
Lexical Analysis:
DFA Minimization

Comp 412

Copyright 2008, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2008

Comp 412, Fall 2008 1

Automating Scanner Construction
RE→NFA (Thompson’s construction)
•  Build an NFA for each term
•  Combine them with ε-moves

NFA →DFA (subset construction)
•  Build the simulation

DFA →Minimal DFA (today)
•  Hopcroft’s algorithm

DFA →RE (not really part of scanner construction)
•  All pairs, all paths problem
•  Union together paths from s0 to a final state

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Comp 412, Fall 2008 2

DFA Minimization
The Big Picture
•  Discover sets of equivalent states
•  Represent each such set with just one state

Comp 412, Fall 2008 3

DFA Minimization
The Big Picture
•  Discover sets of equivalent states in the DFA
•  Represent each such set with a single state

Two states are equivalent if and only if:
•  The set of paths leading to them are equivalent
•  ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)
•  α-transitions to distinct sets ⇒ states must be in distinct sets

Comp 412, Fall 2008 4

DFA Minimization
The Big Picture
•  Discover sets of equivalent states
•  Represent each such set with just one state

Two states are equivalent if and only if:
•  The set of paths leading to them are equivalent
•  ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)
•  α-transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S
•  A collection of sets P s.t. each s ∈ S is in exactly one pi ∈ P
•  The algorithm iteratively partitions the DFA’s states

Comp 412, Fall 2008 5

DFA Minimization

Details of the algorithm
•  Group states into maximal size sets, optimistically
•  Iteratively subdivide those sets, based on transition graph
•  States that remain grouped together are equivalent

Initial partition, P0 , has two sets: {F} & {S-F} D =(S,Σ,δ,s0,F)

Splitting a set (“partitioning a set by a”)
•  Assume sa & sb ∈ pi, and δ(sa,a) = sx, & δ(sb,a) = sy
•  If sx & sy are not in the same set, then pi must be split

—  sa has transition on a, sb does not ⇒ a splits pi
•  One state in the final DFA cannot have two transitions on a

final states others

Maximal size sets ⇒
 minimal number of
 states

Comp 412, Fall 2008 6

Key Idea: Splitting S around α

S

T α

The algorithm partitions S around α

Original set S

α

α
S has transitions
 on α to R, Q, & T

R

Q

Comp 412, Fall 2008 7

Key Idea: Splitting pi around α

T

Original set pi

pj

pk

Could we split pk further?
 (say, between Q & R?)
Yes, but doing so does not
 help asymptotically.
The algorithm will split pk
 in a future iteration.

pk is everything
 in pi - pj R

α

Q

α

α

Comp 412, Fall 2008 8

DFA Minimization
The algorithm

T ← { F, {S-F}}
 P ← { }
while (P ≠ T)
 P ← T
 T ← { }
 for each set pi ∈ P
 T ← T ∪ Split(pi)

Split(S)
 for each c ∈ Σ
 if c splits S into s1 & s2
 then return {s1, s2}
 return S

Why does this work?
•  Partition P ∈ 2S
•  Start off with 2 subsets of S:

{F} and {S-F}
•  The while loop takes Pi→Pi+1 by

splitting 1 or more sets
•  Pi+1 is at least one step closer to

the partition with |S | sets
•  Maximum of |S | splits
Note that
•  Partitions are never combined
•  Initial partition ensures that

final states remain final states

This is a fixed-point algorithm!

mild abuse of notation

Comp 412, Fall 2008 9

DFA Minimization
Refining the algorithm
•  As written, it examines every pi ∈ P on each iteration

—  This strategy entails a lot of unnecessary work
— Only need to examine pi if some T, reachable from pi, has split

•  Reformulate the algorithm using a “worklist”
—  Start worklist with initial partition, F and {S-F}
— When it splits pi into p1 and p2, place p2 on worklist

This version looks at each pi ∈ P many fewer times
•  Well-known, widely used algorithm due to John Hopcroft

Comp 412, Fall 2008 10

Key Idea: Splitting S around α

Iα S
α

This part must have an α-transition to
 one or more other states in one or more
 other partitions.
Otherwise, it does not split!

Find partition I that has an α-transition into S

R

Comp 412, Fall 2008 11

Hopcroft's Algorithm

W ← {F, S-F}; P ← {F, S-F}; // W is the worklist, P the current partition

while (W is not empty) do begin
 select and remove s from W ; // s is a set of states

 for each α in Σ do begin

 let I α← δα–1(s); // Iα is set of all states that can reach s on α

 for each p ∈ P such that p ∩Iα is not empty
 and p is not contained in Iα do begin

 partition p into p1 and p2 such that p1 ← p ∩Iα ; p2 ← p – p1;
 P ← (P – p) ∪ p1 ∪ p2 ;
 if p ∈ W
 then W ← (W – p) ∪ p1 ∪ p2 ;
 else if |p1| ≤ |p2 |
 then W ← W ∪ p1;
 else W ← W ∪ p2;
 end
 end

end

Critical difference between this
 formulation and the earlier one: this
 algorithm looks backward from a
 set; previously, it looked forward.

This distinction is critical to the
 worklist formulation. By projecting
 backward across the transitions,
 the algorithm can rely on the new
 partition to split its antecedents in
 the graph. This shows up in the
 example of a (b|c)* later in lecture.

Comp 412, Fall 2008 12

Key Idea: Splitting pi around α

T

Original set pi

pj

pk How does the worklist
 algorithm ensure that it
 splits pk around Q & R ?

pk is everything
 in pi - pj R

α

Q

α

α

Subtle point: either Q or R
 (or both) must already be
 on the worklist. (Q & R
 have split from {S-F}.)
Thus, it can split pi around
 one state (T) & add either
 pj or pk to the worklist.

Comp 412, Fall 2008 13

A Detailed Example
Remember (a | b)* abb ? (from last lecture)

Applying the subset construction:

Iteration 3 adds nothing to S, so the algorithm halts

a | b

q0 q1 q4 q2 q3
ε a bb

Our first
 NFA

contains q4
(final state)

State ε-closure(move(si,*)
Iter. DFA NFA a b

0 s0 q0,q1 q1,q2 q1

1 s1 q1,q2 q1,q2 q1,q3

s2 q1 q1,q2 q1

2 s3 q1,q3 q1,q2 q1,q4
3 s4 q1,q4 q1,q2 q1

Comp 412, Fall 2008 14

A Detailed Example
The DFA for (a | b)* abb

•  Not much expansion from NFA (we feared exponential blowup)

•  Deterministic transitions
•  Use same code skeleton as before

s0
a

s1

b

s3
b

s4

s2

a

b

b

a

a

a

b

Character
State a b

s0 s1 s2

s1 s1 s3

s2 s1 s2

s3 s1 s4

s4 s1 s2

Comp 412, Fall 2008 15

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3}

For the record, example was right in 1999, broken in 2000

Comp 412, Fall 2008 16

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none

Comp 412, Fall 2008 17

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

Comp 412, Fall 2008 18

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2}

Comp 412, Fall 2008 19

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none

Comp 412, Fall 2008 20

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2}

Comp 412, Fall 2008 21

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2}

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2}

Comp 412, Fall 2008 22

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2}

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none

Comp 412, Fall 2008 23

A Detailed Example (DFA Minimization)

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2}

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s0,s2} none none

Empty worklist ⇒ done!

Comp 412, Fall 2008 24

A Detailed Example (DFA Minimization)

Current Partition Worklist s Split on a Split on b

P0 {s4} {s0,s1,s2,s3} {s4} {s0,s1,s2,s3} {s4} none {s3} {s0,s1,s2}

P1 {s4} {s3} {s0,s1,s2} {s3} {s0,s1,s2} {s3} none {s1} {s0,s2}

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s1} none none

P2 {s4} {s3} {s1} {s0,s2} {s1} {s0,s2} {s0,s2} none none

s0
a s1

b

s3
b s4

s2

a

b

b

a

a

a

b

s0 , s2
a s1

b

s3
b s4

b

a

a

a

b

20% reduction in number of states

Comp 412, Fall 2008 25

DFA Minimization
What about a (b | c)* ?

First, the subset construction:

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

s3

s2

s0 s1
c

b
a

b

b

c

c

 States ε-closure(Move(s,*))
DFA NFA a b c

s0 q0 s1 none none

s1
q1, q2, q3,
q4, q6, q9 none s2 s3

s2
q5, q8, q9,
q3, q4, q6 none s2 s3

s3 q7, q8, q9,
q3, q4, q6 none s2 s3

From last lecture …

Comp 412, Fall 2008 26

DFA Minimization

Then, apply the minimization algorithm

It splits no states after the initial partition

⇒ The minimal DFA has two states
-  One for {s0}

-  One for {s1,s2,s3}

s3

s2

s0 s1
c

b
a

b

b

c

c

Split on

Current Partition a b c

P0 {s1,s2,s3} {s0} none none none

Comp 412, Fall 2008 27

DFA Minimization
Then, apply the minimization algorithm

It produces this DFA

s3

s2

s0 s1
c

b
a

b

b

c

c

s0 s1
a

b | c

In lecture 5, we observed that a human
 would design a simpler automaton than
 Thompson’s construction & the subset
 construction did.
Minimizing that DFA produces the one
 that a human would design!

Split on

Current Partition a b c

P0 {s1,s2,s3} {s0} none none none

Comp 412, Fall 2008 28

Extra Slides Start Here

Comp 412, Fall 2008 29

Abbreviated Register Specification
Start with a regular expression

r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Register names from
 zero to nine

Comp 412, Fall 2008 30

Abbreviated Register Specification
Thompson’s construction produces

r 0

r 1

r 2

r 8

r 9

… …

s0 sf

ε
ε

ε

ε

ε
ε

ε ε
ε

ε

ε

ε ε

ε
ε

ε

ε

ε

ε
ε

…

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

To make the example fit, we have
 eliminated some of the ε-transitions,
 e.g., between r and 0

Comp 412, Fall 2008 31

Abbreviated Register Specification
The subset construction builds

This is a DFA, but it has a lot of states …

r
0

sf0

s0

sf1 1
sf2 2

sf9
sf8

…
9

8

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Comp 412, Fall 2008 32

Abbreviated Register Specification
The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

r
s0 sf

0,1,2,3,4,
5,6,7,8,9

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Comp 412, Fall 2008 33

Alternative Approach to DFA Minimization
The Intuition
•  The subset construction merges prefixes in the NFA

s0

s10 s9 s8

s5 s7 s6

s3 s2 s1 s4
ε
ε

ε

a

b

a

b

c

d

c

abc | bc | ad

Thompson’s construction would leave
 ε-transitions between each single
-character automaton

s0

s6

s4 s5

s2 s1 s3 a

b

b

c

d

c Subset construction eliminates ε
-transitions and merges the paths for
 a. It leaves duplicate tails, such as bc.

Comp 412, Fall 2008 34

Alternative Approach to DFA Minimization
Idea: use the subset construction twice
•  For an NFA N

—  Let reverse(N) be the NFA constructed by making initial states
final (& vice-versa) and reversing the edges

—  Let subset(N) be the DFA that results from applying the
subset construction to N

—  Let reachable(N) be N after removing all states that are not
reachable from the initial state

•  Then,
reachable(subset(reverse[reachable(subset(reverse(N))]))

is the minimal DFA that implements N [Brzozowski, 1962]

This result is not intuitive, but it is true.
Neither algorithm dominates the other.

Comp 412, Fall 2008 35

Alternative Approach to DFA Minimization
Step 1
•  The subset construction on reverse(NFA) merges suffixes in

original NFA

s11

ε
ε

ε

Reversed NFA
s0

s10 s9 s8

s5 s7 s6

s3 s2 s1 s4
ε
ε

ε

a

b

a

b

c

d

c

s11 s9 s8

s3 s2 s1
a

a

b

d

c

subset(reverse(NFA))

Comp 412, Fall 2008 36

Alternative Approach to DFA Minimization
Step 2
•  Reverse it again & use subset to merge prefixes …

Reverse it, again
s11

s9 s8

s3 s2 s1
a

a

b

d

c

s0
ε

ε

ε

And subset it, again
s11 s3

s2 a

b

d

c s0

b

Minimal DFA

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Brzozowski

Comp 412, Fall 2008 37

RE Back to DFA
Kleene’s Construction

for i ← 0 to |D| - 1; // label each immediate path
 for j ← 0 to |D| - 1;
 R0

ij ← { a | δ(di,a) = dj};
 if (i = j) then
 R0

ii = R0
ii | {ε};

for k ← 0 to |D| - 1; // label nontrivial paths
 for i ← 0 to |D| - 1;
 for j ← 0 to |D| - 1;

 Rk
ij ← Rk-1

ik (Rk-1
kk)* Rk-1

kj | Rk-1
ij

L ← {} // union labels of paths from
For each final state si // s0 to a final state si
 L ← L | R|D|-1

0i

minimal
 DFA

RE NFA DFA

The Cycle of Constructions

Rk
ij is the set of paths

 from i to j that include
 no state higher than k

STOP

