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A star we perceive. The energy scheme deals with it, describes
the passing of radiation thence into the eye, the little light-
image of it formed at the bottom of the eye, the ensuing photo-
chemical action of the retina, the trains of action potentials
travelling along the nerve to the brain, the further electrical
disturbance in the brain, the action-potentials streaming thence
to the muscles of eye-balls and of the pupil, the contraction of
them sharpening under the light-image and placing the seeing
part of the retina under it. The ‘seeing’? That is where the
energy-scheme forsakes us. It tells us nothing of any ‘seeing’.
Much, but not that.

—Charles Scott Sherrington in Man on His Nature

How far even then mathematics will suffice to describe, and
physics to explain, the fabric of the body, no man can foresee.
It may be that all the laws of energy, and all the properties of
matter, and all the chemistry of all the colloids are as powerless
to explain the body as they are to comprehend the soul. For
my part, I think it is not so. Of how it is that the soul informs
the body, physical science teaches me nothing; and that living
matter influences and is influenced by mind is a mystery without
a clue. Consciousness is not explained to my comprehension by
all the nerve-paths and neurones of the physiologist; nor do I
ask of physics how goodness shines in one man’s face, and evil
betrays itself in another. But of the construction and growth
and working of the body, as of all else that is of the earth earthy,
physical science is, in my humble opinion, our only teacher and
guide.

—D’Arcy Wentworth Thompson in On Growth and Form
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Preface

Arguably the most intricate dynamic object in the universe, the human
brain is an unsounded source of wonder for the scientific community. The
primary aim of this book is to provide both students and established in-
vestigators in the growing area of neuroscience with an appreciation of
the roles that mathematics may play in helping to understand this enig-
matic organ. Along with discussions of results obtained by the neuroscience
community, emphasis is placed on suggesting fruitful research problems for
those planning to embark on mathematical studies in neuroscience.

To make the overall perspectives understandable to philosophers and
psychologists, essential features of the discussions are presented in ordinary
English, with more detailed mathematical comments in appendices and
footnotes. Although it attempts to maintain both clarity and biological
relevance, this is not a text on the anatomy of nerve systems; thus readers
should bring some knowledge of neurophysiology through other courses,
associated studies, or laboratory research.

It is a guiding theme throughout the book that the brain is organized
into several quite different levels of dynamic activity. As will be seen, these
levels are hierarchically structured, beginning with the molecular dynamics
of intrinsic membrane proteins and proceeding upward, through the switch-
ing properties of active membrane patches and synapses, the emergence of
impulses on active fibers, overall properties of individual neurons, and the
growth of functional assemblies of interacting neurons, to the global dy-
namics of a brain. At each level of description, reality turns different facets
of her mystery to us, and diverse phenomena make their contributions to
the brain’s collective behavior.
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My intention in presenting these ideas is to avoid overemphasizing
the importance of mathematics in neuroscience; thus, the limitations of
mathematical analysis—which should be of interest to both theoretical
neuroscientists and philosophers of the mind—are not ignored. Although
analysis for its own sake has a place in the broad spectrum of academic
activities, the neuroscientist need not jump through every hoop that some
applied mathematician or mathematical physicist has managed to master.
At each level of description, therefore, the reader will be introduced only to
those concepts and tools that seem helpful for understanding the behaviors
of real neurons or neural systems.

It will be seen in the course of this book that useful mathematical formu-
lations are quite different at chemical and biological levels of description.
Thus, the vibrations of individual proteins are governed by Newton’s laws
of motion, wherein energy is conserved and time can be reversed without
introducing qualitative changes. At the level of a nerve impulse, on the
other hand, laws of nonlinear diffusion guide relevant phenomena. As in
most realms of biology, the energy of an impulse is not conserved by its
dynamics, and time has a definite arrow, flowing—as we all come to know—
out of the past and toward the future. It is hoped that an appreciation of
these deep differences between molecular and neural levels of description
will prepare the reader for additional surprises that may appear at global
levels of the brain’s dynamics.

The first chapter provides an introduction relating current research to
the history of neuroscience over the past two centuries. Carried on in sub-
sequent chapters, such recognition of the early contributions is helpful, I
believe, both for obtaining a balanced view of present activities and to avoid
reinventing the wheel. Following this historical introduction, the chapters
are divided into two main parts.

Comprising Chapters 2 through 9, the first part deals with the dynamics
of individual neurons, considering the ways they converse with one another
via chemical synapses, gap junctions, and external current loops and show-
ing how intrinsic membrane proteins give nerve fibers an active character.
Starting with the properties of active membranes, the emergence of an im-
pulse is then described, noting its mathematical character as an attractor in
the dynamics of the nerve, thereby implying all-or-nothing behavior and a
threshold level for ignition. From these twin properties, the interactive dy-
namics of impulses at the branching regions of dendritic and axonal fibers
are suggested, which may provide bases for information processing within
individual neurons.

From an understandable eagerness to get on with the investigation of neu-
ral systems, the study of individual neurons has been somewhat neglected
by the neuroscience community. Yet much interesting research remains to
be done at the level of the nerve cell, some of which may eventually be
useful for comprehending the intricate dynamics of a brain.
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The remainder of the book (Chapters 10 through 12) presents various
mathematical formulations for the brain’s global dynamics. These theo-
ries are of two general classes. The first is characterized by the classical
stimulus–response concepts, which were popular among behavioral psy-
chologists in the middle of the twentieth century, and involve threads of
causal implication that flow directly from inputs to outputs. Although not
rich enough to model the behaviors of real brains, such theories are useful
for the design of computing machines that can learn to recognize patterns
and may describe brain activities in limited regions.

The second class of global brain theories invokes closed internal loops
of causality, significantly augmenting difficulties of analysis while allow-
ing a far more realistic spectrum of behaviors, including global nonlinear
dynamics, propagating waves of information, and attentiveness. From this
perspective, the brain is recognized as much more than a biological com-
puter that merely analyzes input data and presents logical conclusions to
some cognizant client. Among other differences with present day comput-
ers, a human brain operating within a human culture is an open system
from which new levels of functional abstraction may emerge when conve-
nient or necessary. While organizing itself in the context of experience, it
seems, the brain manages to become its own client.

Based as they are on vastly oversimplified models of individual neu-
rons, these various mathematical descriptions of neural systems can offer
only nebulous approximations to the behaviors of real brains. Nonetheless,
they provide conservative benchmarks from which to regard the intri-
cate problems faced by young researchers entering into the realms of
neuroscience.

In formulating the dynamics of neural systems, a central idea is Donald
Hebb’s classic concept of a cell assembly, according to which functionally
significant entities in the brain are not limited to individual neurons. From
Hebb’s perspective, a more significant level of the brain’s dynamics involves
emerging groups of cells acting in concert, thereby gaining robustness. As
with the nerve impulse, each cell assembly is an attractor in the dynamics
of the brain, again implying all-or-nothing and threshold behavior. From
these properties stems a fruitful hypothesis: the brain is organized into a
nonlinear hierarchy of neuronal assemblies with ever-increasing intricacy
upon ascending the scale.

To provide an overall survey of Hebb’s point of view, the first and last
chapters have been written to be read together as parts of a single essay. In
a second reading, Chapters 2, 3, 9, and 11 can be added to appreciate the
broad outlines of neural structures and cell assemblies. More mathematical
concepts are discussed in the remaining chapters, with technical details in
the appendices.

Broadly speaking, the book is intended as a guide to the directions
in which scientific research may be heading as we leave the “century of
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physics,” where relationships among causes and effects are largely sorted
out and move into the “century of biology,” where causes and effects are
densely interwoven and ontological puzzles abound. In the biological realms,
we must learn to deal with organisms—forms of matter having their own
agendas—a challenge that may require modifications in the practice of sci-
ence. Such ideas are, I believe, particularly important for appreciating the
course of future research in neuroscience, a key consideration for all entering
the field.

I hope that the perspectives presented here will provide useful guides
for those responding to the most exciting and formidable challenge facing
contemporary science: understanding the human mind.

Tucson, Arizona Alwyn Scott
2002
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1
A Short History of Neuroscience

Although attempts to understand the physical bases for mental processes go
back to the early Greek and Egyptian civilizations, modern electrophysiol-
ogy began with the late eighteenth-century investigations by Luigi Galvani
on the sciatic nerve–muscle preparation of the frog [8]. In 1791, this Italian
physician reported that the muscle would twitch when the nerve was stim-
ulated by a bimetallic contact and also by atmospheric electricity. Thus,
Galvani proposed three types of electricity—chemical, atmospheric, and
animal—with the latter being different from the two others, but his com-
patriot Alessandro Volta disagreed. In the attempt to show that Galvani’s
animal electricity was identical to that produced by bimetallic currents,
Volta invented the battery, thereby launching the science of electricity in
the historically convenient year of 1800. All of these early experiments were
carefully repeated by the German physicist Frederick von Humboldt, con-
firming both Volta’s view that the various forms of electricity are closely
related and Galvani’s observation that animal electricity has qualitatively
distinctive features. Let us consider these differences.

1.1 Dynamics of a Nerve Impulse

Perhaps the most singular property of animal electricity is its speed of prop-
agation along a nerve fiber, which in the first half of the nineteenth century
was believed to be extremely large. In 1850, experimental measurements of
the velocity of a nerve impulse were reported by young Hermann Helmholtz,
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who went on to become recognized as one of the great German physicists
of the nineteenth century. (Among other accomplishments, Helmholtz was
among the first to recognize the principle of energy conservation, about
which we will learn more in this book.)

Using Galvani’s classic frog preparation and Emil Du Bois-Reymond’s
newly invented ballistic galvanometer to observe intervals of time, Helm-
holtz measured impulse speed by carefully recording the instants at which
the muscle twitched for stimulations introduced at two different locations
along the attached nerve [23]. Dividing the difference in locations of stim-
ulation by the corresponding difference in twitching times, he obtained a
surprisingly low propagation speed of about 27 meters per second (m/s). In-
terestingly, this value is what thousands of electrophysiology students now
find each year using sophisticated electronic measuring equipment that did
not become available to neuroscientists until the middle of the twentieth
century.

But how, Helmholtz pondered, was this small velocity of propagation
explained? What is the underlying physical chemistry? Does some chemical
substance actually move? If so, what? Many orders of magnitude below
the speed at which electricity propagates through a copper wire or an ionic
solution, his empirical observation remained a puzzle throughout the second
half of the nineteenth century.

As it turns out, the nerve impulse is now known to be a wave of activity
quite similar to the flame of a candle or the burning of a dynamite fuse. In
such examples, the wave releases energy that is stored in an active medium,
and the released energy then feeds the dissipative (energy-consuming)
aspects of the process.

From this perspective, a wave of activity can be viewed as a coherent
process [56] represented by the diagram

Release of energy
↓ ↑

Dissipation of energy

with each component supporting (or “causing”) the other. Such phenomena
are examples of nonlinear diffusion in excitable media, and the preceding
diagram provides an illustration of positive feedback. In other words, the
nonlinear release of stored energy fuels the dissipative processes, and these
processes in turn release stored energy. From the feedback around this
closed causal loop emerges a new dynamic entity: the nerve impulse.

Of course, candles have been around for a long time, and their scientific
importance was emphasized in the 1850s by the brilliant English experimen-
tal physicist Michael Faraday in one of his annual “Christmas Lectures” on
selected aspects of natural philosophy for young people at London’s Royal
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Institution [16],1 but the scientific world is often slow on the uptake. How
then did the concept of nonlinear diffusion enter the realms of neuroscience?

At the dawn of the twentieth century, two key contributions to the under-
standing of nerve conduction appeared. The first of these was the membrane
theory for nerve cells, suggested by Julius Bernstein in 1902 [4]. According
to his hypothesis, the outer covering of a nerve cell is normally imperme-
able to ionic flow but becomes suddenly permeable during the passage of
an impulse. This idea would receive substantial confirmation during the
course of the century, leading to the analyses presented in Chapter 5 of
this book.

Shortly thereafter, the concept of nonlinear diffusion in an active medium
was introduced to the scientific community at the general meeting of the
German Society for Applied Physical Chemistry in 1906 [35]. At this meet-
ing, Robert Luther demonstrated a propagating chemical reaction, pointing
out that the wave of chemical activity travels at a velocity of about

v ∼
√

D/τ , (1.1)

where τ is the reaction time (seconds, s) for the energy releasing process
and D is the corresponding diffusion constant (in meters squared per sec-
ond, m2/s) for ions. Because both diffusion constants and reaction times can
vary widely for physical systems, such a wave of activity provides a credible
explanation for the modest speed of a nerve impulse. Strangely, although
Walther Nernst, the famed German physical chemist, was both present
at this meeting and clearly interested in Luther’s ideas, this prescient
contribution to physical chemistry was neglected for several decades.

Not overlooked by neuroscientists was the extensive work of English elec-
trophysiologist Edgar Douglas Adrian, who proposed the all-or-nothing
principle of nerve impulse conduction in 1914 at the age of 25 [1]. Af-
ter earning a medical degree, Adrian went on to pioneer the application of
the newly developed vacuum-tube amplifier to the study of nerve dynam-
ics, observing a refractory period of diminished excitability that follows the
passage of an impulse.

In 1936, the English marine biologist John Zachary (“J.Z.”) Young noted
that a large cylindrical structure in the common squid is in fact a nerve
[69], leading the American biophysicist Kenneth Cole to record the classic
oscilloscope photograph of a nerve impulse shown in Figure 1.1 [11]. Taken
in 1938, the continuous line in this image shows the dependence of the
impulse voltage on time, which is indicated by the black marks at the
bottom edge of the figure.2 Evidently, the impulse voltage rises rapidly to

1You can find an engraving of Faraday presenting a Christmas Lecture on a recent
British twenty-pound note.

2In those days, the displacement of the horizontal sweep was not linear in time; thus,
experimenters recorded the tips of a 1000 Hertz (Hz) oscillation, making the interval
between each mark equal to 1 ms.
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transmembrane voltage

membrane permeability

milliseconds

Figure 1.1. An early oscillogram of the change in membrane conductance (band)
and membrane voltage (line) with time during the passage of a nerve impulse on
a squid axon. (Time increases to the right, and the marks along the lower edge
indicate intervals of 1 ms.) (Courtesy of K.S. Cole.)

a maximum value of about 100 millivolts (mV) in a fraction of a millisecond
(ms), and this initial rise is called the wave front or leading edge of the nerve
impulse. The impulse voltage then relaxes more slowly back to its resting
level over a time interval of several milliseconds. The broad band also shown
in the figure is a measure of changes of membrane permeability (or ionic
conductance) from a resting value.3

Curiously overlooked by Western scientists was an important paper that
also appeared in 1938 by the Soviet scientists Yakov Zeldovich and David
Frank-Kamenetsky [71]. Addressing the problem of flame-front propaga-
tion, they proposed a simple nonlinear partial differential equation (PDE)
for nonlinear diffusion in an active medium in which the independent vari-
ables were time and distance in the direction of propagation. In this paper,
the authors solved their nonlinear PDE for an analytic solution describing
a stable traveling wave: the flame front.

As we will see in Chapter 5, this simple equation also predicts both the
speed of a nerve impulse on a squid axon and the shape of its leading
edge. If these results had been noted by applied mathematicians and be-

3To measure ionic conductance, an ac bridge was balanced at the resting level of
membrane permeability; thus, the width of the band indicates unbalance of the bridge,
which stems from the change of permeability during the impulse.
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come known to the community of electrophysiologists in the mid-1930s,
the collective understanding of nerve impulse dynamics would have been
greatly accelerated. Of course, that was a difficult decade for all segments
of Russian society, but the almost total neglect of such a key paper is also
evidence of a distressing lack of communication among nonlinear scientists,
a problem that would continue until well into the 1970s [56].

The next major event in the history of the dynamics of single nerve
fibers occurred in 1952 with the publication by English electrophysiolo-
gists Alan Hodgkin and Andrew Huxley of a series of papers culminating
in their classic “A quantitative description of membrane current and its
application to conduction and excitation in nerve” [25]. Taking advantage
of wartime developments in electronics, they made careful measurements
of individual ionic currents flowing across the membrane of a squid nerve.
From these data, they developed a detailed nonlinear partial differential
equation describing both the time course of membrane permeability and
the nonlinear diffusion of transmembrane voltage along the nerve. Using
this formulation—and a feat of numerical analysis that was truly impres-
sive before the digital computer became available—Hodgkin and Huxley
were able to reproduce many details of Figure 1.1, including the impulse
speed of about 20 m/s, and to predict several other aspects of nerve impulse
behavior, including Adrian’s all-or-nothing response and the post-impulse
refractory period.

In the same year that the H–H work appeared, surprisingly, the English
mathematician Alan Turing proposed nonlinear diffusion as a theoretical
basis for the appearance of patterns (now called “Turing patterns”) in the
embryonic development of living organisms, suggesting examples of biolog-
ical emergence to which the theory might apply [62]. Although Turing’s
speculations and the Hodgkin–Huxley results were outstanding examples
of research in applied mathematics, members of that community took little
note of this seminal work until the early 1970s, when nonlinear diffusion
in an active medium finally became recognized as an interesting and im-
portant form of nonlinear wave propagation [56]. Engineers, on the other
hand, were involved in the development of a neuristor, or electronic analog
of the active nerve fiber, during the 1960s as a novel basis for computer
design. This effort led to a fruitful collaboration between the American neu-
roscientist Richard FitzHugh and the Japanese computer engineer Jin-ichi
Nagumo, resulting in a simpler nerve model based on a nonlinear partial
differential equation that bears their names [17, 41].

In contrast to the five dynamic variables of the H–H formulation, the
FitzHugh–Nagumo model represents a nerve impulse with only three vari-
ables: transmembrane voltage, axial ionic current, and a recovery variable.
Thus, traveling wave solutions are easier to visualize as trajectories in what
mathematicians call a phase space. Aided by this conceptual simplification
and the steady growth of available computing power, applied mathemati-
cians finally began to explore the F–N model as a means for understanding



6 1. A Short History of Neuroscience

sq
ui

d 
gi

an
t a

xo
n

0.1 mm

sc
ia

tic
 n

er
ve

 b
un

dl
e

Figure 1.2. Comparison of the squid giant axon (left) and the sciatic nerve bundle
controlling the leg muscle of a rabbit (right). There are about 375 myelinated
fibers in the rabbit nerve, each conducting an individual train of nerve impulses
at up to 80 m/s, about four times faster than the impulse velocity on a squid
nerve. (Data from Young [70].)

the qualitative nature of nerve impulse propagation. Continuing throughout
the 1970s, this tardy yet essential effort has deepened our understanding
of several key phenomena, including all-or-nothing propagation, threshold
conditions for nerve impulse formation, impulse stability, impulse response
to variations in fiber geometry, decremental conduction, speed of periodic
impulse trains, and effects of temperature and narcotization, all of which
are considered in this book.

Presently, the propagation of a nerve impulse on a smooth fiber is a
well-understood area of mathematical biology, the salient features of which
should be appreciated by all serious students of neuroscience.

Interestingly, the sciatic nerve—first studied by Galvani in the late
eighteenth century and used as a basic preparation for much subsequent
neuroscience research—is not a smooth fiber; in fact, it is not even a single
fiber. Like all vertebrate motor nerves, the sciatic nerve is a bundle of in-
dividual fibers, each carrying a different train of impulses from the spinal
cord to a muscle, as was emphasized in a classic image prepared by J.Z.
Young from which Figure 1.2 is drawn.

In this figure, we see a squid nerve compared with a rabbit sciatic nerve
bundle on the same scale of distance showing that the rabbit nerve has
about 375 information channels to one for the squid nerve. Because rabbit
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fibers also carry impulses up to about four times more rapidly than squid
giant axons, the capacity of the rabbit nerve to transmit information is
some three orders of magnitude greater than that of the squid nerve for
the same area of cross section. How does a myelinated nerve achieve such
impressive performance?

Each sciatic nerve fiber is covered almost everywhere by a fatty insulating
sheath (called myelin), thus allowing only rather widely spaced active nodes
of membrane to switch (see Figure 7.1). In such a myelinated nerve struc-
ture, the wave of activity does not progress uniformly along the fibers but
jumps from one active node to the next, rather like a falling row of domi-
nos. This process of “saltatory conduction”4 shares the above-mentioned
features of smooth fibers (e.g., all-or-nothing propagation, threshold, refrac-
tory period) while introducing new wrinkles. One of these is the unfortunate
phenomenon of failure, wherein an impulse arriving at one active node is
unable to ignite its neighbor.

Although also characterized by a closed causal loop (feedback loop) of
the sort

Release of energy
↓ ↑

Dissipation of energy

the speed of saltatory impulse propagation is given by an expression of the
form

v ∼ s/τ , (1.2)

where s is the distance (in meters) between active nodes and τ is the time
(seconds) required for the node to respond to a signal from an adjacent
node.

Instead of being modeled by a nonlinear partial differential equation
(like the squid fiber), a myelinated fiber is described by a set of nonlinear
difference-differential equations (DDEs). In this formulation, time remains
as an independent variable but the space variable is replaced by an integer
that counts active nodes along the fiber.

Notwithstanding the problem of impulse failure, the myelinated nerve
structure has two functional advantages, which may explain its evolutionary
development. The first of these is that the speed of impulse propagation
can be raised by increasing the distance between active nodes. This feature
permits the fiber diameter to be reduced without decreasing the impulse
velocity, as shown in Figure 1.2. The second advantage of a myelinated fiber
is that the amount of energy expended in the passage of a nerve impulse is
much less than is required for a smooth fiber, an important consideration
for living organisms.

4Coined by Lillie, the term “saltatory” stems from the Italian verb saltare, meaning
“to jump” [32].
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First studied in detail in the late 1940s [54], the nonlinear dynamics
of myelinated nerves have been investigated by a variety of physical and
biological scientists throughout the ensuing half century [26, 12, 60] and
it is currently an area of interest in applied mathematics. Because myeli-
nated nerves are found in many biological organisms and several aspects of
saltatory conduction are not yet well-understood, some of the outstanding
research problems and opportunities are sketched in this book.

1.2 The Structure of a Nerve Cell

Based on evidence accumulated by the esteemed Spanish physiologist San-
tiago Ramón y Cajal that nerve cells are independent biological elements,
the word neuron came into use during the 1890s [50]. Among other abil-
ities, independent biological cells need means for communicating among
themselves; thus, the term synapse was coined by the English physiologist
Charles Scott Sherrington for a channel of interaction or communication
between two different neurons. The concept of a neuron is now an essential
part of our language, but what does it imply?

From the computer-oriented perspectives of today, a neuron is often de-
scribed as a simple processor of information, gathering a linear sum of
incoming signals from the synapses on the dendritic trees, comparing this
sum with a threshold, and sending corresponding outgoing signals through
the branches of the axonal tree (which may be either smooth or myelinated,
as described earlier) to influence the behaviors of other neurons or muscle
cells. This view is shared by many students of the human brain, raising
several questions.

First, do dendritic trees merely gather a linear weighted sum of the in-
coming signals for presentation to the outgoing axon? If so, the causal
implications of the collective input are more readily sorted out, but the
behavior of a real neuron may not be so simple. Might not some sort
of information processing be implied by the intricate dendritic branching
structures?

Second, what happens to the transmitted information as it passes down
the main axon? Does this information arrive unmodified at all of the distant
(or distal) tips of the axonal tree? Or does information processing also occur
at branching regions of the axonal tree?

Third, how about the synapses? What are the details of their dynamics?
Might they alter their behaviors, providing a basis for memory? Could there
also be electrostatic interactions or direct ionic couplings among neurons?

Finally, it is necessary to consider what is implied by “information” in
the context of a neural system. Does the term merely indicate the memory
capacity that a computer engineer would require to store the transmitted
signal? Should not the meanings of the messages to other components of
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the organism be taken into consideration? If so, where are such meanings to
be found and how are they to be described? In other words, what language
does the neuron speak, and at what level of description is it represented?

An early attempt to answer such questions was published in 1943 by
Warren McCulloch—an American psychiatrist who went on to play a
leading role in theoretical studies of brain dynamics—and a young math-
ematician named Walter Pitts. Entitled “A logical calculus of the ideas
immanent in nervous activity,” this important paper proposed a specific
model for the dynamics of a neuron that has become widely known as the
McCulloch–Pitts (M–P) neuron [37].

In this model, the following assumptions are made. (1) Dendritic trees
are assumed to gather a linear weighted sum of the input signals. (2) This
sum is compared with a threshold level at the initial segment of the outgoing
axon (see Figure 2.1). (3) If the weighted sum of inputs is greater than this
threshold, an outgoing signal is launched on the main trunk of the axonal
tree. (4) After a certain time delay, any impulse appearing on the main
trunk of the axonal tree is transmitted without failure to all of the distal
twigs of this tree. Thus, the only nonlinear feature of the M–P model is a
single switch, which is assumed to act at the initial segment of the axonal
tree.

Because this M–P neuron is among the simplest models that could be
proposed, it has provided a basis for many computer studies of neural
systems since the early 1960s. As computer power has grown over the past
four decades—doubling every eighteen months, we are told—these studies
have become ever more sophisticated, but increasing computer power has
had other implications for neural modeling.

As noted previously, the detailed Hodgkin–Huxley description of nerve
impulse conduction along the giant axon (or outgoing fiber) of a neuron in
the stellate ganglion of the common squid also became available in the early
1950s. Based on independent measurements of parameters characterizing
an isolated patch of active membrane, the H–H theory accurately predicts
both the speed and the shape of a nerve impulse along with several other
aspects of neural behavior. In the context of the Hodgkin–Huxley theory,
therefore, each patch of active membrane on a neuron may function like
a switch, suggesting far more intricate behavior than is supposed for the
McCulloch–Pitts model.

With the growth of available computing power, H–H modeling was
extended beyond the confines of a single fiber to provide increasingly so-
phisticated descriptions of an entire neuron. Thus, two divergent lines of
neuroscience research developed, both of which were driven by the in-
creasing numerical capability that the researchers had at their disposal:
M–P-based models of so-called “neural networks” and improved models of
individual neurons based on the H–H description of a nerve membrane.
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By the early 1970s, advances in electron micrography and electrophys-
iology made it evident to some that the dynamics of real neurons are far
more complex than the McCulloch–Pitts model implies. Thus, in 1972,
U.S. neurologist Steven Waxman proposed the concept of a “multiplex neu-
ron” in which patches of membrane near the branching regions of incoming
(dendritic) and outgoing (axonal) processes of the neuron are viewed as
localities of low safety factor, where propagating nerve impulses can be-
come enhanced or extinguished depending on the presence or absence of
other impulses [63]. In other words, an individual neuron might be able to
perform logical computations at the branching regions of its axonal and
dendritic trees, making it more like an integrated circuit chip than a single
switch.

As reasonable as it seemed to some at the time [55], this expanded view of
the neuron’s computational power was far from being universally accepted.
Jerry Lettvin, a noted electrophysiologist in the Electrical and Computer
Engineering Department at MIT, told me (in the spring of 1978) that
when he and his colleagues reported blockages of nerve impulses in the op-
tic nerves of cats and speculated on the possibilities of this phenomenon
for visual information processing [10], his funding (from the National In-
stitutes of Health) was cut off. “When you start doing science again,” he
was informed, “we are ready to resume your support.”

Why were suggestions of neuronal intricacy so widely ignored in the
1970s? Although one can only speculate, three possibilities come to mind.

(1) Admitting to increased computational power of the individual neuron
compounds the already daunting task of analyzing systems of neurons.

(2) Much of the early research on increased computing power of individ-
ual neurons was being done in the former Soviet Union [29], and Western
scientists—particularly those in the United States—tended to ignore or
disparage the fruits of Russian science.

(3) A widespread and uncritical belief in the concept of “all-or-nothing”
propagation left ignored the possibility of impulse failure at branching
regions of axonal or dendritic trees.

An encouraging feature of science, however, is that the truth does eventu-
ally become recognized. Like old soldiers, pillars of the establishment “fade
away” as evidence for a new paradigm gathers. What was once considered
flagrant speculation becomes established knowledge, and so it was with our
collective perceptions of the dynamic intricacy of a neuron. Since the end
of the 1980s, the experimental evidence for the impressive computational
power of individual neurons has become compelling, and former heresy is
now recognized as common sense [3, 30, 59].

In the following chapter, we will see one of the features contributing to
the intricacy of a neuron: its dynamics operate at several levels, includ-
ing those of intrinsic proteins embedded in the active membranes, complex
behavior of individual synapses, nonlinear waves of activity propagating
on smooth or myelinated fibers, impulse failure or enhancement near the
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branching regions of dendritic and axonal trees, and the global function-
ing of the neuron. In subsequent chapters, understanding the behavior of
multilevel nonlinear dynamic hierarchies is recognized as a central issue for
both mathematical biology and cognitive science.

1.3 Organization of the Brain

Just as there are distinctly different levels of dynamic activity in an indi-
vidual neuron, the brain itself is organized into several diverse regions with
responsibilities for various aspects of behavior. Although our collective un-
derstanding of this organization is far from complete, it has advanced well
beyond that of Aristotle, who believed that the heart is the seat of hu-
man intelligence, and of René Descartes, who proposed in the seventeenth
century that the mind was controlled by the pineal gland.

Indeed, much of the above-noted flood of nineteenth-century research in
neuroscience was devoted to establishing where the various functions of the
brain are located. Notable among these many activities were the discovery
by Marie-Jean-Pierre Flourens in 1823 that the cerebellum regulates motor
activity, a demonstration by Bartolomeo Panizza in 1855 that the occipital
(optic) lobe of the neocortex (or outer layer of the brain) is essential for
vision, and Paul Broca’s 1861 observation that the left temporal lobe of
the neocortex controls our ability to speak. Among others, the results of
these efforts contributed to Sherrington’s classic The Integrative Action of
the Nervous System, which contains an early suggestion that neurons act
in functional groups rather than as individual units [57].

Where a component of the brain’s activity is located is one question, but
how it is organized is quite another. What are its principles of design? How
do the ten thousand million or more neurons of the brain conspire to guide
the behavior of a normal human being?

Such questions were addressed by McCulloch and Pitts in their seminal
1943 paper [37]. In a search for answers, these authors distinguished be-
tween two different sorts of neural organization that remain relevant to the
present day. The first of their design principles was quaintly termed “nets
without circles,” implying that no closed loops of causal implication (or
feedback loops) were allowed to be embedded within the system. Under this
principle, information flows uniformly in one direction from input to out-
put terminals. The second design principle was called “nets with circles,” a
strategy that takes advantage of closed causal loops situated between sen-
sory inputs and muscular output, which had recently been announced by
Rafael Lorente de Nó [33, 34], the last and most brilliant student of Ramón
y Cajal.

Interestingly, these observations go back to the mid-1920s but were
strongly opposed by Cajal. Cajal urged Lorente not to publish a manuscript
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describing closed loops of neural activity in the neocortex because such
ideas were unacceptable to the neuroscience community and their dis-
semination would harm Lorente’s career. Out of respect for his mentor,
therefore, Lorente delayed publication until after Cajal died in 1934 [19].
Why, one asks in retrospect, was the neuroscience community so hesitant
to entertain the concept of closed causal loops? Was it that this assumption
makes the dynamics of a brain too complicated to understand?

Whatever the answers, the assumption of nets without circles greatly
simplifies mathematical analysis and is in accord with the strong stimulus–
response bias of behaviorism, which vitiated North American psychology
in the middle of the twentieth century. Following these lines, American
psychologist Frank Rosenblatt proposed the perceptron in 1958 as a “model
for information storage and organization in the brain” [53].

Based on McCulloch–Pitts neurons, the perceptron was conceived as a
layered structure in which each layer of model neurons receives inputs from
the adjacent layer on one side, performs logical computations, and passes
on the results of those computations to the adjacent layer on the other
side. Allowing the input (or “dendritic”) weightings of the model neurons
to be appropriately modified during a learning phase gives the system an
ability to classify patterns that grows with experience. In such systems, the
input patterns might be two-dimensional images impressed on a first layer
(sometimes called the “retina”), and the output layer could be a digital
code classifying various patterns into desired categories such as letters of
the alphabet [6, 44].

Although it has been shown that perceptrons can automatically learn to
classify incoming patterns, these abilities are limited in several ways [40].
First, the maximum number of patterns recognized can be no more than the
number of neural elements from which the system is constructed—an in-
convenient restriction in some applications. Second, translations, rotations,
and scalings of a learned pattern are perceived as new patterns. Finally, it
is difficult for the perceptron to detect patterns that are embedded within
other patterns—so-called “patterns in context”—a recognition feat that is
rather easily performed by humans.

In the mid-1980s, American physicist Erich Harth and his colleagues
showed how the problem of detecting a pattern in context could be solved by
allowing internal feedback loops of information processing to form around
many different dynamic levels of a neural system. This is the so-called “cre-
ative loop,” which links the highest and lowest levels of cerebral dynamics
[21]. Thus the principle of nets with circles is now recognized as an essential
aspect of any realistic model of the brain’s organization. What does this
broader design strategy imply?

We have used closed loops of causal implication in representing the pro-
cess of nonlinear diffusion through an active medium, which governs the
propagation of a nerve impulse along the axon of a neuron. Similarly, a net
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with circles has an internal structure that may be described by a diagram
of the following form.

Information at A
↓ ↑

Information at B

Such a diagram suggests that a new internal pattern (A together with B)
emerges as a result of the internal feedback loop.

Thus an understanding of feedback is of central significance in describ-
ing the behavior of biological organisms, as was recognized and widely
promoted by the American mathematician Norbert Wiener in the 1950s
[65]. Defining the new research area of cybernetics as the “science of com-
munication and control in man and the machine,” he emphasized the vital
role played by feedback in cognitive systems, but such phenomena may be
even more important than Wiener realized. To see this, note that there are
two sorts of feedback—positive and negative—both artfully employed in
biology, albeit in different ways.

Negative Feedback
A simple example of negative feedback, with which all of us are familiar, is
the temperature control on the living room wall. If the room gets too cold,
a switch is thrown and turns the furnace on. When the room becomes too
warm, the switch relaxes and the heat turns off. By this means, the temper-
ature of the living room is automatically maintained within an acceptable
range.

Thus, a control system that is based on negative feedback comprises two
basic elements: a sensor, which detects the value of some variable (temper-
ature), and a means for comparing that value with what the system desires
(a temperature of about 68o F). Going back to James Watt’s eighteenth-
century invention of a governor for controlling the speed of his steam engine,
this negative feedback principle has long been used in engineering design,
but it was put on a sound mathematical basis in the late 1920s in the
context of electronic amplifier design.

In the realms of biology, several examples of negative feedback are readily
noted.

(1) On hot days, we perspire, and the resulting evaporation cools our
body. Conversely, if we are cold, we begin to shiver, and the energy
expended in this activity warms our skin.

(2) In bright sunlight—relaxing with a book on a sandy beach at high
noon, for example—the irises of our eyes contract, thereby reducing our
retinal light intensities. In a dimly lit room, on the other hand, these same
irises open wide, allowing more light to enter.

(3) When we need food, the discomfort of hunger encourages us to eat.
Having eaten enough, as all know, satiety bids us to stop.
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In each of these examples, the effect of negative feedback is to manage (or
control) the internal influences of external variables. The cybernetic system
or biological organism has certain internal requirements stemming from its
wants and needs, and the effect of negative feedback is to prevent external
variables (temperature, light intensity, rate of energy consumption, and so
on) from pushing the internal variables beyond acceptable bounds.

Positive Feedback
It is easy to confuse positive and negative feedback because both involve
closed causal loops of energy or information and are achieved through
similar mechanisms, but the two processes are very different.5 Let us
pause, therefore, in our historical survey of neuroscience to get a clear
understanding of positive feedback.

In its simpler manifestations, positive feedback does not seem to be a
useful mechanism. Consider, for example, a furnace control on the living
room wall that an incompetent heating engineer has designed to display
positive rather than negative feedback. Thus, if the furnace is off and the
room gets too warm, a positive feedback control turns the furnace on. If,
on the other hand, the furnace is on and the room gets too cold, positive
feedback turns the furnace off. Clearly, this is not a very satisfactory way
to regulate the temperature of a house, and an engineer who arranges the
temperature control to operate in such a manner will soon be looking for
another line of work.

Whereas a system with negative feedback is essentially stable, a positive
feedback system is unstable. With positive feedback, small deviations from
a stationary state are amplified around the closed causal loop, leading to
ever larger displacements. Is this ever a useful arrangement?

Think about the conditions on Earth some four thousand million years
ago. The Hadean oceans boiled and bubbled like an enormous witches brew,
stirred by flashes of lightning under a rain of meteors that spiced the chem-
ical soup. In the midst of this chemical turmoil—evolutionary biologists
tell us—certain molecules organized themselves in a manner that allowed
reproduction and life began. Like our hypothetical positive feedback “con-
trol” of the living room temperature, this was a very unstable situation.
As these protobiological molecules appeared in increasing numbers, they
grew at increasing rates because there were ever more molecules available
to reproduce themselves. Although an illustration of instability stemming
from positive feedback, most would regard this example favorably because
we would not exist had life on Earth not managed to get started. How then
can the related dynamics be described?

5Indeed, some use the term “reentry” for positive feedback in neural systems,
reserving the term “feedback” for what I term “negative feedback” [15].
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If the number of protobiological molecules at a particular time t is in-
dicated by N(t) and the rate at which this number of molecules increases
with time is dN/dt, a corresponding positive feedback diagram looks like
this:

Number of molecules (N)
↓ ↑

Rate of increase of number (dN/dt)

This diagram implies that the rate of increase of the biological molecules
is proportional to the number of such molecules that are present.

Another way to describe this situation is with the differential equation
dN/dt = αN , where α is a constant of proportionality relating the number
of molecules and the rate at which this number is increasing with time.
This equation has the exponentially growing solution N(t) = N(0)eαt,
with N(0) indicating the number of protobiological molecules that were
present at some initial value of time (t = 0).

The solution of this simple linear differential equation implies that the
number of protobiological molecules will go on increasing without limit, but
this is unrealistic. The number of atoms available to form such molecules is
necessarily finite, so the ultimate number of molecules is eventually limited
by nonlinear effects.

Such a “limit to growth” can be represented by the logistic or Verhulst
equation6

dN

dt
= αN(1 − N/N0) . (1.3)

This equation implies that the rate of population increase dN/dt eventually
falls to zero when the population N(t) reaches a limiting value of N0, which
is related to the available supply of energy.

A solution for the Verhulst equation that equals N(0) at t = 0 and
approaches N0 as t → ∞ turns out to be

N(t) =
N0N(0)eαt

N0 + N(0)(eαt − 1)
, (1.4)

and this solution is displayed in Figure 1.3. From this figure, we see that
population levels converge toward the steady value of N0 with increasing
time. Thus N0 is called an attractor in the jargon of nonlinear dynamics.

At this point, the reader may be wondering what these discussions of
early biology and European population dynamics have to do with the his-

6Equation (1.3) is named for Belgian mathematician Pierre Francois Verhulst (1804–
1849), who derived it in 1846 to describe the growth dynamics of biological populations.
He used Equation (1.4) to predict that the upper limit to the population of Belgium
would turn out to be 9,400,000. Interestingly, the 1994 population of Belgium was
10,118,000.
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Figure 1.3. Verhulst functions plotted from Equation (1.4), showing the time
course of a population N(t) for different initial values N(0). (In these plots,
α = 0.1 and N0 = 1.)

tory of neuroscience. Why are we wrestling with differential equations and
worrying about numbers of organisms? The answer is that the concept of
positive feedback is very general, applying to many aspects of neuroscience.

One such application is a description of dynamic events on a nerve fiber
when threshold conditions for the ignition of a nerve impulse have been
satisfied. To understand these dynamics, think of a candle when the wick
has just barely been lit and the fully developed flame has not yet developed.
Because the flame is small, its rate of energy loss (dissipation) through
the emission of heat and light is less than the rate of energy input from
the paraffin; thus the flame grows. As the flame becomes larger, its rate
of dissipation increases, eventually coming into balance with the rate at
which energy is released from the candle. When this balance is established,
a candle flame—like the present population of Belgium—reaches a stable
size, neither waxing nor waning.

A similar phenomenon occurs when a nerve fiber is stimulated just above
the threshold level at which it ignites. The transmembrane voltage contin-
ues to grow until it reaches that of the full impulse—shown for a squid
nerve in Figure 1.1—for which energy is released by the impulse at the
same rate that it is being consumed. Where else in neuroscience might the
dynamics of positive feedback appear?

Toward the end of the nineteenth century, the U.S. psychologist William
James suggested that positive feedback loops incorporating facial muscles
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might be implicated in the phenomenon of emotion [28], but few of his
contemporaries picked up on the idea. Inspired by Lorente de Nó’s obser-
vations of closed causal loops in the neocortex [33, 34], however, Canadian
psychologist Donald Hebb in 1949 published a book entitled Organization
of Behavior, which is among the most significant contributions to neu-
roscience of the twentieth century [22]. Aiming to “bridge the long gap
between the facts of neurology and those of psychology,” Hebb proposed
that the functional entities in the dynamics of a brain are not confined
to individual neurons but include interconnected and interacting groups of
neurons. These he called cell assemblies, defined as follows.

Any frequently repeated, particular stimulation will lead to the
slow development of a “cell-assembly,” a diffuse structure com-
prising cells . . . capable of acting briefly as a closed system,
delivering facilitation to other such systems and usually having
a specific motor facilitation. A series of such events constitutes
a “phase sequence”—the thought process. Each assembly may
be aroused by a preceding assembly, by a sensory event, or—
normally—by both. The central facilitation from one of these
activities on the next is the prototype of “attention.”

To get in mind what Hebb implied by the term “cell assembly,” let us turn
to a social metaphor. Compare the human brain to a community in which
the individual neurons are represented by its citizens. In this metaphor
(which is a useful hypothesis in ethnology), the functional realities are
not limited to individual citizens but may include groups of people acting
together in the pursuit of common goals, with each group termed a “social
assembly.” A particular individual might be a member of several social
assemblies, such as a motorcycle club, a political association, a soccer team,
a church, a labor union, a bowling league, a theater group, the parent-
teacher’s association, a mountaineering club, a weight-watching group, bird
watchers, the junior league, and so on.

What is it that allows these various groupings to act as function real-
ities? The members of a particular assembly know each other and share
common lists of addresses and telephone numbers, allowing an organiza-
tion to activate its own members—or even the members of like-minded
assemblies—should an appropriate occasion arise. The various activities
and interactions of such groups, one can argue, comprise the dynam-
ics of the community; thus, one must understand their structures and
the relationships among them in order to read a daily newspaper with
comprehension.

The memberships of like-minded social assemblies are interconnected be-
cause each has a few overlapping participants. Thus, for example, members
of the mountaineering club might join with the hikers and the bird watch-
ers to encourage farmers to resist the development of a tacky theme park
near their fields. Or the parents in a school might enlist the support of
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teachers and the police department to reduce the number of firearms avail-
able to children. Just as a particular individual could be both a farmer
and a birder, a single nerve cell, in the context of Hebb’s cell-assembly
theory, would be able to participate in several different neural assemblies
of the brain, an observation that greatly increases estimates of how many
assemblies there can be.

In Hebb’s picture, as noted earlier, the primary functional entities of the
brain are assemblies of nerve cells rather than the individual neurons out
of which assemblies emerge. Defined by its interconnections, a particular
cell assembly forms a sort of “three-dimensional fishnet” involving perhaps
hundreds or thousands of neurons extending over much of the brain and
linking visual, auditory, and conceptual aspects of a particular perception.
Like a candle or an individual neuron, an assembly of neurons “ignites”
when a sufficient number of its constituent neurons become active. In the
jargon of nonlinear dynamics, each neuronal assembly is also an attrac-
tor, displaying the interrelated properties of threshold and all-or-nothing
response that characterize individual neurons.

Upon ignition, the activity level of a cell assembly—like the flame of a
candle or the impulse on a nerve fiber—will begin to grow exponentially
through the action of positive feedback. Eventually, this growth of activity
will become limited by the maximum rate at which its constituent neurons
can fire, and a constant level will be established, as is suggested by the
growth curves in Figure 1.3.

Thus, we see that the process of initial exponential growth followed by
ultimate limitation to a stable amplitude—which was used by Verhulst
to predict the course of population dynamics in his native Belgium—has
a very wide range of applications. With this metaphor, we have at hand
a qualitative and potentially quantitative model for the relevant dynamics
whenever something new emerges: the flame of a candle or a nerve impulse,
life on Earth or a new biological species, a city, or a song.

Over the half century since Hebb’s work first appeared, several related
contributions to the theory of brain dynamics in “nets with circles” have
been presented, including matrix representations of neural interconnec-
tions [9], statistical models [2, 13], wave analyses [5, 46, 66], and studies
based on “attractor theory” stemming from phase-space analysis of nonlin-
ear systems [27], all of which are discussed in subsequent chapters. Thus,
theoretical perspectives have continued to expand as the corresponding
experimental knowledge about real neurons and brains has accrued.

With respect to Hebb’s cell-assembly theory, there have been some com-
puter simulations [18, 51, 52, 58, 64], psychological experiments [24, 49, 61],
and theoretical extensions of the basic ideas [7, 20, 31, 39, 47, 48], and Edel-
man has used the assembly concept as a basis for his “neural Darwinism”
[15], but all of these supporting data are indirect. Is there clear experimen-
tal evidence for a cell assembly? Will electrophysiologists ever be able to
show that a small and widely dispersed fraction of the brain’s neurons are
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acting as a functional unit? Until a few years ago, I would have supposed
this goal to lie beyond the reach of feasibility.

Although it is challenging—to say the least—to obtain recordings from a
significant fraction of the neurons in one of Hebb’s three-dimensional fish-
nets, some progress is being made. On simpler species, it is now possible to
introduce voltage-sensitive dyes into the neurons and record the dynamics
of their global activity on arrays of silicon photodiodes. In this manner, the
simultaneous activity of several hundred neurons in the abdominal ganglion
of a mollusk (Aplysia) has been indirectly observed [68].

As an example of direct voltage measurements, neuroscientists at the
University of Arizona are now routinely recording from several dozen ex-
tracellular electrodes in the hippocampus of the rat, with each electrode
indicating the activity of several neurons for a total of 100 or more individ-
ual signals [67]. Interestingly, these multiple recordings can be made while
the animal is undergoing psychological testing, and several other labora-
tories are reporting equally impressive feats [14, 38, 43]. Among the more
sophisticated of such devices is the Utah electrode array (UEA), which com-
prises 100 external electrodes mounted in an area of one square millimeter
[36, 45].

Studies of dynamic similarities (called correlations) among the individual
recordings in these multielectrode experiments are beginning to provide
direct empirical evidence for the reality of cell assemblies, leading some to
anticipate that Hebb’s paradigm will become an established feature of the
neuroscience landscape in the next few years [42]. In Chapter 11, we review
these developments.

Because most presently available theoretical work on brain dynamics is
based on single-switch (essentially McCulloch–Pitts) models of the indi-
vidual neurons, the real brain is expected to be far more intricate than
current formulations suggest. Nonetheless, it is important for mathemati-
cally oriented neuroscientists to become familiar with these various theories,
because they provide baselines for future representations of the brain’s
dynamics.
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2
Structure of a Neuron

If the human brain is likened to a jungle—and many experimental neu-
roscientists would find the metaphor apt—the neurons are its flora. Some
are large trees; others are small plants. Some are vines, extending their
influence over long distances; yet others are more like shrubs, dominating
local regions. So it is with many sorts of nerve cells. In the presence of such
variability, one wonders what can be said in general about the nature of a
neuron.

Expanding on the brief introduction to neurons in the previous chapter,
the aim here is to provide a trail guide through the first part of this book,
wherein various aspects of neural structure are considered in greater detail.
To this end, some basic facts about nerve cells are presented and a few
useful formulations are introduced.

2.1 A Generic Neuron

As a basis for organizing Chapters 3 through 9, a cartoon of a neuron
is sketched in Figure 2.1, suggesting some of the roles played by various
components of these busy cells as they gather and process incoming in-
formation for presentation to their output terminals. While regarding this
figure, the reader should note how the intricate dynamics of a nerve cell
become hierarchically organized into a functional unit.

Among the salient features of typical neurons are the following.
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dendritic trees
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Figure 2.1. A cartoon of a typical nerve cell, or neuron, showing dendrites that
gather incoming information from input synapses and an axon carrying outgoing
signals through the branches of the axonal tree to other neurons or muscles.

• Axons: The axon, or outgoing channel of a neuron carries information
away from the cell body and toward the output terminals. As indicated
in Figure 1.2 of the previous chapter, an axon may be a relatively large
fiber, such as the squid giant axon, or one of the many smaller fibers
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of a nerve bundle. Squid axons are uniform structures modeled by
nonlinear partial differential equations (PDEs), and their dynamics
are described in Chapters 4 through 6. Motor nerves of vertebrates,
on the other hand, comprise bundles of fibers that are insulated (by
a fatty material called myelin) except at rather widely spaced active
nodes where nerve membrane is exposed and the switching action
occurs. These axons are said to be “myelinated” and are modeled
by nonlinear difference-differential equations (DDEs), as discussed in
Chapter 7. Interestingly, motor nerve axons of large mammals can
be several meters long, putting them among the most extended of
single-cell processes.

• The nerve impulse: Propagating along the outgoing axon is an
information-laden train of nerve impulses, which are solutions of a
nonlinear PDE in the case of smooth axons or of a nonlinear DDE
for myelinated fibers. As we saw in the previous chapter, each of these
impulses expresses a dynamic balance between the release and dis-
sipation of energy, and a major aim of the first half of this book is
to offer the reader both analytic and intuitive understandings of this
nonlinear wave phenomenon.

• Initial segment: The outgoing impulses on an axon are often launched
by the switching at the hypersensitive initial segment of an axon,
which is located near the cell body; thus, it is not necessary for the
entire cell body to fire in order to ignite an axonal impulse.

• Axonal tree: The axon of a neuron eventually branches (or bifurcates)
in a tree-like manner, allowing the impulse train on the trunk to be
directed toward a variety of locations on muscle cells or other neurons.
The nature of impulse propagation through branching regions of ax-
onal trees is studied in Section 9.4 and is important for appreciating
what a neuron is about.

• Dendritic trees: Likewise, on the input side of a neuron, the dendrites
are tree-shaped, with their trunks directed toward the cell body. As
indicated in Figure 2.1, this structure allows many input signals to
influence the transmembrane potential of the initial segment. Again,
possibilities for impulse blockage at the branching regions of dendritic
trees are taken up in Section 9.3. (For some views of real dendrites,
look ahead to Figures 9.1 and 9.5.)

• Synapses: Input signals to a neuron are received through several thou-
sand synapses, which inject pulses of ionic current (or electric charge)
into the dendrites and cell body in response to signals from other
neurons or sensory cells. These synapses can be either chemical or
electrical in nature, and chemical synapses can be either passive or
active, responding to changes in the transmembrane voltage.
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• Cell membrane: The membrane (or fatty outer covering of a cell) is
where the nonlinear switching action of a neuron takes place. In the
following chapter, it is shown that the total transmembrane current
comprises three components: displacement current through the mem-
brane capacitance, conduction current of ionic charge in response to
the transmembrane electric field, and diffusion current of ionic charge
in response to transmembrane differences in ionic concentration. An
appreciation of the natures of and interplay among these three current
components is necessary for understanding the nature of membrane
switching.

• Intrinsic membrane proteins: Finally, membrane switching is gov-
erned by the presence of intrinsic membrane proteins, which facilitate
the transport of ionic charges across the membrane by altering their
physical configurations under the influence of changes in transmem-
brane voltage. This is the level of description at which a branch
of physical chemistry called molecular dynamics enters into the
description of a neuron [22].

Thus, we see that a neuron is an intricate dynamic system, operating at
several levels of activity, including the biomolecular dynamics of intrinsic
membrane proteins, the switching behaviors of active membranes, impulse
propagation on incoming and outgoing fibers, and the overall functioning
of the entire cell.

From a broader perspective, the typical nerve cell provides us with an
example of a nonlinear dynamic hierarchy, the investigation of which is a
central theme of this book. One characteristic of such hierarchies is that
the nature of physical reality varies at different levels of description. Under-
standing this point is, in my view, so important that the following section
is devoted to comparing two levels of neural dynamics.

2.2 Two Levels of Neural Dynamics

To begin at the beginning, a neuron is made of atoms, raising the questions:
Can its global behavior be reduced to that of its constituent atoms? Or
should a neuron be viewed as “more than the sum of its parts”?

In an attempt to answer such questions, we consider the nature of neural
dynamics at two different levels of description: the dynamics of biological
molecules and of the nerve impulse.

2.2.1 Newtonian Dynamics of Molecules
At a fundamental level, biological organisms are composed of molecules,
which in turn are made from atoms. One of the most important classes of
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biological molecules are the proteins, comprising valence-bonded chains (or
polymers) of amino acids with primary structures (amino acid sequences)
determined by the genetic codes of DNA. How can the dynamics of such
biological molecules be described?

Consider a molecule that is composed of N atoms. From both experimen-
tal measurements (of boiling and freezing points, elastic constants, resonant
frequencies, bond lengths, and so on) and numerical computations based
upon quantum theory, the forces among the atoms of a molecule are found.
These interatomic forces can be derived from potential energy functions of
the form [22]

PE = U(x1, y1, z1, x2, y2, z2, · · · , xN , yN , zN ) ,

where xj , yj , and zj are position coordinates of the jth atom. (The po-
tential energy depends on the interatomic distances because the valence
electrons—acting as a sort of electronic glue—rearrange themselves as the
relative atomic positions change.)

Recognizing that interatomic forces cause atoms to move, we can ask how
those forces are related to potential energy. If the positions of the atoms
change in such a manner that the potential energy function is reduced,
energy becomes available to encourage the change. This change in potential
energy is interpreted as a force; thus,

force ≡ decrease in potential energy
change in atomic position

= − increase in potential energy
change in atomic position

.

In other words, the concepts of force and potential energy are intimately
interrelated, both expressing the same aspect of physical reality: the ten-
dency of a stable system to find its natural shape. Potential energy is a
global formulation of this tendency, whereas the concept of force enters
into a corresponding local statement.

Returning to our molecule, the force acting on the jth atom in (say) the
y-direction is

− ∂U

∂yj
,

and such interatomic forces can cause internal motion of the molecule, but
how is this motion calculated? Isaac Newton’s second law of motion tells
us that the force on a certain atom in a particular direction is equal to its
mass times the acceleration of that atom in that direction.

Thus, in a molecule composed of N atoms, there are 3N equations of
motion of the general form

Mj
d2yj

dt2
= − ∂U

∂yj
,

where mass times acceleration on the left-hand side is equated to force on
the right.
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If the atoms are at rest and located where the potential energy U takes a
minimum value (so that all of its derivatives of U with respect to the atomic
coordinates are equal to zero), then Newton’s law implies no motion. Under
these conditions, the molecule has assumed its natural shape, which may
be seen in a chemistry text or obtained on a computer file from the Protein
Data Bank [2].

A molecule with all of its atoms at rest is, however, in a very special
condition, to be found only at a temperature of absolute zero. Interestingly,
if the atoms are allowed to move, the sum of the kinetic energy

KE ≡ 1
2

N∑

j=1

Mj

((
dxj

dt

)2

+
(

dyj

dt

)2

+
(

dzj

dt

)2
)

and the potential energy is a constant of the motion. To see this, note that
the time derivative of the total energy

d

dt
(KE + PE)

comprises a sum of 3N terms of the form
(

Mj
d2yj

dt2
+

∂U

∂yj

)
dyj

dt
,

each of which is zero from an application of Newton’s second law for a
particular atom in a certain direction. Thus,

KE + PE = constant

for all unforced motions of the system.1 Why is this interesting?
Energy conservation is an important analytic property of molecular

systems for at least three reasons.
(1) Because it effectively reduces the number of dependent variables,

the existence of a constant of the motion is sometimes helpful in finding
analytic solutions for a vibrating molecule.

(2) Since Newton’s equations involve second derivatives with respect to
time, the direction of time can be reversed without altering the qualitative
behavior of the system. Thus, given precise knowledge of the state of a
molecule (all of the atomic coordinates and their rates of change with time),
it is possible both to predict the state of the system at some time in the
future and also to retrodict the state of the system at some time in the past.
In other words, the qualitative character of energy-conserving dynamics is
preserved under time reversal.

Planetary motion, for which Newton originally developed his dynamics,
provides a familiar example of time-reversal symmetry. From present-day

1Note that KE + PE is a function of 6N variables: the 3N atomic coordinates and
their corresponding velocities. In the argot of nonlinear dynamics, these 6N variables
define the phase space of the system.
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measurements of the positions and speeds of the planets in the solar system,
astronomers can compute where they (the planets, not the astronomers)
will be several hundred years in the future and with equal precision where
they were several hundred years in the past.

(3) A third consequence of energy conservation is that it allows one to
construct a quantum description of atomic or molecular dynamics. Thus,
Erwin Schrödinger’s famous wave equation, upon which quantum theory is
based, requires conservation of energy as its starting point [33].

Although energy is conserved and time is bidirectional at the molecu-
lar and atomic levels of description, only a brief observation of the world
about us is required to recognize that these convenient properties do not
hold throughout the realms of biology. Knowledge of the past history of a
living organism often tells us little of its future, and quantum effects are
unimportant in biological dynamics. This is because living creatures are
essentially different from energy-conserving systems, which have been the
primary focus of physical science during the twentieth century. Instead of
conserving it, biological organisms necessarily consume energy in the course
of their daily activities, just as do the flame of a candle and a nerve impulse.

How then might we describe the behavior of a nerve impulse?

2.2.2 Nonlinear Diffusion of a Nerve Impulse
In the first chapter of this book, we were introduced to the giant axon of
the squid, a sketch of which is shown in Figure 1.2. Anticipating the more
detailed discussions of Chapters 4 through 6, we now sketch a dynamic
description of this nerve.

If the fiber is inactive, one finds a resting voltage across the membrane,
with the electrical potential inside the nerve about 65 mV negative with
respect to the outside potential. Let us define the change in transmembrane
voltage from the resting value as V (x, t), with x indicating where along the
fiber the voltage difference is being measured and t indicating when.

In Section 4.4, it will be shown in detail that the nonlinear partial dif-
ferential equation that governs the spatial and temporal evolution of the
transmembrane voltage is the nonlinear diffusion equation

1
rc

∂2V

∂x2 − ∂V

∂t
=

jion
c

. (2.1)

In this equation, the parameters are defined as follows: (1) r is the longitu-
dinal resistance per unit length of the fiber, measured in units of ohms per
centimeter. (2) c is the membrane capacitance per unit length of the fiber,
measured in units of farads (F) per centimeter. (3) jion is the ionic current
flowing across the membrane (from inside to outside) per unit length of
the fiber, measured in units of amperes (A) per centimeter. It is this trans-
membrane ionic current that introduces nonlinearity into the dynamics,
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and nonlinear transmembrane current in turn is governed by the behavior
of intrinsic proteins embedded in the cell membrane.

To appreciate constraints on the behavior of such nonlinear diffusion
equations, let us first assume that the transmembrane ionic current (jion) is
equal to zero (no intrinsic membrane proteins). Equation (2.1) then reduces
to the linear diffusion equation

D
∂2V

∂x2 − ∂V

∂t
= 0 , (2.2)

where D = 1/rc is a diffusion constant in squared centimeters per second.2

Although it is possible to use a linear diffusion equation to project for-
ward in time (predict), this equation cannot project backward (retrodict)
beyond some finite limit. As an example, note that an exact solution of
Equation (2.2) is

V (x, t) =
e−x2/4Dt

2
√

πDt
, (2.3)

as can be confirmed by substitution. (A plot of this function is presented in
Figure 9.2.) Although Equation (2.3) can be evaluated for all positive times,
negative values of time are problematic. Thus, for t < 0, the expression in
Equation (2.3) becomes imaginary, implying that the values it provides are
physically meaningless.3

In contrast to Newton’s equations—which can be used to determine
whatever transpired in the past just as accurately as they can predict the
future—the linear diffusion equation tells us nothing about the past behav-
ior before some finite value of time. This property is shared by Equation
(2.1) because, as one attempts to project backward in time, the transmem-
brane ionic current (jion/c) on the right-hand side can become negligible
with respect to peak values of the diffusion terms (D∂2V/∂x2 and ∂V/∂t)
on the left-hand side of the equation, so the properties of Equation (2.3)
also restrict the nonlinear dynamic behavior.4

2For a squid nerve, D = 333 cm2/s. To put this number into a physical context,
assume a time interval ∆t of 1 ms. Then,

√
D∆t is approximately 0.58 cm, indicating that

linear disturbances on a squid nerve would diffuse about that distance in a millisecond.
3As t → 0 from positive values, the solution in Equation (2.3) approaches a delta

function, for which V (x, 0) = 0 except where x = 0, and
∫ +ε

−ε

V (x, 0)dx = 1

for any ε > 0. Although not a true function because it is undefined at x = 0, the
delta “function” is useful for many scientific and engineering calculations. See [41] for a
detailed discussion of the underlying theory.

4From a more general perspective, energy-conserving systems can be expressed in
Lagrangian and Hamiltonian formulations (see Appendix A), ensuring that phase-space
volumes are preserved by the dynamics. Thus, a given element of the 6N -dimensional
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Thus dynamics at the level of a nerve axon or dendrite are fundamentally
different from the energy-conserving dynamics of vibrating molecules or
the planets in the solar system. As noted earlier, an astronomer can make
careful measurements of the positions and speeds of the planets and then
tell us where they were (say) a millennium ago. Neural dynamics, on the
other hand, are constrained by an arrow of time, which is basic to biology.
Similarly, it is not possible to use measurements on the flame of a candle—
however accurate they might be—to learn when it was lit.

This is not to suggest that Equation (2.1) is of no value. Indeed, as we
will see in subsequent chapters, this nonlinear diffusion equation can be
viewed as the fundamental equation of neuroscience, leading to a variety of
useful results that include the following.

(1) With sufficiently accurate measurements of how jion depends on
the transmembrane voltage, Equation (2.1) can be used to compute all
of the experimental measurements in Figure 1.1 (time courses of the
transmembrane voltage and the membrane permeability) in addition to
the propagation speed of a squid nerve impulse [14]. We will study such
calculations in Chapters 4 through 6.

(2) If Equation (2.1) is modified by allowing r, c, and jion to be functions
of x, it becomes possible to predict how a nerve impulse will propagate on
a tapered fiber or through a varicosity (or local enlargement) of the fiber
[37]. These phenomena will be taken up in Chapter 9.

(3) In Section 5.5, we will see how this nonlinear diffusion equation can
also be used to compute the amount of threshold charge needed to launch
an impulse on a smooth fiber.

(4) The existence of a threshold is important because branching regions
of the dendritic trees are then recognized as locations of low safety factor,
at which propagating nerve impulses may be extinguished. In other words,
as we will see in Chapter 9, the patch of active membrane near a branching
region may act as a local switch, providing a means for logical computations
throughout the dendritic trees [19, 35, 43, 46]. Related phenomena have
been observed at the branching regions of axonal trees [5].

2.2.3 A Qualitative Comparison
Why is an entire section of this chapter devoted to comparing the dynamic
behavior of a vibrating molecule with that of a nerve impulse? Because the
differences at these two levels of dynamic description illustrate the difficul-
ties that arise when one attempts to reduce the behavior of a neuron to the
dynamics of its constituent molecules, and these difficulties are sometimes

phase space (3N position coordinates and 3N velocity components) might—like a piece
of taffy—be stretched or contracted in various directions, but its total volume re-
mains constant. For diffusion equations, on the other hand, phase-space volumes are
not preserved under the dynamic flow, allowing a direction of time to be defined.
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overlooked by physical scientists who venture into biology [36], it seems
appropriate to conclude with a summary of qualitative differences between
molecular dynamics (MD) and nonlinear diffusion (ND).

• MD conserve energy, whereas nothing is conserved under ND. (See
Appendix A for a mathematical definition of energy conservation.)

• Time is bidirectional under MD, whereas the ND time has a definite
“arrow,” or preferred direction of flow. Thus, the qualitative nature
of time is essentially different at these two levels of neural dynamics.5

• In MD, there is a continual interchange (or periodic sloshing back
and forth) between kinetic and potential energies, whereas ND is
characterized by stable attractors (e.g., a candle flame or a nerve
impulse) toward which the system may rapidly evolve.

• MD forces acting on individual masses add linearly, allowing chains
of causality to be traced. Under ND, on the other hand, nonlinear
interactions among several nerve impulses propagating on typical ax-
onal and dendritic trees can lead to very intricate behavior for which
relationships among causes and effects become difficult to sort out.

• MD systems are closed in the sense that all aspects of the dynamics
are included in the original statement of Newton’s laws. ND in neural
networks, on the other hand, leads to open systems, which may form
new levels of functional reality when necessary or convenient for the
organism involved.

• Although quantum theory can be formulated for energy-conserving
systems such as MD, the ND equation for a nerve impulse does not
conserve energy and therefore has no quantum description.6

Physical scientists sometimes assert—seemingly as a matter of faith—
that whatever transpires at the level of (say) a nerve impulse or a living
cell can be reduced to a description that is based on the interactive motions
of the constituent atoms, but the preceding considerations challenge the

5For an engaging appraisal of the nature of time as an independent variable in
different realms of science, two books by J.T. Fraser are recommended [7, 8].

6Some contend that energy is conserved throughout the universe, implying a quantum
wave function of the universe that necessarily includes a quantum description of all nerve
impulses. Although such unconfirmed theoretical speculation may be correct, it is not
helpful for electrophysiologists who deal with empirical studies of the dynamic behaviors
of individual impulses.

Further doubt on the feasibility of a quantum description for a nerve impulse is cast
by estimates of the decoherence times over which quantum predictions in nerves remain
valid and after which “quantum entanglements” are destroyed. These times are estimated
to be about ten orders of magnitude below the relevant time scale of miliseconds for
neural dynamics, effectively eliminating the possibility of observing quantum effects in
a laboratory of electrophysiology [44].
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feasibility of such a program. We will return to this question in Chapter
12, but for now it is interesting to consider the opinion of Schrödinger,
whose little book What Is Life? helped to launch the flourishing field of
molecular biology. To the question “Is life based on the laws of physics?,”
he replied [34]:

From all we have learned about the structure of living matter,
we must be prepared to find it working in a manner that cannot
be reduced to the ordinary laws of physics. And that is not on
the ground that there is any new force directing the behaviour
of the single atoms within a living organism, or because the
laws of chemistry do not apply, but because life at the cellular
level is more ornate, more elaborate than anything we have yet
attempted in physics.

Having appreciated certain difficulties in developing a reductive formu-
lation for the neuron, we now consider a few “ornate elaborations” of its
structure.

2.3 Synapses

Like all living organisms, nerve cells do not exist in isolation but com-
municate among themselves, primarily through specialized contacts called
synapses. These contacts may be chemical or electrical in nature, showing
different qualitative behaviors. Let us look at some of the details.

2.3.1 Chemical Synapses
One of the synapses indicated in Figure 2.1 is sketched in Figure 2.2, where
it should be noted that these diagrams are merely schematic, showing
the broad outlines of structures that exhibit many variations among real
neurons [6, 16, 23].

From Figure 2.2(a), we see that the the enlarged end bulb of an axon
stores a number of vesicles (some 30–40 nm in diameter), each containing
psychoactive chemicals (called neurotransmitters) that can alter the ionic
conductivity of the postsynaptic membrane. The postsynaptic membrane,
sometimes forming a dendritic spine, is separated from the presynaptic
membrane by a synaptic cleft having a width of about 20 nm.

We will see in Chapter 4 that an increase in sodium ion permeability
tends to depolarize the postsynaptic membrane, encouraging the devel-
opment of an action potential, whereas increasing the potassium ion
permeability hyperpolarizes the membrane, thereby inhibiting impulse
formation. Thus, synapses can be either excitatory or inhibitory in nature.
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Figure 2.2. Sketches of a chemical synapse. (a) A nerve impulse arrives at the
synapse, inducing a vesicle to fuse with the presynaptic membrane. (b) The pro-
cess of exocytosis, wherein a vesicle is releasing its neurotransmitter molecules
into the synaptic cleft. (The drawings are not to scale.)
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When a nerve impulse arrives at a synapse, a rather complicated series of
events transpires. First, the transmembrane voltage of the impulse causes
an inward flow of calcium ions. In a complex manner, these calcium ions
then induce some of the vesicles to fuse with the presynaptic membrane.
Upon fusing with the presynaptic membrane, a vesicle then spills its neuro-
transmitter molecules into the synaptic cleft—a process called exocytosis.
Next, as suggested by Figure 2.2(b), the neurotransmitter molecules diffuse
across the cleft, influencing the conductivity of the postsynaptic membrane.
Finally, the dendritic spine may act as a postsynaptic switch, modifying
the global character of dendritic response to the input signals [26, 29].

Anticipating results of the following chapter, current of a particular
ion (Iion) flows across the postsynaptic membrane as determined by an
expression of the form

Iion = G(t)(V − Vion) . (2.4)

In this equation, G(t) is the postsynaptic membrane conductivity for that
particular ion, and Vion is the voltage of a fictitious “membrane battery,”
indicating the tendency for those ions to diffuse into or out of the post-
synaptic membrane.7 Generally, V differs from Vion, so Iion follows G(t),
which is determined by the foregoing sequence of events.

If the postsynaptic membrane becomes depolarized (making the trans-
membrane voltage V more positive than its resting value), the synapse is
said to induce an “excitatory postsynaptic potential” (EPSP). In typical
neocortical neurons, the EPSP appears with an initial delay of about 0.3
ms—the time required for liberation of a vesicle of neurotransmitter and its
subsequent diffusion across the synaptic cleft. After this delay, the EPSP
rises to a maximum in about 1 ms and then decays in about 10 ms. Hy-
perpolarization of the postsynaptic membrane, on the other hand, induces
an “inhibitory postsynaptic potential” (IPSP) with a longer initial delay
(∼ 1.5 ms) and a somewhat longer decay time (∼ 10–20 ms).

From a mathematical perspective, a chemical synapse (CS) exhibits the
following characteristics.

• Causality in a CS is unidirectional because the synaptic dynamics
(e.g., calcium release, vesicle discharge) influence the postsynaptic
membrane, but changes in the postsynaptic potential have little or
no effect on presynaptic dynamics.

• Because its response time can be no less than the time required for
the neurotransmitter molecules to diffuse across the synaptic cleft,
the CS is a relatively slow means of neural interaction, requiring a
millisecond or two for signal transmission.

7More precisely, Vion, the equilibrium (or Nernst) value of the postsynaptic transmem-
brane potential (V ), at which no current flows regardless of the postsynaptic membrane
permeability.
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• The behavior of a CS is strongly nonlinear, involving an intricate
sequence of biochemical and bioelectrical effects,. In other words,
G(t) in Equation (2.4) depends in intricate ways on the dynamics of
several intermediate variables, including the postsynaptic transmem-
brane potential V . In some cases, the relatively isolated membrane of
the dendritic spine can switch (as described in Chapter 4) to launch
a dendritic signal.

• In addition to being strongly nonlinear, the behavior of a chemical
synapse is also stochastic [17]. Thus, if there are n sites for vesicle
fusion and exocytosis on the presynaptic membrane and each site has
a probability p for neurotransmitter release, then the probability of
exactly k vesicles releasing their molecules is8

P (n, k) =
n!

(n − k)!k!
pk(1 − p)n−k , (2.5)

where k = 0, 1, . . . , n.
Where the number of vesicle release sites (n) is small (as in central
regions of the brain), this equation implies a highly variable incidence
of exocytosis under the same experimental parameters [30, 45]. Thus,
for example, P (1, 1) = p, and p can take values ranging between 0.1
and 0.9. Although the reason for this wide variation is not understood,
it may be related to statistical variations in presynaptic calcium ion
concentrations [21].

Although real chemical synapses are intricate dynamic systems, they are
often modeled by rather simple phenomenological expressions that capture
essential aspects of their dynamics.

Passive Chemical Synapses.
In a passive synapse, the conductance function G(t) in Equation (2.4) is a
prescribed function of time, a convenient analytic form being [21, 25]

G(t) ∝ te−t/τ . (2.6)

Here, τ establishes the time scale of the conductance change, and the
proportionality constant determines the maximum increase of conductance.

If the synapse is excitatory, the membrane battery pushes positive ions
(usually sodium or calcium ions) into the postsynaptic membrane, raising
its voltage from the resting value. For inhibitory synapses, on the other
hand, the postsynaptic membrane voltage is lowered from its resting value.
This can be accomplished either by pumping positively charged potassium
ions out of the postsynaptic cell or negatively charged chloride ions into it.

8This expression can be obtained by computing [(1 − p) + p]n and interpreting the
kth term as P (n, k).
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Figure 2.3. A gap junction or electrical synapse.

Active Chemical Synapses.
If the postsynaptic membrane conductance depends on the transmembrane
voltage V , the synapse is said to be active. This situation can come about,
for example, if ion channels are blocked at the resting voltage (say, by
magnesium ions), becoming unblocked as the membrane voltage changes.
For active excitatory synapses, an approximate model assumes [21, 25]

G(t, V ) ∝ e−t/τ1 − e−t/τ2

1 + Ke−γV
, (2.7)

where τ1 	 τ2 gives a rapid rise (∼ τ2) and a slow decay (∼ τ1).

2.3.2 Gap Junctions
Since the mid-1970s, it has been evident from electron microscope images
of dendritic fields that neurons may communicate through direct electrical
connections, which allow ionic current to flow straight out of one neuron and
into another through channels that are defined by the dimensions of intrin-
sic membrane proteins [32]. Such electrical synapses are called gap junctions
because they require interconnecting openings in the cell membrane.

Gap junctions are well-described by Ohm’s law, which states that current
flows in proportion to the difference in electric potential across the gap.
A task of the experimentalist, however, is to determine the constant of
proportionality, called the gap resistance.

Using the notation from Figure 2.3, the current I flowing from cell #1
into cell #2 is given by

I =
V1 − V2

R
, (2.8)
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where V1 and V2 are the internal electrical potentials (voltages) of the
two cells. In this equation, R is the ohmic resistance of the gap, which
is determined by the dimensions of the gap and the resistivity ρ of the
cytoplasm as

R =
ρ

a

(
l

πa
+

1
2

)
. (2.9)

The first term on the right-hand side of this expression is the resistance of
the cylindrical channel on Figure 2.3, and the second term accounts for the
spreading resistance stemming from constriction of current flow near the
channel [40].9

Although there is a superficial similarity between the forms of Equations
(2.4) and (2.8), they model very different physical processes. We will see
in the next chapter how Equation (2.4) represents the algebraic sum of
two current components of a particular ion: drift current in response to
a voltage gradient and diffusion current in response to a concentration
gradient. Equation (2.8), on the other hand, accounts for the drift current
of all charge carriers in the cytoplasm. It follows that the nature of a
gap junction (GJ) is very different from that of a chemical synapse. In
particular:

• A GJ is bidirectional, allowing current to flow as easily from cell #1
into cell #2 as from cell #2 into cell #1.

• The time required for current to flow in a GJ after a voltage difference
between the cells has been established is very fast. This response time
is essentially the collision time for cytoplasmic charge carriers, which
is several orders of magnitude shorter than the time scales recorded
in a laboratory of electrophysiology.

• Because Equation (2.4) is a true expression of Ohm’s law, the relation
between current I and voltage difference (V1 − V2) for a GJ is linear
over a wide range, readily including the voltages appearing in normal
nerves.

• Because a large number of charge carriers are involved in the flow of
current through a GJ, the phenomenon is deterministic.10

9To get a feeling for the magnitudes involved in Equation (2.9), assume that ρ = 35.4
ohm-cm (the value measured by Hodgkin and Huxley for the cytoplasm of a squid axon),
l = 15 nm and a = 3 nm. Then, the corresponding resistance (R) of a single gap junction
would be about 250 megohm.

10This statement is not quite true because the number of cytoplasmic charge carriers—
while large—is not infinite. If the average number of charge carriers flowing through
the gap is N , then there will be a relative uncertainty in the current given by 1/

√
N,

leading to a percentage error of ±100/
√

N. Called shot noise by electrical engineers,
this statistical fluctuation causes the hiss of an untuned radio and is mathematically
identical to the errors faced by political pollsters.
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2.4 Neural Models

The aim of this section is to consider how one might construct mathemat-
ical models for a nerve cell. As we have seen in the foregoing discussion,
this is not a straightforward task because a neuron—like all living cells—
is an intricate dynamic system that must be described on several levels,
and these descriptions may involve qualitatively different properties of the
independent variable: time.

To appreciate the magnitude of the task, note that the levels of dy-
namic activity in a typical neuron include those in the following hierarchical
diagram.

Neuron
Branching regions of fibers
Axonal and dendritic fibers

Synapses
Patches of nerve membrane

Biomolecular dynamics

Each of these several levels of description presents a substantial challenge
to science, requiring dedicated efforts by many skillful and highly trained
experimentalists. Each level is described by some nonlinear dynamics out
of which new phenomena can emerge, but these formulations differ at dif-
ferent levels of description. How can all of the resulting information be put
together into a reliable representation of a real neuron?

Over the past six decades, some answers to this question have been
suggested.

2.4.1 The McCulloch–Pitts (M–P) Neuron
In their classic paper on the dynamics of a brain, McCulloch and Pitts
assumed the most simple model for an individual neuron. Briefly, they sup-
posed that the dendritic trees (see Figure 9.1) gathered a linear weighted
sum of the incoming synaptic signals and compared this sum with a thresh-
old level at the base (initial segment) of the axonal tree. In this model, if the
sum of input signals exceeds the threshold, then an impulse is launched on
the main trunk of the axonal tree. Once launched, the impulse travels out to
the first axonal branching, where two impulses are generated that proceed
down both secondary fibers. This process continues until all synapses at
the tips of the tree have received impulses, with none being lost at axonal
branchings.

In other words, the M–P premises were the following.

• The activity of a neuron is an all-or-nothing process.

• A certain weighted sum of the synaptic input signals must exceed a
threshold level in order for a neuron to fire.
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• The only significant time delays are due to synapses.

Formally, these assumptions can be expressed as the input–output
relationship

Vj(t + τ) = H

(
N∑

k=1

αjkVk(t) − θj

)

, (2.10)

where H ( · ) is the Heaviside step function with properties

H(x) =






1 for x ≥ 0 and

0 for x < 0 .

In this formulation, a model brain is represented by N neurons that are
joined by an N × N interconnection matrix

A = [αjk] ,

with each element indicating how the firing of the kth neuron influences
the tendency of the jth neuron to fire. In particular, if the weighted sum
of dendritic inputs

N∑

k=1

αjkVk

is greater than the threshold θj of the jth neuron, then (after a synaptic
time delay τ) the model neuron will ignite its axon.

There are at least two reasons why McCulloch and Pitts chose such a sim-
ple model for their basic neuron. First, not as much was known about the
dynamic properties of real neurons in 1943 as now, and it seemed prudent
to avoid speculation about more exotic possibilities for neuronal behavior.
Second, and perhaps more important, these authors were interested in us-
ing their model neuron as a basis for a theory of how the brain works, and
a simpler model for the neuron eased this more ambitious task.11

Since the late 1950s, several variations of the M–P neuron have been
suggested for computer-based models of a brain, with diverse means for
adjusting the (synaptic) interconnection weights (αjk) during the course
of neural activity [4, 13, 15, 31]. Under the names “linear threshold unit”
(LTU) or “threshold logic unit” (TLU), similar concepts were employed by
the engineering community as a basis for designing machines that could

11An excellent survey of simple neuron models, which are useful for network studies,
has been published by Gerstner [10]. Although such representations might seem too sim-
ple to be useful for the description of individual cells, Keat et al. [18] have demonstrated
that the parameters of Gerstner’s “spike response model” [11, 12] can be adjusted to
predict the outputs of retinal ganglion cells in salamander, rabbit, and cat.
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learn to recognize certain classes of patterns [27, 28, 47]. (The proliferation
of names for the same concept reflects attempts to establish proprietary
positions.) Such “brain models” will be taken up in Chapter 10, but we are
presently concerned with the modeling of individual neurons.

How have M–P models fared over the past half century?

2.4.2 The Multiplex Neuron
During the 1960s and 1970s, the increasing availability and numerical power
of electronic computers had two divergent influences on neuroscience re-
search. First, computers made it feasible to study ever larger numbers of
interacting neurons. In these investigations, understandably, priority was
given to modeling as many neurons as possible, requiring that representa-
tions of individual neurons be kept simple. Thus the M–P model neuron
and its variants became established as the basis for “neural network theory”
in which the lack of biological realism embodied in the neuron models often
failed to be questioned. These same computers, on the other hand, allowed
individual neurons to become increasingly better understood through ever
more realistic mathematical models.

By the early 1970s, improved understanding of the possibilities for mem-
brane dynamics coupled with detailed electron micrograms of real neural
structures led neurologist Steve Waxman to propose the multiplex neuron
as a more realistic neural model [46]. (The term “multiplex” is borrowed
from communications engineering, where it implies the ability of a circuit
to deal with several messages at the same time.) A significant feature of
this representation is that it allows for nonlinear interactions among im-
pulses near branching regions of dendritic and axonal trees [19, 35]. As is
discussed in detail in Chapter 9, impulses can be lost at branching regions,
permitting computations to occur within the dendritic and axonal trees
and not merely at the initial segment. Why is this difference important?

Like the furnace control on your living room wall, an M–P neuron can
be compared to a single switch, responding to a linear weighted sum of in-
put signals. This assumption of linearity has profound implications for the
nature of causality in the model because linear interactions allow an assort-
ment of causes to be sorted into independent threads—a simplification not
generally possible for nonlinear interactions. Nonlinear interactions com-
prise myriad varieties, confounding the threads of causality and making it
difficult to discern who did what to whom [3].

This is an important philosophical point to which we will return in Chap-
ter 12, but for now we note that nonlinear interactions among causes (neural
input signals) allow far greater intricacy of the overall dynamics, including
the phenomenon of emergence [37]. In other words, the whole neuron may
be more than the sum of its parts.
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2.4.3 Real Neurons?
Interestingly, experimental evidence suggests that even the multiplex neu-
ron may not be sufficiently flexible to capture the properties of real neurons
[1, 9, 25, 42, 43]. What phenomena are being left out of the picture?

As Christof Koch has proposed, a biological neuron may operate more
like an analog computer than a digital one, converting the incoming
streams of information into spatially and temporally distributed variables.
Subsequent to this transformation, he speculates [20]:

Information is then processed in the analog domain, using
a number of linear and nonlinear operations (multiplication,
saturation, amplification, thresholding) implemented in the
dendritic cable structure and augmented by voltage-dependent
membrane and synaptic conductances. The resulting signal is
then converted back into digital pulses and conveyed to the
following neurons.

In his book Biophysics of Computation [21], this same author expands
on such ideas, arguing that “dendrites can indeed be very powerful, non-
traditional computational devices, implementing a number of continuous
operations.”

In attempting to evaluate such speculations, it is important to remem-
ber that the description of a chemical synapse presented in Section 2.3.1
provides only a sketch of the design possibilities open to the processes
of evolution. There are several different neurotransmitters under genetic
control, including amino acids, biogenic amines (such as dopamine, nora-
drenaline, and serotonin), and neuropeptides (smallish proteins), and these
neurotransmitters influence a variety of postsynaptic membrane receptors
[21]. Amino acids (which are the building blocks of proteins) give rise to
relatively rapid (on the order of a few milliseconds) postsynaptic poten-
tials that can be either excitatory or inhibitory. Biogenic amines act on
longer time scales (hundreds of milliseconds to seconds), whereas the ef-
fects of neuropeptides can persist for minutes, opening significant avenues
for interplay between body chemistry and the mind.

For their part, the currents flowing through gap junctions present oppor-
tunities for intricate dendrodendritic interactions, which are not sketched in
Figure 2.1 [38, 39]. As Schmitt, Dev, and Smith suggested in the 1970s, ev-
idence from the electron microscope was giving rise to a “quiet revolution”
in our understanding of neural circuitry [32]. In their words:

The new view of the neuron, based primarily on recent electron
microscope evidence and supported by intracellular electrical
recording, holds that the dendrite, far from being only a passive
receptor surface, may also be presynaptic, transmitting infor-
mation to other neurons through dendrodendritic synapses.
Such neurons may simultaneously be the site of many elec-
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trotonic current pathways, involving components as small as
dendrite membrane patches or individual dendrites.

In their book Dendrites, Stuart, Spruston, and Häusser have assembled a
fascinating collection of essays on the structure, morphogenesis, biochem-
istry, electrochemical behavior, functional and structural plasticity, and
functional significance of dendrites, confirming the early vision of Schmitt,
Dev, and Smith [43].

Yet another sort of subtle electrical interaction arises when impulses are
propagating on closely situated parallel fibers, as in the sciatic nerve bundle
shown in Figure 1.2. In this case, the external current loop associated with
one impulse can influence the propagation of the other impulse (and vice
versa), leading to the phenomenon of impulse synchronization, in which
two or more impulses become coupled together, traveling at exactly the
same speed. This effect (called ephaptic) suggests interesting mathematical
studies that are presented in Chapter 8.

Thus the behaviors displayed by real neurons are far from fully under-
stood, leaving much research to be carried out at this primary level of
the brain’s dynamics. As the following chapters will show, this work is of
interest to the mathematically oriented neuroscientist.

2.5 Recapitulation

The broad aim of this chapter is to present an overview of individual nerve
cells that provides a realistic perspective on neural intricacy. To this end,
a general neuron is sketched in Figure 2.1, and its major components are
defined and described.

It is emphasized that the dynamic behavior of biomolecules—intrinsic
membrane proteins, for example, which permit active nerve membranes to
switch—is distinctly different from the dynamics of impulse propagation
on a nerve fiber. In the Newtonian dynamics of biomolecules, energy is
conserved and time reversal is allowed, whereas energy is not conserved
and there is an arrow of time governing the nonlinear diffusion processes
from which nerve impulses emerge. Recognition of the profound differences
between these two levels of neural organization suggests some of the diffi-
culties facing those who would reduce a neuron’s behavior to the dynamics
of its constituent molecules.

Two sorts of neural interactions are then introduced—chemical synapses
and direct electrical communication through gap junctions—that exhibit
different physical behaviors. Thus, chemical synapses are unidirectional,
relatively slow, strongly nonlinear, and stochastic, whereas gap junctions
are bidirectional, very fast, linear, and deterministic.

In preparation for subsequent discussions of nerve models, the dynamics
of a typical neuron are parsed into several hierarchical levels of its global
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nonlinear activity. As the simplest such model, the McCulloch–Pitts (M–P)
neuron (proposed in 1943) is described in which a linear weighted sum of
input signals is compared with a threshold level in order to decide whether
or not the outputs will become active. This M–P model is compared with
Waxman’s more intricate “multiplex neuron” (proposed in 1972), which
features opportunities for substantial information processing in the branch-
ing structures of the dendritic and axonal trees. In other words, the M–P
model is equivalent to a single switch, whereas the multiplex neuron—like
an integrated circuit—comprises many switches. Finally, Waxman’s model
is evaluated in the light of more recent observations of the behavior of real
neurons, revealing them to be vastly intricate dynamic systems yet only
dimly understood. It is an exciting time to be a neuroscientist.
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3
Nerve Membranes

Who has not wondered at a soap bubble as it floats into the sky on a spring
morning? From what magic does this perfect sphere emerge? How might
its form be related to the teeming confusion of a handful of soap suds gath-
ered in the evening bath? Or to the regular hexagons of a honeycomb? Are
there mathematical principles guiding the development of these structures?
Is there a science of morphogenesis? Might such a study help us to com-
prehend the development of biological forms, thereby inferring aspects of
their functions? Such questions are the seeds of science.

Living organisms are composed of cells—one for a bacterium and many
billions of neurons for each of our brains—and every cell has a characteristic
shape. Although a discussion of how these shapes come about is beyond
the scope of this book, the energetics of cell membranes play a significant
role, the understanding of which leads to an appreciation of the physical
natures of electrical capacitance and transmembrane ionic currents.1

From one perspective, membrane energetics are related to those of chemi-
cal molecules, as was briefly discussed in the preceding chapter. In that case,
you will recall, intramolecular forces arise from the action of an electronic
cloud that nestles among the atomic nuclei. Variations of the potential en-
ergy of this cloud stemming from changes in the relative positions of the

1For the general reader wishing to understand the relations between physical princi-
ples and the natural shapes of biological organisms, there is no better introduction than
the book On Growth and Form [19] by Scottish classicist, mathematician, and biologist
D’Arcy Wentworth Thompson, some comments from which are included in the front
matter of this book.
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nuclei can be interpreted as forces acting on the atoms. When the atoms
are positioned so that these forces cancel, a stationary structure of the
molecule is attained; thus, the energy of the interatomic electronic cloud
takes a minimum value at the stable structure of the molecule.

We are aware of this phenomenon of energy minimization from many
familiar examples. After falling from the sky, rainwater streams downhill
and settles in the characteristic shape of a pond, where its total energy is
lowest. Our planet assumes a spherical shape because this reduces the total
gravitational energy to its smallest value, and similarly the spherical shape
of a soap bubble reduces its surface energy to a minimum.

How do such considerations influence the properties of neural mem-
branes? What forces and types of energy are involved?

3.1 Lipid Bilayers

To understand the energetic nature of biological membranes, note that
they are composed largely of fatty (lipid) molecules that have the general
structure shown in Figure 3.1(a) [3]. This cigar-shaped biomolecule is dis-
tinguished by the charged head group at one end, which is the source of
an electric field. Building on a previous demonstration by Lord Rayleigh
that oil films on the surface of water can become monomolecular, Irving
Langmuir [5] showed that this monolayer appears as in Figure 3.1(b), with
the head groups of the lipids uniformly directed toward the water surface.
Why is this so?

Whenever the head group of a lipid molecule is exposed to air, its charge
creates an electric field, requiring the expenditure of energy. If a positively
charged head group is close to water, on the other hand, its electric field
is largely canceled, reducing the amount of electric field energy that is
generated by the head charge.

Water achieves this because its constituent molecules are electric dipoles
that rotate themselves such that their negative ends are directed toward the
positive head group, thereby canceling most of the electric field. Thus, an
individual lipid molecule can substantially decrease its associated electric
field energy merely by orienting itself so that its charged end is located
as close as possible to water, just as rock on a steep hillside can lower its
gravitational energy by rolling down into a valley. For a monomolecular
lipid layer on the surface of water, the energetically preferred structure is
as shown in Figure 3.1(b).

As described by Isaac Newton [13], you can observe a related effect for
soap films in the following manner. First, take a few inches of wire (a paper
clip will do, although smaller wire works better) and bend the end into a
loop with a diameter of a millimeter or so. Then mix some liquid dish
soap with warmish water, and dip the loop to form a soap film. Under a
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Figure 3.1. (a) A lipid (fatty) molecule (redrawn from Goodsell [3]). (b) A
monomolecular lipid layer on water surface. (c) A bimolecular soap film. (d)
A lipid bilayer.

bright light, you will at first observe the colored interference bands of the
film that are familiar from childhood observations of soap bubbles. These
color bands indicate that the film thickness is of the order of a wavelength
of visible light (∼ 4000 Å , or 400 nm) [1]. If you watch the film for a
few minutes, however, it undergoes a dramatic change. Without breaking,
the film becomes almost completely reflectionless, which indicates that its
thickness has suddenly reduced to a value well below the wavelength of
visible light, causing it to appear black. You are now observing a bimolecular
soap film with the structure shown in Figure 3.1(c). (Within this film, a
thin layer of water remains that attracts their charged head groups.)

Because the membrane of a biological cell is totally immersed in water,
an energetically favorable structure is the lipid bilayer film, shown in Figure
3.1(d), and extended films can assume a variety of interesting geometries.
If the film is a closed surface, for example, its natural form will be a sphere
because that shape minimizes total energy, just as for soap bubbles.2 Re-

2Collections of bubbles are yet more intricate. The next time you are washing up,
you might take a careful look at a handful of soapsuds under a good light, noting that
interior divisions tend toward a fourteen-sided figure, called a tetrakaidekahedron by Lord
Kelvin. Just as the hexagon fills a two-dimensional area with a minimum boundary, this
14-gon is a space-filling shape with minimum wall area [19].



52 3. Nerve Membranes
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Figure 3.2. An experiment for making physical measurements on artificial cell
membranes.

calling that the phenomenon of life emerged from the rich chemical soup of
the Hadean seas some four billion years ago [8], one wonders whether the
spontaneous formation of lipid bilayer compartments might have played a
role. How difficult is it for such films to form?

In the early 1960s, Paul Mueller, Donald Rudin, Ti Tien, and William
Wescott showed that a biological lipid bilayer can be reconstructed using
the apparatus shown in Figure 3.2 [9, 14, 20]. In this experiment, a vessel
is arranged with two chambers (cell #1 and cell #2), each of which is
held at different electric potentials (V1 and V2) and filled with aqueous
solutions containing different ionic concentrations. Additionally, there is
a small hole between the two chambers that can be covered with a lipid
bilayer using a technique similar to the formation of a bilayer soap film.
Touching the hole with a camel’s hair brush that has been dipped in lipid
will first cause the formation of a relatively thick film, which soon collapses
into the energetically more favorable bilayer of Figure 3.1(d).3

Using such an experimental apparatus, Mueller et al. [9], among others,
were able to perform a number of physical experiments on lipid bilayers,
including visual observation of the bilayer formation, measurement of elec-
trical conductivity per unit area of a pure lipid bilayer, measurement of
capacitance per unit area of a lipid bilayer, measurement of resting po-
tential across the lipid bilayer as a function of ionic concentration, and
observation of the influence of intrinsic (embedded) membrane proteins on
membrane conductivity. Some fruits of these studies are the following [4].

3A short film showing the formation of a lipid bilayer is available on the Internet at
www.msu.edu/user/ottova/soap bubble.html.



3.2. Membrane Capacitance 53

V
+

_ d

+  +  +  +  +  +  +  +

+  +  +  +  +  + + +
E

+++++++++++

+   +   +   +   +   +

-   -   -   -   -   -

- - - - - - - - - -
E

(a) (b)

-  -  -  -  -  -  -  -  -  -
E V

+

_

Figure 3.3. (a) A capacitor in a vacuum. (b) A capacitor that is filled with a
material substance.

• The electrical capacitance of a lipid bilayer is about 1 microfarad
(µF) per square centimeter.

• The electrical conductivity (or ionic permeability) of a pure lipid
bilayer is very small, corresponding to that of a good insulator such
as quartz.

• Membrane permeability is very sensitive to the presence of intrin-
sic proteins. If certain proteins are dissolved in the lipid bilayer,
membrane conductivity increases by several orders of magnitude.

• With a proper choice of embedded membrane proteins, the switching
action of a nerve membrane can be reproduced [10].

Because these observations are relevant to studies of the nerve, let us
consider them in greater detail.

3.2 Membrane Capacitance

As we will see in the following chapter, the electrical capacitance of a nerve
membrane plays a key role in the dynamics of its switching; thus, it is
important for neuroscientists to understand what a capacitor is and the
nature of the electric charge that it stores.

Consider first the vacuum capacitor shown in Figure 3.3(a) in which two
parallel conducting plates of area A are separated by distance d. The plates
are insulated from each other by a vacuum, so how does electric current
manage to flow into the capacitor on the upper wire and out of it on the
lower wire? Does electric current actually flow through the vacuum?

To answer such questions, let us connect a battery of voltage V across
an uncharged capacitor with its positive (negative) terminal to the upper
(lower) wire. Initially, current will flow into (out of) the upper (lower) plate,
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leaving it positively (negatively) charged, as is indicated in the figure. As
these currents flow, the accumulating charges on the plates will establish
an electric field E in the vacuum. Current will continue to flow and charge
will accumulate on the capacitor plates until the voltage difference across
the vacuum is equal to the battery voltage V , whereupon current will cease.

The establishment of a voltage V across the vacuum implies the existence
of an electric field E in the vacuum that is directed away from the upper
plate and toward the lower one. This electric field is defined as the force
acting on a unit of electric charge, and the corresponding voltage is given
by the decrease in energy experienced by a unit of charge upon moving
from the lower to the upper plate. As was noted in the previous chapter,
the concepts of force and energy are related by an expression of the form

force ≡ decrease in energy
change in position

,

where the direction of the force corresponds to the change in position.
Because electric field (E) is defined as a force per unit charge, and voltage

(V ) is energy per unit of electrical charge, it follows that the electric field
between the capacitor plates is

E =
V

d
. (3.1)

After this electric field is established and the flow of current has ceased,
there will remain a constant positive charge (+Q) on the upper plate and a
constant negative charge (−Q) on the lower plate. If the battery is removed,
these charges and the corresponding electric field energy will remain stored
in the capacitor. How much charge will be stored?

If V is measured in volts and the charge Q is measured in coulombs (C),
it is a basic law of electricity that

Q

A
= ε0E = ε0

V

d
,

where A is the area of a capacitor plate and ε0 is a fundamental constant
describing the electrical properties of the vacuum. Thus, the charge on a
vacuum capacitor is related to the voltage across it by the relation

Q =
ε0A

d
V = C̃V .

In this relation,

C̃ =
ε0A

d
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is called the capacitance, which is measured in farads, or coulombs per volt.4

Finally, ε0, called the electric permittivity of the vacuum, has an empirical
value of 8.84 × 10−12 farads per meter (F/m).

Not surprisingly, no electric current flows through the vacuum. Whenever
the voltage across the capacitor plates is changed, electric current flows into
one plate and out of the other, thereby readjusting the amount of electric
charge that is stored.

What happens if we slip a material insulator (mica, wax, or metallic
oxide) between the capacitor plates, as indicated in Figure 3.3(b)? (Al-
though there may be a leakage of electric current through the insulator, let
us assume that this effect is small enough to be neglected.) We can again
measure the charge flowing into the upper plate, which turns out to be
always larger than for the vacuum capacitor. Thus,

Q

V
≡ C̃ =

κε0A

d
,

where κ > 1 is called the relative dielectric constant describing the insu-
lating material. Evidently the value of κ is unity for a vacuum, and it is of
the order of 3 to 4 for ordinary insulating materials (e.g., glass, wax, wood,
plastics). (Interestingly, the relative dielectric constant of water is about
80, because each molecule of this important biological fluid is an electrical
dipole that can rotate. Energetically speaking, it is this large value of κ
that reduces the electric field in the neighborhood of charged lipid head
groups shown in Figure 3.2.)

The reason that κ > 1 for a material insulator is because the electric field
E = V/d acts on the electric charges (electrons and atomic nuclei) compris-
ing the material, pulling negative charge slightly out of the upper surface.
Similarly, positive charges are pulled slightly out of the lower surface of the
insulating material.

In other words, there will be a negative bound charge on the upper sur-
face of the insulator and a positive bound charge on the lower surface, as
indicated in Figure 3.3(b). This bound surface charge cancels some of the
free charge (Q) on the plates, allowing Q to be larger for the same value of
voltage across the capacitor plates.

With constant voltage, the current through an ideal capacitor is zero;
only when the voltage varies with time does stored charge change and
current flow. The amount of this current (I) is then

I ≡ dQ

dt
= C̃

dV

dt
,

which is the basic description of a capacitor as an electric circuit element.

4Be careful not to confuse the abbreviation for coulomb (C) with the symbol (C) for
capacitance.
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3.3 Transmembrane Ionic Currents

Consider again the experimental apparatus of Figure 3.2 with the follow-
ing assumptions: sodium and potassium salts have been dissolved in the
water, appropriate intrinsic proteins are embedded in the lipid bilayer, and
a steady voltage is impressed across the electrodes. Under these circum-
stances, a steady current is observed to flow between the two terminals
(into one and out of the other), indicating a constant transport of ions
across the lipid bilayer membrane. For each ion, this steady ionic current
has two distinct components: a conduction current responding to the volt-
age difference across the membrane and a diffusion current responding to
the difference in ionic concentrations across the membrane. Let us examine
these two components in detail.

3.3.1 Conduction Current
Assuming that a steady voltage is maintained across a lipid bilayer, the
average electric field within that membrane will be given by Equation (3.1),
where d is the membrane thickness. Because this electric field exerts a force
on the electric charges of ions, it can cause an ionic current to flow, which
is called the conduction current. How is conduction current calculated?

Suppose that the membrane is permeable to sodium ions, each carrying
a charge of +q, where q has the magnitude of the electronic charge; thus,

q = 1.602 × 10−19 C.

In general, each of these ions exhibits a stochastic motion stemming from
the irregular manner in which it is randomly pushed and pulled about
by other thermally agitated components of the system. When a voltage is
applied and an electric field E is present inside the membrane, this field
adds a small drift velocity in the direction of E to the random thermal
motion. If the drift velocity is small compared with thermal motion, its
magnitude is proportional to the electric field, and we can write

vdrift = µNaE ,

where µNa is a constant of proportionality called the mobility of the sodium
ion.

Conduction current density (Jc) is defined as the ionic charge times the
average of this drift current per unit area (perpendicular to the direction
of the electric field). Thus, it can be written

Jc = qvdrift[Na+] = qµNa[Na+]E ,

where [Na+] is the concentration of the sodium ions in ions per unit volume.
Because E ∝ V , the conduction current density is expected to be given

by an expression of the form

Jc = G̃NaV ,
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where G̃Na is a sodium ion conductivity per unit area in units of mhos per
unit area.5

The form of this equation, however, does not imply that transmembrane
conduction current is proportional to transmembrane voltage. As we have
seen in the previous section, ionic current flow through a lipid bilayer is
greatly facilitated by the presence of intrinsic proteins, which are embed-
ded in the membrane. Even at small values of transmembrane voltage, the
electric field within a membrane can be quite large, causing the membrane
proteins to change shape and altering the values of µNa and G̃Na. We will
see that this effect is of central importance in understanding how a patch
of nerve membrane manages to act as an electric switch.

3.3.2 Diffusion Current
In addition to the conduction current flowing across a membrane, there
is also a diffusion current. Just as the conduction current is caused by an
electric field (or change in the electric potential with distance), the diffusion
current stems from spatial changes in the ionic concentrations.

With DNa defined as the diffusion constant for sodium ions, an expression
for the diffusion current density is

Jd = −qDNa
d[Na+]

dx
.

In this equation, the minus sign appears because ions diffuse in the direction
for which their concentration is diminishing.6

In thinking about diffusion current, keep in mind that it is an indepen-
dent component of transmembrane current. Just as the conduction current
can be set to zero by making the voltage difference across the membrane
zero, the diffusion current for a particular ion becomes zero whenever the
concentrations of that ion are the same on both sides of the membrane.

In other words, Jc and Jd in a cell membrane can be independently
adjusted by the electrophysiologist. Yet, for each ion, the diffusion constant
(which determines the diffusion current) is related in a fundamental way to
the mobility (which fixes the drift velocity of the corresponding conduction
current).

5The unit of resistance (volts/amperes) is the ohm, whereas the unit of conductance
(amperes/volts) has two names. For some, it is whimsically called the mho, which is
“ohm” spelled backward. For others, this same unit of conductance is called the siemens
(S). In this book, the terms “ohm” and “mho” are used.

6Note that this diffusion constant for sodium ions is totally unrelated to the diffusion
constant for voltage on a squid axon, which was mentioned in Equation (2.2) of the
previous chapter.
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3.3.3 Einstein’s Relation
In the year 1905, while struggling to finish a problematic doctoral the-
sis and beginning what would become a difficult marriage, a young Swiss
patent clerk named Albert Einstein found the time and mental energy to
publish three short papers on different subjects, each with revolutionary
implications for twentieth-century physics.

The first of these papers—as is widely known—presented his special
theory of relativity, fundamentally altering Newtonian mechanics, and the
second made basic contributions to the quantum theory of electromagnetic
radiation, for which he was to receive the Nobel Prize. Interesting as these
two works are, it is the third short paper—investigating the stochastic
behavior of a small particle suspended in a liquid, called Brownian mo-
tion7—that concerns us here. Why was Einstein worrying about Brownian
motion along with everything else on his plate?

The atomic theory of matter was not universally accepted a century ago
because no one had actually seen an atom. In this context, therefore, Ein-
stein suggested that the random movement of a small particle in aqueous
suspension could be taken as evidence for collisions with randomly moving
molecules of water [2], and he was able to find a simple relationship be-
tween the diffusion constant and the mobility of such a randomly moving
particle. This relation is important for formulating the dynamics of a nerve
membrane.

To see how Einstein derived his relationship, return to Figure 3.2 and
assume that only a single ionic species (say sodium ions) is able to penetrate
the bilayer membrane, no external voltage is applied to the electrodes, and
the system is in thermal equilibrium.

What is meant by “thermal equilibrium”? In simple terms, this phrase
implies that there is no way of knowing the direction of time. Given a
detailed movie of a system in thermal equilibrium, in other words, it is not
possible to tell whether the film is being run forward or backward. More
formally, this is called the principle of detailed balance, which states that
every local process and its reverse proceed at the same rate.8

In the context of Figure 3.2, thermal equilibrium implies that the con-
duction current Jc of the sodium ions is everywhere exactly canceled by
the diffusion current Jd. Thus,

Jc + Jd = −qµNa[Na+]
dV

dx
− qDNa

d[Na+]
dx

= 0 , (3.2)

7First observed by the English botanist Robert Brown in 1827.
8This type of temporal reversibility is quite different from that related to conservation

of energy mentioned in the previous chapter. The present instance is a special assumption
made in statistical analyses of systems with many degrees of freedom. An essential feature
of biological organisms is the violation of this assumption.
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where E = −dV/dx. This can be integrated to obtain

[Na+]2
[Na+]1

= exp
[
− µNa

DNa
(V2 − V1)

]
, (3.3)

where the subscripts (1 and 2) refer to different sides of the lipid bilayer.
Let us consider the physical meaning of this equation.

Equation (3.3) tells us that if the voltage is higher on side #2 of the lipid
bilayer, then the thermal equilibrium concentration of sodium ions will be
lower on that side. In other words, there are fewer sodium ions where their
energy is higher and more where it is lower. From a physical perspective,
this is to be expected, just as a mountaineer finds the density of atmospheric
molecules to be lower at high altitudes, where their gravitational energy is
greater.

This phenomenon was well known to Walther Nernst and Max Planck at
the end of the nineteenth century [12, 15] and can be stated as follows.
In thermal equilibrium, the relative probabilities of finding an energy-
conserving system in two states of different energies are given by the
ratio

P2

P1
= exp

[
−∆U

kT

]
, (3.4)

where ∆U is the increase in energy of state #2 over that of state #1, T is
absolute temperature, and

k = 1.38 × 10−23 joules per degree kelvin

is the Boltzmann constant. (From a different perspective, this constant tells
us the average amount of thermal energy that a system stores in each degree
of freedom at thermal equilibrium.)

Noting that the energy difference of an ion on two sides of a membrane
is given by

∆U = q(V2 − V1) ,

it follows from a comparison of Equations (3.3) and (3.4) that for any
charged particle undergoing Brownian motion the diffusion constant and
the mobility are related by

D =
kT

q
µ . (3.5)

Equation (3.5), called the Einstein relation, plays an important role not
only in the study of electrolytes and in electrophysiology but also in
semiconductor electronics, where it establishes a connection between drift
and diffusion currents of minority carriers in the base regions of bipolar
transistors [16].
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Figure 3.4. An electric circuit model for a unit area of the lipid bilayer membrane
shown in Figure 3.2.

3.4 A Membrane Model

We are now in a position to assemble an electrical model for a lipid bilayer
membrane that is permeable to an arbitrary number of ionic species, taking
account of the following current components.

First, there is the capacitive component, which from Section 3.2
contributes a current density of

Jcap = C
dV

dt
,

where C = κε0/d is the capacitance per unit area of the bilayer. This
current is represented as the left-hand branch in Figure 3.4, where in the
context of Figure 3.2

V ≡ V2 − V1 .

In addition to the capacitive current, there is also an ionic current for
each species of ion that is able to pass through the membrane. Let us first
consider the sodium ion current, which is represented as the second branch
(counting from the left) in Figure 3.4.

From the previous section, sodium ion current consists of two inde-
pendent components: conduction current (which flows in response to the
voltage difference across the membrane) and diffusion current (which re-
sponds to the difference of sodium ion concentrations on the two sides of the
membrane). Although they can be independently adjusted, these two com-
ponents are linked by the Einstein relation between mobility and diffusion
constant for each ion.
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To establish this connection, refer to Equation (3.2), which expresses
the sum of conduction and diffusion currents under the condition of ther-
mal equilibrium. Inverting Equation (3.3) and using the Einstein relation
(Equation (3.5)), the total transmembrane sodium current (drift plus
diffusion) is zero for

V2 − V1 = V =
kT

q
ln
(

[Na+]1
[Na+]2

)
.

Thus, the steady-state current can be written as

JNa(V ) = G̃Na

[
V − kT

q
ln
(

[Na+]1
[Na+]2

)]
, (3.6)

where the bracketed factor is the electrochemical potential across the mem-
brane, which comprises an electromotive component (the first term) and a
diffusion component (the second term).

Calculation of G̃Na is a daunting task requiring detailed knowledge of
(or assumptions about) the several obstacles that an ion might encounter
on its way across the membrane, including potential barriers, steric bar-
riers, making and breaking of valence bonds, viscous effects, and so on.
Empirically, however, G̃Na can be defined as

G̃Na ≡ JNa(V )
V − (kT/q) ln

(
[Na+]1/Na+]2

) . (3.7)

The first term on the right-hand side of Equation (3.6) is the conduc-
tion current (responding to the potential difference V ), whereas the second
term is the diffusion current (responding to the difference in ionic concen-
trations across the membrane). Through the definition of G̃Na, these two
components are linked by the Einstein relation, but what do we know about
G̃Na?

First, the artificial membrane experiments (discussed in Section 3.1)
strongly suggest that ions move through the membrane via pores or chan-
nels of some sort that are formed by embedded proteins. Further evidence
that sodium current passes through protein pores is the fact that it can
be selectively blocked by small amounts of tetrodotoxin (TTX), a water-
soluble paralytic poison found in the tissues of the Japanese puffer fish
Spheroides rubrides.

Second, as noted earlier, the externally imposed electric field (E = V/d)
within the membrane can be quite large. If, for example, a potential dif-
ference of V = 50 mV is impressed across a typical bilayer membrane of
thickness d = 10 nm (100 Å), the resulting electric field is 50,000 V/cm.
Thus, G̃Na is expected to depend strongly upon the value of V because the
configurations (shapes) of embedded membrane proteins may change with
the forces induced by this large electric field inside the bilayer. Protein con-
figuration changes subsequently alter the sodium ion mobility (µNa) and
the corresponding diffusion constant, DNa = (kT/q)µNa.
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Finally, G̃Na is also expected to be a function of the sodium ion concen-
trations, [Na+]1 and [Na+]2. In general, G̃Na should increase as the ionic
concentrations increase because there will be more charge carriers within
the membrane. Conversely, as [Na+]1 and [Na+]2 approach zero, G̃Na must
also go to zero because there will be no sodium ions available to carry the
current. (In the following chapter, we will see how this property can be
used to separate various components of nerve membrane current.) If the
sodium ion concentrations remain at their normal values, however, G̃Na in
Equation (3.6) can be viewed as a function of V alone.

As represented in Figure 3.4, therefore, Equation (3.6) can be written as

JNa(V ) = G̃Na(V )(V − VNa) ,

where

Jc = G̃Na(V )V

is the conduction component of the sodium ion current that flows down-
ward when the voltage at terminal #2 is more positive than the voltage at
terminal #1. The last term in this equation is the sodium diffusion current,
which is conveniently represented as

Jd = −G̃Na(V )VNa ,

where

VNa ≡ kT

q
ln
(

[Na+]1
[Na+]2

)

is a battery representing the diffusion (or Nernst) potential. The negative
sign before this last term implies that the diffusion component flows upward
if the sodium concentration in chamber #1 is higher than in chamber #2.9

Additional ionic currents are readily brought into the picture. Potassium
current, which is selectively blocked by small concentrations of tetraethyl-
ammonium (TEA), can be modeled as

JK = G̃K(V )(V − VK) , (3.8)

where

VK ≡ kT

q
ln
(

[K+]1
[K+]2

)
,

and included as another branch in the circuit representation of Figure 3.4.
Similarly, the transmembrane current carried by doubly charged calcium

ions (Ca++) can be represented as

JCa = G̃Ca(V )(V − VCa) ,

9In using Equation (3.6) for interpreting empirical data, it is convenient to remember
that kT/q = 25.2 mV at a temperature of 293 K, or 20oC, and 26.7 mV at 310 K, or
37oC.
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where

VCa ≡ kT

2q
ln
(

[Ca++]1
[Ca++]2

)
,

with the “2” in the denominator accounting for the fact that each ion
carries a double charge.

In a general case, therefore, the total ionic current through a membrane
will be given by an expression of the form

J = C
dV

dt
+ JNa + JK + JCa + · · · + etc. (3.9)

Bear in mind that nothing has yet been said about the dynamics of the
ionic conductances G̃Na, G̃K, G̃Ca, and so on. This question will be taken
up in the following chapter.

3.5 Resting Potential and the Sodium–Potassium
Pump

Suppose that the terminals in the experiment of Figure 3.2 are left open
and V is allowed to relax to a steady voltage called the resting potential
(VR) of the membrane. To compute VR, both J and dV/dt are set equal to
zero in Equation (3.9), implying that the sum of the ionic currents must
also be zero.

If the bilayer is permeable only to sodium and potassium ions—as is
approximately so for the squid axon membrane—it follows directly from
Equations (3.6), (3.8), and JNa + JK = 0 that

VR =
kT

q

(
G̃Na ln

(
[Na+]1/[Na+]2

)
+ G̃K ln ([K+]1/[K+]2)

G̃Na + G̃K

)

. (3.10)

The generalization of this result to an arbitrary number of ionic current
components is straightforward. (In the following chapter, we will see that it
is convenient to measure all voltages with respect to the resting potential.)

From Equation (3.10), an interesting fact emerges. If the resting value of
G̃K is much larger than the resting value of G̃Na, then the resting voltage
will be close to the potassium diffusion voltage. In other words,

VR → kT

q
ln
(

[K+]1
[K+]2

)

as G̃K/G̃Na → ∞. For the active membrane of a squid axon, this is
approximately the case.

Measurements on a normal squid nerve also show that the sodium ion
concentration outside the axon is much higher than its inside value, whereas



64 3. Nerve Membranes

the outside level of potassium ion concentration [K+]o is lower than the
inside level [K+]i. Thus,

VK =
kT

q
ln
(

[K+]o
[K+]i

)
≈ −77 mV ,

implying that [K+]o/[K+]i ≈ 0.047.
Normal squid nerve has a resting potential

VR ≈ −65 mV ,

indicating that positively charged ions have lower energy inside than out-
side. At the resting potential, therefore, the potassium conduction current
is directed from outside to inside, whereas the potassium diffusion current is
from inside to outside, so the two components largely cancel, as is expected
for the resting potential lying close to the potassium diffusion potential.

For sodium ions, on the other hand,

VNa =
kT

q
ln
(

[Na+]o
[Na+]i

)
≈ +50 mV ,

which corresponds to [Na+]o/[Na+]i ≈ 7.3. In this case, both the con-
duction current and the diffusion components of the total sodium current
are directed inward when V = VR. How is such a dynamic imbalance
maintained?

First, it is necessary that the value of the sodium conductance (G̃Na)
be very small at the resting voltage, which is consistent with the observa-
tion that G̃Na � G̃K, but merely making sodium conductance small will
not maintain the dynamic imbalance of sodium ions over a long period of
time. Even a small inward flow of sodium ions would eventually reduce the
large ratio of outside to inside concentrations. To maintain the ratio, some
mechanism is needed to transport sodium ions across the membrane, from
inside to outside, and potassium ions from outside to inside. This mecha-
nism turns out to be provided by yet another intrinsic membrane protein,
which is informally known as the sodium–potassium pump.

More precisely called “Na/K-ATPase,” this enzyme was first isolated
in the 1950s by the Danish biochemist Jens Christian Skou and his col-
leagues from the membranes of the nerves from the legs of some 25,000
crabs [17, 18]. Using the biological energy available from hydrolysis of
adenosine-triphosphate (ATP) to adenosine-diphosphate (ADP), Na/K-
ATPase pumps sodium ions out of nerve cells as it pumps potassium ions
in [6, 7, 11]. The resulting resting potential provides the motive force that
drives neural activity.
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3.6 Recapitulation

The emphasis in this chapter has been on developing a physical understand-
ing of nerve membranes and their subsequent dynamics; thus the energetics
of lipid bilayer formation was introduced in the context of soap films. Both
the nature of charge storage in an electric capacitor and an experimental
arrangement to study ionic current flows through artificial lipid bilayers
were then considered in some detail.

Building on this physical picture, the nature of conduction and diffusion
components of transmembrane current were described and related through
a derivation of the Einstein relation, famously linking the mobility and
diffusion constant for each ionic species. To provide a basis for discussions
of nerve impulse propagation in the following chapter, a membrane model
was developed for an arbitrary number of ionic species that relates the
resting potential of a nerve membrane to ionic permeabilities. Finally, the
sodium–potassium pump was mentioned. This vital enzyme uses biological
energy to establish a resting potential across real nerve membranes, thereby
supplying the energy needed for nerve impulse propagation.
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4
The Hodgkin–Huxley (H–H) Axon

Amid the devastation of the Second World War, technology prospered.
In the course of developing radar systems for detecting aircraft and for
control of responding fire, substantial progress was made in the design of
electronic pulse amplifiers and generators and of cathode-ray tubes for the
visual display of such pulses. At the end of 1945, this knowledge became
available for applications to peaceful pursuits.

One application of the new technology was a careful study of the mem-
brane dynamics of the giant axon of the squid (Loligo) (see Figure 1.2),
which was carried out by Alan Hodgkin and Andrew Huxley in the early
1950s [16, 17, 18, 19]. Although obtained for a specific nerve in a particular
species, the concepts emerging from this work have guided much subse-
quent research in electrophysiology. Thus, students of neuroscience should
be familiar with the key features of Hodgkin–Huxley (H–H) theory. In this
chapter, we will consider some essential aspects of this formulation of nerve
impulse dynamics, paying particular attention to the relationships between
mathematical models and biological reality.

4.1 Space and Voltage Clamping

In carrying out their work, Hodgkin and Huxley used the techniques of
space clamping and voltage clamping to obtain a dynamic characterization
of a localized patch of squid membrane. Although these two phrases sound
alike, they describe quite different experimental techniques and must be
individually understood.
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Space Clamping
Geometrically, a squid nerve is a long cylindrical tube of ion-conducting ax-
oplasm encased in a lipid bilayer membrane.1 Variations in transmembrane
voltage with distance along the structure are expected as a result of longi-
tudinal current flowing through the resistive axoplasm, and such variations
make it difficult to measure the specific (per unit area) ionic permeability
of the membrane as a function of transmembrane voltage. Because of the
relatively large cross section of a squid nerve, this difficulty can be overcome
by inserting a conducting wire longitudinally through the nerve to serve as
a terminal for the internal voltage. Under such circumstances, longitudi-
nal variations in voltage are eliminated and the transmembrane voltage is
everywhere held constant—or “space-clamped”—at the same value.

Voltage Clamping
The term “voltage clamping” implies the use of a negative feedback ampli-
fier to set the potential difference across a nerve membrane at a desired
value [7]. This is important because the key for understanding the dy-
namics of ion currents through a squid nerve is to achieve precise control
of the transmembrane voltage, holding it at fixed values in the face of
changes in other experimental variables such as ionic currents, membrane
permeability, electrode resistance, temperature, and the like.

The advantages of using negative feedback are twofold: the input resis-
tance of the amplifier is high, making it easy to set the desired voltage level,
and the output resistance is very low, keeping the output (membrane) volt-
age fixed in the presence of experimental variations in the axon. In other
words, the negative feedback amplifier output looks like an ideal voltage
source (a battery with zero internal resistance, the level of which can be
easily adjusted by an experimenter).

With space clamping, the total current per unit area flowing through the
membrane is given by an expression of the form

Total membrane current
Membrane area

= Jion + C
dV

dt
, (4.1)

where the first term on the right-hand side represents the transmembrane
ionic current per unit area through the membrane, and the second term
is displacement current per unit area through the capacitance of the lipid
bilayer. The current flowing into one terminal of the membrane capacitance
measures the change in free charge of (say) positive ions collecting near
one side of the membrane. The capacitive current flowing out of the other
terminal is then the change in negative ionic charge near the other side of
the membrane.

1For those who wish to learn more about squid experiments, the booklet by Arnold
et al. [3] is an excellent place to begin. Also, Cole’s book [7] has many experimental
details and a lovely color photograph of the squid.
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Figure 4.1. One of Cole’s earliest measurements of squid membrane current under
both space and voltage clamping. (Drawn from data in [7].)

As we learned in Chapter 3, the capacitance per unit area (C) of a
typical nerve cell membrane is about 10−6 F/cm2. A farad has the units of
coulombs per volt or ampere-seconds per volt, so a typical nerve membrane
with a voltage that is changing at a rate of about 100 mV per millisecond
(as on the leading edge of the squid nerve impulse shown in Figure 1.1) will
carry a displacement (or capacitive) current of 100 µA/cm2. Under space-
clamped conditions, this displacement current—the last term in Equation
(4.1)—will be measured on an external current meter in addition to the
ionic current that passes through the membrane.

If the membrane is also clamped at a constant voltage (V ), on the other
hand, the capacitive current is zero because

dV

dt
= 0

and only the ionic current through the membrane is measured. Figure
4.1 shows results from one of the earliest such measurements, which was
recorded by Kenneth Cole in 1947 [7].

When the voltage inside the axon was made 18 mV positive with respect
to the resting value, no ionic current was observed. At 27.5 mV, however,
the ionic current initially flowed into the axon, responding to the fact that
sodium ion concentration is larger outside than inside. After a half millisec-
ond, this current turned outward, responding to the opposite concentration
ratio of potassium ions. At larger values of the space-clamped voltage, the
onset of sodium current was more rapid and the subsequent potassium
current larger.
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4.2 Ionic Currents Through a Patch of Squid
Membrane

Using the techniques of space clamping and voltage clamping developed
by Cole and others [7], Hodgkin and Huxley were able to hold the voltage
across a relatively large area of squid axon membrane fixed at some prede-
termined voltage V , permitting measurement of the individual dynamics
of sodium and potassium currents through the membrane.

To appreciate how these measurements were made, note from Section 3.4
that

sodium current = G̃Na(V, t)(V − VNa) (4.2)

and

potassium current = G̃K(V, t)(V − VK) , (4.3)

where VNa (VK) is the voltage at which the sum of the conduction and
diffusion components of sodium (potassium) current cancel each other, and
the corresponding membrane conductances are G̃Na and G̃K.

In the previous chapter, V was defined as the total voltage difference
across the cell membrane; thus, V ≡ V2 − V1 in Figures 3.2 and 3.4. Both
experimentally and analytically, however, Hodgkin and Huxley found it
more convenient to define voltages with respect to the resting potential of
the membrane, which is defined in Equation (3.10). Here and henceforth
in this book, therefore, all components of transmembrane voltage (V , VNa,
and VK) are measured with respect to the resting potential, VR ≈ −65 mV.
In the notation of the present chapter, therefore,

VNa = 25 log
(

[Na+]o
[Na+]i

)
+ 65,

VK = 25 log
(

[K+]o
[K+]i

)
+ 65,

V (present chapter) = V (previous chapter) + 65 .

In other words, all membrane voltages in this and subsequent chapters are
−VR ≈ +65 mV larger than the corresponding voltages in Chapter 3. Under
these new definitions, the sodium current remains zero whenever V = VNa,
and the potassium current is zero for V = VK.

For typical squid nerves, Hodgkin and Huxley found that

VNa = +109 ± 11% mV

and

VK = −11 ± 14% mV ,
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Figure 4.2. Figures related to the Hodgkin–Huxley determination of membrane
conductances. (a) The applied voltage as a function of time. (b) Measurements
of total ionic current and potassium current, from which sodium current can be
calculated. (c) Sodium and potassium conductances at V = Vj as functions of
time. (See the text for details.)

where these diffusion potentials depend on the ratios of outside to inside
ion concentrations.

To measure the individual (sodium plus potassium) components of
membrane conductivity, Hodgkin and Huxley proceeded as follows [16].

(1) As indicated in Figure 4.2(a), the space-clamped membrane voltage
was suddenly changed from the resting value (V = 0) at t = 0 to Vj , where

VNa > Vj > 0 ,

and held there under voltage clamping. At this voltage, the total ion cur-
rent, Jion(Vj , t), through the membrane was measured as a function of time,
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as in Figure 4.2(b). (Note that a large spike of capacitive current, caused
by the jump in voltage at t = 0, is not shown in Figure 4.2(b).)

(2) The external sodium concentration ([Na+]o) was then set approxi-
mately to zero by changing the composition of the external bath. Because
there remained very few sodium ions in the experimental preparation, the
sodium current (JNa) was effectively reduced to zero.

(3) Using the same voltage level as in (i), the ion current was again
measured under space and voltage clamping. Because sodium current had
been eliminated, this measurement gave the potassium current, JK(Vj , t),
shown in Figure 4.2(b).

(4) Assuming that

Jion = JK + JNa

and subtracting the measurements of JK under (3) from measurements of
Jion under (1) yielded the sodium component of ion current, JNa(Vj , t), the
dashed line in Figure 4.2(b).

(5) Finally, as suggested by Equation (3.7), dividing the measurements
of JNa(Vj , t) by (Vj − VNa) gave the sodium conductivity G̃Na(VJ , t) in
response to a sudden change of voltage from 0 to Vj , which is shown in
Figure 4.2(c). Likewise, dividing the measurements of JK(Vj , t) by (Vj−VK)
gave the potassium conductivity G̃K(Vj , t), which is also in Figure 4.2(c).

Because (Vj − VNa) remains constant during a particular measurement,

G̃Na(VJ , t) ∝ JNa(Vj , t) ,

and similarly

G̃K(VJ , t) ∝ JK(Vj , t) ,

but G̃Na has the opposite sign from JNa because (Vj − VNa) is negative.
Performing this measurement for a dozen different values of Vj , Hodgkin

and Huxley observed that the sodium conductance (or permeability) ini-
tially rose from zero to a maximum value in a time of less than one
millisecond and then decayed back to zero in a few milliseconds. Going
further, they showed that the dynamics of sodium ion current at voltage
V could be modeled by the formula

JNa(V ) = GNam
3(V, t)h(V, t)(V − VNa) , (4.4)

where GNa is a maximum sodium conductance (or permeability) per unit
area, m is a “sodium turn-on” variable, and h is a “sodium turn-off” vari-
able. Similarly, the dynamics of potassium ion current at voltage V were
represented as

JK(V ) = GKn4(V, t)(V − VK) ,
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Table 4.1. Parameter values measured by Hodgkin–Huxley for the giant axon of
the squid [19].

Parameter Mean Range Standard Units

C 0.91 (0.8—1.5) 1.0 µF/cm2

GNa 120 (65—260) 120 mmhos/cm2

GK 34 (26—49) 36 mmhos/cm2

GL 0.26 (0.13—0.5) 0.3 mmhos/cm2

VNa +109 (95—119) +115 mv

VK −11 (9—14) −12 mv

VL +11 (4—22) +10.5995 mv

where n is a “potassium turn-on” variable. Thus, G̃Na ≡ GNam
3h and

G̃K ≡ GKn4, where m, h, and n are all constrained to lie between zero and
one.2

The total ionic current per unit area across the membrane, as expressed
in Equation (4.1), then becomes

Jion = GNam
3h(V − VNa) + GKn4(V − VK) + GL(V − VL) , (4.5)

where m, h, and n are functions of both V and t, and the last term is a small
leakage current, accounting for ionic current missed by the direct measure-
ments of sodium and potassium components. From such measurements,
Hodgkin and Huxley were able to construct first-order ordinary differential
equations governing the dynamics of m, h, and n, which are recorded in
Appendix B.

As in Figure 3.4, VNa, VK, and VL can be viewed as ionic batteries that
cause diffusion components of ionic currents to flow across the membrane.
We will see that these batteries supply energy to a nerve impulse to make
up for the energy lost to ohmic dissipation of the circulating ionic currents.

2As Cole has pointed out, however, the assignment of powers to m and n is some-
what arbitrary [7]. Although several other representations of the dynamics have been
suggested, the original Hodgkin–Huxley formulation has become widely accepted in the
neuroscience literature [12, 14, 20, 30, 34, 38].
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Values for the parameters in Equation (4.5) are given in Table
4.1. Interestingly, these parameter values exhibit normal physiological
variations.3

The “standard” values in this table lie close to the average values and
were selected for reasons to be explained later. In particular, there is no
empirical basis for the standard value of +10.5995 mV for VL. This value
was chosen to make Jion = 0 when V = 0 in Equation (4.5) for the other
standard parameters.4

That such a formulation is not a special property of the squid axon is
shown in Table 7.1 presenting corresponding standard parameters for the
sciatic nerve of a frog [7]. In this case, the measurements were made on small
active nodes because each nerve fiber is largely covered with an insulating
sheath, called myelin, as indicated in Figure 7.1. The effect of this structure
is to increase the conduction velocity of an impulse without increasing the
nerve diameter, a phenomenon that was briefly discussed in Chapter 1 and
will be considered again in Chapter 7. Comparison of the data in Tables
4.1 and 7.1 shows that the properties of nerve membranes from different
phyla of the animal kingdom are similar.

To repeat: using the experimental methods sketched above, Hodgkin
and Huxley formulated the dynamics of m(V, t), h(V, t), and n(V, t) as
the first-order ODEs recorded in Appendix B. Using these equations, it
is straightforward to compute how a space-clamped membrane will switch
when it is not voltage-clamped.

4.3 Space-Clamped Action Potentials

Suppose that we have a length of squid axon that is space clamped so the
voltage is uniform over the entire membrane area. To simplify the arith-
metic, take this area to be one square centimeter. Then, from Equation
(4.1), the basic equation governing the dynamics of membrane voltage is

dV

dt
=

I0(t) − Jion

C
, (4.6)

where I0(t) is a current injected into the axon by the experimenter and
Jion is given in Equation (4.5). A short pulse of this injected current will

3Such diversity may surprise physical scientists, who usually deal with homogeneous
classes of objects, in which the members are identical (such as electrons, protons, oxygen
atoms, benzene molecules, and so on), but the science of biology aims to understand
heterogeneous classes of living organisms, in which the members are similar but not
identical. See Walter Elsasser’s Reflections on a Theory of Organisms [11] for a discussion
of this distinction, which we will revisit in Chapters 10 and 12.

4This value for VL is slightly below the value of 10.613 mV given by Hodgkin and
Huxley [19].
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charge the membrane capacitance, which raises the transmembrane voltage
from its resting value (V = 0) to a threshold level that allows sodium ion
current to flow into the axon and initiate a space-clamped action potential.

It turns out that sodium turn-on (mediated by m) is about an order of
magnitude faster than potassium turn-on and sodium turn-off (mediated by
n and h, respectively). Using the standard values for the H–H parameters
from Table 4.1 and referring to the equations for m(V, t), h(V, t), and n(V, t)
given in Appendix B, the subsequent dynamics of Equation (4.6) can be
described as follows.

(1) At the resting potential (V = 0), the sodium conductance is almost
zero. This is because (see Appendix B) m0(0) = 0.053 and h0(0) = 0.596
so sodium ion permeability

GNam
3
0(0)h0(0) = 0.000089 GNa .

The potassium ion current is also small at rest because n0(0) = 0.318 so
potassium ion permeability

GKn4
0(0) = 0.0102 GK .

(2) As the membrane voltage is increased from its resting value (by a
short pulse of injected current, I0(t)), sodium channels open (m → 1) on a
time scale of τm ∼ 0.2 ms.

(3) This influx of sodium ions brings the membrane voltage to a level
approaching +115 mV with respect to its resting value. Then (V −VNa) ≈ 0,
implying from Equation (4.2) that the sodium ion current becomes small.

(4) At this voltage, potassium ion permeability turns on (n → 1)
as sodium ion permeability turns off (h → 0) on time scales of a few
milliseconds.

(5) Because (V − VK) ∼ +100 mV, potassium ions flow rapidly out of
the axon and carry the membrane voltage back to its resting value on a
time scale of a few milliseconds.

To describe these dynamics quantitatively, one can integrate Equation
(4.6) together with

dm

dt
= −m − m0(V )

τm(V )
,

dh

dt
= −h − h0(V )

τh(V )
, (4.7)

dn

dt
= −n − n0(V )

τn(V )
,

from Appendix B.
Hodgkin and Huxley [19] carried through a number of such membrane-

switching calculations for a variety of experimental conditions, which
demonstrated that their formulation is in quantitative agreement with
measurements of V (t) on real squid membranes.



76 4. The Hodgkin–Huxley (H–H) Axon

Although the initial H–H computations were laborious in 1950, presently
available computers make them convenient. The numerically inclined are
referred to Chapter 9 of Hugh Wilson’s book Spikes, Decisions, and Ac-
tions, which comes with a collection of Matlab codes [39]. These easily
used codes are integrated into the text and encourage the reader to study
many features of Equation (4.6), including membrane switching, periodic
membrane dynamics (bursting) with constant I0, dependence of bursting
frequency on I0 and various sorts of ionic current, stochastic resonance
under the influence of random noise, and subharmonic resonance.

Before leaving the subject of transmembrane ionic dynamics, three items
should be underscored.

• Introductory discussions of nerve membrane dynamics sometimes
leave the impression that sodium current ceases to flow at the peak
of an action potential because “sodium ions rush in,” altering the
concentration ratio. Straightforward calculations for the Hodgkin–
Huxley system, however, show that ionic ratios change by a negligible
amount during the passage of a single nerve impulse. In other words,
the sodium and potassium batteries are hefty enough to conduct
many impulses before needing to be recharged by the sodium–
potassium pump. Sodium current ceases to flow at the peak of the
switching cycle because sodium diffusion current becomes canceled
by oppositely directed conduction current when V is about equal to
VNa.

• The equations obtained by Hodgkin and Huxley describe ionic cur-
rents that are averaged over many thousands of channels. It is now
possible to observe the currents flowing through individual protein
channels using the patch clamp technique, in which a single channel
is fixed on the end of a glass microelectrode.5 Such measurements
indicate that individual channels switch from being fully closed to
being fully open, carrying currents on the order of a picoampere for
times on the order of a millisecond [6, 37]. Thus, the formulation of
Hodgkin and Huxley describes the average probabilities of individual
membrane channels being open as a function of time, and it is the
temporal variations of these probabilities that are described by the
dynamics of m, h, and n in Equations (4.7).

• In neurons of the mammalian central nervous systems, there are cur-
rently known to be several dozen types of ionic channels, exhibiting a
variety of dynamic behaviors [26]. Although two ionic species (sodium
activating and potassium deactivating) may be satisfactory for quali-
tative studies of the human brain, quantitative analyses often require

5Electrophysiologists seem fascinated by the term “clamp.”
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formulations for the ionic current that include more terms than in
Equation (4.5).

This last caveat is especially apt for mammalian cell bodies and den-
drites, where calcium ions can cause a depolarization of the membrane that
results in several types of action potentials. Because it is more difficult to
make space- and voltage-clamped measurements on neocortical dendrites
than on the giant axon of the squid, the models of these calcium currents
are often less reliable than the H–H equations. Present formulations tend
to follow the H–H paradigm of Equation (4.4), but the internal calcium ion
concentrations can be quite small (tens of nanomoles), which brings intra-
cellular calcium diffusion into the picture [4, 22, 24]. Interactions between
sodium and calcium activation currents often lead to complex bursting be-
havior at the cell body, which the reader can explore numerically using
Matlab codes from Wilson’s book [39].

4.4 The “Cable Equation”

At this point, we know how a patch of space-clamped nerve switches; thus,
we are ready to consider how this local switching activity propagates along
a nerve that is not space-clamped. The relevant parameters in impulse
propagation are the following.

• r is the longitudinal resistance per unit length of the fiber, which is
usually measured in units of ohms per centimeter. For a cylindrical
fiber of radius a, r = ρ/πa2, where ρ is the specific resistivity of the
cytoplasm in ohm-centimeters.

• c is the membrane capacitance per unit length of the fiber and is
measured in units of farads per centimeter. For a cylindrical fiber of
radius a, c = 2πaC, where C is the capacitance per unit area of the
membrane in farads per square centimeter.

• jion is the ionic current flowing across the membrane (from inside
to outside) per unit length of the fiber and is measured in units of
amperes per centimeter. For a cylindrical fiber of radius a, jion =
2πaJion, where Jion is the transmembrane current per unit area, which
is shown in Figure 4.1 and given in Equation (4.5).

How are these parameters to be introduced into a theory of nerve im-
pulse propagation? To answer this question, consider the differential circuit
diagram of a nerve fiber displayed in Figure 4.3(b). To first order in ∆x,
Ohm’s law implies that

V (x, t) − V (x + ∆x, t) = i(x + ∆x/2, t)r∆x , (4.8)
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Figure 4.3. (a) Sketch of a squid axon. (b) A corresponding differential circuit
diagram that can be used to derive the cable equation for impulse propagation.

where i is the longitudinal (x-directed) current flowing through the nerve.
From conservation of electric charge, we also know that to first order in ∆x

i(x, t)−i(x+∆x, t) =
(

c
dV (x + ∆x/2, t)

dt
+ jion(x + ∆x/2, t)

)
∆x . (4.9)

Combining these two equations to eliminate i and taking the limit as ∆x →
0 yields the following nonlinear diffusion equation:

1
rc

∂2V

∂x2 − ∂V

∂t
=

jion
c

. (4.10)

Motivated by familiarity with a related partial differential equation that
arose in the analysis of telegraph lines, Equation (4.10) is often called the
“cable equation” by electrophysiologists, but this name is misleading. Prop-
agation of dits and dahs over a telegraph line is a linear electromagnetic
phenomenon, whereas Equation (4.10) represents nonlinear electrostatic
diffusion.6

From the perspectives of modern nonlinear science, Equation (4.10) is
a nonlinear field equation out of which emerges an elementary particle of
neural activity: the nerve impulse [35]. It is nonlinear because of the nonlin-
ear dependencies of jion on m, h, and n, which in turn depend nonlinearly
on V .

Let us now analyze the cable equation to understand how a nerve impulse
emerges from the mathematical structure that we have developed.

6Using Maxwell’s equations, one can take magnetic effects into account in the deriva-
tion of Equation (4.10), but the error involved in neglecting this correction is about one
part in 108 [33].
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4.5 Traveling-Wave Solutions of the
Hodgkin–Huxley Equations

A solution of Equation (4.10) that represents a nerve impulse is a traveling
wave for which

V (x, t) = Ṽ (x − vt) .

For a traveling wave, the general dependencies on both x and t are
constrained by the traveling-wave variable

ξ ≡ x − vt ,

where v is the propagation velocity of the traveling wave.
This traveling-wave assumption implies that the partial derivatives with

respect to x and t in Equation (4.10) are related in the following manner:

∂V

∂x
=

dṼ

dξ

∂ξ

∂x
=

dṼ

dξ

and

∂V

∂t
=

dṼ

dξ

∂ξ

∂t
= −v

dṼ

dξ
.

Thus, Equation (4.10)—a partial differential equation (PDE)—is reduced
under the traveling-wave assumption to the ordinary differential equation
(ODE)

1
rc

d2Ṽ

dξ2 + v
dṼ

dξ
=

jion
c

, (4.11)

but there is no free lunch. Because it is an ODE rather than a PDE, Equa-
tion (4.11) is easier to solve than Equation (4.10), but it contains less
information. We can see this in two ways.

First, an electronic computer could nowadays be employed to integrate
Equation (4.10) numerically with a stable traveling-wave solution and its
corresponding velocity v emerging from appropriate initial conditions. In
Equation (4.11), on the other hand, v is an undetermined parameter. Sec-
ond, the existence of a numerical solution for Equation (4.10) demonstrates
the stability of that solution, whereas Equation (4.11) tells us nothing about
the stability of any traveling waves that we might use it to discover.

The existence of a particular traveling-wave velocity can be seen from the
energetics of nerve impulse propagation, which were introduced in Chap-
ter 1. Thus, an H–H nerve impulse can be viewed as a coherent process
represented by the closed causal loop (or positive feedback diagram)

Release of energy
↓ ↑

Dissipation of energy
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with each component supporting (or being the cause of) the other.
Propagation at a fixed speed implies that the rate at which energy is

dissipated must equal the rate at which energy is released by the moving
impulse. The released energy is provided by the “ionic batteries” in Equa-
tion (4.5), with dissipation stemming from the ohmic losses of circulating
ion currents.7

In other words, in a nerve axon, the energy released by a moving im-
pulse is primarily the electrical field energy that is stored in the membrane
capacitance, and the corresponding dissipation stems from ohmic losses
of internal and external ionic current flows. We will see in the following
chapters that this concept of “power balance” provides insights into the
dynamics of many simple nerve models.

4.5.1 Phase-Space Analysis
Constrained by the lack of a digital computer in the early 1950s, Hodgkin
and Huxley had no choice but to study Equation (4.11). In fact, the most
advanced numerical tool they had was a mechanical adding machine. How
then did they proceed?

Written as a first order ODE system, Equation (4.11) involves five de-
pendent variables: V , W ≡ dV/dξ, m, h, and n. From Equation (4.7), this
system is

dV

dξ
≡ W ,

dW

dξ
= rjion(V, m, h, n) − rcvW ,

dm

dξ
=

m − m0(V )
vτm(V )

, (4.12)

dh

dξ
=

h − h0(V )
vτh(V )

,

dn

dξ
=

n − n0(V )
vτn(V )

,

a set of equations that determine the course of a solution trajectory in a
phase space of five dimensions that represents the dependent variables V ,
W , m, h, and n. The right-hand sides of these equations fix the components

7Requiring a traveling-wave solution to have a speed fixed by the parameters is a
strong constraint on dissipative nonlinear wave systems that does not hold for energy-
conserving systems. In soliton systems, for example, the speed of a traveling wave is
determined by the initial conditions from a continuum of allowed values [35]. Thus a
nerve impulse is not a soliton.
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of a rate vector
(

dV

dξ
,
dW

dξ
,
dm

dξ
,
dh

dξ
,
dn

dξ

)

telling how solution trajectories move as functions of the independent
variable ξ in the five-dimensional space

(V, W, m, h, n) .

In other words, at each point in the phase space, we could draw a little
arrow with components

(
dV

dξ
∆ξ,

dW

dξ
∆ξ,

dm

dξ
∆ξ,

dh

dξ
∆ξ,

dn

dξ
∆ξ

)
,

which would show where a phase point at (V, W, m, h, n) would move as ξ
increases to ξ + ∆ξ.8

Equations (4.12) are said to be autonomous because the functions on the
right-hand sides do not depend on the independent variable ξ. Thus, the
lengths and directions of our little arrows are independent of ξ throughout
the phase space, providing simplifications for visualizing a solution and
finding it.

Understanding solution trajectories of an autonomous system of first-
order ODEs is facilitated by first learning where in the phase space the
rate vector is equal to zero. Such loci are called singular points (SPs), and
for Equations (4.12) there is only one SP at

(V, W, m, h, n) = (0, 0, 0.05293, 0.59612, 0.31768) ,

which is indicated in Figure 4.4.
Sufficiently near the singular point, Equations (4.12) are linear because

the components of the rate vector are very close to zero. Analysis of this
linear system reveals trajectories that are directed toward the SP as ξ →
+∞ and also trajectories that are moving away from the SP for large
negative values of ξ.

From all of these possibilities, we must select a trajectory corresponding
to a nerve impulse, for which V → 0 as ξ → ±∞. This is evidently a
trajectory that leaves the SP at ξ = −∞ and returns to it at ξ = +∞.

8These considerations provide a basis for integrating Equations (4.12). Thus starting
with a phase point at (V (ξ), W (ξ), m(ξ), h(ξ), n(ξ)), one could add

(
dV

dξ
∆ξ,

dW

dξ
∆ξ,

dm

dξ
∆ξ,

dh

dξ
∆ξ,

dn

dξ
∆ξ

)

to get the position of the phase point at (V (ξ + ∆ξ), W (ξ + ∆ξ), m(ξ + ∆ξ), h(ξ +
∆ξ), n(ξ + ∆ξ)). Continuing this process will determine the trajectory as a function
of ξ. This is essentially what Hodgkin and Huxley did many times with a mechanical
calculator.
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Figure 4.4. Schematic representation of traveling-wave trajectories in the
five-dimensional phase space of V , W ≡ dV/dξ, m, h, and n. The assumed
traveling-wave speed (v) must be adjusted so that a wave originating from the
singular point (SP) as ξ → −∞ approaches it again as ξ → +∞.

Such a trajectory that starts at an SP and returns to the same one is called
homoclinic as opposed to a heteroclinic trajectory, which starts at one SP
and terminates at another.

In general, of course, a trajectory that leaves an SP would not be ex-
pected to return—it is much more likely to cruise off to the far reaches
of phase space—but we have one more tool at our disposal. This is the
undetermined traveling-wave speed v, which is an adjustable parameter in
Equations (4.12). In other words, v can be selected to establish a homoclinic
trajectory in the phase space.

Called the “shooting method,” the numerical procedure used by Hodgkin
and Huxley was as follows. (1) Select a value for v and begin integrating
Equations (4.12) along a trajectory that leaves the SP at ξ = −∞. (2) Note
how this trajectory moves around the phase space, eventually returning
to the vicinity of the SP. (3) Record the smallest distance between the
trajectory and the SP. (4) Change the selection of v so that this smallest
distance is reduced. (5) Repeat the process until V (ξ) and v are sufficiently
well-determined.

4.5.2 Numerical Results
The moment of truth has arrived. We are now ready to consider whether
the numerical procedure just described leads to a traveling-wave solution
corresponding to experimental observations.
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Table 4.2. Standard Hodgkin–Huxley parameters for the giant axon of the squid.

Parameter Value Units

ρ 35.4 ohm-cm

a 238 µm

r 2.0 × 104 ohms/cm

c 1.5 × 10−7 F/cm

In attempting to answer this question, Hodgkin and Huxley were faced
with two problems. First, to calculate the traveling-wave solution on a
single nerve, it was necessary to carry through many tedious repetitions of
the shooting method without the benefit of an electronic computer. Also
the parameter values for real nerves vary over a rather wide range, as is
seen in the third column of Table 4.1.

To limit the number of parameters considered—and thereby the num-
ber of integrations on their mechanical calculator—they selected one axon
with an internal (axoplasmic) resistivity (ρ) of 35.4 ohm-cm, a radius (a)
of 238 µm, and the “standard” membrane values indicated in Table 4.1
as a candidate for detailed numerical analysis. For this specific axon, the
relevant parameters for the nonlinear field equation are given in Table 4.2.
Because the action potential on this nerve was measured at a temperature
of 18.5oC, the numerical calculations of the impulse were also performed
at this temperature.

From a comparison of Figures 1.1 and 4.5, the shape of the traveling-
wave solution calculated for this nerve was found to be in good qualitative
agreement with experimental observations. Quantitatively, the calculated
impulse velocity was 18.8 m/s, whereas the measured speed was 21.2 m/s:
again in substantial agreement. Like a present-day celebrity who is “famous
for being well known,” therefore, this particular nerve has become widely
recognized and studied as the standard Hodgkin–Huxley axon defined by
the parameters in Tables 4.1 and 4.2.

Although it was impractical for Hodgkin and Huxley to carry out the
necessary calculations in the early 1950s, there are in fact two homoclinic
solutions of Equations (4.12) at two different values for the traveling-wave
speed, and the corresponding solutions of the PDE system are shown in
Figure 4.5. In this figure, the higher-amplitude solution (at v = 18.8 m/s)
corresponds to the impulse displayed in Figure 1.1 of Chapter 1. This
traveling-wave solution is stable in the sense that deviations from it relax
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to zero with increasing time as solutions of the full PDE given by Equation
(4.10). (See Sections 5.4 and 6.5.2 and Appendix D for discussions of nerve
impulse stability criteria.)

5
0

50

100

stable
(18.8 m/s)

unstable
(5.66 m/s)Im

pu
ls

e 
vo

lta
ge

 (
m

i ll
iv

ol
ts

)

Time (milliseconds)

Figure 4.5. A full-sized spike (at v = 18.8 m/s) and an unstable threshold impulse
(5.66 m/s) for the Hodgkin–Huxley axon at 18.5oC. (Redrawn from Huxley [21].)

The smaller-amplitude traveling wave solution, with a speed of 5.66 m/s,
was found by Huxley in 1959 using an electronic computing machine [21].
This solution is unstable in the sense that deviations from it diverge with
increasing time as solutions of the full PDE given by Equation (4.10).
Slightly smaller solutions decay to zero, and slightly larger solutions grow
to become the fully developed nerve impulse; thus, this unstable solution
defines threshold conditions for igniting an impulse.

In the language of modern nonlinear theory, the stable traveling wave of
greater amplitude can be viewed as an attractor in the solution space of
the PDE system of Equation (4.10); thus, solutions lying within a basin of
attraction converge to the attractor as t → +∞. The lower-amplitude un-
stable solution, on the other hand, lies on a separatrix dividing an impulse’s
basin of attraction from that of the null solution.

4.6 Degradation of a Squid Nerve Impulse

By the middle of the 1960s, electronic computing machines had devel-
oped to a level where the original Hodgkin–Huxley calculations were fairly
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Figure 4.6. Power balance loci showing impulse speeds for the Hodgkin–Huxley
equations as a function of a “narcotization factor” (η). (Redrawn from Cooley
and Dodge [9].)

straightforward, and additional results began to emerge from numeri-
cal studies of their formulation. Among these new investigations, Cooley
and Dodge looked at the effects of “narcotizing” a nerve fiber, thereby
broadening understanding of how nerves work [9].

To represent the effects of a narcotic agent on a nerve, the standard H–H
equations were altered by reducing the values of the maximum sodium and
potassium conductances (given in Table 4.1) by a unitless narcotization
factor

η < 1 .

Thus,

GNa → ηGNa and GK → ηGK

are the values used in numerical computations.
As is seen from Figure 4.6, one qualitative effect of this type of narcoti-

zation is to reduce the speed of the larger-amplitude stable traveling-wave
solution shown in Figure 4.5. Conversely, the speed of the smaller-amplitude
unstable traveling-wave solution is increased. Eventually, a critical point is
reached at

ηc = 0.261 ,
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Figure 4.7. Decremental propagation of an impulse on an H–H axon that is
narcotized by the factor η = 0.25 (sketched from data in [9] and [25]).

where the two solutions merge. For yet smaller values of η, no traveling-wave
solutions exist.

To appreciate the physical significance of these results, look at the (v, η)
parameter plane of Figure 4.6. The curve plotted in this plane shows the
loci of parameters where a balance is established between the rate at which
energy is generated by the ionic batteries in Equation (4.5) and the rate at
which it is dissipated by the ionic currents associated with a nerve impulse.

The upper curve indicates stable traveling-wave solutions, implying that
a small change of an impulse solution (either positive or negative) will re-
lax back to zero and restore the original wave. The lower curve indicates
unstable traveling waves, implying two different effects. An increase in am-
plitude of the solution will grow (because energy generation is greater than
dissipation) until the total solution reaches the stable solution of the upper
curve. If its amplitude is decreased, on the other hand, the impulse will
decay (because energy generation is less than dissipation) until it falls to
zero. These numerical results provide an explanation for the all-or-nothing
property of a nerve impulse noted by Adrian in 1914 [2].

Although the concept of all-or-nothing propagation holds for η > ηc, its
logical basis evaporates for η < ηc. In this regime, however, one can find
decremental propagation of a nerve impulse, as is sketched in Figure 4.7 [9,
25]. For such a decremental impulse, the rate at which energy is generated is
only slightly less than the rate of dissipation, so the solution relaxes rather
slowly to zero. As has been emphasized by Lorente de Nó and Condouris
[27], this phenomenon was long overlooked by electrophysiologists who had
concentrated their attentions on the properties of standard nerves.

These qualitative conclusions stemming from the computations of Coo-
ley and Dodge are quite general, applying to several other experimental
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situations in which the ability of a nerve to conduct impulses is degraded.
Thus, results resembling those displayed in Figure 4.6 are also observed in
the following cases.

• Changes in the internal or external concentrations of sodium or potas-
sium ions can alter the robustness, or safety factor, of an impulse. As
a specific example of this phenomenon, Adelman and FitzHugh have
augmented the Hodgkin–Huxley formulation to study buildup of ex-
ternal potassium ion concentration in a localized “periaxonal space”
(30–40 nm across) surrounding a squid giant axon [1]. Widely ob-
served in measurements on squid nerves, this increase of potassium
concentration is caused by repeated stimulation of the fiber, which
alters the equilibrium potential for potassium ions (VK in Table 4.1)
on time scales of the order of 100 ms. We will meet this phenomenon
again in Chapter 9.

• Higher temperatures increase the temporal rates of membrane con-
ductance change, shortening both the sodium turn-on time (τm) and
the potassium turn-on time (τn). Near 18.5oC, decreasing τm causes
the squid impulse velocity to increase, but around 30oC the decrease
in τn dominates, causing the impulse speed to decrease and degrading
the ability of a nerve to conduct impulses [7, 21].

• Increasing the leakage conductance (GL) degrades the performance of
a nerve. If the H–H value of 0.3 mmho/cm2 (given in Table 4.1) is in-
creased beyond a critical value of about 8.6 mmho/cm2, for example,
only decremental propagation occurs [7].

• Abrupt changes in the cross-sectional area of the nerve can lead to
a failure of impulse propagation [23]. As we will see in Chapter 9,
this phenomenon has implications for the possibilities for information
processing at the axonal or dendritic branchings of a neuron.

• The propagation of a periodic train of impulses becomes degraded as
the interval between individual impulses becomes less than a certain
value. This effect occurs because each impulse is then propagating
through a refractory zone in the wake of the preceding impulse.

4.7 Refractory and Enhancement Zones

The difficulties encountered by a nerve impulse that follows too closely on
the heels of another have been studied empirically through double impulse
measurements [10, 36]. In such experiments, pairs of impulses are launched
on single fibers, and the ratio of impulse speeds is measured as a function
of the impulse interval (T ).
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The lower part of Figure 4.8 shows the results of one series of
measurements of the ratio

R(T ) ≡ speed of second impulse
speed of first impulse

(4.13)

for two impulses propagating on a particular giant axon of the squid (Lologo
vulgaris) collected by the Stazione Zoologica from the Bay of Naples. A
significant feature of these data is the impulse interval T = T1 at which
R(T ) = 1.

Expressed in terms of T1, there are qualitative differences among four
regions of the impulse interval.

• Absolute refractory zone: For impulse intervals less than

T < 0.4 T1 ,

it is impossible for the second impulse to propagate; thus, R(T ) = 0.

• Relative refractory zone: For impulse intervals in the range

0.4 T1 < T < T1 ,

the second impulse is able to propagate, albeit with diminished speed.

• Enhancement zone: In the range

T1 < T < 1.8 T1 ,

the second impulse is observed to travel faster than the first impulse.

• Decoupled zone: If the impulse interval is greater than about 1.8 T1,
both impulses travel at the same speed, with the second impulse
uninfluenced by the first.

The critical time interval T1 increases as the temperature is lowered,
as implied by the Hodgkin–Huxley equations given in Appendix B. From
Equation (B.3), the rate constants (τ−1

m , τ−1
h , and τ−1

n ) for the sodium
turn-on and turn-off variables (m and h) and for the potassium turn-on
variable (n) are to be multiplied by the factor

κ = 3(Temp−6.3)/10 (4.14)

if the temperature (“Temp”) differs from 6.3oC. Assuming that the timings
of refractory effects stem from the dynamics of h and n on the trailing edge
of the first impulse, Equation (4.14) implies T1 ∝ 3−Temp/10 in the lower
part of Figure 4.8. Analysis of data from 13 freshly prepared squid axons
at temperatures between 14.4oC and 20.4oC gives the relationship [36]

T1 = 58.2 × 3−Temp/10 ms ± 13% , (4.15)

where the percent error indicates rms deviation from the mean.
Although absolute and relative refractory zones are well-established in

neuroscience lore, the enhancement zone is less widely recognized. Observed



90 4. The Hodgkin–Huxley (H–H) Axon

in the frog (Rana pipiens) sciatic nerve by Graham as early as 1934 [15]
and confirmed by Bullock in giant fibers of the earthworm (Lumbricus
terrestris) in 1951 [5], enhancement of the second impulse speed can be
understood with reference to Figure 4.8.

On the upper part of this figure is reproduced an oscilloscope photograph
of the trailing edge of a single squid impulse into which a second impulse
would attempt to propagate. On this photograph, T0 is the time between
the point of maximum slope on the leading edge of V (t) (occurring at about
50 mV, this is off the scale of the figure) and the point on the trailing edge
where V (t) crosses over from being hyperpolarizing (more negative than
the resting value) to depolarizing.

Both T0 and T1 have been measured on the above-mentioned cohort of
13 squid axons [36], showing that

T0 ≈ T1

to within an experimental error of about ±15%.9

To facilitate the reader’s comprehension of the data displayed in Figure
4.8, the upper part of the figure has the crossover point between hyperpo-
larizing and depolarizing voltages aligned with T = T1 on the lower part of
the figure. Also because the upper part of the figure is at 16.5oC whereas
the lower part was measured at 14.4oC, the time scale on the lower part is
contracted by the factor 3(14.4−16.5)/10 = 0.794.10

Evidently, the qualitative behaviors of these two measurements are sim-
ilar in the neighborhood of the crossover points, which suggests that the
enhancement zone stems from the depolarizing phase on the trailing edge of
the first impulse. In other words, if the leading edge of the second impulse
is within the depolarized region in the wake of the first impulse, the second
impulse propagates faster than it would on an undisturbed axon, leading
to the experimental observation that R > 1.

Why is there a depolarizing phase in the wake of the first impulse?
Because squid membrane near its resting level is oscillatory.

Discovered by Cole and Baker in 1941 [8] and noted by Hodgkin and
Huxley in 1952 [19], subthreshold membrane oscillations were investigated

9Comparing these measurements with Hodgkin–Huxley calculations reveals two
disagreements. (1) Under H–H, the time interval

T1 = 36.6 × 3−Temp/10 ms ,

which lies below the limits of Equation (4.15) [29]. (2) Over the temperature range
between 14 and 18.5oC, the H–H model indicates that T1 is about 1.3 ms less than T0
[31]. George and Silberstein [13] have suggested that periaxonal buildup of potassium ion
concentration [1] in the wake of the first impulse can decrease the speed of the second,
which tends to increase T1.

10Although the two data sets in Figure 4.8 were taken on different axons, the shape
of V (t) in the upper part of the figure is in agreement with detailed measurements of
V (t) for the axon of the lower part, from which R(T ) was also calculated [36].
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numerically by Sabah and Liebovic in 1969 [32] and both experimentally
and numerically by Mauro and his colleagues in 1970 [28]. These studies
have shown that a patch of squid membrane below threshold has a damped
resonance (Q ∼ 3) at around 50–100 Hz, depending on the temperature
[28].

From the perspective of an electrical engineer, a subthreshold patch of
membrane looks like a “parallel GLC circuit,” where C is the membrane
capacitance, G is the subthreshold membrane conductance, and L is a
phenomenological inductance generated by time delays associated with the
dynamics of h and n, the sodium turn-off and potassium turn-on vari-
ables. In considering this membrane resonance, it is important to remember
that the phenomenological inductance has nothing to do with storage of
magnetic field energy, which is negligible in neural dynamics [33].

4.8 Recapitulation

Fundamental for experiments on nerve membrane dynamics are the tech-
niques of space clamping (to remove space variations from membrane
measurements) and voltage clamping (for holding the transmembrane volt-
age at a preassigned value). Based on these techniques, the Hodgkin–Huxley
(H–H) formulation of ionic dynamics was presented, and the related
phenomenon of squid axon membrane switching was discussed.

The “cable equation” for propagation along a nerve fiber was then de-
rived and used to describe traveling-wave impulses on the H–H model of a
squid giant axon. In the language of nonlinear science, the ODE system for
traveling-wave propagation can be viewed in a phase space of five dimen-
sions, wherein a nerve impulse is represented by a homoclinic trajectory
that begins and ends at the same singular point. In the context of the PDE
system governing the full dynamics of the nerve, a nerve impulse is an at-
tractor with a basin of attraction. H–H calculations of impulse shape and
speed are shown to be in good agreement with measurements of impulse
propagation on squid axons.

Finally, various experimental and physiological influences that degrade
the robustness of an impulse were considered, refractory and enhance-
ment zones in the wake of a propagating impulse were described, and the
subthreshold resonance of a nerve membrane was noted.
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5
Leading-Edge Models

To develop an intuitive understanding of a challenging area, it is sometimes
useful to bracket the problem, on one hand looking fully at the intricacies
and on the other taking the simplest possible perspective. Having consid-
ered a rather complete description of a squid axon in Chapter 4, we now
turn our attention to simpler models of a nerve fiber that focus attention
on the leading edge of an impulse.

Although lacking the scope and precision of the Hodgkin–Huxley formu-
lation, these models are easier to grasp and thus useful for appreciating
some fundamental aspects of nerve impulse propagation, including stabil-
ity. Furthermore, we will obtain analytic expressions for impulse velocity
and threshold conditions for impulse ignition and show how these features
depend on physical parameters of the nerve.

5.1 Leading-Edge Approximation for the H–H
Impulse

As we learned in the previous chapter, propagation in a Hodgkin–Huxley
squid axon is governed by the nonlinear diffusion equation (or “cable equa-
tion”) given in Equation (4.10), where jion is the ionic current flowing out
of the fiber per unit of distance in the x-direction. This ionic current, in
turn, has three components: sodium, potassium, and leakage.

Because the time for turn-on of the sodium current is about an order
of magnitude shorter than the times for sodium turn-off and potassium
turn-on, an attractive approximation for representing the leading edge of
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Figure 5.1. An approximation for the leading-edge transmembrane ionic current
density Jle given by Equation (5.3).

an impulse is to assume that the sodium turn-off and potassium variables
remain equal to their resting values, whereas the sodium turn-on variable
responds instantly to changes in transmembrane voltage. In other words,
we assume the limit

τm → 0 ,

τh → ∞ , (5.1)
τn → ∞ ,

which in turn implies that

m = m0(V ) ,

h = h0(0) ,

n = n0(0) .

In this limit, the leading-edge (le) dynamics are described by

1
rc

∂2V

∂x2 − ∂V

∂t
=

jle(V )
c

, (5.2)

where

jle(V ) = 2πaJle(V )
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is the transmembrane ionic current per unit length of an axon of radius a
and, from Equation (4.5),

Jle(V ) = GNam
3
0(V )h0(0)(V −VNa)+GKn4

0(0)(V −VK)+GL(V −VL) (5.3)

is the ionic current per unit area.
From Figure 5.1, we see that Jle has the following features: it goes

through zero at V = 0 with a small positive slope, it becomes sharply
negative at V ∼ 30 mV, indicating the increase of sodium ion permeability
above a threshold level, and it goes to zero with positive slope again at
V = +113.92 mV, which is close to the equilibrium (Nernst) potential of
+115 mV for sodium ions.

Let us normalize Equation (5.2). Near the sodium equilibrium potential,
the sodium permeability is fully turned on and

jle
.= g(V − 113.92) ,

where g is the corresponding conductance per unit length of the axon. Thus,
it is convenient to rearrange Equation (5.2) by writing

1
rg

∂2V

∂x2 − c

g

∂V

∂t
=

jle
g

and measuring distance in units of 1/
√

rg and time in units of c/g. Because
this normalization removes all dependence on the parameters, the final
result of any velocity calculation will be proportional to 1/

√
rg divided by

c/g. In other words, the leading-edge speed must be

v ∝
√

g/rc2 .

What does this result tell us? Recall from Chapter 1 the 1906 lecture
and demonstration by Luther [8] pointing out that the velocity of a wave
of activity should be given by an expression of the form

v ∝
√

D/τ ,

where D is a diffusion constant and τ is a time constant for the onset of the
active process. In the present example, 1/rc is the diffusion constant (in
centimeters squared per second) and c/g is the time constant (in seconds).

Finally, suppose that the radius of a smooth axon of circular cross-section
is a. Because c/g is independent of the axon radius, c ∝ a, and r ∝ 1/a2,
we also see that Luther’s factor

√
D/τ =

√
g/rc2 ∝ √

a .

Thus, the impulse speed of a nerve impulse should be approximately pro-
portional to the square root of the fiber radius. In accord with this estimate,
my measurements on giant axons of Loligo vulgaris indicate that over a
temperature range from 15 to 22oC, the impulse velocity is given by

v = 20.3
√( a

238

)
[1 + 0.038(Temp − 18.5)] m/s (5.4)
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to an experimental accuracy of about ±5%, where a is the axon radius in
microns and “Temp” is the temperature in degrees Celsius.

5.2 Traveling-Wave Solutions for Leading-Edge
Models

Motivated by the dimensional considerations just discussed, let us study
the traveling-wave solutions of the normalized equation

∂2V

∂x̃2 − ∂V

∂t̃
= f(V ) , (5.5)

where

x̃ ≡ √
rg x , t̃ ≡ gt/c ,

and f(V ) is a “cubic-shaped” function having the same qualitative shape
as Jle plotted in Figure 5.1. More specifically, we will assume that f(V ) =
V − V2 near V = V2, that f(V ) = 0 for V = 0, and that f(V ) has a
threshold at V = V1.

Upon determining the traveling-wave speed for the normalized Equation
(5.5), we can multiply by Luther’s factor of

√
g/rc2 to obtain the phys-

ical impulse velocity. The Hodgkin–Huxley parameters entering into this
factor are

Parameter Value Units

radius (a) 238 µm

g .0108 mhos/cm

r 2.0 × 104 ohms/cm

c 1.5 × 10−7 F/cm

so Luther’s velocity factor for the squid axon is
√

g/rc2 = 49 m/s .

Returning to Equation (5.5), assume a traveling-wave solution of the form

V (x̃, t̃) = Ṽ (x̃ − ṽt̃) = Ṽ (ξ) ,

where ξ ≡ x̃−ṽt̃ is a traveling-wave variable. Just as in the previous chapter
for the full Hodgkin–Huxley system, the partial differential equation (PDE)
becomes the ordinary differential equation (ODE)

d2Ṽ

dξ2 + ṽ
dṼ

dξ
= f(Ṽ ) (5.6)
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Figure 5.2. (a) A “cubic-shaped” f(V ) in Equation (5.5). (b) The two-dimensional
phase plane for traveling-wave trajectories describing the leading edge of a nerve
impulse. (c) A leading-edge traveling wave corresponding to the trajectory in (b).

in which the traveling-wave speed ṽ is again an adjustable parameter.1 How
can we find acceptable solutions for this equation?

5.2.1 Phase-Plane Analysis
Being second order, Equation (5.6) can be written as two autonomous
first-order ODEs; thus

dṼ

dξ
≡ W ,

(5.7)
dW

dξ
= f(Ṽ ) − ṽW ,

where the first equation is a definition and the second is a restatement of
Equation (5.6).

Because these two equations correspond to the five first-order ODEs that
were developed to describe traveling waves of the full Hodgkin–Huxley
system in Equations (4.12), one advantage of the leading-edge approxi-
mation becomes evident: it is possible to view solution trajectories in the
traveling-wave phase space. Corresponding to Figure 4.4—which could only
be schematic because it is not possible to visualize a trajectory in a space

1I hope that the notation is not confusing. The “tilde” on V indicates that it is a
function of the traveling-wave variable ξ, whereas the “tilde” on v implies a velocity in
the normalized space and time variables.
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of five dimensions—we now consider in Figure 5.2 a solution of Equations
(5.7) in the (Ṽ , W ) phase plane.

The Nonlinear Function
In Figure 5.2(a), f(V ) in Equation (5.5) is shown as a “cubic-shaped”
function with three zeros: 0, V1, and V2. The exact shape of this function
is not critical for the present analysis; it merely represents the qualitative
features of the ionic current shown in Figure 5.1.

It will turn out, however, that two parameter ratios are important in
understanding how the shape and speed of a nerve impulse are influenced
by f(V ). The first of these is the

voltage ratio ≡ V1/V2 ,

and the second is the

area ratio ≡ A−/A+ ,

where A+ is the positive-going area under f(V ) and A− is the negative-
going area, as shown in Figure 5.2(a).

Indeed, a necessary condition for a wave of increasing voltage (with time),
as indicated in Figure 5.2(c), is that2

A−/A+ > 1 .

A glance at Figure 5.1 confirms that this condition is satisfied for the ionic
current of the Hodgkin–Huxley membrane.

The Phase Plane
Central to understanding traveling-wave solutions of Equation (5.5) is an
appreciation of solution trajectories of Equations (5.7) on the (Ṽ , W ) phase
plane, which are shown in Figure 5.2(b). Because f(V ) = 0 for V = 0, V1,
and V2, there are three singular points in this phase plane at

(Ṽ , W ) = (0, 0), (V1, 0), and (V2, 0) ,

which satisfy the condition that both dṼ /dξ = 0 and dW/dξ = 0.
Corresponding to the leading-edge traveling wave shown in Figure 5.2(c),

we seek a heteroclinic trajectory that starts from (V2, 0) at ξ = −∞ and
approaches (0, 0) as ξ → +∞. In other words, the phase point goes as

2To see this, note that Equations (5.7) can be written as the differential equation

WdW = f(Ṽ )dṼ − ṽW 2dξ .

Integrating from ξ = −∞ to ξ = +∞ and observing that W 2 = 0 in these two limits,
one finds that

A− − A+ = ṽ

∫ ∞

−∞
W 2dξ .

Thus, for ṽ to be positive, it is necessary that A− be greater than A+.
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(V2, 0) → (Ṽ , W ) → (0, 0) while ξ traverses the range −∞ → ξ → +∞.
This heteroclinic trajectory is shown as a bold line in Figure 5.2(b).

How do we start a solution trajectory near the singular point at (V2, 0)?
The angle at which the trajectory leaves the singular point can be adjusted
merely by varying the assumed value of the traveling wave speed (ṽ). In
other words, if the angle θ is defined as in Figure 5.2(b), then3

θ = arccot
[√

(ṽ/2)2 + 1 − ṽ/2
]

. (5.8)

Using this relationship, we have the opportunity of analytically aiming
the initial segment of the trajectory in such a direction that it approaches
the singular point at the origin as ξ → +∞. It is this particular value of

3To see how Equation (5.8) is obtained, note that sufficiently close to this singular
point, Equations (5.7) can be approximated by the linear equations

d∆V/dξ
.
= W ,

dW/dξ
.
= ∆V − ṽW ,

where ∆V ≡ Ṽ − V2. These equations can be more conveniently written as the matrix
system

d

dξ






∆V

W






.
=






0 1

1 −ṽ











∆V

W




 ,

in which higher-order (i.e., nonlinear) terms in Ṽ and W are neglected. To this linear
approximation, the behavior of a trajectory is entirely determined by the properties of
the matrix

M =






0 1

1 −ṽ




 ,

which in turn depend only on the unknown traveling-wave speed ṽ. Because the matrix
system is linear, we can assume that the behavior of a solution trajectory near the
singular point is as






∆V

W




 =






∆V0

W0




 eλξ ,

where ∆V0 and W0 are assumed to be independent of ξ. Thus, the eigenvalues of M are
found to be λ1, λ2 = −ṽ/2 ±

√
(ṽ/2)2 + 1. These eigenvalues are real and of opposite

sign, so the singular point at (V2, 0) is a saddle point. For the positive eigenvalue, in
other words, there are two distinct trajectories that leave the singular point as ξ increases
from −∞. Along these trajectories,

W =
[√

(ṽ/2)2 + 1 − ṽ/2
]

∆V ,

implying Equation (5.8).
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traveling-wave speed that corresponds to the propagation of the leading
edge shown in Figure 5.2(c).

If ṽ is adjusted to be slightly too small (large), the solution trajectory
will pass the singular point (0, 0) on the left (right) and then move away
in an unbounded manner, which is not physically acceptable. Thus, the
term “shooting method” is applied to this procedure in which ṽ is progres-
sively adjusted until a heteroclinic trajectory as shown in Figure 5.2(b) is
obtained.

The Leading-Edge Waveform
Figure 5.2(c) shows the desired result of phase-plane analysis: the leading-
edge waveform. The voltage of this waveform is obtained directly from the
heteroclinic trajectory in Figure 5.2(b), and the horizontal axis indicates
the corresponding values of ξ. The leading-edge waveform is closely related
to the ionic current function f(V ) shown in Figure 5.2(a) because it exhibits
a transition between zeros of this function at V2 and 0.

When an incorrect value for ṽ is assumed in the numerical integration
of Equations (5.7), the computed function will diverge to ±∞. These di-
vergent calculations are indicated by the dashed curves in Figure 5.2(c),
which are related to corresponding trajectories in the (Ṽ , W ) phase plane
of Figure 5.2(b).

5.2.2 Analytic Results
Several analytic expressions for leading edge waveforms related to specific
nonlinear functions have been recorded in the nonlinear science literature
since the 1960s [12, 17, 18]. Figure 5.3 displays two forms of f(V ) that
can be used for modeling the ionic current of a nerve membrane shown in
Figure 5.1. In both examples, f(V ) has zeros at 0, V1, and V2, and the
slope df/dV = 1 at V = V2.

1. Cubic polynomial model: An analytic solution for the cubic polynomial
function

f1(V ) =
V (V − V1)(V − V2)

V2(V2 − V1)
, (5.9)

shown in Figure 5.3(a), was first obtained in 1938 by Zeldovich and Frank-
Kamenetsky in the context of flame-front propagation [21]. Translated into
the present notation, they found a speed of

v =
√

g

rc2

(
V2 − 2V1√

2V2

)
(5.10)

for the leading-edge traveling wave (see Figure 5.2(c)) given by

Ṽ (x − vt) =
V2

1 + exp
(√

rg(x − vt)/
√

2
) , (5.11)
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Figure 5.3. Two forms of the function f(v) for which Equation (5.5) has analytic
traveling-wave solutions. (a) A cubic function defined in Equation (5.9). (b) A
piecewise linear function defined in Equation (5.12).

as can be checked by direct substitution. (In these equations, there is no
tilde on v because the velocity is no longer in normalized units.)

2. Piecewise linear model: Shortly after the observation by Cole and Cur-
tis that the impedance of a squid membrane decreases by a factor of about
40 during the passage of a nerve impulse [2], Offner, Weinberg, and Young
proposed to model a nerve membrane by the “piecewise linear” conductance
shown in Figure 5.3(b) and defined by [11]
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f2(V ) =






βV for V < V1 , and

(V − V2) for V > V1 .

(5.12)

The traveling-wave speed for this model was studied in the course of neuris-
tor research (on electronic imitations of a nerve axon) during the 1960s and
is given by the expression [7, 14, 15, 19]

v =
√

g

rc2

(
(V2 − V1)2 − βV 2

1√
V2V1(V2 − V1)2 + βV2V 2

1 (V2 − V1)

)

(5.13)

=
√

g

rc2

(
V2 − V1√

V1V2
− β

2

√
V1

V2

(
V2 + V1

V2 − V1

))

+ O(β2)

for the leading-edge wave shape

Ṽ =






V1e
−λ1(x−vt) for Ṽ < V1 , and

V2 − (V2 − V1)eλ2(x−vt) for Ṽ > V1 ,

(5.14)

where

λ1 = (rcv/2)[1 +
√

1 + 4βg/rc2v2] ,

λ2 = (rcv/2)[−1 +
√

1 + 4g/rc2v2] .

This result is obtained by writing two solutions for linear equations where
Ṽ is greater or less than V1 and matching them at the threshold boundary
(V = V1).

In connection with applications of such models to studies of real nerves,
the following comments are offered.

• The two results may be useful in different contexts. The first example
has two adjustable parameters: the ratio of threshold to maximum
voltage (V1/V2) and the Luther factor,

√
g/rc2. As we will see, this

flexibility and simplicity make the assumption of a cubic polynomial
conductance convenient for many theoretical estimates.
There are three adjustable parameters in the second example be-
cause, in addition to those of the first example, the ratio of positive
membrane conductance near V = 0 to its value near V = V2 can
be independently adjusted through the parameter β. Although this
added flexibility is useful in modeling neuristors, it comes at the cost
of added intricacy of Equation (5.13).

• Although it is possible to determine the traveling-wave speed for a
piecewise linear model in which f(V ) is continuous and has an inter-
mediate region of negative slope, the resulting condition cannot be
explicitly solved for v [9].
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• If f(V ) exhibits hysteresis (is not single-valued), it is necessary to
model the system as two coupled nonlinear diffusion equations im-
plying two different wave velocities [4]. As a result of the interaction
between these two equations, the combined wave travels at the slower
of these two speeds.

• The two examples presented here exhibit different behaviors in the
limit V1 → 0. Thus the normalized velocity for the cubic polynomial
model approaches 1/

√
2, whereas that of the piecewise linear model

diverges as
√

V2/V1. This difference should be kept in mind when
these models are used to estimate nerve phenomena with small values
of the threshold voltage V1.

• If the functions f(V ) in these models are adjusted to match the
shape of Jle in Figure 5.1, neither gives a particularly good estimate
of the impulse-propagation speed of a Hodgkin–Huxley axon. Equa-
tion (5.10) implies, for example, that v = 33 m/s. Equation (5.13),
with β = 0 and V2/V1 rather arbitrarily taken to be 3.25, implies
v = 88 m/s. Both of these values are significantly larger than the
Hodgkin–Huxley result of 18.8 m/s and the experimental values given
in Equation (5.4). There are two reasons for these discrepancies, both
of which tend to make the calculated speed greater in the leading-edge
approximation of Equation (5.2).
(i) The response times for sodium turn-off and potassium turn-on are
not really infinity, as was assumed in Equations (5.1). We will see how
such recovery effects decrease impulse speed in the following chapter.
(ii) Because the turn-on delay for sodium ions is not zero as was
assumed in Equations (5.1), the qualitative effect of finite sodium
turn-on delay is to increase the voltage level at which sodium current
begins to flow into the fiber, thereby decreasing the impulse speed.
That neglect of sodium turn-on delay is an important factor in deter-
mining the velocity of a squid impulse is evident from Equation (5.4),
which indicates a speed that increases with increasing temperature.
This comes about because near 18.5oC sodium turn-on delay depends
on temperature (“Temp”) as

τm ∝ 3−(Temp−18.5)/10 .

Thus, the delay time for the inward flow of sodium current to
commence decreases with increasing temperature, thereby increasing
impulse speed. The effect of finite response time for sodium current
was studied analytically in the mid-1970s by Pastushenko, Chiz-
madzhev, and Markin, who obtained reasonable agreement with the
H–H result by assuming that τm is independent of the transmembrane
voltage [13].
Another way to account for sodium turn-on delay is by taking larger
values of (V1) than are indicated in Figure 5.1. To obtain a speed of 20
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Figure 5.4. (a) A “cubic-shaped” f(V ), representing transmembrane ionic current
in Equation (5.5). (b) The phase-plane plot for a homoclinic traveling-wave tra-
jectory describing a threshold solution of this equation. (c) The “impulse-shaped”
stationary voltage wave corresponding to the trajectory in (b).

m/s from Equation (5.10), for example, requires that V1/V2 = 0.21.
The same speed can be obtained from Equation (5.13) with β = 1/40
and V1/V2 = 0.64.

In cubic polynomial systems defined by Equation (5.9), it is interesting
that v = 0 for V2 = 2V1, which is the condition making the positive-
going area under f1(V ) equal to the negative-going area in Figure 5.3(a).
Similarly, in piecewise linear systems defined by Equation (5.12), v = 0 for
V2 = 2V1 and β = 1, which again implies

A− = A+

in Figure 5.3(b). This agrees with our previous observation that A− must
exceed A+ for v to be positive.

What other physically acceptable solutions appear when v = 0?

5.3 The Threshold Impulse

In Figure 4.5 of the previous chapter was sketched a low-amplitude, un-
stable impulse solution of the full Hodgkin–Huxley equations that was
obtained by Huxley in 1959 [5]. Referring to Figure 5.4, we can find a corre-
sponding solution of our leading-edge system by setting ṽ = 0 in Equations
(5.7).

The ionic current function f(V ) in Figure 5.4(a) is identical to that in
Figure 5.2(a), but Equations (5.7) reduce to
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dṼ

dξ
= W ,

dW

dξ
= f(Ṽ ) ,

determining dynamics of a phase point on the (Ṽ , W ) phase plane shown
in Figure 5.4(b). These equations imply the differential equation

WdW = f(Ṽ )dṼ ,

which can be integrated for any form of f(V ) to obtain the homoclinic
trajectory shown as a bold path in Figure 5.4(b).4

The maximum value of Ṽ (ξ) (call it Vm) occurs where W (Ṽ ) first returns
to zero as indicated in Figure 5.4(b), and it is readily determined as the
value at which the shaded portion of the negative-going area in Figure
5.4(a) is equal to A+.

For the homoclinic trajectory (0, 0) → (Ṽ , W ) → (0, 0) as −∞ → ξ →
+∞, in other words, it is necessary that

A− > A+ ,

allowing W (Ṽ ) to return to zero and fixing Vm by the condition
∫ Vm

0
f(Ṽ )dṼ = 0 . (5.15)

Thus, the zero-velocity solution of Equations (5.7), as shown in Figure
5.4(c), is impulse-shaped (or bell shaped), having a maximum value and
falling smoothly to zero as ξ → ±∞.

In the following section, we will see that the impulse-shaped solution of
Figure 5.4(c) is unstable, whereas the leading-edge solution of Figure 5.2(c)
is stable. Why should we be interested in a solution of the PDE equations
that is unstable? Because it defines the threshold condition for ignition of
a nerve impulse.

4Thus,

W (Ṽ ) = ±
(

2

∫ Ṽ

0

f(α)dα

)1/2

,

where α is a variable of integration. Having found this trajectory, Ṽ (ξ) is determined by
the integral

ξ =

∫ Ṽ
dβ

W (β)
,

which in turn corresponds to the stationary voltage wave that is sketched in Figure 5.4(c).
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5.4 Stability of Simple Traveling Waves

In the foregoing discussions, the task of finding solutions for nonlinear
partial differential equations (PDEs) has been eased by assuming that all
dependent variables (e.g., voltages, currents) are functions of the traveling-
wave variable ξ ≡ x − vt. This traveling-wave assumption ties time and
space derivatives together as

−1
v

∂

∂t
=

∂

∂x
=

d

dξ
,

thereby reducing a nonlinear PDE to a more manageable ODE.
Having found a traveling-wave solution, say Ṽ (ξ), we have no idea

whether it is stable. In other words, if Ṽ (ξ) is altered by some small change
(or deformation) in its shape, will that small change relax to zero, causing
no significant alteration of the traveling wave? Or will it grow to such a
magnitude that Ṽ (ξ) no longer represents the behavior of the system?

To answer such questions, it is necessary to examine the original partial
differential equation. As presented in Appendix D, a linear stability analysis
of a traveling-wave solution proceeds as follows.

• A coordinate (independent variable) transformation is introduced
into a frame of reference that moves with the same speed as the trav-
eling wave. This transformation yields a nonlinear PDE describing
the dynamics of deviations from the traveling-wave solution.

• Assuming that deformations of the traveling wave are small, the non-
linear PDE is then approximated by a linear PDE, which is obtained
by linearizing the nonlinear PDE about the traveling-wave solution.

• Finally, the linear PDE is studied to learn whether small deviations
wax or wane with time, thereby determining whether the traveling
wave is unstable or stable.

Although the details of this analysis may be intimidating, the results
can be simply stated in terms of the following definitions. A traveling-wave
solution is said to be asymptotically stable if all small changes in Ṽ (ξ)
approach zero with increasing time, unstable if any deviation from Ṽ (ξ)
grows without bound in the linear approximation, and stable otherwise.

From the discussion in Appendix D, we have the following theorem.

Linear stability theorem: Consider a traveling-wave solution
Ṽ (ξ) of Equation (5.5). If dṼ (ξ)/dξ has no zero crossings, then
Ṽ (ξ) is stable but not asymptotically stable. If dṼ (ξ)/dξ has
one or more zero crossings, then Ṽ (ξ) is unstable (Zeldovich
and Barenblatt, 1959 [20]).
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If Ṽ (ξ) is a leading-edge waveform as indicated in Figure 5.2(c), then
dṼ (ξ)/dξ has no zero crossings. Thus, all leading-edge waveforms are stable
but not asymptotically stable.

There is a physical reason behind the fact that leading-edge waveforms
are not asymptotically stable. Upon experiencing a small change, a leading-
edge wave may relax to Ṽ (ξ + ξ0), where ξ0 is a real constant. Thus, as
time increases,

Ṽ (ξ) + deformation → Ṽ (ξ + ξ0) ,

which is also a traveling wave solution of Equation (5.5).
In other words, altering a leading-edge traveling-wave solution may cause

a displacement of that traveling wave in the ξ-direction with respect to
where it would have been without the influence of the alteration. Because
a displaced traveling wave is still a solution of Equation (5.2), residual
effects of the alteration persist in time without growing or decaying.

Consider, on the other hand, the bell-shaped solution shown in Figure
5.4(c), where Ṽ (ξ) rises to a maximum value and then returns to zero.
In this case, dṼ (ξ)/dξ has a zero crossing (at the maximum value of the
solution), so Ṽ (ξ) is unstable. Small changes in Ṽ (ξ) therefore grow with
time, eventually distorting it beyond recognition.

To get a physical feeling for this instability, return to Equation (5.15),
which determines the amplitude of the impulse-shaped solution. From this
equation, Vm is fixed by the requirement that the total integral of f(V ) over
the waveform is zero, with the positive area just canceled by the negative
area. If Vm is slightly decreased, the losses from the positive area exceed
energy input from the negative area, and the solution relaxes to zero. If Vm
is slightly increased, on the other hand, the increased energy input from
the negative-going area overcomes the losses, and the wave grows. It grows
in a manner that is qualitatively similar to the Verhulst functions of Figure
1.3, eventually reaching the stable leading-edge solution of Figure 5.2(c).

Thus the impulse-shaped solution of Figure 5.4(c) is recognized as a
watershed between those functions from which the fully developed leading-
edge solution can emerge and those that relax to zero. Recognition of this
fact is a key to understanding the problem of launching (or igniting) a nerve
impulse.

5.5 Leading-Edge Charge and Impulse Ignition

How does one initiate an impulse on a nerve axon? From both experimental
observations [1, 6, 10] and integration of the full Hodgkin–Huxley system
[3], it appears that a certain threshold of electric charge (Qθ) is required.
In other words, if a short pulse of current is injected into a nerve fiber,
the integral over time of this current pulse must exceed Qθ for an impulse
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to emerge. In the standard H–H axon at a temperature of 18.5oC, the
threshold charge in coulombs (C) is about

Qθ = 1.33 × 10−9 C.

We can understand this theoretically confirmed experimental observation
by considering the leading edge of an H–H impulse. From the derivation
of the “cable equation” in the previous chapter, Equations (4.8) and (4.9)
can be written as the first-order PDEs

∂V

∂x
= −ri , (5.16)

∂i

∂x
= −c

∂V

∂t
− jion . (5.17)

So far in this chapter, it has been assumed that the turn-on delay for
sodium ion permeability is negligibly small, but from Figure 1.1 we see that
this is not so. The action potential has reached almost its full amplitude
before the membrane permeability is fully on, and this time lag is due to
the sodium turn-on delay, τm. In other words,

|jion| �
∣
∣
∣
∣c

∂V

∂t

∣
∣
∣
∣

over much of the leading edge of a typical impulse.
If one chooses to neglect ionic current on the leading edge of the prop-

agating impulse, Equation (5.17) becomes the approximate conservation
law

∂i

∂x
+

∂(cV )
∂t

.= 0 . (5.18)

With reference to the discussion of conservation laws in Appendix A, it is
seen that i is the flow of the conserved quantity past a fixed point per unit
of time, and cV is the corresponding density of the conserved quantity per
unit of distance along the axon. From the units, the conserved quantity is
evidently an electric charge, which is given by the integral expression

Q0 =
∫

le
idt ,

where the subscript indicates that the integration is across the leading edge
of the H–H impulse. Substituting Equation (5.16) and noting that V is a
traveling wave of speed v, this expression for the conserved charge becomes

Q0 = −1
r

∫

le

∂V

∂x
dt = +

1
rv

∫

le

∂V

∂t
dt .

This reduces to the simple expression

Q0 =
Vmax

rv
, (5.19)

where Vmax is the total amplitude of the nerve impulse.
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Upon inserting the values r = 2 × 104 ohm/cm and (from Figure 4.3)
v = 1880 cm/s and Vmax = 90.5×10−3 V gives a leading-edge charge of [16]

Q0 = 2.4 × 10−9 C , (5.20)

which is substantially larger than the experimental value for Qθ recorded
previously.

Should we be disappointed that the leading-edge charge that we have
just calculated is almost twice the amount of charge needed to launch an
impulse? Not at all. The fact that

Q0 = 1.8Qθ

tells us that impulse propagation on a squid fiber has a safety factor of
about 80%. In other words, the leading-edge charge can be reduced by a
factor of almost one-half before propagation fails.

Finally, we can use Equation (5.19) and parameters for the small-
amplitude unstable impulse in Figure 4.3 to calculate Qθ. Keeping r the
same but using a velocity of 566 cm/s and a voltage amplitude of 18×10−3

V gives a threshold charge of

Qθ = 1.6 × 10−9 C ,

which is close to the experimental value quoted at the beginning of this
section and implies a safety factor of 50%.

As we will see in Chapter 9, the possibility of impulse failure near branch-
ing regions of dendritic and axonal trees opens the doors to more intricate
forms of information processing in a single neuron.

5.6 Recapitulation

In a squid giant axon, the turn-on time for sodium conductance is more
than an order of magnitude shorter than the turn-off time for sodium con-
ductance and the turn-on time for potassium conductance. Thus, for the
leading edge of a nerve impulse, the Hodgkin–Huxley expression for trans-
membrane ionic current is approximated by an expression that assumes
the sodium conductance responds instantly to changes in the membrane
potential, whereas the potassium conductance remains at its resting value.
In this leading-edge approximation, the ionic current is a direct function of
the transmembrane voltage, and the H–H equations reduce to the simple
nonlinear diffusion equation of Equation (5.5).

A phase-plane analysis of traveling-wave solutions for this simple non-
linear diffusion equation was used to sketch a “shooting method” of
solution showing that only isolated traveling-wave speeds are possible. Sim-
ple analytic results were presented that relate the leading-edge velocity to
parameters of the nonlinear relationship between ionic current and trans-
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membrane voltage. Zero velocity, low-amplitude, impulse-like solutions of
Equation (5.5) are also described.

Stability of traveling-wave solutions is then defined and discussed with
the result that leading-edge solutions are found to be stable, whereas the
low-amplitude impulse-like solutions are unstable. It is emphasized that the
unstable solution is important for understanding the threshold for ignition
of an impulse. Starting from this perspective, the quantity of electric charge
necessary to launch an H–H impulse is calculated and compared with the
charge carried on the leading edge of a fully developed impulse. This com-
parison indicates that the squid nerve has a safety factor for propagation
lying somewhere between 50% and 80%.
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6
Recovery Models

Propagation of a nerve impulse is often compared with the burning of a
candle, of which the leading-edge models considered in the previous chapter
provide examples. This is a flawed metaphor, however, because a candle
burns only once, spending (like H.C. Andersen’s little match girl) its entire
store of chemical energy to keep the flame bright and hot, with no possibility
of transmitting a second flame. As we have seen both from Cole’s classic
oscillogram of Figure 1.1 and the more detailed data of Figure 4.8, a nerve
impulse exhibits recovery over an interval of a few milliseconds, allowing
subsequent impulses to be transmitted by the nerve. Without this feature,
our nervous systems would be useless for processing information, and the
animal kingdom could not have developed.

In this chapter, we explore some simple models for the recovery phe-
nomenon that are useful not only for broadening our physical and
mathematical understanding of nerve impulse propagation but also for
making better estimates of nerve behavior.

6.1 The Markin–Chizmadzhev (M–C) Model

One of the simplest means for representing recovery of a propagating nerve
impulse was introduced by Kompaneyets and Gurovich in the mid-1960s
[23] and developed in detail by Markin and Chizmadzhev in 1967 [24].
This M–C model assumes the diffusion equation (or “cable equation”) with
which we began the previous chapter; thus the transmembrane voltage V
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is governed by the PDE1

1
rc

∂2V

∂x2 − ∂V

∂t
=

jmc(x, t)
c

. (6.1)

In this model, however, the ionic membrane current is not represented as a
voltage-dependent variable, as in Equation (5.3), but by one of the following
prescribed functions of time.

(1) If V does not reach the threshold value of Vθ, then

jmc(x, t) = 0 .

(2) If, on the other hand, V does reach the threshold value of Vθ at some
instant (which is defined as t = 0), then at x = 0

jmc(0, t) = 0 for t < 0 ,

= −j1 for 0 < t < τ1 , (6.2)
= +j2 for τ1 < t < τ1 + τ2 , and
= 0 for t > τ1 + τ2 .

Whereas Equation (5.2) is a nonlinear diffusion equation, Equation (6.1)
is a piecewise linear inhomogeneous diffusion equation, which is easier to
solve. Thus, this is evidently a helpful assumption to make, but how do we
choose the parameters (j1, j2, τ1, τ2) that define jmc(0, t)?

Recalling that the positive direction for ionic current is outward, the
early current −j1 represents the inward flow of sodium ions, whereas the
later component +j2 describes outward flow of potassium ions. Thus, τ1
and τ2 can be obtained from the waveform of the squid impulse in Figure
1.1, and it is possible to estimate j1 from the leading-edge charge Q0, which
we obtained in Equation (5.20).

Noting that j1 has the units of current per unit of distance along the
axon (amperes per centimeter), it follows that the spatial width over which
inward current flows is vτ1, where v is the impulse speed. Assuming further
that the flow of j1 across the membrane supplies the leading-edge charge—
defined in Equation (5.19)—implies j1vτ1 = Q0/τ1, or

j1 =
Q0

vτ2
1

=
Q2

0r

Vmaxτ2
1

A/cm . (6.3)

Finally, the condition

j1τ1 = j2τ2

1An even simpler version of the M–C concept is the “integrate and fire” model of
a neuron, in which the entire cell is approximated as a single switch in parallel with a
capacitor [1, 21, 22]. The capacitor integrates incoming charge until a threshold voltage
is reached, whereupon the switch closes briefly, discharging the capacitor and restarting
the process. A more realistic version is Gerstner’s “spike response model” [12, 13], which
is convenient for approximate numerical studies of large neural networks.
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requires that the total ionic charge crossing the membrane during an im-
pulse be zero. This ensures that the impulse voltage returns to zero at the
end of the impulse and implies that

j2 =
Q0

vτ1τ2
=

Q2
0r

Vmaxτ1τ2
A/cm . (6.4)

With these values and the additional parameters (r and c) given in Table
4.2, we can proceed to a quantitative analysis of Equation (6.1) for the
standard squid axon at 18.5oC.

Assuming that the solution is a traveling wave of the form2

V (x, t) = V (x − vt) = V (ξ) ,

where ξ ≡ x − vt, Equation (6.1) reduces to

1
rc

∂2V

∂ξ2 + v
∂V

∂ξ
=

jmc(ξ)
c

, (6.5)

a piecewise linear ODE. Further assuming that the threshold voltage Vθ is
reached at ξ = 0, the ionic current in Equation (6.5) is defined as a function
of ξ as

jmc(ξ) = 0 for ξ > 0 ,

= −j1 for − vτ1 < ξ < 0 ,

= +j2 for − v(τ1 + τ2) < ξ < −vτ1 , and
= 0 for ξ < −v(τ1 + τ2) ,

which is displayed in Figure 6.1(a).
For this ODE, the propagation problem can be solved as follows [24].

• With reference to Figure 6.1(b), consider the ξ-axis to be divided into
four regions: region #1, where ξ > 0; region #2, where −vτ1 < ξ < 0;
region #3, where −v(τ1 + τ2) < ξ < −vτ1; and region #4, where
ξ < −v(τ1 + τ2).

• For each region, write a solution of Equation (6.5) of the form

Vi(ξ) = Ai + Biξ + Ci exp(−vrcξ) ,

where i = 1, 2, 3, or 4 indicates one of the four regions.

• Require the expressions for both Vi(ξ) and dVi/dξ to be continuous
at the boundaries between regions. (It is necessary that dVi/dξ be
continuous at the boundaries to avoid divergence of the first term in
Equation (6.5).)

2For typographical convenience, we dispense in this chapter and subsequently with
the use of a tilde to distinguish between a general function of both x and t and a
traveling-wave function of x − vt.
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Figure 6.1. (a) Ionic current in the M–C model as a function of the traveling-wave
variable (ξ). (b) Structure of the associated nerve impulse.

• Because V4(ξ) = 0 and V1(ξ) = C1 exp(−vrcξ), there are a total of
seven constants to determine: C1, A2, B2, C2, A3, B3, and C3. (The
impulse speed v appears as a parameter in Equation (6.5), so these
“constants” are actually functions of the traveling-wave speed.) The
boundary conditions between regions #1 and #2, #2 and #3, and #3
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and #4 comprise six constraints in addition to the above-mentioned
condition j1τ1 = j2τ2. Thus it is straightforward, if tedious, to solve
for the seven constants that define Vi(ξ).

After going through the details of this analysis, one finds

V1(ξ) = C1(v) exp(−vrcξ) (6.6)

in region #1, where jmc(ξ) = 0, and

C1(v) =
1

v2rc2

[
j1 + j2e

−v2rc(τ1+τ2) − (j1 + j2)e−v2rcτ1

]
. (6.7)

Reference to Figure 1.1 confirms that such behavior occurs for a squid
nerve. In other words, an exponentially decreasing precursor (or “skirt”)
precedes the voltage waveform of a real nerve impulse into the region
where the membrane permeability has not yet begun to change. This is
an important observation and merits additional comment.

From the perspectives of linear dynamics, the presence of an exponential
skirt extending into a region of undisturbed membrane seems problematic.
How does a patch of membrane at (say) x = 0 know that its transverse
voltage should begin rising with time as

exp(−vrcξ) ∝ f(x) exp(v2rct)

before there is any change in the permeability of the nerve membrane? Yet
Figure 1.1 provides clear empirical evidence that this is indeed what occurs,
so we must explain this nonlocal phenomenon.

From the broader perspectives of nonlinear science, it turns out, the
nerve impulse is a coherent structure that emerges from the underlying
dynamics. All aspects of the impulse are dynamically interrelated, each
making appropriate contributions to its global nature [34]. In more physical
terms, the exponential precursor is being pushed into region #1 by the
dynamics of the membrane in regions #2 and #3.

The significance of Equation (6.6) was not lost on Hodgkin and Huxley
in their classic paper of 1952 [18]. Differentiating this equation with respect
to ξ and setting ξ = 0, they noted that

v = − 1
rcVθ

[
dV1(ξ)

dξ

]

ξ=0
,

where Vθ = V1(0) is the threshold voltage for the onset of sodium ion
current. In other words, the conduction velocity of a nerve impulse can
be calculated from a knowledge of the threshold voltage for sodium ion
conductance and the spatial derivative of the impulse voltage at threshold.
This is the motivating idea of M–C analysis.

A key item of information for applying this idea is the impulse voltage
at threshold, which must equal the function C1(v) defined in Equation
(6.6) and given in Equation (6.7). Using the estimates for j1 and j2 from
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Figure 6.2. The function C1 appearing in Equation (6.6) is plotted from Equation
(6.8) as a function of v for parameter values corresponding to a standard squid
axon that are given in Table 6.1.

Table 6.1. Markin–Chizmadzhev parameters for a Hodgkin–Huxley axon at
18.5oC.

Parameter Value Units

Q0 2.4 × 10−9 C

Vmax 90.5 × 10−3 V

Vθ 20 × 10−3 V

τ1 2 × 10−4 s

τ2 2 × 10−3 s

r 2 × 104 ohms/cm

c 1.5 × 10−7 F/cm

Equations (6.3) and (6.4), Equation (6.7) takes the form

C1(v) =
Q2

0

v2c2τ1Vmax

[
1
τ1

+
1
τ2

e−v2rc(τ1+τ2) −
(

1
τ1

+
1
τ2

)
e−v2rcτ1

]
.

(6.8)
Parameters of this equation for the standard Hodgkin–Huxley axon are
posted in Table 6.1 and used to construct the plot of C1 vs. v in Figure 6.2.



6.1. The Markin–Chizmadzhev (M–C) Model 121

To find allowed values of the impulse speed, recall that at ξ = 0 the
threshold voltage for the onset of sodium conductance is given by the
condition

Vθ = C1(v) . (6.9)

Thus as indicated in Figure 6.2, the propagation velocity of a self-consistent
impulse can be found by seeking the intersections between C1(v) and a
horizontal line drawn at V1(0) = Vθ. For Vθ < 28.3 mV, there are two such
intersections, an upper one at v = vA and a lower one at v = vB.

From the following argument, we see that the higher value of conduction
velocity is stable. On the upper range (right-hand side) of Figure 6.2, C1(v)
approaches the asymptote

C1(v) ∼
(

Q2
0

Vmaxc2τ2
1

)
1
v2 .

If v is raised above vA, C1(v) becomes less than Vθ because the precursor
is less able to penetrate into the undisturbed region of the axon at higher
speeds. This makes the impulse slow down. If, on the other hand, v is
smaller than vA, C1(v) becomes greater than Vθ (because the precursor is
better able to penetrate into region #1), causing the impulse to accelerate.

Similarly, the lower value of traveling-wave speed is unstable. Near and
below v = vB, C1(v) has the asymptote

C1(v) ∼
(

Q2
0r

2(τ1 + τ2)
2Vmaxτ1

)
v2 .

Thus, if v falls below vB, the system is less able to satisfy the threshold
condition, and the impulse dies out. For v > vB, however, C1(v) becomes
greater than the threshold voltage, and the impulse speeds up, eventually
reaching the stable value, vA.

In this manner, we see how well the M–C analysis manages to predict the
occurrences of both the stable and unstable impulses shown in Figure 4.5.
For the parameter values indicated in Table 6.1 (with the threshold voltage
somewhat arbitrarily chosen to be Vθ = 20 mV), these speeds (VA and VB)
are found from the intersections of Equations (6.8) and (6.9) in Figure
6.2. As indicated in the following table, the values thus obtained are in
reasonable agreement with the corresponding Hodgkin–Huxley velocities.

Impulse M–C H–H Units

Stable 17.7 18.8 m/s

Unstable 4.89 5.66 m/s
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M–C analysis also suggests a safety factor for impulse propagation on a
squid nerve. To see this, note from Figure 6.2 that the maximum threshold
voltage above which there is no traveling wave is 28.3 mV. Because this
maximum allowable threshold is about 42% above the actual value, the
M–C model has a safety factor that is in approximate accord with the
estimates obtained from leading-edge analysis in Section 5.5.

In summary, the central point of the Markin–Chizmadzhev analysis is
this:

The exponentially decreasing precursor into region #1 guides
the impulse (thereby determining its speed), and (retroactively)
the main body of the impulse generates the precursor.

From the perspectives of Chapter 1, this is yet another example of a closed
causal loop, which can be represented by the following diagram

Impulse generates precursor
↓ ↑

Precursor guides impulse

Evidently, the M–C formulation is able to capture qualitative aspects of
nerve impulse propagation that are in approximate agreement with those
obtained from the H–H equations in Chapter 4. We will return to this
description when we consider ephaptic coupling in Chapter 8 and impulse
propagation through regions of changing fiber diameter in Chapter 9.

6.2 FitzHugh–Nagumo (F–N) Models

In the previous section, the recovery effect in a nerve fiber was represented
by assuming that the transmembrane ionic current follows a prescribed
function of time after the transmembrane voltage reaches a threshold value.
Although this M–C model gives useful results, it has a certain ad hoc
quality, lacking the dynamic character of a nonlinear partial differential
equation (PDE) such as the Hodgkin–Huxley system. In the subsequent
sections of this chapter, we consider a simple PDE system that represents
recovery dynamics on a nerve fiber.

Because the present formulation is aimed at obtaining insight into ana-
lytic tools and methods rather than generating relationships that predict
the quantitative behavior of real axons, we assume that the basic nonlinear
diffusion equation is normalized as in Equation (5.5). In other words, the
space variable is measured in units of 1/

√
rg (where r is the series resistance

per unit length of the axon and g is a transmembrane ionic conductance per
unit length), and time is measured in units of a membrane time constant
c/g (where c is the transmembrane capacitance per unit length). For typo-
graphical convenience, tildes are no longer used to indicate the normalized
independent variables, x and t.
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Following a formulation suggested by FitzHugh [10] and explicitly de-
scribed by Nagumo, Arimoto, and Yoshizawa in 1962 [27], a recovery
variable (R) is added to the right-hand side of Equation (5.5), which is then
allowed to follow its own dynamics. Thus, the system we now consider is
the FitzHugh–Nagumo (F–N) equation3

∂2V

∂x2 − ∂V

∂t
= f(V ) + R , (6.10)

in which the recovery variable is governed by

∂R

∂t
= ε(V + c − bR) . (6.11)

In particular applications of this system, it may be convenient to represent
f(V ) by the cubic polynomial of Equation (5.9) or the piecewise linear
model of Equation (5.12).

Upon differentiating Equation (6.10) with respect to time and inserting
Equation (6.11), one obtains for V the equivalent third-order nonlinear
PDE

∂3V

∂x2∂t
+ εb

∂2V

∂x2 − ∂2V

∂t2
− [εb + f ′(V )]

∂V

∂t
− ε [V + c + bf(V )] = 0 , (6.12)

where f ′(V ) ≡ df/dV .
With ε = 0, the recovery variable remains constant, and Equation (6.10)

reduces to the simple nonlinear diffusion equation that was used in the
previous chapter to model leading-edge dynamics. With ε > 0, on the
other hand, R can vary with time and space.

The fundamental idea of the F–N model is that a positive voltage causes
R to increase with time through the action of Equation (6.11) and that
an increase of R in Equation (6.10) eventually forces V back to its resting
value.

Although analytic simplicity was the main motivation in constructing
the right-hand sides of Equations (6.10) and (6.11), there are some crude
physical interpretations, which can be seen by relating

f(V ) + R ∼ jion ,

where jion is the transmembrane ionic current defined in Equation (4.5).
From this perspective,

f(V ) ∼ sodium ion current, and
R ∼ potassium ion current ,

3This system was independently introduced by the present author to describe an
electronic nerve fiber or neuristor [32, 33].
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with the symbol “∼” implying “roughly equivalent to” or “approximately
representing.” More particularly,

R ∼ n ,

εb ∼ κ/τn ,

εV ∼ κn0(V )/τn ,

with τn being the time constant for turn-on of potassium ion current at
6.3oC, n and n0, respectively, the time-dependent and resting values of the
potassium turn-on variable, and

κ = 3(Temp−6.3) .

Thus, ε ∼ κ is sometimes referred to as a “temperature parameter.”
During the 1970s, the F–N system became recognized by the applied

mathematics community as a model that is both sufficiently flexible to
model the recovery dynamics of a real nerve and simple enough for detailed
analyses [4, 14, 15, 16, 17, 26, 28, 29, 30]. Let us take a look at some of
their results.

6.3 Phase-Space Analysis of an F–N Model

To effect a traveling-wave analysis of the F–N equations, we transform the
independent variables (x and t) to a moving coordinate system, as indicated
in Appendix D, and assume temporal independence in the moving system.
The dependent variables (V and R) then become functions of the traveling-
wave coordinate ξ ≡ x − vt with partial derivatives transforming as

∂

∂x
−→ d

dξ
and

∂

∂t
−→ −v

d

dξ
.

In this formulation, v is the speed of a traveling-wave solution to be deter-
mined in the course of the analysis. Thus the third-order F–N system can
be written as the three first-order ODEs

dV

dξ
≡ W ,

dW

dξ
= f(V ) + R − vW , (6.13)

dR

dξ
=

ε

v
(bR − V − c) ,

defining a solution trajectory in the three-dimensional phase space
(V, W, R).

Singular points (where all derivatives with respect to ξ are zero) occur
at W = 0 with V and R solutions of

R + f(V ) = 0 ,
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Figure 6.3. Propagation speeds for traveling-wave impulse solutions of a
FitzHugh–Nagumo system plotted against the “temperature parameter” ε.
(Redrawn from [11] with f(V ) = V 3/3 − V , b = 0.8, and c = 0.7.)

bR − V = c .

For f(V ) a “cubic-shaped” function and b sufficiently small, there is only
one singular point, which can be rescaled to the origin.

Just as in the Hodgkin–Huxley analysis of Chapter 4, impulse-like solu-
tions of the original PDE system correspond to homoclinic trajectories of
the ODE system. In other words, it is of central interest to find solution
trajectories of Equations (6.13) that issue from the SP at ξ = −∞ and
return to it again as ξ → +∞.

In the 1960s, FitzHugh did numerical calculations on the PDE system of
Equations (6.10) and (6.11) and the ODE system of Equations (6.13) with a
variety of parameters. This work demonstrated the existence of two homo-
clinic trajectories for distinctly different values of the impulse velocity, the
faster being stable and the slower unstable. From this work, we sketch in
Figure 6.3 a typical dependence of these two traveling-wave speeds on the
“temperature parameter” ε, which controls the rate of change of the recov-
ery variable R. In using this term, however, it should be remembered that
the F–N system does not include the effects of a decrease in sodium turn-on
time (τm) with increasing temperature that were discussed in the previous
chapter. Thus, Figure 6.3 misses the experimentally observed increase in
impulse speed with temperature given in Equation (5.4).

In Figure 6.3, the upper curve corresponds to the stable higher-amplitude
H–H impulse of Figure 4.3 and the lower curve to the unstable lower-
amplitude impulse. Figure 6.3 suggests that traveling-wave solutions are no
longer possible at a sufficiently high temperature, in qualitative agreement
with experimental observations on real nerves.

Interestingly, homoclinic solution trajectories of Equations (6.13) are not
the only possibility for obtaining bounded traveling-wave solutions. Fam-
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Figure 6.4. Propagation speeds for periodic traveling-wave solutions of a
FitzHugh–Nagumo system plotted against the wavelength l. (Redrawn from [30]
with b = 0, c = 0, ε = 0.05, and f(V ) the piecewise linear function of Equation
(5.12) with V1 = 0.3, V2 = 1, and β = 1.)

ilies of closed trajectories (or cycles) in the phase space are also possible,
and these correspond to periodic traveling-wave solutions of the original
PDE system. For such periodic solutions, an important parameter is the
wavelength l, defined by the condition

V (ξ) = V (ξ + l) .

Periodic solutions of the F–N system were studied numerically by Rinzel
and Keller, and a typical result is sketched in Figure 6.4 [30].

The numerical calculations by Rinzel and Keller show four salient fea-
tures: (1) a higher-speed curve that is numerically stable, (2) a lower-speed
curve that is numerically unstable, (3) a critical value of wavelength (lc)
below which periodic traveling waves are not found, and (4) as l → ∞, the
two traveling-wave speeds approach those of isolated impulses.

How can we understand the physical significance of the numerical results
plotted in Figures 6.3 and 6.4? Return to the discussion of Section 4.6 in
which a variety of mechanisms for degradation of impulse propagation on
a squid nerve were sketched. Note in particular the calculations in Figure
4.6 showing the effects of “narcotizing” an H–H model by reducing the
maximum allowed values of sodium and potassium conductances. Just as
in Figures 6.3 and 6.4, a critical value of some experimental parameter is
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observed at which the fast and slow traveling-wave solutions merge and
beyond which no traveling-wave solutions are found.

From the F–N perspective, the critical value of ε in Figure 6.3 is qualita-
tively equivalent to the maximum temperature at which a real squid axon
can support a nerve impulse. At higher temperatures, the time constant for
turn-on of potassium current becomes so short that sustained propagation
of an isolated impulse is no longer possible.

Similarly, the critical value of wavelength (lc) in Figure 6.4 indicates a
minimum spacing between impulses. For squid axons, such an effect is seen
in the double impulse data of Figure 4.8 showing how the ratio

speed of second impulse
speed of first impulse

of traveling-wave speeds of a pair of impulses depends on their temporal
spacing (T ). In the context of Figure 6.4, v = l/T ; thus, if

T < lc/v ,

the preceding speed ratio is zero. In other words, if the second impulse
follows too closely behind the first, it is unable to propagate in the absolute
refractory zone of the first impulse.

6.4 Power Balance for Traveling Waves

In Chapter 4, it was noted that a traveling-wave impulse on a smooth nerve
fiber establishes a condition of power balance between the rate at which
energy is being dissipated and the rate at which it is released. In physical
terms, energy is generated by the “ionic batteries” (VNa, VK, and VL) in
Equation (4.5) and dissipated by circulating ionic currents. An advantage
of the F–N formulation is that the algebra becomes simple enough to follow
the details.

To see how this goes, note that Equation (6.12) can be written in the
form

∂2V

∂t2
+ εV =

∂3V

∂x2∂t
− F ′(V )

∂V

∂t
,

where it is assumed that parameters b and c equal 0, and conservative terms
are collected on the left-hand side. (A corresponding result, with four extra
terms, is obtained for b and c not equal to zero. Because these terms add
little physical insight, the simpler form is presented here, but the reader
may wish to include them as an exercise.)

Conservative terms are recognized because they can be derived by
substituting the Lagrangian density

L =
1
2

∫ ∞

−∞

(

εV 2 −
(

∂V

∂t

)2
)

dx
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into the Euler equations (see Appendix A), which implies that the energy
transported by the traveling wave is

E =
1
2

∫ ∞

−∞

(

εV 2 +
(

∂V

∂t

)2
)

dx . (6.14)

The first term in this expression represents electrostatic energy that is
stored in the capacitance of the cell membrane. The second energy term
stems from a phenomenological inductance of the membrane, which has
been studied by Mauro and his colleagues [25] and was mentioned at the
close of Chapter 4.

Differentiating Equation (6.14) with time, using the FitzHugh–Nagumo
equation, and integrating by parts, one finds that

dE
dt

= −
∫ ∞

−∞

((
∂2V

∂x∂t

)2

+
dF (V )

dV

(
∂V

∂t

)2
)

dx . (6.15)

Assuming a traveling-wave solution with

V (x, t) = V (x − vt) ≡ V (ξ) ,

the right-hand side of Equation (6.15) must be zero. Because the first term
on the right-hand side of Equation (6.15) is always negative, a necessary
condition for a traveling wave is a range of voltage over which

dF (V )
dV

< 0 .

The right-hand side of Equation (6.15) being zero thus expresses the
condition of power balance for a traveling wave.

The concept of power balance is so important for understanding the na-
ture of nerve impulse dynamics that more discussion seems appropriate.
First, note that the power balance constraint depends on two assump-
tions: that the nerve fiber is a uniform structure in the direction of impulse
propagation (x-direction) and that the nerve impulse propagates without
change of speed or shape. (If power balance were not established under
these two assumptions, then the energy of the wave would change, thereby
causing changes in the speed or shape of the impulse.) Interestingly, any
uniform PDE can be analyzed in this manner because each term is either
energy-conserving or dissipative.

At this point, the reader may ask: Isn’t conservation of energy a gen-
eral law? How can a nerve impulse break a fundamental law of physics?
The answer, of course, is that conservation of energy is not violated by
the dynamics of a nerve impulse. The energy released by the passage of an
impulse is dissipated through ohmic losses of the circulating ionic currents,
thereby slightly heating the external medium, but this general energy con-
servation is of no help in understanding the behavior of a nerve impulse.
The dynamics of an impulse are governed by a condition such as Equation
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(6.15) for which a more general conservation of energy is not wrong but
irrelevant.

It was noted in Chapter 2 that a system for which the dynamics conserve
energy has the property that time is bidirectional. In describing the motions
of the planets, recall that one can reverse the sign of time and still have
solutions of Newton’s laws of motion. Thus, it is possible for astronomers
not only to predict where the planets will be some hundreds of years in the
future but also to retrodict where they were hundreds of years in the past.

For diffusion problems in general and nerve problems in particular, en-
ergy is not conserved and time is unidirectional, so retrodiction is not
feasible. All of us eventually come to recognize this “arrow of time” as
an unavoidable feature of biological dynamics.

An example of time’s arrow in nerve dynamics is provided by the con-
siderations of impulse stability to be discussed in Section 6.5.2. Note that
an impulse on the upper curve of the traveling-wave locus in Figure 6.3 is
stable, whereas an impulse on the lower curve is unstable. In the context of
Equation (6.15), this observation can be qualitatively described as follows.

• Upper curve. Suppose that the impulse amplitude increased slightly
above the value at which power balance is established. Then the
dissipative term

−
∫ ∞

−∞

(
∂2V

∂x∂t

)2

dx

becomes greater in magnitude than the energy-producing term

−
∫ ∞

−∞

dF (V )
dV

(
∂V

∂t

)2

dx ,

causing E to decrease. The impulse amplitude then relaxes back to
its power balance value.

• Lower curve. A corresponding amplitude increase on the lower curve
will cause the dissipative term to become less than the energy-
producing term. Thus the impulse amplitude will continue to grow
until it reaches the stable value of the upper curve. If, on the other
hand, the amplitude is decreased below the power balance level,
energy production fails to match the rate of dissipation, and the
amplitude falls to zero.

If the direction of time were reversed, interestingly, the upper curve would
become unstable and the lower curve stable.
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6.5 Structure of an F–N Impulse

While providing a reasonable description of recovery in a nerve, the
FitzHugh–Nagumo model is also a useful context for understanding the
dynamics of impulse propagation. In this section, we consider the various
components of a nerve impulse and study how their relationships contribute
to impulse stability.

6.5.1 Rapid and Relaxing Regimes
If the temperature parameter (ε) in Equations (6.13) is set to zero, R
remains constant. In this case, as we have seen in the previous chapter, the
only traveling-wave solution with nonzero velocity is a level change from
one of the outer zeros of F (V ) + R to the other; a moving impulse-like
solution does not exist.

With 0 < ε � 1, however, there is always an impulse solution. Be ε
ever so small, this impulse continues to exist. Let us take advantage of this
fact by viewing the very slow changes in the recovery variable as a small
perturbation to the leading-edge solution. To simplify the description, set
b and c to zero in Equations (6.13) and assume that

f(V ) = V (V − a)(V − 1) ,

with a < 1/2.
As ε → 0, the solitary-wave solution appears as indicated in Figure 6.5,

with four distinctly different regimes. Each of these regimes can be related
to the corresponding homoclinic trajectory in the (V, W, R) phase space
shown in Figure 6.6.

To see how this goes, let us walk around the homoclinic trajectory,
starting at the singular point

(V, W, R) = (0, 0, 0)

and proceeding in the −ξ direction. Along each regime of this trajectory,
the reader is invited to identify the corresponding features in Figures 6.5
and 6.6.

Regime #1. This corresponds to the leading edge of the impulse, where
R ≈ 0 and V makes a rapid transition from 0 to 1. As ε → 0, the traveling
wave approaches

V (ξ) → V0(ξ) =
1

1 + exp(ξ/
√

2)
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Figure 6.5. V and R as functions of the traveling-wave variable ξ as ε → 0.
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R
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Figure 6.6. The homoclinic solution trajectory of Equations (6.13) corresponding
to the traveling-wave impulse shown in Figure 6.5.
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with velocity approaching4

v → v0 = (1 − 2a)/
√

2 .

Regime #2. Moving along this trajectory in the −ξ direction, W ≈ 0 and
R increases slowly (at a rate proportional to ε) until the values of the outer
zeros of f(V )+R permit a downward transition at the same traveling-wave
speed as the leading edge.

Regime #3. This corresponds to the trailing edge of the impulse. The
recovery variable R has reached its maximum value (Rmax), and V makes
a rapid downward transition from the upper to lower zeros of f(V )+Rmax.

Regime #4. Along this trajectory, W ≈ 0 and R relaxes slowly (at a rate
proportional to ε) from Rmax to 0 as ξ → −∞.

In a terminology borrowed from hydrodynamics, regimes #1 and #3
are sometimes called boundary layers that interpolate between the slowly
varying regions of regimes #2 and #4. If we let ε → 0 and use a scale for ξ
in Figure 6.5 that keeps the widths of regimes #2 and #4 of order one, the
boundary layers of regimes #1 and #3 reduce to Heaviside step functions.
If we use a scale that keeps regime #1 of order one as ε → 0, then regime
#2 becomes a plateau of unbounded length.

In Appendix E, it is shown how perturbation theory can be used to extend
the present ideas to allow an estimate of the first-order dependence of F–N
impulse speed on ε using the leading-edge description (v0 and V0(ξ)) as a
basis [3]. This analysis broadens the leading-edge perspectives of Chapter
5, and a related approach has been used to study the H–H system [2].

6.5.2 Stability
To this point in our studies of the F–N system, we have considered traveling-
wave solutions determined by the ODE system of Equations (6.13). Because
traveling waves are functions only of the variable ξ ≡ x − vt, where v is
fixed in the course of the analysis, we have learned nothing about their
stability as solutions of the underlying PDE. In this section, we ask such
questions as: How does an F–N equation respond to small deviations from
the exact traveling-wave solutions? Do small changes relax back to zero,
implying stability? Or do they grow with time, implying instability?

In attempting to answer such questions, one may take three different
approaches.

Numerical Studies of Stability
One way to assess the stability of a traveling-wave solution is to use it

4This follows from Equations (5.10) and (5.11), where a = V1/V2 and Luther’s factor
is removed by the normalization.
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as the initial condition for numerical computations that are based on the
original PDE system given in Equation (6.12). Assuming that the numerical
procedure is reliable, divergence of the numerical solution from traveling-
wave initial conditions implies instability; otherwise, the impulse is stable.
Such computations have now been carried out many times for the F–N
system for a wide range of parameters, and all results have been found
to be consistent with the following statements: traveling wave impulses
corresponding to the upper curve in Figure 6.3 are stable; and impulses
corresponding to the lower curve are unstable [11, 28, 29, 30].

Because there may be some unexplored combinations of parame-
ters giving contradictory results, such numerical studies do not provide
mathematical proofs but offer circumstantial evidence.

Qualitative Stability Estimates
The above-mentioned numerical observations are in accord with qualitative
(or common sense) considerations that help one gain a better appreciation
for the physical nature of nerve impulse stability.

First, as we have seen in Section 5.4 and Appendix D, mathematical
studies of leading-edge dynamics show the upper curve to be stable and
the lower curve unstable in the limit ε → 0 of Figure 6.3.

Second, for the F–N impulse shown in Figure 6.5, we can ask what hap-
pens if an impulse gets a little too long or too short. Along the upper
branch of Figure 6.3, the answer to this question is that an excessively long
impulse will become shorter, and an impulse that is too short will become
longer, with both converging on the traveling wave shown in Figure 6.5. To
see this, consider the following argument.

From the discussion in Section 6.5.1, the correct value of Rmax is deter-
mined by the condition that the speed of the trailing edge (regime #3) must
equal that of the leading edge (regime #1). Moving in the −ξ-direction,
the leading edge is an upward transition between the two outer zeros of
f(V ), whereas the trailing edge is a downward transition between the two
outer zeros of

f̃(V ) = f(V ) + Rmax .

Now, consider the following two cases.
(1) Rmax is larger than the correct value, which indicates that the impulse

is too long. Then the positive-going area (A+) under f̃(V ) is increased,
making it more dissipative. Because the trailing edge is a downward tran-
sition, requiring the dissipation of energy, this change in the shape of f̃(V )
accelerates the trailing edge, which shortens the impulse and returns Rmax
to its correct value.

(2) Rmax is smaller than the correct value, which indicates that the im-
pulse is too short. Then the positive-going area under f̃(V ) is decreased,
which slows down the trailing edge, thereby lengthening the impulse and
again returning Rmax to its correct value.
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Thus do the nonlinearities in the system allow an impulse to automat-
ically adjust itself for the correct length, as shown in Figure 6.5. These
qualitative considerations suggest that the upper curve of Figure 6.3 is
stable for some range 0 < ε � εc.

Mathematical Analyses
Because the initial growth of an instability is governed by a PDE obtained
by linearizing the nonlinear PDE about the nerve impulse, a general sta-
bility study can be based on a mode analysis of that linearized PDE. This
is the approach presented in Appendix D.

The key idea in this analysis is to look at individual modes (also called
eigenfunctions) of the linearized PDE and ask whether they grow or decay
with time. (Familiar examples of such modes are the various ways that a
guitar string or a drum head can vibrate, each mode having a characteristic
shape and frequency of vibration.)

Because the PDE is linear, the temporal behavior of several modes will
be determined by a sum of their individual behaviors. Thus, a sufficient
condition for instability is that at least one mode of the linearized PDE
grows with time. A necessary condition for asymptotic stability, on the
other hand, is that all modes decay with time.

The first step therefore is to express the original nonlinear PDE in a
moving coordinate system, for which the independent variables become

x → ξ = x − vt ,

t → τ = t ,

where v is the speed of the undisturbed traveling wave. Thus, ξ and τ
are, respectively, the distance and time in the moving system, where τ is
measured by a clock in the stationary system. It is in the moving coordinate
system that the original nonlinear PDE is linearized about the traveling
wave.

Because the linearized PDE does not depend explicitly on time in
the moving system, the method of separation of variables (sketched in
Appendix D) implies that the temporal behavior of a mode will be as

eλτ ,

where λ is an eigenvalue of the corresponding eigenfunction (or mode). (In
a different language, λ is an element of the spectrum of the linearized PDE
and its boundary conditions.)

Eigenvalues may be of two types: discrete eigenvalues, occurring at iso-
lated points in the complex λ-plane, corresponding to localized dynamics
(internal oscillations, for example) of an impulse, or continuous eigenval-
ues, which are dense on lines in the λ-plane and correspond to modes of
radiation from the traveling wave.
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If the real part of λ is positive for any mode, that mode will grow with
time, implying instability. If, on the other hand, the real parts of the eigen-
values of all modes are less than zero, then the corresponding traveling
wave will be asymptotically stable.

As noted in Appendix D, there is always one mode for which λ = 0
is a discrete eigenvalue: the derivative of the traveling wave with respect
to the traveling-wave variable ξ. Adding this mode to a traveling wave
merely translates that traveling wave in the ξ direction; thus, it is called a
translation mode. Because this translation mode neither grows nor decays
with time, a nerve impulse is at most stable but not asymptotically stable.5

The mathematical basis for stability analysis of nerve axon models was
established during the 1970s in an important series of papers by Evans.
In the first of these, he formulated a general set of nonlinear PDEs for
which both the H–H and F–N systems are special cases, showing that the
impulse is stable relative to the nonlinear PDE if and only if it is stable in
the linearized PDE [5]. The second paper studied stability of the resting
state, from which it is seen that the resting states of both the H–H and
F–N systems are stable [6]. In the third paper of the series, Evans showed
that disturbed impulses relax exponentially back into (possibly displaced)
traveling waves if and only if [7]:

• There are no eigenvalues for which Re[λ] > 0.

• Re[λ] = 0 only if λ = 0.

• The eigenvalue at λ = 0 is simple. (In other words, the translation
mode is the only mode for which λ = 0.)

Finally, in the fourth paper, Evans showed how to construct an analytic
function that allows the preceding stability conditions to be deduced [8].
Thus, zeros of this “Evans function” are eigenvalues, and multiple zeros
indicate that the corresponding eigenvalues are not simple.

The work of Evans gave criteria for the stability of impulses but left open
whether any traveling wave representing a nerve impulse in, say, the H–H
or F–N systems, is actually stable. The first full result of impulse stability
is due to Jones [19, 20] for the fast F–N pulse. He verified stability in the
limit ε � 1, for which the leading edge is separated from the trailing edge
by a long intermediate phase. By well-known results in reaction–diffusion
equations (see Fife and McLeod [9]), the front and back are individually
stable for their relevant reduced systems, with the recovery variable fixed.
The proof of stability then involves showing that the front and back lock
to each other under the dynamics of the PDE rather than drift apart.

5Some choose to define stability with respect to a measure that permits arbitrary
translations in the ξ-direction, thereby allowing asymptotic stability. In the present
work, this artifice is avoided because an impulse at a different location is considered to
be a different impulse.
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Discerning which of these effects actually occurs amounts to showing that
the eigenvalue associated with relative motion of the front and back lies in
the left half-plane, where Re[λ] < 0. Jones used the Evans function to show
that the corresponding zero lies in the left half of the complex λ-plane.
Yanagida [35] took a similar approach to give a somewhat more qualitative
proof of fast impulse stability.

There is no known stability proof away from the singular limit because
the decomposition of the impulse into front and back is then lost. A contin-
uation argument can be used as ε is increased to show that no bifurcations
of other impulses take place up to the parameter values at which the fast
and slow pulses coalesce. Internal oscillations, however, may destabilize the
impulse, and it is an analytic challenge to find techniques that rule this out,
as is suggested by numerical evidence.

6.6 Recapitulation

This chapter began with the simplest formulation of nerve impulse dy-
namics that includes the phenomenon of recovery. Developed by Markin
and Chizmadzhev in the 1960s and 1970s for a variety of neural interac-
tions, the M–C model assumes that upon reaching threshold the membrane
goes through a prescribed time course of inward (sodium) current and out-
ward (potassium) currents, after which the net ionic charge crossing the
membrane is zero. Rather good estimates for the traveling-wave speeds of
both the larger (stable) and the smaller (unstable) impulses on the stan-
dard Hodgkin–Huxley axon are obtained by this method. In addition, a
reasonable safety factor for impulse propagation is obtained.

At a somewhat higher level of mathematical sophistication, recovery is
represented by a single dynamic variable in a formulation introduced by
Nagumo and FitzHugh in the early 1960s. This F–N model can be viewed
as a reduced version of the Hodgkin–Huxley description, with one variable
representing the dynamics of both sodium turn-off and potassium turn-on.
The F–N model can be conveniently analyzed in a phase space of three di-
mensions and helps one grasp the qualitative behavior of the more complex
H–H model. The F–N system also provides a context in which to discuss
the power balance principle on which nerve impulse dynamics are based.

Next, the structure of an F–N impulse was considered in some detail,
paying particular attention to the relationships among the fast phases of
the leading and trailing edges, leading to a qualitative understanding of im-
pulse stability. Finally, several approaches to the study of impulse stability
were sketched, emphasizing an intuitive understanding of the underlying
dynamic behavior. Although it is not as accurate as the H–H equations,
familiarity with the F–N model helps one to better understand the related
concepts of threshold for impulse ignition, all-or-nothing propagation, and
nerve impulse stability.
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7
Myelinated Nerves

Following the Hodgkin–Huxley formulation of nerve impulse dynamics for
the giant axon of the squid [31], most mathematical studies have focused on
smooth nerve fibers, as in the previous three chapters. Although this picture
is appropriate for the squid axon, many vertebrate nerves—including the
frog motor nerve studied by Galvani and axons of mammalian brains—are
bundles of discrete, periodic structures, comprising active nodes (also called
“nodes of Ranvier”) separated by relatively long fiber segments that are
insulated by a fatty material called myelin. In such myelinated nerves, the
wave of activity jumps from one node to the next, and should be modeled
by nonlinear difference-differential equations rather than by PDEs.

Impulse propagation on myelinated nerves (called saltatory conduction
by the electrophysiologists) is qualitatively similar to a row of falling domi-
nos or to the signal fires of coastal warning systems during the Middle Ages.
In an evolutionary context, myelinated nerve structures are useful because
they allow an increase in the speed of a nerve impulse while decreasing
the diameter of the nerve fiber. Thus, the motor nerves of vertebrates may
comprise several hundred individual saltatory fibers, each serving as an in-
dependent signaling channel [76]. The rabbit sciatic nerve shown in Figure
1.2, for example, can transmit information about three orders of magnitude
faster than a squid axon of the same diameter while expending much less
energy in transmitting an individual impulse than does a smooth fiber.

Over the past century, studies of impulse propagation on myelinated
nerves have been carried on in three different professional areas, among
which there has been less than ideal communication. Electrophysiology, of
course, is the foremost of these groups [7, 11, 33, 35, 61, 62, 68, 69], and since
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the 1960s these researchers have assembled a trove of data and correspond-
ing analytical interpretations, demonstrating the physiological importance
of myelination [10, 16, 22, 23, 24, 29, 32, 34, 48, 52, 53, 60, 70]. In the 1960s,
the engineering community began to study the phenomenon of saltatory
conduction, motivated by the possibility of using recently invented semi-
conductor devices to construct electronic nerve models. Whimsically called
neuristors, such structures were anticipated to provide a novel basis for
computer design [40, 41, 42, 49, 58, 59, 65]. Finally in the 1980s, saltatory
conduction became of interest to applied mathematicians, who have added
their special insights to the collective understanding [3, 5, 6, 20, 21, 38, 39].
It is hoped that the present discussion may help to bring these scattered
centers of activity together, encouraging future researchers to draw on
efforts that have gone before.

From these previous studies, it is seen that the phenomenon of saltatory
conduction on myelinated nerves introduces two qualitatively important
features. On the up side is the above-mentioned increase in speed of con-
duction with reduced fiber diameter and energy dissipation. On the down
side, however, is the possibility of failure when the distance—or electrical
resistance—between successive active nodes becomes too large.

The aim in this chapter is to present a simple yet physically reasonable
model for impulse propagation on myelinated nerve fibers and demon-
strate the ability of this model to describe both theoretical results and
experimental observations.

7.1 An Electric Circuit Model

In Figure 7.1(a) is sketched a single myelinated nerve fiber showing active
nodes separated by regions of the fiber that are insulated by myelin. In
1978, a rather thorough numerical calculation of conduction velocity on
this structure was published by Moore et al. [48] in which the ionic cur-
rents crossing the active nodes were given by Hodgkin–Huxley equations
and each myelinated region was represented by ten repeated segments of
series resistance and shunt capacitance. While giving a good value for the
conduction velocity (22.65 m/s compared with a measured value of about
23 m/s), the model of Moore et al. showed this velocity to be relatively
independent of a seemingly key parameter: the internode spacing (s). One
aim of this chapter is to present a simpler numerical model from which this
rather surprising parameter insensitivity can be intuitively understood.

To this end, consider the difference-differential equations (DDEs)

Vn − Vn+1 = (Ri + Ro)In (7.1)

and

In−1 − In = C
dVn

dt
+ Iion,n , (7.2)
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Figure 7.1. (a) A single myelinated nerve fiber (not to scale). (b) The
corresponding electric circuit diagram.

for which a corresponding electric circuit diagram is shown in Figure
7.1(b).1

In these equations, the index n indicates successive active nodes, each
characterized by a transverse voltage across the membrane (Vn). A second
dynamic variable is the current (In) flowing longitudinally through the
fiber from node n to node n + 1. Thus Equation (7.1) is merely Ohm’s
law, which relates the voltage difference between two adjacent nodes of
the current flowing between them times the sum of the inside and outside
resistances, Ri and Ro.

Equation (7.2) says that the current flowing into the nth node from the
(n − 1)th node (In−1) minus the current flowing out of it to the (n + 1)th
node (In) is equal to the following two components of transverse (inside to
outside) current leaving the node: capacitive current, C dVn/dt, and ionic
current, Iion,n, comprising mainly a sodium component [31].

The time delay for the onset of sodium ion permeability is rather short
(in the frog nerve it is about 0.1 ms), whereas the time delay for the on-

1More correctly, the passive fiber joining two active nodes should be represented by
a linear diffusion equation (see Section 9.1.1), as was approximately done by Moore et
al. [48]. In Equations (7.1) and (7.2), however, the passive internode fiber is modeled by
a single series resistance (Ri) and a single shunt capacitor (equal to the capacitance of
the myelin sheath), which is simply added to the node capacitance to obtain the total
capacitance C. Although this approximation neglects shunt conductance of the myelin
sheath, Moore et al. have shown that it has a negligible effect on conduction velocity.
Such a “Π-network approximation” for the internode fiber greatly eases computational
problems while reducing the number of parameters to be considered, thereby facilitating
interpretations of numerical results.
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set of potassium ion permeability is several milliseconds [16]. Thus, as in
Chapter 5, it is assumed that the sodium ion current begins without de-
lay and the potassium permeability remains equal to its resting value over
the leading edge of the impulse. From the Hodgkin–Huxley formulation of
Chapter 4, these assumptions imply that the total ionic current is a func-
tion of the transmembrane voltage and can be represented by a nonlinear
conductivity [31].

To maintain contact with several analytic results that are available for
nonmyelinated nerves [66], it is further assumed that this ionic current is
given by the cubic polynomial function

Iion,n =
(

G

V2(V2 − V1)

)
Vn(Vn − V1)(Vn − V2) , (7.3)

which was introduced in Equation (5.9). In this expression, the resting
potential of the active membrane is zero, and the parameters are defined
as follows. The threshold voltage at which sodium current begins to flow
into an active node is V1. The Nernst (diffusion) potential at which total
(primarily sodium) ion current returns to zero is V2. The total (primarily
sodium) ionic conductance near V2 is G.

Consider next how the parameters of this model are obtained from the
following detailed measurements on a single frog motor axon [16, 32, 70].
We will refer to this structure as the standard frog axon.

Standard frog axon

Distance between nodes (s) = 2 mm.

Outside fiber diameter (d) = 14 µm.

Internal resistance/length (ri) = 140–145 megohm/cm.

External resistance/length (ro) � ri.

Capacity of myelin/length (cm) = 10–16 pF/cm.

Capacity of active node (Cn) = 0.6–1.5 pF.

Experimental impulse speed ve = 23 m/s.

From these data,

C = Cn + scm = 3.7 ± 1 pF,

where the distributed capacitance of the internode myelin sheath has been
lumped together with nodal membrane capacitance.

For an isolated nerve fiber in an experimental chamber, the cross section
for external current flow is much greater than that for internal current;
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Table 7.1. Standard membrane permeability parameters for an active node of a
frog’s sciatic nerve [16].

Parameter Value Units

GNa 0.57 µmhos

GK 0.104 µmhos

GL 0.025 µmhos

VK 0 mV

VNa +122 mV

VL 0 mV

thus, the internode resistance is taken as2

R = Ri + Ro ≈ Ri = sri = 28 ± 1 megohm.

As indicated in Table 7.1, Cole has reported the maximum sodium
conductance of a frog node to be

G = 0.57 µmhos,

and the Nernst potential for sodium ions as [16]

V2 = 122 mV.

Also he gives the threshold potential for a typical frog membrane as about

V1 ≈ 25 mV.

Potassium ion current carries positive charge out of an active node; thus,
it is a recovery variable. As we saw in Chapter 4, a detailed expression for
this current was presented by Hodgkin and Huxley [31], and the simple
representation proposed by FitzHugh was studied in the previous chapter
[22]. Here we take advantage of the fact that the time delay for the onset
of potassium current is about 3 ms [16]. Because the length of the impulse
is about equal to this time delay times its speed (about 2.3 cm/ms), the
trailing edge of an impulse is expected to lag behind its leading edge by
about 6 cm, or 30 nodes. Thus it is reasonable to neglect effects of the trail-

2Larger values of Ro are to be expected in nerve bundles, where many individual
fibers are situated together [75]. In Chapter 8, we consider impulse couplings in adjacent
fibers caused by currents flowing through this external resistance.
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ing edge of the impulse on its leading-edge dynamics.3 We will employ this
approximation throughout this chapter by assuming that the potassium
ion permeability remains equal to its resting value.

It is convenient to measure voltages in units of the Nernst potential (V2)
to obtain the dimensionless voltage variables

Vn ≡ Vn/V2 . (7.4)

Then, Equations (7.1) and (7.2) become the discrete reaction diffusion
system

RC
dVn

dt
= (Vn+1 − 2Vn + Vn−1) −

(
RG

1 − a

)
Vn(Vn − a)(Vn − 1) , (7.5)

where a ≡ V1/V2 and R = Ri + Ro.
At this point, the model is normalized in a manner that allows the inter-

node spacing to be an independent parameter and maintains contact with
notations in recent studies of discrete nonlinear diffusion by applied math-
ematicians. To these ends, s is taken to be a variable internode distance,
and a discreteness parameter is defined as

D ≡
(

2 mm
s

)
=

Rf

R
.

Under this definition, it is intended that

Rf = 28 megohms ,

which is the internode resistance of the standard frog axon. In other words,
1/D is the spacing between nodes in units of 2 mm, so D = 1 implies the
discreteness of the standard frog axon.

In this formulation, the dynamic equation becomes

D(Vn+1 − 2Vn + Vn−1) = RfC
dVn

dt
+
(

RfG

1 − a

)
Vn(Vn − a)(Vn − 1) . (7.6)

Although the experimental values of the parameters upon which Equa-
tion (7.6) is based are known only approximately, they provide reasonable
estimates for numerical studies of myelinated motor nerves of a frog.

7.2 Impulse Speed and Failure

Equation (7.6) is a discrete reaction diffusion system modeling a myelinated
nerve. This section presents some numerical calculations of impulse speeds

3Interestingly, potassium current seems to be lacking in dynamics of some rabbit
nodes, with recovery generated by leakage currents [15]. The time course for recovery,
however, is about the same as for the frog.
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obtained in [4] for comparison with corresponding theoretical results [3, 20,
42, 58, 59].

Broadly speaking, the nature of the wave propagation on a discrete nerve
model can be characterized by looking at the relative change in voltage
between two adjacent nodes. If this relative change everywhere satisfies the
inequality

∣∣
∣
∣
(Vn+1 − Vn)

Vn

∣∣
∣
∣� 1 ,

then the voltages and currents are relatively smooth functions of distance
and the system can be described by partial differential equations—the
corresponding continuum system. If, on the other hand, the maximum value

∣∣
∣
∣
(Vn+1 − Vn)

Vn

∣
∣
∣∣	 1 ,

then the conduction process is saltatory, jumping from one active node to
the next in a discontinuous manner. We refer to these two cases as the
continuum limit and saltatory limit, respectively.

7.2.1 Continuum Limit
If the internode spacing s is small enough so that the continuum limit is
reached, Equation (7.6) can be written as the partial differential equation

s2D
∂2V
∂x2 − RfC

∂V
∂t

=
(

RfG

1 − a

)
V(V − a)(V − 1) , (7.7)

where we have assumed D 	 1 and let

ns → x .

This PDE was discussed in Section 5.2.2. Thus, if time is measured in
units of (1−a)C/G and distance in units of s

√
(1 − a)/RG, then a traveling

wave front (the leading edge of the impulse) has shape [77]

V(x, t) =
1

1 + e(x−vt)/
√

2
(7.8)

and speed

v =
(1 − 2a)√

2
.

Although the condition D 	 1 is not satisfied for the standard frog
nerve, it is convenient to have an explicit expression for the wave speed
in the continuum limit as a benchmark for numerical calculations. From
Equation (5.10), the wave speed v → vc, where

vc =

√
G

RC2

(
1 − 2a

√
2(1 − a)

)

nodes/s . (7.9)
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To get the corresponding impulse speed in (say) meters/second, as is plot-
ted in Figure 7.2, merely multiply this expression by s, the number of
meters between adjacent nodes.

7.2.2 Saltatory Limit
For D equal to or less than unity, the wave of excitation jumps from node
to node in a discontinuous manner, allowing the speed of conduction to be
greatly increased without a corresponding increase in fiber diameter. An
additional feature of the saltatory limit is the possibility that the switching
of one node may be unable to ignite the adjacent node. In this situation,
called failure, the impulse ceases to propagate [3, 5, 6, 20, 21, 38, 39].
Because failure of impulse conduction is an undesired property of a real
nerve, we expect the node spacing for frog axons to lie comfortably beyond
this range.

If the internode spacing s is increased so that D is reduced to a critical
value D∗, failure of impulse propagation occurs because the fully developed
voltage at one node is unable to bring the next node above threshold. Ba-
sically, this occurs when the internode distance, and therefore R, becomes
too large with respect to the node resistance 1/G.

With the cubic form of the sodium ion current in Equation (7.3), Erneux
and Nicolis [20] have shown that the critical value of the discreteness
parameter is given to lowest order in a (≡ V1/V2) by

D∗ ≈ RfGa2

4(1 − a)
= 0.21 . (7.10)

For D slightly larger than D∗, these same authors show that the impulse
velocity v → vs, where

vs =
1

πC

√
G(D − D∗)
Rf(1 − a)

nodes/s . (7.11)

Again, the corresponding impulse speed in meters/second, as plotted in
Figure 7.2, is obtained from multiplying this expression by s, the number
of meters/node.

In the saltatory limit, each segment of the myelinated nerve is modeled
much like the “integrate and fire” switch, which was mentioned at the
beginning of the previous chapter. Thus node n fires, whereupon its voltage
forces current through the internode resistance and into the capacitance of
node n + 1. When the voltage across the node n + 1 reaches threshold, it
fires, and the process is repeated.

This perspective on mechanism of failure goes back to the seminal
work of Kunov and Richer in the mid-1960s, where the piecewise linear
model of Equation (5.12) leads to a similar value for D∗ [40, 58]. Taking
GL = 0.025 µmho from Table 7.1 to be the conductance below threshold,
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Figure 7.2. Leading-edge impulse velocity on a myelinated axon as a function of
the discreteness parameter D = 2 mm/s. The black dot at D = 1 indicates a
standard frog axon of outside fiber diameter equal to 14 µm. (Redrawn from [4].)

a simple voltage-divider calculation shows that failure is expected to occur
for V2/(RGL +1) < V1 or RGL > (1− a)/a [67]. Thus to lowest order in a,

D∗ ≈ RfGLa

(1 − a)
= 0.18 .

Using the piecewise linear approximation of Equation (5.12) with β = 1,
Keener has obtained a related result holding for 0 < a < 1/2 [38, 39].

7.2.3 Numerical Results
Equation (7.6) has been used to compute the wave-front velocity for a nerve
impulse, which is plotted against the discreteness parameter (D = 2 mm/s)
in Figure 7.2 [4]. From these numerical data, one can make the following
observations.

• At larger values of the discreteness parameter (D > 5 or s < 0.4 mm),
the continuum approximation holds and impulse velocity is given by
Equation (7.9).

• Failure in the model is accurately predicted by Equation (7.10) to
occur at D∗ = 0.21 or s = 9.5 cm, in accord with the value of “almost
10 cm” observed by Moore et al. [48]. Near the failure point, impulse
velocity is well-represented by Equation (7.11).

• At D = 1 (corresponding to the parameters of a real frog nerve),
neither the continuum approximation formula nor Equation (7.11)
give a satisfactory estimate of the impulse velocity.
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• The computed velocity of 29 m/s is significantly larger than the ex-
perimental value of 23 m/s and the computed value of 22.65 m/s
obtained from the more exact numerical study of Moore et al. [48].
The difference between these two computations may arise because the
model of Section 7.1 does not include the effects of sodium turn-on
delay. (An adjustment of the simple model for sodium turn-on delay
is presented in the following section.)

• The fact that the standard frog nerve lies near the maximum value of
the curve in Figure 7.2 provides a qualitative explanation for the
insensitivity of conduction velocity to internode spacing over the
range

1 mm ≤ s ≤ 2 mm

observed by Moore et al. [48]. Because the effects of the saltatory and
continuum limits are in balance at this maximum, Figure 7.2 shows
that s can change by a factor of more than 2, whereas the conduction
velocity varies by less than 10%.

7.3 Biological Considerations

In this last section, we consider some applications of the foregoing formula-
tion to motor nerves of several different vertebrate species, with emphasis
on means that evolutionary pressures may have used to optimize myeli-
nated axon structures. The discussion concludes with a testable prediction
of the conduction velocities to be found in arctic vertebrates. Interestingly,
a century of effort has not exhausted the possibilities for fruitful research
on the dynamics of myelinated nerves.

7.3.1 Frog Motor Nerves
Before drawing biological conclusions from our model, it is necessary to
check whether Equation (7.6) gives a value for impulse speed that agrees
with experimental observations. In this connection, Tasaki and his col-
leagues have reported measurements of the conduction velocities of 49
individual frog axons with outside diameters ranging from 3 to 17 µm
at 24oC [70, 71]. These data are displayed in Figure 7.3 and indicate that
the experimental values of impulse velocity (ve) are related to the outside
diameter of the axon (d) by the linear relationship [70]

ve = 2d (7.12)

to an accuracy of about ±25%, where the velocity is in meters per second
and the diameter is in microns. Because the standard frog axon has an
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Figure 7.3. Empirical conduction velocities (ve) vs. outside fiber diameters (d) for
myelinated axons of two different vertebrate species: the frog at a temperature
of 24oC (from data in [71]), and the cat at a temperature of 37.5oC (from data
in [33]).

outer fiber diameter of 14 µm, the calculated conduction velocity of 29 m/s
is in accord with the data of Figure 7.3.

Assured that the simple model of Section 7.1 is not unreasonable, we are
led to two observations of biological significance. First, failure of an impulse
on the standard frog axon is expected to occur at an internode spacing of
9.5 mm (corresponding to D∗ = 0.21), whereas the normal spacing is 2 mm.
The evolutionary design of this axon thus provides a comfortable margin of
safety against failure. Second, Figure 7.2 shows that at D = 1 the impulse
velocity of a normal frog nerve is close to the maximum possible value,
again suggesting that an optimal design has evolved.

Although the preceding results for varying D (or internode spacing s =
2 mm/D) have been obtained under the assumption that other properties
of a nerve fiber remain fixed, this is a mathematical fiction. In real nerves,
some sort of design optimization has occurred over the course of biological
evolution that simultaneously adjusts all parameters in appropriate ways.
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Figure 7.4. Average internode distance (s) vs. outside fiber diameter (d) for myeli-
nated axons of two different vertebrate species: the frog (from data in [71]), and
the cat (from data in [33]).

To see whether the optimal design features displayed for the standard
frog axon in Figure 7.2 should hold for fibers of different diameters, consider
the following line of logic.

(1) As indicated in Figure 7.4, internode spacings and fiber diameters of
frog axons obey the approximately linear relation [33, 71]

s = 146d . (7.13)

(2) From the simple perspective introduced in Equation (1.2), the impulse
speed of a myelinated axon is

ve = s/T . (7.14)

As Tasaki et al. have observed [71], Equations (7.12) and (7.13) imply that

T =
146
2

× 10−6 s = 0.073 ms
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is the internode conduction time, or the time required for an impulse to
jump from one node to the next. (This value compares favorably with the
value of 0.069 ms for the standard frog model.) From Equations (7.12) and
(7.13), T is approximately independent of fiber diameter.4

(3) In the model of Section 7.1, RC = 0.1 ms, whereas C/G = 0.006 ms;
thus, the internode conduction time

T ∝ RC ,

implying that RC is independent of fiber diameter.

(4) The internode resistance R ∝ s/d2 ∝ 1/d, and for nodes of constant
length the node capacitance G ∝ d, implying that RG is also insensitive to
changes of fiber diameter.

Thus, Equation (7.5) appears to be invariant to differences in the fiber
diameter, suggesting that the optimal properties displayed in Figure 7.2
may hold for the many axons of Figure 7.3. In other words, frog motor axons
of widely different diameters are expected to have conduction velocities near
their maximum values. What about axons from other species?

7.3.2 Other Vertebrates
For several vertebrate species, it has been observed that impulse speed
(ve) and internode spacing (s) are proportional to fiber diameter (d). For
myelinated motor axons of the cat, for example, it is seen from Figure 7.3
that [33]

ve = 5.6d , (7.15)

where d is measured in microns and ve in meters per second. Also, from
Figure 7.4 [33],

s = 100d , (7.16)

where s is also in microns.
Let us write these relations as

ve = αd and s = βd ,

implying that

ve = s/T (7.17)

with

T = β/α .

4There are some typographical errors in Tasaki’s references. Equation (5.5) of [70]
incorrectly gives ve = 2.5d instead of ve = 2d, and in [71], the coefficients in the equations
for ve and s as linear functions of d are interchanged.
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Table 7.2. Myelinated nerve parameters for several vertebrate species. (Computed
values of T = β/α are underlined.)

Species Temp α β T References

froga 24 2 146 0.073–0.082 [7, 35, 70, 71]

toadb 24 2 100–150 0.05–0.075 [25, 34, 51, 72]

catc 37.5 4.6–5.6 65–100 0.012–0.022 [8, 33, 47, 64]

moused 38–39 6 74–84 0.012–0.014 [7, 9, 63, 64]

rate 30–39 6.1 94–146 0.02 [26, 57, 63, 64]

rabbitf 38 4.5 59–105 0.013–0.023 [19, 46, 51, 74]

guinea pigg 38–39 6 69–103 0.012–0.017 [27, 63, 64]

sheeph 37 4–5 60 0.012–0.015 [28, 44]

humani 37 5.9 84–100 0.014–0.017 [37, 43, 51, 73]

Units: oC (m/s)/µm µm/µm ms

a α is from Figure 7.3 [70, 71], and β is from Figure 7.4 [71]. The lower value of
T is computed, whereas the upper value is a direct measurement [35]. (For the
standard frog axon of Section 7.1, T = 0.069 ms.)
b Considered similar to the frog [70], the toad value of α = 2 at 24oC is confirmed
in [34], where β = 100 (probably too low) was used for numerical studies. T is
computed.
c α is from Figure 7.3 [33] and [8], β from Figure 7.4 [33], [47], and [64]. T is
computed.
d α is from [63] and β from [7] and [64]. T is computed.
e T is directly measured [56, 57] at 30oC. α is from [63] at 38–39oC. β is from
[26] and [64].
f α is the average of five values given in [19]. Measured values for β were given
in [19] and [74], from which T is computed.
g α is measured in [63], and β is measured in [27] and [64]. T is computed.
h β averages unpublished measurements of 367 internodes of 20 nerves from 13
sheep [28], α is estimated from velocity and diameter distributions in [44], and T
is computed.
i α is from [37], β from [43] and [73], and T is computed.

In Table 7.2 are collected some of the values that have been measured for
these parameters on nerves of various vertebrate species and from which
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the following observations can be made. Warm-blooded creatures have sig-
nificantly greater conduction velocities for a given fiber diameter (α) than
the frog and toad, which are cold-blooded.5 Warm-blooded creatures have
shorter internode spacings (β) for a given fiber diameter. Internode conduc-
tion times (T ) are about four times larger for cold-blooded animals than
for warm-blooded ones.

This difference in T might be thought to arise from the fact that nerves
of warm-blooded animals operate at higher temperatures, but there are
two reasons for finding this explanation incomplete. First, measurements
by Hutchinson et al. [34] on the toad show that impulse velocity varies with
fiber diameter and temperature as

ve = 0.6(1 + 0.1 Temp)d . (7.18)

Extrapolating from 24oC to 37.5oC implies α = 2.9, which is about half
the value observed for the cat. Second, measurements by Paintel [50] on cat
nerves show that conduction velocity is decreased by 58% at 24oC, implying
α = 3.2, which is significantly greater than the frog value of α = 2.

In other words, it appears that only a fraction of the decrease in in-
ternode conduction time for warm-blooded over cold-blooded animals can
be directly attributed to temperature increase. How might the remaining
difference be explained?

7.3.3 An Evolutionary Perspective
In an early formulation for the evolutionary optimization of myelinated
nerves, Rushton supposed that structural dimensions could be uniformly
scaled, with all electric potentials remaining invariant under the scaling
factor [61]. Although his theory implies that both conduction velocity and
internode spacing should be nearly proportional to fiber diameter, it does
not allow predictions of internode conduction times or of their dependence
upon temperature.

Here a somewhat less restrictive approach to the optimization problem
is taken based on an evolutionary interplay between the RC time constant,
defined in Equations (7.1) and (7.2), and τm, the delay for rise of the sodium
ion turn-on variable (m) at an active node. Sodium turn-on delay is an in-
trinsic property of sodium channels, remaining essentially unchanged over
a wide range of biological organisms [15, 30].6 The circuit time constant
(RC), on the other hand, depends strongly on a number of structural pa-
rameters, including the internode distance (s), the outside fiber diameter

5This generalization is supported by a measurement of α = 2.4 for trout [18].
6Although recent genetic investigations reveal several different sodium channels [14,

54], a particular channel, from a gene variously called Nav1.6, Scn8a, PN4, and cer3, is
concentrated at nodes of Ranvier [12], with little phylogenic variation [1, 45].
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(d), the area of the active node membrane, and the ratio

g ≡ axon diameter
outside fiber diameter

(7.19)

which seems to have an optimum value around 0.6 [32, 48, 61, 64]. These
parameters present many options for adjusting the conduction velocity of
a myelinated nerve [2].

Among the effects of structural changes are the following. (1) R is pro-
portional to s and inversely proportional to (gd)2. (2) Node capacitance
Cn is equal to the node area times the capacitance per unit area of the
membrane (about 1 µF/cm2). (3) Node area, in turn, is proportional to gd
and also to the length of the node. (4) Internode (myelin) capacitance Cm
is proportional to both s and d, and it decreases with decreasing g because
this implies a thicker myelin sheath. (5) Under the Π-network approxima-
tion of Equations (7.1) and (7.2), C = Cn + Cm. With all of these avenues
for possible change, how is an optimum value of RC established, and why
should it be independent of fiber diameter?

For the standard frog nerve model of Section 7.1, sodium turn-on time is
neglected, but it was noted in Section 5.2.2 that this delay has a significant
effect on the speed of a squid nerve impulse. To bring sodium turn-on delay
into the formulation, assume in Equations (7.14) and (7.17) that

T = 2.2a
√

(RC)2 + τ2
m + Tsw , (7.20)

where the first term is the time required for the membrane to go from zero
to the threshold voltage (V1) and Tsw is the time to switch from V1 to V2.
Also a ≡ V1/V2 and the factor

√
(RC)2 + τ2

m interpolates between a circuit
response time of RC (which dominates the dynamics at RC 	 τm) and a
sodium ion response time of τm (which dominates at RC � τm). For the
standard frog model, it is expected that Tsw will be small compared with
T because it is governed by the time constant C/G � RC.7

7Equation (7.20) is a rather crude expression for T introduced to reduce the number
of parameters to two, RC and τm. The derivation assumes that below threshold the
sinusoidal steady-state response function is proportional to

1
(1 + iωRC)(1 + iωτm)

,

where the first factor represents the frequency response stemming from circuit behavior
and the second from response of the sodium turn-on variable m. This response function
has magnitude

1√
[1 + (ωRC)2][1 + (ωτm)2]

=
1√

1 + ω2[(RC)2 + τ2
m]

+ O[ ω4(RCτm)2] .

Thus, the half-power frequency is approximately 1/
√

(RC)2 + τ2
m, with a correspond-

ing 10% to 90% rise time of about 2.2
√

(RC)2 + τ2
m. From an “integrate and fire”

perspective, the time for the next node to reach threshold is a times the 10% to 90%
rise time.
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To maximize impulse speed, it is necessary to reduce T . Because τm is
fixed by properties of the sodium channel proteins, RC will plausibly be
pushed down by evolutionary pressures on the structure until

RC = Kτm ,

where K is a factor of the order of unity. At this point of diminishing
returns,

T − Tsw = 2.2aτm

√
K2 + 1 = 2.2aRC

√
1 + 1/K2 . (7.21)

The temperature at which this equality is established—called the evolu-
tionary design temperature (EDT)—is expected to be about twenty degrees
Celsius higher for warm-blooded animals than for cold-blooded ones.

Four items of empirical evidence can be advanced in support of this
optimization principle.

1. Assuming that evolutionary pressures adjust the structure of a myeli-
nated fiber until RC is of the order of the sodium ion response time
(a fixed, albeit temperature-dependent, property of the sodium chan-
nel proteins) provides a qualitative explanation for observations that
internode conduction times are independent of fiber diameters.

2. For the standard frog nerve, Equation (7.21) (with K = 1 and Tsw =
0.01 ms [15]) implies T = 0.076 ms in agreement with the values of
0.068–0.084 ms in Table 7.2.

3. Equation (7.21) also suggests that the optimum internode conduc-
tion times should be smaller for warm-blooded animals than for a
cold-blooded frog. Because the body temperatures of mammals are
about 37oC, whereas a frog might prefer to swim about in water of
(say) 24oC, mammalian EDTs are some 13 degrees higher than for
a frog. From Equation (B.3) of Appendix B, the Hodgkin–Huxley
temperature dependence

τm ∝ 3−Temp/10 (7.22)

in turn implies that the sodium turn-on time for a warm-blooded
nerve should be about 4.2 times smaller than for a frog nerve. Equa-
tion (7.21) then gives T = 0.076/4.2 = 0.018 ms at 37oC, in accord
with the empirical values for mammals given in Table 7.2.

4. Experimental observations of variations of conduction velocity with
temperature include the following. Measurements between 15oC and
30oC on six selected toad axons by Hutchinson et al. suggest the
linear dependence of Equation (7.18), which is plotted in Figure 7.5
[34]. Studies on toads between 5oC and 20oC by Tasaki and Fujita
consistently showing

ve = k1.8Temp/10 (7.23)



156 7. Myelinated Nerves

10 20 30
10

20

30

Temperature (centigrade)

C
on

du
ct

io
n 

ve
lo

ci
ty

 (
m

et
er

s/
se

co
nd

)

vcalc

Hutchinson et al.(v )e

Tasaki and Fujita(v )e

Figure 7.5. A plot of calculated conduction velocity (vcalc) vs. temperature from
Equation (7.24). This plot is compared with experimental data (ve) from Hutchin-
son et al. and from Tasaki and Fujita in Equations (7.18) and (7.23), respectively.
(In Equation (7.23), k is chosen to equal the velocity from Equation (7.18) at
20oC.)

over many different preparations [72]. These data are also plotted on
Figure 7.5, where k has been chosen so Equations (7.18) and (7.23)
give the same value of conduction velocity at 20oC. Evidently, these
two sets of data diverge between 15oC and 20oC.
Together with the Hodgkin–Huxley temperature dependence of
Equation (7.22), Equations (7.20) and (7.21) allow calculation of con-
duction velocity as a function of temperature. Thus with K = 1 at
an EDT of 24oC,

vcalc =
s

T
=

√
2s

(T0 − Tsw)
√

1 + 3−(Temp−24)/5 +
√

2Tsw
. (7.24)

To match the experimental conduction velocities at 24oC, s = 2 mm,
T0 = 0.07 ms, and Tsw = 0.01 ms, allowing Equation (7.24) to be
plotted in Figure 7.5. Thus, the simple analysis embodied in Equation
(7.24) is in fair agreement with empirical observations between 20oC
and 30oC.

Having presented arguments in support of the proposed optimization
principle, it is appropriate to consider and respond to some questions that
might be raised.

(1) In the derivation of Equation (7.20), it was assumed that one active
node would “integrate and fire” before the next node goes through the same
cycle. Although this assumption may hold for a frog nerve (with Tsw ≈ 0.01
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ms and T ≈ 0.07 ms), it appears unlikely for the mammalian nerve, with
T ≈ 0.02 ms or less. Thus, Equation (7.20) should not be used for detailed
predictions concerning mammalian nerves.

(2) It is not clear from the present formulation why the parameter β (see
Table 7.2) should be smaller for warm-blooded animals. Careful measure-
ments along cat fibers, however, show that β decreases greatly as one moves
out on axonal trees, perhaps because lower β brings a needed increase in
the safety factor [55]. Could a high safety factor be more important for
warm-blooded animals?

(3) Assuming T0 = 0.07 ms, Tsw = 0.01 ms, and an EDT of 24oC,
Equation (7.24) implies that vcalc changes by a factor of 4 as temperature
increases from 5oC to 20oC, whereas Tasaki and Fujita observed a factor
of 2.4. Thus, Equation (7.20) does not provide a good model for the dy-
namics below 20oC, where τm 	 RC. Because Equation (7.24) was derived
without reference to the details of sodium ion dynamics, such disagreement
is not unexpected. On the other hand, the disagreement noted earlier be-
tween the data of Hutchinson et al. [34] and that of Tasaki and Fujita [72]
between 15oC and 20oC suggests that temperature dependence of conduc-
tion velocity needs to be more carefully measured between 5oC and 30oC
before firm conclusions are drawn.

(4) Returning to the measurements plotted in Figure 7.4, the assump-
tion that internode distance is proportional to fiber diameter (s = βd) is
seen to be not quite true for the cat. Fibers of larger diameter appear to
have relatively shorter internode distances (smaller β) than those of smaller
diameters, suggesting a relationship of the form s = s0 + β̃d, as has also
been observed for the guinea pig [27] and the rabbit [74]. Together with
the linear relations (ve = αd) in Figure 7.3, this observation implies that
the internode conduction times are shorter for larger fibers, as has been
confirmed for cat fibers by Coppin and Jack [17, 36].

By directly measuring internode delay as a function of conduction veloc-
ity on cat axons, Coppin and Jack found T ≈ 0.025 ms for smaller fibers
having speeds of 30 m/s, diminishing to T ≈ 0.01 ms for larger fibers of 120
m/s. Going further, Boyd and Kalu have shown that α increases slightly
for larger cat fibers [8].

From the present perspective, such data might be accounted for by sup-
posing that RC becomes somewhat smaller (relative to τm) on the larger
fibers than is indicated by Equation (7.21) in order to compensate for the
relatively smaller values of β. In other words, K is smaller for larger fibers.

(5) It is to be noted that equations in the preceding discussion indicate
statistical propensities rather than fixed functional laws. To appreciate this
feature, turn back to Figure 7.3 and compare these data with the expres-
sions ve = 5.6d and ve = 2d. All of the preceding equations are similarly
intended as averages over such variations of about ±25%. Although some
of the randomness stems from measurement errors, much arises from differ-
ences in the degree of optimization actually achieved by individual fibers
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[51]. As was mentioned in connection with the original Hodgkin–Huxley
data presented in Chapter 4, such variations are not unusual in the realms
of biology, reflecting different responses of individual fibers to the hap-
penstance of growth. From this perspective, Equation (7.20) represents an
evolutionary pressure, acting in an average manner over the members of a
species.

Although it must be admitted that this formulation for the influence
of evolution on axonal structures is speculative, leaving many aspects to
be improved through better measurements and more thorough numerical
and theoretical studies, it provides a context for organizing structural and
dynamic data. Furthermore, the model makes a testable prediction.

7.3.4 The Evolution of Arctic Fish
Consider the internode conduction times of arctic fish that have evolved in
near-freezing water. If only the direct effects of temperature are considered,
Equation (7.23) suggests that T at 4oC should increase over that of a frog
at 24oC by a factor of 3.2 from the range 0.073–0.082 ms (see Table 7.2) to

T = 0.23 − 0.26 ms .

If evolutionary pressures associated with Equation (7.20) come into play,
on the other hand, RC should also be reduced as changes in T respond
to the H–H temperature dependence of τm. From Equation (7.22), the
internode conduction times of arctic fish measured at 4oC should be nine
times larger than for a frog at 24oC, implying an increase of T to

T = 0.6 − 0.74 ms ,

a factor of about 40 longer than the internode delays of typical mammals.
Using a moving probe to monitor external voltage waveforms along a

single fiber, Huxley and Stämpfli have shown that internode conduction
time can be directly measured at a frog node [35]. As we have seen, this
technique has been successfully employed by Coppin and Jack on cats [17]
and also by Raminsky and Sears on rats [56, 57]; thus, it seems feasible to
do the same with single motor axons of arctic fish.

One candidate for such a study is the Greenland shark [13]. Typically
described as “sluggish,” Somniosus microcephalus lives deep in the Atlantic
polar regions, where the water temperature is 2–7oC, surfacing only during
the winter. Does this sleepy pea-brain offer little resistance to fishermen
because its nerves are so slow?

7.4 Recapitulation
The nature of saltatory conduction was formulated for axons of the frog
sciatic nerve, which was studied by Galvani and Helmholtz. Using experi-
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mental data published by Hodgkin, Cole, and Tasaki, a simple quantitative
model of a single axon was developed, depending on only four experimen-
tally determined parameters and demonstrating the relationship of real
myelinated nerves to impulse failure and to the continuum models con-
sidered in Chapter 5. Numerical studies of this model confirm theoretical
calculations of impulse speeds in the continuum and saltatory limits, which
show that conduction velocity on the myelinated axon of a frog nerve lies
between these two limits, close to its maximum value.

In accord with a qualitative theory proposed a half-century ago by Rush-
ton, this frog axon model provides an example of evolutionary optimization
in which an engineering balance is established between the twin design
requirements of increasing impulse speed and avoiding failure.

To enlarge the biological perspectives, some results for motor nerves of
warm-blooded vertebrates were presented and compared with frog and toad
data. Based on an interplay between axon circuit constants (resistance and
capacitance) and the turn-on delay for sodium ion current, an evolutionary
mechanism for optimizing conduction velocity was proposed that is con-
sistent with the following empirical observations: the fact that internode
conduction time is approximately independent of fiber diameter for myeli-
nated nerves of different vertebrate species, internode conduction times
of frog axons, faster conduction velocities for warm-blooded animals than
for the frog and toad, and the increase in toad conduction velocity with
temperature. Finally, the evolutionary theory implies that internode con-
duction times for arctic fish should be about nine times longer than for the
frog—a prediction that can be tested on single axons.
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8
Ephaptic Interactions Among Axons

In Chapter 2, were mentioned some of the ways by which neurons can com-
municate with each other, including chemical transmission via synapses and
direct electrical connections through gap junctions, but there are other pos-
sibilities. Here, we consider coupling of individual impulses through their
external current loops. This is called ephaptic coupling (as opposed to
synaptic), from a Greek verb meaning “to touch.”

A chapter is devoted to this phenomenon for two reasons. First, the
possibility of nonsynaptic modifications of neuronal activity in the brain
has received less than its fair share of attention [15], and second, this is an
area in which mathematical perspectives are particularly helpful [3, 5, 6, 7,
8, 9, 20, 21, 22, 23, 24, 30, 31, 32]. But what is the experimental evidence
on which theories of ephaptic interactions are based?

8.1 Empirical Evidence

Since the work of Ewald Hering in 1882 [13],1 it has been known that
nerve impulses on adjacent fibers can influence one another, and the cross
section of a sciatic nerve shown in Figure 1.2 suggests that real nerves
offer opportunities for such interactions. Shortly after the cathode-ray os-
cilloscope became available to electrophysiologists in the mid-1930s, the

1Anticipating some of the ideas discussed at the close of the preceding chapter, Hering
slowed the dynamics of his experiments by using frogs that had been kept near 0oC for
several months.
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Figure 8.1. (a) Experiment of Katz and Schmitt to measure impulse interactions
on parallel fibers. (b) Change in threshold on fiber #2 (at point A) caused by
the presence of an impulse on fiber #1. (Redrawn from [17].)

pioneering work of Arvanitaki [1] inspired several observations of ephaptic
interactions [4, 10, 12, 14, 17, 18, 19, 25, 26, 28, 29]. More recent references
include both theoretical and experimental studies [2, 7, 8, 11, 27] and the
important review by Jefferys [15].

An early investigation by Katz and Schmitt provides particularly clear
evidence for nonsynaptic interactions [17, 18, 19]. From a variety of exper-
iments on a pair of naturally adjacent, unmyelinated fibers from the limb
nerve of a crab, these authors presented the following results.

• Using the experiment sketched in Figure 8.1(a), a reference impulse
was launched on fiber #1 from the left, traveling toward the right,
and at various later times the relative threshold on fiber #2 was
measured at point A.
Their observations are sketched in Figure 8.1(b), from which it is
seen the threshold on fiber #2 changes in a manner that is related to
the second derivative of the impulse voltage on fiber #1. (To empha-
size this relationship, the impulse voltage in Figure 8.1(a) is dashed
where its second derivative is negative, and the corresponding range
of reduced threshold in Figure 8.1(b) is also dashed.)

• If impulses are launched at about the same time on two parallel fibers
with independent impulse speeds that do not differ by more than



8.2. M–C Analysis of Ephaptic Coupling 167

about 10%, these impulses become “locked together,” or synchro-
nized. In other words, they are observed to move at exactly the same
speed.

• Both of these interaction effects are strengthened by increasing the
ionic resistivity of the external medium.

The aim here is to employ some of the tools that we have learned from
previous chapters to find formulations for these observations.

8.2 M–C Analysis of Ephaptic Coupling

In 1970, Markin used the M–C model (see Section 6.1) to describe impulse
coupling on parallel fibers [22, 23]. To this end, he considered two fibers
to be represented as in Equation (4.10), allowing different values for their
parameters. In addition, he assumed that the two fibers share an external
series resistance per unit length (r3) that is proportional to the ionic resis-
tivity of the external medium [7], thereby obtaining the equivalent circuit
shown in Figure 8.2. Then, using Kirchhoff’s circuit laws, just as in Section
4.4, he derived the coupled nonlinear diffusion equations

(
r2 + r3

γ

)
∂2V1

∂x2 − c1
∂V1

∂t
= jion1 +

r3

γ

∂2V2

∂x2 ,

(8.1)
(

r1 + r3

γ

)
∂2V2

∂x2 − c2
∂V2

∂t
= jion2 +

r3

γ

∂2V1

∂x2 ,

where γ ≡ r1r2 + r1r3 + r2r3. For r3 = 0, these equations evidently reduce
to the form of Equation (4.10). For r3 not zero, on the other hand, an
impulse on fiber #1 can influence the dynamics on fiber #2 and vice versa.

Interestingly, these equations readily explain the observations in Figure
8.1. Assuming that V1 is a fully developed impulse and V2 is sufficiently
small, they become

(
r2 + r3

γ

)
∂2V1

∂x2 − c1
∂V1

∂t

.= jion1 ,

(8.2)
∂V2

∂t

.= − r3

c2γ

∂2V1

∂x2 .

Thus, the region of V1 that has a negative second derivative (dashed on Fig-
ure 8.1(a)) causes V2 to rise (or depolarize), thereby reducing the threshold
of fiber #2, as indicated by the dashed region on Figure 8.1(b).

Inspired in part by Markin’s analysis, Ramón and Moore revisited the
experimental study of ephaptic interactions between squid giant axons in
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Figure 8.2. Markin’s equivalent circuit for two ephaptically coupled nerve fibers
[22, 23].

the late 1970s using internal and external voltage recordings to obtain data
confirming the second of Equations (8.2). Although ephaptic interactions
are unlikely to permit direct transmission of an impulse from one nerve
fiber to another, they concluded, impulse coupling is feasible under normal
physiological conditions.

Key to the M–C description of nerve impulse propagation is the
assumption that

jion = jmc(ξ) ,

where jmc(ξ) follows the piecewise constant function shown in Figure 6.1
whenever V reaches the threshold voltage. Thus, any influence that re-
duces (increases) the time for an impulse to reach threshold will increase
(decrease) its speed.

To apply this concept, let us assume that an impulse on fiber #2 is
leading an impulse on fiber #1 by a distance δ. In other words, the impulse
on fiber #1 goes through threshold at ξ1 = 0, where

ξ1 = x − v1t ,

and the impulse on fiber #2 goes through threshold at ξ2 = 0, where

ξ2 = x − v2t − δ .

Now note two additional facts that are evident from the general shape of
a nerve impulse: (i) ahead of the point where an impulse goes through
threshold, its second space derivative is positive; and (ii) behind this point
the second space derivative is negative.

Consider the first of Equations (8.1), and assume that ξ1 ≈ 0. Because
V2 has already gone through its threshold, ∂2V2/∂x2 is negative. Thus,
the influence of V2 on impulse #1 is to increase ∂V1/∂t, thereby raising
V1 above what it would be without the interaction. This has the effect of
speeding up impulse #1 (increasing v1), which causes δ to decrease.
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Next, consider the second of Equations (8.1), and assume that ξ2 ≈ 0.
Because V1 has not yet gone through its threshold, ∂2V1/∂x2 is positive.
Then, the influence of V1 on impulse #2 is to decrease V2 below what it
would be without the interaction, which has the effect of slowing down
impulse #2 (decreasing v2), again causing δ to decrease.

Thus, the M–C model predicts a stable coupling (synchronization) of the
two impulses with δ = 0. For those who are uncomfortable with qualitative
arguments, a dynamic study of impulse synchronization is sketched in the
following section.

8.3 Leading-Edge Analysis of Ephaptic Coupling

As an introduction to the application of perturbation to the study of ephap-
tic interactions, the results of such a study of the simple leading model of
Chapter 5 is sketched. This is followed by a qualitative description of the
impulse interactions along the lines of the previous section, which—it is
hoped—will make the perturbation results seem reasonable.

8.3.1 Sketch of the Perturbation Theory
In Appendix F, perturbation theory is used to study the synchronization
of nerve impulses on parallel fibers. In this section, it is anticipated that a
leading-edge analysis should be sufficient to obtain the experimental results
of Katz and Schmitt because the qualitative argument presented in the
previous section depends primarily on impulse behavior near threshold.

To simplify the algebra, it is convenient to assume that the two fibers
are identical and described by normalized leading-edge equations as in
Equation (5.5). Defining a coupling parameter

α ≡ r3

r1 + r3
=

r3

r2 + r3

as the ratio of outside (shared) series resistance to total series resistance
per unit length of each axon, Equations (8.1) reduce to

(1 − α)
∂2V1

∂x2 − α
∂2V2

∂x2 − ∂V1

∂t

.= f(V1) ,

(8.3)

(1 − α)
∂2V2

∂x2 − α
∂2V1

∂x2 − ∂V2

∂t

.= f(V2) ,

where the “ .=” signs indicate that terms of order α2 have been neglected.2

2Some authors have used the system

∂2V1

∂x2
− ∂V1

∂t

.
= f(V1) + η(V1 − V2) ,
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In the limiting case of α = 0, Equations (8.3) evidently reduce to a pair
of identical uncoupled nonlinear diffusion equations, which were considered
in Chapter 5. In Appendix F, α is taken to be a small parameter in a
perturbation analysis; thus, all dependent variables are expressed as power
series in α.

To appreciate the fruits of this analysis, consider the cubic representation
of the sodium ion current

f(V ) = V (V − a)(V − 1) ,

for which the leading-edge waveform is

V0(ξ) =
1

1 + eξ/
√

2
, (8.4)

and the corresponding traveling-wave speed is

v0 = (1 − 2a)/
√

2 .

Defining δ as the distance by which an impulse on fiber #2 leads (is
ahead of) an impulse on fiber #1, it is expected that the impulse speeds on
the two fibers will be some function of δ. Denoting by v(1)(δ) and v(2)(δ)
the impulse speed on fiber #1 and #2, respectively, perturbation analysis
shows that to first order in α (i.e., neglecting effects of order α2)

[
v(1)(δ) − v(2)(δ)

]
=

3α√
2

(
∆

a(1 − a)(∆ − 1)3

)
×



 2
(
∆1−2 a − ∆1+2 a

)

(∆ − 1)
− ∆ − 1

+

(
∆1−2 a − ∆−1+2 a

) [
2 (∆ − 1)2 a2 + ∆ (4 a + 1)

]

(∆ − 1) (1 − 2 a)



 , (8.5)

where ∆ ≡ exp(δ/
√

2).
The velocity difference [v(1)(δ)−v(2)(δ)]/α is plotted as a function of δ in

Figure 8.3 for several values of the threshold parameter a. To comprehend
this figure, note three facts. First, the function is odd; that is

[
v(1)(δ) − v(2)(δ)

]
= −

[
v(1)(−δ) − v(2)(−δ)

]
.

∂2V2

∂x2
− ∂V2

∂t

.
= f(V2) + η(V2 − V1)

(where η is a multiplicative constant) as a model for interacting nerve fibers [5, 6, 16, 20].
Unfortunately, this model is biologically unrealistic because it implies that gap junctions
(see Section 2.3.2) are uniformly distributed between the two fibers. Such “η-coupling”
was also studied by Steve Luzader using the perturbation techniques of Appendix F and
comparing it to the “α-coupling” of Equations (8.3) [21].



8.3. Leading-Edge Analysis of Ephaptic Coupling 171

0.3

0.2

0.1

0

- 0.1
0 2 4 6 8 10 12

Impulse spacing (δ)

a = 0.4

0.3

0.2

0.1

0.05

(1
)

(2
)

[
] /

v
(δ

) 
- 

v
(δ

)
α

Figure 8.3. A plot of [v(1) − v(2)]/α against δ from Equation (8.5) for several
values of the threshold parameter a.

Second, the change in impulse spacing is necessarily related to the velocity
difference by

dδ

dt
= −

[
v(1)(δ) − v(2)(δ)

]
. (8.6)

Finally, a detailed analysis of Equation (8.5) shows that for

a > ac ≡ 1/(6 + 2
√

6) = 0.0918 . . . ,

the slope of Equation (8.5) at the origin is positive, implying that δ decays
to zero and indicating a stable locking of pairs of impulses at δ = 0, just
as in the M–C analysis of the previous section. For a < ac, on the other
hand, the slope at the origin is negative, indicating that a pair of impulses
with δ = 0 is unstable [3].

Why does the M–C representation miss this effect? Referring back to
Figure 6.1, the key idea is that the M–C model assumes that the point
of maximum slope on the leading edge of an impulse equals the threshold
voltage. For the analysis of the present section, however, this is not so. It
is seen from Equation (8.4) that the maximum slope is always at V0 = 1/2,
whereas the threshold can lie anywhere in the range 0 < a < 1/2. How
might one use this fact and qualitative arguments from the previous section
to obtain an intuitive understanding of Figure 8.3?

8.3.2 A Qualitative Analysis
As we have seen in Figure 8.1, it is the second derivative of the impulse
voltage on one nerve that speeds up or slows down an impulse on the other
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(and vice versa), and the difference between these two derivatives generates
a difference in impulse speeds. In estimating this difference, it is helpful to
remember two qualitative rules that follow from Equations (8.3). First, if
the second derivative of V2 becomes more positive where V1 = a, this will
slow down V1. Second, if the second derivative of V1 becomes more negative
where V2 = a, this will speed up V2. Thus, if δ is the distance by which
impulse #2 leads impulse #1, it is the second derivative of V2 minus the
second derivative of V1 that will cause δ to increase with time.

In computing dδ/dt, however, one must include only the difference be-
tween the way that V1 influences the second derivative of V2 and the way
that V2 influences the second derivative of V1. Near δ = 0, these cross
terms can be found by assuming traveling waves on both fibers and writing
Equations (8.3) as

v
d2V2

dξ2 = α
∂3V1

∂ξ3 +
[
df(V2)

dξ
− (1 − α)

∂3V2

∂ξ3

]
,

v
d2V1

dξ2 = α
∂3V2

∂ξ3 +
[
df(V1)

dξ
− (1 − α)

∂3V1

∂ξ3

]
.

Because the bracketed terms are equal and do not contribute to the δ-
dependent difference of second derivatives (they are not cross terms), it
follows that

dδ

dt
∝ d3V1

dξ3 − d3V2

dξ3 , (8.7)

where V1 is the amplitude of impulse #1 at the threshold of impulse #2
and V2 is the amplitude of impulse #1 at the threshold of impulse #1.

At the threshold of impulse V2(ξ) = V0(ξ),

d3V1(ξ)
dξ3 =

d3V0(ξ + δ)
dξ3 =

d3V0(ξ)
dξ3 + δ

d4V0(ξ)
dξ4 + O(δ2) ,

and at the threshold of impulse V1(ξ) = V0(ξ),

d3V2(ξ)
dξ3 =

d3V0(ξ − δ)
dξ3 =

d3V0(ξ)
dξ3 − δ

d4V0(ξ)
dξ4 + O(δ2) .

Substituting the indicated difference between these equations into Equation
(8.7) leads to the main result of this section: for δ ≈ 0,

dδ

dt
∝ + δ

d4V0(ξ)
dξ4 + O(δ2) . (8.8)

In using this expression, the fourth derivative is to be computed at
threshold voltage V0(ξ) = a, which lies in the range 0 < a ≤ 1/2.

With these ideas in mind, consider four cases.

Case (i): 1/2 > a > ac and δ ≈ 0
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As indicated in Figure 8.4, d4V0/dξ4 is negative over the correspond-
ing values of leading-edge voltage, 1/2 > V0 > ac. Thus, Equation (8.8)
shows that a small increase in δ relaxes back to zero, indicating that δ = 0
is asymptotically stable. This is the situation treated by M–C analysis in
Section 8.2.

Case (ii): a = ac and δ ≈ 0
If V0 is equal to the critical threshold voltage, d4V0/dξ4 = 0.3 From

Equation (8.8), increasing or decreasing δ by a small amount leaves dδ/dt
unchanged to first order, implying neutral stability (neither stable nor
unstable).

Case (iii): ac > a > 0 and δ ≈ 0
Over this range of V0, d4V0/dξ4 is positive, so Equation (8.8) indicates

that δ grows away from zero, implying δ = 0 is unstable, in accord with
Figure 8.3. This phenomenon is missed by the M–C analysis of Section 8.2,

3More precisely, the fourth derivative of V0 goes to zero at exp(ξ/
√

2) = 5 + 2
√

6 =
(1 − ac)/ac, where ac = 1/(6 + 2

√
6) = 0.0918 . . . .
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which assumes that the threshold voltage to be at the point of maximum
leading-edge slope.

Case (iv): a < ac and δ 	 0
Here, Equation (8.8) does not apply. Because impulse #2 leads by δ, it

is convenient to let the threshold of fiber #1 be a = 1/[1 + exp(δ/
√

2)] so

δ =
√

2 ln
(

1 − a

a

)
.

This ensures that the central inflection point of impulse #2 (where V2 = 1/2
and ξ = 0) is at the threshold of impulse #1 (where V1 = a).

In this case, the only significant cross term is the effect of impulse #2
on the speed of impulse #1. Increasing δ makes the second derivative of
V2 seen at the threshold of V1 negative, thereby accelerating impulse #1
and causing δ to decrease. Decreasing δ, on the other hand, will make
the second derivative of V2 seen at the threshold of impulse #1 positive,
thereby slowing impulse #1 and causing δ to increase. From this qualitative
argument, such an impulse spacing appears to be stable. (For a = 0.05, the
preceding formula gives δ = 4.164 in accord with Figure 8.3.)

8.4 Ephaptic Coupling in an F–N Model

Perturbation calculations corresponding to those of the previous section
can be carried through for coupled FitzHugh–Nagumo fibers, as was done
by Steve Luzader in the late 1970s [21, 32]. The details of this analysis are
also included in Appendix F, where it is seen that difficulties arise because
certain linear operators that are second order in the leading-edge analysis
of Equations (8.3) become third order. Thus, it is not possible to find an
analytic expression for the velocity difference corresponding to Equation
(8.5). Nonetheless, a sketch of the numerical results is as follows.

Starting with the coupled F–N system

(1 − α)
∂2V1

∂x2 − α
∂2V2

∂x2 − ∂V1

∂t

.= f(V1) + R1 ,

∂R1

∂t
= εV1 ,

(8.9)

(1 − α)
∂2V2

∂x2 − α
∂2V1

∂x2 − ∂V2

∂t

.= f(V2) + R2 ,

∂R2

∂t
= εV2 ,
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the nonlinear function was assumed to be the piecewise linear function

f(V ) =






V for V < a , and

(V − 1) for V > a .

With a = 0.3 in f(V ) and with α = 0.1 and ε = 0.1 in Equations (8.9), a
fully developed impulse on one of the fibers appears as in Figure 8.5(a) as
a function of ξ = x − vt with velocity

v =
v0√
1 + α

= 0.8323 . . . , (8.10)

where v0 = 0.8729 . . .. Because this F–N impulse has two regions where the
second derivative (d2V/dξ2) is positive and two where it is negative, the
M–C analysis of Section 8.2 suggests that the ephaptic interaction will be
more involved than for leading edges.
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In the context of perturbation theory, the impulse speeds of interacting
impulses on the two fibers are given by

v(1) = v0 + αv
(1)
1 + O(α2) ,

v(2) = v0 + αv
(2)
1 + O(α2) ,

where the terms of order α2 will henceforth be neglected. In Figure 8.5(b)
are plotted the first-order corrections to v0, showing what happens to the
first-order velocity corrections when the two impulses are close enough to
interact.

Assuming yet again that δ is the distance by which an impulse on fiber
#2 leads an impulse on fiber #1, v

(2)
1 (δ) shows how the speed of an impulse

on fiber #2 is affected by its proximity to an impulse on fiber #1. Similarly,
v
(1)
1 (δ) tells us how the speed of an impulse on fiber #1 is affected by its

proximity to an impulse on fiber #2.
A necessary property of these two first-order corrections is that

v
(1)
1 (δ) = v

(2)
1 (−δ) .

Why? Because the two fibers are identical, the effect of an impulse on fiber
#2 that leads an impulse on fiber #1 by δ must be the same as the effect
of an impulse on fiber #1 that leads an impulse on fiber #2 by the same
distance.

It is at intersections of these two functions, where

v
(1)
1 (δ) = v

(2)
1 (δ) ,

that the two impulses can travel together at the same speed, but only three
of these intersections are stable (at δ = 0 and δ = ±12, indicated by black
dots), whereas two are unstable (at δ = ±5.8, indicated by white dots).

To appreciate the nature of this stability, consider first the black dot at
δ = 0, indicating that the two impulses are traveling at the same speed
with no spatial separation. Suppose that δ happens to be increased slightly
from zero so the impulse on fiber #2 is slightly ahead of the impulse on
fiber #1. Figure 8.5(b) then shows that

v
(1)
1 (δ) > v

(2)
1 (δ) ,

implying that impulse #1 will go faster than impulse #2, thereby closing
the gap. Corresponding arguments show that all of the black dots indi-
cate stable interactions. Similarly, the white dots indicate unstable impulse
separations because a slight increase of δ makes

v
(2)
1 (δ) > v

(1)
1 (δ) ,

thereby further increasing δ.
From a general perspective, this situation is analogous to the ignition

of an impulse, which we encountered in previous chapters. On a single
fiber, the fully developed impulse and the zero state are stable solutions
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of the PDE system (H–H, F–N, M–C, leading edge, or whatever), and the
unstable threshold solution is a separatrix dividing the two. Similarly, the
white dot at δ = 5.8 in Figure 8.5(b) indicates a critical value above which
δ will grow to the stable value of 12 and below which it will relax to the
stable value of zero.

Importantly, the results of the perturbation calculation in [21] have been
checked by comparing solutions of the equation

dδ

dt
= −

[
v
(1)
1 (δ) − v

(2)
1 (δ)

]

with computations of δ(t) from numerical integrations of the full PDE
system of coupled F–N equations. Good agreement between the two
approaches was observed [9].

The black dots in Figure 8.5(b) thus indicate stable traveling waves com-
prising synchronized impulses existing at a higher level of organization than
that of their component impulses. Because these ideas can be generalized
to several synchronized impulses on many fibers [24, 32], it is interesting to
consider whether such groups of impulses might play functional roles on the
fiber bundles of motor nerves, sensory nerves, or on the corpus callosum,
comprising a large number of fibers carrying information between the two
hemispheres of the mammalian brain [32]. Such fibers, however, are not
smooth but myelinated.

8.5 Ephaptic Coupling of Myelinated Nerves

For many instances of ephaptic coupling, the nerve fibers are myelinated,
with impulses jumping from active node to active node as discussed in the
previous chapter. Outstanding examples include the motor nerve bundles
of vertebrates (see Figure 1.2), optic nerves, and the corpus callosum. Thus,
it is of interest to consider models for ephaptic coupling of impulses that
are propagating on myelinated nerve fibers [3].

8.5.1 A Numerical Model for Myelinated Interactions
In describing ephaptic interactions between myelinated nerve fibers, it
seems important to model the degree to which the locations of active nodes
are aligned. To this end, two partially aligned axons are sketched in Figure
8.6(a), and a corresponding circuit diagram is shown in Figure 8.6(b).

In this circuit diagram, the V
(j)
n are voltages across the active nodes,

where j = 1, 2 indicates a particular fiber. Similarly, the I
(j)
n define mesh

currents, the independent variables for an analysis in terms of Kirchhoff’s
voltage law. (A component of current that circulates about a mesh is called
a mesh current. Evidently, all of the mesh currents in Figure 8.6(b) are
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Figure 8.6. (a) Two myelinated nerves on which impulses may be coupled by a
linking of their external return currents (not to scale). (b) A circuit diagram of
the coupled myelinated nerves.

determined by the I
(1)
n and I

(2)
n .) Equating the voltages about the meshes

to zero leads directly to the equations

V (1)
n − V

(1)
n+1 = (Ri + Ro)I(1)

n + Ro

[
AI(2)

n + (1 − A)I(2)
n−1

]
,

V (2)
n − V

(2)
n+1 = (Ri + Ro)I(2)

n + Ro

[
AI(1)

n + (1 − A)I(1)
n+1

]
,

where the voltages across the active nodes are related to the mesh
currents by

I
(j)
n−1 − I(j)

n = C
dV

(j)
n

dt
+ I

(j)
ion,n .

As in the previous chapter, it is analytically convenient to model the ionic
current in the cubic approximation

I
(j)
ion,n =

(
G

V2(V2 − V1)

)
V (j)

n (V (j)
n − V1)(V (j)

n − V2) ,

which was introduced in Equation (5.9).
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In this formulation, an alignment parameter A indicates the degree of
nodal alignment. With A = 1, the active nodes on the two fibers are exactly
aligned, whereas they are evenly staggered for A = 1/2.

For the present analysis of these equations, the parameter values from
the standard frog axon of the previous chapter are used. Furthermore, it
is convenient to measure voltages and currents in units of V2 and V2/Rf ,
respectively. Thus, the equations for ephaptic coupling become

D
(
V(1)

n − V(1)
n+1

)
= i(1)n + α

[
Ai(2)n + (1 − A)i(2)n−1

]
,

D
(
V(2)

n − V(2)
n+1

)
= i(2)n + α

[
Ai(1)n + (1 − A)i(1)n+1

]
,

i
(j)
n−1 − i(j)n = RfC

dV(j)
n

dt
+ i

(j)
ion,n , (8.11)

i
(j)
ion,n =

(
RfG

1 − a

)
V(i)

n (V(j)
n − a)(V(j)

n − 1) ,

where

α ≡ Ro

Ri + Ro

and V(j)
n ≡ V

(j)
n /V2, i

(j)
n ≡ RfI

(j)
n /V2, a ≡ V1/V2 = 0.205, R ≡ (Ri + Ro),

and j = 1, 2. Also, as in Chapter 7,

D ≡ Rf

R
=

2 mm
s

is the discreteness parameter for the myelinated axon, and s is the inter-
nodal distance. Large values of D imply the continuum limit, where D ≈ 1
or less indicates the saltatory limit.

In studies of coupled impulses on myelinated fibers, the following features
have been numerically confirmed [3].

The Continuum Limit
For D 	 1, A = 1, and δ = 0 (two coupled impulses), all voltages and
currents are identical on the two fibers, effectively increasing the current
in each fiber by a factor of 1 + α. This is equivalent to multiplying both
C and G by the same factor, and from Equation (7.9) conduction velocity
is proportional to

√
G/C2. Thus, it follows that the speed of two coupled

impulses is decreased by a factor of
√

1 + α below the speed of a single
impulse on the same system, in accord with Equation (8.10).

For A = 1/2, the numerically observed conduction velocity also decreases
by a factor of

√
1 + α, as expected, because the average values of the cur-

rents and voltages over several nodes are independent of node alignment in
the continuum limit.
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Failure
For D ≤ 1, A = 1 and δ = 0 (two coupled impulses), twice the external
current flows through the external resistance (Ro); thus, the effective loop
resistance seen by each fiber is

Ri + 2Ro = R(1 + α) .

In Equation (7.10), the value of the discreteness parameter at which failure
occurs, called D∗, is proportional to the effective loop resistance. It follows
that D∗ is increased by the factor 1 + α, or

critical node spacing for failure of two impulses
critical spacing for failure of a single impulse

=
1

1 + α
.

For A = 1/2, the dependence of D∗ on α is weaker and of the opposite
sign. Referring to Figure 8.6, we see that the nodes are evenly staggered
for A = 1/2, implying an external resistance of Ro/2 linking adjacent
current loops. Numerical studies show that in the saltatory limit the jumps
alternate, the impulse first advancing on one fiber and then on the other.
Thus the effective loop resistance can be computed for a single fiber as

Ri + 2
[(

Ro

2

)
‖ (Ri + Ro/2)

]
= Ri + Ro − 1

2
R2

o

Ri + Ro

= R(1 − α2/2) ,

where the symbol “‖” implies evaluating the parallel combination of the
resistors indicated,4 and contributions of order R3

o have been neglected.
Therefore,

critical node spacing for failure of two impulses
critical spacing for failure of a single impulse

= 1 +
1
2
α2 + O(α3) .

Dynamics of Impulse Coupling
Recall from Figures 8.3 and 8.5 that the dynamics of coupled impulses
on smooth fibers are governed by the difference in their speeds, which in
turn are functions of the impulse separation. Assuming as before that the
impulse on fiber #2 leads the impulse on fiber #1 by a distance δ, v(1)(δ)
and v(2)(δ) have been defined as the numerically computed impulse speeds
on fibers #1 and #2, respectively. For sufficiently small values of coupling
(α ≤ 0.1), the difference between these speeds is found to be proportional
to the coupling constant α.

Upon analyzing many numerical integrations of Equations (8.11),
Stephane Binczak has determined dδ/dt as a function of δ at various values
of the system parameters. These numerical data allow construction of

v(1)(δ) − v(2)(δ)
α

=
[
−dδ/dt

α

]

num.

4For resistors R1 and R2, R1 ‖ R2 ≡ R1R2/(R1 + R2).
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Figure 8.7. Numerical computations of relative speeds of two impulses
[v(1) − v(2)]/α as functions of impulse spacing (δ) for the standard frog axon
of Chapter 7. (Data courtesy of Stephane Binczak.)

as functions of δ for A = 1 and A = 1/2, which are plotted in Figure 8.7
for the standard frog axon of Chapter 7 [3].

This figure shows that an alignment of the active nodes (A = 1) leads
to a somewhat stronger and more localized synchronization of impulses
than for the staggered case (A = 1/2). From a qualitative perspective, this
seems reasonable because it is the external resistance shared by two fibers
that induces impulse synchronization, and with A = 1 this shared external
resistance is entirely situated between two nodes. With A = 1/2, on the
other hand, the external coupling resistance is shared among three nodes,
resulting in a somewhat broader and weaker impulse coupling.

8.5.2 Neurological Implications
Functional significance of coupled impulses on myelinated fibers may arise
from at least three considerations [32].

• Synchronization of impulses on bundles of motor neurons might pro-
vide a means for adjusting and maintaining timings among coupled
impulses, allowing for coordinated stimulations of muscle cells.

• Impulse synchronization on bundles of optical or auditory axons in
the central nervous system may help to ensure the timings neces-
sary for computations in the dendritic fields of subsequent neurons
[31]. (We consider the nature of such dendritic computations in the
following chapter.)
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• Synchronization of groups of adjacent neurons in the corpus callosum
might be a means for the transmission of more intricate messages—
comprising assemblies of impulses—between the two hemispheres of
the brain [32].

With these speculations in mind, it is interesting to consider whether
an observation of aligned nodes should be taken to imply the functional
importance of coupled impulses. This is more than a hypothetical ques-
tion because nodal alignment of small groups of adjacent fibers has been
observed in the corpus callosum [33].

Although alignment might be expected from a qualitative perspective,
Figure 8.7 suggests that this question be approached with caution for the
following reasons. First, although the tendency to synchronize is somewhat
stronger for A = 1, it is broader for A = 1/2, indicating a more robust
coupling. Thus, both of these limiting cases lead to impulse synchroniza-
tion near δ = 0. If the fibers are short (with few nodes), the need for
rapid synchronization may favor node alignment, whereas more rapid syn-
chronization would be less important for longer fibers. Second, the node
separation at which failure occurs is insensitive to ephaptic coupling for
staggered nodes, whereas it decreases linearly with the coupling for aligned
nodes.

In any case, Figure 8.7 suggests that ephaptic coupling is to be expected
on myelinated fibers for every sort of nodal orientation—aligned, unaligned,
or random.

8.6 Recapitulation

The chapter opened with a sketch of the empirical evidence for ephaptic
coupling of nerve impulses on parallel fibers, which shows the change in
threshold on one fiber as a function of the timing of an impulse on a neigh-
boring fiber. A simple Markin–Chizmadzhev analysis of coupled nerves
explains this effect and also the phenomenon of synchronization, in which
two coupled impulses travel at exactly the same speed. Assuming that the
threshold level is sufficiently high, this tentative conclusion is supported
by a perturbation study of coupled impulses in the leading-edge approxi-
mation. A simple qualitative analysis is provided for the case in which the
firing threshold is much less than the leading-edge amplitude.

Without going into the analytic details, similar results are presented for a
corresponding perturbation analysis of the FitzHugh–Nagumo model. Com-
putations of the difference in impulse speed as a function of longitudinal
spacing between impulses are found to have the same multiphase behavior
as the above-mentioned experimental observations of threshold variation.

Extension of these ideas to myelinated nerves is effected through nu-
merical analyses of coupled pairs of the standard frog axon, which was
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characterized in the previous chapter. These studies imply that the speeds
of coupled impulses decrease below their values on isolated fibers, that with
nodes aligned, the critical node spacing for failure decreases with stronger
coupling, and that for evenly staggered nodes, the critical node spacing for
failure is essentially independent of coupling. Numerical studies also show
that synchronization of impulses on coupled myelinated fibers is somewhat
stronger or broader, depending on whether the active nodes are aligned or
evenly staggered.

From a neurological perspective, it is suggested that impulse synchro-
nization on parallel fibers might provide means for coordinating neural
time codes and for transmitting more intricate patterns of information. The
computational significance of such time codes is considered in the following
chapter.
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9
Neural Modeling

Although we are now familiar with several ways in which mathematical
studies have contributed to an understanding of nerve impulse dynam-
ics, much remains to be done before the global behavior of a neuron is
considered well-modeled.

In this chapter, attention is focused on two questions, the first being:
What are the dendrites doing? Because a compelling response to this ques-
tion is not currently known, the emphasis is on establishing a context in
which credible answers may emerge. Thus, dendritic trees are modeled in
three different ways: as linear gatherers of incoming (synaptic) signals, as
fully nonlinear computing systems performing logical operations (or switch-
ings) on all synaptic codes, and as power series in the incoming impulse
rates, anticipating that the functioning of any particular dendritic tree may
lie somewhere between the two idealized limits.

Second, we ask: What might the axons be doing? Here suggestions of
unusual computational abilities are supported by observations of impulse
blockage at branchings of axonal trees, which leads to the speculation that
some trees may translate time codes on their trunks into space and time
codes on the distal twigs.

The dynamics of individual neurons comprise a wide variety of axonal,
dendritic, and synaptic behaviors that are but briefly surveyed in this chap-
ter. For those who wish to delve more deeply into this area of neuroscience,
Michael Arbib’s Handbook of Brain Theory and Neural Networks [9] and
Christof Koch’s Biophysics of Computation [52] are recommended.
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9.1 Linear Dendritic Models

A typical neuron is served by an array of dentrites, which are tree-like
structures that receive incoming signals from synapses and present them
to the outgoing axonal tree for transmission to other neurons or to mus-
cle cells. Some appreciation for the variety of such trees may be obtained
from Figure 9.1, which shows four different classes of hippocampal den-
drites.1 Nowadays, neuroscientists are asking: What are the functions of
these dendritic trees? Are their dynamics linear or nonlinear? Do they pro-
cess the incoming data streams, or are they merely passive conduits for this
information?

Over the past few decades, the simplest assumption has been that den-
dritic trees gather a linear weighted sum of the input signals for three
reasons. First, on many neurons, there was no clear evidence to the contrary.
Second, if all-or-nothing propagation is supposed to occur on dendrites,
then the entire tree might be expected to ignite, precluding the opportunity
to integrate incoming information. Third, assuming a linear combination of
the various streams of incoming information makes it easier to sort out vari-
ous causal influences, easing somewhat the daunting difficulties of studying
neural systems.

Although current empirical evidence supports nonlinear information pro-
cessing on dendrites [41, 119], it is convenient to begin our discussion by
exploring the assumption of dendritic linearity, not least because it helps
us to understand some key constraints on approaches to the threshold of
nonlinearity [106].

9.1.1 Passive Dendrites
From the discussion of the Hodgkin–Huxley axon in Chapter 4, the basic
example of a passive (or dissipative) neural process on a fiber is described
by the linear diffusion equation

1
r

∂2V

∂x2 − c
∂V

∂t
= grestV , (9.1)

where we know something about the parameters. The series resistance per
unit length r and the membrane capacitance per unit length c are as defined
in Chapter 4, but grest is the resting conductance per unit length of the

1The hippocampus is a seahorse-shaped region of the inner brain that is im-
plicated in short-term memory. Presently, some 200 such images can be viewed at
www.neuro.soton.ac.uk maintained by the Centre for Neuroscience at the University of
Southampton [27]. Complete geometrical data on each neuron are available at this site,
which is organized to accept contributions from around the globe. Another interesting
site is www.dendrites.org.
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(a) (b)

(c) (d)

Figure 9.1. Typical dendritic trees in the hippocampus of the rat. (a) CA1 pyra-
midal cell [90]. (b) CA3 pyramidal cell [127]. (c) Interneuron [76]. (d) Granule
cell [128]. (From the Southampton–Duke Public Morphological Archive [27].)

fiber, which is more than an order of magnitude smaller than the active
conductance (g) that was considered in Chapter 5.

It is convenient to normalize this equation by measuring time in units of
c/grest and distance along the fiber in units of 1/

√
rgrest. Then Equation

(9.1) reduces to the normalized form

∂2V

∂x̃2 − ∂V

∂t̃
= V , (9.2)

where

x̃ ≡ x
√

rgrest and t̃ ≡ t
grest

c
.
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In other words, x̃ and t̃, respectively, represent distance along the fiber in
units of the space constant

λ ≡ 1√
rgrest

and time in units of the membrane time constant

τ ≡ c

grest
=

C

Grest
,

with C being the membrane capacitance per unit area and Grest the resting
conductance of the membrane per unit area.

From the considerations of Chapter 4, we recall that for the standard
Hodgkin–Huxley membrane C = 1 µF/cm2, and Grest can be calculated
from Equation (4.5) as

Grest = GNam
3
0(0)h0(0) + GKn4

0(0) + GL

= 0.68 × 10−3 mhos/cm2
.

Thus the time constant for a Hodgkin–Huxley membrane at its resting
voltage is

τ = 1.5 ms,

a value that is independent of the diameter (d) of the fiber.
The space constant, on the other hand, is proportional to the square

root of d because r ∝ 1/d2 and grest ∝ d. Scaling from the values of the
Hodgkin–Huxley axon, we find that

λ = 0.033
√

d cm,

where d is measured in microns.
In resting dendrites, however, the membrane time constant can be quite

different from the H–H value, as indicated in Table 9.1 [106, 116]. Be-
cause differences in τ stem from variations in the resting conductance,
corresponding variations in λ are estimated in the last column of the table.

Return now to Equation (9.2), observing that it has the exact solution

V (x̃, t̃) =
1√
4πt̃

exp
(

− x̃2

4t̃
− t̃

)
, (9.3)

a result that was anticipated in Equation (2.3). From its three-dimensional
plot in Figure 9.2, we see the dynamic character of this function in that it
spreads out with time into an ever-wider bell-shaped curve of exponentially
decreasing area.

Note that Equation (9.3) is normalized (multiplied by the factor 1/
√

4π )
such that

∫ +∞

−∞
V (x̃, t̃)dx̃ = e−t̃ .
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Table 9.1. Time and space constants for resting dendritic membranes compared
with Hodgkin–Huxley values, where d is the fiber diameter in microns. (Data
from [106] and [116].)

Neuron τ (ms) λ (cm)

H–H 1.5 0.033
√

d

Hippocampal CA3 ∼ 70 ∼ 0.23
√

d

Hippocampal CA1 ∼ 30 ∼ 0.15
√

d

Neocortical pyramidal 10–20 ∼ 0.1
√

d

Cochlear ∼ 0.2 ∼ 0.01
√

d

Thus, as t̃ → 0 from positive values, V (x̃, t̃) approaches a Dirac delta
function (or unit impulse function) defined by two properties: first,

∫ +ε

−ε

V (x̃, 0)dx̃ = 1

for all ε > 0; and second, V (x̃, 0) = 0 for x̃ not zero. In other words, at
t̃ = 0 the total area of the function shown in Figure 9.2 is concentrated at
x̃ = 0, and for positive values of time this area decays exponentially and
spreads out into a bell-shaped curve.

Because Equation (9.3) is linear and synaptic inputs are localized in
space and time, this delta-function property is useful for constructing a
general solution for arbitrary input signals. Thus if a particular synaptic
signal delivers Q0 coulombs of electric charge to a dendritic fiber at location
x = 0 and time t = 0, Equation (9.1) has the corresponding solution

V (x, t) =
Q0

cλ

√
τ

4πt
exp
(

− x2

4Dt

)
exp(−t/τ) , (9.4)

where

D =
λ2

τ
=

1
rc

,

is the diffusion constant for the process. When Equation (9.4) is used to
describe the dynamics of membrane charge on a passive dendritic fiber, the
following observations should be kept in mind.

• The total charge input from a particular synapse decays with time as

Q(t) = Q0e
−t/τ ,
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Figure 9.2. A three-dimensional plot of Equation (9.3) showing the diffusion of
transmembrane voltage on a passive dendritic fiber. At t = 0, all of the area
under this curve is concentrated as a “delta-function” (not shown) located at
x = 0.

so for t 	 τ , the influence of that input on the cell-body voltage is
no longer present.

• At time t, the charge from a particular synaptic input spreads out to
a distance of about

√
Dt = λ

√
t/τ

along the fiber, so for a dendritic path large compared with λ, there
is little influence of an input on the cell body.

• Although the diameters of fiber segments vary throughout a dendritic
tree, each segment can be measured in units of the corresponding
length constant λ. Thus, the normalized lengths of typical den-
dritic trees—from the base of the trunk to tips of the twigs—can
be estimated from microscopic observations of segment lengths and
diameters. When all branches are added together, this total distance
is called the electrotonic length (Λ) of an axonal tree. Typical Λs of
cat motoneuron dendrites, for example, lie between 1 and 2, with an
average of about 1.5 [14].

• Figure 9.2 shows that the voltage at an electrotonic distance of Λ =
1.5 from a synapse rises until t is about 0.5τ , after which it levels off
and begins to decay.

• If the trees have Λ ∼ 1.5 and t > τ , then the synaptic charge is spread
out over the entire dendritic structure and cell body, implying that
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the resulting voltage at the cell body is given by

Vcell body ∼ Q0

Ctotal
e−t/τ ,

where Ctotal is the entire membrane capacitance of the dendritic trees
and the cell body. This is the voltage that contributes to igniting an
action potential at the initial segment of an axonal tree.

We now have a number of results at hand, but what are they telling us?
One insight comes from recognizing that with grest = 0, Equation (9.1) is
a conservation law for electric charge (see Appendix A). Thus,

i(x, t) = −1
r

∂V

∂x
(9.5)

is the longitudinal current through the fiber, which is also the flow of the
conserved quantity (charge). Similarly, cV (x, t) is the local density of the
charge. The term on the right-hand side in Equation (9.1) gives the leakage
of this conserved charge across the membrane, which leads to the factor of
exponential decay with time—exp(−t/τ)—in Equation (9.4).

Because the flow of heat along an imperfectly insulated thermal conduc-
tor is a formally identical phenomenon, we could imagine making analog
models of the dendritic trees in Figure 9.1 from a thermally conducting
material (e.g., metallic silver). Analogs of the synapses could then provide
inputs of heat at various instants of time and locations along the tree. Each
amount of heat input in the thermal analog would correspond to injecting
a corresponding amount of charge at a fixed point on the dendritic tree at
a particular time. This heat would then diffuse with space constant λ and
decay with time constant τ (see Figure 9.2), as does the electric charge in
a dendrite.

If a dendritic system is assumed to be linear, one can find the total effect
of the synaptic inputs by simply adding together all individual contribu-
tions. Called the superposition theorem, this additive property is in fact
the definition of linearity. Interaction among inputs, on the other hand, is
a characteristic of nonlinear systems, in which the threads of causality may
become interwoven [24].

Under the linear assumption, therefore, total voltage at a cell body can
be calculated as a function of time from a sum of integrals of the form

Vcell body(t) =
∑

j

∫ t

−∞
ij(t′)Gj(t − t′)dt′ , (9.6)

where i(t′) is the current injected by synapse #j and ij(t′)dt′ is the amount
of charge injected between times t′ and t′ + dt′. Called a Green function,2

2After George Green, a self-taught miller’s son from Nottingham, England, who
devised this method for solving linear electrical problems in 1828.
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Gj(t − t′) is a function of the type indicated in Equation (9.4), showing
how this differential amount of synaptic charge contributes to the voltage
at the cell body at a time (t − t′) after it was introduced.

Although the detailed construction of such a Green function for a realistic
dendritic tree is difficult, our qualitative analysis of Equation (9.4) suggests
the following general observation:

The Gj are small for distances from the synapse to the cell body
that are large compared with the space constant (λ) or for times
that are large compared with the membrane time constant (τ),
or both.

Can the linear influence of a synaptic signal be extended beyond these
confines?

9.1.2 Decremental Conduction
To increase the region of space and time over which its synaptic inputs can
be transmitted, a dendritic tree must restore some of the energy that is
lost in a purely passive process. To see how this might be managed, recall
the concept of power balance for a nerve impulse that was introduced in
Section 6.4.

From the perspective of the FitzHugh–Nagumo (F–N) model of a nerve
fiber

∂2V

∂x2 − ∂V

∂t
= f(V ) + R ,

∂R

∂t
= εV ,

we noted that the energy carried by a solution is given by the integral

E =
1
2

∫ ∞

−∞

((
∂V

∂t

)2

+ εV 2

)

dx . (9.7)

Differentiating E with respect to time and substituting from the F–N equa-
tion yields Equation (6.15), implying that dE/dt is negative if dF (V )/dV
is everywhere positive.

If, on the other hand, there is a range of voltage over which dF (V )/dt <
0, then the rate of energy loss is reduced. Diminishing the rate at which
a solution loses energy reduces its rate of attenuation, which extends a
synapse’s range of influence.

To appreciate this effect, refer back to Figure 6.3 showing a critical point
in the locus of wave speeds versus the parameter ε, past which no traveling
waves are possible, and denote the critical value of ε by εc. Just beyond
this critical point, the rate of energy loss is only slightly negative because
almost all of the dissipation of the impulse is being restored by the en-
ergy generating processes of the system. Under these conditions, a nerve
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impulse is only slightly attenuated, and the resulting propagation is called
decremental conduction.

Because of a tendency to overemphasize all-or-nothing propagation,
decremental conduction was controversial in the literature of electrophys-
iology for many years [65]. From work in the 1960s and 1970s, however,
the phenomenon of decremental conduction is now known to have a sound
analytic basis [30, 49, 50, 56, 57], and a numerical example for the Hodgkin–
Huxley axon is shown in Figure 4.7. Furthermore, there is evidence at both
the electrophysiological and behavioral levels suggesting that drones of the
honeybee Apis mellifera use this means to amplify photoreceptor signals in
the course of their primary activity—searching for a queen [130, 131].

How can we get an intuitive grasp of decremental conduction? Suppose
that an impulse at the critical point is given by

V (x, t) = Vc(x − vct) ,

and ε is slightly larger than the critical value. In this case, the ampli-
tude of the wave a(t) is expected to decrease slowly with time because
the energy losses of the impulse are almost, but not quite, being re-
stored. An approximate ODE describing the attenuation rate is obtained
by substituting

V (x, t) = a(t)Vc(x − vct) = a(t)Vc(ξ)

into Equations (9.7) and (6.15), whereupon

da(t)
dt

≈ −a(t)

∫ [(
d2Vc/dξ2

)2 + (dVc/dξ)2 dF (V )/dV |V =aVc

]
dξ

∫ [
(dVc/dξ)2 + (ε/v2

c )V 2
c

]
dξ

. (9.8)

Evidently, the numerator of this expression is exactly zero for a = 1. For
a < 1, on the other hand, the wave spends less time in the region where
F (V ) has a negative slope, so it absorbs less energy and loses amplitude.

This crude analysis is introduced to make the point that dendritic im-
pulses may decay more slowly than is implied by the linear diffusion solution
of Equation (9.4). In this manner, linearity of the dynamics may be pre-
served, which allows the Green function of Equation (9.6) to remain valid
with a wider range of influence for the synaptic inputs. More recent simu-
lations of dynamics on typical dendritic structures support this conjecture
[31, 132].

9.1.3 Rall’s Equivalent Cylinder
Even under the assumption of linearity, computation of the voltage response
at a cell body to a large number of synaptic input signals is a formidable
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Figure 9.3. (a) A branching dendritic structure. (b) Rall’s “equivalent cylinder”
for the structure in (a).

task; thus, it is of interest to consider an unexpectedly simple case intro-
duced by Wilfred Rall in 1959 [92, 93, 94, 95]. To see how this goes, refer
to Figure 9.3(a), which represents an arbitrary dendritic branching region.

Suppose that a steady current I1 is injected into the large fiber at location
#1 on the left-hand side of the diagram from which the resulting steady
transmembrane voltage V2 is to be computed at location #2 on one of
the smaller branches. Although time derivatives have been neglected, this
remains a difficult calculation because a discontinuity (or reflection) in
the solution occurs at each branching (or bifurcation) in Figure 9.3(a).
Dealing with reflections is not a new problem; radio, microwave, acoustic,
and optical engineers have long been interested in doing so in order to
increase the efficiencies of electromagnetic, sound, or light transmissions.
How do they accomplish this?

To minimize reflections, the standard procedure is to make the charac-
teristic admittance (Y0) of the transmission system equal on both sides of
a boundary, where

Y0 ≡
√

shunt admittance/length
series impedance/length

.
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Physically, the characteristic admittance is the reciprocal of the impedance
one sees when looking into the open end of a semi-infinite line.3

In the case of a nerve fiber operating in the steady-state (time inde-
pendent) regime, the series impedance per unit length is r, and the shunt
admittance per unit length is grest. Thus the characteristic admittance (Y0)
reduces to a characteristic conductance

Y0 → G0 =
√

grest/r .

Now consider two facts:

• The series resistance per unit length (r) is inversely proportional to
the square of the fiber diameter (d), and the shunt conductance per
unit length (grest) is proportional to the diameter, implying that

G0 ∝ d3/2 .

• Characteristic conductances on individual fibers add to obtain the
total characteristic conductance seen upon entering and leaving a
branching region.

To eliminate reflections at the bifurcations shown in Figure 9.3(a),
therefore, it is sufficient to require that

d
3/2
1 = d

3/2
11 + d

3/2
12 ,

d
3/2
11 = d

3/2
111 + d

3/2
112 , (9.9)

d
3/2
12 = d

3/2
121 + d

3/2
122 ,

ensuring that characteristic conductances are everywhere matched. Equa-
tions (9.9) embody the first of four assumptions that Rall made to represent
the tree of Figure 9.3(a) by the equivalent cylinder shown in Figure 9.3(b).

Rall’s second assumption is that the total electrotonic lengths from the
end of the main trunk to the ends of the distal twigs are the same. Thus
in the particular example of Figure 9.3,

Λ = �1/λ1 + �11/λ11 + �111/λ111

= �1/λ1 + �11/λ11 + �112/λ112 (9.10)
= �1/λ1 + �12/λ12 + �121/λ121

= �1/λ1 + �12/λ12 + �122/λ122 ,

where �1 and λ1 are, respectively, the physical length and space constant
of the segment of diameter d1, and so on. The third assumption is that all
regions of the dendritic tree have the same cytoplasmic resistivity (ρ) and

3For those unfamiliar with the jargon of electrical engineering, “impedance” is a
generalization of the concept of ohmic resistance that accounts for phase shifts between
alternating currents and voltages, and “admittance” is a corresponding generalization
of conductance.
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specific membrane conductivity (Grest) throughout, and the fourth is that
the boundary conditions at the far ends of the equivalent cylinder are the
same as for the original branching structure.

Under these four hypotheses on the nature of the dendrites, reflections
have been eliminated, and V (x/λ) satisfies the same equations in the orig-
inal branching region and on the equivalent cylinder. Thus the problem
of computing the voltage response V2 to the injected current I1 in Figure
9.3(a) reduces to the easier task for the equivalent cylinder of electrotonic
length Λ shown in Figure 9.3(b). Here the voltage V2 is to be measured
at the same electrotonic distance from the injected current I1 as in the
original branching structure of Figure 9.3(a).

At this point, the alert reader may be wondering whether I have things
mixed up. In understanding how a passive dendritic structure transmits
synaptic input signals from distant (distal) branches to the cell body, we
are not interested in calculating the voltage response at location #2 that
is caused by current injected at location #1; it is the other way around. To
gauge the efficiency of dendritic transmission, we must know how much volt-
age is produced at location #1 in response to current injected at location
#2. What do we do?

To find the voltage produced at location #1 (adjacent to the cell body)
to current injected at location #2 (at a distal twig of the dendritic tree), it
is convenient to use a fundamental result from the theory of linear networks
that can be stated as follows [40].4

Reciprocity theorem: In a linear network composed of resis-
tors, capacitors, and inductors, the ratio of voltage measured
across terminals #1 to current injected into terminals #2 is
equal to the ratio of voltage measured across terminals #2 to
current injected into terminals #1.

Thus Rall’s results can be summarized as follows. The voltage appearing
at location #1 (a cell body) in response to current injected at location
#2 (through a distal synapse) for the branching structure shown in Figure

4Proof of this theorem involves showing that the impedance matrix relating voltage
responses to current inputs is symmetric about its main diagonal. If one computes






V1

V2
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Z11 Z12

Z21 Z22











I1

I2




 ,

it follows from symmetries of the algebra that Z12 = Z21. Thus V1/I2 with I1 = 0 is
equal to V2/I1 with I2 = 0, Q.E.D. Because the inverse of this impedance matrix is
also symmetric, a similar statement can be made about ratios of measured currents to
impressed voltages. It is important to remember, however, that the reciprocity theorem
does not hold for ratios of voltages or for ratios of currents.
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9.3(a) is equal to the voltage produced at location #2 in response to current
injected at location #1 for the equivalent cylinder shown in Figure 9.3(b).

Importantly, Rall’s conclusions are not restricted to the case of steady
voltages and currents as has hitherto been assumed for ease of exposition.
If the membrane time constant τ = c/grest = C/Grest is constant over a
branching structure, similar arguments go through when the voltages and
currents are allowed to be functions of time.

My aim in this section has been to present the main logic of Rall’s work
without getting lost in analytic details. For those wishing more specific
discussions of representations of dendritic trees by equivalent cylinders,
the books by Jack, Noble, and Tsien [46], Keener and Sneyd [47], Koch
[52], and Tuckwell [126] are recommended.

Do Rall’s assumptions—particularly those expressed in Equations (9.9)
and (9.10)—hold for real dendrites? For some trees, these conditions are
fulfilled [20], but for others—as one might expect—they seem not to be
satisfied [25, 43, 55, 66, 127]. Indeed, recent observations suggest that the
effective cylinder diameter decreases as one moves away from the cell body,
which makes dendritic propagation more difficult in the direction toward
the cell body than away from it [132]. Furthermore, the presence of synapses
may alter dendritic transmission properties either by covering some of the
active area or by introducing dendritic spines, which can be active [73, 83,
108].

9.2 Inhomogeneous Active Fibers

Attention in this book has so far been limited to nerve fibers with uniform
cross sections, but a look at real neurons shows that this assumption is often
inappropriate. Fibers can change their diameters both slowly, in gradual
taperings, and rapidly at local enlargements, or varicosities, of dendrites,
as pointed out by Bogoslovskaya et al. [22]. Although varicosities may be
artifacts of fixation, they have been widely reported and can have signifi-
cant effects on the nature of impulse dynamics. Thus the mathematically
oriented neuroscientist must appreciate spatial inhomogeneities in order to
learn what dendrites are about.

9.2.1 Tapered Fibers
In the late 1960s, Lindgren and Buratti suggested making electronic nerve
models (called neuristors) having parameters that vary exponentially with
distance along the fiber as [58]

r = r0e
γx ,

c = c0e
−γx , (9.11)

ji = j0(V )e−γx ,
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where r0, c0, and j0 are independent of x and j0 is a nonlinear function of
the voltage V .

The first-order partial differential equations of the system

∂V

∂x
= −ri ,

∂i

∂x
= −c

∂V

∂t
− ji ,

then imply a nonlinear drift-diffusion equation of the form

∂2V

∂x2 − γ
∂V

∂x
− r0c0

∂V

∂t
= r0j0(V ) .

For traveling-wave solutions, this reduces to the ODE

d2V

dξ2 + r0c0

(
v − γ

r0c0

)
dV

dξ
= r0j0(V ) ,

implying that the traveling-wave speed in the x-direction increases by
γ/r0c0 as a result of the exponential taper.

For biological nerve fibers, the parameter dependence of Equations (9.11)
is unrealistic because the parameters vary as r ∝ 1/d2, c ∝ d, and ji ∝ d,
where d is the diameter of the fiber. If as an exponential tapering of the
fiber diameter one assumes d ∝ exp(−γx), then

r = r0e
2γx ,

c = c0e
−γx ,

ji = j0e
−γx ,

leading to the PDE

∂2V

∂x2 − 2γ
∂V

∂x
− r0c0e

γx ∂V

∂t
= r0j0e

γx . (9.12)

For a nerve impulse that is small compared with 1/γ, the exponen-
tial factors in Equation (9.12) remain approximately constant, and the
traveling-wave speed is increased in the direction of decreasing fiber
diameter as

v0 −→ v0 +
2γ

r0c0
+ O(γ2) . (9.13)

The dynamics of impulse propagation on tapered fibers have been studied
both theoretically and numerically in greater detail by several authors [15,
16, 37, 48, 50, 68, 93, 94], and the results can be summarized as follows.

If a nerve fiber has a gradual change in its diameter, the impulse
velocity in the direction of decreasing (increasing) diameter is
increased (decreased). The magnitude of this change in ve-
locity is proportional to the diffusion constant for the fiber
(1/rc) (centimeters squared per second) times the spatial rate
of diameter change (γ) (fractional change per centimeter).
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Table 9.2. Diameter ratios (or fiber widenings) for impulse blocking and pas-
sage as functions of taper length over which widening occurs calculated for
Hodgkin–Huxley axons [15].

Taper length (cm) Blocking Passage

0.088 5.5:1 5:1

0.785 6:1 5.5:1

1.76 8:1 7:1

3.81 >10:1 10:1

An interpretation of this result stems from our discussion of the rela-
tionship between threshold and leading-edge charges in Section 5.5. Thus
gradually decreasing (increasing) the fiber diameter tends to decrease (in-
crease) the threshold charge, Qθ, thereby increasing (decreasing) both the
safety factor and the impulse velocity.

9.2.2 Varicosities and Impulse Blockage
If the diameter of a fiber increases in the direction of propagation, impulse
velocity decreases, and with a sufficiently abrupt increase an impulse can
cease to propagate, or become blocked. A quantitative description of this
phenomenon is provided by the numerical computations on linearly tapered
Hodgkin–Huxley axons recorded in Table 9.2, where the first row is for a
taper length of 0.088 cm [15]. Close to an abrupt widening, this taper
barely passes an isolated impulse at a ratio of 5:1, introducing a time delay
of about 0.8 ms [48].

The reason for this delay can be qualitatively appreciated and calculated
as the extra time required for the capacitance of the enlarged membrane
area to become charged to a voltage that exceeds threshold. Such delays
occur whenever nerve impulses encounter varicosities or local enlargements
of a fiber, as have been observed on the dendrites of cochlear (auditory)
neurons [22].5 Could the impulse blockages and time delays associated with
varicosities play a role in some sort of dendritic computations [5]? The very
short membrane time constant for such dendrites (see Table 9.1) suggests
that this may be so [116].

In his book The Problem of Excitation, Boris Khodorov has assembled
the results of many such numerical computations of impulse delay and

5Although long regarded as fixation artifacts, varicosities are now accepted features
of normal nerve fibers [77].
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Figure 9.4. (a) Abrupt widening of a nerve fiber. (b) Branching region.

blockage [50]. For abrupt widenings of Hodgkin–Huxley fibers (at 20oC),
as shown in Figure 9.4(a), he reports blockage at widening ratios greater
than 5.5:1 and passage at 5:1 [48, 50]. Recently, Altenberger, et al. have
carried through more refined calculations and found the critical widening
ratio for blockage of a standard H–H impulse (at 18.5oC) to be [6]

d2

d1
> 5.43 , (9.14)

with an error of ±0.05%.
To judge whether impulse blockage could play a role in dendritic or

axonal computing, one must understand how to calculate this ratio from
measurable fiber parameters. To this end, two analytic approaches have
been employed.

Markin–Chizmadzhev (M–C) Analysis
Representing a nerve with the Markin–Chizmadzhev (M–C) model, which
was introduced in Section 6.1, Pastushenko and Markin showed that
impulse blockage should occur for [80]

(
d2

d1

)3/2

> κ + 1.11
√

κ − 1.69 , (9.15)

where

κ ≡ Vmax/Vθ

is the ratio of the maximum level of impulse voltage to the threshold
voltage, as indicated in Figure 6.1(b).

Mornev’s Analysis
An alternative derivation of the blockage condition was presented by Oleg
Mornev in the context of an analysis of spiral waves [74]. Reasoning that
an impulse will make it through the enlargement of Figure 9.4(a) if its
leading edge can do so, he used a leading-edge model of the type that was
developed in Chapter 5. On both sides of the abrupt widening, therefore,
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the leading-edge voltage is assumed to obey a nonlinear PDE of the form

1
r

∂2V

∂x2 − c
∂V

∂t
= gf(V ) , (9.16)

where r, c, and g have different values in the two regions, and f(V ) is a
general “cubic-shaped” function such as those given in Equations (5.9) and
(5.12).

As a necessary condition for blockage at a widening, it must be possible
to construct a time-independent solution with the boundary conditions

V → 0 as x → +∞ ,

V → 1 as x → −∞ .

For such a solution, the time-derivative terms are neglected, and the
preceding PDE reduces to the nonlinear ODE

1
rg

d2V

dx2 =
d2V

dx̃2 = f(V ) ,

where x̃ ≡ √
rg x. Evidently, this equation can be exactly integrated for

any f(V ). From Equation (9.5), the internal boundary condition of current
continuity at the widening is

1
r1

dV

dx

∣
∣∣
∣
x=0−

=
1
r2

dV

dx

∣
∣∣
∣
x=0+

,

implying
√

g1

r1

dV

dx̃

∣
∣
∣
∣
x̃=0−

=
√

g2

r2

dV

dx̃

∣
∣
∣
∣
x̃=0+

.

In other words, current must flow into the widening region at the same rate
that it flows out; otherwise, charge would accumulate at the discontinuity.
Because

√
g/r ∝ d3/2, this boundary condition can be written as

d
3/2
1

dV

dx̃

∣
∣
∣
∣
x̃=0−

= d
3/2
2

dV

dx̃

∣
∣
∣
∣
x̃=0+

,

where d1 (d2) is the diameter of the fiber at x̃ < 0 (x̃ > 0).
With this formulation, Mornev showed that a necessary condition for a

static solution to exist at the widening is
(

d2

d1

)3/2

>

√
A−

A+ , (9.17)

where A− (A+) is the negative (positive)-going area under the curve f(V ).
That this condition is also sufficient for stopping an impulse has been
checked by solving Equation (9.16) numerically with various degrees of
widening for the special case f(V ) = V (V − V1)(V − V2) [18]. If the pre-
ceding inequality is satisfied, an impulse approaching the widening along
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the smaller fiber will not be able to get through, and impulse blockage will
occur.

These expressions of blocking conditions—Equations (9.14), (9.15), and
(9.17)—are brought to the reader’s attention for several reasons. If we are
dealing with abrupt widenings of Hodgkin–Huxley fibers, then Equation
(9.14) is really all that is needed, but many fibers are not well-modeled by
the H–H parameters. Thus Equation (9.15) is useful for cases in which the
safety factor can be estimated from experimental data. Equation (9.17), on
the other hand, may be more useful when the function f(V ) is known. Addi-
tionally, Equations (9.15) and (9.17) are alternative derivations of the same
qualitative result, reinforcing one’s confidence in the form of the equations.

Why should these results be of interest to neuroscientists?

9.2.3 Branching Regions
Because a branching region of an active nerve fiber is an abrupt widening
of the structure, a qualitative formulation the dynamics of the bifurcation
sketched in Figure 9.4(b) follows from three previously developed concepts.
First, as discussed in Section 5.5, the stimulating current—brought to the
branch on the incoming fiber—must be sufficient to raise the outgoing fibers
above threshold. Second, if an impulse is incoming to the branch on fiber
#1, for example, and outgoing on fibers #2 and #3, its stimulating current
will divide in proportion to the characteristic admittances of these branches,
which are proportional to d

3/2
2 and d

3/2
3 , respectively, summing to (d3/2

2 +
d
3/2
3 ). Third, from the previous section, the stimulations required to achieve

threshold on fibers #2 and #3 are also proportional to d
3/2
2 and d

3/2
3 .

Thus, a blocking condition on (d2/d1)3/2 in Figure 9.4(a) should correspond
to the same condition on (d3/2

2 + d
3/2
3 )/d

3/2
1 in Figure 9.4(b). Assuming

this estimate holds, blocking conditions can be expressed in several ways,
including the following.

(1) Hodgkin–Huxley model. From the numerical studies leading to Equa-
tion (9.14) [48, 50, 79], the blocking condition for a single H–H impulse (at
18.5oC) is

d
3/2
2 + d

3/2
3

d
3/2
1

> 5.433/2 = 12.7 .

From the considerations discussed in Section 4.6, this condition is expected
to become less severe (i.e., the right-hand side is less than 12.7) under
narcotization, increased external potassium ion concentration, increased
temperature, and for multiple impulses.
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(2) Markin–Chizmadzhev model. From Equation (9.15), the blocking
condition for the M–C model is [80]

d
3/2
2 + d

3/2
3

d
3/2
1

>
Vm

Vθ
+ 1.11

√
Vmax

Vθ
− 1.69 ,

where Vmax and Vθ are defined in Figure 6.1(b). Guided by the pa-
rameter values used to construct Figure 6.2, this implies blocking for
(d3/2

2 + d
3/2
3 )/d

3/2
1 > 5.2, which is less severe than for the H–H model.

(3) General leading-edge model. Describing a nerve impulse in the lead-
ing edge approximation of Chapter 5 and appealing to Mornev’s analysis,
Equation (9.17) implies blockage for [74]

d
3/2
2 + d

3/2
3

d
3/2
1

>

√
A−

A+ .

Here, A− and A+ are, respectively, the negative- and positive-going areas
under a general function with the form indicated in Figures 5.1, 5.2, and 5.3.

(4) Cubic leading edge model. Choosing a leading-edge model with

f(V ) ∝ V (V − V1)(V − V2)

as in Figure 5.3(a) and Equation (5.9), the area ratio A−/A+ can be
computed as a function of a ≡ V1/V2. Thus Mornev’s analysis implies
blocking for

d
3/2
2 + d

3/2
3

d
3/2
1

>

√

1 +
1 − 2a

a3(2 − a)
. (9.18)

For this model, Equation (5.10) tells us that 20 = 49(1 − 2a)/
√

2 at the
wave speed for an H–H axon, implying a = 0.21, with a corresponding
blocking condition of (d3/2

2 + d
3/2
3 )/d

3/2
1 > 5.9. In approximate accord with

the preceding result of M–C analysis, this is again less severe than the full
H–H model.

(5) Piecewise linear leading-edge model. Assuming a piecewise leading-
edge model with f(V ) as in Figure 5.3(b) and Equation (5.12), the area
ratio A−/A+ can be computed as a function of the parameters V2, V1, and
β. Mornev’s analysis then implies blocking for

d
3/2
2 + d

3/2
3

d
3/2
1

>
V2 − V1

V1
√

β
.

Equation (5.13) implies that the wave speed equals that of an H–H axon
at β = 1/40 and V1/V2 = 0.64 with blocking at (d3/2

2 + d
3/2
3 )/d

3/2
1 > 3.6.

The central importance of the expression on the left-hand side of these
inequalities was recognized by Goldstein and Rall, who called it the geo-
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metric ratio (GR) [37]. In general, for a branching region with coincident
impulses incoming on M fibers and outgoing on N fibers, the geometric
ratio is defined as

GR ≡ d
3/2
out1 + · · · + d

3/2
outN

d
3/2
in1 + · · · + d

3/2
inM

. (9.19)

As we have seen from the discussion of Rall’s equivalent cylinder in Sec-
tion 9.1.3, the GR measures the degree to which reflections are eliminated
at a branch. Thus the condition

GR = 1

indicates that the characteristic admittances of the corresponding incoming
and outgoing branches are “matched” in engineering jargon. In other words,
the sum of admittances of the incoming fibers is equal to the sum of the
admittances of the outgoing fibers, thereby eliminating reflections from the
branching region.

Quantitative studies of biological branching go back to Leonardo da
Vinci, who claimed for botanical trees that: “All the branches of a tree
at every stage of its height when put together are equal in thickness to
the trunk [below them]” [67]. This observation suggests a branching law—
which we may call Leonardo’s law—for parent and daughter diameters (dp
and d1, d2, · · · , dN ) of the form

d∆
p =

N∑

j=1

d∆
j , (9.20)

where ∆ is the branching exponent. As Mandelbrot [67] and Thompson
before him [123] have noted, there are several examples of Leonardo’s law
in the natural world, including: (1) the lung’s bronchial tree, where ∆ = 3;
(2) rivers, for which ∆ ∼ 2; (3) human arterial branchings, with ∆ ∼ 2.7;
and (4) the first branching of the abdominal aorta, with ∆ = 2. But we
are interested in the influence of dendritic and axonal branchings on the
dynamics of a neuron.

9.3 Information Processing in Dendrites

Among the reasons for supposing dendrites to be linear transmission sys-
tems is that the ignition of a single all-or-nothing impulse might fire the
whole dendritic tree, making it difficult to integrate the effects of incoming
signals, but the results of the previous section reveal a flaw in this logic.
If spikes can be blocked at branching regions, their collective activity need
not rage out of control like a forest fire or a sparked heap of gunpow-
der. On the contrary, impulse blocking would seem to provide bases for at
least two types of information processing: dendritic logic and multiplicative
interactions among the pulse rates of incoming signals.
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Although interest in dendritic information processing has been growing
among Western neuroscientists [3, 35, 41, 42, 51, 52, 53, 71, 73, 83, 105,
106, 107, 108, 109, 110, 119], the concept is not new. Since the 1960s, the
possibilities for dendritic computations have been pursued by a number of
researchers, many in the former Soviet Union [10, 16, 21, 50, 81, 82, 101,
122, 133]. In this section, some formulations are introduced to help the
reader evaluate these ideas.

9.3.1 Dendritic Logic
In speculating on the possibility of information processing on dendrites,
the first question to consider is whether there is experimental evidence for
dendritic action potentials. Interestingly, such evidence was provided in the
late 1960s by Llinás and his colleagues from observations on the Purkinje
cell of the alligator cerebellum [59, 61, 62]. In the mid-1970s, spikes on
Purkinje cell dendrites were shown to arise from voltage dependence of
calcium ions rather than sodium ions as in the squid nerve [60, 63, 64].
More recently, evidence has been presented for spikes on the dendrites of
pyramidal cells in the hippocampus [8, 17, 42, 69, 97, 86, 129, 136] and
the neocortex [7, 71, 85, 118]. Presently, there is little doubt that dendritic
spikes are a real neural phenomenon stemming from a variety of active
channels [52, 64, 119, 132]. (Those with a taste for numerical studies will
enjoy Chapter 15 of Wilson’s Spikes, Decisions, and Actions, which includes
several Matlab codes for computing dendritic responses from synaptic
inputs under various assumptions for active sodium and calcium channels
[135].)

Located near the base of the mammalian brain (just above the nape of
your neck), the cerebellum is a neural structure with surprisingly regular
organization that coordinates arm and leg motions. Within this structure
are a large number of Purkinje cells having planar dendritic fields and
receiving many synaptic inputs. The human Purkinje cell shown in Figure
9.5, for example, receives some 160,000 synaptic inputs from parallel fibers
[34], which are oriented perpendicular to the plane of the dendrites. Because
action potentials are known to form on Purkinje dendrites [66], we are faced
with the question: What is the function of this intricate structure?

One answer to this question is suggested by the numerical modeling of
De Schutter and Bower [31], which shows that more distal input signals
are amplified by factors of up to 5 over the purely passive calculations of
Section 9.1.1. Thus all signals arrive at the cell body with about the same
amplitude, easing constraints on the locations of particular inputs.

Another response emerges from detailed analyses of the dendritic branch-
ings using the concepts of impulse blockage that were developed in the
previous section [101]. Thus, a dendritic branching region can be viewed
as a switch that either stops or passes an impulse according to whether a
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Figure 9.5. Ramón y Cajal’s classic image of a Purkinje cell from the human
cerebellum [96].

blocking condition is satisfied. To this end, let us consider the bifurcation
shown in Figure 9.4(b) with the notation that d1 and d2 are daughter diam-
eters and d3 is the diameter of the parent branch. Extracted and enlarged
from Figure 9.5, two possibilities are indicated in Figure 9.6.6

OR Bifurcations
For the simple branch shown in Figure 9.6(a), it is seen that d1 ≈ d2 ≈ d3.
Supposing that an impulse arrives at the branch from (say) daughter #1,

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 2 .

All of the models treated in the preceding section imply that this GR is
too small for blocking of an impulse to occur. Thus incoming impulses on
either of the two daughters are able to ignite the parent. Using the jargon
of computer engineering, this can be described as an OR junction because

6The examples given in this section are for illustration only because the Golgi stain
technique used by Ramón y Cajal to obtain Figure 9.5 may not record all of the dendritic
structures.
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(b)

(a)

Figure 9.6. Details of the Purkinje cell branchings indicated in Figure 9.5. (a) An
OR bifurcation. (b) A possible AND bifurcation.

an input on one “or” the other daughter is sufficient to ignite the parent
fiber.

In evaluating the computational utility of this OR bifurcation, one should
note that an incoming impulse on one daughter will launch an outward-
going impulse on the other daughter, disabling that daughter’s segment of
the dendritic tree for a certain interval of time [107, 132].

AND Bifurcations
Computer engineers use the term “AND junction” to describe an element
for which inputs on both the first input “and” the second input acting
together are required to produce an output signal, implying that one input
acting alone is insufficient to produce an output.

If it is assumed that the dendritic trees are composed of Hodgkin–Huxley
fibers that support fully developed impulses, the condition for failure of a
single incoming impulse is

d
3/2
2 + d

3/2
3

d
3/2
1

> 12.7 .

From an examination of the various geometric configurations in the den-
dritic trees of the Purkinje cell in Figure 9.5, it is difficult to find branchings
that satisfy this condition. One of the more promising candidates is shown
in Figure 9.6(b), from which it is seen that the parent branch diameter (d3)
is about 2.5 times those of the incoming daughter branches (d1 and d2).
Thus

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 5 ,
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which is insufficient to satisfy the preceding condition (GR > 12.7) for an
AND bifurcation. There are, however, several reasons for suspecting that
this condition is too severe.

First, the action potentials on dendrites are not well described by the
standard Hodgkin–Huxley equations, because calcium channels play an im-
portant role. Using a particular calcium channel model [75], for example,
Altenberger et al. have computed a critical GR of 3.4 [6].

Second, although fast sodium channels are often present in addition to
slower calcium channels [60, 63], they have lower density (number of chan-
nels per unit area of membrane) [66, 106, 116]. Also, much of the dendritic
membrane is covered by synapses [34], which could lessen the widening
ratio necessary for blockage.

Third, changes in ionic concentrations and temperature can also lower
the safety factor for impulse propagation, thereby raising threshold condi-
tions and easing the geometrical requirements for an AND junction. Body
temperatures of mammals, for example, are typically larger than the value
of 18.5oC used in H–H calculations of critical widening and close to the
critical temperature at which active propagation fails.

Fourth, the fiber length required for an impulse to grow from threshold to
its full amplitude is the order of the active space constant, λa = 1/

√
rg. The

lengths of some dendritic segments in Figure 9.5 are not large compared
with λa, implying that voltage amplitudes of impulses arriving at a branch
may be less than their full values. This effect also lowers the geometric ratio
(GR) needed for blockage.7

Fifth, inspection of Figure 9.5 reveals several “delta-shaped” enlarge-
ments at bifurcations, which increase the total membrane capacitance and
impede impulse transmission.

Sixth, dendrites are tapered, becoming smaller as the distance from the
cell body increases [34, 132]. As we have seen in Section 9.2.1, this tends
to reduce the safety factor of an incoming spike.

Finally, the incoming impulses may not be isolated but spaced with inter-
vals as small as a few milliseconds. Khodorov reports numerical calculations
for H–H impulses (at 20oC) separated by an interval of T = 2.5 ms corre-
sponding to a normalized impulse interval T/T1 = 0.38, where T1 is defined
as in Figure 4.8. In this study, the second impulse is blocked at a widening
ratio that is less than 3:1 and greater than 1.5:1 [50], implying a critical
GR within the range

1.8 <
d
3/2
2 + d

3/2
3

d
3/2
1

< 5.2 .

7To estimate these space constants from microscope observations, note that for the
H–H parameters given in Section 5.2, the active space constant of a fiber is given by
λa = 2.2

√
d, where both λa and d are measured in microns.
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In the context of the double impulse experiments on the squid giant axon
that were introduced in Section 4.7 (see Figure 4.8), it is not difficult to
demonstrate the switching action of an active fiber branch [104]. To see
this, refer to Figure 9.7, which shows a pair of incoming impulses recorded
at point B on a branch of diameter 381µm. Because the outgoing branches
are of diameter 218µm and 544µm, the geometric ratio is

GR =
2183/2 + 5443/2

3813/2 = 2.14 .

Figures 9.7(b) and 9.7(c) show that the second impulse (recorded at point
A) becomes blocked at a critical impulse spacing of T = 2.1 ms (correspond-
ing to T/T1 = 0.36) in approximate accord with the numerical results of
Khodorov. To appreciate the implications of these observations, note that
there was no setting of the incoming impulse spacing leading to a response
between those of Figures 9.7(b) and 9.7(c)—the second impulse either ap-
peared or was blocked in an all-or-nothing manner. In other words, the
branch was observed to act as a logical switch.

To get an idea of the GRs to be expected in real dendrites, consider
Table 9.3, where branching exponents (∆) for Equation (9.20) (Leonardo’s
law) are recorded for a variety of mammalian dendrites [12]. Assuming that
the two daughter branch diameters (d1 and d2) are equal implies a ratio of
parent diameter to either one of the daughter diameters of

d3

d1
=

d3

d2
= 21/∆ ;

thus the corresponding geometric ratio is

GR =
d
3/2
2 + d

3/2
3

d
3/2
1

= 23/2∆ + 1 . (9.21)

In the last column of Table 9.3 are recorded values of GR calculated from
this equation, that suggest a range of values for which blockage might
or might not occur. (If the daughters were not assumed to be of equal
diameter, this range of GR values would be greater.)

Taking all of these considerations together, it seems reasonable to spec-
ulate that two basic elements of the computer engineer—OR and AND
switches—may be found at the branchings of real dendritic trees. A third
element of computer design is the NOT function, which Koch and his col-
leagues have shown to be achieved through inhibitory synapses that are
located closer to the cell body than the signals they aim to inhibit [52, 53].

It is a fundamental theorem of the algebra of classes that all Boolean
functions (or logical statements) can be constructed from the three elements
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Figure 9.7. Switching action in the branching region of a squid giant axon at
20.3oC [104]. (a) Geometry of the preparation, showing the point of upstream
recording of a pair of incoming impulses at B and the point of downstream
recording at A (not to scale). (b) Blocking of the second impulse. (c) Passage
of the second impulse.
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Table 9.3. The GR range for some typical dendrites calculated from observations
of branching exponents using Equation (9.21). (Apical dendrites consist of a single
tree, whereas basal dendrites comprise several trees.) (Branching exponents are
from [12].)

Cell type Branching exponents (∆) GR range

Purkinje 2.36 ± 1.2 2.3–3.5

Stellate 2.24 ± 1.12 2.4–3.5

Granule 2.58 ± 1.8 2.3–4.8

Motoneuron 1.69 ± 0.48 2.6–3.4

Pyramidal (apical) 1.99 ± 0.79 2.5–3.4

Pyramidal (basal) 2.28 ± 0.89 2.4–3.1

AND, OR, and NOT8 [19]. Thus, one is led to speculate that dendritic trees
might realize the most general logical functions of their synaptic inputs. Far
from being mere passive channels for delivering synaptic messages to the
cell body (or initial segment of the axon), in other words, dendrites may
have the ability to compute all functions that are possible in the context
of Boolean (computer) algebra. Could this really be so?

Bartlett Mel suggests that such a sweeping conclusion be approached
with caution because of the unrealistic requirements that the construction
of such dendritic computers would impose on the processes of embry-
onic growth [72]. How would a developing brain know exactly where to
place the excitatory and inhibitory synapses, thereby determining the
NOT elements? On the other hand—as Koch points out—synapses may
act in functional groups rather than as individuals, easing the task of
developmental organization [52].

9.3.2 Multiplicative Nonlinearities
The primary difficulty in confirming or rejecting speculations about den-
dritic logic is empirical. Because of their small size, it is difficult to measure
the internal voltages at selected locations along dendritic fibers [124];

8As discussed in Chapter 10, Boolean functions are defined on the two-element num-
ber system comprising “0” and “1.” Thus a function of N variables will specify either
“0” or “1” for each of the 2N combinations.
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thus neuroscientists are currently considering other means for dendritic
information processing that can be more readily observed.

One such approach is to suppose that dendritic trees do not respond to
the precise Boolean codes presented to their synaptic inputs but to average
impulse rates. How might this assumption simplify analytic formulations?

Indicating these incoming rates as Fj(t) (j = 1, 2, . . . , n), where n is the
number of synaptic inputs and t is time, the linear analyses of Section 9.1
imply an input to the cell body of

IL(t) = α1F1(t) + α2F2(t) + · · · + αnFn(t) =
n∑

j=1

αjFj(t) . (9.22)

The output pulse rate on the axonal tree might then be given by an
expression of the form

OL(t + τ) = S[IL(t)] ,

a sigmoid function, rising smoothly from 0 to 1 as its argument increases
from 0 to ∞. Of several possible expressions, a sigmoid function might take
the form

S[I] =
I2

I2 + θ2 .

In this formula, θ acts like a threshold in the sense that S ≈ 1 for I2 	 θ2

and S ≈ 0 for I2 � θ2.
Equation (9.22), however, fails to represent the nonlinear aspects of den-

dritic logic, which were discussed in the previous section. A straightforward
way to include such effects is to augment the input variable to

IΣΠ =
n∑

j=1

αjFj +
∑

j,k

βjkFjFk +
∑

j,k,l

γjklFjFkFl + · · · , (9.23)

where only one permutation of the indices is counted. Called the “sigma-pi”
(or sum of products) model by neuroscientists [52, 114], Equation (9.23) is
recognized as a power series in the n inputs that is capable of representing
any smooth (analytic) function of those inputs [134]. Thus a rather general
expression for the dependence of the outgoing impulse rate on the incoming
rates is

OΣΠ(t + τ) = S[IΣΠ(t)] ,

but one must bear in mind that this formula includes a rather large number
of parameters: n of the αs, n(n + 1)/2 of the βs, n(n + 1)(n + 2)/3! of the
γs, and so on.9

9For n synaptic inputs and a summation of rth-order products, a general formula for
the number of parameters is (n + r − 1)!/(n − 1)!r!, which is the number of ways that r
beans can be put into n jars.
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For a quadratic model

I2(t) =
n∑

j=1

αjFj(t) +
∑

j,k

βjkFj(t)Fk(t)

(9.24)
O2(t + τ) = S[I2(t)] ,

there are a total of n(n + 3)/2 parameters to be specified, which is compu-
tationally feasible up to n ∼ 100. For higher-order models, the number of
parameters grows with correspondingly higher powers of n.

Under the linear model of Equation (9.22), the response of a neuron de-
pends only on the n values of the αs, remaining insensitive to the relative
locations of these n input synapses. Among other phenomena, the quadratic
model of Equation (9.24) predicts cluster sensitivity, in which interactions
between pairs of synaptic inputs are taken into account. At least two non-
linear effects in dendritic trees can lead to cluster sensitivity: interactions
among neighboring synapses and the presence of AND bifurcations. Mel
has tested these predictions of the quadratic model against the numerical
behavior of model nonlinear dendrites [71].

In this study, the dendritic trees investigated were those of a neocortical
pyramidal cell. Because it is difficult to record from several locations within
these dendrites, a numerical model was needed, and a compartmental model
was chosen [23, 32, 44, 45, 125].

The motivating idea of a compartmental model is to simplify the full
nonhomogeneous PDE system describing a dendritic tree with a network of
membrane patches (compartments) interconnected by resistors. The mem-
brane patches are like the space-clamped ODEs considered in Section 4.2.3,
and upon interconnecting these patches with resistors, the overall network
is much like the myelinated systems described in Chapter 7.

Based on some 3000 measurements of dendritic branch lengths and
branch diameters on a single pyramidal cell, Mel constructed a dendritic
model comprising about 500 compartments [71]. The membrane dynam-
ics of each compartment included the following components, any of which
could be turned on or off during a particular computation.

• A. Excitatory passive and active synapses. In the passive synapses,
the postsynaptic conductance G(t), defined in Equation (2.4), was
assumed to be proportional to te−t/τ , as in Equation (2.6), indepen-
dent of the transmembrane voltage. For active synapses, on the other
hand, the postsynaptic conductance was proportional to

e−t/τ1 − e−t/τ2

1 + Ke−γV
,

with τ1 	 τ2 as in Equation (2.7). Here, the dependence on membrane
voltage (V ) represents the fact that active postsynaptic channels are



216 9. Neural Modeling

Cluster size

N
um

be
r 

of
 o

ut
pu

t s
pi

ke
s

1 15

6

0

passive

sodium active

Figure 9.8. Response of passive (dashed line) and sodium-active (solid line) pyra-
midal cell dendrites to synaptic inputs of varying cluster size. (From data in
reference [71].)

blocked (by magnesium ions) at voltages near and more negative than
the resting voltage, becoming unblocked at positive values.

• B. Fast sodium channels, leading to Hodgkin–Huxley spikes similar
to those described in Section 4.5.

• C. Two types of slow calcium spikes, with impulse durations of about
10 ms [52]. (Because the precise dynamics of the calcium spikes are
uncertain, different models were used to check whether the overall
dendritic behavior is sensitive to the details of this effect.)

For each numerical run, incoming trains of 100 Hz (impulses/s) were
applied to 100 randomly selected synapses, and the number of output
spikes generated by the cell body during the first 100 ms of stimulation was
recorded. Although selected randomly, the 100 synapses were constrained
to lie in contiguous “clusters” with sizes ranging from 1 (unclustered) to 15.
(If the cluster size did not divide evenly into 100, a single smaller cluster
was stimulated.) Figure 9.8 shows the qualitative behavior of this model,
where the recorded number of output spikes is averaged over 50 to 100
different computations.

In this figure, two different assumptions are made: passive, implying pas-
sive synapses with effects B and C turned off, and sodium active, implying
passive synapses with effect B on and C off.

As the cluster size is increased, the number of output spikes observed on
the passive membrane model decreases. According to Mel, this is because
inputs from nearby synapses increase the membrane permeability, thereby
shunting away some of the injected input current. In this passive case,
corresponding to the assumptions of Section 9.1.1, the number of output



9.4. Axonal Information Processing? 217

spikes is maximum when the input synapses are as widely dispersed as
possible.

The opposite effect is observed when the dendritic membrane is sodium-
active. In this case, the number of output spikes initially increases with
cluster size, as expected if the dendritic model included a significant number
of the AND bifurcations described in the previous section. (The decrease of
output spiking at larger cluster sizes is attributed to the opposing influence
of interacting synapses.)

These qualitative observations were quite robust in the numerical studies
of Mel. Thus any or all of the nonlinear effects (active synapses or effects
B and C) considered led to numerical observations of cluster sensitivity
qualitatively similar to that of the “sodium-active” curve in Figure 9.8.

The implications of this numerical work for the functioning of pyramidal
cells in the neocortex are twofold. First, as Mel suggests, cluster sensitivity
may be employed as a means for neocortical information processing that is
based on average impulse rates. Second, the numerical evidence for cluster
sensitivity under a rather wide variety of neurologically plausible assump-
tions implies that AND bifurcations are to be expected in the dynamics of
typical dendritic trees.

Although numerical evidence for neuronal multiplication remains sparse,
recordings from specific neurons in the owl’s auditory map are suggestive
[84]. In these observations, a significant component of a neuron’s output
signal can be computed as the product of two factors: the time difference
between signals at the two ears and corresponding intensity differences.

9.4 Axonal Information Processing?

The theoretical and numerical results presented in Section 9.3.1 suggest
that blockage of impulse propagation should occur less readily on axonal
than dendritic trees. To see why, consider the branching notation of Fig-
ure 9.4(b) in which d3 is the diameter of the parent and d1 and d2 are
the daughter diameters. In the course of normal dendritic dynamics, im-
pulses enter a branch along a daughter fiber (say fiber #1), so the relevant
geometric ratio (GR) for calculating blockage is

GR(dendritic) =
d
3/2
2 + d

3/2
3

d
3/2
1

,

as we have seen in the previous section.
Under normal axonal operation (so-called orthodromic conduction, where

the axonal impulse propagates away from the cell body), on the other hand,
impulses arrive at a branching junction along the parent fiber (fiber #3),
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for which the relevant GR is

GR(axonal) =
d
3/2
1 + d

3/2
2

d
3/2
3

.

Because the parent diameter (d3) is typically greater than those of the
daughters (d1 and d2), these equations imply a lower value of GRs for
axonal than for dendritic transmissions, suggesting that impulse blockage
is less likely at axonal branchings.

Indeed, for axonal branchings it is not uncommon for the relevant GR
to be unity, leading to a form of Leonardo’s law [67, 123]

d
3/2
3 = d

3/2
1 + d

3/2
2

with branching exponent ∆ = 3/2.
As an example of this law, the present author has measured the diameters

of the parent and daughter fibers of the first branch on 109 giant axons of
the squid (Loligo vulgaris) taken from the Bay of Naples over a period of
five months from December to May [104]. The mean of the GRs was found
to be 1.017 with an rms variation of ±0.029.10

There is an evolutionary explanation for the empirical observation that
GR ≈ 1 for branchings of squid giant axons, with the logic as follows. As
you may have noticed at your favorite Italian restaurant, a squid is tubular
in shape, having its rear open to the sea. When danger is perceived, the
function of the giant axon is to send an “escape!” message from the ani-
mal’s brain to its posterior muscles [137]. These muscles rapidly contract,
squirting water out the back and enabling the squid to literally rocket away
from a presumed predator. For such a mechanism to be effective, the escape
signal must arrive at all parts of the posterior muscle as rapidly as possible.
This requirement is eased by having the GRs at axonal branchings equal
unity, implying no impulse blockage.

At variance with these ideas are the results of several experimen-
tal studies demonstrating that impulse blockage does occur on axonal
trees, reinforcing previous speculation that blockage occurs on dendrites
[13, 29, 38, 78, 113, 115, 117, 122]. How might such empirical evidence be
understood?

• If the frequency of an impulse train on the trunk of an axonal tree
becomes greater than about 100 impulses per second, then each im-
pulse necessarily propagates in the refractory zone of the previous
impulse [103]. As we have seen in Figure 4.8 and the previous sec-
tion, the safety factor is thereby diminished so each impulse becomes
more susceptible to blockage or extinction.

10Similar observations (GR = 1.01 ± 0.15) on branchings of excitor motor axons in
the crayfish (Orconectes virilis) have been reported by Dean Smith [112].
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One way to relieve the tension in this situation is to have the first
impulse go down daughter #1, the next down daughter #2, the next
down daughter #1, and so on. In the course of such impulse steering,
the frequencies would be halved on the daughter branches, with the
interpulse intervals increasing from 10 ms to a more comfortable 20
ms.
More generally, impulse steering might provide a means whereby an
axonal tree translates a time code on its main trunk into time and
space codes on its distal (distant) branches [133]. Because such be-
havior might be useful in neural processing of information, it should
be studied numerically using realistic models for the branching axon.

• Most theoretical studies to date suppose that the sodium and
potassium channels are distributed uniformly over the fiber mem-
brane, but this simplifying assumption must be verified in real
neurons. If the ion channels are not distributed uniformly but are
more sparse near the crotches of branching junctions (“hot spots”)
[41, 66, 88, 89, 110, 121, 132], a means for impulse blockage and
impulse train steering becomes available.

• Adelman and FitzHugh have shown that the safety factor of Hodgkin–
Huxley impulses can be substantially reduced through the buildup
of potassium ion concentration in restricted regions surrounding the
axon, altering the potassium equilibrium potential (VK in Equa-
tion (4.3)) [4]. In the course of their studies of impulse propagation
through branchings of a lobster axon, Grossman, Parnas, and Spira
suggest this mechanism as an explanation for differential blockage
[38, 39]. The same explanation has been advanced by Smith for
observed blockages in crayfish axons [111, 112].

• Many axons are not uniform structures like that of the squid but
myelinated (see Chapter 7); thus Khodorov and his colleagues have
considered what happens at transitions between smooth and myeli-
nated regions [98]. Near branchings of myelinated cat fibers, studies
by Quick et al. [91] show that the ratio of internode spacing to fiber
diameter (β in Table 7.2) becomes much smaller near the twigs of ax-
onal trees, which indicates that the continuum limit of Section 7.2.1
is being approached and the safety factor increased. Also the nearest
active nodes of the two daughters may not be equidistant from the
crotch of a branch, providing yet another means for impulse steering
at higher rates of data transmission.

• Synaptic contacts have been observed on the active nodes of
myelinated axons of cat motoneurons [87], suggesting additional op-
portunities for axonal information processing. Might each active node
on a myelinated nerve act as an individual switch that processes
incoming synaptic codes as it decides whether to ignite the next node?
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• As discussed in the previous chapter, impulses on parallel fibers
can interact through ephaptic couplings of their external current
loops. This phenomenon is well established both theoretically and
experimentally and provides opportunities for impulse steering at
branchings, offering possibilities for information processing on bun-
dles of axons such as vertebrate motor nerves and the corpus callosum
[102].

Considering the repertory of interesting dynamics that is currently being
recognized on real neurons [35, 51, 52, 71], it seems prudent to remain open
to the possibility of axonal information processing.

9.5 Numerical Models

A moment’s reflection on the foregoing should convince the reader that the
task of computing the dynamic behaviors of dendritic and axonal trees is
formidable. Even under the linear assumption of Section 9.1, there remains
the task of describing the trees, and in the study of Mel about 3000 mea-
surements of branch lengths and diameters were used to characterize the
dendrites of a single pyramidal cell [71]. How is mathematical neuroscience
to make progress if such an effort precedes every computation?

One answer is the establishment of an Archive of Neuronal Morphology by
the Centre of Neuroscience at the University of Southampton, from which
the dendritic trees in Figure 9.1 were obtained [27]. Neuroscientists can
now obtain specific geometrical data (branch lengths, diameters, branching
angles, and so on) from real neurons upon which subsequent analyses can
be based. Because this website is organized to accept new data, it will
continue to grow and become an invaluable resource in future years.

Another approach is to gather a number of measurements on similar
neurons (perhaps from the above Archive) from which a statistical char-
acterization of that class can be extracted [26, 43, 120]. For particular
examples of the various classes of neurons in the mammalian central ner-
vous system, consider the four dendritic trees from the hippocampus of
the rat shown in Figure 9.1 [27]. As Giorgio Ascoli and his colleagues have
shown, such characterizations allow the generation of thousands of sta-
tistically equivalent neurons per second on commonly available personal
computers [11]. Using a computational package called “L-Neuron” (LN),11

a geometrical description of each dendritic or axonal tree is available within
the computer, ready for analysis.

Like biological trees, these dendrites grow by successive branchings; thus
it is necessary to have histograms of the following features [11, 12]: num-

11Information on various versions, databases, and neuroanatomical structures grouped
by morphological classes is available on the Web at www.krasnow.gmu.edu/L-Neuron.
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ber of trees, length of parent branch, taper of parent branch, branching
exponent, branch angle, relative diameters of daughters, and minimum di-
ameter, all of which may depend on distance (or number of branchings)
from the cell body. At the formation of each branch during the growth pro-
cess, values for these parameters are selected randomly from the respective
histograms, resulting in sets of model trees that are statistically identical
to the original neurons.

Given data files on tree structures, the linear passive theory sketched
in Section 9.1.1 provides a theoretical basis for computer codes causally
relating synaptic inputs to voltage response at the nerve body. Such codes
employ either the Green function of Equation (9.6), discussed in detail
by Rinzell and Rall [99] and more recently by Abbott and his colleagues
[1, 2, 28], or the Fourier transform approach proposed by Koch and Poggio
[54]. Upon development, these linear codes can be compared with existing
compartmental codes such as NEURON [44, 45] or GENESIS [23].

In a compartmental code, each compartment comprises three compo-
nents: the membrane capacitance (in farads), the resistance (in ohms) from
the center of one compartment to the center of the next, and a linear
or nonlinear formulation of the ionic current (in amperes) crossing the
compartment membrane. In Mel’s code, for example, 163 dendritic seg-
ments were represented by about 500 compartments, for an average of
about three compartments per segment of dendritic fiber. As the num-
ber of compartments per section increases, solutions of the compartmental
model are expected to approach exact solutions of the partial differential
system describing the tree.

On the positive side, compartmental models have two main advantages:

• The transmembrane ionic current is readily changed from passive to
active, or from fast sodium current to slower calcium current, without
altering the structure of the numerical code. (Codes based on Green
functions or Fourier/Laplace transforms, on the other hand, cannot
easily be generalized to include nonlinear membranes.)

• By reducing the number of compartments per section, the computa-
tional load is decreased.

In using compartmental models, however, it is always necessary to con-
sider the accuracy of the ultimate numerical computation, and this will
depend on what is being computed. For Mel’s studies of cluster sensitiv-
ity (see Figure 9.8), using three compartments to describe one section of
dendritic fiber seems sufficient. If one were to study details of the dendritic
logic described in Section 9.3.1, on the other hand, more compartments
might be required, thereby increasing the computational difficulties.
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9.6 Some Outstanding Research Problems

In Chapter 2, we introduced two neural models: the single-switch represen-
tation of McCulloch and Pitts [70] and Waxman’s multiplex neuron, which
supposes that more intricate information takes place in the dendritic and
axonal trees of a single nerve cell [133]. Throughout this survey, it has been
emphasized that finding an accurate description of real neurons remains
the ultimate objective. We are now, I hope the reader agrees, in a better
position to see how the insights of mathematics might help neuroscientists
proceed toward this goal.

Because so much remains to be done before real neurons are adequately
described, this chapter closes with some suggestions for future research
activities in the area of mathematical neuroscience. No claim of complete-
ness is made; these are merely some ideas that I might offer to applied
mathematics students who are interested in neuroscience or to neuroscience
students with a taste for mathematics.

Statistical Models of Neurons
To construct realistic neuron models within a computer, one can divide
them into classes (perhaps genetically determined) and then find his-
tograms of the statistical probabilities for various growth parameters [11].
Much of the data for such statistical characterizations currently lies buried
in collections of photographs or could be recorded in the course of ongo-
ing experiments. As “computational anatomy” becomes a more important
aspect of neuroscience research, it is of increasing interest to gather all
available statistical data on the classes of neurons that are being studied
in each laboratory.

In assembling such statistics, it would be helpful to have an efficient
means for automatically transferring geometrical information on neural
structures from photographs or electron micrograms of axonal and dendritic
trees (e.g., branchings, segment lengths, diameters, branching exponents)
into computer data files. This is a daunting task, in part because crossovers
in visual images must be distinguished from true branchings, and checking
that a code works properly in all cases is tedious. Nonetheless, available
computer power is growing year by year, and such a development would be
of great value to the neuroscience community.

Studies of this type respond to Walter Elsasser’s appeal for biological
studies that go beyond measurements of magnitudes and seek “correlations
between various phenomena observable either on a given object or perhaps
only on a class of objects” [33].

Evaluating Compartmental Models
Although compartmental codes (like NEURON [44, 45] and GENESIS [23])
are popular for computational studies of neural systems, concerns about
their accuracy remain, particularly in their ability to correctly model the
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dendritic switching phenomena described in Section 9.3.1. In the course of
numerical checks of the blocking conditions predicted by Equation (9.18),
for example, a rather fine spatial step was needed to confirm the theoretical
predictions [18]. Additionally, the compartmental model used by Goldfinger
(to compare blocking conditions at abrupt widenings and at branchings)
[36] gave results at variance with the finite element studies of Altenberger
et al. [6].

In using compartmental analyses, therefore, neuroscientists must con-
sider how well the behaviors of real neural structures are represented. Might
tests based on linear assumptions (Green functions or Fourier transforms)
provide useful benchmarks for such evaluations? Perhaps the M–C model,
introduced in Chapter 6, could serve to bridge the computational gap be-
tween compartmental codes and a full PDE description of branching fibers
[80, 81, 82]. Could compartmental approximations mask dendritic logic?
Or might they overestimate threshold phenomena by introducing the pos-
sibility of failure between poorly selected compartments? Do the answers
to these questions depend on the nature of the active membrane process
(fast sodium or slow calcium) that is assumed? Such numerical studies are
expected to become ever more feasible in coming years.

Inhomogeneous Fibers
Although exploratory numerical studies have been carried out on the dy-
namic effects of changing the cross section of a Hodgkin–Huxley fiber
[15, 16, 22, 37, 48, 49, 50, 79, 108, 36, 6, 138], work remains to be done,
and the necessary computing power is now widely available. In particular,
it should be interesting to check the assumption (underlying Section 9.2.3)
that a blocking condition on (d2/d1)3/2 in Figure 9.4(a) is equivalent to
the same condition on (d3/2

2 + d
3/2
3 )/d

3/2
1 in Figure 9.4(b). Additionally,

relations between Equations (9.15) and (9.17) and numerical studies of
widening on the H–H model can be explored. How good are these approxi-
mate formulations? What might they be missing? What is the best way to
account for sodium turn-on delay? How can the time delay generated at a
varicosity be conveniently described?

Decremental Conduction
The concept of a critical point in active propagation was introduced in
Chapter 4 and discussed in Chapter 6 as the region of parameter space
beyond which action potentials cannot be supported by the nerve, but the
nonlinear dynamics in this region are not well understood. Numerical com-
putations based on the Hodgkin–Huxley (H–H) and FitzHugh–Nagumo
(F–N) models might be helpful in clarifying behavior near the critical
point, providing bases for improved analytic descriptions and theoretical
understanding. In this context, the phenomenon of decremental conduction,
discussed in Sections 4.6 and 9.1.2, merits careful theoretical investigation
aimed at understanding its nonlinear features and providing guidelines for
electrophysiologists.
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Impulse Steering
H–H, F–N, M–C, and compartmental models could also be used to study
the phenomenon of impulse steering at axonal branchings, which was
mentioned in Section 9.4 [133]. Is this a realizable phenomenon or mere
theoretical speculation? Assuming it is real, what are the experimental
conditions for getting steering started? Might it stem from dynamic insta-
bilities related to a high impulse rate on the axonal trunk, or must it be
induced by (threshold) perturbations of finite amplitude? How is impulse
steering influenced by the locations of active nodes on myelinated fibers?
How far up the tree can impulse steering occur?

Impulse Dynamics on Short Segments
Motivated by Ramón y Cajal’s classic image of Purkinje cell dendrites in
Figure 9.5, H–H and F–N models might be used to study more intricate
branchings for which interbranch segments are of the order of the active
space constant (λa = 1/

√
rg), providing realistic corrections to the idealized

estimates in Section 9.3.1. How do the finite lengths of branch segments
influence the input–output behaviors of real trees? Can one describe these
behaviors in terms of Boolean functions (as was suggested in Section 9.3.1),
or are more or less intricate representations needed?

Second Impulse Blockage
Although the observations of double impulse switching shown in Figure 9.7
[103, 104] are in approximate accord with the exploratory computations
reported by Khodorov [50], wide ranges of numerical uncertainty wait to
be resolved. Using a combination of H–H, F–N, M–C, and compartmental
models, it should now be possible to compute more precisely the ways in
which the critical impulse spacing for the second impulse block depend
upon the GR and the nature of the active channels (sodium or calcium)
for realistic dendritic models. In such calculations, it would be interesting
to include degrading effects of temperature, external ionic concentrations,
narcotization, and so on as outlined in Section 4.6.

9.7 Recapitulation

Linear diffusion of transmembrane voltage on passive models of dendritic
fibers was discussed first in this chapter, emphasizing key experimental
parameters and simplifications arising from the assumption of linearity.
The phenomenon of decremental conduction was suggested as a means by
which synaptic inputs can be amplified without giving up the powerful su-
perposition properties of linear models, and the theoretical bases for Rall’s
“equivalent cylinder model” were presented.

Active conduction of fully nonlinear impulses was then considered on
a variety of inhomogeneous fibers, emphasizing the formulation of simple
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conditions for impulse blockage. Although the insights from these studies
underlie speculations about information processing on the dendritic trees,
real dendrites may operate somewhere between the regimes of linear diffu-
sion and fully nonlinear switching. Thus, the possibility of multiplicative
response, in which a dendritic tree responds nonlinearly to the average pulse
rates of the incoming signals was also considered. Information-processing
possibilities were then discussed for axonal branchings, including the spec-
ulation that time codes on the main trunk may be translated into time and
space codes on the distal twigs of an axonal tree.

As the computing power available to individual researchers continues
to increase, it is always important to reassess the spectrum of numerical
strategies. Presently, databases of neuronal structures are becoming avail-
able that make it possible to grow model neurons within a computer that
are statistically equivalent to classes of biological neurons. Thus detailed
computations of dendritic behaviors are now feasible under a variety of
dynamic assumptions—an exciting opportunity.

Finally, a brief list of theoretical, numerical, and experimental problems
was presented that, it is hoped, may encourage research in the dynamics
of individual neurons over the next few years.
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10
Constructive Brain Theories

Given some modest appreciation for the dynamics of individual neurons, it
is natural to ask how they might act in concert, which is a central question
of neuroscience. In accord with the constructive perspectives of modern
science, this problem can be phrased: How does a collection of interacting
neurons manage to behave like a brain? The aim of this chapter is to sketch
some answers to this question.

We begin with a brief review of the first McCulloch–Pitts paper, in which
brain modeling was approached by stripping real neurons down to their
essential features: all-or-nothing response and a threshold for firing (see
Section 2.4.1) [36]. Interestingly, this simple “M–P neuron” survives to the
present day as a workhorse of neural network modeling.

McCulloch and Pitts also suggested the division of neural network mod-
els into two broad classes: “nets with circles” and “nets without circles.”
Their quaint jargon distinguishes between networks possessing internal
feedback loops and those simpler networks for which the information flows
in one direction only, from input to output terminals, providing a basis for
organizing this chapter.

A key property of biological brains is their ability to learn, which was
modeled in 1958 by Rosenblatt through a significant modification of the
M–P neuron [44]. In a class of neural networks called the “perceptron,”
information is constrained to flow only in one direction (a net without
circles), but the input weightings of each model neuron are allowed to
change during the course of a training period as required by an appropriate
learning algorithm.
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Nets with circles are of central interest in neuroscience because biologi-
cal brains—even those of the most simple creatures—do indeed have many
internal loops of positive feedback threading through their constituent neu-
rons. As we have seen in previous chapters of this book, such closed causal
loops (or “re-entry”) lead to the emergence of new dynamic entities, the
nerve impulse being an outstanding example. With the emergence of novel
coherent states arises the need for describing their dynamics, compounding
the difficulties of mathematical formulation and analysis. Such matters are
addressed in the following two chapters.

If each model neuron in a network is allowed to compute the most general
Boolean function of its inputs, as suggested in the previous chapter, it is
straightforward to compute the number of nets with circles that can be
created from a given number of neurons and to sketch the various types of
behavior. The number of such systems grows very rapidly with the number
of constituent neurons, however, soon becoming unmanageable; thus, some
guiding perspectives are needed.

As a simple brain model that includes closed loops of causal implica-
tion (positive feedback), Hopfield’s “spin-glass” model is presented in the
context of previously noted concepts of phase-space analysis of nonlin-
ear systems [27]. The number of stable stationary states in this model
is considered as an estimate for the information storage capacity of real
brains.

The chapter closes with a brief introduction to cortical field theories, the
dynamics of which are in accord with observations of Gestalt psychology,
suggesting means for communication among the emergent states of real
brains.

10.1 Nets Without Circles

In this section, attention is restricted to nets without circles for two
reasons. First, it is evident that such network models are easier to an-
alyze and understand just because they do not give rise to emergent
entities. (There is an adage, no less true for being ancient, that one
should learn to walk before trying to run.) Second, from a mathemati-
cal perspective, there are several rather simple results on the geometric
interpretation of the pattern-classification problem and on procedures for
learning that are of general interest and may play supporting roles in the
information-processing activities of real brains.

Although it was proposed back in the 1950s that the trainable proper-
ties of nets without circles offer a basis for understanding the human brain
[4, 44, 45], this view has not been widely held since the demise of behavior-
ism as a credible psychological theory. Nonetheless, nets without circles do
comprise a class of learning machines that have been of engineering interest
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since the late 1950s for a variety of tasks, including automatic sorting of
photographs, converting handwritten characters to digitally defined letters,
recognizing speech, generating suggestions for medical diagnoses, mak-
ing weather predictions directly from atmospheric data, analyzing aerial
photographs for economic data, and so on [23, 35].

However such systems fare in the realms of engineering, the peculiar
properties of nets without circles may be employed for special purposes
in certain restricted regions of the human brain, such as processing in-
formation on the way from the retina to the primary areas of the visual
cortex or from the ears to the temporal lobes. Thus it seems prudent for
neuroscientists to be aware of what nets without circles can do.

10.1.1 McCulloch–Pitts (M–P) Networks
In their 1943 paper, McCulloch and Pitts began by assuming a class of neu-
ral networks with the following properties: the activity of any constituent
“neuron” is an all-or-nothing process; a fixed number of synapses must be
stimulated within the period of latent addition in order to ignite a “neuron,”
and this number is independent of previous activity; the only significant
delay occurs at synapses; ignition of a “neuron” is prevented by activation
of a single inhibitory synapse; and the network structure does not change
with time [36]. The term “neuron” is used here with quotation marks to
emphasize that real neurons are more intricate than the model. Although
this indication will be dropped in subsequent discussions, the reader should
keep the caveat in mind.

McCulloch and Pitts were under no illusion that their assumptions are
physiologically correct; indeed, they specifically mention that facilitation
and extinction (“in which antecedent activity temporarily alters respon-
siveness to subsequent stimulation”) and learning have been ignored. They
defended their approach, however, as a way to establish baseline estimates
of what neural networks can do.

A key aspect of the M–P formulation was their recognition that the all-
or-nothing property of a neuron (an impulse is either present or it is not
on a certain nerve at a certain time) can be viewed as a logical proposition
(this statement is either true or false), so Boolean algebra (the algebra of
classes) can be invoked to describe their model networks [3]. Thus they
obtained two main results.

First, M–P showed that their model neuron could represent the three
fundamental circuit elements of the computer engineer—the AND, OR, and
NOT gates—which we met in the preceding chapter. Second, they appealed
to the algebra of classes to show that any Boolean function can be modeled
by one or more of their networks, and each such network corresponds to
one or more Boolean functions. What is a Boolean function?

Written in the two-element number system “1” and “0” (which indicates
that a statement is true or false or that an all-or-nothing impulse is present
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or absent), the three basic operations of Boolean arithmetic are:








1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0









,













1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0













, and






NOT 1 = 0

NOT 0 = 1




 .

In the context of this arithmetic, a Boolean function specifies the output
variable for each combination of input variables. Thus a particular Boolean
function of three inputs A, B, and C might be denoted as F (A, B, C) and
defined as in the following table.

A B C F (A, B, C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A Boolean expression for this particular function is

F (A, B, C) = (A AND B AND C) OR(A AND NOTB AND C)
= A AND C (10.1)

indicating in ordinary English that an output impulse will appear if either
of two input conditions occurs: there are impulses at A, B, and C, or there
are impulses at A and at C but not at B. In this formulation, “at” refers
to a location in space-time because the AND operation requires temporal
coincidence.

Because a Boolean function of N inputs has 2N input combinations for
which the corresponding output is either 0 or 1, there are evidently

22N
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distinct functions of N inputs. Each of these Boolean functions can be
defined as in the preceding table and expressed as in Equation (10.1).

In retrospect, the demonstration by McCulloch and Pitts that any pos-
sible dependence on the output of a neural network can be realized (as
engineers like to say) through a suitable combination of model neurons
may seem modest. These results are now well known to computer engi-
neers, and techniques for designing networks with a minimum number of
switching elements (AND, OR, and NOT functions) have been available
for decades [25]. In the early 1940s, however, engineers were striving to
construct telephone switching stations with networks of magnetomechani-
cal relays, and the modern digital computer was but a dream. In its day,
therefore, the M–P paper was strikingly original.

More to the point in evaluating McCulloch–Pitts networks is the recog-
nition that each nerve cell is modeled by a single switch represented by the
Heaviside step function H(I) in Equation (2.10), an assumption with two
implications.

• This is a convenient assumption to make because the linear
summation of input variables to the jth neuron

Ij =
N∑

k=1

αjkVk(t) − θj (10.2)

in Equation (2.10) keeps the threads of causality distinct, facilitating
analysis of the system [7].

• In the context of neuroscience, however, it is a dangerous assumption
because causal relations among input signals to real neurons are far
more intricate than is indicated in Equation (10.2).

10.1.2 Learning Networks
Although M–P networks can “in principle” be arranged to do whatever can
be done without circles, their design is not straightforward and requires
selection of the weighting parameters αjk and θj in Equation (10.2) for all
neurons in the net. How might a neuron manage to solve this problem?

In 1958, Rosenblatt suggested that the αjk and θj could be changed
incrementally if a particular neuron is not responding correctly [44, 45].
His training algorithm led to a class of learning networks composed of M–P
neurons with adjustable weights, which he called the perceptron [4, 5, 37].

At about the same time, an identical idea arose within the engineering
community [23, 50]. Here, the class of networks was dubbed “ADALINE”
(for ADAptive LInear NEtworks), and the constituent element was called
a “linear threshold unit” (LTU). In this stream of activity, the aim was
not to understand brain dynamics but to design computing machines that
could be trained to recognize patterns in data sets.

To be specific, let us suppose that the Boolean function of Equation
(10.1) is to be used for predicting the weather, where A = 1 indicates that
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Figure 10.1. The geometrical interpretation of the pattern-recognition task
indicated by Equations (10.1) and (10.3).

the barometer is rising and A = 0 that it is falling, B = 1 implies daytime
and B = 0 night, and C = 1 indicates that it is clear and C = 0 indicates
cloudiness. With F (A, B, C) defined as in Equation (10.1), it is reasonable
to expect that F = 1 implies that no rain is to be expected within the next
few hours.

To understand how the training algorithm works, it helps to view pattern-
recognition problems in a geometrical context. Thus, the eight values of
these three input variables can be taken as vertices of a cube, as indicated
in Figure 10.1, with the black dots indicating where F = 1 and the open
dots where F = 0. The shaded area indicates a linear discriminant plane
in pattern space on one side of which F = 1 and on the other F = 0.

Suppose that we wish to realize the logical function of Equation (10.1)
with the M–P model neuron

F̃ = H

(
3∑

k=1

αkVk(t) − θ

)

, (10.3)

where V1 ≡ A, V2 ≡ B, and V3 ≡ C. (Recall that H(x) is the Heaviside
step function, which equals 0 when x is negative and 1 otherwise.)

Two questions arise: (1) How do we choose α1, α2, α3, and θ? (2) If
these weighting parameters are incorrectly chosen, how can they be altered
so that the functions computed from Equations (10.1) and (10.3) are the
same?

To answer these questions, it is convenient to define a four-dimensional
weight vector as

W ≡ (α1, α2, α3,−θ)
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and a four-dimensional augmented pattern vector as

P ≡ (V1, V2, V3, 1) .

Then the inner product of the weight vector and the augmented pattern
vector,1

W · P =
3∑

k=1

αkVk(t) − θ ,

is just the argument of the Heaviside step function in Equation (10.3). Thus
to realize the Boolean expression of Equation (10.1) with the M–P neuron
of Equation (10.3), it suffices to choose the three αjs and θ so that the
condition

W · P = 0

corresponds to a discriminant plane lying between the vertices where F = 1
(the dark circles) and those where F = 0 (the open circles), as shown in
Figure 10.1. This answers question (1).

To answer question (2), suppose that we have mistakenly chosen the
components of the weight vector (W1) such that

W1 · P < 0

for (say)

P = (1, 1, 1, 1) ,

but all of the other vertices in Figure 10.1 lie on the correct side of the
discriminant plane. Then Equation (10.3) tells us that F̃ = 0 for V1 =
V2 = V3 = 1. In other words, if the barometer is rising, it is daytime, and
the sky is not cloudy, we should expect rain. Clearly, this is not a correct
prediction and the weight vector must be changed, but how?

If the weight vector were altered by adding an increment in a direction
orthogonal (at right angles) to P, the inner product W · P would not
change; thus, it is necessary to alter the weight vector in the direction of
P. To accomplish this, assume

W2 = W1 + cP , (10.4)

where c is a positive real constant that must be determined. Taking the
inner product of both sides of Equation (10.4) with P and requiring that
W2 · P > 0 shows that for

c > −W1 · P
P · P (10.5)

the inner product W2 · P > 0.

1The inner (or “dot”) product of two vectors is the sum of the products of their
components.
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If W1 ·P > 0 gives an incorrect result for some P, on the other hand, it
is necessary to decrease W · P, so making

c < −W1 · P
P · P (10.6)

will give the correct response.
When the inequality in Equation (10.5) or (10.6) is barely satisfied, then

the weight vector has been readjusted with a minimum of change. In our
example of the weather predictor, this ensures that F̃ = F for V1 ≡ A = 1,
V2 ≡ B = 1, and V3 ≡ C = 1. Because these changes in the weight vec-
tor may have caused some of the other inputs to give erroneous results,
it is necessary to check all of the other input conditions and make min-
imal corrections corresponding to Equations (10.4) and (10.5) wherever
necessary.

In more general cases, it may be that no discriminant plane exists, for
example, with a function defined as 1 at two diagonally opposite vertices—
(000) and (111)—and 0 otherwise. If such cases are excluded, the Boolean
function is said to be linearly separable.

In other words, an M–P (or LTU) representation for a linearly separable
Boolean function exists by definition, leading to the following theorem.

Training theorem: If a Boolean function (F ) is linearly
separable and the weight vectors of an M–P neuron (F̃ ) are suc-
cessively modified as indicated in Equations (10.4) and (10.5)
or (10.6), then the sequence

W1 → W2 → W3 → W4 → · · ·

converges in a finite number of steps to a weight vector for
which F̃ is identical to F [37, 38].

This result is biologically interesting because the information needed
to make such successive weight modifications is just what a neuron has
available at the tips of its dendrites. From Equations (10.5) and (10.6),
this information comprises the current values of the synaptic strengths and
the threshold (given by Wj) and the current values of the input signals
(given by P).

Put differently, if a neuron were informed that its response to a partic-
ular pattern is undesired, it could correct that behavior by increasing or
decreasing its synaptic weights in amounts proportional to the current in-
put signals, which suggests the following question for neuroscientists: Are
there biologically credible means through which a real neuron might come
to know that a certain response is unwanted by its organism?
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Table 10.1. The number of Boolean networks (N ) for various numbers of switches
(N).

N N = 2N2N

1 22 = 4

2 44 = 256

3 88 .= 1.7 × 107

4 1616 .= 1.8 × 1019

5 3232 .= 1.5 × 1048

6 6464 .= 3.9 × 10115

10.2 Nets with Circles

Because the human brain is threaded through with myriad closed loops
of causal implication, any serious study of its dynamics must deal with
the many new entities that emerge. This section presents two constructive
theories of such networks. The first indicates the degree of intricacy to be
expected, and the second suggests ways in which methods of statistical
physics may lead to understanding.

10.2.1 General Boolean Networks
Let us begin by imagining the most general class of networks that can be
constructed from N model neurons (or switches), each of which is allowed
to compute an arbitrary Boolean function of its N inputs. Because there
are

22N

Boolean functions of N inputs and each of the N neurons is chosen to be
one of these, there are

N =
(
22N
)N

= 2N2N

different systems in this class of general Boolean networks. For modest
numbers of neurons, the number of possible systems soon becomes very
large, as is seen from Table 10.1. To deal with such large numbers, combi-
natoric mathematicians have whimsically defined the googol ≡ 10100 as a
finite number above which arithmetic becomes problematic [11]. To see why
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Figure 10.2. (a) The four Boolean systems that can be constructed from a single
switch. (b) One of the more than sixteen million systems that can be constructed
from three switches.

they have introduced such a definition, let us go down the table, making
references along the way to Figure 10.2.

In this figure are indicated state diagrams of certain Boolean systems.
Each such diagram shows the 2N states of some system, which advances
from one state to the next in a fixed time interval. Each state, therefore,
has one outgoing arrow, indicating which of the 2N states the system will
go to in the next increment of time. Thus, the 2N arrows can be chosen in
2N different ways, leading once again to

N =
(
2N
)2N

= 2N2N

different systems composed of N switches.
For N = 1, there are 22 = 4 Boolean systems that can be constructed

from a single switch. These four systems are shown in Figure 10.2(a), where
“0” indicates that the switch is off and “1” implies on. Reading from left
to right, the first system turns on if it is off and then stays on. The second
system turns off if it is on and then stays off. The third system stays off if it
is off and stays on if it is on, as expected for a light switch. Finally, the last
system—which electrical engineers call a “free running multivibrator”—
turns off if it is on and turns on if it is off, thereby generating a periodic
signal.

For N = 2, implying two switches or neurons, there are 44 = 256 possible
Boolean systems, which could be worked out in a few hours. For N = 3,
this number has increased to 88 = 16, 777, 216 systems, one of which is
shown in Figure 10.2(b). Presumably, a computer code could be written to
generate diagrams for all of these systems. For N = 4 and 5, it would be
imprudent to attempt such a code.
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For N ≥ 6, interestingly, it can be asserted with confidence that no
computing system will ever be constructed that generates and records the
diagrams for all possible systems. This is because the atomic weight (or the
total number of protons and neutrons) of the universe is only about 1080;
thus there is not enough paper—or memory storage of any sort—for the
task.

To emphasize the importance of this point in theoretical biology, physicist
Walter Elsasser has proposed that the term immense be used to describe
finite numbers larger than a googol [12]. Typically, the number of possible
members of a biological species is immense, whereas the number of actual
members—past, present, and future—is not.

Dealing with sets in which the number of possible members is much larger
than the number of actual members, Elsasser suggests, helps to make the
biological and social sciences fundamentally different from the physical sci-
ences. Thus, a physicist studying (say) hydrogen can perform as many
experiments as desired on identical atoms, leading to generalizations for-
mulated as laws of physics. Similarly, the chemist can study as many (say)
benzene molecules as are needed to formulate reliable laws of chemistry.

The biologist or psychologist studying (say) Homo sapiens, on the other
hand, faces quite a different challenge. There are a great many more possible
humans than will ever actually exist—past, present, or future. To see this,
note first that the total number of actual human beings is certainly less than
a googol (not immense). Then, consider what N would be in Table 10.1 if
N were anything like the 1010 neurons in a human brain. It is clear from
such a comparison that psychological observations are necessarily made on
very limited subsets of the possible members of our species.2

In Elsasser’s terminology, biologists, psychologists, and anthropologists
study heterogeneous sets, the members of which exhibit substantial differ-
ences. (We have seen an example of biological heterogeneity in Table 4.1
showing the variability of membrane data on giant axons of the squid.)
Physicists and chemists, on the other hand, deal with homogeneous sets,
for which members are essentially identical. To emphasize this distinction,
consider the case of alloys.

The conducting wires of electric circuits, for example, are often con-
nected together by an alloy of tin and lead called solder, for which the
melting point depends on the ratio of the components. Given two small

2It may be objected that the brain’s neurons do not compute arbitrary Boolean
functions of their inputs, so the estimate of N may be high. From work of Yajima et
al. [54], the number of systems composed of N threshold (M–P) neurons with n inputs
each is greater than 2n2N/2, but this estimate is low. Recently, Poirazi and Mel [42] have
studied memory capacity of systems of model neurons in which individual dendritic trees
respond nonlinearly to their inputs. From both combinatoric and numerical calculations,
these authors find that capacities of nonlinear neurons exceed those of linear models by
“orders of magnitude.”
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blobs of solder with the same tin-to-lead ratio, the detailed arrangements
of the tin and lead atoms will differ, and it is not difficult to show that the
total number of possible arrangements is immense. Nonetheless, the aver-
age properties of solder (melting point, electrical resistivity, specific heat,
ductility, and so on) are almost exactly the same for most arrangements;
thus all possible solder blobs form a homogeneous set, falling comfortably
within the purview of physical science.

In a heterogeneous set, on the other hand, small variations count, so
members have very different global properties. Thinking about it, there are
many heterogeneous sets in our ordinary experience, including the num-
ber of possible natural languages, protein molecules, musical compositions,
English sonnets, chess games, people, and so on. Thus there will always be
many different languages, useful proteins, beautiful melodies and poems,
interesting chess games, and exciting human personalities that have not
been realized and never will be.

10.2.2 Attractor Neural Networks
Although the large numbers of the previous section may discourage some
who would develop a constructive theory of the brain’s dynamics, one
should not give up altogether. With reference to the state diagram of Figure
10.2(b), three qualitatively different sorts of behavior are observed.

(1) First, we note transients such as

(001) → (000) → (010)

in which the system passes through a sequence of states, never to return.
(2) Amid these transients emerge stable attractors such as (010) with the

basin of attraction (000), (001), and (011).
(3) Finally, there are limit cycles such as

(100) → (110) → (111) → (100) → (110) → (111) → · · ·
having a period of three time units and the basin of attraction (101).

It comes as no surprise to find emergent entities in switching networks;
such behavior arises directly from the positive feedback associated with
closed causal loops, as we have often seen. The problem with nets compris-
ing a realistic number of neurons is that there is no direct way of accounting
for all of the emerging states. Some limit cycles may be as short as one time
unit; others might approach 2N time units, snaking through most states of
the system, and one cannot proceed by looking at all possible systems.

In 1982, Hopfield made some progress in circumventing such combina-
toric difficulties by assuming a modified version of the neural network
we have previously considered [27]. Motivated by the McCulloch–Pitts
formulation of Equation (2.10), his basic “neuron” obeys the dynamic
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equation

sj(t + τ̃) = sign

(
N∑

k=1

Jjk sk(t)

)

, (10.7)

where Jkk = 0 and sign( · ) is the “sign” function with properties

sign(y) =






+1 for y ≥ 0 and

−1 for y < 0 ,

and the “spin” variables sj take the values +1 and −1 instead of the
Boolean numbers 1 and 0.

In comparing Hopfield’s attractor neural network with the McCulloch–
Pitts (M–P) model, the following points of difference should be noted.3

• In M–P, the variables Vj (with j = 1, 2, . . . , N) indicate the instan-
taneous voltages of the N neurons in the network, whereas the sj in
an attractor neural network represent the average firing rate of the
jth neuron measured on a linear scale from quiescent (−1) to fully
active (+1).

• In an attractor neural network, the states of individual switches are
not changed all at once but successively altered in a randomly selected
order. Thus τ = Nτ̃ is the time required for updating average firing
rates for the entire net, corresponding to about 1–2 s in the human
brain.

• The attractor neural network threshold is assumed to be the same
for all N model neurons, which are joined by a symmetric N × N
interconnection matrix

J = [Jjk] ,

where Jkk = 0 and Jjk = Jkj . (This symmetry condition means that
the coupling from neuron k to neuron j is equal to the coupling from
neuron j to neuron k, which is not neurologically realistic.)

• When numerically convenient, the “sign( · )” function in Equation
(10.7) can be replaced by a sigmoid function, qualitatively like
tanh( · ), which rises in a monotone manner from −1 to +1 as x
increases from −∞ to +∞ [28].

This attractor neural network is convenient for analysis because it has a
Lyapunov functional (E) possessing the following pair of properties [29, 32]:

3Although attractor neural networks are sometimes referred to as “ANNs” [1], others
use these initials for the broader class of “artificial neural networks”; thus the acronym
is avoided here.
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first, E must be bounded from below, and second, E must either decrease
or remain constant with each time step.4

For the dynamics described by Equation (10.7), a Lyapunov functional is

E = −1
2

N∑

j=1

N∑

k=1

Jjk sjsk , (10.8)

with the proof as follows.
(1) Note first that for finite Jjk, E is evidently bounded from below.
(2) To see how E changes under the dynamics of Equation (10.7), suppose

first that the ith switch changes from si = +1 to −1. The corresponding
change in E is

∆E = si

N∑

j=1

Jij sj + si

N∑

j=1

Jji sj

= 2
N∑

j=1

Jij sj

because Jij = Jji. Because the summation must be negative for si to
decrease, ∆E is negative.

(3) Next suppose that the ith switch changes from si = −1 to +1. The
corresponding change in E is

∆E = −2
N∑

j=1

Jijsj .

Because the summation must be positive for si to increase, ∆E is again
negative.

(4) Finally, if si does not change, ∆E is zero.

Because E is bounded from below and ∆E is either negative or zero after
each time step (τ̃), E eventually ceases to decrease, and the system either
moves around on a limit cycle at constant E or sits at a stable attractor,
which may be found numerically. In Hopfield’s formulation, each stable
attractor is viewed as a pattern stored nonlocally by the net.

Each such pattern will have a basin of attraction into which the system
can be forced by sensory inputs. In other words, if external stimulations
nudge an attractor neural network into the basin of attraction for one of its
patterns, the system will move to that attractor and remain there, providing

4Further motivation for Hopfield’s model is the fact that Equation (10.8) is an ex-
pression for the total energy of interacting magnets (or atomic spins), which have been of
interest to physicists for decades. Thus several standard results from condensed-matter
physics translate directly into statements concerning the dynamics of nerve systems,
drawing physical scientists into neuroscience [1, 26].
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a model for the brain’s ability to recall intricate memory patterns under
the influence of sensory information.

Assume a pattern of the form Xm = (xm
1 , xm

2 , . . . , xm
N ), where the com-

ponents are either +1 or −1 with equal probability. To learn this pattern,
the interconnection matrix can then be constructed by the rules

∆Jij ∝ xm
i xm

j ,

∆Jij = 0 ,

which has the effect of increasing interconnection strengths where both
neurons are in the same state and reducing them where the states are
different. If p patterns are learned in this manner,

Jij =
1
N

p∑

m=1

xm
i xm

j ,

where the normalization by N is chosen to keep the components of J at a
uniform level as the number of patterns is increased.5

How many such patterns can be stored by this system?
Supposing that p patterns are randomly chosen, each will seem like noise

to the others. Every time a new pattern is added to the store, in other
words, the elements of J are adjusted, effectively introducing noise into the
task of recovering formerly stored patterns. Because the elements of J are
normalized to N , the total noise amplitude seen by each stored pattern will
grow as

√
p/N .

If p remains constant while N → ∞, the noise amplitude goes to zero and
the storage system works well. With N held constant while p is increased, on
the other hand, a maximum number of patterns (pm) is eventually reached
that is proportional to N [1, 26].

Allowing the network to have stable patterns close to those learned
(where “close” means that no more than 1% of the neurons deviate), it ap-
pears from a combination of theoretical arguments and numerical evidence
that

pm ≈ 0.14 N . (10.9)

5For example, if X = (+1, −1, +1, −1), then

∆J =









0 −1 +1 −1

−1 0 −1 +1

+1 −1 0 −1

−1 +1 −1 0









,

and ∆JX ∝ X, which is a stationary point of Equation (10.7).
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Interestingly, this is a sharp boundary. If one attempts to store more than
the critical number of patterns, the probability of retrieval falls rapidly
to zero.

Assuming this spin-glass model of the brain bears some relation to neuro-
logical reality, a human neocortex of 1010 to 1011 neurons might be expected
to store something like 109 to 1010 intricate patterns. We will consider
another derivation of this important number in the following chapter.

10.3 Field Theories for the Neocortex

Another way to deal with the immense number of possible systems into
which the brain’s neurons may become organized is to develop a field theory
for neural activity. Such an approach was first proposed in 1956 by Beurle
[2], who assumed that the neural mass of the neocortex can be locally
described by the fraction F (x, t) of cells at position x that are firing at
time t, and the probability p(x) of two cells being interconnected is an
exponentially decreasing function of the distance between them [47]; thus,

p(x) ∝ e−|x|/σ .

In this theory, activity at a particular region of the cortex induces activity
at neighboring regions, which leads to a wave of information propagating
through the neural mass. Because Beurle supposed that all of the corti-
cal neurons are excitatory, the waves described by his theory correspond
roughly to the leading-edge formulations of Chapter 5, albeit with the ac-
tivity averaged over many neurons rather than localized on a single fiber.
Salient features of his study include the following.

• A wave of information may involve the activity of only a small frac-
tion of the local neurons, allowing waves to pass through each other
with little interference. Thus many different messages may propagate
throughout the neocortex and carry information from one region to
another.6

• If the neural interconnections (synapses) are supposed to increase in
strength upon exposure to the activity of a particular wave (a learning
mechanism), one can imagine a means for holographic-like recall [2, 6,
16, 17, 34, 43]. Thus, waves induced by external (sensory) stimulation
would become coupled to subsequent internal waves, leading to the
possibility that but a fragment of the original stimulation is required
to trigger the related internal response.

6That cortical information waves pass through one another leads some to confuse
them with solitons, but the two phenomena are quite different. Solitons conserve energy,
whereas waves of information do not, being dynamically akin to waves of activity in the
heart [46].
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• Although neuroscientists often fret over the “binding problem” of
relating activities in different parts of the cortex—combining, for
example, the voice, image, and personality of a friend into a sin-
gle perception—Beurle’s information waves may provide a means of
achieving such coupling.

Following Beurle’s lead, Griffith (among others) developed a field theory
of neural activity in which time and space dependencies are brought in
through their lowest derivatives [19, 20, 21, 24, 39, 40, 41]. In this theory,
the probability of a neuron firing in the next time interval (S) is a sigmoid
function of the present firing rate (F ), say

S(F ) =
F 2

F 2 + θ2 ,

with S and F necessarily positive and θ a threshold parameter.
Thus, without spatial variations (i.e., “space-clamped”), the first time

derivative can be approximated as

dF

dt
≈ S(F ) − F

τ
,

implying
dF

dt
≈ −f(F ) ,

where

f(F ) = −F 3 − F 2 + θ2F

τ(F 2 + θ2)

is a cubic function qualitatively like those sketched in Figures 5.2 and 5.3.
To introduce spatial dependence, Griffith reasoned that the connectivity

would be the same in both the +x and the −x directions; thus, the lowest
space derivative is the second, implying a nonlinear diffusion equation

D
∂2F

∂x2 − ∂F

∂t
= f(F ) . (10.10)

For a mean interconnection distance indicated by σ and a neural response
time of τ , the diffusion constant is of order

D ∼ σ2

τ
.

Although Equation (10.10) is formally identical to Equation (5.5), its
interpretation is quite different. Equation (5.5) describes the leading edge
of a nerve impulse, traveling along an unmyelinated axon, whereas Equation
(10.10) represents a wave of activity propagating through a neural medium
such as the neocortex.

To bring recovery into the picture, Wilson and Cowan took advantage
of the fact that some of the neocortical neurons are inhibitory; thus, they
developed a theory in two dependent variables [51, 52]:
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• E(x, t): the fraction of excitatory neurons that are firing as a function
of x and t, and

• I(x, t): the corresponding fraction of inhibitory neurons,

which are assumed to interact as [53]

τ
dE

dt
= SE

(∫
[wEE(x, x′)E(x′) − wIE(x, x′)I(x′)]dx′ + P (x, t)

)
− E ,

(10.11)

τ
dI

dt
= SI

(∫
[wEI(x, x′)E(x′) − wII(x, x′)I(x′)]dx′ + Q(x, t)

)
− I .

In these coupled integro-differential equations, the nonlinearity of neural
response is introduced through the sigmoid functions

SE(y) ≡ 100y2

θ2
E + y2 and SI(y) ≡ 100y2

θ2
I + y2 ,

diffusion stems from the interconnection probabilities between neurons at
x and x′,

wij(x, x′) = bij exp
(

−|x − x′|
σij

)
,

and external (sensory) inputs to the excitatory and inhibitory cells are
represented by P (x, t) and Q(x.t), respectively.

It is, of course, difficult to fix the many parameters of such a model,
but Wilson suggests the following values as reasonable “guesstimates” for
the human neocortex: σEE = 40 µm, σEI = σIE = 60 µm, σII = 30 µm,
θE = 20, and θI = 40, and he has made available several Matlab codes
for exploring the resulting dynamics [53]. Those familiar with Matlab are
encouraged to play with these codes and explore the following spectrum of
behaviors.

• Stationary patterns of activity: With bEE = 1.95, bIE = bEI = 1.4,
and bII = 2.2, a short pulse of stimulation (P = 1.0 for 10 ms over a
range of 100 µm, and Q = 0) induces a stationary pattern in which the
longer-ranging inhibitory activity surrounds and contains the more
localized excitatory activity. Qualitatively, this behavior is similar to
Turing patterns, which are found in studies of nonlinear reaction-
diffusion systems of more than one dimension [46].

• Transient activity: With bEE = 1.5, bIE = bEI = 1.3, and bII = 1.5,
a brief stimulation (P = 2.0 over 5µm for 5 ms, and Q = 0) causes
a transient response, with E rising to a maximum value of about 28
in about 30 ms and then relaxing back to zero.

• Localized oscillations: With bEE = 1.9, bIE = bEI = 1.5, and bII =
1.5, a constant stimulation over a spatial range of 100µm or more
results in a variety of spatially localized oscillations.
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Figure 10.3. Outgoing wave solutions of the Wilson–Cowan equations (10.11)
generated by a brief pulse of excitation near the origin.

• Waves of activity: With bEE = 1.9, bIE = bEI = 1.5, and bII =
1.5, and a strongly inhibitory input (Q = −90 while P is applied
briefly over 100 µm), subsequent outgoing waves of activity are shown
in Figure 10.3. Traveling at a speed of about 0.06 mm/ms, these
waves are qualitatively similar to the impulses with recovery that
were discussed in Chapter 6 for single fibers.

In his book, Wilson offers many more examples of such dynamics, dis-
cussing ways in which neural field theories similar to Equations (10.11) can
model a variety of mental phenomena, including phase transitions, halluci-
nations, and epileptic seizures [8, 13, 15, 18, 22, 30, 31, 48, 53]. Recently,
Ermentrout and Kleinfeld have developed a simple model of cortical wave
motion through a network of weakly coupled oscillators in which only the
phase of the oscillators is influenced by interactions [14].

On a much longer time scale, note that nonlinear field effects may also
play a role in the development of mesoscopic cortical structure along lines
suggested by Alan Turing in 1952 [49]. Such structure occurs in the visual
cortices of mammals, where alternating bands of neurons, receiving inputs
dominated by one or the other eye, are seen. Starting from this observation,
Martha Constantine-Paton and Margaret Law have used experiments on
“three-eyed frogs” to show that these cortical “stripes” are a form of “Tur-
ing pattern” [9, 10, 33]. Interestingly, the active nonlinearity driving the
pattern-formation process stems not from biochemistry as was originally
proposed by Turing. Rather, it is a positive feedback phenomenon with a
closed causal loop having the structure

Increased spiking activity
↓ ↑

Dendritic strength

Thus, the basic driving force is neural activity.
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The idea that spiking activity causes dendritic strengths to increase is
(somewhat incorrectly) associated with psychologist Donald Hebb, whose
work is the subject of the following chapter.

10.4 Recapitulation

The aim of this chapter has been to introduce certain key threads of de-
velopment in neural network theories beginning with the seminal work
of McCulloch and Pitts and the subsequent development of learning ma-
chines. Although geometrical ideas help us to understand the fundamental
learning theorem for such systems, the immense number of possible neural
arrangements precludes exhaustive searches of particular networks.

To deal with this difficulty, physicists have proposed “spin-glass” models
of the brain in which neural behavior is idealized in order to obtain a
Lyapunov (or energy) functional governing global dynamics. Following this
approach, it has been estimated that the number of complex concepts that
the human brain can store is of the order of 109 to 1010.

Finally, some nonlinear field theories for cortical dynamics were sketched
that display a wide variety of qualitative behaviors, including station-
ary patterns, transients, localized oscillations, and waves of information.
Although it is difficult to fix the parameters of these nonlinear diffu-
sion models with precision from neurological data, they can be studied
numerically with currently available tools.
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11
Neuronal Assemblies

Although the suggestion that neurons in the human brain may act in func-
tional groups reaches back at least to the beginning of the twentieth century
(when Charles Sherrington published his The Integrative Action of the Ner-
vous System [85]), it was in Donald Hebb’s classic Organization of Behavior
that the cell-assembly concept was first carefully formulated. Largely ne-
glected for several decades [13], Hebb’s theory of neural assemblies has more
recently begun to attract broad interest from the neuroscience commu-
nity. Why, one wonders, was such a reasonable suggestion so long ignored?
Several answers come to mind.

First, Hebb was far ahead of his time. As a psychologist, moreover, he
was telling electrophysiologists and neurologists what they should be doing
when these people had much on their collective plate. Throughout most of
the twentieth century, electrophysiologists were facing numerous difficulties
in recording from single neurons. Adequate impulse amplifiers needed to be
designed and suitable microelectrodes fabricated before voltages could be
measured from even a single cell. If mere hit-or-miss recordings were to be
avoided, it was necessary to position accurately the tips of these electrodes,
knowing what cells are located where. As the levels of the observed signals
became smaller, means for shielding measurements from ambient electro-
magnetic noise were ever more in demand. With single-neuron recording
being the primary experimental focus, therefore, it is not surprising that
theoreticians refrained from embracing more complicated formulations that
required simultaneous recordings from many neurons for which empirical
support was not soon expected.
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Second, as we have seen in Chapter 9, it is difficult enough to describe
properly the dynamics of individual neurons; thus, a theory that assumed
interacting assemblies of neurons would be venturing even further out onto
the thin ice of speculation.

A third reason for the tendency to simplify the theoretical picture—in
North America, at least—was the unfortunate domination of psychology
by the beliefs of behaviorism, which focused attention on the condition-
ing of stimulus–response reflexes, thereby ignoring much that comprises
mental reality. From the behaviorist perspective, the concept of internal
cerebral states was rightly shouldered into the background because the sim-
pler ideas of “connection theory” seemed adequate to explain acceptable
psychological data.

With all of these strikes against it, how did Hebb’s theory ever manage
to see the light of day?

11.1 Birth of the Cell-Assembly Theory

During the 1940s, Hebb became impressed with several sorts of evidence
that cast doubt on behaviorist assumptions and suggested that more subtle
theoretical perspectives were needed to explain psychological facts [34].
Among such facts is the surprising robustness of the brain’s dynamics, a
well-known example of which was provided by railroad workman Phineas
Gage, who survived having a piece of iron rod go through his brain [56].
With characteristic directness, Hebb put the matter thus: How is it that a
person can register an IQ of 160 after the removal of a prefrontal lobe [32]?

His first publication on the cell assembly stemmed from observations of
chimpanzees raised in a laboratory where, from birth, every stimulus was
under experimental control. Such animals, Hebb noted, exhibited sponta-
neous fear upon seeing a clay model of a chimpanzee’s head [33]. The chimps
in question had never witnessed decapitation, yet some of them “screamed,
defecated, fled from their outer cages to the inner rooms where they were
not within sight of the clay model; those that remained within sight stood
at the back of the cage, their gaze fixed on the model held in my hand”
[35, 36, 38].

Such responses are clearly not reflexes; nor can they be explained as
conditioned responses to stimuli, for there was no prior example in the ani-
mals’ repertory of responses. Moreover, they earned no behavioral rewards
by acting in such a manner. But the reactions of the chimps do make sense
as disruptions of highly developed and meaningful internal configurations
of neural activity according to which the chimps somehow recognized the
clay head as a mutilated representation of beings like themselves.

Another contribution to the birth of his theory was Hebb’s rereading of
Marius von Senden’s Space and Sight [84], which was originally published
in Germany in 1932. In this work, von Senden gathered records on 65
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patients who had been born blind due to cataracts up to the year 1912.
At ages varying from 3 to 46 years, the cataracts were surgically removed,
and a variety of reporters had observed the patients as they went about
handling the sudden and often maddeningly novel influx of light.

One of the few generalizations over these cases, von Senden noted, was
that the process of learning to see “is an enterprise fraught with innumer-
able difficulties, and that the common idea that the patient must necessarily
be delighted with the gifts of light and colour bequeathed to him by the
operation is wholly remote from the facts.” Not every patient rejoiced upon
being forced to make sense of incoming light that was all but incomprehen-
sible, and many found the effort of learning to see to be so difficult that
they simply gave up.

That such observations are not artifacts of the surgery or uniquely hu-
man was fortuitously established through observations on a pair of young
chimpanzees that had been reared in the dark by a colleague of Hebb [81].
After being brought out into the light, these animals showed no emotional
reactions to their new experiences. They seemed unaware of the stimulation
of light and did not try to explore visual objects by touch. Hebb conjec-
tured that the chimps showed no visual response because they had not yet
formed the neural assemblies needed for perception.

Finally, Hebb pointed out that the learning curve for an individual sub-
ject in a behavioral experiment is not the smoothly rising curve shown in
psychology textbooks. This is because the textbook curves are averages
over many learning experiments, whereas the observations in a particular
experiment are influenced by whether the subject is paying attention to the
task. Thus the factor of attention (otherwise called attitude, expectancy,
hypothesis, intention, vector, need, perseveration, or preoccupation), Hebb
felt, must somehow be included in any satisfactory theory of learning.

As was noted in Chapter 1, these considerations led Hebb to propose
that nerve cells do not necessarily act as individuals in the dynamics of the
brain but often as functional groups, which he called cell assemblies, with
the following properties.

• Each complex assembly comprises a “three-dimensional fishnet” of
many thousands of interconnected cells sparsely distributed over
much of the brain.

• The interconnections among the cells of a particular assembly grow
slowly in numbers and strength as a person matures in response to
both external stimuli and internal dynamics that are tailored to the
particular experiences of the organism.

• One mechanism suggested for the growth of neuronal interconnec-
tions postulated the strengthening of dendritic contacts through use.
(That this feature has become widely known among nerve network
mavens as a “Hebbian synapse” amused Hebb because it was one of
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Figure 11.1. Diagrams related to the process of learning to see a triangle.

the few aspects of the theory that he did not consider to be original
[64].) In Chapter 9, we saw that a real neuron has several means for
altering its behavior, including changes in the geometry of dendritic
spines or branching, variations in the distributions of ionic channels
over the dendritic and axonal membranes, development of dendro-
dendritic interactions, changes in amplification levels of decremental
conduction, and so on.

• Upon ignition—effected through some combination of external stimuli
and the partial activities of other assemblies—a particular assembly
remains briefly active, yielding in a second or so to partial exhaustion
of its constituent neurons.

• During the period of time that an assembly is active, the attention
of the brain is focused on the concepts embodied in that assembly.

• As one assembly ceases its activity, another ignites, then another, and
so on, in a temporal series of events called the phase sequence, which
is experienced by each of us as a train of thought.

As a simple example of assembly formation, consider how an infant might
learn to perceive the triangle T shown in Figure 11.1(a). The constituent
sensations of the vertices are first supposed to be centered on the retina by
eye movement and mapped onto the primary visual area (V1) of the optical
lobes of the neocortex (located in the back of your head). Corresponding cell
assemblies E, F, and G then develop in the secondary visual area through
nontopological connections with area V1. The process of examining the
triangle involves elementary phase sequences in which E, F, and G are
sequentially ignited. Gradually, these subassemblies are supposed to fuse
together into a common assembly for perception of the triangle T.
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With further development of the assembly T—which reduces its thresh-
old for ignition through the strengthening of the internal connections among
E, F, and G—a glance at one corner, with a few peripheral cues, serves to
ignite the entire assembly representing T. At this point in the learning pro-
cess, T is established as a second-order cell assembly for perception of a
triangle, including E, F, and G among its constituent subassemblies.

Is there empirical evidence supporting Hebb’s theory?

11.2 Early Evidence for Cell Assemblies
Upon formulating the cell-assembly theory for brain dynamics, Hebb and
other psycholigists began the process of empirical evaluation that is cen-
tral to science. By the mid-1970s, these efforts had produced the following
results.

Robustness
In Chapter 1, we considered a social analogy for the cell-assembly con-
cept in which the brain is likened to a community and the neurons to
its individual citizens. From this perspective, the remarkable robustness
of the brain to physical damage can be understood. If a motorcycle club
gets into a fight, losing several of its members, the strength of the club is
not permanently reduced because new members can be added. Similarly,
a damaged cell assembly can recruit additional neurons to participate in
its activities. (Such recruitment of new assembly members may occur dur-
ing rehabilitation from a stroke, a lobotomy, or other forms of neurological
damage.)

Furthermore, because the cells of an assembly may be widely dispersed
over much of the brain, partial destruction of the brain does not completely
destroy any of the assemblies. Thus, the cell-assembly theory offers the
same sort of robustness under physical damage as a hologram but is more
credible because it does not require a regular structure that can reinforce
scattered waves of neural activity.

Learning a New Language
As a graduate student in the “post-Sputnik” days of the late 1950s, I had
the experience of learning to read Russian, having no prior knowledge of
the language whatsoever. This effort proceeded in stages, commencing with
the task of recognizing Cyrillic letters and associating these new shapes
with novel sounds. Upon mastering the alphabet, it became possible to
learn words comprising these letters, and with enough words, sentences
and then paragraphs could eventually be understood. Thus it appears to me
an empirical observation that language learning is a step-by-step process,
during which a hierarchically organized memory is slowly constructed.

Interestingly, the full perception of a letter or word involves the melding
of visual, auditory, and motor components, which underscores the concept
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Figure 11.2. The Necker cube.

of subassemblies being distributed widely over the brain, a point to which
we will return in the following chapter.

The general idea of hierarchical learning and memory has been rather
carefully formulated by Braitenberg and Pulvermüller [8]. Although the
acquisition of most of our basic skills lies buried in the forgotten past,
most learning seems layered, with each stage necessarily mastered before it
becomes possible to move on to the next. In the context of Hebb’s theory,
these stages involve the formation of subassemblies from which assemblies
of higher order will subsequently emerge.

Ambiguous Perceptions
No discussion of the brain can neglect the mention of ambiguous figures,
which have fascinated Gestalt psychologists for generations, and my favorite
example—the Necker cube—is shown in Figure 11.2. Attempting to “bridge
the long gap between the facts of neurology and those of psychology,”
Hebb’s theory provides an explanation for the properties of such figures [34].
Gestalt phenomena are thus understood in a visceral manner by supposing
that an assembly is associated with the perception of each orientation.
Upon regarding Figure 11.2, I sense something switching inside my head
every few seconds as the orientations change.

From the several cases of people learning to see that were cited by von
Senden [84], it is clear that the ability to perceive an object in three spatial
dimensions is itself learned, and the Necker cube is particularly interest-
ing because perceptions of its two possible orientations would seem to be
of equal likelihood. In the following section, we model the dynamics of
switching between perceptions of two such orientations, where the over-
all symmetry of the situation suggests that the parameters of the two
assemblies are identical, thereby simplifying analysis.

Stabilized Images
In Hebb’s view, some of the strongest evidence in support of the cell-
assembly theory was obtained from stabilized-image experiments, which
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Figure 11.3. Sketch of contact lens and optical apparatus mounted on the eyeball
of a reclining observer. The wire is connected to a small lamp that illuminates
the target. The thought balloon shows sample sequences of patterns perceived
by the subject with images that are stabilized on the retina by the apparatus.
In the upper row a triangle is the target, and in the lower row, the target is a
square (after a photograph in Pritchard [77]).

were carried out at McGill University in the early 1960s [35, 36, 64, 76, 77].
The experimental setup is sketched in Figure 11.3, where a simple geo-
metric figure (e.g., a triangle or a square) is projected as a fixed image
onto the retina. The subjects are asked to relax and simply report what
they see, and because this is an introspective experiment, typical results
are displayed in a thought balloon.

At first, subjects report seeing the entire figure, but after a few moments
the figures change. Habituation effects (perhaps electrochemical changes in
the stimulated retinal neurons) cause entire parts of the figures to disap-
pear or to fall out of perception. It is the manner in which perceptions of
the figures alter that is of particular interest. Subjects reported that the
component lines or angles (i.e., subassemblies) of a triangle and a square
would jump in and out of perception all at once. These observations are
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as expected from Hebb’s original formulation of the theory and the learn-
ing sequence for a triangle indicated in Figure 11.1; thus stabilized-image
experiments confirm a prediction of the theory.

Learning Environments for Animals
According to Hebb’s theory, adult thought processes involve continuous
interactions among cell assemblies, which in turn are organized by sen-
sory stimulation and internal interactions during the learning period of a
young animal. How does adult behavior depend on opportunities for per-
cept formation during development? Experiments show that rats reared in a
rich perceptual environment—a “Coney Island for rats”—are notably more
intelligent as adults than those raised in restricted environments, which pro-
vides yet another confirmation of the theory [64, 78]. As is anticipated from
the cell-assembly theory, this positive influence of perceptual stimulation
occurred only during youthful development; increased stimulation of adults
is less effective in increasing rodent smarts.

Similar experiments with Scottish terriers showed even more striking
differences, again as expected from the cell-assembly theory [89]. This is
because the fraction of the neocortex that is not under the influence of
sensory inputs—the associative cortex—is larger for a dog than a rat. Thus,
the internal organization of the dog’s brain should play a greater role in its
behavior. Terriers reared in single cages, where they could not see or touch
other dogs, had abnormal personalities and could neither be trained nor
bred. Other studies showed that dogs reared in such restricted environments
did not respond to pain, as if they were lobotomized [62].

Sensory Deprivation of Humans
In his original formulation of the cell-assembly theory [34], Hebb specu-
lated that perceptual isolation would cause emotional problems because
the phase sequence needs the guidance of meaningful sensory stimulation
to remain organized in an intelligible manner. To test this aspect of the the-
ory, experiments on perceptual isolation were performed by Heron and his
colleagues in the 1950s [37, 64]. In these studies, the subjects were college
students who were paid to do nothing. Each subject lay quietly on a com-
fortable bed wearing soft arm cuffs and translucent goggles, hearing only a
constant buzzing sound for several days. During breaks for meals and the
toilet, the subjects continued to wear their goggles, so they averaged about
22 hours a day in total isolation.

Many subjects took part in the experiment intending to plan future work
or prepare for examinations. According to Hebb [35], the main results were
that a subject’s ability to solve problems in his or her head declined rapidly
after the first day as it became increasingly difficult to maintain coherent
thought, and for some it was difficult to daydream. After about the third
day, hallucinations became increasingly complex. One student said that his
mind seemed to be hovering over his body like a ball of cotton wool. Another
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reported that he seemed to have two bodies but did not know which was
really his. Such observations are in accord with a variety of anecdotal re-
ports from truck drivers, shipwreck survivors, solitary sailors, long-distance
drivers, and the like that extended periods of monotony breed hallucina-
tions. (Reporting on his famous solo flight across the Atlantic Ocean, for
example, U.S. aviator Charles Lindbergh noted “vapor-like shapes crowding
the fuselage, speaking with human voices, giving me advice and important
messages” [50].)

After the perceptual isolation experiments were concluded, subjects ex-
perienced difficulties with visual perception lasting for several hours and
were found to have a significant slowing of their electroencephalograms or
brain waves. They also seemed more vulnerable to propaganda. Although
the specific results of these experiments were not predicted by the cell-
assembly theory, the disorganizing effect of sensory deprivation on coherent
thought had been anticipated.

Structure of the Neocortex
While presenting a plausible theory for the dynamics of a brain, Hebb’s
classic book contains but one lapse into mathematical notation: he discusses
in some detail the ratio

A

S
≡ total association cortex

total sensory cortex

for various mammalian species [34]. This ratio relates the area of the neo-
cortex that is not directly tied to sensory inputs—the associative (A)
regions—to the area of the sensory (S) regions, which are under direct
environmental control from eyes, ears, and senses of touch and smell. If
this ratio is zero, all of the cortex is under sensory control, and neces-
sary conditions for behaviorist psychology are satisfied. On the other hand,
larger values of the ratio imply increasing opportunities for the cortex to
construct abstract cell assemblies with dynamics beyond direct control of
the senses.

In general, Hebb pointed out, this A/S ratio increases as one moves
through mammalian species from rat to dog to primate to human, in general
agreement with two aspects of brains’ behaviors. First, as most would agree,
the character of a human’s inner life is significantly more intricate than that
of a chimp, which in turn is more than for a dog or a rat. Second, the time
required for primary learning (until adulthood is reached) increases with
the A/S ratio. Human infants are essentially helpless and remain so for
several years as they slowly build the myriad assemblies upon which the
complexities of their lives will eventually be based.
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11.3 Elementary Assembly Dynamics

In this section, some simple models of cell-assembly dynamics are presented
that describe the average behavior of a relatively large number of interact-
ing model neurons. Because these descriptions are restricted to very simple
representations of the neurons—little like the more realistic picture that
was developed in Chapter 9—they should be viewed as indicating lower
bounds on the possible behaviors of real neural systems. The generaliza-
tion of such analyses to more realistic neural models is a challenge for
current neuroscience research, and some such attempts are described in
Section 11.5.

11.3.1 Ignition of an Assembly
To model the dynamics of an individual neural assembly as it turns on
(ignites) or turns off (becomes extinguished), we can imagine a large mass
of randomly connected McCulloch–Pitts (M–P) neurons as described by
Equation (2.10), a problem that goes back to the 1950s [3, 26, 28, 79, 86,
87, 90]. In developing a simple formulation, it is convenient to make the
following assumptions and definitions of additional variables.

• Time (t) is defined on a discrete lattice, with the duration of each
interval equal to the synaptic delay τ .

• F (t) represents the fraction of neurons that are firing at time t.

• I is the number of input connections to each neuron. These are
received randomly from outputs of other neurons in the assembly.

• The refractory times of the neurons are shorter than the synaptic
delay.

With these definitions, we can write the probability of a neuron receiving
exactly j input signals at time t as

(
I!

j!(I − j)!

)
F j(1 − F )I−j ,

an expression that can be understood as follows.1

(1) I!/j!(I − j)! is the number of different ways that j input signals can
be selected from among I input channels.

(2) F j is the probability of having signals appear on j of the input
channels.

1The alert reader will recall that we met the same expression in Equation (2.5) of
Chapter 2 describing the probability for k synaptic vesicles to release their transmitter
substance through n presynaptic sites.
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Figure 11.4. Qualitative behavior of the probability of a neuron firing in the next
time increment P (F ) as a function of F , the current firing rate, assuming that
1 < θ < I.

(3) (1 − F )I−j is the probability of not having signals on the other I − j
input channels.

Because the M–P model neuron gives an output signal when its inputs
are equal to or greater than the threshold θ, the probability of a neuron
firing in the next increment of time is given by the summation

P (F ) =
I∑

j=θ

(
I!

j!(I − j)!

)
F j(1 − F )I−j . (11.1)

Although this expression appears unwieldy, its qualitative behavior is
straightforward; thus for

1 < θ < I ,

P (F ) is the sigmoid function of F sketched in Figure 11.4.2

The condition

P (F ) = F , (11.2)

2To see this, note that P (F ) ∼ B(I, θ)F θ near F = 0, where B(I, θ) ≡ I!/θ!(I − θ)!
is a binomial coefficient. Similarly P (F ) ∼ 1 − B(I, θ − 1)(1 − F )I−θ+1 near F = 1.
Because direct calculation shows that P (F ) is a monotone increasing function, it must
have the shape indicated in Figure 11.4.
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which is satisfied for three values of F , indicates stationary solutions of
the system because these are the values of F for which the probability of
firing in the next time increment is equal to the present firing rate. Let us
consider these three stationary solutions in detail.

1. The minimum stationary condition F = 0 corresponds to none of
the neurons firing. This is a stable solution because if F is increased
slightly from 0, Figure 11.4 shows that the corresponding increase in
P (F ) is less than that of F , implying that the activity will relax back
to zero.

2. The maximum stationary condition F = 1 corresponds to all of the
neurons firing at their maximum rates. This is also a stable solution
because if F is decreased slightly from 1, the corresponding value of
P (F ) is greater than F , implying that the activity will rise back to
one.

3. The stationary condition at F = F0 corresponds to an intermediate
firing rate, where F0 increases from 0 to 1 as θ increases from 1 to I.
In contrast to F = 0 and F = 1, this intermediate stationary level
is unstable. To see this, note from Figure 11.4 that if F is increased
slightly above F0, the increase in P (F ) is greater than that of F ,
causing F to rise even more in the subsequent time increment. If F is
decreased slightly below F0, on the other hand, the decrease of P (F )
is more than that of F , causing F to fall even more in the subsequent
time increment.

In the context of nonlinear system theory, therefore, a cell assembly
shares properties of the Hodgkin–Huxley nerve impulse that were discussed
in Section 4.6. Thus the stationary state at F = 1 can be viewed as an at-
tractor, as can the null state at F = 0. In these terms, the intermediate
stationary state at F = F0 defines a separatrix lying on the boundary
between the basins of these two attractors.

In other words, cell-assembly activity emerges from a net of intercon-
nected neurons, much as a nerve impulse emerges from the Hodgkin–Huxley
equations for a squid axon. Both exhibit the interrelated properties of all-
or-nothing response and threshold, providing a basis for the hierarchical
structures of assemblies shown in Figure 11.1 and to be considered in the
following chapter.

From the perspectives of Chapter 1, the ignition of an assembly can be
represented by the following positive feedback diagram:

Firing rate: F
↓ ↑

Probability of firing: P (F )
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Above the level of ignition (F = F0), positive feedback causes P (F ) to
grow faster than F , so activity increases until the stable stationary state
at F = 1 is reached. What is the time course of this growth?

Because the function P (F ) indicates the level of activity at time t + τ ,
it was noted in the previous chapter that the discrete formulation of the
dynamics is roughly equivalent to the ordinary differential equation

dF

dt
=

P (F ) − F

τ
, (11.3)

where t is now considered to be a continuous variable.3 For F0 < F < 1, it
is evident from Figure 11.4 that the right-hand side of this ODE has the
same qualitative features as the right-hand side of Equation (1.3), which
was used to derive the Verhulst curve for population growth shown in Figure
1.3.

Thus, F (t)—the dependence of the firing rate on time during assembly
ignition—is given implicitly by the integral relation

∫ F (t)

Finit

dF ′

P (F ′) − F ′ =
t

τ
. (11.4)

Here, Finit > F0 is the initial value of F at t = 0, which may have been
established by inputs from other assemblies, external sensory inputs, or
some combination of the two. (Although one actually calculates t as a
function of F , it can be seen from Figure 11.4 that F (t) → 1 as t → ∞.)

To model its qualitative features, Equation (11.3) can be written as

dF

dt
≈ −1

τ
F (F − F0)(F − 1) , (11.5)

an ODE that is interesting to compare with the representation of a space-
clamped patch of nerve membrane developed in Chapter 5. In that case,
the reader will recall, transmembrane voltage obeys an ODE of the form

dV

dt
= −

(
G

C

)[
V (V − V1)(V − V2)

V2(V2 − V1)

]
, (11.6)

where C/G is an active time constant for the membrane, and a cubic ap-
proximation is used to model the transmembrane current that is plotted in
Figure 5.1. Thus, we see a mathematical relationship between the switching
of a patch of membrane and the switching of an assembly, although they
are at quite different levels of description. This correspondence is of central
importance for the perspectives being developed in this book and will be
further discussed in the following chapter.

3Beware the analytic sleights of hand here. Time was assumed to be a discrete variable
in order to derive an expression for P (F ) in Equation (11.1), and now it is redefined as
a continuous variable in order to use that expression in an ODE.
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Once an assembly has been ignited, Equation (11.5) indicates that it
remains firing forever, but this overlooks habituation effects, inhibitory
inputs from other assemblies, and external sensory inputs, all of which
may reduce the firing rate and increase the ignition threshold F0. (Similarly,
Equation (11.6) neglects the recovery effects on a nerve fiber stemming from
potassium ion current, which are treated in Chapter 6.) The time course of
the extinction dynamics is again given more precisely by Equation (11.4),
but now Finit is less than F0 at t = 0, and it is seen from Figure 11.4 that
F (t) → 0 as t → ∞.

This analytic formulation is tidy, but can we believe it? Should real nerve
networks be expected to behave at all like the variables in these equations?
Because the candid answer is that I do not know, it seems appropriate to
underscore some areas of present concern with the hope that they will be
selected for further study.

First, I repeat that we do not yet know how to accurately model a
single nerve cell, thus the McCulloch–Pitts representation may miss es-
sential neural properties. In particular, the preceding formulation reduces
the communication among neurons to passing information about their av-
erage firing rates, an assumption that overlooks important aspects of neural
dynamics. Perhaps real neurons talk to each other in languages that are
based on time codes, space codes, or some subtle combinations thereof.
Perhaps they use chemical or ephaptic interactions as a sort of body lan-
guage. Over longer distances, cell assemblies might communicate via the
information waves that were considered in the previous chapter. Finally, it
could be that assemblies engage in activities beyond our present ken.

However assemblies interact, an important aspect of neural behavior that
has been neglected in the preceding analysis is the fact that synaptic influ-
ences can be inhibitory as well as excitatory. We will see in the following
section that inhibition plays a key role in determining the ways in which
two or more cell assemblies behave.

11.3.2 Inhibition among Assemblies
At the time of Hebb’s original formulation of the cell-assembly theory, there
was no experimental evidence for inhibition among cortical neurons, so
he conservatively assumed only excitatory interactions. By 1957, however,
cortical inhibition had been observed, so Peter Milner, a colleague of Hebb’s
at McGill University, developed a “Mark II” version of the theory [63]. The
most striking feature of this revised theory is that it allows independent
assemblies to develop from an undifferentiated mass of model neurons.

To evaluate the effect that synaptic inhibition among cortical neurons
might have on cell-assembly dynamics, it is convenient to represent the
behavior of an individual assembly as simply as possible. To this end, let
us set θ = 1 in Equation (11.1), whereupon P (F ) = 1− (1−F )I . For I = 2
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(two inputs for each neuron), this expression becomes

P (F ) = 2F − F 2 ,

with the same qualitative behavior for larger values of I.
Under these simplifying assumptions (θ = 1, I = 2), Equation (11.3)

reduces to
dF

dt
= F (1 − F ) ,

where time is measured in units of the synaptic delay (τ). This is just the
Verhulst equation with solution

F (t) =
F (0)et

1 + F (0) (et − 1)
,

which follows from integration of Equation (11.4) and is displayed in Figure
1.3 for several initial values. The same growth equation describes both the
firing rate of a cell assembly and the population of Belgium. Again, we
find that identical mathematical formulations are useful at widely different
levels of description.

Thus motivated, let us model the dynamics of two identical neural
assemblies with inhibitory interactions by the coupled ODE system

dF1

dt
= F1(1 − F1) − αF2 ,

(11.7)
dF2

dt
= F2(1 − F2) − αF1 ,

where 0 ≤ F1 ≤ 1 and 0 ≤ F2 ≤ 1 because F1 and F2 represent the fraction
of neurons in each assembly that are firing. When positive, the parameter
α introduces an inhibitory interaction between the two assemblies because
the −αF2 term in the first equation reduces dF1/dt and similarly for the
second equation.

To see how these equations model the role that inhibition plays in the
formation of cell assemblies, let us recall a bit of history. As digital com-
puters became available for scientific problems in the mid-1950s, Frankel
reviewed several approaches to the numerical studies of brains, concluding
that Hebb’s cell-assembly theory was the most promising [17]. Rochester
et al. [82] then began to study the growth of cell assemblies in a group of
99 McCulloch–Pitts style model neurons, allowing only excitatory interac-
tions as had originally been proposed by Hebb [34]. Although they found
a diffuse reverberation with a period on the order of the synaptic delay,
assemblies did not develop.

This disappointing result follows directly from Equations (11.7). How?
If we let α be negative, only excitatory interactions among the neurons are
allowed. In this case, as is seen from Figure 11.5(a), all points on the (F1, F2)
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Figure 11.5. (a) A phase-plane plot from Equations (11.7) with α < 0 (only
excitatory interactions). (b) A similar plot for α > 1/3 (excitatory and inhibitory
interactions).

phase plane move to (1,1), and no individual assemblies are permitted to
ignite. In other words, all neurons end up firing at their maximum rates.

Rochester et al. then talked with Milner, who was revising Hebb’s the-
ory to include inhibition [63]. Thus inspired, they modified their computer
model to include the growth of both excitatory and inhibitory interactions
among 512 M–P neurons, with six neurons being externally driven [82]. Cell
assemblies were then observed to form with excitatory interactions devel-
oping among cells in the same assembly and inhibitory interactions among
different assemblies. How can this be seen in the context of our model?

Upon introducing inhibition in Equations (11.7) by making α > 0, one
finds a singular point at

F1 = F2 = 1 − α ,

where the time derivatives are zero. For 0 < α < 1/3, this singular point is
stable, but for α > 1/3, it becomes unstable, as shown in Figure 11.5(b).
Stable states of the system are then at either

(F1, F2) = (1, 0) or (0, 1) .

Thus, with sufficiently large inhibition, Equations (11.7) suggest that as-
semblies can be individually ignited in accord with both the numerical
observations of Rochester et al. [82] and the theoretical considerations of
Milner’s “Mark II” cell-assembly theory [28, 63].

At this point in the discussion, you should revisit Figure 11.2 and ex-
perience how your perception switches back and forth between the two
orientations of the Necker cube. Although it is easy to see the cube in ei-
ther orientation, note that you cannot perceive both orientations at the
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same time. (How rapidly can you switch between perceptions of the two
orientations? Might the speed of these transitions be taken as a measure of
how well your brain is working?)

Now, consider Equations (11.7) with α > 1/3 and the corresponding
phase-plane diagram shown in Figure 11.5(b). Evidently, these equations
model the switching on and off of assemblies that correspond to the
dynamics of those in your head as you regard the Necker cube.

From an engineering perspective, the interactive dynamics of two assem-
blies are like a “flip-flop” circuit widely used in the design of information
storage and processing systems [27]. With a cell assembly, however, the
bit of information being switched on or off is not the voltage level of a
transistor but an intricate psychological perception embodied in the con-
nections among thousands of neurons scattered about the brain that have
developed in response to the lifelong experiences of the organism. Although
this has been a “bottom-up” discussion of the brain’s dynamics, it suggests
the utility of “top-down” approaches. Regarding assembly firing rates as
order parameters for higher level representations of the brain’s dynamics,
for example, Haken and his colleagues have been able to model a variety
of psychological experiments [29, 30, 31].

To represent more than two assemblies, Equations (11.7) can be
generalized to

dF1

dt
= +F1(1 − F1) − αF2 − αF3 − · · · − αFn ,

dF2

dt
= −αF1 + F2(1 − F2) − αF3 − · · · − αFn , (11.8)
· · ·

dFn

dt
= −αF1 − αF2 − αF3 − · · · + Fn(1 − Fn) ,

where 0 ≤ Fj ≤ 1 for j = 1, 2, . . . , n. In this n-assembly model, interest-
ingly, all of the previous analysis (for n = 2) can be carried through. Thus,
there is a singular point for positive α (the inhibitory case) at

F1 = F2 = · · · = Fn = 1 − (n − 1)α ,

which is stable for

α < αc = 1/(2n − 1)

and unstable for

α > αc = 1/(2n − 1) .

Below this critical value of inhibition (αc), all of the assemblies can become
simultaneously active. It turns out that the switching time (τsw) of this
instability is

τsw =
1

(2n − 1)α − 1
,
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counterintuitively implying that the rate at which a neural system can
change from one perception to another increases with inhibition (α). This
result is in accord with Hebb’s suggestion that we humans are more intelli-
gent than our fellow mammals in part because we can switch our attention
more quickly from one assembly to another [35, 36].

Another aspect of intelligence, however, is the total number of assemblies
that can be remembered.

11.4 How Many Assemblies Can There Be?
Having considered some of the evidence for the existence of cell assemblies,
it is interesting to ask how many of them can be stored in a human brain.
This is a difficult question to answer because—as we have seen in Chapter
9—there is not yet a clear understanding of what the individual neurons
are doing, but it is possible to make certain lower estimates. To this end,
let us review three considerations.

First, it is presently necessary to use a McCulloch–Pitts style model in
which each neuron is represented by a single switch. Evidently, conclusions
based on this unrealistic assumption can provide only lower bounds on the
possible number of assemblies.

Second, it is not correct to estimate the number of assemblies by divid-
ing the number of neurons in the brain by the number of neurons in an
assembly. Why not? Recall the social analog for cell assemblies, which was
presented in Chapter 1. Just as a particular person in a city may be a mem-
ber of more than one social assembly, so may a single neuron participate
in several different cell assemblies.

Finally, any estimate of the maximum number of assemblies should ac-
count for the fact that the brain is hierarchically structured. Thus, complex
assemblies comprise simpler assemblies, which in turn are composed of yet
simpler ones, and so on.

In an important paper that appeared in the mid-1960s, Charles Legéndy
assessed human brain capacity from a simple model [47]. Although the
basic structure of his work is presented here, additional statistical details
are in the original publications [48, 49].

To introduce hierarchical character, Legéndy assumed that the brain
is already organized into subassemblies and modeled their organization
into assemblies. In the spirit of Hebb’s theory, an assembly and one of its
subassemblies variously represent

a setting and a person who is part of it, a word and one of its
letters, an object and one of its details.

To avoid complications of spatial organization, interconnections among
assemblies are taken to be evenly distributed over the brain. (Following a
familiar caricature of a mathematician’s approach to biology, this is the
assumption of a “spherical brain”.)
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Like individual neurons, subassemblies and assemblies have excitation
thresholds that must be exceeded for ignition. Whereas the threshold
for a subassembly is assumed to be a certain number of active neurons,
the threshold for an assembly is a certain number of active subassem-
blies. Legéndy considered the subassemblies to be already formed by
weak contacts, whereas assemblies develop from subassemblies through the
development of latent into strong contacts among neurons.

To proceed further, let us introduce the following notation.

• N is the number of neurons in the brain.

• A is the maximum number of assemblies that can form in the brain.

• n is the number of neurons in a subassembly.

• y is the number of subassemblies in an assembly.

• a is the number of strong (latent) contacts per neuron.

• m is the maximum number of strong contacts from an assembly to
one of its subassemblies.

Assuming that half of the strong (latent) contacts make output (ax-
onal) connections and the other half make input (dendritic) connections,
the number of output contacts from an assembly is nya/2. Those outputs
connecting to a particular subassembly reach a fraction n/N of the neurons
in the brain; thus

m =
n2ya

2N
.

The maximum number of assemblies are stored in the model when about
half of the latent connections have been converted into strong contacts.
Why half? Think of a black and white photograph. If all of the pixels are
all white or all black, the image conveys very little information. It is when
about half of the pixels are black and the others are white that the most
information is being stored, and so it is with the conversion from latent to
strong contacts. Thus

A ∼ Na

2my
.

In ordinary English, this equation says that the maximum number of as-
semblies in the brain is given by half of the total number of strong (latent)
connections in the brain (Na/2) divided by the number of strong (latent)
contacts in a single assembly (my).

Combining the previous two equations yields an estimate for the max-
imum number of assemblies that can be stored in the brain:

A ∼
(

N

ny

)2

. (11.9)
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Table 11.1. The number of cell assemblies (A) in a brain versus the number of
neurons in the brain (N) and the number of neurons in an assembly (ny). These
values are estimated from Equation (11.9).

N = 1010 N = 1011

ny = 103: 1014 1016

ny = 104: 1012 1014

ny = 105: 1010 1012

Some values of the maximum number of assemblies (A) implied by this
estimate for different values of the number of neurons in a brain (N) and in
a subassembly (n) are given in Table 11.1. Because the number of neurons in
the brain is variously estimated as from ten to a hundred billion [9, 12, 39],
these two values are selected in the upper row of the table. The values for ny
are not empirically established and are expected to vary widely according
to the intricacy of the concept perceived. (Palm has suggested that “a total
assembly should have somewhere around 104 neurons with a working range
from a few thousand to several tens of thousands” [73].) Lower values for
ny would increase estimates of the number of assemblies that can be stored
in a brain.

From these approximate values, it appears that

A > 109

is a comfortable lower bound on the maximum number of assemblies stored
in the human brain. Equal to the number of seconds in 30 years, 109 is also
in accord with estimates by Griffith based on the rate at which the brain
is able to absorb information [28].

Finally, it is interesting to compare Equation (11.9) with the maximum
number of patterns (pm) that can be stored in an attractor network from
Equation (10.9) of Section 10.2.2. Although 109 is again a rough lower
bound on the number of attractors that emerge for a brain comprising
1010 to 1011 neurons, the bases for these two estimates differ; in particular,
A ∝ N2, whereas pm ∝ N .

An explanation for this difference is that under the analysis of Section
10.2.2, every neuron is assumed to be firing 50% of the time. Thus, p codes
of length N were found to introduce noise of amplitude

√
p/N into the

retrieval task, which limits the number of stored codes to O(N). Under
Legéndy’s analysis, on the other hand, a particular neuron fires only when
assemblies in which it participates are ignited, which leads to smaller av-
erage firing rates in closer accord with empirical observations or cortical
activity.
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11.5 Cell Assemblies and Associative Networks

As most have now seen, holograms use a well-defined reference beam (usu-
ally a laser source) to translate information from a distributed memory
(the hologram) into a family of three-dimensional images. A small piece
of the hologram is able to reproduce the entire image, albeit with reduced
resolution. Inspired by the realization of holographic memories in laser
laboratories of the 1960s, it was suggested that similar nonlocal storage
principles might apply to memory in the neocortex [6, 22, 23, 52, 75].

Because several requirements of a holographic memory are not satisfied
in the neocortex (e.g., well defined reference beam, stable wave medium), a
memory principle was sought that would capture the distributed features of
holographic storage in a realistic neural context [53, 95]. Thus, it emerged
that the neocortex might operate as an associative memory [40, 53, 95].

The basic element of an associative memory is a connection matrix re-
lating two sets of patterns. Feeding a portion of one pattern into the
matrix and introducing threshold discrimination often allows aspects of
the corresponding pattern to be recovered. Such a system can be useful
for a variety of information-processing tasks, including feature extraction,
pattern reconstruction, pattern identification, and sequential association
[42].

To make contact with the previous section, think of the connection
matrix as N × N , with elements indicating interconnection (“synaptic”)
strengths between N neocortical neurons, and take the fraction of nonzero
elements in the patterns to be O(ny/N). Then, the fraction of matrix ele-
ments (or synapses) used up in the learning of a pattern pair is O[(ny/N)2].
Because the number of unactivated synapses after the learning of r random
code pairs will be of the order

[
1 −
(ny

N

)2
]r

≈ 1 − r
(ny

N

)2
,

the maximum number of pattern pairs that can be learned is O[(N/ny)2]
[43, 69].

It was recognized in the 1970s that Hebb’s brain model can be regarded
as an autoassociative memory, where the paired patterns can be the same
[69, 93]. To see this, turn back to Figure 11.4—which shows the dynamics
of a single assembly—and consider what the network is doing as the firing
rate (F ) increases from its threshold value of F0. Outputs from a fraction F
of the neurons are fed back as inputs to all neurons of the assembly, further
increasing the firing fraction until the entire assembly is firing (F = 1). In
this manner, it may be said, an ignited assembly has recognized itself.

Noting that the maximum number of assemblies (A) is equal to the
maximum number of pattern pairs that can be related by the synaptic
matrix (N/ny)2, Legéndy’s Equation (11.9) is confirmed.



278 11. Neuronal Assemblies

Since the 1970s, the relationship between autoassociative memories (or
associative networks, as they are coming to be called) and Hebb’s cell
assemblies has been an increasingly active area of neuroscience research,
which comprises mathematical [69, 70, 72], neurological [7, 8, 9, 59, 73],
and numerical components [13, 16, 41, 42, 69, 74, 92, 94].

Although much of this work supports the idea that Hebb’s cell assemblies
“provide an intermediate description of the brain between the psychological
and the electrophysiological level” (as Günther Palm, a leader in associative
nets research, has put it [71]), further tests of the theory depend on more
realistic neural models.

11.6 More Realistic Assembly Models

As we have learned in Chapter 9, the dynamic behavior of a real neuron
is far more intricate than that of an M–P model; thus, the “elementary
assembly dynamics” formulated in Section 11.3 are suspect. To move in the
direction of more realistic models of cell-assembly dynamics, descriptions
of the basic neurons must be improved.

An early attempt in this direction modeled the basic units on motor
neurons (MN), with disappointing results [55]. Interconnected populations
of model neurons showed little tendency for activity to continue after their
initiating inputs were turned off, at variance with Hebb’s original concept of
an assembly “acting briefly as a closed system.” Since the 1980s, however,
more biologically based models of assembly dynamics have been studied by
investigators at the Royal Institute of Technology in Stockholm, leading to
positive results.

The research group (called Studies of Artificial Neural Systems, or SANS,
in the Department of Numerical Analysis and Computing Science, with a
web site at www.nada.kth.se/sans) stems from the doctoral research of
Anders Lansner, which was published in 1986 [42]. From the beginning,
this work concentrated on the development of flexible models that could
be incorporated into system studies with nuanced tradeoffs between neural
realism and the numerical demands of large networks.

Currently, the best introduction to this effort is the doctoral thesis
published in 1996 by Erik Fransén under the direction of Lansner [18].
A key feature of these investigations was the assumption of excitatory
neurons based on cortical pyramidal (P) cells, with Hodgkin–Huxley style
parameters differing from those of MN-cells as follows [44]:

• Less negative resting potential (−50 mV rather than −70 mV).

• Larger “depolarizing after potential” and smaller “after hyperpolar-
ization.” (In Section 4.7, these effects are referred to as “enhancement
zones” and “refractory zones,” respectively.)

• Smaller repolarizing voltage (VK in Table 4.1).
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• Spikes of smaller amplitude and duration.

In addition to either P-cells or MN-cells, the numerical representation
included inhibitory fast-spiking (FS) cells, which are modeled after cortical
interneurons. The earliest simulations consisted of 50 pairs of an excitatory
cell and an FS-cell with 408 excitatory synapses to excitatory cells, 1538
excitatory synapses to inhibitory interneurons, and 50 inhibitory synapses
to excitatory cells.

The numerical model was a neural simulator called SWIM, which is
based on biologically plausible compartmental models for the neurons and
synapses [16]. To reduce the overall computational task, excitatory neu-
rons (MN-cells or P-cells) comprised four compartments each, whereas the
inhibitory interneurons (via FS-cells) had only two.

The system of 50 cell pairs was taught eight different assemblies con-
sisting of eight cells each. Thus some of the excitatory cells (MN or P)
were necessarily members of more than one assembly. As is suggested by
the analysis of Section 11.3.2, interconnections among cells of the same as-
sembly were excitatory, whereas inhibitory interconnections (FS-cells) were
established between different assemblies.

Differences between the behaviors of MN-cells and P-cells in such studies
of Hebb’s cell-assembly theory indicate that details of neural modeling are
qualitatively important. The salient results are now discussed.

After Activity and Reaction Time
As Hebb assumed and the simple analysis of Figure 11.4 suggests, a cell
assembly is expected to maintain its activity for a significant period of
time after the stimulation is turned off. In studies with P-cells, such after
activity was typically observed, with assemblies remaining active for periods
of 350 to 400 ms after the termination of a 40-ms-long stimulation. Using
MN-cells, on the other hand, after activity occurred only in exceptional
cases, in accord with the previous work of MacGregor and McMullen [55].
During sustained firing of the P-cells, the frequency gradually decreased
due to buildup of internal concentrations of Ca++ ions, which activate
a Ca-dependent hyperpolarizing K+ current. This is analogous to Hebb’s
cellular “partial exhaustion,” and it eventually leads to extinction of the
assembly activity.

Interestingly, these numerical experiments showed very short reaction
times of about 50–70 ms, implying that each P-cell fires only about five
times before an ignited assembly becomes fully active. This numerical
observation blunts criticisms of the cell-assembly theory based on the sug-
gestion that the turn-on process (indicated by the up-going arrows in Figure
11.4) might be significantly longer than typical perceptual response times.

Ignition Threshold and Pattern Completion
A critical firing level, denoted as F0 in Figure 11.4, was readily observed
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numerically. Typically, the stimulation of three cells was sufficient to ignite
an assembly, whereas two was not, implying an ignition threshold in the
range

1
4

< F0 <
3
8

.

The existence of a threshold for ignition is closely related to the phe-
nomenon of pattern completion, under which stimulation of only part of a
pattern is required for a correct response. In connection with the discus-
sions of Figure 11.1, for example, it was noted that one need not examine
every aspect of a geometric figure before its global form is perceived.

Competition and Noise Suppression
The strong lateral inhibition among neurons of different assemblies—
parameterized by α in Equations (11.8)—implies that two or more mutually
active assemblies will compete for dominance. Such competition (subjec-
tively perceived for the Necker cube shown in Figure 11.2) was readily
observed in Lansner and Fransén’s numerical studies, with the winning
assembly both activating its missing members and suppressing spurious
activity (noise) of other cells [44].

Influence of Time Delay
Introduction of variable time delays in the firing of excitatory cells mim-
ics the propagation of signals over extended axonal pathways of varying
lengths. With P-cells, it was found that such axonal delays could be in-
creased up to an average value of about 10 ms without significant changes
in assembly behavior [19]. How far apart does this delay allow neurons of
an assembly to be located?

Assuming that long cortical axons are myelinated (see Chapter 7) and of
the order of a micron or more in diameter [80, 88], Equation (7.19) suggests
an outside fiber diameter of at least 1.5 µm. The data on myelinated nerves
of the cat summarized in Figure 7.3 then imply impulse speeds of more
than 0.84 cm/ms. During 10 ms of axonal delay, therefore, a spike can
travel at least 8.4 cm, or 3.3 inches, which is about the average distance
between two randomly selected neurons in the human cortex. Thus, the
SANS model seems to permit the extension of Hebb’s “three-dimensional
fishnet” throughout most of the brain.

Slow Firing Rates and the Role of Inhibition
One discrepancy between the foregoing results and the behavior of real
brains involves the maximum firing rate of an ignited assembly. As is
suggested by Figure 11.4 and observed numerically, neurons in an active
assembly are expected to fire at their maximum rates, which can be as
high as 300 Hz (every 3.3 ms) for typical pyramidal cells. Under normal
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physiological conditions, however, cortical neurons are observed to fire at
about 20–60 Hz but seldom higher.

In response to this objection to Hebb’s theory, Fransén and Lansner
show that reduced firing rates are observed for fully active assemblies when
synapses are assumed to be realistically slow and also saturating, implying
an upper limit on its peak conductance [20]. From the discussion in Section
2.3.1, saturation of postsynaptic membrane conductance is a reasonable
constraint because the density of channels in this membrane is limited [2].

During these simulations, inhibitory neurons were not included because
only maximum firing rates were under investigation. Thus, the authors
concluded [20]:

Cortical inhibition may not be as critically involved in regu-
lating firing rates of individual cells and producing oscillatory
activity as has often previously been assumed. From the per-
spective of the cell-assembly theory, the role for inhibition in
preventing spread of activity among overlapping assemblies and
in the shaping of cellular response properties could be empha-
sized. In fact, in the neocortex a reduction of the inhibition
by only 30% (Lindström, personal communication, 1994) leads
to epileptiform seizures. This may be an example of activity
spreading uncontrollably when inhibition no longer separates
the partly overlapping assemblies.

These remarks are in accord with the preceding analysis of the system
described by Equation (11.8), where a reduction in the inhibiting param-
eter (α) below a critical value (αc) allows all of the assemblies to become
simultaneously active. They are also relevant to an evaluation of the field
theory models of epilepsy discussed in Section 10.3.

Modeling of Cortical Columns
In a more recent study, Fransén and Lansner have extended their numerical
simulations to include columns of cells, which corresponds more closely to
the structure of the neocortex [21]. In this model, there are 50 functional
units (columns) comprising 12 pyramidal neurons and 3 fast-spiking (FS)
inhibitory interneurons each (rather than individual cells) for a total of
750 neurons. Pyramidal cells were modeled with six compartments each
and FS-cells with three for a total of 4050 compartments.

All of these properties (significant afteractivity, short reaction times, ig-
nition thresholds, pattern completion, competition, and noise suppression)
were observed in this more realistic context while rendering the neural inter-
connections more realistic. Thus, the interconnection probability between
pyramidal cells from different columns is both sparse and asymmetric, as
is observed in cortical tissue, whereas the interconnection between columns
is symmetric, in closer correspondence with the attractor neural networks
discussed in Section 10.2.2.
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In response to certain qualitative objections raised by Malsburg [58],
the numerical studies of Fransén and Lansner have established that Hebb’s
cell-assembly hypothesis is in approximate accord with both the elementary
analysis of Section 11.3 and with present knowledge of cortical structure.

How has the theory fared in current electrophysiology laboratories?

11.7 Recent Evidence for Cell Assemblies

In the half century since Hebb’s theory of cell assemblies was first proposed,
the experimental techniques of electrophysiology have greatly improved.
Classical methods have been refined and new techniques introduced, leading
Nicolelis, Fanselow, and Ghazanfar to comment in 1997 [66]:

What we are witnessing in modern neurophysiology is increas-
ing empirical support for Hebb’s views on the neural basis of
behavior. While there is much more to be learned about the
nature of distributed processing in the nervous system, it is
safe to say that the observations made in the last 5 years are
likely to change the focus of systems neuroscience from the sin-
gle neuron to neural ensembles. Fundamental to this shift will
be the development of powerful analytical tools that allow the
characterization of encoding algorithms employed by distinct
neural populations. Currently, this is an area of research that
is rapidly evolving.

In assessing this optimistic perspective, it is important to remember that
observing the dynamic behavior of a “three-dimensional fishnet” compris-
ing several thousand neurons (each receiving several thousand synaptic
inputs) and spread over much of the brain is a daunting task, yet not hope-
less. Although there is presently no possibility of taking microelectrode
readings from most of the neurons in an assembly, records from as few
as two may offer interesting opportunities for research because the exper-
imenter can ask whether the recorded voltages are correlated and observe
how the degree of correlation depends upon the global behavior of the
organism.

Suppose that voltages V1(t) and V2(t) are measured from two different
neurons of a brain. To learn whether these signals are related to each other,
one can compute their correlation as

C(τ) =
∫

V1(t + τ) × V2(t)dt , (11.10)

where the integration is over the greatest practical temporal range. If, for
example, V1(t) is defined between 0 and T1 and V2(t) is defined between
0 and T2, with T1 	 T2, then appropriate limits of integration would be
from t = 0 to T2. Thus, varying τ over the range
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0 ≤ τ ≤ T1 − T2

effectively slides V1 past V2.
With data sets of moderate length and currently available computing

equipment, this is a straightforward numerical task that indicates how much
alike the two signals look. If they are totally unrelated, C(τ) will be small
and random, and one would judge the signals to be uncorrelated. If C(τ)
exhibits some reproducible structure, the signals are partially correlated.
Finally, a large peak at some value of τ suggests that part of V1 looks much
like a temporal translation of V2.

To avoid unrealistic computing times in applying correlation analysis to
neural data, it is important to choose discrete approximations of Equation
(11.10) that place in evidence the features of interest. Thus an impulse train
might be represented by a series of times (t1, t2, · · · , tn) at which spikes are
observed to occur. Dividing the time axis into B “bins” that are larger than
the minimum interpulse intervals but much less than the total recording
time, an impulse train can then be approximated as the B-dimensional
vector (v1, v2, · · · , vB), where vj is the number of spikes appearing in the
jth bin.

Two such vectors take the form

V1 = (v11, v12, · · · , v1b, · · · , v1B1)
V2 = (v21, v22, · · · , v2b, · · · , v2B2) ,

where B1 is not necessarily equal to B2 because there may be a longer run
of reliable data from one measurement than from another.

Assuming that B1 	 B2, Equation (11.10) can be approximated as

C(β) =
B2∑

b=1

v1(b+β) × v2b . (11.11)

Informally, this equation says to slide the longer vector (V1) along the
shorter vector (V2) by β bins, where β is an integer lying within the range

0 ≤ β ≤ B1 − B2 ,

multiply the number of spikes in the (B2) overlapping bins, and add the
(B2) products. A large peak of C(β) at some value of β suggests that part
of V1 looks much like a temporal translation of V2.

As noted in Chapter 1, it is now feasible to measure voltages from several
dozen microelectrodes while the subject is undergoing behavioral tests [14,
60, 61, 67, 68, 96]. Because each electrode may indicate the dynamics of
several neurons, up to 100 or more individual signals can be simultaneously
recorded, analyzed, and compared with concomitant behavior.

Groups of neurons producing correlated signals might be acting as mem-
bers of a common cell assembly, a possibility that can be checked by
comparing correlation functions with behavioral observations. In maze ex-
periments on rats, for example, the experimenter might notice whether such
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correlated signals both turn on when a certain behavior begins and turn
off when it ceases. If so, it would be reasonable to suspect that correlated
neurons are acting as part of an assembly related to that behavior.

Using such techniques, multiple-electrode recordings from a variety of
animal species tend to confirm the hypothesis that neurons act not “as
single spies but in battalions.” Although far from an exhaustive survey of
this work, the examples that follow give the flavor of current activities.
Many more such results are expected to appear in the next few years.4

Mollusk
Multineuronal optical studies of the abdominal ganglion of the mollusk
(Aplysia) were carried out by Wu, Cohen, and Falk, who recorded from up
to 30% of the 900 neurons involved and related this activity to global be-
havior (gill withdrawal reflex, respiratory pumping, and so on) [98]. Instead
of finding neural circuitry developed for specific tasks, these researchers
observed that

different behaviors appear to be generated by altered activi-
ties of a single, large distributed network rather than by small
dedicated circuits.

Locust
Laurent and colleagues have used several glass microelectrodes to record
from projection neurons (PNs) in the antennal lobe (a structural and func-
tional analog of the vertebrate olfactory bulb) of the locust (Schistocerca
americana) [45, 91]. Focusing on 1 s bursts of stimulants to which the lo-
cust has been previously exposed, odor-specific oscillatory responses were
observed at 20 Hz, which suggest that memories of different odors are en-
coded as stimulus-specific assemblies (or “ensembles”) of coherently firing
neurons [46]. However,

each odor appears to be represented not simply by an ensemble
of synchronized neurons but by a progressive and odor-specific
transformation of that ensemble, so that each neuron synchro-
nizes with several others only during one or more precise epochs
of the ensemble response.

In a style of interdisciplinary research that one hopes to see more of-
ten in coming years, Bazhenov et al. have reported numerical modeling
of Laurent’s experiments on the locust olfactory system by a team of bi-
ologists, neuroscientists and applied mathematicians [4, 5]. Similar to the
modeling of the SANS group (described previously in Section 11.5), the

4Although some question the ethics of the work, there have been several multiple-
electrode experiments on monkeys that also draw conclusions that support the cell-
assembly hypothesis [1, 10, 15, 24, 51, 83].
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model comprised 90 PNs and 30 inhibitory local neurons (LNs) randomly
interconnected with biologically realistic representations of the membrane
conductances. Although only one compartment was included in each PN
and LN, numerical simulations of about 0.5 s duration showed 20–30 Hz
oscillations and pattern discrimination in accord with the foregoing biolog-
ical measurements. Detailed analyses of the model dynamics led this group
to speculate

that a stimulus does not simply set the initial state of a fixed
dynamical system, but instead that each stimulus creates a
new and unique dynamical system. This dynamical system
has a stimulus-specific global attractor that determines its
spatiotemporal response patterns or trajectory.

How is this possible? The global nature of the oscillatory activity, it
seems, is rather sensitive to the stimulus pattern delivered to the inhibitory
LNs, with different LN patterns igniting different assemblies. Stimulations
of the PNs by a certain odor are then translated into a specific PN oscilla-
tory response pattern mediated by the particular assembly that has been
ignited.

Moth
Evidence for neural assemblies in the antennal lobe of the moth (Manduca
sexta) has also emerged from correlation studies of recordings on silicon
microprobe arrays published by Christensen et al. [11]. To better represent
the brevity of natural odors in the context of turbulent air flow, stimulating
pulses were only 0.1 s in duration, yielding data implying that

the patterns of synchrony among different members of an odor-
encoding ensemble are not the same for different concentrations
of the same odor. Furthermore, the responses to odor blends
cannot necessarily be predicted from the responses to the
individual odors in the blend. We therefore propose that en-
sembles of olfactory PNs must use multiple and overlapping
coding strategies to process olfactory information, and that
these strategies are matched to the particular circumstances
surrounding odor presentation.

At variance with the results of Laurent et al. because of the shorter time
scale (0.1 s vs. 1 s), these multiunit recordings again suggest the importance
of cell-assembly codes in insect olfactory systems.

Rat
How does a rat get around in the dark? Much as you or I would use our
fingers, this little fellow employs his whiskers to interrogate his surround-
ings. Thus, the cheek (or trigeminal) nerves are of particular interest in
understanding a rat’s perceptions. With this in mind, Nicolelis and his col-
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leagues have been recording from up to 48 (and more recently up to 100)
cortical, thalamic, and brainstem neurons of freely moving rats [25, 65, 67].
Widespread oscillations in the range from 7 to 12 Hz were observed, which
began when the animals were still but alert and predicted the onset of
whisker twitching. Starting as a traveling wave of activity in the cortex
(see Figure 10.3), this action spread to the thalamus and the trigeminal
brainstem complex. Correlation calculations between pairs of these signals
indicate that

the coding of sensory information in most cortical and subcor-
tical relays of the trigeminal pathways occurs at the ensemble
rather than at the single unit level and involves both spatial
and temporal domains.

Deadwyler et al. have studied the relationships among recordings from
ten different locations in the rat’s hippocampus while the animal was under-
going a behavioral learning task [14]. Because the hippocampus is regarded
as essential for storage and readout of cerebral information, these experi-
ments were expected to shed light on the nature of neural dynamics during
learning. From observations on seven animals, these authors show that

ensemble encoding and retrieval of “functionally relevant”
information are represented as distinct firing patterns in
hippocampal networks.

If neuronal assemblies exist in the neocortex, one would hope to be able
to switch them on and off—as suggested by Figure 11.5(b) and the dynamic
properties of Equations (11.7)—and this is what Maldonado and Gerstein
have managed by inserting ten tungsten microelectrodes into the rat’s au-
ditory cortex [57]. Both intracortical microstimulation (ICMS) through the
electrodes and acoustic stimuli were used as probes during 15 different ex-
periments. Based on correlation analyses of their data, these researchers
conclude as follows.

We have identified neuronal assemblies in two ways, defined
through similarity of receptive field properties and defined
through correlated firing. Close anatomical spacing between
neurons was conducive to, but not sufficient for membership in,
the same assembly with either definition. ICMS changed cor-
tical organization by altering assembly membership. Our data
showed that neuronal assemblies in the rat’s auditory cortex can
be established transiently in time and that their membership is
dynamic.

Finally, it is interesting to note recent evidence in support of Hebb’s
phase sequence in which a series of assemblies are ignited one after another
to comprise a train of thought [54].
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To this end, Louie and Wilson used implanted multielectrodes to record
from hippocampal CA1 pyramidal cells of rats (see Figure 9.1), which are
known to be “place cells” that tend to fire when the animal is in a particular
location [96]. The rats were trained to run around a circular track in search
of food, and recordings were made during the actual awake activity (RUN)
and also during shorter periods of “rapid eye movement sleep” (REM) [97].

Only those cells judged to be “active” (with firing rates greater than 0.2
Hz) were included in the analysis, leading to impulse train recordings from
between 8 and 13 electrodes for a particular experiment. With bin sizes of
1 s and RUN recording times up to 4 minutes, the RUN-REM correlation
was computed for each electrode as in Equation (11.11) and then averaged
over the electrodes.

Such computations of RUN-REM correlation showed no similarity be-
tween the two measurements, but this fails to account for the possibility
that the time scale of the REM signal could differ from that of awake ac-
tivity (RUN). Stretching out (or slowing down) the REM data by a factor
of about 2, on the other hand, gave sharply defined correlation peaks that
could not be ascribed to happenstance. The authors claim that these results
demonstrate that “long temporal sequences of patterned multineuronal ac-
tivity suggestive of episodic memory traces are reactivated during REM
sleep.”

11.8 Recapitulation

This chapter opened with a survey of Donald Hebb’s seminal formulation
of the cell-assembly hypothesis for the robust storage and retrieval of in-
formation in the human brain and emphasized key aspects of the theory.
Early evidence in support of Hebb’s theory was reviewed, including the
hierarchical nature of learning, perceptions of ambiguous figures, stabilized
image experiments, sensory deprivation experiments, and anatomical data
from the structure of the neocortex.

A simple mathematical model for interacting cell assemblies was then de-
veloped that describes ambiguous perceptions and suggests the importance
of inhibitory interactions among cortical neurons for assembly formation
and switching.

This model implies that cell assemblies emerge from intricate closed
causal loops (subnetworks) of positive feedback threading sparsely through
the neural system. Assemblies exhibit all-or-nothing response and threshold
properties (just like the Hodgkin–Huxley impulse or an individual neuron);
thus, an assembly is also an attractor. Interestingly, speed of switching from
one assembly to another is found to increase with the level of interassembly
inhibition. Under simple assumptions, a generous lower bound on the num-
ber of complex assemblies that can be stored in a human brain is estimated
as about one thousand million—the number of seconds in 30 years.
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Conclusions drawn from the simple analytic model are in accord with
numerical studies on more realistic neural representations, which predict
several hundred milliseconds of significant afteractivity (Hebb’s “acting
briefly as a closed system”), psychologically reasonable reaction times (less
than 100 ms), and pattern recognition (or completion) from imperfect data.

Finally, the concept of correlation was defined and some experimental
observations were cited that appear to confirm Hebb’s cell-assembly theory
in neuronal activities of a mollusk, locust, moth, and rat.
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[48] CR Legéndy, The brain and its information trapping device. In Progress in
Cybernetics 1, J Rose (ed), Gordon and Breach, New York, 1969.
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12
The Hierarchical Nature of Brain
Dynamics

In previous pages of this book, we have considered mathematical formu-
lations at several levels of neuroscience, from the Newtonian dynamics of
individual membrane proteins, through the switching of isolated patches of
membrane and the interactions among propagating nerve impulses, to the
intricate dynamics of cell assemblies, extending over much of the brain. The
picture of the brain that arises from this survey is a cognitive hierarchy of
distinct dynamic levels in which each level of description is built upon—or
emerges from—those below. Because the brain’s hierarchical structure is a
matter of observation, little is debatable about the preceding statement,
but the implications of this perspective for the social sciences are not yet
fully appreciated.

Since the demise of behaviorism as a credible theory of the human
brain, a variety of alternative formulations have been advanced and are
currently the subject of intense discussions among neuroscientists, psychol-
ogists, philosophers, and humanists [31]. This final chapter briefly surveys
aspects of these debates, paying particular attention to the claims of re-
ductive materialism and closing with a few modest suggestions for future
research on the brain’s dynamics.

12.1 The Biological Hierarchy

Before taking up the cognitive hierarchy, let us fix ideas by considering a
related structure, the biological hierarchy,
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Biosphere
Species

Organisms
Organs
Cells

Processes of replication
Genetic transcription
Biochemical cycles

Biomolecules
Molecules

with respect to which several comments are in order.
First, it is only the general nature of this hierarchy that is of interest here,

not the details. One might include fewer or more levels in the diagram or
account for branchings into (say) flora and fauna or various phyla. Although
such refinements may be useful in particular discussions, the present aim
is to become acquainted with the general nature of a nonlinear dynamic
hierarchy, so a relatively simple diagram is appropriate.

Second, the nonlinear dynamics at each level of description generate
emergent structures, and nonlinear interactions among these structures
provide a basis for the dynamics at the next higher level [32].

Third, as we have seen throughout this book, the emergence of a new
dynamic entity stems from the presence of a closed causal loop, which leads
to positive feedback and exponential growth that is ultimately limited by
nonlinear effects (as in the Verhulst curves of Figure 1.3).

Finally, it should be noted that philosophers disagree about the onto-
logical nature of emergent levels. Are they mere designations convenient
for academic organization, or do they mark qualitatively different realms
of reality? In attempting to answer this question, it is important to know
whether the upper levels can be derived from lower levels, which brings us
to a consideration of reductionism.

12.1.1 Biological Reductionism
Since the days of Galileo and Newton, the reductive program has been
surprisingly successful in providing explanations for the behavior of the
natural world. Thus this perspective is now widely accepted by the scientific
community as the fundamental way to pose and answer questions. Basically,
the reductive approach to understanding proceeds in three steps.

• Analysis. Assuming some higher-level phenomenon is to be explained,
separate the dynamics of that phenomenon into components, the
behaviors of which are to be individually investigated.

• Theoretical formulation. Through empirical studies and an exercise
of imagination, develop a theory of how the components interact.



12.1. The Biological Hierarchy 295

• Synthesis. In the context of this theory, derive the higher-level
phenomenon.

Among the many aspects of nature that have fallen to this approach, one
can mention planetary motion (based on the concepts of mass and grav-
ity and on Newton’s laws of motion), electromagnetic radiation (based on
the concepts of electric charge, electric fields, and magnetic fields related
through Maxwell’s equations), atomic and molecular structures (based on
the concepts of mass, electric charge, and Schrödinger’s equation), hydro-
dynamics (based on the concepts of mass density, viscosity, compressibility,
and the Navier–Stokes equations), and nerve impulse propagation (based
on the concepts of voltage, membrane permeability, ionic current, and
the Hodgkin–Huxley equations). Generalizing from such specific exam-
ples, the philosophical perspective of reductionism asserts that all natural
phenomena can be understood in this manner [36].

Some, on the other hand, believe there exist natural phenomena that
cannot be completely described in terms of lower-level entities—life and
the human mind being outstanding examples. In its more extreme form,
this position is called substance dualism: the view that important aspects
of the natural world do not have a physical basis. A less salient position is
property dualism, which asserts aspects of the physical world that cannot
be explained in terms of atomic or molecular dynamics.

To a statement of belief there is no scientific response, but if we can agree
on the physical basis of natural phenomena, the scope of the discussion
narrows. Let us assume, therefore, that all natural phenomena supervene
on the physical in the following sense. If the constituent matter is removed,
the phenomenon in question disappears, or as philosopher Jaegwon Kim
puts it ([26], p. 12): “Any two things that are exact physical duplicates are
exact psychological duplicates as well.” This position is called physicalism.

Among biologists, it is now widely accepted that the physicalist position
holds for the phenomenon of life. If the atoms comprising a living organism
are removed one by one, it will surely die. Most also believe that a person’s
mind would not survive a detailed deletion of the molecules of his or her
brain. Thus two interesting questions are

• Does reductionism follow from physicalism?

and

• Does physicalism allow property dualism?

Since the 1980s, such questions have been carefully considered by Kim,
who reluctantly concludes that physicalism does indeed imply reductionism
and sits uneasily with property dualism [26]. Let us briefly review his central
argument with reference to Figure 12.1.

This figure represents a higher-level phenomenon (M1) that supervenes
on the lower-level physical properties (P1), where supervenience is indicated
by the vertical dashed line. In other words, if the properties P1 are re-
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M1

P1

M 2

2P

Figure 12.1. The causal interaction of higher-level phenomena (M1 and M2) that
supervene on lower-level properties (P1 and P2).

moved, then the phenomenon M1 will disappear, with a similar relationship
between P2 and M2.

Now suppose that there is observed to be a causal relationship between
M1 and M2 [10], indicated by the horizontal arrow in Figure 12.1. Thus the
initial upper-level observation of M1 always leads to a corresponding upper-
level observation of M2. Because under the assumption of physicalism P1
(P2) must be present to provide a basis for M1 (M2), we could as well say
that P1 causes P2, which is a formulation of the upper-level causality in
terms of the lower-level properties. Furthermore, one could interpret the
phenomenon M1 (M2) in terms of P1 (P2), thereby undercutting a position
of property dualism.

In the view of physicist Steven Weinberg [36], the dashed lines in Figure
12.1 can be replaced by upward-directed arrows at every level of description
that show the direction of reductive implication. These arrows ultimately
emanate from the most fundamental element of physical reality (nowadays
known as the “Higgs boson”). Such a perspective does not suppose it to be
practical or currently possible to describe the dynamics of (say) a bacterium
in terms of the fundamental fields and particles of physics but that it can
be done “in principle.”

Finally, it can be argued that even if reductionism turns out not to hold
in all aspects of biological organization, it is still a prudent strategy for
the majority of biologists to take as a working hypothesis. Why? Often the
riddles of one generation become standard knowledge of the next, including
the nerve impulse, which so mystified Hermann Helmholtz in the nineteenth
century. Thus the dualist (substance or property) is ever in danger of giving
up too soon on the search for reductive explanations.

12.1.2 Objections to Reductionism
Although most social scientists reject the notion that physics is relevant to
psychology, the previous section may have shown the reader that biolog-
ical reductionism based on physicalism is a serious philosophical position
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meriting careful response. Those who object to the reductionist position
must offer more than mere intuition that it does not make sense. Concrete
objections and alternative suggestions must be provided. What are some
of these objections?

Constructionism Versus Reductionism
Interestingly, the physics community is itself divided on the merits of re-
ductionism. In general, theoretical physicists agree with Weinberg, whereas
condensed-matter physicists—those who grapple with the details of under-
standing aggregates of matter—tend toward a somewhat different view.
Thus Philip Anderson asserts that [3]:

the reductionist hypothesis does not by any means imply a
“constructionist” one: The ability to reduce everything to sim-
ple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe. In fact the more the
elementary-particle physicists tell us about the nature of the
fundamental laws, the less relevance they seem to have to the
very real problems of the rest of science, much less to those
of society. The constructionist hypothesis breaks down when
confronted with the twin difficulties of scale and complexity.

What is it about “scale and complexity” that creates problems for the
constructionist hypothesis?

Immense Numbers of Possibilities
As we have seen in Section 10.2.1, computational difficulties arise from
the fact that the number of possible emergent structures at each level of
the biological hierarchy is too large to be counted. To sharpen ideas in
theoretical biology, physicist Walter Elsasser introduced the term immense
to characterize a number that is both finite and greater than a googol (10100)
and thus inconveniently large for numerical studies [11, 13].

To see this in detail, consider the proteins. These biochemical workhorses
are valence-bonded strings of amino acids, each of which is designated by
an underlying DNA code. Because there are 20 different amino acids and a
typical protein comprises some 200 of them, the number of possible proteins
is greater than 20200, which in turn is greater than a googol. Thus the
number of possible protein molecules is immense.

What does this mean? All the matter in the myriad galaxies of the uni-
verse falls far short of that required to construct but one example of each
possible protein molecule [13]. Throughout the eons of life on earth, in other
words, most of the possible protein molecules have never been constructed
and never will be. Those particular proteins we know were selected in the
course of evolution through a succession of historical accidents that are
consistent with but not governed by the laws of physics and chemistry.
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So it goes at other levels of the biological hierarchy. The possible number
of new entities that can emerge from each level—to form a basis for the dy-
namics of the next level—is immense, suggesting that happenstance, rather
than basic laws of physics, guides important aspects of the evolutionary
process [21].

It follows that biological science is fundamentally different from physics.
As was noted in Section 10.2.1, the physical scientist deals with homoge-
neous sets, in which all of the elements are identical. Thus a physicist has
the luxury of performing as many experiments as are needed to establish
laws governing the interactions among electrons, protons, neutrons, and
atoms. In the biological and social sciences, on the other hand, the number
of possible members in any empirical category is immense, so experiments
are necessarily performed on heterogeneous subsets of the classes of inter-
est. Because the elements of heterogeneous sets are never exactly the same,
causal laws cannot be determined with the same degree of certainty in the
biological and social sciences as in the physical sciences.

In other words, psychologists establish rules rather than laws for inter-
personal interactions, and your doctor can only give you the probability
that a certain pill will make you feel better. At the levels of biology and
social science, therefore, the horizontal arrow in Figure 12.1 should often
be drawn fuzzy or labeled with a percentage of reliability.

The Nature of Causality
Whether one is concerned with establishing dynamical laws in the physical
sciences or seeking corresponding rules in the biological and social sciences,
the notion of causality requires careful consideration [10]. Some 24 centuries
ago, Aristotle put it thus [4]:

We have to consider in how many senses ‘because’ may answer
the question ‘why’.

As a “rough classification of the causal determinants (aitiai) of things,”
he suggested four types of cause.

• Material cause. Material cause stems from the presence of some phys-
ical substance that is needed for a particular outcome. Aristotle
suggested that bronze is an essential factor in the making of a statue,
but the concept is more general. As an example, note that the epi-
demic of gunshot wounds in the United States is materially caused
by the large number of loaded handguns in private homes, just as
alcoholism in Russia is materially caused by the availability of vodka.

• Formal cause. The material necessary for some outcome must be
given the appropriate form. Thus, “the interval between two notes
is not an octave unless they stand in the ratio of 2 to 1.” Other ex-
amples of formal cause are easily imagined: the blueprints of a house
are necessary for its construction, the DNA sequence of a particu-
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lar gene is required for synthesis of the corresponding protein, and a
violinist needs the score to play a concerto.

• Efficient cause. For something to happen, according to Aristotle,
there must be an “agent that produces the effect and starts the ma-
terial on its way.” Students of physical science deal primarily with
efficient causes during their introductory courses in dynamics. Thus,
a golf ball moves through the air in a certain trajectory because it
was struck at a particular instant of time by the head of a club, and
a radio wave is emitted in response to the current flowing through an
antenna.

• Final cause. Often, things come about because they are desired by
some intentional organism: a house is built—involving the assembly of
materials, reading of plans, and pounding of nails—because someone
wishes to have shelter from the elements. Although purposive answers
to the question “why” are problematic in the biological sciences, they
emerge as central issues at upper levels of the cognitive hierarchy,
which we will soon consider.

Because we are presently interested in viewing causality from a math-
ematical perspective, the following paraphrasing of Aristotle’s definitions
may be helpful.

(1) At a particular level of the biological hierarchy, material causes
might be time or space averages over dynamic variables at lower levels of
description that enter as slowly varying parameters at the level of interest.

(2) Again, at a particular level of the biological hierarchy, formal causes
might arise from values of dynamic variables at higher levels of description
that enter as boundary conditions at the level of interest.

(3) An efficient cause is represented by the stimulation-response formu-
lation analyzed in Appendix C. Following Galileo, this is the primary sense
in which physical scientists currently use the term causality [10].

(4) In mathematical terms, it is not clear (to me, at least) how one might
formulate a final cause.

Although this classification seems tidy, reality is more intricate. Thus
Aristotle noted that causes may be difficult to sort out in particular cases,
with several often “coalescing as joint factors in the production of a single
effect” [4].

Distinctions among these “joint factors” are not always easy to make.
A subtle difference between formal and efficient causes arises from con-
sideration of the metaphor for Norbert Wiener’s cybernetics: the steering
mechanism of a ship [37]. If the wheel is connected directly to the rudder
(via cables of some type), then the forces exerted by the helmsman’s arms
are the efficient cause of the ship executing a change of direction. For larger
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vessels, however, control is established through a servomechanism in which
the position of the wheel merely sets a pointer that indicates the desired
position of the rudder. The forces that move the rudder are generated by a
feedback control system that minimizes the difference between the actual
and desired positions. In this case, one might say that the position of the
pointer is a formal cause of the ship’s turning, with the servomotor of the
control system acting as the efficient cause.

Another example—yet more relevant to the themes of this book—is
provided by the conditions needed to cause the firing of a neuron, as rep-
resented by the McCulloch–Pitts (M–P) model of Equation (2.10). If the
dendritic weights and threshold (αjk and θj) are supposed to be constants,
they can be viewed as formal causes of a firing event. On a longer time scale
associated with learning, however, these parameters can be viewed collec-
tively as a weight vector responding to the learning dynamics described
in Section 10.1.2. From this perspective, components of the weight vector
might be classified as efficient causes of neuron ignition. Of course, as we
learned in Chapter 9, the switching of a real neuron is far more intricate
than that of an MP model, but the point remains valid: neural switching is
an intricate dynamic process involving the merging of many joint factors.

When a particular protein molecule is constructed within a living cell, for
a final example of joint causality, sufficient densities and varieties of amino
acids in the vicinity of the messenger RNA are material causes. The DNA
code, controlling which amino acids are to be arranged in what order, is a
formal cause. Lastly, the chemical (electrostatic and valence) forces acting
among the constituent atoms are efficient causes. Because far more intricate
situations are readily imagined, the reductionist should remain aware that
the causal relations sketched in Figure 12.1 are not at all simple in the
biological and social sciences.

For mathematicians, it is not surprising for several different types of
causes to be involved in a single event. We expect that parameter values,
boundary conditions, and forcing functions will all combine to influence the
outcome of a given computation.

What other complications of causality are anticipated?

Nonlinear Causality
In mathematics, the term “nonlinear” is defined in the context of relation-
ships between causes and effects. Suppose that a series of experiments on
a certain system have shown that cause C1 gives rise to effect E1; thus

C1 → E1 ,

and similarly

C2 → E2
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expresses the relationship between cause C2 and effect E2. This relation is
linear if

C1 + C2 → E12 = E1 + E2 . (12.1)

If, on the other hand, E12 is not equal to E1 + E2, the effect is said to be
a nonlinear response to the cause.

Equation (12.1) indicates that for a linear system the cause can be ar-
bitrarily divided into convenient components (C1, C2, . . . , Cn), whereupon
the effect will be correspondingly divided into (E1, E2, . . . , En). Although
convenient for analysis, this property is seldom found in the biological
world.

Far more common is the nonlinear situation, where the effect from the
sum of two causes is not equal to the sum of the individual effects. The
whole is not equal to the sum of its parts. Nonlinearity is less convenient
for the analyst because multiple causes interact among themselves, allowing
possibilities for many more outcomes and confounding the constructionist.
For this reason, however, nonlinearity plays a key role in the course of
biological evolution.

The Nature of Time
Causality is intimately connected with the way we view time—thus, the
statement “C causes E” implies that E does not precede C in time [10]—yet
the properties of time may depend on the level of description [18, 19, 38]. As
we have seen in Section 2.2, the dynamics underlying molecular vibrations
are based on Newton’s laws of motion, in which time is bidirectional. In
other words, the direction of time in Newton’s theoretical formulation can
be changed without altering the qualitative behavior of the system. At
the level of a nerve impulse, on the other hand, time is unidirectional,
with a change in its direction making an unstable nerve impulse stable
and vice versa. In appealing to Figure 12.1, therefore, the reductionist
must recognize that the nature of the time used in formulating the causal
relationship between P1 and P2 may differ from that relating M1 and M2.

Downward Causation
The doctrine of reductionism assumes that causality acts upward through
the biological hierarchy, where the causality can be interpreted as both
efficient and material. Formal causes, on the other hand, can act downward
because variables at the upper levels of a hierarchy can place constraints
on the dynamics at lower levels [2].

A dramatic example of downward causation occurred eons ago when
certain bacteria began to harvest and store energy from the sun’s light,
creating atmospheric oxygen as a poisonous waste [28]. The presence of
oxygen in the atmosphere led to the emergence of the animal kingdom,
in which we humans participate. Other examples of downward causation
include modifications of DNA codes caused by interactions among species,
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germination of an ovum following sexual activity, the disintegration of an
organism upon death, and so on.

Although such examples seem to provide convincing evidence of down-
ward causation, the means through which it acts are not well understood.
To this end, Claus Emmeche and his colleagues have defined three sorts of
downward causation, as follows [14].

• Strong downward causation (SDC). Under SDC, it is supposed that
upper-level phenomena can act as efficient causal agents in the dy-
namics of lower levels. In other words, upper-level organisms can
modify the physical and chemical laws governing their molecular con-
stituents. Presently, there is no empirical evidence for the downward
action of efficient causation, so SDC is almost universally rejected by
biologists.

• Weak downward causation (WDC). WDC assumes that the molecules
comprising an organism are governed by some nonlinear dynam-
ics in a phase space, having attractors—which include the living
organism—each with a corresponding basin of attraction. Death, in
this formulation, is but another of the attractors shared by the inter-
acting molecules, and a physician’s job is to keep the molecules of a
patient within the basin of the living state. (Unfortunately, the basin
shrinks as we age, making the task ever more difficult.)
Because many examples of such nonlinear systems have been care-
fully studied both experimentally and theoretically [32], there is little
doubt about the scientific credibility of this means for downward
causation. Building on the seminal suggestions of Alan Turing [34], bi-
ologists Stuart Kauffman [25] and Brian Goodwin [20] have presented
detailed discussions of ways that WDC influences the development
and behavior of living organisms.

• Medium downward causation (MDC). Although accepting WDC, sup-
porters of MDC go further in supposing that higher-level dynamics
(e.g., the emergence of a higher-level structure) can modify the lo-
cal features of an organism’s phase space through the downward
actions of formal causes. (An example of MDC is provided by the
automatic frequency control of an FM radio receiver. Here, a time
average amplitude of the demodulated signal is used to adjust the
input tuning capacitor, leading to the familiar experience of locking
onto a particular signal.)
In biology, MDC opens the possibility of closed causal loops spanning
several layers of the hierarchy. In this picture, an organism emerges
from the underlying phase space, which it in turn modifies. Using
the positive feedback diagram introduced in Chapter 1, such closed
causal loops can be represented as
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Emergent organism
↓ ↑

Underlying phase space

Over two decades ago, biochemists Manfred Eigen and Peter Schus-
ter suggested that closed causal loops around at least three layers
of dynamic description were necessary for the emergence of living
organisms from the oily scum of the Hadean oceans [12].

Open Systems
Biological organisms are open systems, as described in Appendix A, requir-
ing a steady input of energy (sunlight or food) to maintain their metabolic
activities. As a simple example of an open system, consider the flame of a
candle. Computing the propagation velocity of the flame (v) as in Chapter
5, it is possible to establish a rule for where the flame will be located at a
particular time. Corresponding to

M1 → M2 ,

in Figure 12.1, one such rule is the following. If the flame is at position x1
at time t1, then it will be at position

x2 = x1 + v(t2 − t1)

at time t2 > t1.
Because the flame is an open system, a corresponding relation

P1 → P2

cannot be written—even “in principle”—for the physical substrate. This
follows from the fact that the physical substrate is continually changing
[7]. The molecules of air and wax vapor comprising the flame at time t2
are entirely different from those at time t1. Thus, the detailed positions
and speeds of the molecules present in the flame at time t2 are unrelated
to those present at time t1. What remains constant is the flame itself: a
process.

Closed Causal Loops.
In his analysis of reductionism, Kim also fails to grasp the concept of a
closed causal loop, asking: “How is it possible for the whole to causally
affect its constituent parts on which its very existence and nature depend?”
[27]. Causal circularity, he claims, is unacceptable because it violates the
following “causal-power actuality principle.”

For an object, x, to exercise, at time t, the causal/determinative
powers it has in virtue of having property P , x must already
possess P at t. When x is being caused to acquire P at t, it
does not already possess P at t and is not capable of exercising
the causal/determinative powers inherent in P .
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There are two replies to this argument, one theoretical and the other
empirical.

(1) From a theoretical perspective, Kim is led astray by supposing that
a coherent structure somehow pops into existence at time t, which would
indeed be surprising. To see how a coherent structure actually organizes
itself, return to Figure 1.3, which shows a biological population growing
to a steady amplitude. Because both the population (N) and its rate of
growth (dN/dt) are functions of time, related by Equation (1.3), solutions
of this ODE yield the growth curves of Figure 1.3.

Similarly, in Kim’s notation, both x and P are functions of time (t),
which may be related as

dx

dt
= F (x, P ) ,

dP

dt
= G(x, P ) ,

where F and G may be general nonlinear functions of both x and P . (For
example, the time scales of F and G might be very different, allowing P to
remain approximately constant during the dynamics of x.) The emergent
structure is not represented by x(t) and P (t) (which are functions of time),
but by x0 and P0, satisfying

0 = F (x0, P0) ,

0 = G(x0, P0) .

Assuming that x0 and P0 are an asymptotically stable solution of this
system,

x(t) → x0 ,

P (t) → P0 ,

as t → ∞, exemplifying the establishment of a dynamic balance between
downward and upward causations.

Thus, Kim’s causal-power actuality principle is recognized as an artifact
of his static analysis of an essentially dynamic situation.

(2) Applied science offers many examples of positive feedback and sub-
sequent emergence of coherent structures [32]. Engineers employ negative
feedback to control the performance of amplifiers, routinely designing closed
causal loops in which a signal from the output terminals is carried back to
the input. Occasionally, this feedback signal becomes positive rather than
negative and leads to unwanted oscillations (called “singing”) that can be
viewed as emergent structures.

In the physical sciences, corresponding emergent structures include tor-
nadoes, tsunamis, and Jupiter’s Great Red Spot, among many others [32].
A biological example is provided by cellular reproduction, wherein a DNA
code is necessary to produce protein molecules and proteins are needed
for transcription of the code. Finally, this book offers several examples of
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closed causal loops of positive feedback in neuroscience, including both the
nerve impulse and the cell assembly.

These emergent structures are essential elements in the cognitive
hierarchy, which shares many features of the biological hierarchy.

12.2 The Cognitive Hierarchy

The preceding discussion of the hierarchical nature of biological science was
presented in some detail as an introduction to the main subject of this final
chapter: the cognitive hierarchy of the human brain. With corresponding
caveats about including fewer or more levels and allowing for branchings,
a convenient version of the cognitive hierarchy takes the following form.

Human cultures
Phase sequences

Complex assemblies
· · ·
· · ·

Assemblies of assemblies of assemblies
Assemblies of assemblies
Assemblies of neurons

Neurons
Nerve impulses

Nerve membranes
Membrane proteins

Molecules

Although this diagram differs from the biological hierarchy in important
ways, many of the previous comments carry over into the present discus-
sion. In particular, each cognitive level has its own nonlinear dynamics,
involving closed causal loops of positive feedback, out of which can emerge
an immense number of possible entities. A necessarily small subset of these
possibilities does in fact emerge and provides a basis for the nonlinear
dynamics of the next higher level.

Perhaps the most significant difference between the biological and cog-
nitive hierarchies is seen from consideration of the internal levels, which
were introduced in the preceding chapter. Extracted from the cognitive
hierarchy, these levels are

Complex assemblies
· · ·
· · ·

Assemblies of assemblies of assemblies
Assemblies of assemblies
Assemblies of neurons
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the existence of which is based on theoretical speculation and circumstantial
evidence rather than direct observation [30].

Because individual assemblies share the basic dynamic properties of a
neuron (threshold behavior and all-or-nothing response), Hebb proposed
that they can organize themselves into higher-level assemblies of assemblies
(called “second-order assemblies”), which in turn become components of
third-order assemblies and so on up to the complex assemblies that form
the basis for normal thought [23, 24]. As we have seen, empirical support
for these speculations is beginning to appear, but more evidence is needed
before they can be regarded as firmly established.

Because it is not known how many internal cell-assembly levels there
are or how they are organized, this region of the brain is presently a terra
incognita of science—one of its more interesting unexplored frontiers.

Just as in the biological hierarchy, we expect to find formal causation act-
ing downward also in the cognitive hierarchy. Indeed, the attractor neural
networks described in Section 10.2.2 exemplify weak downward causation
(WDC) [14]. The phenomenon of learning—whereupon strengths of inter-
connections among neurons are altered in response to experiences of the
organism—provides an example of medium downward causation (MDC) be-
cause the local character of the underlying phase space is altered by global
dynamics. As with the biological hierarchy, strong downward causation
(SDC) is rejected by neuroscientists as both unproven and implausible.

Reductionism, in the context of neuroscience, is often interpreted as the
view that all of the brain’s behavior can be formulated in terms of local
membrane dynamics. Referring back to Figure 12.1, P1 (P2) now repre-
sents the membrane states upon which a particular mental phenomenon M1
(M2) supervenes. Take away the P and the corresponding M disappears,
according to the doctrine of physicalism to which most neuroscientists
subscribe.

The doctrine of cognitive reductionism, therefore, holds that any causal
relationship between M1 and M2 (which is indicated by the horizontal
arrow in Figure 12.1) can “in principle” be formulated in terms of the
underlying membrane states, P1 and P2. Proponents of this view should
formulate responses to all of the objections raised in Section 12.1.2 against
biological reductionism.

As in the biological hierarchy, downward causation (either WDC, MDC,
or both) leads to additional opportunities for closed causal loops. These
multilevel loops are far more intricate than most of the examples presented
in this book, which can be represented by the diagram

A
↓ ↑
B

Implying that A causes B, which in turn causes A, this simple picture
is appropriate for describing the emergence of coherent structures at a
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temporal

frontal

parietal

occipital

Figure 12.2. A sketch of the left-hand side of a human brain suggesting how the
subassemblies (shaded areas) of a complex cell assembly might be distributed
over various lobes of the neocortex.

particular dynamic level—the nerve impulse being a clear example. In the
context of modern nonlinear science, each such diagram would correspond
to the presence of an attractor in the phase space describing the system
dynamics [32].

Complex cell assemblies, on the other hand, comprise subassemblies or
attractors emerging at many different levels of the cognitive hierarchy,
which can in turn become interconnected in an immense number of different
ways.1 Such interconnections might be effected via long axonal processes,
the waves of information discussed in Section 10.3, or perhaps both.

Figure 12.2 suggests how various subassemblies of a complex cell assem-
bly might be distributed over the principal lobes of the left hemisphere of
the human neocortex. The occipital lobes, at the rearmost tip of each hemi-
sphere, are related to vision, because they accept signals from the eyes. The
parietal lobes, on the upper rear of each hemisphere, handle judgments of
weight, size, shape, and feel.2 The temporal lobes, near the temples, deal
with language and the perception of sound, among other things, which is
not surprising given their proximity to the ears. Finally, the frontal lobes,
immediately behind the forehead, govern voluntary movements and some
logical processes, which is why a frontal lobotomy tends to alter personality.

1Although the attractor neural network formulation of Section 10.2.2 seems to miss
this feature, Amit shows how hierarchical structure can be introduced into the Hopfield
theory. (See Chapter 8 of [1].)

2Hierarchical organization of tactile information processing in the human brain has
been demonstrated by Bodeg̊ard et al. [8] using both PET and MRI scanning techniques.
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The shaded areas in the figure indicate where neocortical subassembly
neurons comprising Hebb’s “three-dimensional fishnet” might be sparsely
located. Other subassemblies may be in older regions of the brain (the dien-
cephalon or in the basal ganglia), as was originally suggested by Hebb [22].
Each of these subassemblies, under the theory, would in turn be composed
of further subassemblies representing more basic perceptual elements, as is
indicated in Figure 11.3.3

Thus, the type of dynamic object that may emerge in the hidden internal
levels is extremely intricate, but that is not the whole story. Although the
lower levels

Neurons
Nerve impulses

Nerve membranes
Membrane proteins

Molecules

are open to direct empirical investigation, puzzles remain, as we have seen
throughout this book. At the higher levels

Human cultures
Phase sequences

it is again possible to directly observe the dynamics, but new difficulties
appear.

By the term “phase sequence,” as the reader will recall from the first
chapter, Hebb implied a “thought process” in which [22]4:

Each assembly action may be aroused by a preceding assembly,
by a sensory event, or—normally—by both. The central facili-
tation from one of these activities on the next is the prototype
of “attention.”

We all experience ongoing trains of thought in every waking moment, but
these processes do not occur in a psychic vacuum.

Throughout such trains, our individual thoughts are both guided by
and constituent elements of the particular human culture in which we
are immersed. We are, in other words, molded by levels of cultural re-
ality of which we are often unaware. Thus corresponding cultural levels

3Some may be concerned that neurons separated by the distances indicated in Figure
12.2 could not effectively interact in the same Hebbian assembly. These readers should
return to Section 11.5, which presented results of fairly realistic numerical simulations of
cortical assembly dynamics. For random axonal delays up to about 10 ms, the assembly
dynamics were unchanged [17], suggesting an allowed radius for neuronal interactions of
several inches or more.

4If each “neuron” in Figure 10.2(b) is taken to represent a complex assembly, an
elementary phase sequence corresponds to the transient (001) → (000) → (010).
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of reality—described by American anthropologist Ruth Benedict as “pat-
terns of culture”—should be included in realistic models of the human brain
[6, 31].

Last, but not least, the possibility of causal interactions among the var-
ious levels of the cognitive and biological hierarchies should be included in
the overall theoretical perspective. At lower levels, this is obvious because
the physiological state of a neuron must surely effect the manner in which it
relates incoming and outgoing streams of information, but higher cognitive
levels also have causal biological effects. Cultural imperatives to ingest a
psychoactive substance, for example, can alter the dynamics of membrane
proteins and lead to mental changes that influence bodily health with sub-
sequent psychological effects in a wending path of branching causes and
effects that boggles the analytic mind.

Presently, the sorts of phenomena that could emerge from such intricate
causal networks—spanning several levels of both the biological and cogni-
tive hierarchies—are only dimly imagined. How might mathematics help to
sort out these speculations?

12.3 Some Outstanding Questions

Although the foregoing comments may seem pessimistic about the future of
neuroscience research, that is not my intent. On the contrary, the awesome
intricacy of the human brain presents us with unmatched challenges, mak-
ing this a most exciting time in the history of neuroscience. Awaiting the
assaults of vigorous young minds are many interesting problems, including
the following.

Hierarchical Formulations
Throughout this book, the hierarchical nature of biological and cognitive
systems has been noted, but in a merely descriptive manner leaving many
unresolved issues. Building on the work of Eigen and Schuster [12], Voorhees
[35], Fontana and Buss [16], Baas [5], and Nicolis [29], can one formulate the
various causal relationships among levels of a nonlinear dynamic hierarchy
(weak and medium downward causation, for example) in a manner that is
suitable for mathematical analyses?

This is not at all a trivial matter because the time and space scales for
models of living creatures differ by many orders of magnitude as one goes
from the biochemical levels to the whole organism, creating a daunting
challenge for the numerical modeler. Are there ways to evade such compu-
tational constraints? Might, for example, hierarchically organized functions
be defined on nested sets of points, with different types of averaging at var-
ious stages of the computations? Is it possible to resolve issues without
resorting to numerical computation?
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Not only the scale but—as we have seen—the nature of time differs
at biomolecular and cellular levels of description [18, 19]. Thus Newton’s
second law, governing the dynamics of the atoms within a molecule, is
bidirectional in time, meaning that the direction of time’s arrow can be
reversed in the mathematical formulation without changing the qualitative
behavior. In living systems, this is not the case.

Because the cognitive hierarchy is even more intricate than the biological
hierarchy, what can be said about the nature of time governing the global
behavior of the brain? If the nature of time is determined by the ongoing
dynamic processes at a particular level of description, might some yet to be
defined concepts of “psychological time” and “social time” also play useful
roles?

Meaningful Information
Several possibilities for information processing in the dendritic and axonal
trees of real neurons were sketched in Chapter 9, and some means for higher-
level information processing were described in Chapters 10 and 11. How
can these various models be incorporated into a mathematical formulation
for the global activity of a real brain? Indeed, what should we intend by
“information” in the context of living brain?

In engineering science, this term derives from the need to store and trans-
mit a series of zeros and ones representing an arbitrary photograph, a
computer code, a musical recording, or whatever [9, 33]. A system with p
different configurations is said to store an amount of information equal
to log2(p) bits. (For example, each of N switches can be set in either
the on or off position, leading to 2N possible configurations. Conveniently,
log2(2N ) = N , the total number of switches.)

Living organisms, on the other hand, are intentional, with self-
determined programs of activity. Thus the importance of a particular fact is
related to what the creature is concerned about [15], and an item of mean-
ingful information can involve many details of the type that are captured
by Hebb’s cell assemblies.

After the learning experience sketched in Figure 11.1, for example, a
person might recognize a triangle, and this recognition could be viewed as
one item of information that might or might not be meaningful according
to his or her current interests. In more intricate situations, a person might
recognize that those red berries are poisonous, it is going to rain, the car
he just hit is driven by a policeman, and so on. The vast collection of such
assemblies that each of us carries about were crafted moment by moment,
day by day, and year by year as we became adults, providing the contexts
in which we interpret experience.

Considering the little we know of internal assemblies and the ways they
interact, how might the concept of “meaningful information” be mathe-
matically defined for an intentional organism? Could a sharpened concept
of meaningful information lead to a formulation for Aristotle’s final cause?
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Subjective Experience
Beyond intentionality lie other mysteries of the mind. Many of the higher-
level species, including humans, exhibit subjective emotional states and
experience feelings—mental phenomena that are difficult to square with
the reductive formulations of neuroscience.

Even if our equations or computer codes were to describe exactly the
dynamics of a person’s brain, subjective experience appears to be left out
of the picture, as was eloquently expressed by Charles Scott Sherrington
and D’Arcy Wentworth Thompson in the quotations at the front of this
book.

Having discussed this matter elsewhere [31], there is no need to go into
detail, but it seems appropriate to close with two questions that continue
to puzzle me. Do human feelings emerge from intricate networks of positive
feedback winding through many levels of the interacting biological, cogni-
tive, and social hierarchies? Or are there aspects of neuroscience for which
mathematical formulations will never be useful?
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Appendix A
Conservation Laws and Conservative
Systems

Assume a system that is uniform in the x-direction (−∞ < x < +∞)
and conserves some quantity, Q. In other words, Q is neither created nor
destroyed in the course of the dynamics under investigation. Then it is
convenient to introduce the following definitions.

• F (x, t) is the flow of the conserved quantity, or the amount of Q that
passes the point x at time t.

• D(x, t) is the density of the conserved quantity, or the amount of Q
per unit of x.

In the context of these definitions,

∆x
d

dt
D(x + ∆x/2, t) = F (x, t) − F (x + ∆x, t) + O(∆x2) .

Taking the limit of this expression as ∆x → 0 yields the conservation law:

∂D

∂t
+

∂F

∂x
= 0 .

The total quantity

Q =
∫ ∞

−∞
Ddx

is evidently conserved because

dQ

dt
=

∫ ∞

−∞

∂D

∂t
dx = −

∫ ∞

−∞

∂F

∂x
dx
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= F (−∞, t) − F (+∞, t) .

Thus

Q = constant

if the flow into the system at x = −∞ equals the flow out at x = +∞. This
condition is satisfied if the dynamic variables approach zero as x → ±∞.

There are many physical examples of conserved quantities, including the
number of automobiles in a study of highway traffic flow, water in a river,
minority carriers in a semiconductor, electromagnetic energy in a pulse of
radio wave transmission, and mechanical energy in an elastic wave.

In nonlinear science, it is useful to have a means of distinguishing be-
tween systems or subsystems that include the effects of energy conservation
and those that do not. The former are often referred to in the engineering
literature as “conservative” or “lossless” and are considered to be con-
structed from elements such as inductors and capacitors or their mechanical
analogs, masses and springs, excluding resistors or “dashpots” (mechanical
resistors). Systems that do not conserve energy are called “dissipative” or
“open” and require the presence of batteries or amplifying devices (e.g.,
transistors) to maintain dynamic activity.

For some arbitrary collection of terms in a PDE, however, it is not always
clear whether energy is conserved. In such a situation, one can proceed by
checking whether the system can be derived from a Lagrangian density
L, which is a function of the dependent variable u(x, t) and certain of its
derivatives [1].

Basic to this perspective is the assumption that the action integral1

I =
∫ x2

x1

∫ t2

t1

L(u, ux, ut, · · ·) dx dt

takes a maximum or minimum value along the true solution u(x, t). In other
words, the variation of I (written δI) is equal to zero when L is evaluated
on u(x, t).

Now let

L = L(u, ux, ut)

and choose

δu(x, t)

to be a small change of u(x, t) that is zero at x1, x2, t1, and t2. Under these
assumptions

δI =
∫ x2

x1

∫ t2

t1

[
∂L
∂u

δu +
∂L
∂ux

δux +
∂L
∂ut

δut

]
dx dt

1Where typographically convenient, subscripts are used to indicate partial derivatives.
Thus ux ≡ ∂u/∂x, ut ≡ ∂u/∂t, and so on.
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=
∫ x2

x1

∫ t2

t1

[
∂L
∂u

− ∂

∂x

∂L
∂ux

− ∂

∂t

∂L
∂ut

]
δu(x, t) dx dt ,

after integrating by parts using the boundary conditions assumed for
δu(x, t).

Evidently the condition

δI = 0

requires that u(x, t) must satisfy the Lagrange–Euler equation2

∂L
∂u

− ∂

∂x

∂L
∂ux

− ∂

∂t

∂L
∂ut

= 0 .

As a simple example, note that a Lagrangian density for the wave
equation

∂2u

∂x2 − ∂2u

∂t2
= 0

is

L =
1
2
(u2

x − u2
t ) .

Systems of partial differential equations associated with a Lagrangian
density in the manner just described are said to be conservative for the
following reasons.

1. One can define a momentum density as

π ≡ ∂L
∂ut

.

2. Then, an energy density (often called a Hamiltonian density) can be
defined through the transformation

H(u, ux, π) ≡ L(u, ux, ut) − πut .

3. Direct calculation shows that
∫ ∞

−∞
Hdx

2If L depends upon higher derivatives of u, the Lagrange–Euler equation includes
additional terms that are obtained through integration by parts in a similar manner.
Thus for

L = L(u, ux, ut, uxx) ,

the corresponding Lagrange–Euler equation is

∂L
∂u

− ∂

∂x

∂L
∂ux

− ∂

∂t

∂L
∂ut

+
∂2

∂x2

∂L
∂uxx

= 0 ,

and so on.
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is a conserved quantity obeying the conservation law

∂H
∂t

+
∂P
∂x

= 0 ,

where

P ≡ − ∂L
∂ux

ut

is a flow of energy, or a power.

For the wave equation,

π = −ut ,

H =
1
2
(u2

x + π2) ,

and

P = −uxut .

Not all systems of interest can be formulated in this manner. For example,
the linear diffusion equation

∂2u

∂x2 − ∂u

∂t
= 0 ,

which conserves
∫ ∞

−∞
udx ,

does not have a Lagrangian density. Thus it is not conservative in the
present sense.

Interestingly, the nonlinear diffusion equation

∂2u

∂x2 − ∂u

∂t
= f(u) ,

which plays a central role in nerve impulse dynamics, has no conserved
quantities at all.
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Appendix B
Hodgkin–Huxley Dynamics

In the Hodgkin–Huxley formulation of nerve impulse dynamics, the mem-
brane turn-on and turn-off variables (m, h, and n) are assumed to be
solutions of first-order rate equations with voltage-dependent parameters.
Thus [1]

dm

dt
= αm(1 − m) − βmm ,

dh

dt
= αh(1 − h) − βhh , (B.1)

dn

dt
= αn(1 − n) − βnn .

At a temperature of 6.3oC, the voltage dependencies of the coefficients are
given by

αm =
0.1(25 − V )

exp[(25 − V )/10] − 1
,

βm = 4 exp(−V/18) ,

αh = 0.07 exp(−V/20) ,

βh =
1

exp[(30 − V )/10] + 1
, (B.2)

αn =
0.01(10 − V )

exp[(10 − V )/10] − 1
,

βn = 0.125 exp(−V/80) ,
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in units of milliseconds−1. At other temperatures, these rates change in a
manner that can be accounted for by multiplying by the factor

κ = 3(Temp−6.3)/10 , (B.3)

where “Temp” is the Celsius temperature. The membrane voltage V is
measured in millivolts with respect to the resting potential, and an increase
in the potential inside the axon is taken to be positive.1

In Equation (4.5), the first (GNa) term accounts for sodium ion current,
the second (GK) accounts for potassium ion current, and the last term (GL)
accounts for all other ions. To understand how this system works, note that
Equations (B.1) can also be written in the form

dm

dt
= −m − m0(V )

τm(V )
,

dh

dt
= −h − h0(V )

τh(V )
,

dn

dt
= −n − n0(V )

τn(V )
,

where, from Equations (B.2),

m0(V ) = αm/(αm + βm) ,

τm(V ) = 1/(αm + βm) ,

h0(V ) = αh/(αh + βh) ,

τh(V ) = 1 (αh + βh) ,

n0(V ) = αn/(αn + βn) ,

τn(V ) = 1/(αn + βn) .

Thus, m(t) strives to reach m0(V ) at a rate τm(V ) and similarly for h(t)
and n(t).
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Appendix C
Fredholm’s Theorem

Consider linear stimulus–response problems of the form

Lu(x) = f(x) , (C.1)

where −∞ < x < ∞, L is a linear differential operator, f(x) is a specified
source (or cause), and u(x) is a resulting response (or effect) that is to
be determined by solving the equation. Emphasizing the cause-and-effect
relation between f(x) and u(x),

f
L−→ u

is a symbolic form of the system.
Although it may seem that all such problems would have solutions, this

is not so. For particular operators L, there are causes f(x) that contradict
themselves, rendering Equation (C.1) unsolvable.

To see this, consider two real functions with the boundary conditions

v(x) → 0 as x → ±∞ ,

w(x) → 0 as x → ±∞ ,

and define an inner product as

(v(x), w(x)) ≡
∫ ∞

−∞
v(x) w(x)dx .

Two functions with zero inner product are said to be orthogonal.
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Next, define the adjoint of the operator L as the operator L† satisfying
the condition

(Lv,w) ≡ (v, L†w) .

All functions ψ for which

L†ψ(x) = 0 (C.2)

with

ψ(x) → 0 as x → ±∞
are said to “span the null space of the adjoint operator.”

Now, make the following two assumptions.

1. Equation (C.1) has a solution.

2. The inner product (f, ψ) is not zero for some ψ in the null space of
L†.

Then the calculation

(f, ψ) = (Lu, ψ) = (u, L†ψ) = (u, 0) = 0

leads to the contradiction: zero is not equal to zero. Clearly, one of the
assumptions must go. Because we do not want to give up assumption #1,
a necessary condition for Equation (C.1) to have a solution is that the inner
products of the source with all functions satisfying Equation (C.2) be zero.

If these conditions are satisfied, it is possible to construct a solution of
Equation (C.1), leading to the following theorem [1, 2].

Fredholm’s theorem: For Equation (C.1) to have a solution,
it is necessary and sufficient that the inner products of f(x) with
all solutions ψ(x) of Equation (C.2) be zero. In other words,
the source function must be orthogonal to the null space of the
adjoint operator.

Driven PDE systems that satisfy the Fredholm theorem for particular
sources are variously said to be “solvable,” “compatible,” or “consistent.”

In Appendices E and F, this theorem is used to establish solvability
conditions on equations for corrections arising from various perturbations
of nerve models.
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Appendix D
Stability of Axonal Impulses

In a traveling-wave analysis, one assumes that solutions are functions only
of the variable ξ = x−vt, where v is a wave speed that enters into the result-
ing ODE system as an adjustable parameter. Here traveling-wave analysis
is viewed as a special case of the independent variable transformation

V (x, t) −→ Ṽ (ξ, τ) ,

where ξ and τ are related to the original independent variables (x and t) by

ξ = x − vt ,

τ = t .

In the new (ξ, τ) system, ξ is measured on a distance scale (or meter
stick) moving with velocity v in the x-direction, and time τ is measured on
the same time scale (the same clock) as in the laboratory frame of reference.
Thus the transformation is from the stationary or laboratory system (x, t)
to a moving system (ξ, τ).

It is convenient to assign a different symbol for time in the moving system
because partial derivatives transform as

∂V (x, t)
∂x

→ ∂Ṽ (ξ, τ)
∂ξ

∂ξ

∂x
+

∂Ṽ (ξ, τ)
∂τ

∂τ

∂x

and

∂V (x, t)
∂t

→ ∂Ṽ (ξ, τ)
∂ξ

∂ξ

∂t
+

∂Ṽ (ξ, τ)
∂τ

∂τ

∂t
.
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Because ∂ξ/∂x = 1, ∂τ/∂x = 0, ∂ξ/∂t = −v, and ∂τ/∂t = 1, the partial
derivatives transform as

∂

∂x
−→ ∂

∂ξ
,

∂

∂t
−→ ∂

∂τ
− v

∂

∂ξ
.

As a specific example, consider the nonlinear diffusion equation

∂2V

∂x2 − ∂V

∂t
= f(V ) ,

which transforms to

∂2Ṽ

∂ξ2 − ∂Ṽ

∂τ
+ v

∂Ṽ

∂ξ
= f(Ṽ ) . (D.1)

Assuming that Ṽ is independent of τ in the moving system, this PDE
reduces to the ODE

d2V0

dξ2 + v
dV0

dξ
= f(V0) (D.2)

of traveling-wave analysis. In general, however, Ṽ depends upon both ξ
and τ , and we must study Equation (D.1) to learn about the stability of a
traveling wave.

To investigate the stability of V0(ξ), write

Ṽ (ξ, τ) = V0(ξ) + φ(ξ, τ) ,

where φ(ξ, τ) is an alteration of the traveling wave. Then from Equations
(D.1) and (D.2), φ(ξ, τ) satisfies the nonlinear PDE

∂2φ

∂ξ2 + v
∂φ

∂ξ
− ∂φ

∂τ
= f(V0 + φ) − f(V0) .

To this point, no approximations have been made—we have merely
transformed the independent and dependent variables: a matter of
bookkeeping.

A linear-stability analysis for this system was first carried out by
Zeldovich and Barenblatt in 1959 [15].1 Following these authors, we assume

|φ(ξ, 0)| � |V0(ξ)|
and approximate

f(V0 + φ) − f(V0)
.= G[V0(ξ)] φ(ξ, τ) ,

1Nonlinear stability analyses of this equation have been published by Lindgren and
Buratti [8] and by Maginu [9, 12].
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where

G[V0(ξ)] ≡ G(ξ) ≡ df(V )
dV

∣∣∣
∣
V =V0(ξ)

,

and φ satisfies the linear equation

∂2φ

∂ξ2 + v
∂φ

∂ξ
− ∂φ

∂τ

.= G(ξ) φ . (D.3)

This linear PDE has been obtained by linearizing the transformed nonlinear
PDE—Equation (D.1)—about the traveling-wave solution V0(ξ).

At the price of assuming that φ(ξ, 0) is a sufficiently small initial alter-
ation of the traveling wave, in other words, we have obtained a linear PDE
for the evolution of φ(ξ, τ) in time. From the perspective of linear stability
analysis, we can say that our system is:

• Asymptotically stable if all solutions of Equation (D.3) approach zero
as τ → ∞,

• Unstable if any solution of Equation (D.3) grows as τ → ∞, and

• Stable otherwise.

Equation (D.3) is conveniently analyzed by separating variables. Thus
φ(ξ, τ) is expressed as a generalized sum of elementary products of the
form Φ(ξ) T (τ). Here

T (τ) = eλτ ,

λ is can be complex, and Φ(ξ) is a solution of the stability equation

d2Φ
dξ2 + v

dΦ
dξ

− [λ + G(ξ)]Φ = 0 . (D.4)

Each bounded solution of this equation is called an eigenfunction and
the corresponding value of λ is an eigenvalue. All of the values of λ for
which Equation (D.4) has bounded solutions are referred to as its spectrum.
Depending upon the boundary conditions imposed as ξ → ±∞, there are
two types of eigenvalues.

Continuous Eigenvalues
If it is required that solutions of Equation (D.4) be bounded by some finite
value as ξ → ±∞, then Φ(ξ) has the asymptotic form

Φ(ξ) ∼ e±ikξ .

Such eigenfunctions represent radiation from the underlying traveling wave
V0(ξ), and if the radiation grows with time, the underlying impulse is
unstable.

As ξ → +∞, G(ξ) approaches a positive constant, G1 > 0. Similarly, as
ξ → −∞, G(ξ) → G2 > 0. Substitution of Φ(ξ) = exp(±ikξ) into Equation
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(D.4), therefore, leads to the eigenvalues

λ = −(G1 + k2) ± ikv

as ξ → +∞. This set of eigenvalues is said to be continuous because it
contains elements for all real values of k.

To see that these continuous eigenvalues correspond to eigenfunc-
tions representing radiation from the traveling wave, note that in the
+ξ-direction, φ(ξ, τ) has the form

φrad(ξ, τ) ∼ e−(G1+k2)τ cos(kξ + kvτ) ,

with a corresponding expression for radiation in the −ξ-direction.
For all real values of k, this radiative eigenfunction is damped with time,

falling exponentially to zero as τ → +∞. Thus the continuous spectrum
does not contribute to instability of the underlying traveling wave.

Discrete (or “Point”) Eigenvalues
With the boundary conditions

Φ(ξ) → 0 as ξ → ±∞ ,

the corresponding eigenvalues occur at discrete (isolated) locations on the
real axis of the complex λ-plane. These “point” eigenvalues are the par-
ticular values of λ for which the asymptotic behavior of Equation (D.4)
as ξ → −∞ goes smoothly over into a solution of this same equation as
ξ → +∞.

If Equation (D.4) has any eigenfunction with a negative eigenvalue
(λ > 0), then the corresponding traveling-wave solution is unstable. If all
eigenvalues are positive, then the traveling wave is asymptotically stable.

It is immediately evident that Equation (D.4) always has an eigenfunc-
tion for the eigenvalue λ = 0. To see this, differentiate Equation (D.2) with
respect to ξ; thus

d2

dξ2

(
dV0

dξ

)
+ v

d

dξ

(
dV0

dξ

)
= G(ξ)

(
dV0

dξ

)
,

which is identical to Equation (D.4) with

λ = 0 and Φ(ξ) = dV0/dξ .

Such a striking property has physical significance, which can be under-
stood as follows. Suppose that we start with a traveling-wave solution V0(ξ)
and add a small amount of its derivative dV0/dξ. The result is

V0(ξ) + ε

(
dV0

dξ

)
= V0(ξ + ε) + O(ε2) .

Thus adding the derivative of a traveling wave with respect to its traveling-
wave variable merely translates the original solution in the ξ-direction.
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Because a translated traveling wave is still an exact solution of the system,
such a disturbance has no dependence on time.

Although we have obtained this result for a special case, it is generally
true for all linear-stability analyses of traveling waves that2:

The derivative of a traveling wave with respect to its traveling
wave variable is an eigenfunction with zero eigenvalue of the
corresponding stability equation.

Armed with this knowledge, the task is to determine whether Equation
(D.4) has a negative eigenvalue. To this end, it is convenient to introduce
the dependent-variable transformation

Φ(ξ) = ψ(ξ) e−vξ/2 ,

changing Equation (D.4) to

d2ψ

dξ2 −
[
λ +

v2

4
+ G(ξ)

]
ψ = 0 . (D.5)

Equation (D.5) is a second-order self-adjoint operator equation with 3

U(ξ) =
v2

4
+ G(ξ) .

Such systems share the following properties [13].

• Because U(ξ) has the shape of a potential well, the eigenfunction (ψ0)
with the most positive eigenvalue (λ0) has no finite zero crossing.

• The eigenfunction (ψ1) with the next largest eigenvalue (λ1) has one
zero crossing.

• The eigenfunction (ψ2) with the next largest eigenvalue (λ2) has two
zero crossings.

• And so on.

2Physicists have a special name for this translational eigenfunction: the “Goldstone
boson.”

3To check that the transformation from Φ(ξ) to ψ(ξ) does not violate the null bound-
ary condition on Φ(ξ) as ξ → −∞, assume that G(ξ) → G2 > 0 as ξ → −∞. This
implies

ψ(ξ) ∼ exp
(

ξ
√

G2 + v2/4 + λ

)

and therefore

Φ(ξ) ∼ exp
[
ξ

(
−v/2 +

√
G2 + v2/4 + λ

)]
as ξ → −∞ .

Thus for λ ≥ 0, ψ(ξ) → 0 as ξ → −∞, implying Φ(ξ) → 0 as ξ → −∞.
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Thus the discrete eigenvalues of Equation (D.5) can be ordered as

λ0 > λ1 > λ2 > · · · > λn > etc.,

where eigenfunction ψn has n finite zero crossings.4

From these results, the following conclusions can be drawn. First con-
sider the stability of a monotone decreasing leading-edge solution V0(ξ) as
shown in Figure 5.2(c). The function ψ(ξ) = evξ/2dV0/dξ is the eigenfunc-
tion of Equation (D.5) corresponding to the eigenvalue λ = 0. Because
this eigenfunction has no zero crossings, λ0 = 0 is the most positive eigen-
value. In other words, all eigenvalues are less than or equal to zero, and
the traveling-wave solution V0(ξ) is stable. It is not asymptotically stable
because the perturbation can include components with the most positive
eigenvalue, which do not decay with time. Because this argument uses only
the qualitative shape of V0(ξ), the same conclusion holds for any mono-
tone increasing or decreasing (level change) traveling-wave solution of the
nonlinear diffusion equation.

As we have seen in Chapter 5, the leading-edge PDE also has a solution
that is impulse-shaped, with a maximum amplitude (Vm) at some finite
value of ξ, corresponding to homoclinic trajectories in the (Ṽ , W ) phase
plane of Figure 5.4(b). Because the ξ-derivative of such a function has a
zero crossing at a finite value of ξ, λ = 0 is not the most positive eigenvalue
of Equation (D.5). In other words, λ0 > 0, so the solution of Figure 5.4(c)
is unstable.

Augmentations of the preceeding method to general systems that include
both the Hodgkin–Huxley and FitzHugh–Nagumo formulations of nerve
impulse dynamics have been described by Evans [1, 2, 3, 4] and by Sattinger
[11], and there have been several more detailed analyses of the FitzHugh–
Nagumo system [5, 6, 7, 10, 14]. Among the conclusions of these studies
are the following.

• A sufficient condition for instability is that one mode of the linearized
PDE has an eigenvalue with positive real part.

• Because there is always an eigenfunction of the linearized PDE for
λ = 0, impulses are at most stable.

• Necessary conditions for stability are that no eigenvalues have
positive real parts and that the zero eigenvalue (λ = 0) is
nondegenerate.

To appreciate the requirement that the λ = 0 eigenvalue must be nonde-
generate for stability, consider a Green function G(ξ, τ) for the linearized
PDE from which the total disturbance of the traveling-wave solution can

4An intuitive way to establish these results is to study Equation (D.5) in the
(ψ, dψ/dξ) phase plane.
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be computed as [13]

φ(ξ, τ) =
∫ τ

0
dτ ′
∫ +∞

−∞
G(ξ − ξ′, τ − τ ′)F (ξ′, τ ′)dξ′ .

In this formulation, F (ξ′, τ ′) represents an arbitrary disturbance of the
traveling wave, and G(ξ, τ) is the response of the linearized PDE to a dis-
turbance that is delta-function localized in both space and time. Because
F is arbitrary, the properties of G(ξ, τ) indicate whether any disturbance
will grow with time.

To see how this comes about, consider the Laplace transform of G(ξ, τ),
which is defined as

G̃(ξ, λ) ≡
∫ ∞

0
G(ξ, τ)e−λτdτ .

From this function of ξ and λ, G(ξ, τ) can be recovered through the inverse
transform

G(ξ, τ) =
∫

C

G̃(ξ, λ)eλτdλ ,

where for τ > 0 the integration is over a closed curve (C) in the complex
λ-plane that encloses all of the singularities of G̃(ξ, λ).

Notice that the inverse transform is a generalized sum of terms of the
form eλτ , which appears in the separation of variables for the linearized
PDE. Thus, the singularities of G̃(ξ, λ) comprise the spectrum of the lin-
earized PDE. The implications of a degenerate eigenvalue at λ = 0 can now
be appreciated by recalling the Laplace transform pair

τn−1

(n − 1)!
←→ 1

λn
.

Thus if the λ = 0 eigenvalue is doubly degenerate, G̃(ξ, λ) contains the fac-
tor 1/λ2, implying a corresponding temporal response that is proportional
to τ . Linear growth with τ implies instability.

With the exception of the translation-mode eigenvalue at λ = 0, all
eigenvalues of Equation (D.4) have negative real parts of finite magnitude.
Thus if the eigenvalues of a F–N system are assumed to depend continuously
on ε, there is a parameter range of some ε > 0 over which the upper curve
in Figure 6.3 is stable and the lower curve is unstable [6, 7, 14]. Similarly
for an H–H system with some

τm > 0 ,

1/τh > 0 ,

1/τn > 0 ,

the faster impulse should be stable and the slower one unstable.
To extend an analytic proof of stability out to the critical values of

these time constants (beyond which traveling waves are not found), it is
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necessary to show that no pair of eigenvalues at λ = σ ± iω has a real
part (σ) that becomes positive. If so, the impulse would have an unstable
internal mode of oscillation with the temporal behavior eστ cos ωτ . It is not
known presently whether such unstable internal modes can occur for some
values of F–N or H–H parameters.
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Appendix E
Perturbation Theory for the F–N
Impulse

How does the traveling-wave velocity of a FitzHugh–Nagumo impulse de-
pend on ε? To answer this question when 0 < ε � 1, consider a paper by
Casten, Cohen, and Lagerstrom that appeared in 1975 [1].

The first step is to express v, V (ξ), and R(ξ) as power series in ε; thus

v = v0 + εv1 + ε2v2 + · · · ,

V = V0 + εV1 + ε2V2 + · · · ,

R = R0 + εR1 + ε2R2 + · · · .

Substituting these expressions into Equations (6.13) (with b = 0 and c = 0)
and equating terms that are independent of ε leads to

d2V0

dξ2 + v0
dV0

dξ
− [f(V0) + R0] = 0 , (E.1)

dR0

dξ
= 0 .

Equating terms that are first order in ε yields

d2V1

dξ2 + v0
dV1

dξ
− V1f

′(V0) = R1 − v1
dV0

dξ
, (E.2)

dR1

dξ
= −V0

v0
. (E.3)

Assuming that the pulse is propagating into a region of zero recovery
variable—as is indicated in Figure 6.5—then R0 = 0, and from integration



332 Appendix E. Perturbation Theory for the F–N Impulse

of Equation (E.3),

R1(ξ) =
1
v0

∫ ∞

ξ

V0(ξ′)dξ′ .

Thus everything on the right-hand side of Equation (E.2) is known except
the value of v1, which represents the dependence of the traveling-wave
speed to first order in ε. We can find v1 by using the Fredholm theorem
(see Appendix C), which provides conditions for Equation (E.2) to have a
solution.

To see how this goes, write Equation (E.2) in the form

LV1 = R1 − v1
dV0

dξ
,

where L is a linear differential operator defined as

L ≡ d2

dξ2 + v0
d

dξ
− f ′(V0) .

From differentiation of Equation (E.1) with respect to ξ, it is seen that

L
dV0

dξ
= 0 .

In other words, dV0/dξ is a null function of L. Because the adjoint of L is

L† =
d2

dξ2 − v0
d

dξ
− f ′(V0) ,

it has a null function ψ, where

L†ψ = 0 ,

and

ψ = ev0ξ dV0

dξ
,

as may be verified by direct substitution.
From the Fredholm theorem, a necessary condition for Equation (E.2) to

have a solution is that its right-hand side must be orthogonal to ψ. Thus

v1 =

∫∞
−∞
[∫∞

ξ
V0(ξ′)dξ′

]
(dV0/dξ)ev0ξdξ

v0
∫∞

−∞(dV0/dξ)2ev0ξdξ
,

so the traveling-wave velocity depends on ε as

v = v0 +
(

ε

v0

) ∫∞
−∞
[∫∞

ξ
V0(ξ′)dξ′

]
(dV0/dξ)ev0ξdξ

∫∞
−∞(dV0/dξ)2ev0ξdξ

+ O(ε2) . (E.4)

The first term on the right-hand side of this expression gives the
traveling-wave velocity when ε and the recovery variable (R) are both equal
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to zero. The second term, which is negative because dV0/dξ is negative on
the leading edge of an impulse, gives an O(ε) correction to the traveling-
wave velocity, assuming that the pulse retains its zero-order shape. The final
(unevaluated) terms account for variations in the traveling-wave velocity
that stem from changes in the pulse shape.

Evidently, this is the behavior observed on the upper curve in Figure
6.3 as ε → 0. Thus Equation (E.4) provides an analytic benchmark for the
numerical calculations that depends only on knowledge of v0 and V0(ξ),
which is the information provided by the leading-edge studies presented in
Chapter 5.

Along the lower curve in Figure 6.3, v(ε) → 0 as ε → 0, implying

v0 = 0 .

In this case, the preceding perturbation expansion does not work because
the O(ε) term in Equation (E.4) diverges. To deal with this difficulty,
introduce a perturbation expansion of the form

V = V0 +
√

εV1 + εV2 + · · · ,

R =
√

εR1 + εR2 + · · · ,

v =
√

εv1 + εv2 + · · · .

Then using similar arguments, it follows that

v =
√

ε

( ∫∞
−∞ V 2

0 dξ
∫∞

−∞(dV0/dξ)2dξ

)1/2

+ O(ε) . (E.5)

Along the lower branch of Figure 6.3, therefore, Equation (E.5) provides
a benchmark for the numerical calculations that depends only on V0(ξ) for
the threshold impulse, which was derived in Section 5.3 and is displayed in
Figure 5.4(c).

To restate the results of this appendix, the perturbation theory developed
by Casten et al. shows how the traveling-wave speeds for an F–N impulse
depend on ε as ε → 0. To lowest order in ε, these dependencies can be
explicitly computed from the corresponding solutions for ε = 0. Thus the
leading-edge approximations presented in Chapter 5 gain additional status.
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Appendix F
Perturbation Analyses of Ephaptic
Interactions

Here it is shown how perturbation theory can be used to investigate the
synchronization (or “locking”) of nerve impulses on parallel fibers. The
impulses are described both as the leading-edge waveforms of Chapter 5
and in the FitzHugh–Nagumo approximation of Chapter 6.

F.1 Leading-Edge Interactions

From Equations (8.3), it is assumed that leading-edge waveforms are
described by the coupled PDEs

(1 − α)
∂2V1

∂x2 − α
∂2V2

∂x2 − ∂V1

∂t
= f(V1) ,

(1 − α)
∂2V2

∂x2 − α
∂2V1

∂x2 − ∂V2

∂t
= f(V2) ,

where α is a small coupling parameter defined as the ratio of outside to
total series resistance per unit length of each axon.

To begin the analysis, assume two traveling waves of the form

Vk(x, t) = Vk(ξ) = Vk(x − vt) , k = 1, 2 ,

where v is the speed of two leading edges moving synchronously. Then the
preceding PDEs become the ODE system

(1 − α)
d2V1

dξ2 − α
d2V2

dξ2 + v
dV1

dξ
= f(V1) ,
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(1 − α)
d2V2

dξ2 − α
d2V1

dξ2 + v
dV2

dξ
= f(V2) .

A solution of these equations represents two leading edges (V1(ξ) and
V2(ξ)), one on each fiber and moving with the same speed. For α sufficiently
small, these solutions can be written as power series

Vk = Vk0 + αVk1 + α2Vk2 + . . . .

The corresponding traveling-wave velocities can also be expressed as

v = v(k) = v0 + αv
(k)
1 + α2v

(k)
2 + . . . ,

allowing solutions on the two fibers to have speeds that differ to first order
in α.

Substituting into the ODE system and equating terms of zero order in
α, one finds

d2Vk0

dξ2 + v0
dVk0

dξ
= f(Vk0) ,

for which exact solutions are known from Chapter 5.
Equating terms of first order in alpha yields two equations,

d2Vk1

dξ2 + v0
dVk1

dξ
− f ′(Vk0)Vk1 =

d2V10

dξ2 +
d2V20

dξ2 − v
(k)
1

dVk0

dξ
,

for k = 1, 2. These are linear operator equations of the form

L1V11 = F1

(
V10, V20, v

(1)
1

)
,

L2V21 = F2

(
V20, V10, v

(2)
1

)
,

with inhomogeneous (or forcing) terms on their right-hand sides. In Ap-
pendix C, it is shown that for such equations to have solutions, Fredholm
conditions must be satisfied, which allow determination of v

(1)
1 and v

(2)
1 in

terms of V10 and V20.
In particular, the Fredholm theorem requires that the forcing terms must

be orthogonal to solutions of the homogeneous adjoint equations

L†
kyk(ξ) = 0 , (F.1)

where

L†
k =

d2

dξ2 − v0
d

dξ
− f ′(Vk0) .

Because these homogeneous equations have the solutions

ψk(ξ) = ev0ξ dVk0

dξ
,

the Fredholm conditions can be written as
∫ ∞

−∞
ψk(ξ)Fk(ξ)dξ = 0 . (F.2)
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To evaluate these integrals, note that if the solution on fiber #2 leads
the solution on fiber #1 by a distance δ, then

V20(ξ) = V10(ξ − δ) ,

ψ2(ξ) = ψ1(ξ − δ) .

Thus Equations (F.2) imply that

[
v
(1)
1 (δ) − v

(2)
1 (δ)

]
=

1
N

∫ ∞

−∞
ev0ξ dV10

dξ
(ξ)
[
d2V10

dξ2 (ξ − δ) − d2V10

dξ2 (ξ + δ)
]

dξ ,

where

N ≡
∫ ∞

−∞
ev0ξ

[
dV10

dξ
(ξ)
]2

dξ .

For the cubic representation of the sodium ion current

f(V ) = V (V − a)(V − 1) ,

formulas are available for V0(ξ) and v0. Thus these integrals can be
evaluated, leading to the expression for the velocity difference

[
v(1)(δ) − v(2)(δ)

]
= α

[
v
(1)
1 (δ) − v

(2)
1 (δ)

]

given in Equation (8.5) and plotted in Figure 8.3 [1].

F.2 The FitzHugh–Nagumo System

Consider impulses described by the coupled F–N system

(1 − α)
∂2V1

∂x2 − α
∂2V2

∂x2 − ∂V1

∂t
= f(V1) + R1 ,

∂R1

∂t
= εV1 ,

(1 − α)
∂2V2

∂x2 − α
∂2V1

∂x2 − ∂V2

∂t
= f(V2) + R2 ,

∂R2

∂t
= εV2 ,

where ε takes a fixed value (of about 0.1) corresponding to a typical nerve
impulse.

Again seeking synchronized traveling-wave solutions of the form

Vk(x, t) = Vk(ξ) = Vk(x − vt) ,

Rk(x, t) = Rk(ξ) = Rk(x − vt) ,
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where k = 1, 2 and v is the propagation speed of two impulses, leads to a
set of ODEs that can be written

(1 − α)
d2V1

dξ2 − α
dV2

dξ2 + v
dV1

dξ
= f(v1) + R1 ,

v
dR1

dξ
= −εV1 ,

(1 − α)
d2V2

dξ2 − α
dV1

dξ2 + v
dV2

dξ
= f(v2) + R2 ,

v
dR2

dξ
= −εV2 .

Just as in the previous section, Vk and v are expressed as power series in
the small coupling parameter α, provisionally allowing v to differ by order
α on the two fibers. Eliminating R1 and R2 and equating terms that are
independent of α leads to the third-order nonlinear ODE

d3Vk0

dξ3 + v0
d2Vk0

dξ
− f ′(Vk0)

dVk0

dξ
+

ε

v0
Vk0 = 0 , (F.3)

solutions to which are discussed in Chapter 6. Similarly equating terms
that are first order in α yields the pair of coupled linear equations

d3Vk1

dξ3 + v0
d2Vk1

dξ2 − f ′(Vk0)
dVk1

dξ
−
(

f ′′(Vk0)
dVk0

dξ
− ε

v0

)
Vk1

= v
(k)
1

(
ε

v2
0
Vk0 − d2Vk0

dξ2

)
+

d3V10

dξ3 +
d3V20

dξ3 . (F.4)

Here

f ′(Vk0) ≡
[
df(Vk)
dVk

]

Vk=Vk0

and

f ′′(Vk0) ≡
[
d2f(Vk)

dV 2
k

]

Vk=Vk0

.

Because each of Equations (F.4) can be written as a forced linear operator
equation of the form

LkV1k = Fk ,

Fredholm’s theorem requires for solutions to exist that the integrals
∫ ∞

−∞
ψk(ξ)Fk(ξ)dξ = 0 ,

where ψk(ξ) is a solution of

L†
kψk = 0 , (F.5)
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and L†
k is the adjoint of Lk.

Through integration by parts, it is seen that the adjoint of

−f ′(Vk0)
d

dξ
− f ′′(Vk0)

dVk0

dξ

is

+f ′(Vk0)
d

dξ
,

so Equations (F.5) become

−d3ψk

dξ3 + v0
d2ψk

dξ2 + f ′(Vk0)
dψk

dξ
+

ε

v0
ψk = 0 , k = 1, 2 . (F.6)

With these results in hand, a perturbation calculation proceeds as
follows.

1. Solve Equation (F.3) for Vk0(ξ). This calculation must be done
numerically, as described in Chapter 6.

2. Solve Equation (F.6) for ψk(ξ), the solutions of the homogeneous
adjoint problem. This calculation must also be done numerically.

3. Assume that V20(ξ) differs from V10(ξ) by a translation of δ in the
traveling-wave variable ξ. Thus,

V20(ξ) = V10(ξ − δ) ,

ψ2(ξ) = ψ1(ξ − δ) ,

implying that the impulse on fiber #2 is leading the impulse on fiber
#1 by a distance δ.

4. The Fredholm solvability conditions for Equations (F.4) then require
that the inner products of the right-hand side forcing functions with
the ψk be zero. Thus,

v
(1)
1 =

1
N

∫ ∞

−∞
ψ1(ξ)

(
d3V10(ξ)

dξ3 +
d3V10(ξ − δ)

dξ3

)
dξ

and

v
(2)
1 =

1
N

∫ ∞

−∞
ψ2(ξ)

(
d3V20(ξ + δ)

dξ3 +
d3V20(ξ)

dξ3

)
dξ ,

where

N ≡
∫ ∞

−∞
ψ1(ξ)

(
d2V10(ξ)

dξ2 − ε

v2
0
V10(ξ)

)
dξ

=
∫ ∞

−∞
ψ2(ξ)

(
d2V20(ξ)

dξ2 − ε

v2
0
V20(ξ)

)
dξ .
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For particular values of the parameters, numerical evaluations of the
preceding integral expressions as functions of δ allow plots of v

(1)
1 (δ) and

v
(2)
1 (δ) as in Figure 8.5(b) [3, 4, 5]. The dynamic implications of these

perturbation results are in accord with integration of the original PDE [2].
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Detailed balance 58
Dev, P. 44, 45
Diffusion (Nernst) potential 37, 62,

97, 142, 143, 144
constant(s) 3, 32, 57, 249
current 28, 40, 57, 61, 62, 65
equation, linear 32, 189, 192, 318

nonlinear (see Nonlinear
diffusion)

Dirac delta function 32, 191, 192
Discreteness parameter 144, 179
Displacement current 28, 53–55, 68
Dissipative systems 316
DNA and RNA 300, 301, 304
Dodge, F.A. 85, 86
Double impulse experiments 87–90,

224
blocking observations 211, 212
Khodorov’s calculations 211, 224
refractory zones 88, 89

Drift current 40, 56
-diffusion equation 200
velocity 56

Du Bois-Reymond, Emil 2
Dualism, substance vs. property 295
Dynamite fuse 2

Earthworm (Lumbricus terrestris),
enhancement zone for 90

Edelman, Gerald 18
Efficient causes 299, 300, 301
Eigen, Manfred 309
Eigenfunctions 134, 325
Eigenvalues, continuous 134, 325–326

discrete (point) 134, 326
Einstein, Albert 58
Einstein’s relation 58–59, 60–61, 65
Electric field in capacitor 54
Electricity, atmospheric, chemical,

and electrical 1
Electrochemical potential 61
Electronic charge 56
Elsasser, Walter 74, 222, 243, 297
Emergence 43, 234, 297, 301, 301,

302, 304
of biological levels 294, 298, 303,

306



Index 345

cell assemblies 18, 268
nerve impulses 78, 119
patterns 13, 234, 241

ontological nature of 294
Emmeche, Claus 302
Emotion 17, 258, 311
Enhancement zone 87–89, 90, 91, 278
Ephaptic interactions 45, 165–183,

270, 335–340
assemblies of impulses 182
coupling parameter 169, 179, 335
FitzHugh–Nagumo model 174–177,

182, 337–340
impulse synchronization 166–167,

182, 183
leading-edge analysis of 169–171,

173, 182, 335–337
lowering of threshold 166
Markin–Chizmadzhev analysis of

167–169
on myelinated nerves 177–181,

182–183
continuum limit 179–180
dynamics 180–181
failure 180

physiological implications 181–182
qualitative analysis of 171–174
stability of 172–174, 176

Equilibrium (Nernst) potential 37,
97, 142, 143, 144

Equivalent cylinder 195–199, 224
Ermentrout, G.B. 251
Euler equations (see Lagrange–Euler

equations)
Evans function 135, 136
Evans, John 135, 328
Evolutionary explanation for squid

axon branching 218
Excitatory postsynaptic potential

(EPSP) 37
Exocytosis 37, 38
Exponential growth 15, 18, 269, 294

Facilitation and extinction 235
Failure of impulse propagation 7, 10,

140, 149, 180
Falk, C.X. 284
Fanselow, E.E. 282
Faraday, Michael 2–3

Fatty (lipid) molecules 50, 51
Feedback control systems 13–14, 68,

299–300
loop (see Positive feedback)

Fiber geometry 6, 199–206
Field theories of neocortex 248–252
Fife, Paul 135
Final cause 299, 310
FitzHugh, Richard 5, 87, 123, 125,

136, 143, 219
FitzHugh–Nagumo (F–N) nerve

model 5–6, 122–124, 136
ephaptic coupling 174–177, 337–340
equation 123
impulse, perturbation theory for

331–333
stability of 132–136, 328
mathematical stability 134–136
numerical stability 132–133
qualitative stability 133–134

homoclinic trajectories for 131
leading edge of 130, 131, 133, 136
periodic solutions of 125–126
stability of impulse 132–136
structure of impulse 130–131
trailing edge of 131, 132, 133–134

Flame-front propagation 4, 102–103
Flip-flop circuit 273
Flourens, Marie-Jean-Pierre 11
Flow of conserved quantity 315
F–N (see FitzHugh–Nagumo)
Fontana, Walter 309
Forces, interatomic 29, 49–50
Formal cause(s) 298–299, 300, 301,

302, 306
Frank–Kamenetsky, David 4, 102
Fransén, Erik 278, 280, 282
Fraser, J.T. 34
Fredholm’s theorem 321–322, 332,

336, 338, 339
Free charge 53, 55
Free running multivibrator 242
Frog (Rana pipiens), enhancement

zone for 90
impulse velocity 2, 142, 149
internode distance 142, 150
standard axon 142–143, 148–151
“three-eyed” 251

Frontal lobes 258, 307



346 Index

Fujita, M. 155, 156, 157
Fundamental equation of neuroscience

31, 33

Gage, Phineas 258
Galileo Galilei 294, 299
Galvani, Luigi 1, 2, 6, 139, 158
Gap junctions 39–40, 45, 170

resistance 39–40
Geometric ratio 205–206, 217, 224
George, S.A. 90
Gerstein, G.L. 286
Gerstner, W. 42, 116
Gestalt psychology 234, 262
Ghazanfar, A.A. 282
Goldfinger, Mel 223
Goldstein, S.S. 205
Golgi stain 209
Goodsell, David S. 51
Goodwin, Brian 302
Googol 241, 243, 297
Governor 13
GR (see Geometric ratio)
Green function 193–194, 195, 221, 223

for impulse stability 328–328
Green, George 193
Greenland shark (Somniosus

microcephalus) 158
Griffith, J.S. 249, 276
Grossman, Y. 219
Gurovich, V.T. 115
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