of a decision problem P 

over , we say P is decidable (or solvable) if the associated language {fe(X)| X is a 

yes-instance of P} is recursive.  

 A problem P is undecidable (or unsolvable) if P is not  

 

 
decidable. 

 

 

 

 

 

Self-Accepting  

• SA (Self-accepting) = {w{0,1,#, ,}*| w=e(T) for some TM T and wL(T)} 

• NSA (Non-self-accepting) = {w {0,1,#, ,}*| w=e(T) for some TM T and 

wL(T)} 

• E (Encoded-TM) = {w{0,1,#, ,}*| w=e(T) for some TM T} 

 

 

 

                 

NSA is not recursively enumerable 
 

                     We prove by contradiction. 

Assume NSA is recursively enumerable . 

Then, there is TM T0 such that L(T0)=NSA. 

Is e(T0) in NSA? 

– If e(T0)NSA, then e(T0)L(T0) by the definition of NSA  But 

L(T0)=NSA.  Thus, contradiction. 

– If e(T0) NSA, then e(T0) SA and e(T0)L(T0) by the definition of 

SA. But L(T0)=NSA. Thus, contradiction. 

Then, the assumption is false. 

That is, NSA is not recursively enumerable. 
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E is recursive 

 

 
 

 

Theorem:  E is recursive. 
Proof: 

  We can construct a regular expression for E according to the 

definition of the encoding function as follows:  
R = S 1 (M #)+ 

S = 0 

M = Q , A , Q , A , D  

Q = 0+ 
A = 0+ 

D = 0 + 00 + 000 

 Then, E is regular, and thus recursive. 
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SA is recursively enumerable

• Construct a TM S accepting SA

• If w is not e(T) for some TM T, S rejects w.

• If w is e(T) for some TM T, S accepts e(T) iff T 
accepts e(T).

• L(S) = {w| w=e(T) for some TM T accepting e(T) = 
SA.

• Then, SA is recursively enumerable.

E UTM

Reject

Encode

 
 

 
 

 

 

 
 

 

 
 

 



CS53 – THEORY OF COMPUTATION     © Einstein College of Engineering  
 

B.VIJAYAKUMAR B.E. M.Tech (PhD)  ©EINSTEIN COLLEGE OF ENGINEERING 

SA is not recursive 

 

 

 
• NSA = E – SA 

• NSA is not recursively enumerable (from previous theorem), and thus not recursive. 

• But E is recursive.  
• From the closure property, if L1 and L2 are recursive, then L1 - L2 is recursive. 

• Using its contrapositive, if L1 - L2 is not recursive, then L1 or L2 are not recursive. 

• Since NSA is not recursive and E is recursive, SA is not recursive. 

 
 

Co-R.E. 

 

 

Definition 

• A language L is co-R.E. if its complement L is R.E. 

• It does not mean L is not R.E. 

Examples: 

• SA is R.E. SA=ENSA is not R.E. 

– SA is co-R.E., but not R.E. 

• NSA is not R.E. NSA=ESA is R.E. 

– NSA is co-R.E., but not R.E. 

• E is recursive, R.E., and co-R.E. 

 

Relationship between R.E., co-R.E. and Recursive Languages 

 

 

Theorem:  Let L be any language. L is R.E. and co-R.E. iff L is recursive. 

Proof: 

• () Let L be R.E. and co-R.E. Then, L is R.E. Thus, L is recursive. 

• () Let L be recursive. Then, L is R.E. From the closure under complementation 

of the class of recursive languages,L is also recursive.  Then, L is also R.E.  

• Thus, L is co-R.E. 
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recursive co-R.E.R.E.

Neither R.E. nor co-R.E.

Observation

• A language L is either

– recursive

– R.E., bot not recursive

– co-R.E., but not recursive

– Neither R.E. nor co-R.E.

 
 

 

 

Reduction Definition: 
 Let L1 and L2 be languages over 1 and 2, respectively.  

L1 is (many-one) reducible to  L2, denoted by L1L2, if there is a TM M computing a 

function f: 1*2* such that wL1  f(w)L2. 

Definition: 

 Let P1 and P2 be problems.  P1 is (many-one) reducible to  

P2 if there is a TM M computing a function f: 1*2* such that w is a yes-instance of P1 

 f(w) is a yes-instance of P2. 

 

 
 

Reduction 

 

 

Definition: 

A function f: 1*2* is a Turing-computable function if there is a Turing 

machine computing f. 

Definition: 

 Let L1 and L2 be languages over 1 and 2, 

respectively.  L1 is (many-one) reducible to  L2, denoted by L1L2, if there 

is a Turing-computable function f: 1*2* such that wL1  f(w)L2. 
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Meaning of Reduction 

 

 

P1 is reducible to  P2 if  TM M computing a function f: 1*2* such 

that w is a yes-instance of P1  f(w) is a yes-instance of P2. 

• If you can map yes-instances of problem A to yes-instances of 

problem B, then 

– we can solve A if we can solve B 

– it doesn’t mean we can solve B if we can solve A 

– the decidability of B implies the decidability of A 

 

 

Properties of reduction 

 

Theorem: Let L be a language over . LL. 

Proof: 

 Let L be a language over .  

 Let f be an identity function from **.   

 Then, there is a TM computing f.  

 Because f is an identity function, wL  f(w)=wL.   

 By the definition, LL. 

 

 

Properties of reduction 

 

Theorem:  Let L1 and L2 be languages over .  

   If L1L2, thenL1L2. 

Proof: 

 Let L1 and L2 be languages over .  

 Because L1L2, there is a function f such that wL1  

f(w)L2, and a TM T computing f. 

 wL1  f(w)L2. 

 By the definition,L1L2. 
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Properties of reduction 

 
Theorem: Let L1, L2 and L3 be languages over .  

   If L1L2 and L2L3, then L1L3. 

Proof: 

 Let L1, L2 and L3 be languages over .  

 There is a function f such that wL1  f(w)L2, and 

a TM T1 computing f because L1L2. 

 There is a function g such that wL2  g(w)L3, and 

a TM T2 computing g because L2L3. 

 wL1f(w)L2g(f(w))L3, and T1T2 computes 

g(f(w)). 

 By the definition, L1L3. 

 

 

 

 

 

 

Using reduction to prove decidability 

 
              Theorem: If L2 is recursive, and L1L2, then L1 is also recursive. 

Proof: 

Let L1 and L2 be languages over , L1L2, and L2 be recursive.  

Because L2 is recursive, there is a TM T2 computing L2.  

Because L1L2, there is a TM T1 computing a function f such that wL1  

f(w)L2. 

 

 

 

 

Using reduction to prove decidability 

 
Construct a TM T=T1T2. We show that T computes L1. 

– If wL1, T1 in T computes f(w)L2 and T2 in T computes L2(f(w)), 

which is 1.  

– If wL1, T1 in T computes f(w) L2 and T2 in T computes L2(f(w)), 

which is 0.  

Thus, L1 is also recursive.  
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Using reduction to prove R.E 
Theorem: If L2 is R.E., and L1L2, then L1 is also R.E. 

Proof: 

Let L1 and L2 be languages over , L1L2, and L2 be R.E.  

Because L2 is R.E, there is a TM T2 accepting L2.  

Because L1L2, there is a TM T1 computing a function f such that wL1  

f(w)L2. 

 

 

 

Using reduction to prove R.E. 

 
Construct a TM T=T1T2. We show that T accepts L1. 

– If wL1, T1 in T computes f(w)L2 and T2 in T accepts f(w). Thus, T 

accepts w.  

– If wL1, T1 in T computes f(w)L2 and T2 in T does not accept (f(w)).  

Thus, T does not accept w.  

Thus, L1 is also R.E.  

 

 

 

 

Using reduction to prove co-R.E. 

 

 
Theorem:  If L2 is co-R.E., and L1L2, then L1 is also co-R.E. 

Proof: 

Let L1 and L2 be languages over , L1L2, and L2 be co-R.E.  

Because L2 is co-R.E,L2 is R.E.   

Because L1L2,L1L2.  Then,L1 is R.E. 

Thus, L1 is co-R.E.  

 

 

 

 

 
Theorem:  If L2 is co-R.E., and L1L2, then L1 is also co-R.E. 

Proof: 

Let L1 and L2 be languages over , L1L2, and L2 be co-R.E.  

Because L2 is co-R.E,L2 is R.E.   

Because L1L2,L1L2.  Then,L1 is R.E. 

Thus, L1 is co-R.E.  
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Jaruloj Chongstitvatana 2301379 Decidability 51

Let L1L2.   
If L1 is not   recursive / 

R.E. / 
co-R.E., 

then L2 is not recursive / 
R.E. / 
co-R.E.

Another way to prove undecidability

To prove a language L is not recursive:

1. Guess where L is (not R.E. or not co-R.E.)

2. Choose another non-recursive language R which is of the 

same type

3. Show R  L.

recursive co-R.E.R.E.

Neither R.E. nor co-R.E.

 
 

 

Guess if it’s rec., R.E., co-R.E., or neither 

 

Given a TM T, 

• does T  get to state q on blank tape? 

• does T accept ? 

• does T output 1? 

• does T accept everything? 

• is L(T) finite? 

 

Problem of accepting an empty string 

 

 

• We will prove that the problem if a TM accepts an empty string is 

undecidable. 

• This problem is corresponding to the following language. 

– Accept = {e(M)| M is a TM accepting } 

• Thus, we will prove that Accept is not recursive. 
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Accept is not recursive. 

 

 

 

Proof: 

(Guess Accept is in R.E., but not co-R.E.) 

• Show SA  Accept 

(We want a Turing-computable f n f(<T>)=<M> such that 

– T accepts e(T)  M accepts  

– T does not accept e(T)  M does not accept  

• Let f(T)=M is a TM that first writes e(T) after its input and then runs 

T.  

• M writes e(T) after its input. If its input is , T has e(T) as input.  

 

 

Accept is not co–R.E. 

 

 

Verify that T accepts e(T)  M accepts  

M writes e(T) and lets T run. If the input of M is : 

• when T accepts e(T), M accepts . 

• when T doesn’t accept e(T), then M doesn’t accept . 

 

Accept is not co–R.E. 

 

 

Next, we show that there is a TM TF computing f.  

TF works as follows: 

• changes the start state of T in e(T) to a new state 

• add e(Write<T>), make its start state the start state of TF, and make 

the transition from its halt state to T’s start state. 

Then, SA  Accept.  

Then,Accept is not co-R.E, and is not recursive.  
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Halting problem 

 

• Problem 

– Given a Turing machine T and string z, does T halt on z? 

– Given a program P and input z, does P halt on z? 

• Language 

– Halt = {w*| w=e(T)e(z) for a Turing machine T halting on 

z}. 

– Halt = {<T,z>| T is a Turing machine halting on z}. 

 

 

 

 

Halting problem is undecidable 

 

 

Proof: 

Let Halt = {<T,z>| T is a Turing machine halting on z}. 

(Guess Halt is in R.E., but not co-R.E.) 

• Show SA  Halt 

(We want a Turing-computable f n f(<T1>)=<T2 ,z> such that 

– T1 accepts e(T1)  T2 halts on z 

– T1 does not accept e(T1)  T2 does not halt on z 

Then, a possible function is f(<T>) = <T, e(T)> because T accepts e(T)  T 

halts on e(T).) 
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Some other undecidable problems 

 

• FINITE 

 Given a TM T, is L(T) finite? 

Guess FINITE is neither R.E. nor co-R.E. 

• To assure L(T) is finite, we need to run T on all possible input and 

count if T accepts a finite number of strings. 

• To assure L(T) is infinite, we need to run T on all possible input and 

count if T accepts an infinite number of strings. 

 

 

FINITE is not recursive FINITE is not recursive 

 
Let FINITE={<T>| T is a TM such that L(T) is finite.} 

Guess FINITE is neither R.E. nor co-R.E. 

Choose NSA which is not co-R.E. to show that NSAFINITE. 

We want to find a Turing-computable function f such that <T>NSA  f(<T>)=MFINITE 

<T>NSA M accepts , and thus L(M) is finite.   

<T>NSAM accepts *, and thus L(M) is infinite. 
Then, let M=f(<T>) be a TM that runs T on its input, and accepts everything if T halts. 

 

 

 

FINITE is not recursive 

 

 
Now, we will show that <T>NSA  <M>FINITE 

If <T>NSA, then T does not accept <T>. Then, M does not get to start AccAll. Thus, M accepts 
nothing and L(M) is finite. 

If <T>NSA, then T accepts <T>. Then, M gets pass T, and accept everything. Thus, M accepts  
 

 Checklist 
 Prove a language is recursive, R.E., or co-R.E. 

 Prove closure properties of these classes of languages 

 Prove properties of reduction 

 Prove a language is not recursive, not R.E., or not co-R.E. 

 

 prove a problem is decidable 

 Prove a problem is undecidable 

 
 


