
ECS 120 Lesson 11 – Chomsky Normal Form

Oliver Kreylos

Monday, April 23rd, 2001

Today we are going to look at a special way to write down context-
free grammars that will make reasoning about them easier. This special
form was introduced by Noam Chomsky himself and is called the Chomsky
Normal Form (CNF). We will show that for every context-free grammar G,
there is an equivalent grammar G′ that is in Chomsky Normal Form. The
constructive proof for this claim will provide an algorithm to transform G
into G′.

1 Definition of Chomsky Normal Form

A context-free grammar G = (V, Σ, R, S) is said to be in Chomsky Normal
Form (CNF), if and only if every rule in R is of one of the following forms:

1. A → a, for some A ∈ V and some a ∈ Σ

2. A → BC, for some A ∈ V and B, C ∈ V \ {S}

3. S → ε

In other words: Every rule either replaces a variable by a single character
or by a pair of variables except the start symbol, and the only rule that can
have the empty word as its right-hand side must have the start symbol as its
left-hand side.

From the above definition it follows, that every parse tree for a grammar
in CNF must be a binary tree, and the parse tree for any non-empty word
cannot have any leaves labeled with ε in it. The use for the Chomsky Normal
Form is to make many of the proofs about context-free languages we will
encounter later much easier by allowing us to assume that every context-free

1

grammar we want to reason about is in Chomsky Normal Form. We will
first see the usefulness of CNF in the proof for the Context-Free Pumping
Lemma.

2 Transforming a Grammar to CNF

In order to construct the grammar G′ in CNF that is equivalent to a given
grammar G, we first have to identify how exactly G can violate the rules for
a CNF. Since the CNF only restricts the rules in G, we have to look only
at R. Here are the “bad” cases of rules:

1. A → uSv, where A ∈ V and u, v ∈ (V ∪ Σ)∗. The start symbol must
not appear on the right-hand side of any rule. We call rules of this type
start symbol rules.

2. A → ε, where A ∈ V \ {S}. The only symbol that can be replaced by
the empty word is the start symbol. We call rules of this type ε-rules.

3. A → B, where A, B ∈ V . The only rules involving variables on the
right-hand side must have exactly two of them. We call rules of this
type unit rules.

4. A → w, where A ∈ V , w ∈ (V ∪ Σ)∗ and w contains at least one
character and at least one variable. The only rules where characters
appear on the right-hand side must have exactly one character as the
right-hand side. We call rules of this type mixed rules.

5. A → w, where A ∈ V and w ∈ (V ∪ Σ)∗ with |w| > 2. Rules must
either have one symbol (one character) or two symbols (two variables)
as the right-hand side. We call rules of this type long rules.

To transform a grammar to CNF, we will have to take care of these
five cases of violations. We will fix all these cases in the order presented.
The running example for the following sections will be the grammar G =(
{S, A,B}, {a, b}, R, S

)
, where R contains the rules

S → ASA | aB
A → B | S
B → b | ε

2

2.1 Start Symbol Rules

To remove the start symbol from the right-hand side of all rules in R, we
employ the same trick we used in finite automata, to ensure that no arrows
enter the start state: We add a new symbol S0, make it the start symbol in
the new grammar G1, and add the single rule S0 → S to R to get the rules
for G1. Since S0 does not appear in any rules (it is a new symbol), the new
grammar has no start symbol rules.

The language of the new grammar is the same as the language of the
old grammar: If w ∈ L(G) is a word in the language of G, there exists a

derivation S
∗⇒ w. We know that S0 → S is a rule in G1; therefore, S0

∗⇒ w
is a derivation for w in G1, meaning w ∈ L(G1). Conversely, if w ∈ L(G1),

there is a derivation S0
∗⇒ w. Since the only rule having S0 as left-hand side

in G1 is the rule S0 → S, the first step in the derivation of w must have
been S0 → S. Therefore, we can split the derivation into S0 → S, S

∗⇒ w,
meaning that w ∈ L(G).

The new grammar for the example grammar G is given by G1 =
(
{S0, S, A,

B}, {a, b}, R1, S0

)
, where R1 contains the rules

S0 → S

S → ASA | aB
A → B | S
B → b | ε

2.2 ε-Rules

The algorithm to remove ε-rules works in two steps. First, we identify all
variables that can yield the empty string, either directly or indirectly. We call
these variables nullable. Second, we remove all direct rules A → ε from the
grammar, and fix up the grammar by removing all occurrences of nullable
variables from the right-hand sides of all rules. For example, if there is a
rule A → ε, this makes A a nullable variable. Now, if there is another rule
B → ACA, each of the occurrences of A in that rule could reduce to the
empty word. In other words, the final result of applying that rule could be
any one of C, AC, CA or ACA. If we remove the rule A → ε, we have to
explicitly add all of those cases to the rules for the symbol B.

3

2.2.1 Identifying Nullable Variables

We define the set of nullable variables recursively:

Base Case If there is a rule A → ε ∈ R1, A is a nullable variable.

Inductive Case If there is a rule A → B1 . . . Bn ∈ R1, where all variables
B1, . . . , Bn ∈ V are nullable, A is a nullable variable.

2.2.2 Removing ε-Rules

Let G1 be a grammar, and let N ⊂ V be the set of nullable variables. We
build a new set of rules R2 by classifying each rule in R1 into one of the
following cases:

1. If the rule is A → ε for some A ∈ V , drop it.

2. If the rule is A → w for some A ∈ V and some w ∈ (V ∪Σ)∗\{ε}, where
w does not contain any nullable variables, add it to R2 unmodified.

3. Otherwise, the rule is A → w, where w contains some nullable variables.
We break up w in the following way: w = w0N1w1N2w2 . . . wn−1Nnwn,
where the Ni are occurrences of nullable variables, and the wi ∈ (V ∪Σ)∗

do not contain any nullable variables. We then add all rules to R2

that can be generated from A → w by removing any combination of
occurrences of the Ni from w (there will be 2n of such new rules).

Finally, if the start symbol S of G1 is a nullable variable (meaning that
ε ∈ L(G1)), then we add the rule S → ε to R2.

For the example grammar G1, the set of nullable variables is N = {A, B}.
The new grammar is given by G2 =

(
{S0, S, A, B}, {a, b}, R2, S0

)
, where R2

contains the rules

S0 → S

S → ASA | aB | AS | SA | S | a
A → B | S
B → b

4

2.3 Unit Rules

The algorithm to remove unit rules is similar to the one for removing ε-rules.
First, we identify a set of unit pairs. These are pairs of symbols (A, B), where

A yields B: A
∗⇒ B. We then remove all unit rules by copying right-hand

sides: If there is a rule A → B, (A, B) is a unit pair. Then, if there is a rule
B → w, we can derive w from A by A → B, B → w. To remove the unit
rule and still generate an equivalent grammar, we have to add the right-hand
side w to the rules for A directly: A → w. Since there can be cyclical unit
rules, e. g., A → B, B → C, C → A, applying this algorithm ad-hoc is
tedious, confusing and error-prone. The algorithm using unit pairs is just
tedious, which is preferrable.

2.3.1 Identifying Unit Pairs

We define the set of unit pairs recursively. The base case for this is not quite
intuitive: One would think that the base case should be all pairs (A, B) where
there exists a rule A → B. But we decide to include all pairs (A, A) into the
set of unit pairs instead; after all, from the definition of derivation follows
that A

∗⇒ A. Adding these “dummy” unit pairs makes the second part of
the algorithm a lot easier. Here is the recursive definition:

Base Case For every variable A ∈ V , (A, A) is a unit pair.

Inductive Case If (A, B) ∈ V 2 is a unit pair, and B → C ∈ R2 is a rule
for some variable C ∈ V , then (A, C) is a unit pair. From (A, B) being

a unit pair, we know that A
∗⇒ B; adding the fact that B → C yields

A
∗⇒ C, making (A, C) a unit pair.

2.3.2 Removing Unit Rules

Let G2 be a grammar, and let U ⊂ V 2 be its set of unit pairs. We build a
new set of rules R3 in the following way: For every unit pair (A, B) ∈ U ,
and every non-unit rule B → w, add the rule A → w to R3. This will copy
all the original non-unit rules, since (A, A) is a unit pair for every variable A
(the reason why we included them as the base case); and it will also copy all

indirect rules of the form A → w, where A
∗⇒ B and B → w. Therefore, the

new grammar will be equivalent to the old grammar, but it will not have any
unit rules.

5

For the example grammar G2, the set of unit pairs is U =
{
(S0, S0), (S, S),

(A, A), (B, B), (S0, S), (A, B)
}
. The new grammar is given by G3 =

(
{S0, S,

A, B}, {a, b}, R3, S0

)
, where R3 contains the rules

S0 → ASA | aB | AS | SA | a
S → ASA | aB | AS | SA | a
A → b | ASA | aB | AS | SA | a
B → b

2.4 Mixed Rules

The strategy to remove mixed rules is a lot simpler than the last two. Let
A → w ∈ R3 be a mixed rule. Then we can write w as w = v0c1v1 . . . vn−1cnvn,
where the ci ∈ Σ are occcurrences of characters, and the vi ∈ V ∗ are strings
of only variables. Then we will add a new symbol Ci to V4 for every char-
acter ci, and we will add the rules Ci → ci to R4. Finally, we define
w′ := v0C1v1 . . . vn−1Cnvn ∈ V ∗ and add the rule A → w′ to R4. This
will get rid of the mixed rule (now the right-hand side consists of variables
only), and it will not change the language generated by the grammar: If the
rule A → w is part of the derivation for some word, we can replace that
single rule by applying the rule A → w′ first, and then replacing all Ci by ci

using their respective rules.
For the example grammar G3, we only have to add one new symbol U

to V . There are multiple mixed rules, but they all share the common right-
hand side aB. Thus, adding the single rule U → a is sufficient. The new
grammar is given by G4 =

(
{S0, S, A, B, U}, {a, b}, R4, S0

)
, where R4 con-

tains the rules

S0 → ASA | UB | AS | SA | a
S → ASA | UB | AS | SA | a
A → b | ASA | UB | AS | SA | a
B → b

U → a

2.5 Long Rules

The final step in creating a CNF, removing all long rules, is also easy. Let
A → B1 . . . Bn be a long rule, i. e., n > 2. We already removed all mixed rules,

6

thus we know that all the Bi are variables. We will break up every single
long rule into several “short” rules, by introducing new “helper variables”
and splitting the right-hand side from left to right: We add new symbols
A1, . . . , An−2 to the set of variables, and add the following rules to R5: A →
B1A1, A1 → B2A2, . . . , An−2 → Bn−1Bn.

After this step, all rules in R5 are either of the form A → BC or A →
a (except the potential special rule S → ε), and the new grammar still
generates the same language. If the rule A → B1 . . . Bn was part of the
derivation for some word w,we can derive the same word in the new grammar
by using the rules A → B1A1, . . . , An−1 → Bn−1Bn in that order. The final
string generated by them will be B1 . . . Bn as well.

For the example grammar G4, we only have to add one new symbol A1 to
the set of variables. All long rules in G4 share the same right-hand side ASA.
We therefore add A1 to V5, add the rule A1 → SA to R5, and replace each
rule C → ASA (for any variable C ∈ V) by C → AA1. The new grammar
is given by G5 =

(
{S0, S, A, B, U,A1}, {a, b}, R5, S0

)
, where R5 contains the

rules

S0 → AA1 | UB | AS | SA | a
S → AA1 | UB | AS | SA | a
A → b | AA1 | UB | AS | SA | a
B → b

U → a

A1 → SA

3 Practicality of CNF

As can be seen from the example grammar G5, its set of rules is quite a
bit larger than the set of rules of the original grammar G. Also, if G was
designed from a recursive language definition, its rules will closely model the
language’s structure, as we have already seen. The CNF will not exhibit this
intuitive relation to its language. This means that the conversion to CNF is
usually not done when designing a grammar, and it is also not done when
it is anticipated that the grammar will be changed at some point in time,
for example due to changes in the language. The CNF is mainly used for
theoretical reasoning about properties of context-free languages: With the

7

construction discussed above, we know that every context-free language is
described by some grammar in CNF. When having to do a proof about a
context-free language, we can thus assume it is given by a CNF grammar,
and can exploit its special structure. We will see an example for this in the
upcoming proof for the Context-Free Pumping Lemma.

An important question is the size of the resulting CNF grammar. The
good news is, that four of the five steps performed do not blow up the size
of the grammar beyond reasonable limits. Removing start rules, unit rules,
mixed rules and long rules increase the size of the grammar by only a linear
factor, e. g., the size might increase by a factor of five. The bad news is,
that the removal of ε-rules might make the grammar prohibitively large. We
recall that for any right-hand side that contains n nullable variables, we have
to add 2n new rules with any combination of nullable variables removed. If
n is big, 2n is huge, which can make conversion to CNF impractical. For
theoretical reasoning this is of little concern; but if one wants to apply this
algorithm in practice, another way has to be found. One solution exploits
the fact that the five steps can be applied in different orders: For example,
removing mixed and long rules first, and then start rules and ε-rules and unit
rules, also yields a grammar in CNF1. But since long rules are removed first,
every right-hand side when removing ε-rules is at most two symbols long;
therefore, we have to add at most four new rules. This trick makes the size
of the generated grammar manageable.

1Not all orders of the steps do! For example, removing ε-rules might introduce new
unit rules. Thus, the latter have to be removed after ε-rules.

8

