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Automating Scanner Construction 
RE→NFA  (Thompson’s construction)  
•  Build an NFA for each term 
•  Combine them with ε-moves 

NFA →DFA (subset construction)  
•  Build the simulation 

DFA →Minimal DFA   (today) 
•  Hopcroft’s algorithm                          

DFA →RE   (not really part of scanner construction) 
•  All pairs, all paths problem 
•  Union together paths from s0 to a final state 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 
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DFA Minimization 
The Big Picture 
•  Discover sets of equivalent states 
•  Represent each such set with just one state 
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DFA Minimization 
The Big Picture 
•  Discover sets of equivalent states in the DFA 
•  Represent each such set with a single state 

Two states are equivalent if and only if: 
•  The set of paths leading to them are equivalent 
•  ∀ α ∈ Σ, transitions on α lead to equivalent states       (DFA) 
•  α-transitions to distinct sets ⇒ states must be in distinct sets 
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DFA Minimization 
The Big Picture 
•  Discover sets of equivalent states 
•  Represent each such set with just one state 

Two states are equivalent if and only if: 
•  The set of paths leading to them are equivalent 
•  ∀ α ∈ Σ, transitions on α lead to equivalent states       (DFA) 
•  α-transitions to distinct sets ⇒ states must be in distinct sets 

A partition P of S 
•  A collection of sets P  s.t. each s ∈ S is in exactly one pi ∈ P 
•  The algorithm iteratively partitions the DFA’s states  
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DFA Minimization 

Details of the algorithm 
•  Group states into maximal size sets, optimistically 
•  Iteratively subdivide those sets, based on transition graph  
•  States that remain grouped together are equivalent 

Initial partition, P0 , has two sets: {F} & {S-F}       D =(S,Σ,δ,s0,F)  

Splitting a set (“partitioning a set by a”) 
•  Assume sa & sb ∈ pi, and δ(sa,a) = sx, &  δ(sb,a) = sy  
•  If sx & sy are not in the same set, then pi must be split 

—  sa has transition on a, sb does not ⇒ a splits pi  
•  One state in the final DFA cannot have two transitions on a 

final states others 

Maximal size sets ⇒
 minimal number of
 states 
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Key Idea: Splitting S around α  

S 

T α

The algorithm partitions S around α 

Original set S 

α

α
S  has transitions
 on α to R, Q, & T 

R 

Q 
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Key Idea: Splitting pi around α  

T 

Original set pi 

pj 

pk 

Could we split pk further?
 (say, between Q & R?) 
Yes, but doing so does not
 help asymptotically.  
The algorithm will split pk
 in a future iteration.  

pk is everything
 in pi - pj R 

α

Q 

α

α
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DFA Minimization 
The algorithm 

T ← { F, {S-F}} 
 P ← { } 
while ( P ≠ T) 
   P ← T  
   T ← { } 
    for each set pi ∈ P 
         T ← T ∪ Split(pi) 

Split(S) 
    for each c ∈ Σ 
         if c splits S into s1 & s2 
             then return {s1, s2} 
    return S 

Why does this work? 
•  Partition P ∈ 2S 
•  Start off with 2 subsets of S: 

{F} and {S-F} 
•  The while loop takes Pi→Pi+1 by 

splitting 1 or more sets 
•  Pi+1 is at least one step closer to 

the partition with |S | sets 
•  Maximum of |S | splits 
Note that 
•  Partitions are never combined 
•  Initial partition ensures that 

final states remain final states 

This is a fixed-point algorithm! 

mild abuse of notation 
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DFA Minimization 
Refining the algorithm 
•  As written, it examines every pi ∈ P on each iteration 

—  This strategy entails a lot of unnecessary work 
— Only need to examine pi if some T, reachable from pi, has split 

•  Reformulate the algorithm using a “worklist” 
—  Start worklist with initial partition, F and {S-F}  
— When it splits pi into p1 and p2, place p2 on worklist 

This version looks at each pi ∈ P many fewer times 
•  Well-known, widely used algorithm due to John Hopcroft 
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Key Idea: Splitting S around α  

Iα S 
α

This part must have an α-transition to
 one or more other states in one or more
 other partitions.   
Otherwise, it does not split! 

Find partition I that has an α-transition into S 

R 
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Hopcroft's Algorithm 

W ← {F, S-F};  P ← {F, S-F};  // W is the worklist, P the current partition 

while ( W  is not empty ) do begin 
 select and remove s from W ;  // s is a set of  states 

 for each α in Σ do begin  

     let I α← δα–1( s );  // Iα is set of  all states that can reach s on α  

  for each p ∈ P such that  p ∩Iα is not empty  
           and p  is not contained in Iα  do begin 

   partition p  into p1 and p2 such that p1 ← p ∩Iα ; p2 ← p – p1; 
   P ← (P – p) ∪ p1 ∪ p2 ;  
   if  p ∈ W  
    then W ← (W – p) ∪ p1 ∪ p2 ; 
     else if  |p1| ≤ |p2 | 
     then W ← W ∪ p1;  
     else W ← W ∪ p2;  
  end 
 end 

end 

Critical difference between this
 formulation and the earlier one: this
 algorithm looks backward from a
 set; previously, it looked forward. 

This distinction is critical to the
 worklist formulation. By projecting
 backward across the transitions,
 the algorithm can rely on the new
 partition to split its antecedents in
 the graph.  This shows up in the
 example of a (b|c)* later in lecture. 
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Key Idea: Splitting pi around α  

T 

Original set pi 

pj 

pk How does the worklist
 algorithm ensure that it
 splits pk around Q & R ? 

pk is everything
 in pi - pj R 

α

Q 

α

α

Subtle point: either Q or R
 (or both) must already be
 on the worklist. (Q & R
 have split from {S-F}.) 
Thus, it can split pi around
 one state (T) & add either
 pj or pk to the worklist. 
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A Detailed Example 
Remember ( a | b )* abb ?                 (from last lecture) 

Applying the subset construction: 

Iteration 3 adds nothing to S, so the algorithm halts 

a | b 

q0  q1  q4  q2  q3  
ε a bb

Our first
 NFA  

contains q4 
(final state) 

State ε-closure(move(si,*) 
Iter. DFA NFA a b 

0 s0 q0,q1 q1,q2 q1 

1 s1 q1,q2 q1,q2 q1,q3 

s2 q1 q1,q2 q1 

2 s3 q1,q3 q1,q2 q1,q4 
3 s4 q1,q4 q1,q2 q1 
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A Detailed Example 
The DFA for ( a | b )* abb  

•  Not much expansion from NFA        (we feared exponential blowup) 

•  Deterministic transitions   
•  Use same code skeleton as before 

s0  
a

s1  

b

s3  
b

s4  

s2 

a

b

b

a

a

a

b

Character 
State a b 

s0 s1 s2 

s1 s1 s3 

s2 s1 s2 

s3 s1 s4 

s4 s1 s2 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} 

For the record, example was right in 1999, broken in 2000 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2} 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2} 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2} 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none 
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A Detailed Example          (DFA Minimization) 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2} 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s0,s2} none none 

Empty worklist ⇒ done! 
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A Detailed Example          (DFA Minimization) 

Current Partition Worklist s Split on a Split on b 

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2} 

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2} 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none 

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s0,s2} none none 

s0  
a s1  

b

s3  
b s4  

s2 

a

b

b

a

a

a

b

s0 , s2 
a s1  

b

s3  
b s4  

b

a

a

a

b

20% reduction in number of states 
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DFA Minimization 
What about  a ( b | c )* ? 

First, the subset construction: 

q0  q1  
a ε

q4  q5  
b

q6  q7  
c

q3 q8  q2  q9  

ε

ε

ε ε

ε ε

ε ε

s3  

s2  

s0  s1  
c

b
a

b

b

c

c

        States ε-closure(Move(s,*)) 
DFA NFA a b c 

s0 q0 s1 none none 

s1 
q1, q2, q3, 
q4, q6, q9 none s2 s3 

s2 
q5, q8, q9, 
q3, q4, q6 none s2 s3 

s3 q7, q8, q9, 
q3, q4, q6 none s2 s3 

From last lecture … 
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DFA Minimization 

Then, apply the minimization algorithm 

It splits no states after the initial partition 

⇒ The minimal DFA has two states  
-  One for {s0} 

-  One for {s1,s2,s3}  

s3  

s2  

s0  s1  
c

b
a

b

b

c

c

Split on 

Current Partition a b c 

P0 {s1,s2,s3} {s0} none none none 
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DFA Minimization 
Then, apply the minimization algorithm 

It produces this DFA 

s3  

s2  

s0  s1  
c

b
a

b

b

c

c

s0  s1  
a

b | c 

In lecture 5, we observed that a human
 would design a simpler automaton than
 Thompson’s construction & the subset
 construction did. 
Minimizing that DFA produces the one
 that a human would design!  

Split on 

Current Partition a b c 

P0 {s1,s2,s3} {s0} none none none 
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Extra Slides Start Here 
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Abbreviated Register Specification 
Start with a regular expression 

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 

Register names from
 zero to nine 
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Abbreviated Register Specification 
Thompson’s construction produces 

r 0 

r 1 

r 2 

r 8 

r 9 

… … 

s0 sf 

ε 
ε 

ε 

ε 

ε 
ε 

ε ε 
ε 

ε 

ε 

ε ε 

ε 
ε 

ε 

ε 

ε 

ε 
ε 

… 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 

To make the example fit, we have
 eliminated some of the ε-transitions,
 e.g., between r and 0 
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Abbreviated Register Specification 
The subset construction builds 

This is a DFA, but it has a lot of states … 

r 
0

sf0 

s0 

sf1 1 
sf2 2

sf9 
sf8 

… 
9

8

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 
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Abbreviated Register Specification 
The DFA minimization algorithm builds 

This looks like what a skilled compiler writer would do! 

r 
s0 sf 

0,1,2,3,4, 
5,6,7,8,9 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 
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Alternative Approach to DFA Minimization 
The Intuition 
•  The subset construction merges prefixes in the NFA 

s0 

s10 s9 s8 

s5 s7 s6 

s3 s2 s1 s4 
ε 
ε 

ε 

a 

b 

a 

b 

c 

d 

c 

abc | bc | ad 

Thompson’s construction would leave
 ε-transitions between each single
-character automaton 

s0 

s6 

s4 s5 

s2 s1 s3 a 

b 

b 

c 

d 

c Subset construction eliminates ε
-transitions and merges the paths for
 a.  It leaves duplicate tails, such as bc. 
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Alternative Approach to DFA Minimization 
Idea: use the subset construction twice 
•  For an NFA N 

—  Let reverse(N) be the NFA constructed by making initial states 
final (& vice-versa) and reversing the edges 

—  Let subset(N) be the DFA that results from applying the 
subset construction to N 

—  Let reachable(N) be N after removing all states that are not 
reachable from the initial state 

•  Then,  
reachable(subset(reverse[reachable(subset(reverse(N))])) 

is the minimal DFA that implements N     [Brzozowski, 1962] 

This result is not intuitive, but it is true. 
Neither algorithm dominates the other. 
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Alternative Approach to DFA Minimization 
Step 1 
•  The subset construction on reverse(NFA) merges suffixes in 

original NFA 

s11 

ε 
ε 

ε 

Reversed NFA 
s0 

s10 s9 s8 

s5 s7 s6 

s3 s2 s1 s4 
ε 
ε 

ε 

a 

b 

a 

b 

c 

d 

c 

s11 s9 s8 

s3 s2 s1 
a 

a 

b 

d 

c 

subset(reverse(NFA)) 
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Alternative Approach to DFA Minimization 
Step 2 
•  Reverse it again & use subset to merge prefixes … 

Reverse it, again 
s11 

s9 s8 

s3 s2 s1 
a 

a 

b 

d 

c 

s0 
ε 

ε 

ε 

And subset it, again 
s11 s3 

s2 a 

b 

d 

c s0 

b 

Minimal DFA 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 

Brzozowski 
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RE Back to DFA 
Kleene’s Construction 

for i ← 0 to |D| - 1;  // label each immediate path 
    for j ← 0 to |D| - 1; 
          R0

ij ← { a | δ(di,a) = dj}; 
          if (i = j) then 
              R0

ii = R0
ii | {ε}; 

for k ← 0 to |D| - 1;  // label nontrivial paths 
     for i ← 0 to |D| - 1; 
          for j ← 0 to |D| - 1; 

   Rk
ij ← Rk-1

ik (Rk-1
kk)* Rk-1

kj | Rk-1
ij  

L ← {}    // union labels of paths from  
For each final state si  //  s0 to a final state si 
    L ← L | R|D|-1

0i 

minimal
 DFA 

RE NFA DFA 

The Cycle of  Constructions 

Rk
ij is the set of paths

 from i to j that include
 no state higher than k 

STOP 


