
CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

UNIT-I

AUTOMATA

Introduction

Why do we study Theory of Computation ?

• Importance of Theory of Computation

• Languages

• Languages and Problems

What is Computation ?

Sequence of mathematical operations ?

– What are, and are not, mathematical operations?

–

• Sequence of well-defined operations

•

– How many operations ?

• The fewer, the better.

– Which operations ?

–

• The simpler, the better.

What do we study in Theory of Computation ?

• What is computable, and what is not ?

• Basis of

– Algorithm analysis

–

– Complexity theory

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

• What a computer can and cannot do

• Are you trying to write a non-existing program?

– Can you make your program more efficient?

 What do we study in Complexity Theory ?

• What is easy, and what is difficult, to compute ?

• What is easy, and what is hard for computers to do?

• Is your cryptograpic scheme safe?

 Applications in Computer Science

• Analysis of algorithms

• Complexity Theory

• Cryptography

• Compilers

• Circuit design

 History of Theory of Computation

• 1936 Alan Turing invented the Turing machine, and proved that there exists an

unsolvable problem.

•

• 1940’s Stored-program computers were built.

•

• 1943 McCulloch and Pitts invented finite automata.

•

• 1956 Kleene invented regular expressions and proved the equivalence of regular

expression and finite automata.

• 1956 Chomsky defined Chomsky hierarchy, which organized languages

recognized by different automata into hierarchical classes.

•

• 1959 Rabin and Scott introduced nondeterministic finite automata and proved its

equivalence to (deterministic) finite automata.

•

• 1950’s-1960’s More works on languages, grammars, and compilers

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

•

• 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis and

Stearns defined space complexity.

•

• 1971 Cook showed the first NP-complete problem, the satisfiability prooblem.

•

• 1972 Karp Showed many other NP-complete problems.

 Alphabet and Strings

• An alphabet is a finite, non-empty set of symbols.

– {0,1 } is a binary alphabet.

– { A, B, …, Z, a, b, …, z } is an English alphabet.

–

• A string over an alphabet  is a sequence of any number of symbols from .

– 0, 1, 11, 00, and 01101 are strings over {0, 1 }.

– Cat, CAT, and compute are strings over the English alphabet.

–

• An empty string, denoted by , is a string containing no symbol.

•

–  is a string over any alphabet.

• The length of a string x, denoted by length(x), is the number of positions of

symbols in the string.

•

Let Σ = {a, b, …, z}

length(automata) = 8

length(computation) = 11

length(ε) = 0

• x(i), denotes the symbol in the ith position of a string x, for 1 i  length(x).

String Operations

• Concatenation

• Substring

• Reversal

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

• The concatenation of strings x and y, denoted by xy or x y, is a string z such that:

– z(i) = x(i) for 1  i  length(x)

– z(i) = y(i) for length(x)<ilength(x)+length(y)

• Example

– automatacomputation = automatacomputation

The concatenation of string x for n times, where n0, is denoted by xn

– x0 = 

– x1 = x

– x2 = x x

– x3 = x x x

– …

Substring

Let x and y be strings over an alphabet Σ

 The string x is a substring of y if there exist strings w and z over Σ such that y = w

x z.

– ε is a substring of every string.

– For every string x, x is a substring of x itself.

Example

– ε, comput and computation are substrings of computation.

Reversal

Let x be a string over an alphabet Σ

The reversal of the string x, denoted by x r, is a string such that

– if x is ε, then xr is ε.

– If a is in Σ, y is in Σ* and x = a y, then xr = yr a.

(automata)r

= (utomata)r a

= (tomata)r ua

= (omata)r tua

= (mata)r otua

= (ata)r motua

= (ta)r amotua

= (a)r tamotua

= ()r atamotua

• = atamotua The set of strings created from any number (0 or 1 or …) of symbols

in an alphabet  is denoted by *.

•

• That is, * = i=0 i

– Let  = {0, 1}.

– * = {, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }.

–

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

• The set of strings created from at least one symbol (1 or 2 or …) in an alphabet 

is denoted by +.

• That is, + = i=1  i

 = i=0.. i - 0

 =  i=0.. i - {}

• Let  = {0, 1}. + = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }.

 * and + are infinite sets.

• A language over an alphabet Σ is a set of strings over Σ.

– Let Σ = {0, 1} be the alphabet.

– Le = {Σ* | the number of 1’s in  is even}.

– , 0, 00, 11, 000, 110, 101, 011, 0000, 1100, 1010, 1001, 0110, 0101,

0011, … are in Le

• Operations on LanguagesComplementation

• Union

• Intersection

• Concatenation

• Reversal

• Closure

 Complementation
 Let L be a language over an alphabet Σ.

 The complementation of L, denoted byL, is Σ*–L.

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in  is even}.

Le= {Σ* | the number of 1’s in  is not even}.

Le= {Σ* | the number of 1’s in  is odd}.

Union

Let L1 and L2 be languages over an alphabet Σ.

 The union of L1 and L2, denoted by L1L2, is {x | x is in L1 or L2}.

Example:

{x{0,1}*|x begins with 0}  {x{0,1}*|x ends with 0}

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

 = {x  {0,1}*| x begins or ends with 0}

Intersection

Let L1 and L2 be languages over an alphabet Σ.

 The intersection of L1 and L2, denoted by L1L2, is { x | x is in L1 and L2}.

Example:

{ x{0,1}*| x begins with 0}  { x{0,1}*| x ends with 0}

 = { x{0,1}*| x begins and ends with 0}

Concatenation

Let L1 and L2 be languages over an alphabet Σ.

 The concatenation of L1 and L2, denoted by L1L2, is {w1w2| w1 is in L1 and w2

is in L2}.

Example

 { x  {0,1}*| x begins with 0}{x  {0,1}*| x ends with 0}

= { x  {0,1}*| x begins and ends with 0 and length(x)  2}

 { x  {0,1}*| x ends with 0}{x  {0,1}*| x begins with 0}

= { x  {0,1}*| x has 00 as a substring}

Reversal

Let L be a language over an alphabet Σ.

The reversal of L, denoted by Lr, is {wr| w is in L}.

Example

{x  {0,1}*| x begins with 0} r

 = {x  {0,1}*| x ends with 0}

{x  {0,1}*| x has 00 as a substring} r

 = {x  {0,1}*| x has 00 as a substring}

Closure

Let L be a language over an alphabet Σ.

 The closure of L, denoted by L+, is { x |for an integer n  1, x = x1x2…xn and x1,

x2 , …, xn are in L}

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

That is, L+ = i= 1 Li

Example:

Let Σ = {0, 1} be the alphabet.

Le = {Σ* | the number of 1’s in  is even}

Le+ = {Σ* | the number of 1’s in  is even} = Le*

Observation about Closure

L+ = L*  {ε} ?

Example:

L = {Σ* | the number of 1’s in  is even}

L+ = {Σ* | the number of 1’s in  is even} = Le*

Why?

L* = L+  {ε} ?

• Languages and ProblemsProblem

– Example: What are prime numbers > 20?

–

• Decision problem

– Problem with a YES/NO answer

– Example: Given a positive integer n, is n a prime number > 20?

–

• Language

– Example: {n | n is a prime number > 20}

Finite Automata

A simple model of computation

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

• Deterministic finite automata (DFA)

– How a DFA works

– How to construct a DFA

• Non-deterministic finite automata (NFA)

– How an NFA works

– How to construct an NFA

• Equivalence of DFA and NFA

• Closure properties of the class of languages accepted by FA

Finite Automata (FA)

• Read an input string from tape

• Determine if the input string is in a language

• Determine if the answer for the problem is “YES” or “NO” for the given input on

the tape

How does an FA work?

• At the beginning,

– an FA is in the start state (initial state)

– its tape head points at the first cell

• For each move, FA

– reads the symbol under its tape head

– changes its state (according to the transition function) to the next state

determined by the symbol read from the tape and its current state

– move its tape head to the right one cell

• When does an FA stop working?

• When it reads all symbols on the tape

• Then, it gives an answer if the input is in the specific language:

– Answer “YES” if its last state is a final state

– Answer “NO” if its last state is not a final state

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

• How to define a DFA

•

• a 5-tuple (Q, , , s, F), where

– a set of states Q is a finite set

– an alphabet  is a finite, non-empty set

– a start state s in Q

– a set of final states F contained in Q

– a transition function  is a function Q    Q

–

• See formal definition

Q a (q,a)

S 0 s

S 1 f

F 0 f

F 1 s

s f

0 1 0

1

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

How an FA works

Definition

• Let M = (Q, , , s, F) be a DFA, and   *. We say M accepts  if (s, )

*M (f, ), when f  F. Otherwise, we say M rejects .

 (s, 001101) *M (f, )  M accepts 001101

 (s, 01001) *M (s, )  M rejects 01001

Language accepted by a DFA

 Let M = (Q, , , s, F) be a DFA. The language accepted by M, denoted by

L(M) is the set of strings accepted by M. That is, L(M) = {*|(s, ) *M (f, ) for

some f  F }

Example:

• L(M) = {x  {0,1}* | the number of 1’s in x is odd}.

s f

0 1 0

1

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

How to construct a DFA

• Determine what a DFA need to memorize in order to recognize strings in the

language.

– Hint: the property of the strings in the language

• Determine how many states are required to memorize what we want.

– final state(s) memorizes the property of the strings in the language.

• Find out how the thing we memorize is changed once the next input symbol is

read.

– From this change, we get the transition function.

Constructing a DFA: Example

• Consider L= {{0,1}*|  has both 00 and 11 as substrings}.

• Step 1: decide what a DFA need to memorize

• Step 2: how many states do we need?

• Step 3: construct the transition diagram

Constructing a DFA: Example

• Consider L= {{0,1}*|  represents a binary number divisible by 3}.

– L = {0, 00, 11, 000, 011, 110, 0000, 0011, 0110, 1001, 00000, ...}.

–

• Step 1: decide what a DFA need to memorize

– remembering that the portion of the string that has been read so far is

divisible by 3

–

• Step 2: how many states do we need?

•

– 2 states remembering that

• the string that has been read is divisible by 3

• the string that has been read is indivisible by 3.

– 3 states remembering that

• the string that has been read is divisible by 3

• the string that has been read - 1 is divisible by 3.

• the string that has been read - 2 is divisible by 3.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Using 2 states

• Reading a string w representing a number divisible by 3.

– Next symbol is 0. w 0, which is 2*w, is also divisible by 3.

• If w=9 is divisible by 3, so is 2*w=18.

– Next symbol is 1. w 1, which is 2*w +1, may or may not be divisible by 3.

• If 8 is indivisible by 3, so is 17.

• If 4 is indivisible by 3, but 9 is divisible.

• Using these two states is not sufficient.

• Using 3 states

• Each state remembers the remainder of the number divided by 3.

• If the portion of the string that has been read so far, say w, represents the

number whose remainder is 0 (or, 1, or 2),

– If the next symbol is 0, what is the remainder of w 0?

– If the next symbol is 1, what is the remainder of w 1?

Current

number

Current

remainder

Next symbol New number New remainder

3n 0 0 6n 0

3n 0 1 6n+1 1

3n+1 1 0 6n+2 2

3n+1 1 1 6n+3 0

3n+2 2 0 6n+4 1

3n+2 2 1 6n+5 2

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

How to define an NFA

• a 5-tuple (Q, , , s, F), where

– a set of states Q is a finite set

– an alphabet  is a finite, non-empty set

– a start state s in Q

– a set of final states F contained in Q

– a transition function  is a function Q({})2Q

• See formal definition

Definition

• Let M = (Q, , , s, F) be a non-deterministic finite automaton, and (q0, 0) and

(q1, 1) be two configurations of M.

• We say (q0, 0) yields (q1, 1) in one step, denoted by (q0, 0) M (q1, 1), if

q1   (q0, a,), and 0=a 1, for some a    {}.

Definition

• Let M = (Q, , , s, F) be an NFA, and (q0, 0) and (q1, 1) be two

configurations of M. (q0, 0) yields (q1, 1) in zero step or more, denoted by

(q0, 0) *M (q1, 1), if

– q0= q1 and 0 = 1, or

– (q0, 0) M (q2, 2) and (q2, 2) *M (q1, 1) for some q2 and 2.

Definition

• Let M = (Q, , , s, F) be an NFA, and   *. We say M accepts  if (s, )

*M (f, ), when f  F. Otherwise, we say M rejects .

Language accepted by an NFA

• Let M = (Q, , , s, F) be an NFA.

• The language accepted by M, denoted by L(M) is the set of strings accepted by M.

That is, L(M) = {*| (s,) *M (f, ) for some fF}

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

DFA and NFA are equivalent

Md and Mn are equivalent  L(Md) = L(Mn).

DFA and NFA are equivalent 

• For any DFA Md, there exists an NFA Mn such that Md and Mn are equivalent.

(part 1)

• For any NFA Mn, there exists a DFA Md such that Md and Mn are equivalent.

(part 2)

Part 1 of the equivalence proof

• For any DFA Md, there exists an NFA Mn such that Md and Mn are equivalent

Proof: Let Md be any DFA. We want to construct an NFA Mn such that L(Mn) = L(Md).

 From the definitions of DFA and NFA, if M is a DFA then it is also an NFA.

 Then, we let Mn = Md.

 Thus, L(Md) = L(Mn). 

• For any NFA Mn, there exists a DFA Md such that Md and Mn are equivalent.

Proof: Let Mn = (Q, , , s, F) be any NFA. We want to construct a DFA Md such that

L(Md) = L(Mn).

 First define the closure of q, denoted by E(q).

 Second, construct a DFA Md=(2Q, , ', E(s), F')

 Finally, prove    f  F (s,) |-*Mn (f, )   f 'F ' (E(s), ) |-

*Md (f ' , ). 

Closure of state q

• Let M = (Q, , , s, F) be an NFA, and qQ.

• The closure of q, denoted by E(q), is

– the set of states which can be reached from q without reading any symbol.

– {pQ| (q, ) |-M* (p, )}

• If an NFA is in a state q, it can also be in any state in the closure of q without

reading any input symbol.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Example of closure

Constructing the equivalent DFA

Let Mn = (Q, , , s, F) be any NFA. We construct a DFA Md =(2Q, , ', E(s), F'),

where :

– '(q',a) =  {rE(p)| p  (q,a) } and

– F' = {f  Q | f  F  })

E(q0) E(q1) E(q2) E(q3) E(q4)

q0, q1, q2, q3 q1, q2, q3 q2 q3 q3,q4

Prove property of  and '

Let Mn = (Q, , , s, F) be any NFA, and Md = (2Q, , ', E(s), F') be a DFA, where

– '(q', a) =  {rE(p)| p(q,a)} and

– F' = {f  Q | f  F  }

Prove  ,  fF (s,) |-*Mn (f, )   f 'F ' (E(s), ) |-*Md (f', ) and ff' by

induction.

Prove a more general statement  ,  p, qQ (p,) |-*Mn (q, )  (E(p), ) |-

*Md (q', ) and qq'.

Proof
Part I:

For any string  in Σ*, and states q and r in Q, there exists R  Q such that

 (q, ) *Mn (r, ε)  (E(q), ) *Md (R, ε) and rR.

Basis:

Let  be a string in Σ*, q and r be states in Q, and (q, ) *Mn (r, ε) in 0 step.

Because (q, ) *Mn (r, ε) in 0 step, we know (1) q=r , and (2) = ε.

Then, (E(q), ) = (E(r), ε).

Thus, (E(q), ) *Md (E(r), ε) .

That is, there exists R=E(r) such that r  R and (E(q),) *Md (R, ε).

Induction hypothesis:

For any non-negative integer k, string  in Σ*, and states q and r in Q, there exists R 

Q:

 (q, ) *Mn (r, ε) in k steps -> (E(q), ) *Md (R, ε) and rR.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Induction step:

Prove, for any non-negative integer k, string  in Σ*, and states q and r in Q, there

exists R  Q:

 (q, ) *Mn (r, ε) in k+1 steps -> (E(q), ) *Md (R, ε) and rR.

Let  be a string in Σ*, q and r be states in Q, and (q, ) *Mn (r, ε) in k+1 steps.

Because (q, ) *Mn (r, ε) in k+1 steps and k0, there exists a state p in Q and a string

Σ* such that (q, ) *Mn (p, a) in k steps and (p, a) Mn (r, ε) for some a Σ{ε}.

From the induction hypothesis and (q, ) *Mn (p, a) in k steps, we know that there

exists PQ such that (E(q), ) *Md (P, a) and pP.

Since (p, a) Mn (r, ε), r(p, a).

From the definition of  of Md, E((p, a))  (P, a) because pP.

Because r(p, a) and E((p, a))  (P, a), r(P, a).

Then, for R=(P, a), (P, a) *Md (R, ε) and rR.

Thus, (E(q), ) *Md (P, a) *Md (R, ε) and rR.

Part II:

For any string  in Σ*, and states q and r in Q, there exists R  Q such that rR and

 (E(q), ) *Md (R, ε) -> (q, ) *Mn (r, ε).

Proof

Basis:

Let  be a string in Σ*, q and r be states in Q, R be a subset of Q such that r  R and

(E(q), ) *Md (R, ε) in 0 step.

Because (E(q),) *Md (R, ε) in 0 step, E(q)=R and =ε.

From the definition of E, (q, ε)=R because E(q)=R.

Then, for any rR, (q, ) *Mn (r, ε).

That is, there exists R=E(q) such that r  R and (q, ) *Mn (r, ε).

Induction hypothesis:

For any non-negative integer k, string  in Σ*, and states q and r in Q, there exists R 

Q such that rR and:

 (E(q), ) *Md(R, ε) in k steps ->(q, ) *Mn(r, ε).

Induction step:

Prove, for any non-negative integer k, string  in Σ*, and states q and r in Q, there

exists R  Q such that rR:

 (E(q),)*Md(R, ε) in k+1 steps ->(q, ) *Mn(r, ε).

Let  be a string in Σ*, q and r be states in Q, and (E(q), ) *Md (R, ε) in k+1 steps.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Because (E(q), ) *Md (R, ε) in k+1 steps and k0, there exists P2Q (i.e. PQ) and

a string Σ* such that =a, (E(q), ) *Md (P,ε) in k steps and (P, a) Md (R, ε) for

some aΣ.

From the induction hypothesis and (E(q), ) *Md (P, ε) in k steps, we know that there

exists pP such that (q, )*Mn(p,ε) (i.e. (q, a) *Mn (p, a)).

Since (P, a) Md (R, ε), there exists rR such that r= (p, a).

Then, for some rR, (p, a) *Mn (r, ε).

Thus, (q, ) *Mn (p, a) *Mn (r, ε) for some rR.

Closure Properties

• The class of languages accepted by FA’s is closed under the operations

– Union

– Concatenation

– Complementation

– Kleene’s star

– Intersection

The class of languages accepted by FA is closed under union.

Proof:

Let MA = (QA, Σ, A, sA, FA) and

MB = (QB, Σ, B, sB, FB) be any FA.

We construct an NFA M =

(Q, Σ, , s, F) such that

– Q = QA  QB  {s}

–  = A  A  {(s, ε, {sA, sB})}

– F = FA  FB

To prove L(M) = L(MA) L(MB), we prove:

I. For any string Σ* L(MA) or L(MB)  L(M) &

II. For any string Σ* L(MA) and L(MB).  L(M)

For I, consider (a) L(MA) or (b) L(MB).

For (a), let L(MA).

 From the definition of strings accepted by an FA, there is a state fA in FA such

that (sA, ) |-*MA (fA, ε).

 Because A, (sA, ) |-*M (fA, ε) also.

 Because sA(s,ε), (s, ) |-M (sA, ).

 Thus, (s, ) |-M (sA, ) |-*M (fA, ε).

 Because fA F, L(M).

Similarly for (b).

For (II), let L(MA)L(MB).

Because (s, ε, {sA, sB}), either (s,) |-M (sA,) or (s, ) |-M (sB, ) only.

Because L(MA), there exists no fA in FA such that (sA,) |-*MA (fA,ε).

Because L(MB), there exists no fB in FB such that (sB, ) |-*MB (fB, ε).

Since there is no transition between states in QA and QB in M, there exists no state f in

F=FAFB such that (s, ) |-M (sA, ) |-*M (fA, ε) or (s, ) |-M (sB, ) |-*M (fB, ε).

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

That is, L(M).

Thus, L(M) = L(MA)L(MB).

Closure under concatenation

The class of languages accepted by FA is closed under intersection.

Proof: Let L1 and L2 be languages accepted by FA.

L1  L2 = (L1 L2)

By the closure property under complementation, there are FA acceptingL1 andL2.

By the closure property under union, there is an FA acceptingL1 L2.

By the closure property under complementation, there is an FA accepting(L1 L2).

Thus, the class of languages accepted by FA is closed under intersection.

Let MA = (QA, Σ, A, sA, FA) and

MB = (QB, Σ, B, sB, FB) be any FA.

We construct an NFA M = (Q, Σ, , s, F) such that

– Q = QA  QB

–  = A  A (i.e. ((qA,qB),a) = A(qA,a)B(qB,a))

– s = (sA, sB)

– F = FA  FB

– Check list

Basic

 Explain how DFA/NFA work (configuration, yield next configuration)

 Find the language accepted by DFA/NFA

 Construct DFA/NFA accepting a given language

 Find closure of a state

 Convert an NFA into a DFA

 Prove a language accepted by FA

 Construct FA from other FA’s

Advanced

 Prove DFA/NFA accepting a language

 Prove properties of DFA/NFA

 Configuration change

 Under some modification

 etc.

 Prove some properties of languages accepted by DFA/NFA

 Under some modification

 Surprise!

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

UNIT: II : REGULAR EXPRESSIONS &LANGUAGES

Regular Languages

• Regular expressions

• Regular languages

• Equivalence between languages accepted by FA and regular languages

• Closure Properties

Regular Expressions

 Regular expression over alphabet 

•  is a regular expression.

•  is a regular expression.

• For any a, a is a regular expression.

• If r1 and r2 are regular expressions, then

– (r1 + r2) is a regular expression.

– (r1  r2) is a regular expression.

– (r1*) is a regular expression.

• Nothing else is a regular expression.

•  is a regular language corresponding to the regular expression .

• {} is a regular language corresponding to the regular expression .

• For any symbol a, {a} is a regular language corresponding to the regular

expression a.

• If L1 and L2 are regular languages corresponding to the regular expression r1

and r2, then

– L1L2, L1L2, and L1* are regular languages corresponding to (r1 + r2)

, (r1  r2), and (r1*).

Simple examples

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Let = {0,1}.

• {*| does not contain 1’s}

– (0*)

• {*| contains 1’s only}

– (1(1*)) (which can can be denoted by (1+))

• *

– ((0+1)*)

• {*| contains only 0’s or only 1’s}

– ((00*)+(11*))

Some more notations

Let = {0,1}.

• Parentheses in regular expressions can be omitted when the order of evaluation is

clear.

– ((0+1)*)  0+1*

– ((0*)+(1*)) = 0* + 1*

• For concatenation,  can be omitted.

• r r r… r is denoted by rn.

Let  = {0,1}.

• {*|  contains odd number of 1’s}

– 0*(10*10*)*10*

• {*| any two 0’s in  are separated by three 1’s}

– 1*(0111)*01* + 1*

• {*|  is a binary number divisible by 4}

– (0+1)*00

• {*|  does not contain 11}

– 0*(10+)* (1+) or (0+10)* (1+)

Notation

Let r be a regular expression.

The regular language corresponding to the regular expression r is denoted by L(r).

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Some rules for language operations

Let r, s and t be languages over {0,1}

 r +  =  + r = r

r + s = s + r

 r = r = r

 r = r = 

r(s + t) = rs + rt
r+ = r r*

Rewrite rules for regular expressions

Let r, s and t be regular expressions over {0,1}.

 * = 

 * = 

(r + )+ = r*

 r* = r*(r + ) = r* r* = (r*)*

 (r*s*)* = (r + s)*

Closure properties of the class of regular languages (Part 1)

Theorem: The class of regular languages is closed under union, concatenation, and

Kleene’s star.

Proof: Let L1 and L2 be regular languages over .

Then, there are regular expressions r1 and r2 corresponding to L1 and L2.

By the definition of regular expression and regular languages, r1+r2 ,r1r2, and r1* are

regular expressions corresponding to L1L2, L1L2, and L1*.

Thus, the class of regular languages is closed under union, concatenation, and Kleene’s

star.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Equivalence of language accepted by FA and regular languages

To show that the languages accepted by FA and regular languages are equivalent, we

need to prove:

• For any regular language L, there exists an FA M such that L = L(M).

• For any FA M, L(M) is a regular language.

For any regular language L, there exists an FA M such that L = L(M)

Proof:

 Let L be a regular language.

Then,  a regular expression r corresponding to L.

We construct an NFA M, from the regular expression r, such that L=L(M).

Basis:

If r = , M is

If r = , M is

If r = {a} for some a  , M is

Proof (cont’d)

Induction hypotheses: Let r1 and r2 be regular expressions with

less than n operations. And, there are NFA’s M1 and M2 accepting
regular languages corresponding to L(r1) and L(r2).

Induction step: Let r be a regular expression with n operations.
We construct an NFA accepting L(r).

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

 r can be in the form of either r1+r2, r1r2, or r1*, for regular

expressions r1 and r2 with less than n operations.

If r = r1+r2, then M is

 If r = r1r2, then M is

 If r = r1*, then M is

Therefore, there is an NFA accepting L(r) for any regular expression r.

f

2

f

1 s

s

1
s

2





f

2

s

2

s

1

f

1



 
s

1

f

1

s f





CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Constructing NFA for regular expressions

• Can these two states be merged?

 NO

• Be careful when you decide to
merge some

s


• 0
*
(10

+
)

*

(1+)

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

For any FA M, L(M) is a regular language

Proof: Let M = (Q, , , q1, F) be an FA, where Q={qi| 1  i  n} for some

positive integer n.

 Let R(i, j, k) be the set of all strings in that drive M from state qi to

state qj while passing through any state ql , for l  k. (i and j can be any

states)

Proof (cont’d)

We prove that L(M) is a regular language by showing that there is a regular

expression corresponding to L(M), by induction.

Basis: R(i, j, 0) corresponds to a regular expression a if i j and a +  if i= j

for some a.

Induction hypotheses: Let R(i, j,k-1) correspond to a regular expression, for

any i, j, k  n.

Induction step: R(i, j, k) = R(i, j, k-1)  R(i, k, k-1) R(k, k, k-1)* R(k, j, k-1)

also corresponds to a regular expression because R(i, j, k-1), R(i, k, k-1), R(k,

k, k-1) and R(k, j, k-1) correspond to some regular expressions and union,

concatenation, and Kleene’s star are allowed in regular expressions.

Therefore, L(M) is also a regular language because L(M) = + R(1, f, n) for all

qf in F.

qj

ql

ql

'

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Pumping Lemma

Let L be a regular language.

Then, there exists an integer n0 such that for every string x in L that |x|n, there are

strings u, v, and w such that

– x = u v w,

– v  ,

– |u v|  n, and

– for all k  0, u vk w is also in L

Any language L is not a regular language if for any integer n0 , there is a string x in L

such that |x|n, for any strings u, v, and w,

– x  u v w, or

– v = , or

– Not (|u v|  n), or

– there is k  0, u vk w is not in L

Any language L is not a regular language if

• for any integer n0 ,

• there is a string x in L such that |x|n,

• for any strings u, v and w, such that x = u v w, v  , and |u v|  n,

– there is k  0, u vk w is not in L

• Given a language L.

• Let n be any integer 0 .

• Choose a string x in L that |x|n.

• Consider all possible ways to chop x into u, v and w such that v  , and |uv|  n.

• For all possible u, v, and w, show that there is k  0 such that u vk w is not in L.

• Then, we can conclude that L is not regular.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Prove {0i 1i| i  0} is not regular

Let L = {0i1i| i  0}.

Let n be any integer 0.

Let x = 0n 1n.

Make sure that x is in L and |x|n.

The only possible way to chop x into u, v, and w such that v, and |u v|  n is:

u = 0p, v = 0q, w = 0n-p-q 1n, where 0p<n and 0<qn

Show that there is k  0, u vk w is not in L.

u vk w = 0p 0qk 0n-p-q 1n = 0p+qk+(n-p-q) 1n = 0n+q(k-1) 1n

If k  1, then n+q(k-1)  n and u vk w is not in L.

Then, L is not regular.

Let L = {0i1i| i  0}.

Let n be any integer 0, and m= n/2.

Let x = 0m 1m.

Make sure that x is in L and |x|n.

Possible ways to chop x into u, v, and w such that v  , and |u v|  n are:

– u = 0p, v = 0q, w = 0m-p-q 1m, where 0p<m and 0<qm

– u = 0p, v = 0 m-p 1q, w = 1m-q, where 0p<m and 0<qm

– u = 0 m 1p, v = 1q, w = 1m-p-q, where 0p<m and 0<qm

Show that there is k  0, u vk w is not in L.
– u=0p, v=0q, w= 0m-p-q 1m, where where 0p<m and 0<qm

 u vk w = 0p 0qk 0m-p-q 1m = 0m+q(k-1)1m is not in L if

k1.

– u=0p, v=0m-p 1q, w=1m-q, where where 0p<m and 0<qm

 u vk w = 0p (0m-p 1q)k 1m-q is not in L if k  1.

– u=0m 1p, v=1q, w=1m-p-q, where where 0p<m and 0<qm

 u vk w = 0m 1p 1qk 1m-p-q = 0m 1m+q(k-1) is not in L if

k1.

Then, L is not regular.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Prove {1i|i is prime} is not regular

Let L = {1i| i is prime}.

Let n be any integer 0.

Let p be a prime  n, and w = 1p.

Only one possible way to chop w into x, y, and z such that y  , and |x y|  n is:

x = 1q, y = 1r, z = 1p-q-r, where 0q<n and 0<r<n

Show that there is k  0, x yk z is not in L.

x yk z = 1q 1rk 1p-q-r = 1q+rk+(p-q-r) = 1p+r(k-1)

If k=p+1, then p+r(k-1) = p(r+1), which is not a prime.

Then, x yk z is not in L.

Then, L is not regular.

Using closure property

Let  be a binary operation on languages and the class of regular languages is closed

under . ( can be , , or -)

• If L1 and L2 are regular, then L1L2 is regular.

• If L1L2 is not regular, then L1 or L2 are not regular.

• If L1L2 is not regular but L2 is regular, then L1 is not regular.

Let L={w{0,1}*| the number of 0’s and 1’s in w are equal}.

Let R= {0i1i| i  0}.

R = 0*1*  L

We already prove that R is not regular.

But 0*1* is regular.

Then, L is not regular.

Let  be a unary operation on a language and the class of regular languages is closed

under .

( can be complement or *)

• If L is regular, then L is regular.

• If L is not regular, then L is not regular.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Prove that {w{0,1}*| the number of 0’s and 1’s in w are not

equal} is not regular

Let L = {w{0,1}*| the number of 0’s and 1’s in w are not equal}.

Let R =L = {w{0,1}*| the number of 0’s and 1’s in w are equal}.

We already prove that R is not regular.

Then, L is not regular.

Check list

 Find the language described by a regular exp.

 Construct regular exp. describing a given language

 Convert a regular exp. into an FA

 Convert an FA into a regular exp.

 Prove a language is regular

– By constructing a regular exp.

– By constructing an FA

– By using closure properties

 Construct an FA or a regular exp. for the intersection,

union, concatenation, complementation, and Kleene’s star

of regular languages

 Prove other closure properties of the class of regular lang

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

UNIT-III

CONTEXT FREE GRAMMAR AND LANGUAGES

Pushdown automata

Pushdown automata differ from finite state machines in two ways:

1. They can use the top of the stack to decide which transition to take.

2. They can manipulate the stack as part of performing a transition.

Pushdown automata choose a transition by indexing a table by input signal, current state, and the symbol at

the top of the stack. This means that those three parameters completely determine the transition path that is

chosen. Finite state machines just look at the input signal and the current state: they have no stack to work

with. Pushdown automata add the stack as a parameter for choice.

Pushdown automata can also manipulate the stack, as part of performing a transition. Finite state machines

choose a new state, the result of following the transition. The manipulation can be to push a particular

symbol to the top of the stack, or to pop off the top of the stack. The automaton can alternatively ignore the

stack, and leave it as it is. The choice of manipulation (or no manipulation) is determined by the transition

table.

Put together: Given an input signal, current state, and stack symbol, the automaton can

follow a transition to another state, and optionally manipulate (push or pop) the stack.

In general pushdown automata may have several computations on a given input string,

some of which may be halting in accepting configurations while others are not. Thus we

have a model which is technically known as a "nondeterministic pushdown automaton"

(NPDA). Nondeterminism means that there may be more than just one transition

available to follow, given an input signal, state, and stack symbol. If in every situation

only one transition is available as continuation of the computation, then the result is a

deterministic pushdown automaton (DPDA), a strictly weaker device.

If we allow a finite automaton access to two stacks instead of just one, we obtain a more

powerful device, equivalent in power to a Turing machine. A linear bounded automaton

is a device which is more powerful than a pushdown automaton but less so than a Turing

machine.

Pushdown automata are equivalent to context-free grammars: for every context-free

grammar, there exists a pushdown automaton such that the language generated by the

grammar is identical with the language generated by the automaton, which is easy to

prove. The reverse is true, though harder to prove: for every pushdown automaton there

exists a context-free grammar such that the language generated by the automaton is

identical with the language generated by the grammar.

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Linear_bounded_automaton
http://en.wikipedia.org/wiki/Context-free_grammars

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Formal Definition

A PDA is formally defined as a 7-tuple:

where

 is a finite set of states

 is a finite set which is called the input alphabet

 is a finite set which is called the stack alphabet

 is a mapping of into , the transition relation, where Γ * means "a finite (maybe

empty) list of element of Γ" and denotes the empty string.

 is the start state

 is the initial stack symbol

 is the set of accepting states

An element is a transition of M. It has the intended meaning that M, in state , with on the

input and with as topmost stack symbol, may read a, change the state to q, pop A,

replacing it by pushing . The letter ε (epsilon) denotes the empty string and the

component of the transition relation is used to formalize that the PDA can either read a

letter from the input, or proceed leaving the input untouched.

In many texts the transition relation is replaced by an (equivalent) formalization, where

 is the transition function, mapping into finite subsets of .

Here δ(p,a,A) contains all possible actions in state p with A on the stack, while reading

a on the input. One writes for the function precisely when for the relation. Note that finite

in this definition is essential.

Computations

a step of the pushdown automaton

In order to formalize the semantics of the pushdown automaton a description of the

current situation is introduced. Any 3-tuple is called an instantaneous description (ID) of

M, which includes the current state, the part of the input tape that has not been read, and

the contents of the stack (topmost symbol written first). The transition relation δ defines

the step-relation of M on instantaneous descriptions. For instruction there exists a step ,

for every and every .

In general pushdown automata are nondeterministic meaning that in a given

instantaneous description (p,w,β) there may be several possible steps. Any of these steps

http://en.wikipedia.org/wiki/Empty_string
http://en.wikipedia.org/wiki/Empty_string

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

can be chosen in a computation. With the above definition in each step always a single

symbol (top of the stack) is popped, replacing it with as many symbols as necessary. As a

consequence no step is defined when the stack is empty.

Computations of the pushdown automaton are sequences of steps. The computation starts

in the initial state q0 with the initial stack symbol Z on the stack, and a string w on the

input tape, thus with initial description (q0,w,Z). There are two modes of accepting. The

pushdown automaton either accepts by final state, which means after reading its input the

automaton reaches an accepting state (in F), or it accepts by empty stack (), which means

after reading its input the automaton empties its stack. The first acceptance mode uses the

internal memory (state), the second the external memory (stack).

Formally one defines

1. with and (final state)

2. with (empty stack)

Here represents the reflexive and transitive closure of the step relation meaning any

number of consecutive steps (zero, one or more).

For each single pushdown automaton these two languages need to have no relation: they

may be equal but usually this is not the case. A specification of the automaton should also

include the intended mode of acceptance. Taken over all pushdown automata both

acceptance conditions define the same family of languages.

Theorem. For each pushdown automaton M one may construct a pushdown automaton

M' such that L(M) = N(M'), and vice versa, for each pushdown automaton M one may

construct a pushdown automaton M' such that N(M) = L(M')

The following is the formal description of the PDA which recognizes the language by

final state:

PDA for (by final state)

, where

Q = {p,q,r}

Σ = {0,1}

Γ = {A,Z}

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

F = {r}

δ consists of the following six instructions:

(p,0,Z,p,AZ), (p,0,A,p,AA), (p,ε,Z,q,Z), (p,ε,A,q,A), (q,1,A,q,ε), and

(q,ε,Z,r,Z).

In words, in state p for each symbol 0 read, one A is pushed onto the stack. Pushing

symbol A on top of another A is formalized as replacing top A by AA. In state q for each

symbol 1 read one A is popped. At any moment the automaton may move from state p to

state q, while it may move from state q to accepting state r only when the stack consists

of a single Z.

There seems to be no generally used representation for PDA. Here we have depicted the

instruction (p,a,A,q,α) by an edge from state p to state q labelled by a;A / α (read a;

replace A by α).

Understanding the computation process

accepting computation for 0011

The following illustrates how the above PDA computes on different input strings. The

subscript M from the step symbol is here omitted.

(a) Input string = 0011. There are various computations, depending on the moment the

move from state p to state q is made. Only one of these is accepting.

(i) . The final state is accepting, but the input is not accepted this way as it has not

been read.

(ii) . No further steps possible.

(iii) . Accepting computation: ends in accepting state, while complete input has

been read.

(b) Input string = 00111. Again there are various computations. None of these is

accepting.

(i) . The final state is accepting, but the input is not accepted this way as it has not

been read.

(ii) . No further steps possible.

(iii) . The final state is accepting, but the input is not accepted this way as it has

not been (completely) read.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Pushdown Automata

As Fig. 5.1 indicates, a pushdown automaton consists of three components: 1) an input

tape, 2) a control unit and 3) a stack structure. The input tape consists of a linear

configuration of cells each of which contains a character from an alphabet. This tape can

be moved one cell at a time to the left. The stack is also a sequential structure that has a

first element and grows in either direction from the other end. Contrary to the tape head

associated with the input tape, the head positioned over the current stack element can

read and write special stack characters from that position. The current stack element is

always the top element of the stack, hence the name ``stack''. The control unit contains

both tape heads and finds itself at any moment in a particular state.

Figure 5.1: Conceptual Model of a Pushdown Automaton

Definition

A (non-deterministic) finite state pushdown automaton (abbreviated PDA or, when the

context is clear, an automaton) is a 7-tuple = (X, Z, , R, zA, SA, ZF), where

 X = {x1, ... , xm} is a finite set of input symbols. As above, it is also called an

alphabet. The empty symbol is not a member of this set. It does, however, carry

its usual meaning when encountered in the input.

 Z = {z1, ... zn} is a finite set of states.

 = {s1, ... , sp} is a finite set of stack symbols. In this case .

 R ((X { })×Z×)×(Z×)) is the transition relation.

 zA is the initial state.

 SA is the initial stack symbol.

 ZF K is a distinguished set of final states.

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:pushdef

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Figure 5.3: Derivation of the String a3bc3

Context-Free Languages

As will be recalled from the last chapter there were two basic ways to determine whether

a given string belongs to the language generated by some finite state automaton: One

could verify that the string brings the automaton to a final state or one could derive, or,

better, produce, the string in the regular grammar corresponding to the automaton. The

same option holds for PDAs.

Definition

A context-free grammar is a grammar = (X, T, S, R) for which all rules, or

productions, in R have the special form A , for A X - T and X*.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Additionally, for any two strings u, v X* write u v (u directly produces v) if and

only if (1) u = u1Au2 for u1, u2 X* and A X - T and (2) v = v1 v2 and A ,

X*, is a production from R. The reduction u v is also called a direct production.

Finally, write u v for two strings u, v X* (u derives v) if there is a sequence u = u0

u1 u2 ... un = v of direct productions ui ui+1 from R. The length of the

derivation is n. The language generated by is {x T*| S x}.

Thus, the definition just articulates the reduction of A to in any context in which A

occurs. It is trivial that every regular language is context-free. The obverse, as will be

seen presently, is not true. Before proving the central theorem for this section two typical

examples are given.

Example 1

Consider = (X, T, R, S) with T = {a, b} and X = {S, a, b, }. The productions, or

grammar rules, are: S aSb | . Then it is clear that L() = {anbn| n 0}. From

the previous chapter it is known that this language is not regular.

Example 2: A Grammar for Arithmetic Expressions

Let

X = {E, T, F, id, + , - ,*,/,(,), a, b, c}

and T = {a, b, c, + , - ,*,/,(,)}. The start symbol S is E and the productions are as

follows:

E

E + T | E - T | T

T

T*F | T/F | F

F

(E) | id

id

a | b | c

Then the string (a + b)*c belongs to L(). Indeed, it is easy to write down a derivation

of this string:

E
 T T*F F*F (E)*F (E + T)*F

 (T + T)*F (F + T)*F (id + T)*F (a + T)*F

 (a + F)*F (a + id)*F (a + b)*F (a + b)*id (a + b)*c

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

The derivation just adduced is leftmost in the sense that the leftmost nonterminal was

always substituted. Although derivations are in general by no means unique, the leftmost

one is. The entire derivation can also be nicely represented in a tree form, as Fig. 5.4

suggests.

Figure 5.4: Derivation Tree for the Expression (a + b)*c

The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the

frontier of the tree consists of terminal symbols. The start symbol is the root and the

derived symbols are nodes. The order of the tree is the maximal number of successor

nodes for any given node. In this case, the tree has order 3. Finally, the height of the tree

is the length of the longest path from the root to a leaf node, i.e. a node that has no

successor. The string (a + b)*c obtained from the concatenation of the leaf nodes

together from left to right is called the yield of the tree.

The expected relation between pushdown automata and context-free languages is

enunciated in the following theorem.

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:tree

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Figure 5.5: Derivation of the String a2bcba2

Conversely, assume is a PDA. To clarify the subsequent definitions the following

discussion on the internal operation of is offered. The goal is, of course, to concoct a

context-free grammar that executes a leftmost derivation of every string that accepts. If

were as simple as the example in the first part of this proof, namely, that after pushing

the very first nontrivial symbol (not SA) onto the stack remains in a single state z1,

then it would be very straightforward to reverse the above process and construct from

. Basically, if x is the input string write x = x ax , where x is that part of x that has

already been processed (a so-called prefix of x) and ax is the rest of x whose first input

symbol is a. Then the direct production of configurations of of the form (ax , z1,

AA) (x , z1, A) corresponds to the grammar rule A a , resulting in the

reduction x AA xa A . Thus the sequence of stack moves from the above-

mentioned example commences with SA and, after popping that symbol, derives the

string a2bcba2, as can be seen by inspecting the stack column in Fig. 5.5.

Unfortunately, the general case is considerably more complicated, because 's state

transitions also enter into the picture. Proceeding naively, one could reduce to a 2 state

PDA of the aforementioned type by pushing pairs (z, A) of states and stack symbols

from onto 's stack, thus imitating 's calculation of input strings. Thus, when

is in state z and pushes A onto the stack, pushes (z, A) onto its stack. The reader is

invited to pause to discover the fatal shortcoming of this method before reading further.

The problem becomes immediately transparent when one considers what happens when

pops a stack element (z, A). State z is no longer relevant for 's further operation-

 was in state z when A got pushed, but what state was in when the pop occurred?

Therefore, it is necessary to push triples (z, A, z), where z is 's state when the pop

takes place. Since it is not known what 's state z is going to be when it pops A, has

to guess what it is going to be, .i.e. it nondeterministically pushes (z, A, z), where z

Z is arbitrary. The only restriction is that when executing two (or more) push operations

the unknown state z must be manipulated consistently. This means if A1A2 is pushed,

then after pops A1, or, equivalently, pops (z1, A1, z1), then finds itself in state

z1 . Since does not use its own state information in imitating 's state transitions,

's current state must be available in describing the next element of 's stack, or, in

other words, better be in state z1 when popping A2 from its stack, and so must be of

the form (z1 , A2, z2) for some (predicted) z2 Z. This train of thought will now be

formalized.

For simplicity, assume that pushes at most two symbols and that it has a single

acceptance statei zF. A moment's reflection shows that these assumptions are not

restrictive; but they do eliminate some extra preprocessing. The nonterminals of G are

triples (z, A, z) of states z, z and a stack symbol A. The basic idea is to imitate what

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:der1

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

the machine undergoes in state z finally to pop symbol A and to wind up thereby in state

z , having processed some string of input characters. Thus the rules for the sought-after

context-free grammar are posited as follows:

1. For the (extra) start symbol put S (zA, SA, zF).

2. For each transition ((a, z, B),(z , C)) R put for each z1 Z

(z, B, z1) a(z , C, z1)

3. In case two symbols are pushed, i.e. ((a, z, B),(z , C1C2)) R, then put for each

pair z1, z2 Z

(z, B, z1) a(z , C1, z2)(z2, C2, z1).

4. For each z Z put (z, , z) .

It is important to notice the free choice of z1 and z1, z2 in rules 2. and 3. Consider, for

example, processing the string a2bc2 from the PDA from Section 5.1. Then posit the start

rule

S (z1, SA, z3),

since there is only one final state. Now mechanically translate each of the transitions

from this PDA into their grammatical equivalents as shown in Table 5.1.

Table 5.1: Translation of the PDA Transition Rules into Grammatical Productions

Nr. Transition Function Nr Production

1 ((a, zA, SA),(zA, SSA)) 1' (zA, SA, z') a(zA, S, z'')(z'', SA, z')

2 ((a, zA, S),(zA, SS)) 2' (zA, S, w') a(zA, s, w'')(w'', s, w')

3 ((b, zA, S),(z2,)) 3' (zA, S, v') b(z2, , v')

4 ((c, z2, S),(z2,)) 4' (z2, S, u') c(z2, , u')

5 ((c, z2, SA),(z3,)) 5' z2, SA, t') c(z3, , t')

It is important to note that states z', z'', w', w'', v', u', t' can be chosen at will.

Hopefully, a proper choice will lead to success in accordance with the philosophy of

nondeterminism.

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#sec:PDA
http://homepages.fh-regensburg.de/~zar39030/in/node6.html#tab:trans

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Properties of Context-Free Langauges

Syntax Trees

Tree representations of derivations, also known as syntax trees, were briefly introduced in

the preceding section to promote intuition of derivations. Since these are such important

tools for the investigation of context-free languages, they will be dealt with a little more

systematically here.

Definition

Let = (X, T, R, S) be a context-free grammar. A syntax tree for this grammar consists

of one of the following

1. A single node x for an x T. This x is both root and leaf node.

2. An edge

corresponding to a production A R.

3. A tree

where the A1, A2, ... , An are the root nodes of syntax trees. Their yields are read

from left to right.

Ambiguity

Until now the syntax trees were uniquely determined-even if the sequence of direct

derivations were not. Separating the productions corresponding to the operator hierarchy,

from weakest to strongest, in the expression grammar + , - ,*,/,() preserves this natural

hierarchy. If this is not done, then syntax trees with a false evualation sequence are often

the result. Suppose, for instance, that the rules of the expression grammar were written E

E + E | E*E | id, then two different syntax trees are the result. If the first

production E E + E were chosen then the result would be the tree

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

On the other hand, choosing the production E E*E first results in a syntax tree of an

entirely different ilk.

Thus this grammar is ambiguous, because it is possible to generate two different syntax

trees for the expression a + b*c.

Chomsky Normal Form

Work with a given context-free grammar is greatly facilitated by putting it into a so-

called normal form. This provides some kind of regularity in the appearance of the right-

hand sides of grammar rules. One of the most important normal forms is the Chomsky

normal form.

Definition

The context-free Grammar = (X, T, R, S) is said to be in Chomsky normal form if

all grammar rules have the form

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

A a | BC,
(5.1)

for a T and B, C X - T. There is one exception. If L(), then the single extra

rule

S
(5.2)

is permitted. If L() then production rule 5.2 is not allowed.

1. vy (that is, v or y).

2. The length of vwy satisfies | vwy| n.

3. For each integer k 0, it follows that uvkwykz L().

Proof

Assume that is in Chomsky normal form. For x L() consider the (binary) syntax

tree for the derivation of x. Assume the height of this tree is h as illustrated in Fig. 5.6.

Figure 5.6: Derivation Tree for the string x L()

Then it follows that | x| 2h-2 + 2h-2 = 2h-1, i.e. the yield of the tree with height h is at

most 2h-1. If has k nonterminal symbols, let n = 2k. Then let x L() be a string

with | x| n. Thus the syntax tree for x has height at least k + 1, thus on the path from

the root downwards that defines the height of the tree there are at least k + 2 nodes, i.e. at

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#eq:rule
http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:ogd

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

least k + 1 nonterminal symbols. It then follows that there is some nonterminal symbol A

that appears at least twice. Consulting Fig. 5.7, it is seen that the partial derivation S

uAz uvAyz obtains.

Figure 5.7: Nonterminal A appears twice in the derivation of x

If, now, both u and z were empty, then derivations of the form S uAz A would be

possible, contrary to the assumption of Chomsky normal form. For the same reason either

v or y are nonempty. If | vwy| > n then apply the procedure anew until the condition |

vwy| n holds. Finally, since the derivation A vAy can be repeated as often as one

pleases, it follows that S uAz uvAyz uv2Ay2z uv2wy2zi, etc. can be

generated. This completes the proof.

Example 1

The language L = {aibici | i 1} is not context free.

Proof

Assume L were context-free. Then let n be the n from the preceding theorem and put x =

anbncn. Ogden's lemma then provides the decomposition x = uvwyz with the stated

properties. There are several cases to consider.

Case 1 The string vy contains only a's. But then the string uwz L, which is

impossible, because it contains fewer a's than b's and c's. .

Case 2,3 vy contains only b's or c's. This case is similar to case 1.

Case 4,5 vy contains only a's and b's or only b's or c's. Then it follows that uwz contains

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:redtree

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

more c's than a's and b's or more a's than b's and c's. This is again a contradiction.

Since | vwy| n it is not possible that vy contain a's and c's.

it is seen that the complements and are not in general context-free.

Push Down Automata and Context-Free Grammars

Definition

An algorithm is called polynomial in case there is an integer k 2 such that the number

of steps after which the algorithm halts is (nk). The argument n depends only on the

input.

Theorem 5..7 There is a polynomial algorithm that constructs to any given push down

automaton a context-free grammar with L() = L(). Conversely, there is a

polynomial algorithm that constructs to any given context-free grammar a push down

automaton with L() = L().
Theorem 5..8 There is a polynomial algorithm that decides, given any context-free

grammar G = (X, T, R, S) and x T* whether x L().

Proof

The proof of this theorem sometimes goes under the name CYK algorithm after their

discoverers Cocke, Younger and Kasami. It proceeds as follows:

1. Rewrite in Chomsky normal form. It is easily seen that this can be done in

polynomial time.

2. If x = x1x2
 ... xn, then for 0 i, j n put xij = xixi+1

 ... xi+j-1. It is noteworthy that

| xij| = j. The idea is to determine all A X - T for which A xij. Thus set

Vij = {A X - T | A xij}.

1. For j = 1 it is readily seen that Vi1 = {A X - T | A xi}.

2. For general j it is also seen that A Vij A xixi+1
 ... xi+j-1

A BC is a rule from R and B xi
 ... xi+k-1 and C xi+k

 ... xi+j-1 for

some k = 1, 2, ... j - 1.

Thus the algorithm can be formulated as follows:

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

for i : = 1 to n do

Vi1 : = {A X - T | A xi R};

for j : = 2 to n do

for i : = 1 to n - j + 1 do begin

Vij : = ;

for k : = 1 to j - 1 do

Vij : = Vij {A X - T | A BC, B Vik, C Vi+k, j-k};

end

Figure 5.8: Diagonal Procedure for CYK Algorithm

There is a nice interpretation of the innermost for loop. Formally one processes the pairs

Vi1Vi+1, j-1, Vi2Vi+2, j-2, ... , Vi, j-1Vi+j-1, 1. As evidenced in Fig. 5.8 go down the ith column

and simultaneously traverse the diagonal from Vi+1, j-1 up and to the right. The

corresponding elements are compared with each other.

Finally, it is seen that x L() S V1, n, because then S x1
 ... xn, where n =

length(x).

This technique of producing increasingly larger solutions from smaller ones is called

dynamic programming.

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#cap:diag

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Example

Consider the Grammar

S
AB | BC

A
BA | a

B
CC | b

C
AB | a

and the string x = baaba with n = 5. Then proceeding as above, the following triangular

matrix results:

b a a b a

B A, C A, C B A, C

S, A B S, C S, A

B B

S, A, C

S, A, C

Since S V15 it follows that x L(). It is quite remarkable that the algorithm time is

(n3). It is also remarkable that the CYK algorithm actually shows how to construct the

derivation, which has great practical importance.

Then it is easy to derive the string abc:

S aBC abC abc

Similarly, one derives the string a2b2c2:

S aSBC a2BCBC

 a2B2C2 a2bBC2

 a2b2C2 a2b2cC a2b2c2

 a2b2C2 a2b2cC a2b2c2

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

It is then a routine application of mathematical induction to prove the general formula S

 anbncn.

E + b*c T + b*c F + b*c id + b*c a + b*c.

At each stage of the derivation the sentential form of the stage is of the form uv, where u

X* and v T*. Tracing this derivation backwards, now proceed as follows: Starting

from the leftmost input symbol reduce that symbol to a rule for which it is the right-hand

side, in this case id a. Then reduce id to F, etc. until an E has been produced. All of

the previous symbols are handles or right-hand sides of rules that allow successful (in the

sense that the start symbol will eventually be produced). After E has been obtained, the

next input symbol `+' is kept, or better, appended to E. Thus the sentential form `E +' is

produced. This sentential form is called a viable prefix because there is a rule of the form

E E + T (a trivial one). If it recognized that E + is a viable prefix, then, starting with

the next input symbol, continue this process from that point onwards until the rest of the

right-hand side has been produced, i.e. a handle has been found. Then reduce this handle

to the left-hand side of the ``correct'' rule until the start symbol alone has been produced.

This process can be nicely realized using a push-down automaton. Thus, proceeding from

left to right on the input string, shift or push one or more input symbols onto the stack

until a handle is found. The reduce or pop that handle from the stack and push the left-

hand side of the associated rule onto the stack. On a successful parse, if no reduction is

presently forthcoming then the contents of the stack constitute a viable prefix for some

rule yet to be determined. Another way of saying the same thing is that the contents of the

stack, read from bottom up, are the prefix of a sentential form produced on the way back

to the start symbol during a rightmost derivation.

A correct parse of the string a + b*c as a sequence of shift/reduce actions is given in

Table 5.3. Notice the decision to handle multiplication before addition is governed by

``looking ahead'' one symbol.

Table 5.3: Predictive Parse of the expression a + b*c

Stack Input Action

$ a + b*c$ Shift

id$ + b*c$ Reduce

F$ + b*c$ Reduce

T$ + b*c$ Reduce

E$ + b*c$ Reduce

http://homepages.fh-regensburg.de/~zar39030/in/node6.html#tab:aplus

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

+ E$ b*c$ Shift

b + E$ *c$ Shift

id + E$ *c$ Reduce

F + E$ *c$ Reduce

T + E$ *c$ Reduce

*T + E$ c$ Shift

c*T + E$ $ Reduce

id*T + E$ $ Reduce

F*T + E$ $ Reduce

T + E$ $ Reduce

E$ $ Accept

Stack Input Action

$ a + b*c$ Shift

id$ + b*c$ Reduce

F$ + b*c$ Reduce

T$ + b*c$ Reduce

E$ + b*c$ Reduce

+ E$ b*c$ Shift

b + E$ *c$ Shift

id + E$ *c$ Reduce

F + E$ *c$ Reduce

T + E$ *c$ Reduce

*T + E$ c$ Shift

c*T + E$ $ Reduce

id*T + E$ $ Reduce

F*T + E$ $ Reduce

T + E$ $ Reduce

E$ $ Accept

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

UNIT-IV

PROPERTIES OF CONTEXT FREE LANGUAGES

Turing Machines (TM)

• Structure of Turing machines

• Deterministic Turing machines (DTM)

– Accepting a language

– Computing a function

• Composite Turing machines

• Multitape Turing machines

• Nondeterministic Turing machines (NTM)

• Universal Turing machines (UTM)

• Determine if an input x is in a Determine if an input x is in a language.

– That is, answer if the answer of a problem P for the instance x is “yes”.

• Compute a function

– Given an input x, what is f(x)?

– language.

– That is, answer if the answer of a problem P for the instance x is “yes”.

• Compute a function

– Given an input x, what is f(x)?

How does a TM work?

• At the beginning,

– A TM is in the start state (initial state)

– its tape head points at the first cell

– The tape contains , following by input string, and the rest of the tape

contains .

• For each move, a TM

– reads the symbol under its tape head

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

– According to the transition function on the symbol read from the tape and

its current state, the TM:

• write a symbol on the tape

• move its tape head to the left or right one cell or not

• changes its state to the next state

When does a TM stop working?

• A TM stops working,

– when it gets into the special state called halt state. (halts)

• The output of the TM is on the tape.

– when the tape head is on the leftmost cell and is moved to the left. (hangs)

– when there is no next state. (hangs)

How to define deterministic TM (DTM)

• a quintuple (Q, , , , s), where

– the set of states Q is finite, not containing halt state h,

– the input alphabet  is a finite set of symbols not including the blank

symbol ,

– the tape alphabet  is a finite set of symbols containing , but not

including the blank symbol ,

– the start state s is in Q, and

– the transition function  is a partial function from Q  ({})  Q{h}

 ({})  {L, R, S}.

Example of a DTM

Definition
• Let T = (Q, , , , s) be a DTM, and (q1, 1a11) and (q2, 2a22) be two

configurations of T.

 We say (q1, 1a11) yields (q2, 2a22) in one step,

denoted by (q1, 1a11) T (q2, 2a22), if

– (q1, a1) = (q2,a2,s), 1=2 and 1=2,

– (q1, a1) = (q2,b,R), 2=1b and 1=a22,

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

– (q1, a1) = (q2,b,L), 1=2a2 and 2=b

Definition

• Let T=(Q, , , , s) be a DTM, and (q1, 1a11) and (q2, 2a22) be two

configurations of T.

 We say (q1, 1a11) yields (q2, 1a22) in zero step or

more, denoted by (q1, 1a11) -*T (q2, 1a22), if

– q1=q2, 1 =2, a1= a2, and 1= 2, or

– (q1,1a11)-T (q, a) and (q, a)-*T (q2,1a22) for some q in Q,

 and  in *, and a in .

Yield in zero step or more: Example

s,0001000)
(p1,@0001000)

(p2,@001000)

(p2,@001000)

(p3,@001000)

(p4,@00100)

(p4,@00100)

(p1,@00100)

(p2,@0100) (p4,@010)

(p4,@010)

(p1,@010)

(p2,@10)

(p2,@10)

(p2,@10)

(p3,@10)

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

(p4,@1)

(p4,@1)

(p1,@1)

(q1,@)

(q1,@)

(q2,)

(h ,1)

(p2,@0100)

(p3,@0100)

TM accepting a language

• Definition
 Let T=(Q, , , , s) be a TM, and w*.

 T accepts w if (s, , , w) |-T* (h, , , 1).

 The language accepted by a TM T, denoted by L(T), is the

set of strings accepted by T.

L(T)={0n10n | n0}

• T halts on 0n10n

• T hangs on 0n+110n at p3

• T hangs on 0n10n+1 at q1

• T hangs on 0n 12 0n at q1

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

TM computing a function

• Definition

Let T=(Q, , , , s) be a TM, and f be a function from * to *.T computes f if, for any

string w in *,

Jaruloj Chongstitvatana 2301379 Turing Machines 19

Example of TM Computing Function

1/1,L

0/0,L

p3p2

/1’,L

1/@,R

s p1

r2

/,R

0’/0,R
1’/1,R

/,L

/,S

0/0,R
1/1,R

q2 q1

r1

h

0’/0,R

1’/1,R

0/0,L
1/1,L
0’/0’,L
1’/1’,L

0/0,L
1/1,L
0’/0’,L
1’/1’,L

0/0,R
1/1,R/0’,L

0/@,R

@/1,R

@/0,R

• Let T1 and T2 be TM’s.

• T1  T2 means executing T1 until T1 halts and then executing T2.

• T1 -a T2 means executing T1 until T1 halts and if the symbol under the tape

head when T1 halts is a then executing T2.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Nondeterministic TM

• An NTM starts working and stops working in the same way as a DTM.

• Each move of an NTM can be nondeterministic.

Each Move in an NTM

• reads the symbol under its tape head

•

• According to the transition relation on the symbol read from the tape and its

current state, the TM choose one move nondeterministically to:

– write a symbol on the tape

– move its tape head to the left or right one cell or not

– changes its state to the next state

How to define nondeterministic TM (NTM)

• a quintuple (Q, , , , s), where

– the set of states Q is finite, and does not contain halt state h,

– the input alphabet  is a finite set of symbols, not including the blank

symbol ,

– the tape alphabet  is a finite set of symbols containing , but not

including the blank symbol ,

– the start state s is in Q, and

– the transition fn :Q({})2Q{h}({}){L,R,S}.

Configuration of an NTM

 Definition

• Let T = (Q, , , , s) be an TM.

 A configuration of T is an element of Q      

• Can be written as

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

– (q,l,a,r) or

– (q,lar) Definition

– Let T = (Q, , , , s) be an NTM, and (q1, 1a11) and (q2, 2a22) be

two configurations of T.

– We say (q1, 1a11) yields (q2, 2a22) in one step,

denoted by (q1, 1a11) T (q2, 2a22), if

– (q2,a2,S)  (q1, a1), 1=2 and 1=2,

– (q2,b,R)  (q1, a1), 2=1b and 1=a22,

– (q2,b,L)  (q1, a1), 1=2a2 and 2=b1.

–

NTM accepting a language/computing a function

• Definition
 Let T = (Q, , , , s) be an NTM.

 Let w* and f be a function from * to *.

 T accepts w if (s, , , w) |-T* (h, , , 1).

 The language accepted by a TM T, denoted by L(T), is the

set of strings accepted by T.

 T computes f if, for any string w in *, (s, , , w) |-T*

(h, , , f(w)).

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Turing Machines 28

Example of NTM

• Let L={ww| w{0,1}*}

s

p u

q0 t0

r0

h

/@,R
0/0,L
1/1,L

@/,R

0/,
L

1/,L

0/0,L
1/1,L
/,L

0/@,R

/,
R

0/0,R
1/1,R

/,R

0/,L

1/,
L

q1 t1

r1

@/,R0/0,L
1/1,L
/,L

1/@
,R

0/0,R
1/1,R

/,R

@/,Lv

0/0,R
1/1,R

/@,L

Jaruloj Chongstitvatana 2301379 Turing Machines 29

Multitape TM

• TM with more than one tape.

• Each tape has its own tape head.

• Each tape is independent.

CONTROL

UNIT

TAPE

TAPE

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

2-Tape Turing Machine

• a quintuple (Q, , , , s), where

– the set of states Q is finite, and does not contain the halt state h,

– the input alphabet  is a finite set of symbols, not including the blank

symbol ,

– the tape alphabet  is a finite set of symbols containing , but not

including the blank symbol ,

– the start state s is in Q, and

– the transition function  is a partial function from Q  ({})2 

Q{h}  ({})2  {L, R, S}2

Jaruloj Chongstitvatana 2301379 Turing Machines 31

Example of 2-Tape Turing Machine

q2h

,/(,),(L,R)
s p1

p4

p2 p3
,/(,),(R,S)

0,/(0,),(R,S)
1,/(1,),(R,S)

0,/(0,0),(L,R)
1,/(1,1),(L,R)

,/(,),(R,S)

0,/(0,),(R,S)
1,/(1,),(R,S) 

,
/(

,
),(L

,L
)

0,0/(,),(L, L)
1,1/(,),(L, L)

,/(,),(R,R),/(1,),(L,L)

Equivalence of 2-tape TM and single-tape TM

Theorem:
 For any 2-tape TM T, there exists a single-tape TM M

such that for any string  in *:

– if T halts on  with  on its tape, then M halts on  with  on its tape, and

– if T does not halt on , then M does not halt

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

How 1-tape TM simulates 2-tape TM

• Marking the position of each tape head in the content of the tape

• Encode content of 2 tapes on 1 tape

– When to convert 1-tape symbol into 2-tape symbol

• Construct 1-tape TM simulating a transition in 2-tape TM

• Convert the encoding of 2-tape symbols back to 1-tape symbols

Jaruloj Chongstitvatana 2301379 Turing Machines 34

Encoding 2 tapes in 1 tape

• New alphabet contains:
– old alphabet

– encoding of a symbol on tape 1 and a symbol on tape 2

– encoding of a symbol on tape 1 pointed by its tape head and a
symbol on tape 2

– encoding of a symbol on tape 1 and a symbol on tape 2 pointed
by its tape head

– encoding of a symbol on tape 1 pointed by its tape head and a
symbol on tape 2 pointed by its tape head

 0 1 1 1 0  

 0 1 0 1   

 0 1 1 1 0  

 0 1 0 1   

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Turing Machines 36

Tape format

c(b,) # c(a,) c(b,) c(c,) c(d,) …

What’s read on tape 1 and 2

seperator

Encoded tape content

Jaruloj Chongstitvatana 2301379 Turing Machines 37

Simulating transitions in 2-tape TM in 1-tape TM

p q
a1,a2/(b1,b2),(d1,d2)

p

q

T_tape1 (a1,b1,d1)

T_tape2 (a2,b2,d2)

c(a1,a2)

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Turing Machines 38

T_tape1(0,1,d)

S

#
/#

,R

c(?,x)/c(?,x),R

c(?,x)/c(?,x),R

c(0,?)/c(1,?),d
c(0,?)/c(1,?),d

It is not possible that

c(1,?) is found because
c(0,?) is wriiten in cell 1.

c(
0
,x

)/
c(
0
,x

),
L

0
/c

(0
,

),
L

? and x are 0, 1, or 

c(1,x)/c(1,x),L
1/c(1,),L

c(
,x

)/c(
,x

),L


/c(

,
),L

Remember symbol

under tape head in
tape 1

#/#,L

#/#,L

#/#,L

not #/not #,L

not #/not #,L

not #/not #,L

c(?
,x

)/c(0
,x

),R

c(
?
,x

)/
c(

,x

),
R

c(?,x)/c(1,x),R

Convert 1-tape symbol

into 2-tape symbol

Update the first cell

h

c(?,?)/c(?,?),R

Equivalence of 2-tape TM and single-tape TM

Proof:

Let T = (Q, , , , s) be a 2-tape TM.

We construct a 1-tape TM M=(K, , ’, ’, s’) such that

– ’ =   {c(a,b)| a,b are in {}}  {c(a,b)| a,b are in {}} 

{c(a,b)|a,b are in {}}  {c(a,b)|a,b are in {}}  {#}

We need to prove that:

– if T halts on  with output , then M halts on  with output , and

if T does not halt on 

• If T loops, then M loops.

• If T hangs in a state p, M hangs somewhere from p to the next state.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Equivalence of NTM and DTM

Theorem:

For any NTM Mn, there exists a DTM Md such that:

– if Mn halts on input  with output , then Md halts on input  with output

, and

– if Mn does not halt on input , then Md does not halt on input .

Proof:

Let Mn = (Q, , , , s) be an NTM.

Jaruloj Chongstitvatana 2301379 Turing Machines 45

Construct a DTM equivalent to an NTM

WriteInitialConfiguration

Set WorkingTape

FindStateinCurrentConfiguration

WriteAllPossibleNextConfiguration

EraseCurrentConfiguration

FindNewConfiguration

h

a,h
a,q

a is any symbol, q is any state in Q Depend on Mn

Tape 1: simulate Mn’s tape

Tape 2: store configuration tree

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Turing Machines 46

How Md works

s 0 1* 0 1  #

 0 01 1 

q0 1# 0 1  #

s 0 1# 0@ 1  #

Current state: s

- - -- -- - - *

@

Current state: q

0 1 q# 0 1  #

-- -- -- - - *

*

Current state: s

WriteInitialConfiguration

Set Working Tape

FindStateinCurrentConfiguration

WriteAllPossibleNex tConfiguration

EraseCurrentConfiguration

FindNewConfiguration

h

a,h a,q

s q
0/0,R/@,S /,R

Tape 2

Tape 1

• Then, there is a positive integer n such that the initial configuration (s, ) of Mn

yeilds a halting configuration (h, ) in n steps.

• From the construction of Md, the configuration (h, ) must appear on tape 2 at

some time.

• Then, Md must halt with  on tape 1.

if Mn does not halt on input 

• Then, Mn cannot reach the halting configuration. That is, (s, ) never yields a

halting configuration (h, ).

• From the construction of Md, the configuration (h,) never appears on tape 2.

• Then, Md never halt.

Universal Turing Machine

• Given the description of a DTM T and an input string z, a universal TM simulates

how T works on input z.

• What’s need to be done?

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

– How to describe T and z on tape

• Use an encoding function

– How to simulate T

Encoding function

• Let T=(Q, , , s) be a TM. The encoding function e(T) is defined as follows:

– e(T)=e(s)#e(),

– e()=e(m1)#e(m2)#...#e(mn)#, where  = {m1, m2,..., mn}

– e(m)=e(p),e(a),e(q),e(b),e(d), where m = (p, a, q, b, d)

– e(z)=1e(z1)1e(z2)1…1e(zm)1, where z=z1z2…zm is a string

– e()=0, e(ai)=0i+1, where ai is in 

– e(h)=0, e(qi)=0i+1, where qi is in Q

– e(S)=0, e(L)=00, e(R)=000

Example of Encoded TM

• e()=0 , e(a1)=00 , e(a2)=000

• e(h)=0, e(q1)=00, e(q2)=000

• e(S)=0, e(L)=00, e(R)=000

• e(a1a1a2) = 1e()1e(a1)1e(a1)1e(a2)1e()1

 = 101001001000101
• e(m1) = (q1),e(a1),e(q2),e(a2),e(R)

 = 00,00,000,000,000

• e(m2) = e(q2),e(),e(h),e(),e(S)

 = 000,0,0,0,0

• e() = e(m1)#e(m2)#...#

 = 00,00,000,000,000#000,0,0,0,0#...#

• e(T) = e(s)#e()

 = 00#00,00,000,000,000#000,0,0,0,0#...#

• Input = e(Z)|e(T)|

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

 =

101001001000101|00#00,00,000,000,000#000,0,0,0,0#...#|

Jaruloj Chongstitvatana 2301379 Turing Machines 54

Universal Turing Machine

Tape 1: I/O tape, store the transition function of T and
input of T

Tape 2: simulate T’s tape
Tape 3: store T’s state

CopyInputToTape2

CopyTape2ToTape1UpdateStateOnTape3

UpdateTape2 FindRightMove

CopyStartStateToTape3

0

 (halt)

Jaruloj Chongstitvatana 2301379 Turing Machines 55

How UTM Works

Copy InputToTape2

CopyTape2ToTape1UpdateStateOnTape3

UpdateTape2 FindRightMov e

CopyStartStateToTape3

Not halt

halt0 0

1 0 0 1 0 1

1 0 0 1 0 1 | 0 0

0 0 , 0 0 , 0 0 0 , 0 0 0 , 0 0 0

0 0 0 , 0 , 0 , 0 , 0 # ... # |

Tape 1

Tape 3

Tape 2

1 0 0 0 1 0 1

0 0 00

a2 

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Church-Turing Thesis

• Turing machines are formal versions of algorithms.

• No computational procedure will be considered an algorithm unless it

can be presented as a Turing machine.

Checklist

• Construct a DTM, multitape TM, NTM accepting languages
or computing function

• Construct composite TM

• Prove properties of languages accepted by specific TM

• Prove the relationship between different types

• Describe the relationship between TM and FA

• Prove the relationship between TM and FA

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

UNIT -V

Decidability

 Decidable/Undecidable problems

Accepting:

Definition

• Let T = (Q, , , , s) be a TM.

• T accepts a string w in * if

 (s,w) |-T* (h, 1) .

• T accepts a language L* if, for any string w in L, T accepts w.

 Characteristic function

• For any language L*, the characteristic function of L is the function L(x)

such that

– L(x) = 1 if x  L

– L(x) = 0 otherwise

• Example

Let L = {  {0,1}* | n1() <n0() <2n1() }, where nx() is the number of x’s in

}.

– L() = 1 if n1() <n0() <2n1()

– L() = 0 otherwise

Deciding: Definition

• Let T = (Q, , , , s) be a TM.

• T decides a language L* if T computes the characteristic function of L.

• T decides a language L* if

– for any string w in L, T halts on w with output 1,

– for any string w inL, T halts on w with output

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Decidability 5

Accepting/Deciding: Example

1/,R

q2

h

q1


/1

,L
@

/
,R

/,L

S

p1

p4 p2

p3


/@

,R
0
/

,R

0/0,R
1/1,R


/

,L0/


,L

0/0,L
1/1,L


/

,R

TM accepting L={0n10n |n0}

If the input x is in L,

T halts with output 1.
If the input x is not in L,

T hangs.

r1
/,L

1/,L
/,L

r2

h

@
/

,R


/0
,L

/,L
0/,L
1/,L

TM decidinging L={0n10n |n0}

Hang when

input = 02n

Hang when input

= 0n+m …0n

Hang when input

= 0n 1 … 0n+m

Recursively enumerable languages

• A language L is recursively enumerable if there is a Turing machine T

accepting L.

• A language L is Turing-acceptable if there is a Turing machine T

accepting L.

• Example:

 {0n10n|n0} is a recursively-enumerable

language.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Recursive languages

• A language L is recursive if there is a Turing machine T deciding L.

• A language L is Turing-decidable if there is a Turing machine T

deciding L.

• Example:

 {0n10n|n0} is a recursive language.

Closure Properties of the Class of Recursive Languages

Theorem:

Let L be a recursive language over . Then,L is recursive.

Proof:

Let L be a recursive language over .

Then, there exists a TM T computing L.

Construct a tape TM M computing L. as follows:

  T  TmoveRight 0 Twrite1
 1 Twrite0

Then,L is recursive.

Closure Property Under Union

Theorem: Let L1 and L2 be recursive languages over . Then, L1L2 is recursive.

Proof:

Let L1 and L2 be recursive languages over .

Then, there exist TM’s T1 and T2 computing L1 and L2, respectively.

Construct a 2-tape TM M as follows:

 TcopyTape1ToTape2  T1  TmoveRight 0 TcopyTape2ToTape1  T2

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Closure Property Under Union

 TcopyTape1ToTape2  T1  TmoveRight 0 TcopyTape2ToTape1  T2

If the input w is not in L1 and L2, L1(w) and L2(w)=0. Thus, both T1 and T2

must run, and M halts with output 0.

If the input w is in L1, L1(w)=1. Thus, M halts with output 1.

If the input w is not in L1 but is in L2, L1(w)=0 and L2(w)=1. Thus, M halts with

output 1.

That is, M computes characteristic function of L.

Then, L1L2 is recursive.

Closure Property Under Intersection

Theorem: Let L1 and L2 be recursive languages over . Then, L1L2 is recursive.

Proof:

Let L1 and L2 be recursive languages over .

Then, there exist TM’s T1 and T2 computing L1 and L2, respectively.

Construct a 2-tape TM M as follows:

 TcopyTape1ToTape2  T1  TmoveRight 1 TcopyTape2ToTape1  T2

 TcopyTape1ToTape2  T1  TmoveRight 1 TcopyTape2ToTape1  T2

If the input w is in L1L2, L1(w) and L2(w)=1. Thus, M halts with output 1.

If the input w is not in L1, L1(w)=0. Thus, M halts with output 0.

If the input w is in L1 but is not in L2, L1(w)=1 and L2(w)=0. Thus, M halts with

output 0.

That is, M computes characteristic function of L1L2.

Then, L1L2 is recursive.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Closure Properties of the Class of Recursively Enumerable
Languages

 Theorem: Let L1 and L2 be recursively enumerable languages over . Then, L1L2

is also recursively enumerable.

Proof:

Let L1 and L2 be recursively enumerable languages over .

Then, there exist TM’s T1 and T2 accepting L1 and L2, respectively.

Construct an NTM M as follows.

Closure Property Under Union

If w is in L1, but not in L2, then T1 in M runs and halts.

If w is in not L1, but in L2, then T2 in M runs and halts.

If w is in both L1 and L2, then either T1 or T2 runs and halts.
For these 3 cases, M halts.

If w is neither in L1 nor in L2, then either T1 or T2 runs but both never halt. Then, M does not

halt.

Thus, M accepts L1L2. That is, L1L2 is recursively enumerable.

Closure Property Under Intersection

Theorem: Let L1 and L2 be recursively enumerable languages over . Then, L1L2 is also
recursively enumerable.
Proof:

Let L1 and L2 be recursively enumerable languages over .
Then, there exist TM’s T1 and T2 accepting L1 and L2, respectively.

Construct an NTM M as follows.

 TcopyTape1ToTape2  T1  TmoveRight 1 TcopyTape2ToTape1  T2

Closure Property Under Intersection

If w is in not L1, then T1 in M does not halt. Then, M does not halt.

If w is in L1, but not in L2, then T1 in M halts and T2 can finally start, but does not halt. Then,

M does not halt.
If w is in both L1 and L2, then T1 in M halts and T2 can finally start, and finally halt. Then, M

halts.

Thus, M accepts L1L2. That is, L1L2 is recursively enumerable.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Closure Property Under Intersection (II)

 Theorem:

 Let L1 and L2 be recursively enumerable languages over . Then, L1L2 is also recursively
enumerable.
Proof:

Let L1 and L2 be recursively enumerable languages over .

Then, there exist DTM’s T1 =(Q1, , , 1, s1) and T2 =(Q2, , , 2, s2) accepting L1 and L2,
respectively.

Construct a 2-tape TM M which simulates T1 and T2 simultaneously. Tape 1 represents T1’s

tape and Tape 2 represents T2’s tape.

Closure Property Under Intersection (II)

Let M = ((Q1{h})(Q2{h}), , , , (s1,s2)) where

– ((p1,p2),a1,a2) = ((q1,q2),b1,b2,d1,d2) for 1(p1,a1)=(q1,b1,d1) and 2(p2,a2
)=(q2,b2,d2)

– ((h,p2),a1,a2) = ((h,q2),a1,b2,S,d2) for all p2,a1,a2 and 2(p2,a2)=(q2,b2,d2)

– ((p1,h),a1,a2) = ((q1,h),b1,a2,d1,S) for all p1,a1,a2 and 1(p1,a1)=(q1,b1,d1)

– ((h,h),a1,a2) = (h,a1,a2,S,S) for all a1,a2
If neither T1 nor T2 halt, M never gets to the state h.

If T1 halts and T2 does not halt, M gets to the state (h,p).

If T2 halts and T1 does not halt, M gets to the state (p,h).
If both T1 and T2 halt, M finally gets to the state h.

 Relationship Between the Classes of Recursively Enumerable and Recursive Languages

Theorem: If L is a recursive language, then L is recursively enumerable.
Proof:

Let L be a recursive language over .
Then, there is a TM T deciding L.

Then, T also accepts L.

Thus, L is recursively enumerable.

Relationship between RE and Recursive Languages

Theorem: Let L be a language. If L andL are recursively enumerable, then L is recursive.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Proof:

Let L andL be recursively-enumerable languages over .

Then, there are a TM T accepting L, and a TMT acceptingL.

For any string w in *, w is either in L or inL.

That is, either T orT must halt on w, for any w in *.
We construct an NTM M as follows:

If w is in L, T halts on w and thus, M accepts w.

If w is not in L,T halts on w and thus, M rejects w.
Then, M computes the characteristic function of L. Then, L is recursive.

Decision Problems

• A decision problem is a prob. whose ans. is either yes or no

• A yes-instance (or no-instance) of a problem P is the instance of P whose answer is

yes (or no, respectively)

• A decision problem P can be encoded by fe over  as a language {fe(X)| X is a yes-

instance of P}.

Encoding of decision problems

• Is X a prime ?

{1X | X is a prime}
• Does TM T accept string e(T)?

{e(T) | T is a TM accepting string e(T)}

• Does TM T accept string w?
{e(T)e(w) | T is a TM accepting string w} or

{<T,w> | T is a TM accepting string w}

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Decidable (or solvable) problems
Definition:

 If fe is a reasonable encoding of a decision problem P

over , we say P is decidable (or solvable) if the associated language {fe(X)| X is a

yes-instance of P} is recursive.

 A problem P is undecidable (or unsolvable) if P is not

decidable.

Self-Accepting

• SA (Self-accepting) = {w{0,1,#, ,}*| w=e(T) for some TM T and wL(T)}

• NSA (Non-self-accepting) = {w {0,1,#, ,}*| w=e(T) for some TM T and

wL(T)}

• E (Encoded-TM) = {w{0,1,#, ,}*| w=e(T) for some TM T}

NSA is not recursively enumerable

 We prove by contradiction.

Assume NSA is recursively enumerable .

Then, there is TM T0 such that L(T0)=NSA.

Is e(T0) in NSA?

– If e(T0)NSA, then e(T0)L(T0) by the definition of NSA But

L(T0)=NSA. Thus, contradiction.

– If e(T0) NSA, then e(T0) SA and e(T0)L(T0) by the definition of

SA. But L(T0)=NSA. Thus, contradiction.

Then, the assumption is false.

That is, NSA is not recursively enumerable.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

E is recursive

Theorem: E is recursive.
Proof:

 We can construct a regular expression for E according to the

definition of the encoding function as follows:
R = S 1 (M #)+

S = 0

M = Q , A , Q , A , D

Q = 0+
A = 0+

D = 0 + 00 + 000

 Then, E is regular, and thus recursive.

Jaruloj Chongstitvatana 2301379 Decidability 32

SA is recursively enumerable

• Construct a TM S accepting SA

• If w is not e(T) for some TM T, S rejects w.

• If w is e(T) for some TM T, S accepts e(T) iff T
accepts e(T).

• L(S) = {w| w=e(T) for some TM T accepting e(T) =
SA.

• Then, SA is recursively enumerable.

E UTM

Reject

Encode

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

SA is not recursive

• NSA = E – SA

• NSA is not recursively enumerable (from previous theorem), and thus not recursive.

• But E is recursive.
• From the closure property, if L1 and L2 are recursive, then L1 - L2 is recursive.

• Using its contrapositive, if L1 - L2 is not recursive, then L1 or L2 are not recursive.

• Since NSA is not recursive and E is recursive, SA is not recursive.

Co-R.E.

Definition

• A language L is co-R.E. if its complement L is R.E.

• It does not mean L is not R.E.

Examples:

• SA is R.E. SA=ENSA is not R.E.

– SA is co-R.E., but not R.E.

• NSA is not R.E. NSA=ESA is R.E.

– NSA is co-R.E., but not R.E.

• E is recursive, R.E., and co-R.E.

Relationship between R.E., co-R.E. and Recursive Languages

Theorem: Let L be any language. L is R.E. and co-R.E. iff L is recursive.

Proof:

• () Let L be R.E. and co-R.E. Then, L is R.E. Thus, L is recursive.

• () Let L be recursive. Then, L is R.E. From the closure under complementation

of the class of recursive languages,L is also recursive. Then, L is also R.E.

• Thus, L is co-R.E.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Decidability 36

recursive co-R.E.R.E.

Neither R.E. nor co-R.E.

Observation

• A language L is either

– recursive

– R.E., bot not recursive

– co-R.E., but not recursive

– Neither R.E. nor co-R.E.

Reduction Definition:
 Let L1 and L2 be languages over 1 and 2, respectively.

L1 is (many-one) reducible to L2, denoted by L1L2, if there is a TM M computing a

function f: 1*2* such that wL1  f(w)L2.

Definition:

 Let P1 and P2 be problems. P1 is (many-one) reducible to

P2 if there is a TM M computing a function f: 1*2* such that w is a yes-instance of P1

 f(w) is a yes-instance of P2.

Reduction

Definition:

A function f: 1*2* is a Turing-computable function if there is a Turing

machine computing f.

Definition:

 Let L1 and L2 be languages over 1 and 2,

respectively. L1 is (many-one) reducible to L2, denoted by L1L2, if there

is a Turing-computable function f: 1*2* such that wL1  f(w)L2.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Meaning of Reduction

P1 is reducible to P2 if  TM M computing a function f: 1*2* such

that w is a yes-instance of P1  f(w) is a yes-instance of P2.

• If you can map yes-instances of problem A to yes-instances of

problem B, then

– we can solve A if we can solve B

– it doesn’t mean we can solve B if we can solve A

– the decidability of B implies the decidability of A

Properties of reduction

Theorem: Let L be a language over . LL.

Proof:

 Let L be a language over .

 Let f be an identity function from **.

 Then, there is a TM computing f.

 Because f is an identity function, wL  f(w)=wL.

 By the definition, LL.

Properties of reduction

Theorem: Let L1 and L2 be languages over .

 If L1L2, thenL1L2.

Proof:

 Let L1 and L2 be languages over .

 Because L1L2, there is a function f such that wL1 

f(w)L2, and a TM T computing f.

 wL1  f(w)L2.

 By the definition,L1L2.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Properties of reduction

Theorem: Let L1, L2 and L3 be languages over .

 If L1L2 and L2L3, then L1L3.

Proof:

 Let L1, L2 and L3 be languages over .

 There is a function f such that wL1  f(w)L2, and

a TM T1 computing f because L1L2.

 There is a function g such that wL2  g(w)L3, and

a TM T2 computing g because L2L3.

 wL1f(w)L2g(f(w))L3, and T1T2 computes

g(f(w)).

 By the definition, L1L3.

Using reduction to prove decidability

 Theorem: If L2 is recursive, and L1L2, then L1 is also recursive.

Proof:

Let L1 and L2 be languages over , L1L2, and L2 be recursive.

Because L2 is recursive, there is a TM T2 computing L2.

Because L1L2, there is a TM T1 computing a function f such that wL1 

f(w)L2.

Using reduction to prove decidability

Construct a TM T=T1T2. We show that T computes L1.

– If wL1, T1 in T computes f(w)L2 and T2 in T computes L2(f(w)),

which is 1.

– If wL1, T1 in T computes f(w) L2 and T2 in T computes L2(f(w)),

which is 0.

Thus, L1 is also recursive.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Using reduction to prove R.E
Theorem: If L2 is R.E., and L1L2, then L1 is also R.E.

Proof:

Let L1 and L2 be languages over , L1L2, and L2 be R.E.

Because L2 is R.E, there is a TM T2 accepting L2.

Because L1L2, there is a TM T1 computing a function f such that wL1 

f(w)L2.

Using reduction to prove R.E.

Construct a TM T=T1T2. We show that T accepts L1.

– If wL1, T1 in T computes f(w)L2 and T2 in T accepts f(w). Thus, T

accepts w.

– If wL1, T1 in T computes f(w)L2 and T2 in T does not accept (f(w)).

Thus, T does not accept w.

Thus, L1 is also R.E.

Using reduction to prove co-R.E.

Theorem: If L2 is co-R.E., and L1L2, then L1 is also co-R.E.

Proof:

Let L1 and L2 be languages over , L1L2, and L2 be co-R.E.

Because L2 is co-R.E,L2 is R.E.

Because L1L2,L1L2. Then,L1 is R.E.

Thus, L1 is co-R.E.

Theorem: If L2 is co-R.E., and L1L2, then L1 is also co-R.E.

Proof:

Let L1 and L2 be languages over , L1L2, and L2 be co-R.E.

Because L2 is co-R.E,L2 is R.E.

Because L1L2,L1L2. Then,L1 is R.E.

Thus, L1 is co-R.E.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Jaruloj Chongstitvatana 2301379 Decidability 51

Let L1L2.
If L1 is not recursive /

R.E. /
co-R.E.,

then L2 is not recursive /
R.E. /
co-R.E.

Another way to prove undecidability

To prove a language L is not recursive:

1. Guess where L is (not R.E. or not co-R.E.)

2. Choose another non-recursive language R which is of the

same type

3. Show R  L.

recursive co-R.E.R.E.

Neither R.E. nor co-R.E.

Guess if it’s rec., R.E., co-R.E., or neither

Given a TM T,

• does T get to state q on blank tape?

• does T accept ?

• does T output 1?

• does T accept everything?

• is L(T) finite?

Problem of accepting an empty string

• We will prove that the problem if a TM accepts an empty string is

undecidable.

• This problem is corresponding to the following language.

– Accept = {e(M)| M is a TM accepting }

• Thus, we will prove that Accept is not recursive.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Accept is not recursive.

Proof:

(Guess Accept is in R.E., but not co-R.E.)

• Show SA  Accept

(We want a Turing-computable f n f(<T>)=<M> such that

– T accepts e(T)  M accepts 

– T does not accept e(T)  M does not accept 

• Let f(T)=M is a TM that first writes e(T) after its input and then runs

T.

• M writes e(T) after its input. If its input is , T has e(T) as input.

Accept is not co–R.E.

Verify that T accepts e(T)  M accepts 

M writes e(T) and lets T run. If the input of M is :

• when T accepts e(T), M accepts .

• when T doesn’t accept e(T), then M doesn’t accept .

Accept is not co–R.E.

Next, we show that there is a TM TF computing f.

TF works as follows:

• changes the start state of T in e(T) to a new state

• add e(Write<T>), make its start state the start state of TF, and make

the transition from its halt state to T’s start state.

Then, SA  Accept.

Then,Accept is not co-R.E, and is not recursive.

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Halting problem

• Problem

– Given a Turing machine T and string z, does T halt on z?

– Given a program P and input z, does P halt on z?

• Language

– Halt = {w*| w=e(T)e(z) for a Turing machine T halting on

z}.

– Halt = {<T,z>| T is a Turing machine halting on z}.

Halting problem is undecidable

Proof:

Let Halt = {<T,z>| T is a Turing machine halting on z}.

(Guess Halt is in R.E., but not co-R.E.)

• Show SA  Halt

(We want a Turing-computable f n f(<T1>)=<T2 ,z> such that

– T1 accepts e(T1)  T2 halts on z

– T1 does not accept e(T1)  T2 does not halt on z

Then, a possible function is f(<T>) = <T, e(T)> because T accepts e(T)  T

halts on e(T).)

CS53 – THEORY OF COMPUTATION © Einstein College of Engineering

B.VIJAYAKUMAR B.E. M.Tech (PhD) ©EINSTEIN COLLEGE OF ENGINEERING

Some other undecidable problems

• FINITE

 Given a TM T, is L(T) finite?

Guess FINITE is neither R.E. nor co-R.E.

• To assure L(T) is finite, we need to run T on all possible input and

count if T accepts a finite number of strings.

• To assure L(T) is infinite, we need to run T on all possible input and

count if T accepts an infinite number of strings.

FINITE is not recursive FINITE is not recursive

Let FINITE={<T>| T is a TM such that L(T) is finite.}

Guess FINITE is neither R.E. nor co-R.E.

Choose NSA which is not co-R.E. to show that NSAFINITE.

We want to find a Turing-computable function f such that <T>NSA  f(<T>)=MFINITE

<T>NSA M accepts , and thus L(M) is finite.

<T>NSAM accepts *, and thus L(M) is infinite.
Then, let M=f(<T>) be a TM that runs T on its input, and accepts everything if T halts.

FINITE is not recursive

Now, we will show that <T>NSA  <M>FINITE

If <T>NSA, then T does not accept <T>. Then, M does not get to start AccAll. Thus, M accepts
nothing and L(M) is finite.

If <T>NSA, then T accepts <T>. Then, M gets pass T, and accept everything. Thus, M accepts

 Checklist
 Prove a language is recursive, R.E., or co-R.E.

 Prove closure properties of these classes of languages

 Prove properties of reduction

 Prove a language is not recursive, not R.E., or not co-R.E.

 prove a problem is decidable

 Prove a problem is undecidable

