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Preface

The aim of this book is to present the Galois theory of homogeneous lin-
ear differential equations. This theory goes back to the work of Picard and
Vessiot at the end of the 19th century and bears their names. It paral-
lels the Galois theory of algebraic equations. The notions of splitting field,
Galois group, and solvability by radicals have their counterparts in the no-
tions of Picard-Vessiot extension, differential Galois group, and solvability
by quadratures. The differential Galois group of a homogeneous linear dif-
ferential equation has a structure of linear algebraic group; hence it is en-
dowed, in particular, with the Zariski topology. The fundamental theorem of
Picard-Vessiot theory establishes a bijective correspondence between inter-
mediate differential fields of a Picard-Vessiot extension and closed subgroups
of its differential Galois group. Solvability by quadratures is characterized
by means of the differential Galois group. Picard-Vessiot theory was clari-
fied and generalized in the work of Kolchin in the mid-20th century. Kolchin
used the differential algebra developed by Ritt and also built the foundations
of the theory of linear algebraic groups. Kaplansky's book "Introduction to
Differential Algebra" made the theory more accessible, although it omits an
important point, namely the construction of the Picard-Vessiot extension.
The more recent books by Magid and van der Put and Singer assume that
the reader is familiar with algebraic varieties and linear algebraic groups,
although the latter book compiles the most important topics in an appen-
dix. We point out that not all results on algebraic varieties and algebraic
groups needed to develop differential Galois theory appear in the standard
books on these topics. For our book we have decided to develop the theory
of algebraic varieties and linear algebraic groups in the same way that books
on classical Galois theory include some chapters on group, ring, and field

xi



xii Preface

theories. Our text includes complete proofs, both of the results on algebraic
geometry and algebraic groups which are needed in Picard-Vessiot theory
and of the results on Picard-Vessiot theory itself.

We have given several courses on Differential Galois Theory in Barcelona
and Krakow. As a result, we published our previous book "Introduction to
Differential Galois Theory" [C-Hi]. Although published by a university
publishing house, it has made some impact and has been useful to graduate
students as well as to theoretical physicists working on dynamical systems.
Our present book is also aimed at graduate students in mathematics or
physics and at researchers in these fields looking for an introduction to
the subject. We think it is suitable for a graduate course of one or two
semesters, depending on students' backgrounds in algebraic geometry and
algebraic groups. Interested students can work out the exercises, some of
which give an insight into topics beyond the ones treated in this book.
The prerequisites for this book are undergraduate courses in commutative
algebra and complex analysis.

We would like to thank our colleagues Jose Maria Giral, Andrzej No-
wicki, and Henryk Zoldek who carefully read parts of this book and made
valuable comments, as well as Jakub Byszewski and Slawomir Cynk for
interesting discussions on its content. We are also grateful to the anonymous
referees for their corrections and suggestions which led to improvements in
the text. Our thanks also go to Dr. ma Mette for persuading us to expand
our previous book to create the present one and for her interest in this
project.

Finally our book owes much to Jerry Kovacic. We will always be thankful
to him for many interesting discussions and will remember him as a brilliant
mathematician and an open and friendly person.

Both authors acknowledge support by Spanish Grants MTM2006-04895
and MTM2009-07024, Polish Grant N20103831/3261 and European Network
MRTN-CT-2006-035495.

Barcelona and Krakow, October 2010

Teresa Crespo and Zbigniew Hajto



Introduction

This book has been conceived as a self-contained introduction to differential
Galois theory. The self-teaching reader or the teacher wanting to give a
course on this subject will find complete proofs of all results included. We
have chosen to make a classical presentation of the theory. We refer to the
Picard-Vessiot extension as a field rather than introducing the notion of
Picard-Vessiot ring so as to keep the analogy with the splitting field in the
polynomial Galois theory. We also refer to differential equations rather than
differential systems, although the differential systems setting is given in the
exercises.

The chapters on algebraic geometry and algebraic groups include all
questions which are necessary to develop differential Galois theory. The
differential Galois group of a linear differential equation is a linear algebraic
group, hence afne. However, the construction of the quotient of an algebraic
group by a subgroup needs the notion of abstract afne variety. Once we
introduce the notion of geometric space, the concept of algebraic variety
comes naturally. We also consider it interesting to include the notion of
projective variety, which is a model for algebraic varieties, and present a
classical example of an algebraic group which is not afne, namely the elliptic
curve.

The chapter on Lie algebras aims to prove the equivalence between the
solvability of a connected linear algebraic group and the solvability of its Lie
algebra. This fact is used in particular to determine the algebraic subgroups
of SL(2, C). We present the characterization of differential equations solv-
able by quadratures. In the last chapter we consider differential equations
defined over the field of rational functions over the complex field and present

xiii



xiv Introduction

classical notions such as the monodromy group, Fuchsian equations and hy-
pergeometric equations. The last section is devoted to Kovacic's powerful
algorithm to compute Liouvillian solutions to linear differential equations of
order 2. Each chapter ends with a selection of exercise statements ranging
in difficulty from the direct application of the theory to dealing with some
topics that go beyond it. The reader will also find several illuminating ex-
amples. We have included a chapter with a list of further reading outlining
the different directions in which differential Galois theory and related topics
are being developed.

As guidance for teachers interested in using this book for a postgraduate
course, we propose three possible courses, depending on the background and
interests of their students.

(1) For students with limited or no knowledge of algebraic geometry
who wish to understand Galois theory of linear differential equa-
tions in all its depth, atwo-semester course can be given using the
whole book.

(2) For students with good knowledge of algebraic geometry and alge-
braic groups, aone-semester course can be given based on Part 3
of the book using the first two parts as reference as needed.

(3) For students without a good knowledge of algebraic geometry and
eager to learn differential Galois theory more quickly, aone-semester
course can be given by developing the topics included in the fol-
lowing sections: 1.1, 3.1, 3.2, 3.3, 4.4 (skipping the references to
Lie algebra), 4.6, and Part 3 (except the proof of Proposition 6.3.5,
i.e. that the intermediate field of a Picard-Vessiot extension fixed
by a normal closed subgroup of the differential Galois group is a
Picard-Vessiot extension of the base field). This means introducing
the concept of afIine variety, defining the algebraic group and its
properties considering only affine ones, determining the subgroups
of SL(2, (C) assuming as a fact that a connected linear group of
dimension less than or equal to 2 is solvable, and developing differ-
ential Galois theory (skipping the proof of Proposition 6.3.5).



Part 1

Algebraic Geometry



In Part 1, we introduce algebraic varieties and develop the related topics
using an elementary approach. In the first chapter we define affine varieties
as subsets of an affine space given by a finite set of polynomial equations.
We see that affine varieties have a natural topology called Zariski topology.
We introduce the concept of abstract affine variety to illustrate that giving
an affine variety is equivalent to giving the ring of regular functions on each
open set. We then study projective varieties and see how functions defined
on a projective variety can be recovered by means of the open covering of
the projective space by affine spaces.

In the second chapter we study algebraic varieties, which include afFine
and projective ones. We define morphism of algebraic varieties, the dimen-
sion of an algebraic variety, and the tangent space at a point. We analyze
the dimension of the tangent space and define simple and singular points
of a variety. We establish Chevalley's theorem and Zariski's main theorem
which will be used in the construction of the quotient of an algebraic group
by a closed subgroup.

For more details on algebraic geometry see [[Kie], and [Sp]. For
the results of commutative algebra see [A-M], [L], and [Ma].

Unless otherwise specified, C will denote an algebraically closed field of
characteristic 0.



Chapter 1

Affine and Projective
Varieties

In this chapter we define an affine variety as the set of points of the affine
space An over the field C which are common zeros of a finite set of poly-
nomials in C[X1,... , X]. An important result is Hilbert's Nullstellensatz
which establishes a bijective correspondence between affine varieties of An
and radical ideals of the polynomial ring C[Xl,... , Xn]. We define analo-
gously projective varieties of the projective space Jn as the set of common
zeros of a finite set of homogeneous polynomials, and we state a projective
Nullstellensatz.

1.1. Affine varieties

Let C [X 1, X2,.. . , Xn] denote the ring of polynomials in the variables X 1, X2,
... , Xn over C. The set Cn = C x x C will be called acne n-space and
denoted by Ac or just A. We define an acne variety as the set of common
zeros in Ac of a finite collection of polynomials in C [X 1, ... , X]. To each
ideal I of C [X 1, ... , Xn] we associate the set V (I) of its common zeros in
A. By Hilbert's basis theorem, the C-algebra C[X1,... , Xn] is Noetherian;
hence each ideal of C [X 1i ... , Xn] has a finite set of generators. Therefore
the set V(I) is an affine variety. To each subset S C Ac we associate the
collection I (S) of all polynomials vanishing on S. It is clear that I (S) is an
ideal and that we have inclusions S C V (I (S) ), I C I (V (I) ), which are not
equalities in general.

Example 1.1.1. If f E C[Xl, X2i ... , Xn] \ C, the affine variety V(f) is
called a hypersurface of A.

3



4 1. Affine and Projective Varieties

If P = (xl,...
variety.

xn) E Ac, {P} = V (X1 - xl,... , Xn - xn) is an affine

The following two propositions are easy to prove.

Proposition 1.1.2. Let S, Si, S2 denote subsets of Ac, Ii, I2 denote ideals
of C[Xl,... ,X]. We have

aJ Sl C 52 = Z(Sl) 3Z(S2),
b) Il C I2 = V(Ii) V(I2),

c) I(S) = C[X1,X2,.. .,X] S = 0.

Proposition 1.1.3. The correspondence V satisfies the following equalities:

a) .ABC = V(0), 0 = V(C[Xl, ... , Xn]),

b) If I and J are two ideals of C[Xl,... , Xn], V(I) U V(J) = V(I fl J),
c) If {Ia} is an arbitrary collection of ideals of C[Xl,... ,X], f1aV(I«) _

V(>« I«).

We then have that affine varieties in Ac satisfy the axioms of closed
sets in a topology. This topology is called Zariski topology. Hilbert's basis
theorem implies the descending chain condition on closed sets and therefore
the ascending chain condition on open sets. Hence Ac is a Noetherian topo-
logical space. This implies that it is quasicompact. However, the Hausdorff
condition fails.

Example 1.1.4. For a point P = (x1, X2,. . . , xn) E Ac, the ideal 1(P) =
(Xi-xi, X2-x2,.. . , X- x)xn) is maximal, as it is the kernel of the evaluation
morphism

vp C[Xl, X2,... Xn] --+ C
f - f(P).

We recall that for an ideal I of a commutative ring A the radical s/it of
I is defined by

\/i:={aEA:ar Elforsomer> 1}.
It is an ideal of A containing I. A radical ideal is an ideal which is equal
to its radical. An ideal I of the ring A is radical if and only if the quotient
ring A/I has no nonzero nilpotent elements. As examples of radical ideals,
we have that a prime ideal is radical and ideals of the form Z(S) for S C Ac
are radical ideals of C[Xl,... , Xn].

Example 1.1.5. The ideal (Xi X2) is a radical ideal of C[Xl,... , Xn] which
is not prime. The ideal (X2 -1) is a radical ideal of C[X] which is not prime.



1.1. Afine varieties 5

For an ideal I of C[Xl,... , Xn], we can easily see the inclusion /t c
Z(V(I)). When the field C is algebraically closed, equality is given by the
next theorem.

Theorem 1.1.6. (Hubert's Nullstellensatz) Let C be an algebraically
closed field and let A = C[Xl,... , Xn]. Then the following hold:

a) Every maximal ideal 9Jt of A is of the form

_ (Xl - xl, X2 - x2, ... , Xn - xn =
for some point P = (Xi, x2, ... , xn) in A.

b) If I is a proper ideal of A, then V(I) fQ.

c) If I is any ideal in A, then

= z(v(z)).
Remark 1.1.7. Point b) justifies the name of the theorem, namely "theorem
on the zeros". To see the necessity of the condition C algebraically closed,
we can consider the ideal (X2 + 1) in 1[8[X].

For the proof of Hilbert's Nullstellensatz we shall use the following result,
which is valuable on its own.

Proposition 1.1.8 (Noether's normalization lemma). Let C be an arbitrary
field, R = C[xl,... , xn] a finitely generated C-algebra. Then there exist
elements yl,... , yr E R, with r < n, algebraically independent over C such
that R is integral over C[yl,... , yr] .

Proof. Let SP : C[Xl,... , Xn] -+ C[xl,... , xn] be the C-algebra morphism
given by o(XZ) = x2, 1 < i < n. Clearly, SP is an epimorphism. If it
is an isomorphism, we just take y2 := x2, 1 < i < n. If not, let f =

a21...Zn X it ... Xn be a nonzero polynomial in Ker . We introduce an or-
der relation in the set of monomials by defining

a X XZn if and only if (i1,... , i) < (i1'>...
>
i), with respectn n

to the lexicographical order, i.e. for some k E {1,. . . , n}, we have it = it if
l <k and ik < i . Let ail ...gin X i 1 ... Xnn be the largest nonzero monomial
in f. We can assume ail = 1. Let now d be an integer greater than all
the exponents of the n variables appearing in the nonzero monomials of f.
We consider the polynomial

h(X1,... , Xn) := f(X1 +
Xnn-1'X2 +X2,. .., Xn_1 + Xd, Xn).

The monomial Xn in f becomes under the change of variables
21 do-1 +i2dn-2+...+Zn-1 d+Zn

Xn + terms of lower degree in Xn; hence h is
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monic with respect to Xn and its leading term is Xn with c = j1 d' +
j2dn-2 + + jn_id + in. The monic polynomial

do-1 do-2 d
g(X) h(x1 - xn ,X2 - xn , - xn, X)

then satisfies g (xn) = f(xi,. . . , xn) = 0, which gives that the ring

do-1 do-2 d
C [x 1 , x2, ... , xn] = C [x1 - xn ,X2 - xn , ... , xn_ 1 - xn, xn]

is integral over the ring

do-1 do-2
R1 := C [x 1 - xn ,X2 - xn , .. , xn_ 1 - xn]

If the ring R1 is isomorphic to the ring of polynomials C [X 1, ... , Xn_ 1 ] , then
the proof is finished. Otherwise, by repeating the process we obtain a ring
R2 generated over C by n - 2 elements over which R1 is integral and, by
transitivity of integral dependence, R as well . Since R is finitely generated
over C, in a finite number of steps we obtain the result. The case in which
r = 0, i.e. R is integral over C, is not excluded. 0

Remark 1.1.9. Let us consider the ring R in Proposition 1.1.8 and let us
assume that it is an integral domain. If we denote by K the fraction field
of R, we have that the elements y1, ... , yr form a transcendence basis of K
over C; hence the transcendence degree of K over C is equal to r.

Corollary 1.1.10. Let S C R be two finitely generated domains over C.
Then there exist elements f E S and x1, ... , xr E R, algebraically indepen-
dent over S f such that R f is integral over S f [xl,. . . , xr] .

Proof. Let K C L be the fields of fractions of S and R. Denote by R' the
localization of R with respect to the multiplicative system S* of the nonzero
elements of S. We apply Proposition 1.1.8 to the finitely generated K-
algebra R'. There exist elements x1, ... , xr in R' algebraically independent
over K such that R' is integral over K [x 1, ... , xr] . It is clear that the
elements x2 can be chosen in R as the denominators appearing are invertible
in K. Now R is finitely generated over S and each generator satisfies an
integral dependence relation over K [x 1, ... , xr] . By choosing a common
denominator f for the coefficients of all these relations, we obtain that R f
is integral over S f [x 1, ... , xr] . 0

For the proof of the Hilbert's Nullstellensatz, we use the following propo-
sition, sometimes called "weak Nullstellensatz".



1.1. Afne varieties 7

Proposition 1.1.11. Let C be an arbitrary field, R = C[xl,... , xn] a
finitely generated C-algebra. If R is a field, then it is algebraic over C.

Proof. By Noether's normalization Lemma 1.1.8, there exist elements yi,... ,

yr E R, with r < n, algebraically independent over C such that R is inte-
gral over A := C [yi , ... , Yd], hence a finite A-algebra. This implies that
A is a field. Indeed, a nonzero element a in A has an inverse a-1 in
R. Writing down an integral dependence relation for a-1 over A, a-n +
al a-n+1 + . + an_i a-1 + an = 0, and multiplying it by an-1, we obtain
a-1 = -(al + + an_ 1 an-2 + an an-1) E A. But A can only be a field for
d = 0, so R is a finite extension of C, hence algebraic over C. D

Proof of Hilbert's Nullstellensatz.

a) Let 971 be a maximal ideal in A. Then we have that K := A/971 is
a field, which is generated over C by the residue classes X2 mod 971. By
Proposition 1.1.11, K is algebraic over C and, as C is algebraically closed,
the natural morphism of C-algebras

p: C y C[X1, X2,. . . Xn] - C[Xl, X2,. .. , X]/9J1 = K

is an isomorphism between C and K. Let x2 := cP-1(X2 mod 931), 1 <
i < n. Then X2 - x2 E Ker 71 = 91 and so, (Xi - xi, X2 - x2,. . . , Xn -
xn) C 931. As (X1 - x i , X2 - x2,. . . , Xn - xn) is a maximal ideal, we have
equality.

b) Let I A. There exists a maximal ideal 971 of A such that I C fJ)t From
a) we have 971 = I(P) for some point P E Ac, so {P} C V(I(P)) C V(I);
hence V (I) is not empty.

c) For an ideal I of A we want to prove that if f is an element in I (V (I)) ,

then f' belongs to I for some integer r. We shall use Rabinowitsch's
trick, which consists of adding a variable T and considering the natural
inclusion C[X1, X2,. .. , Xn] C C[X1, X2,.. . , Xn, T] and the ideal J =
(I, T f - 1) of C[X1, X2,. . . , Xn, T]. We clearly have

v(J) _ {(xi,x2,... , xn, Y) _ (P,Y) E P E V(I) and y f (P) = 1}.

Projection onto the first n coordinates maps V(J) to the subset of V(I)
of points P with f(P) 74 0. But f belongs to Z(V(I)), so V(J) = Ql. By
b), we then have J = C[Xl, X2i ... , Xn, T]. In particular, 1 E J, so we
can write
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m

(1.1) 1 = + go(Tf - 1),
i=1

for some gi E C[X1 i X2,. . . , Xn, T], fi E I. Let Tr be the highest power
of T appearing in the polynomials gi, for 0 < i < m. Multiplying (1.1)
by fT gives

m

fT = Gifi + Go(Tf - 1),
i=1

where the Gi = fTgi are polynomials in X1,. . . , Xn, T f . Considering this
last equality modulo T f - 1, we obtain the relationship

m

fT = hifi mod(Tf - 1),
i=1

where hi(X1,... , Xn) := Gi(X1i... , X7,1),1 < i < m. Now the natural
morphism

C[X1,X2i...,Xn] - C[X1,X2,...,Xn,T] --5* C[X1iX2,...,Xn,T]/(Tf-1)

is injective. So we have the equality

m
fr =

2=1

in C[Xl,... , Xn]. Thus fT E I. O

Remark 1.1.12. In the proof of Hilbert's Nullstellensatz, the hypothesis C
algebraically closed was only used to prove a). Then b) was proved assuming
a) and c) was proved assuming b). For any field C it can be proved that the
three statements are equivalent. Indeed assuming c), if 9Jt is a maximal ideal
of C[Xl, X2, ... ,X], we have Z(V(9Jt)) _ _ 9J2 C[Xl, X2, ... , Xn];
hence V(912) # 0. If P E V(9Jt), then 9Jt c Z(P), and as 9Jt is maximal,
9J2 = Z(P).

As a consequence of Hilbert's Nullstellensatz, we have that V and Z
set a bijective correspondence between the collection of all radical ideals of
C [X1i ... , Xn] and the collection of all affine varieties of Ac which inverts
inclusion.

Recall that a nonempty topological space X is said to be reducible if it
can be written as a union of two closed proper subsets. It is irreducible if
it is not reducible, or equivalently, if all nonempty open subsets of X are
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dense. A subset of a topological space is reducible (resp. irreducible) if it
is so as a topological space with the induced topology. Recall as well that
a Noetherian topological space can be written as a union of its irreducible
components, i.e. its finitely many maximal irreducible subsets. If a subset
is irreducible, its closure is also; so irreducible components are closed.

For closed subsets in Ac irreducibility is characterized in terms of the
corresponding ideal by the following proposition.

Proposition 1.1.13. A closed set V in Ac is irreducible if and only if its
ideal Z(V) is prime. In particular, Ac itself is irreducible.

Proof. Write I = Z(V). Suppose that V is irreducible and let fl, f2 E
C[Xl,... , Xn] such that fi f2 E I. Then each P E V is a zero of fi or f2;
hence V C V(Il) U V(I2), for Ii the ideal generated by fi,i = 1, 2. Since V
is irreducible, it must be contained within one of these two sets, i.e. fi E I
or f2 E I, and I is prime.

Reciprocally, assume that I is prime but V = Vl U V2, with Vi, VZ closed
in V. If none of the Vi's covers V, we can find fi E Z(U) but fi I, i = 1, 2.
But flf2 vanish on V, so flf2 E I, contradicting that I is prime.

Example 1.1.14. As C[Xl, X2,.. . , Xn] is a unique factorization domain,
for f E C[Xl,... , Xn] \ C, the irreducible components of the hypersurface
V(f) in An are just the hypersurfaces defined as the zero sets of the irre-
ducible factors of f.

Example 1.1.15. For the closed set V(Xl X2) C .4\n, V(Xl X2) = V(X1) U
V(XZ) is the decomposition as the union of its irreducible components which
are coordinate hyperplanes. For the closet set V(XZ -1) C Ac, V (X2 -1) _
V(X - 1) U V(X -I- 1) is the descomposition as the union of its irreducible
components which are points.

From Hilbert's Nullstellensatz and Proposition 1.1.13, we obtain that V
and Z set the following bijective correspondences.

{radical ideals of C[Xl, X2,. . . , Xn]} t {closed sets in Ac},

{prime ideals of C[Xl, X2,. . . , Xn] } F> {irreducible closed sets in .4\c},

{maximal ideals of C[Xl, X2,. . . , Xn]} H {points in Ac}.

A principal open set of Ac is the set of non-zeros of a single polynomial.
We note that principal open sets are a basis of the Zariski topology. The
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closure in the Zariski topology of a principal open set is the whole affine
space. Hence, as Ac is irreducible, we obtain that principal open sets are
irreducible.

If V is closed in .4\c, each polynomial 1(X) E C[Xl,... , Xn] defines a
C-valued function on V. But different polynomials may define the same
function. It is clear that we have a 1-1 correspondence between the distinct
polynomial functions on V and the residue class ring C[Xl,... , X]/I(V).
We denote this ring by C[V] and call it the coordinate ring of V. It is
a finitely generated algebra over C and is reduced (i.e. without nonzero
nilpotent elements) because Z(V) is a radical ideal.

Remark 1.1.16. If V is an affine variety in .41c, we can consider in V the
Zariski topology induced by the topology in A. The closed sets in this
topology can be defined as V(I) :_ {P E V : f(P) = 0, bf E I} for an ideal
I of C[V].

If V is irreducible, equivalently if Z(V) is a prime ideal, C[V] is an
integral domain. We can then consider its field of fractions C(V), which is
called ,function field of V. Elements f E C(V) are called rational functions
on V. Any rational function can be written f = g/h, with g, h E C[V]. In
general, this representation is not unique. We can only give f awell-defined
value at a point P if there is a representation f = g/h, with h(P) 0. In
this case we say that the rational function f is regular at P. The domain of
definition of f is defined to be the set

dom(f) _ {P E V : f is regular at P}.

Example 1.1.17. We consider V := V(Y2-X3+X) C A and P = (0,0) E
V. The function X/Y is regular at P as it can be written as Y/(X2 - 1) in
C(V).

Proposition 1.1.18. Let V be an irreducible variety. For a rational func-
tion f E C(V), the following statements hold

a) dom(f) is open and dense in V.
b) dom(f) = V r f E C[V].
c) If h E C[V] and Uh :_ {P E V : h(P) 0}, then dom(f) i Vh r f E

C[V] [1/h].

Proof. a) For f E C(V), we consider the ideal of denominators

Jf={hEC[V]:hf EC[V]}CC[V].
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Then dom(f) _ {P E V : h(P) 0 for some h E J1}; hence its comple-
ment V \ dom(f) = V (J1) is closed. As dom(f) is an open subset of the
irreducible closed subset V, it is dense in V.
b) dom(f) = V V (J1) _ 0. By Hilbert's Nullstellensatz 1.1.6, this last
equality implies 1 E Jf and so f E C[V].
c) We have dom(f) Vh if and only if h vanishes on V (J1). By Hilbert's
Nullstellensatz, this is equivalent to h'' E J1 for some r > 1. This means
that f = g/h'' E C[V][1/h]. O

Part b) of Proposition 1.1.18 says that the polynomial functions are
precisely the rational functions that are "everywhere regular".

If U is an open subset of an irreducible variety V, a rational function f
in C(V) is regular on U if it is regular at each point of U. The set of rational
functions of C(V) which are regular on U is a subring of C(V). We denote
it by CP(U).

The local ring of V at a point P E V is the ring

Cep :_ {f E C(V) : f is regular at P}.

It is isomorphic to the ring C[V]
the C[V] a local
ring, i.e. it has a unique maximal ideal, namely

Remark 1.1.19. If V is an irreducible afne variety, then

C[V] - n o.
PEV

Indeed, as C[V] is an integral domain, we can apply [Ma] Lemma 2, p.8.

If V is an arbitrary affine variety, U an open subset of V, a function
f : U -4 C is regular at a point x in V if there exists g, h E C[V] and an
open subset Uo of U containing x such that for all y E Uo, h(y) 0 and
f(y) = g(y)/h(y). A function f : U -+ C is regular in an open subset U' of
U if it is regular at each point of U'.

Let us observe that a principal open set can be seen as an afline variety.
If Vf = {x E Ac f(x) 0}, for some f E C[Xl,... , Xn], the points
of Vf are in 1-1 correspondence with the points of the closed set of Ac 1

{(xl, ... , xn, xn+l) f(xi,.. , xn) xn+l - 1 = 0}. Hence Vf has an affine
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variety structure and its coordinate ring is C[V1] = C[Xl,... ,X, 1/fl, i.e.
the ring C[Xl,... , X] localized in the multiplicative system of the powers
off.

More generally, for V an affine variety, f E C[V], the algebra of regular
functions on the principal open set Vf :_ {x E V : f(x) 0} is the algebra
C[V] f, i.e. the algebra C[V] localized in the multiplicative system of the
powers of f. We note that arbitrary open sets of an affine variety cannot be
given the structure of an affine variety. (See Exercise 11.)

Now let V C Ac, W C Ac be arbitrary affine varieties. A map cp : V -
W is a morphism of affine varieties if for x = (Xi,. .. , xn) E V, cp(x1,... , xn) =
(coi(x),. .. , co (x)), for some cp2 E C[V]. A morphism cp : V -+ W is con-
tinuous for the Zariski topologies involved. Indeed if Z C W is the set of
zeros of polynomial functions f2 on W, then p-1(Z) is the set of zeros of the
polynomial functions f2 o cp on V. With a morphism cp : V - W, a C-algebra
morphism cp* : C[W] -+ C [V ] is associated, defined by cp* (f) = f o cp. Note
that if y1, ... , y,n are the coordinate functions on W, we have cp j = cp* (yj );
hence cp is recovered from cp* . If X is a third affine variety and : W -+ X
a morphism, we clearly have (/ o 'p)* = cp* o* .

Proposition 1.1.20. If cp : V -+ W is a morphism of affine varieties for
which 'p(V) is dense in W, then cp* is injective.

Proof. Let f, g E C[W] such that cp*(f) = cp*(g). We consider the subset
{y E W f(y) = g(y)} of W. It is clearly closed. On the other hand it
contains cp({x E V : f('p(x)) = g(cp(x))}) = cp(V); hence it is dense in W.
So it is equal to W.

The morphism cp : V -+ W is an isomorphism if there exists a morphism
W -+ V such that b o cp - IdV and cp o Eli = Id, or equivalently

cp* : C[W] -+ C[V] is an isomorphism of C-algebras (with its inverse being
Eli*). We say that the varieties V, W defined over the same field C are
isomorphic if there exists an isomorphism cp : V -+ W.

We will often need to consider maps on an irreducible affine variety V
which are not everywhere defined, so we introduce the following concept.

Definition 1.1.21. a) If V is an irreducible affine variety, a rational map
cp : V - Ac is an n-tuple ('pi,. .. ,'p) of rational functions cp1, ... , cp7 E

C(V). The map cp is called regular at a point P of V if all cp2 are regular
at P. The domain of definition dom(cp) is the set of all regular points of 'p,
i.e. dom(cp) = l2 1 dom(cp2).
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b) For an affine variety W C Ac, a rational map cp : V -+ W is an n-tuple
(pi,... , (pn) of rational functions cpl, ... , cpn e C(V) such that cp(P)
(, (pn(P)) E W for all P E dom((p).

A rational map cp : V -+ W induces a C-algebra morphism cp* : C[W] -+
C(V) given by g H g o cp. To determine when it is possible to extend this
morphism to C(W), in the case when W is also irreducible, we make the
following definition.

Definition 1.1.22. A rational map cp V - W is called dominant if
cp(dom(cp)) is a Zariski dense subset of W.

Proposition 1.1.23. For irreducible affine varieties V and W, the following
hold.

a) Every dominant rational map cp : V -+ W induces a C-linear morphism
(p* : C(W) - C(V).

b) If f : C(W) -+ C(V) is a field homomorphism which is C-linear, then
there exists a unique dominant rational map cp : V -+ W with f = (p*.

c) If cp : V -+ W and /i : W -+ X are dominant, then Eli o cp : V -+ X is also
dominant and (Li o (p)* = (p* o *.

Proof. a) If cp is defined by cpl, ... , with cp2 E C(V), then for g E C[W],
9((pl, , cpn) E C(V). Hence cp induces a C-algebra morphisin cp* : C[W] -
C(V). Now if cp*(g) = 0, then g vanishes on cp(dom(cp)), which is dense in
W, so g = 0, hence (p* is injective, so it extends to C(W).
b) If W C .41n, then the restrictions xl, X2,. . . , xof the coordinate functions
to W, generate C(W). Let cp2 := f(x) E C(V) and cp :_ (pr,. . . , cpn). Then
cp defines a rational map from V to Wand f = cp* by construction. Now
C[W] - ficEw] is injective, so cp is dominant, as otherwise there will be
nonzero elements in C[W] vanishing at cp(dom(cp)), hence in Ker (p*.

c) As cp(dom(cp)) fl dom 0, the composition makes sense and both state-
ments are clear.

Definition 1.1.24. Let V, W be irreducible affine varieties. A rational map
(p : V -+ W is called birational (or a birational equivalence) if there is a
rational map VP': W -+ V with (p o = Iddom() and /) o (p = Iddom((p)

Definition 1.1.25. Two irreducible varieties V and W are said to be bira-
tionally equivalent if there is a birational equivalence P : V -+ W.

Proposition 1.1.26. Let V, W be irreducible afne varieties. For a rational
map P : V -+ W, the following statements are equivalent.

a) (p is birational.
b) (p is dominant and (* : C(W) -+ C(V) is an isomorphism.
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c) There are nonempty open sets Vo C V and Wo C W such that the re-
striction Vo -+ Wo is an isomorphism.

Proof. a) = b) The rational map ',b: W -+ V such that cp o = IdW and
z o cp = Idv is regular in a dense open set of W; hence cp is dominant. As
(p(V) is dense in W, cp* is injective. Analogously, //* is injective.

b) = a) We define '/i W - V by taking ',b (*_l(x))Z for x2 the
restriction to V of the coordinate functions. By construction we have cpo',b _
Idyy and 'tbo cp = Idv.

a) = c) Let cp = (v',.. . , cpn) and cpi = f/F for fi, F E C[V]. Then
cp2 E C[VF], for VF the principal open set defined by the nonvanishing of
F. Analogously, if b _ (',b',.. . ,fin) and z = g2/G for gi, G E C[W], then
z E C[WG]. By taking Vo = VF fl ',b(dom'/i) and Wo = WG fl (dom), we
obtain the result.
c) = b) cp is dominant as Wo C (dom ) and cp* is an isomorphism from
c(w) = c(wo) onto c(v) = c(vo). o

We now prove that every irreducible affine variety is birationally equiv-
alent to a hypersurface in some affine space. This fact will be used to
determine the dimension of the tangent spaces of a variety.

Proposition 1.1.27. Every irreducible affine variety V is birationally equiv-
alent to a hypersurface in some afine space A.

Proof. The field C(V) is finitely generated over C. Then by Proposition
1.1.8, there exist elements xl,... , xd in C(V), algebraically independent over
C, such that C(V) is algebraic over C(xl,... , xd). Since we are assuming
char C = 0, we can apply the primitive element theorem and obtain C(V) _
C(xl,... , xd)(xd+l) for some element xd+l algebraic over C(xl, ... , xd). We
then have an algebraic dependence relation f(xi,.. . , xd, xd+l) = 0, with f E
C[Xl, , Xd+l] Let W be the hypersurface in .fin, with n = d +1, defined
by the vanishing of the polynomial f. Then by construction C(W) C(V),
so V and W are birationally equivalent by Proposition 1.1.26. D

We shall now introduce the notion of dimension of an affine variety. If
X is a noetherian topological space, we define the dimension of X to be the
supremum of all integers n such that there exists a chain Zo C Z1 C C
Zn of distinct irreducible closed subsets of X. We define the dimension
of an affine variety to be its dimension as a topological space. Clearly
the dimension of an affine variety is the maximum of the dimensions of its
irreducible components. For a ring A, we define the Krull dimension dim A
of A to be the supremum of all integers n such that there exists a chain Po C
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Pl C C Pn of distinct prime ideals of A. If V C Ac is an affine variety, by
Proposition 1.1.13, irreducible closed subsets of V correspond to prime ideals
of C[Xl,... , Xn] containing Z(V) and these in turn correspond to prime
ideals of C[V]. Hence the dimension of V is equal to the Krull dimension
of its coordinate ring C[V]. We now recall that dim C[Xl, X2,. . . , Xn] = n
([Ma] § 14, Theorem 22) which, by the preceding, implies dim AC = n.
We recall as well that if a noetherian ring R is integral over a noetherian
subring S, then dim S = dim R ([Ma] § 13, Theorem 20). Now in the
situation of Noether's normalization lemma (Proposition 1.1.8) and with
the same notations there, we have dim R = r. Hence the dimension of a
finitely generated integral domain R over C is equal to the transcendence
degree of its fraction field over C. (See Remark 1.1.9.) We then obtain that
if V is irreducible, the dimension of V is equal to the Krull dimension of
C[V] and equal to the transcendence degree trdeg[C(V) : CJ of the function
field C(V) of V over C.

We now give a geometric interpretation of Noether's normalization lemma.
Let V C An be an afne irreducible variety. We consider the ring C[V]
= C [X 1, ... , X]/I(V) and denote by xi the image of Xi in C[V], 1 < i < n.
Then C[V] = C[x1,... , xn] is a finitely generated integral domain over C.
By Proposition 1.1.8, there exist elements y1, ... , yr E C[V], with r < n, al-
gebraically independent over C such that C[V] is integral over C[yl,... , yr].
The elements yi lift to elements yi E C [X 1, ... , X], which define a morphism

= (j,. . . , yr ) : An - A. The restriction cp of to V is independent of
the choice of the yi as yi mod 1(V) = yi. We will now show that the fibers
of cp are finite and nonempty.

Proposition 1.1.28. Let cp : V -3 Abe defined as above. For each P E A,
the fiber cp-1(P) is finite and nonempty.

Proof. We first prove that cp-1(P) is finite. As C[V] is integral over the ring
C[yl, , yr], there exist an integer N and polynomials f1, 0 < j < N - 1,
1 <i <n such that

xN + Th_i(yi'. . .
, yr) xN-1 + ... + f(Yi,. . . , yr) xi + f(y',. . . , yr) = 0,

1<i<n.

So, we have

X N - f 1V_ 1(y1, ... , yr) X N-1 - ... - f i (y1 ... , yr) X i + .f0 (2J1 ... yr )
=: gi(X1,... , Xn) E 1(V).
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If Q = (qi,. . . , qn) E V, we have g2 (qi , ... , qn) = 0 and so q2 is a solution of
the equation f(q) = 0, where

f(X) =X1V+fN-1(y1,...,yr) XN-1+...+.f1(y1,...,yT)X+.f0(2J1,...,yr).

Now, as V is irreducible, we can consider its function field C(V) and see
f(X) as a polynomial in C(V)[X]. Then each fi has a finite number of
roots. Thus for any point P = (yi,. . . , y,.) E Awe have only finitely many
points Q E V with (Q) = P.

To show that cp-1(P) is always nonempty, it is enough to show that for
every point P = (pi, ... ,pr) E Ar, we have

(1.2) Ip := I(V) + (yi - pi, ... , yr -Pr) C[X1,... , Xn]

as, by Hilbert's Nullstellensatz, this will imply p' (P) = V (Ip) 0. As-
sertion (1.2) is equivalent to (Yi - p',. , yr - pr) C [x i , ... , xn] . Since
(Yi - Pi, , yr -pr) is a maximal ideal in C [yi , ... , Y1, in particular a proper
ideal, we can apply Nakayama's lemma (see [Ma] p. 11) to the C[yi, , yr]-
finite algebra C[V] and obtain (Yi - pi, , yr - pr) C [x i , , xn] 0

The preceding proposition gives that an affine irreducible variety V of
dimension r can be seen as a finite covering of the affine space Ar .

We now consider extension of scalars for affine varieties. Let V C Ac be
an affine variety and L an algebraically closed field containing C. We shall
denote by VL the affine variety contained in AL defined by VL = V(IL)
for IL = Z(V)L[Xl,... , Xn]. We call VL the variety obtained from V by
extending scalars to L. The coordinate ring of VL is L[V] = L ® C[V]. It
is clear that if V, W are affine varieties defined over C, we have V W =
VL ^WL. The next proposition gives the converse of this implication. For
its proof we are following a suggestion of Jakub Byszewski.

Proposition 1.1.29. Let K, L be algebraically closed fields with K C L.
Let V, W be affine algebraic varieties defined over K. Let VL, WL be the
varieties obtained from V, W by extending scalars to L. If VL and WL are
isomorphic, then V and W are isomorphic.

Proof. Let A = K [V ] , B = K [W ] . These are finitely generated K-algebras.
Let us write A = K [x i , ... , xn] , B = K [yi , ... , yn] . The isomorphism be-
tween VL and WL induces an L-algebra isomorphism

f:A®KL=L[xl,...,xfl]4B®L=L[Yl,...,Ym].
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Then f(x) is a polynomial in yl, ... , ym with coefficients in L, 1 < i <
n, f -1(yj) is a polynomial in x1, ... , xn with coefficients in L, 1 < j <
m. Let S C L be the K-algebra generated by the coefficients of all these
polynomials. Then S is a finitely generated K-algebra and we have an
isomorphism

(1.3) A®KS4B®KS.

As K is algebraically closed, using Proposition 1.1.11, we have either S = K,
in which case we obtain A A ®K K ^J B ®K K ^J B; hence V ^J W as
wanted or S is not a field. In this latter case, let 9Y1 be a maximal ideal in S.
As S is a finitely generated K-algebra and K is algebraically closed, we have
S/fit ^J K (by Hilbert Nullstellensatz 1.1.6). Tensoring the isomorphism
(1.3) by S/9Y2 over S, we obtain

A ®x s ®s S/911 4 B ®x S ®s S/9J1

A®KK=A 4 B®KK=B.
Hence V ^W .

1.2. Abstract affine varieties

So far we have considered affine varieties as closed subsets of affine spaces.
We shall now see that they can be defined in an intrinsic way (i.e. not
depending on an embedding in an ambient space) as topological spaces
endowed with a sheaf of functions satisfying the properties of the regular
functions.

Definition 1.2.1. A sheaf of functions on a topological space X is a func-
tion .F which assigns to every nonempty open subset U C X a C-algebra
.F(U) of C-valued functions on U such that the following two conditions
hold:

a) If U C U' are two nonempty open subsets of X and f e .F(U'), then the
restriction fu belongs to .F(U).

b) Given a family of open sets Ui, i e I, covering U and functions fi e .F(U)
for each i e I, such that fi and f3 agree on UZ fl for each pair of
indices i, j, there exists a function f e .F(U) whose restriction to each Ui
equals fi.

Definition 1.2.2. A topological space X together with a sheaf of functions
0X is called a geometric space. We refer to 0X as the structure sheaf of
the geometric space X.
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Definition 1.2.3. Let (X, OX) and (Y, DY) be geometric spaces. A mor-
phism

P: (X,O) - (Y,Oy)

is a continuous map cp : X - Y such that for every open subset U of Y and
every f E OY(U), the function cp*(f) := f o cp belongs to OX(cp-1(U)).

Example 1.2.4. Let X be an affine variety. To each nonempty open set
U C X we assign the ring Ox (U) of regular functions on U. Then (X, OX)
is a geometric space. Moreover the two notions of morphism agree.

Let (X, Ox) be a geometric space and let Z be a subset of X with the
induced topology. We can make Z into a geometric space by defining OZ (V )
for an open set V C Z as follows: a function f : V - C is in OZ (V) if and
only if there exists an open covering V = UV in Z such that for each i
we have five = g2 1 VZ for some g2 E Ox (U) where UZ is an open subset of X
containing V. It is not difficult to check that Oz is a sheaf of functions on
Z. We will refer to it as the induced structure sheaf and denote it by OX I z .

Note that if Z is open in X then a subset V C Z is open in Z if and only if
it is open in X, and OX (V) = OZ (V) .

Let X be a topological space and let X = UZUZ be an open cover. Given
sheaves of functions CRUZ on UZ for each i, which agree on each UZ n U, we
can define a natural sheaf of functions Ox on X by "gluing" the 0u . Let U
be an open subset in X. Then OX (U) consists of all functions on U, whose
restriction to each U n UZ belongs to CRUZ (U n UZ).

Let (X, Ox) be a geometric space. If x E X we denote by v the map
from the set of C-valued functions on X to C obtained by evaluation at x:

v(f) = f(x).
Definition 1.2.5. A geometric space (X, OX) is called an abstract affine
variety if the following three conditions hold.

a) OX (X) is a finitely generated C-algebra, and the map from X to the
set Homc(OX(X), C) of C-algebra morphisms defined by x H v is a
bijection.

b) For each f E O(X), f 0, the set

xf :_ {x E x : f(x)74o}
is open, and every nonempty open set in X is a union of some X f's.

c) OX (X f) = OX (X)f, where OX (X) f denotes the C-algebra OX (X) lo-
calized at f.
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Remark 1.2.6. It can be checked that afFine varieties with sheaves of reg-
ular functions are abstract affine varieties. We claim that, conversely, every
abstract affine variety is isomorphic (as a geometric space) to an affine va-
riety with its sheaf of regular functions. Indeed, let (X, OX) be an abstract
affine variety. Since OX (X) is a finitely generated C-algebra, we can write
OX (X) = C[Xl,... , X] /I for some ideal I. As the elements in OX (X )
are C-valued functions on X, Ox (X) does not contain nonzero nilpotents;
hence I is a radical ideal. By the Nullstellensatz (Theorem 1.1.6 c)), we can
identify OX(X) with the ring of regular functions C[V(I)] on V(I). Now a
morphism of C-algebras from C[V(I)] to C corresponds to a maximal ideal
of C[V(I)], hence to a point in V(I). Then, by the property a) of abstract
affine varieties we can identify X with V(I) as a set. The Zariski topology
on V(I) has the principal open sets as its base, so it now follows from b)
that the identification of X and V(I) is a homeomorphism. Finally, by c),
OX(X f) and the ring of regular functions on the principal open set X f are
also identified. This is enough to identify OX(U) with the ring of regular
functions on U for any open set U, as regularity is a local condition.

The preceding argument shows that the affine variety can be recovered
completely from its algebra OX (X) of regular functions, and conversely.

Example 1.2.7. In view of Remark 1.2.6, a closed subset of an abstract
affine variety is an abstract affine variety (as usual, with the induced sheaf).

1.3. Projective varieties

In this section we define projective varieties as subsets of the projective space
given by homogeneous polynomial equations. We shall see that a projective
variety V has a finite open covering by affine varieties V and that the regular
functions on V are determined by the regular functions on each V2. This
fact provides the model for the definition of algebraic varieties.

The projective n-space over C, denoted by IPc, or IPn, is the set of equiva-
lence classes of (n+ 1)-tuples (xO, x1, ... , xn) of elements in C not all zero un-
der the equivalence relation defined by (xO, x1, ... , x7) ^' (yo, y1, ... , yn)
yz = Axi, 0 < i < n, for some A E C \ {0}. Equivalently, IPc is the quo-
tient set of Ac 1 \ { (0,. . . , 0) } under the equivalence relation which identifies
points lying on the same line through the origin. If V is a finite dimensional
C-vector space, we define IP (V) as the quotient of V \ {0} by the equivalence
relation defined by v w v = Aw for some A E C \ {0}.

An element of IPc is called a point. We denote by (xO : x1 : : xn) the
equivalence class in IP of the element (xO, x1, ... , xn) E Ac1 \ {(0,. . . , 0) }.

We call (xO : xl : : xn) the homogeneous coordinates of the point P.
They are defined up to a nonzero common factor in C.



20 1. Afine and Projective Varieties

Example 1.3.1. We can consider a map Al -+ J1 given by x F-+ (1 : x).
It is injective and the image contains all points in JP1 except (0 : 1). This
"extra point" is called point at infinity.

If we consider in the affine plane a line l and a point P not in 1, then
every line through P cuts l in a point, except the parallel line to 1. Adding
to l an extra point at infinity, we obtain a 1-to-1 correspondence between
the set of lines through P and the set of points in 1.

We will now define projective varieties in IPc in a way analogous to
the definition of affine varieties. Due to the nonuniqueness of homogeneous
coordinates, the fact that a polynomial in C[Xo, X,,... , Xn} vanishes at a
point of IP is not well determined for an arbitrary polynomial. We need
to introduce homogeneous polynomials and homogeneous ideals of the ring
C[Xo, X,,. .. , Xn]. We shall define more generally the notion of a graded
ring.

Definition 1.3.2. A graded ring is a commutative ring R together with
a decomposition R = ®d>oRd of R into the direct sum of subgroups Rd
such that for any d, e > 0, Rd.Re C Rd+e. An element of Rd is called a
homogeneous element of degree d. Thus any element of R can be written
uniquely as a finite sum of homogeneous elements.

Example 1.3.3. The ring of polynomials R = C[Xo, X,,. . . , Xn] can be
made into a graded ring by taking Rd to be the subgroup containing all
linear combinations of monomials of total degree d in Xo, X,,.. . , X. If
f E Rd, A E C, we have f(Axo, Ax,,..., A xn) = Ad f (xo, xi, ... , xn); hence
the fact that (xo : x 1 : : xn) is a zero of f is well determined.

Definition 1.3.4. If R = ®d>oRd is a graded ring, an ideal I C R is a
homogeneous ideal if I = ®d>o (I n Rd), i.e. if all homogeneous parts of
every element of I also belong to I.

We define a projective variety as the set of common zeros in Jc of a
finite collection of homogeneous polynomials in C[Xo, X,,. . . , X]. To each
homogeneous ideal I of C[Xo, X,,. . . , Xn] we associate the set V(I) of its
common zeros in IPc. Taking into account that C[Xo, X,,. . . , Xn] is a Noe-
therian ring and Exercise 13, each ideal of C[Xo, X,,. .. , Xn] has a finite set
of homogeneous generators. Therefore the set V (I) is a projective variety.

Proposition 1.3.5. The correspondence V satisfies the following equalities:

a) IPc = V(0), o = V(C[Xo, X1, ... , Xn])

b) If I and J are two homogeneous ideals of C[Xo, X,,. .. , Xn], V (I) U
V(J) = V(I n J),

c) If Ia is an arbitrary collection of homogeneous ideals of C[Xo, X,,. . . , Xn],
naV(Ia) = V(>a Ia).
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We define the Zariski topology in IP as the topology having the projec-
tive varieties as closed sets.

Once we have a topological space, the notion of irreducible subset applies
as in the affine case. The projective space fl with the Zariski topology is a
Noetherian space; hence we can define the dimension of a subset of Pn also
as in the affine case.

Example 1.3.6. If f is a non constant homogeneous polynomial in the ring
C[Xo, Xl,... , Xn], V (f) is a hypersurface in loc. If f is a linear homoge-
neous polynomial, V(f) is a hyperplane.

Let us consider the map c :A-k lPn given by

(Xi,... , xn) F-* (1: x1 :...: xn).

It is in j ective and its image is Ian \ H, for H := {(x0 : x 1 : : xn) : xo = 0 } .
The hyperplane H is called hyperplane at infinity.

Example 1.3.7. If R = ®d>oRd is a graded ring, ®d>oRd is a homogeneous
ideal of R. In particular, the ideal Io of C [Xo, X 1i ... , Xn] generated by
Xo, Xl,... , Xn is a proper radical homogeneous ideal of C[Xo, X1, ... , X].
We have V(Io) _ 0. This ideal Io is sometimes called the irrelevant ideal as
it does not appear in the 1-1 correspondence between projective varieties in
IPc and radical ideals of C [Xo, Xl, ... , X]. (See Proposition 1.3.8 below.)

To each subset S C I1c we associate the homogeneous ideal Z(S) gener-
ated by

{f E C[Xo, X1,. . . , X] f is homogeneous and f(P) = 0 for all P E S}.

As in the affine case, ideals of the form Z(S) are radical ideals. If Y is a
projective variety, we define the homogeneous coordinate ring of Y to be
C[Y] = C[Xo, Xi,... , Xn]IZ(Y)

We now state the projective Nullstellensatz, which has a similar formu-
lation to the affine one, except for the adjustment due to the fact that the
ideal Io defined in Example 1.3.7 has no common zeros. It can be easily de-
duced from the affine Nullstellensatz. The statement on irreducible varieties
applies here as well.

Proposition 1.3.8. The mappings V and Z set a bijective correspondence
between the closed subsets of IBC and the homogeneous radical ideals of
C[Xo, Xl, ... , Xn] other than the irrelevant ideal I.
Irreducible projective varieties correspond to homogeneous prime ideals un-
der this correspondence.
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We shall now see that the projective space Ian has an open covering by
affine n-spaces. Let HZ be the hyperplane {(x0 : xl : : xn) : x2 = 0} and
let UZ be the open set Ian \ H. Then Ian is covered by the UZ, 0 < i < n
because if P = (x0 : xl : : xn) E Ian at least one of the coordinates x2 is
not zero, hence P E U. We define a mapping

(pi: UZ -+ n
xi-ixi, ... , xi ' xi

It is well defined as the ratios x3/x2 are independent of the choice of homo-
geneous coordinates.

Proposition 1.3.9. The map (p2 is a homeomorphism of UZ with its induced
topology to An with its Zariski topology.

Proof. The map cpi is clearly bijective so it will be sufficient to prove
that the closed sets of UZ are identified with the closed sets of An by
cp2. We may assume i = 0 and write U for Uo and cp for coo. Let R =
C[Xo, Xl,... , Xn], A = C[Yl,... ,Yom]. We define a map a from the set Ry,
of homogeneous polynomials in R to A and a map ,Q from A to Rh as fol-
lows. For f E Rh, put a(f) = f(1, Y1,.. . ,Yom); for g E A of total degree
e, the polynomial Xo g(Xl/Xo, ... , Xi,/Xo) is a homogeneous polynomial
of degree e which we take as ,3(g). From the definitions of a and Q, we
easily obtain the equalities cp(V(S)) = V(a(S)), for a subset S of Rh, and
cp-1(V(T)) = V(,Q(T)), for a subset T of A. Hence both cp and cp-1 are
closed maps, so cp is a homeomorphism. D

Corollary 1.3.10. A subset S of ]fin is closed if and only if its intersections
S fl UZ are all closed (UZ being identified with Atm via the mapping cpi defined
above). If Y is a projective variety, then Y is covered by the open sets
Y fl Uzi 0 < i < n, which are homeomorphic to affine varieties via cp2. O

Remark 1.3.11. For a homogeneous polynomial f in R = C[Xo, Xl,... , Xn],
the polynomial a(f) = f(1, Yl,... , Yn) E A = C[Yl,... ,Yom,] is called the de-
homogenization of f with respect to the variable Xo. For a polynomial
g E A of total degree e, the polynomial Q(g) = Xo g(Xl/Xp,... , Xn/Xo)
is called the homogenization of g with respect to the new variable Xo. We
can define analogously dehomogenization and homogenization with respect
to the other variables. We can easily see a(,3(g))) = g for any polynomial
g in A. On the contrary, /3 o a is not the identity on Rd. For example,
Q(a(Xo)) = 1. From the proof of Proposition 1.3.9, it follows that if Y is a
projective variety, the ideal corresponding to Y fl Uo, as an affine variety of
Uo identified with Atm, is {a(f) If E Z(Y)}.
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Let V be a closed subset of An. Identify An with one of the affine open
subsets U3 of Ian, say Uo. Then the closure V of V in Ian is called the
projective closure of V. In particular, IPn is the projective closure of A.
The homogeneous ideal of V is then {/3(g)g E I(V)}. Since V = Uo n V, V
is open in V. Thus V is irreducible if and only if V is so.

Example 1.3.12. We consider the Fermat conic V = V(X2+Y2-Z2) C P.
Its three affine pieces are

- Vo = V(1 +Y2 - Z2), which is a hyperbola and has two points at infinity,
namely V fl Ho ={(0:1:1), (0: 1: -1)}.

- Vl = V(X2 + 1 - Z2), which is again a hyperbola and has two points at
infinity, namely V fl Hl ={(1:0:1), (1: 0: -1)}.

- V2 = V(X2 + Y2 - 1), which is a circle and has two points at infinity,
namely V fl H2 = {(1 : i : 0), (1: -i : 0)}, called the circular points at
infinity, since they are the intersection of any circle in the affine plane with
the line at infinity.

Example 1.3.13. Let V = V(Z - Y2, T - Y2) in .4\ identified with Up. Its
projective closure is V = V U {(0 : 0: z : t) E 1P3}. The homogeneous ideal
of V is not generated by the homogenizations X Z - Y2 and XT - Y2 of the
generators of the ideal of V as Z - T is a homogeneous polynomial in Z(V)
which is not in (XZ - Y2, XT - Y2).

Example 1.3.14. Let V = V (Y2 - X3 - a X - b) in A identified with U2.
Its projective closure is V = V U{(0:1:0)}; hence V has only one point
at infinity.

We shall now see how to define functions on projective varieties. If
f, g E C [Xo, X i , ... , X], then F := f/g can be seen as a function on
JjJn (defined at the points where g does not vanish) only if f and g are
homogeneous polynomials of the same degree, in which case we refer to F
as a rational function of degree 0. If g(P) 0 for some point P E fin, we
say that F is regular at P. Note that if a rational function of degree 0 is
regular in some point, then it is regular in a neighborhood of this point.
If U is a subset of a projective variety V C Ian, a function F : U - C is
regular if for any point P in U there exists an open neighborhood U' of P
and homogeneous polynomials f, g E C [Xo, X i , ... , Xn] of the same degree
such that F = f/g in U' and g(P) 0. If U is an open set, we write O( U)
for the set of all regular functions on U.

Let U be an open subset of Ian contained in some of the affine open
sets UZ = {(xO : x i : : xn) E PT : x2 0}. Then U is also open
in UZ, which is canonically identified with An. We claim that (7Jpn (U) =
°An (U). We take, for example, i = 0. If F E ojpn (U), for each P E U



24 1. Aine and Projective Varieties

there exists an open neighborhood U' of P and homogeneous polynomials
f(Xo, X1,... , Xn), g(Xo, X1,.. . , X7) of the same degree such that F = f/g
in U' and g (P) 0. Then we also have in U',

F = f (1,Y1, ...,Yn)/g(1,Y1, ...,Yn),

where Yi = XZ /Xo,1 < i < n are the of ne coordinates on Uo. Hence
F E OAn (U). Reciprocally, if F E OAn (U), on an open neighborhood U' of
P we have F = f/g and g(P) 0, where f, g E C[Y1,... , Y]. Then we also
have in U',

Xmax(deg f ,deg 9) f (X 1 /Xo, ... , Xn /Xo )F= 0
Xmax(deg f,deg g) g (X 1 /Xo, ... , Xn/Xo)0

which is the quotient of two homogeneous polynomials in Xo, X1,.. . , Xn of
the same degree; hence F E Ojn (U). Analogously, if V C Tn is a projective
variety, V = V n UZ, we have O( U) = Ov2 (U) for every open subset U of
V contained in 14.
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Exercises

(1) Prove the inclusion /i C Z(V(I)) for an ideal I of C[Xl,... ,

(2) Provide the proof of Proposition 1.1.2.
(3) Provide the proof of Proposition 1.1.3.
(4) Prove that for a subset V of Ac, V = V (Z(V)) if and only if V is closed.
(5) Determine the open sets in the Zariski topology on A. Prove that this

topology is not Hausdorff.

(6) Determine the closed sets in Ac = Ac x Ac with respect to the product
topology (with Ac endowed with the Zariski topology) and with respect
to the Zariski topology. In particular, obtain that 0(Ac) _ {(x, x) E
Ac x .41c} is a closed set in the latter topology but not in the former.

(7) Let V C .41c, W C Ac be affine varieties. By identifying AC x .41C with
A+ m, we can consider the Cartesian product V x W as a subset of
Prove that V x W is an affine variety and that there is an isomorphism

C[V x W] C[V] ® C[W].

Hint: Assign to a pair (g, h) E C[V] x C[W] the polynomial function
f(x, y) = g(x)h(y) on V x W. This assignment induces a C-algebra
morphism C[V] ® C[W] - C[V x W].

(8) Let V C Ac, W C Ac be closed irreducible sets. Prove that V x W is
closed and irreducible in with respect to the Zariski topology.
Hint: If V x W is the union of two closed subsets Zl, Z2, then V =
Vl U V2i where {xV:{x}xWCZ},i=1,2, are closed in V.

(9) Provide the proof of the statements in Example 1.2.4.
(10) Check that an affine variety with its sheaf of regular functions is an

abstract affine variety.

(11) Prove that A2 \ {(0, 0)} is not an affine variety.
(12) Prove that every automorphism of Al (=isomorphism from Al into it-

self) has the form x F- ax + b (a e C*, b e C).
(13) a) Prove that an ideal I of a graded ring R = EEd>oRd is homogeneous if

and only if it is generated by homogeneous elements. Deduce that sums,
products, intersections and radical of homogeneous ideals are again ho-
mogeneous.
b) Prove that if I is a homogeneous ideal of a graded ring R, then the
quotient ring R/I is graded in a natural way.



26 1. Afine and Projective Varieties

(14) If I is an ideal of a graded ring R = EEd>oRd, prove that

In _ EEd>o(I n Rd)
is a homogeneous ideal of R. Prove that if I is prime, Ih is prime as well.
Give an example of a prime ideal I of a graded ring such that I Ih.

(15) Provide the proof of Proposition 1.3.5.
(16) For a homogeneous ideal I C R = C[Xo, Xl,... , Xn] show that the

following conditions are equivalent.
a) V(I)=O,
b) /t = either R or the ideal Io = d>o Rd,
c) I JRd for some d > 0.

(17) Prove the following statements.
a) If Si C 82 are subsets of IP"t, then '(Si) Z(SZ).
b) For any two subsets Si, SZ of Ian, '(Si U 52) = '(Si) fl 1(82).
c) For any subset S of ]fin, V(Z(S)) = S.

(18) Prove that if H is any hyperplane in ]fin, then ]fin \ H is homeomorphic
to An.

(19) Provide the proof of Proposition 1.3.8.
Hint: Interpret the problem in terms of the affine space Ac 1 and use
the affine Nullstellensatz 1.1.6.

(20) If V is a projective variety with homogeneous coordinate ring C[V],
prove that dim C[V] = dim V + 1.



Chapter 2

Algebraic Varieties

In this chapter we define an algebraic variety as a geometric space with a
finite open covering by affine varieties satisfying some separation axiom. We
show that affine and projective varieties are algebraic varieties. We consider
subvarieties and their dimensions and study morphisms of varieties.

2.1. Prevarieties

Definition 2.1.1. An algebraic prevariety is a geometric space (X, OX)
with the following property: X has a finite open covering X = Ul U U Ur
such that each geometric space (Ui, OU2) where OU2 denotes the induced
structure sheaf is an affine variety. For an open subset U of X, we call the
elements in Ox (U) the regular functions on U.

Example 2.1.2. Each affine or projective variety with the corresponding
sheaf of regular functions is a prevariety.

Lemma 2.1.3. Let (X, OX) be a prevariety with affine open covering X =
We have

a) X is a noetherian topological space.

b) Any open subset U of X is again a prevariety.
c) Any closed subset Z of X is again a prevariety.

Proof. a) follows from the fact that each UZ is noetherian.
b) We have U = U( U n UZ) and U n UZ is a open subset of the affine variety
UZ, hence a finite union of principal open sets, which are affine.

c) We have Z = u( Z n UZ) and the closed sets Z n UZ of the affine varieties
UZ are affine. LI

27
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A subset of a topological space X is called locally closed if it is the
intersection of an open set with a closed set. It follows from the preceding
lemma that a locally closed subset of a prevariety is again a prevariety. We
shall refer to the locally closed subsets of a prevariety as subprevarieties.

A morphism of prevarieties will be a morphism with respect to their
geometric space structure. If cp : X -+ Y is a morphism of prevarieties, V
an open subset of Y, the assignment f H f o cp is a C-algebra morphism
COY (V) - OX (cp-1(V) ), which we denote by (p*.

We now give a criterion to recognize when a map of prevarieties is a
morphism.

Proposition 2.1.4. (Affine Criterion) Let X, Y be prevarieties and cp
X -+ Y a map. Assume that there is an affine oven covering Y = UZ 1V
and an open covering X = Uz 1 UZ such that

a) cp(Ui) C Vz for each i,

b) f ° P E Ox(U) for each f E OY(Vi)

Then cp is a morphism of geometric spaces.

Proof. An affine open covering of X induces one in each U. If U is an affine
open subset of UZ, by b), we have that composing with sends COY (V) =
C[14] into ox (U) = C[U]. So, by extending the index set if necessary,
we reduce to the case where the UZ are also affine. Now by assumption
coj := UZ : UZ -+ V is a morphism of affine varieties, since it is completely
determined by the C-algebra morphism co : C [VZ] -+ C [UZ] . In particular
Soj is continuous, so co is continuous.

Let V C Y be an open set and U := '(V). If f E COY (V ), b) implies
that f o cp E Ox (U U UZ), for i = 1, ... , r. Since U is the union of the U n UZ
and since Ox is a sheaf (see Definition 1.2.1), we obtain f o cp E OX (U). EJ

We shall now define rational functions on an irreducible prevariety X.
Consider pairs (U, f) where U is an open subset of X and f E Ox (U).
We call two such pairs (U, f) and (V, g) equivalent if f = g on U fl V. As
X is irreducible, all nonempty open subsets of X are dense and then this
relation is an equivalence relation. We denote by (U, f) the equivalence
class of the pair (U, f) and by C(X) the set of equivalence classes. As X is
irreducible, any two nonempty open subsets of X intersect, so we can define
in C(X) addition and multiplication making C(X) into a ring. Moreover,
if (U, f) E C(X) and f 0, then we can restrict f to an open subset V of
U where it does not vanish and obtain (U, f)-1 = (V, 1/f). We call C(X)
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the function field of X. It is easy to see that if X is affine this definition
coincides with the one given before.

Let us consider a morphism of prevarieties cp : X -+ Y. In case X, Y are
irreducible and cp(X) is dense in Y, the induced morphism co* : OY(V) -+

OX(cp-1(V)), where V is an open subset of Y, can be thought of globally
as a ring morphism C(Y) -+ C(X), whose restriction to OY(V) has image
in OX(cp-1(V)). Here cp* is injective; hence we can see C(X) as a field
extension of C(Y).

Let .F be a sheaf of functions on a topological space X and P E X.
The open subsets of X containing P form an inverse system with respect
to inclusion. The stalk .FP of ,F at P is defined to be the corresponding
direct limit of the algebras .F(U) via the restriction maps. The elements
of the stalk .Fp are called germs of functions at P. An element of ,Fp is
represented by a pair (U, f), where U is an open neighborhood of P and
f e .F(U). Two such pairs (U, f) and (V, g) represent the same element in
.Fp if there exists an open neighborhood W of P with W C U fl V such that
fiw = If (X, OX) is a prevariety, we write simply OP for (Ox) and
call it the local ring at P . It is indeed a local ring whose unique maximal
ideal consists of the germs of functions vanishing at P.

If X is an irreducible affine variety, this definition agrees with the one
given in Section 1.1.

We now look at the existence of products in the category of prevarieties.
Given two prevarieties (X, Ox) and (Y, COY), we want to prove that there
exists a prevariety (Z, Oz) together with morphisms 711 : Z -+ X , ire : Z -+
Y such that the following universal property holds: if (W, Ow) is another
prevariety with morphisms cpl : W -+ X, cp2 : W -+ Y, then there exists a
unique morphism W -+ Z such that 7ri o = cpi, for i = 1, 2.

We first observe that, for prevarieties X and Y, the underlying set of a
product of prevarieties is necessarily the cartesian product X x Y. Indeed,
by applying the universal property in the case in which W consists of a
single point, we see that the points in Z correspond bijectively with pairs
(x, y) E X x Y. To see how to give X x Y the structure of a prevariety, we
first look at the affine case.

Proposition 2.1.5. Let X C An, Y C A"2 be affine varieties. Endow the
cartesian product X x Y with the Zariski topology (induced by the Zariski
topology of Am = Ann x At). Then

a) X x Y with the projections 711 : X x Y-+X and 712 : X x Y-+Y is a
categorical product of the prevarieties X,Y and C[X xY] ^ C[X] ®C[Y].
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b) If (x, y) E X X Y, is the localization of O ® Oy at the maximal
ideal y.

Proof. a) The statement on coordinate rings is proved in Exercise 7 of
chapter 1. It remains to prove the universal property for X x Y. Given
a prevariety W and morphisms p1 W -+ X, p2 W -+ Y, we have to
construct a suitable morphism b : W -+ X x Y. There is a unique such
mapping of sets which makes cpi = i o b. To check that it is a morphism,
we use the Affine Criterion 2.1.4. As X x Y is affine, we just need to see
that b pulls back polynomial functions on X x Y to regular functions on
W. This follows from the fact that C [X x Y] is generated by the pullbacks
of C[X ] and C[Y] under the 7ri and that the Spi are morphisms.
b) If X, Y are irreducible, so is X x Y (Exercise 8, chapter 1). Part a) shows
that C[X] ® C [Y] is an integral domain, with fraction field isomorphic to
C(X x Y). Now we have inclusions C[X] ® C [Y] C O ® Oy C 0(x,y) .

Since is the localization of C[X] ® C[Y] at the ideal it is also
the localization of O ® Oy at its ideal 9Jt vanishing at (x, y). Evidently
9 ® Cry + O ® 9y C 9Jt. Conversely, let f = gi ® hi Ewith
gi e hi E Cry. If g2 (x) = ai, hi (y) = bi, then f - aibi = >(g2 - ai) ®
hi + > ai ® (hi - bi) E ®C7y + O ®93y. Now >ajbj = f(x,y) = 0;
hence f e 9Jt3 ® (9y + O ®y .

We now prove the existence of products in the case of arbitrary prevari-
eties.

Proposition 2.1.6. Finite products exist in the category of prevarieties.

Proof. To endow the Cartesian product X x Y with the structure of pre-
variety, we have to specify a topology and a structure sheaf. For all affine
open sets U C X, V C Y and elements h e C[U] ® C[V], we decree that the
principal open sets (U x V)h should be basic open sets in X x Y. Notice
that these sets do form a basis for a topology as (U1 x V1)h1 fl (U2 x V2)h2 =
((U1 fl U2) x (V1 fl V2))h1 h2. Moreover the description of the coordinate ring
of U x V obtained in part a) of Proposition 2.1.5 gives that this topology
coincides with the Zariski topology given in the affine case.

Now we define a structure sheaf on X x Y. Let W be an open set in
X x Yand f a C-valued map on W. Then we say that f is regular if
and only if for each x E W, there exists a basic open set (U x V)h such
that fI(uxv)h = a/h""', for some a E C[U] ® C[V] and some nonnegative
integer m.

This defines a sheaf (9XXY. Indeed, let f E OXxY(W) and let W' C W
be an open subset. For x E W', we have principal open sets (U x V)h and
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(U"XV")h' such that x E (UXV)h C W, x E (U"XV")h' C WI and fI(UXV)h =
a/h""'. Then x E (U x V)h fl (U' x V")h' _ ((U fl U") x (V f1 V"))hh' C W'
and

h,rri, IX (VflV'))' _ (hW)m

where a' denotes the restriction of a from U x V to (Ufl U') x (V fl V'), which
belongs to Ox (U fl U") ® OY(V fl V'). So f 1W' is regular. As regularity is
defined locally, the second axiom of sheaf is deduced easily.

Now we want to show that (X x Y, OX XY) is a prevariety. We first check
that the natural projections 7rl : X xY -+ X, 7r2 : X xY -+ Y are morphisms.
They are continuous, as for an open subset U of X, we have Sri 1(U) = U x Y
which is open and, for f E OX (U), Sri (f) = f ® 1 E OX (U) ® OX (Y) is
regular. Analogously for 7r2. Now, if W is a prevariety, with morphisms
cpl : W -+ X, cp2 : W -+ Y, there is a unique map of sets b : W -+ X x Y
such that cpi = Sri o . We use the affine criterion 2.1.4 to prove that is
a morphism. By construction, products U x V of affine open sets U in X,
V in Y, are affine open sets which cover X x Y. Open sets of the form
cpi 1(U) x cp21(V) cover W and the universal property of U x V shows that
the restriction of /i to such open sets is a morphism. O

2.2. Varieties

It is possible to find examples of prevarieties which are geometrically patho-
logical. For example, let X be covered by two copies U, V of A1, with every
point in the two copies identified except 0. So, X is the affine line with a
point doubled. To avoid such cases, we make the following definition.

Definition 2.2.1. A prevariety X is called an (algebraic) variety if the
diagonal O(X) _ {(x, x)Ix E X} is closed in X x X.

Remark 2.2.2. In the category of topological spaces, with X x X given
the product topology, the condition 0(X) closed in X x X is equivalent to
the Hausdorff separation axiom.

Remark 2.2.3. An equivalent condition to O(X) closed in X x X is the
following. For morphisms cp, : Y -+ X, where Y is any prevariety, the set
{y E Y cp(y) _ b(y)} is closed in Y. Indeed, by applying this condition
to the projections of X x X on both factors, we obtain O(X) closed in
X x X. In the other direction, the inverse image of O(X) by the morphism
Y ` X x X is {y E Y: cp(y) _ (y)}.
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Let us see that the afline line with a point doubled is not a variety. If we
take the two maps Al - U C X, A1 -+ V C X the subset of A1 on which
they coincide is A1 \ {0}, which is not closed.

Example 2.2.4. 1. An afline variety is a variety, as the diagonal is given
by polynomials functions.

2. Subprevarieties of a variety are again varieties. These are therefore called
subvarieties.

3. If X, Y are varieties, so is X x Y.

Lemma 2.2.5. Let X be a prevariety and assume that each pair x, y E X
lie in some affine open subset of X. Then X is a variety.

Proof. Given a prevariety Y and morphisms cp, b : Y -+ X, let Z = {y e
Y cp(y) _ ''(y)}. We have to show that Z is closed. If z e Z, (z)
and b(z) lie by hypothesis in some afline open set V of X. Then U =
cp-1(V) fl b-1(V) is an open neighborhood of z which must meet Z. But
Z fl U = {y e U cp'(y) _ b'(y)}, where cps, /" : U -3 V are the restrictions.
Since V is a variety, Z fl U is closed in U. This means that U \ (Z fl U) is an
open set not meeting Z, so in particular it cannot contain z. We conclude
that z E Z.

Corollary 2.2.6. A projective variety is a variety.

Definition 2.2.7. An open set in a projective variety with the induced
sheaf of functions is called a quasi-projective variety.

The following proposition shows why it is better to deal with varieties
than with prevarieties.

Proposition 2.2.8. Let Y be a variety, X any prevariety.

a) If cp : X -+ Y is a morphism, the graph I' _ {(x,(x)) x e X} is
closed in X x Y.

b) If cp, /' : X -+ Y are morphisms which agree on a dense subset of X, then

Proof. a) I' is the inverse image of 0(Y) under the morphism X x Y -+
Y x Y which sends (x,y) to ((x),y).
b) The set {x e X cp(x) _ fi(x)} is closed in X since Y is a variety. It is
dense by assumption, so it coincides with X.

Definition 2.2.9. A morphism of affine varieties cp : X -3 Y is called finite
if C[X] is integral over the subring cp*C[Y].
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Remark 2.2.10. If X, Y are irreducible and cp X - Y is finite and
dominant, then C(X) is a finite algebraic extension of cp*C(Y) and so
dim X = dim Y.

Proposition 2.2.11. Let cp : X -+ Y be a finite, dominant morphism of
affine varieties. If Z is closed in X, then cp(Z) is closed in Y and the
restriction of cp to Z is finite. In particular, cp is surjective.

Proof. Let R = C[X], S = C[Y]. Since cp is dominant, co* is injective. We
can then view S as a subring of R, over which R is integral by hypothesis.
If I is an ideal of R, then R/I is an integral extension of S/(I fl S). Now
let Z be closed in X, I = Z(Z). Then cp maps Z into the zero set Z'
of I' = I fl S, which is a radical ideal of S, hence equal to 1(Z'). The
corresponding coordinate rings are R/I and S/I', so by the remark above,
cp : Z - Z' is again finite (and dominant). It now suffices to prove that any
finite dominant morphism is surjective. If y E Y, then to say that cp(x) = y
is just to say that co* sends the local ring of y into that of x, or that co* sends
the maximal ideal M' of S vanishing at y into the maximal ideal M of R
vanishing at x. To show that co is surjective, we therefore have to show that
M' lies in some maximal ideal M of R. But this follows from the Going Up
theorem since R is integral over S.(See e.g. [A-M] 5.10.)

We now extend the notion of dominant to morphisms of varieties.

Definition 2.2.12. A morphism of varieties cp : V -+ W is called dominant
if cp(dom(cp)) is a dense subset of W.

Proposition 2.2.13. Let cp : X -+ Y be a morphism of varieties. Then
cp(X) contains a nonempty open subset of its closure cp(X).

Proof. We first reduce to the case X, Y irreducible. Let Y = UY with Y2
the irreducible components of Y. Then X2 := So 1(Y) are irreducible. The
union of open sets of cp(X2) contained in cp(X2) satisfies the statement in the
proposition, so we may assume Y is irreducible. Now let X = UX2 with X2 be
the irreducible components of X. The union of open sets of cp(X2) contained
in p (X) satisfies the statement in the proposition, so we may assume X is
irreducible. Let W be an afline open subset of Y meeting Sp(X) and consider

Then U satisfying the conditions for Spec-1(W) satisfies them as
well for co. So we can assume that Y is affine. By substituting Y by cp(X ),
we can assume that So is dominant. Then we must prove that Sp(X) contains
a nonempty open subset of Y. We may also reduce to the case when X is
affine. Indeed, let X = UU2 be an open affine covering of X. As U2 is dense
in X, p (U) is dense in Y, so the restrictions Sp UZ U2 -+ Y are dominant
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morphisms of irreducible afiine varieties. Now the union of open subsets of
cp(U2) contained in cp(U2) will satisfy the statement.

Let R = C [X ] , S = C [Y] . As co* is inj ective, we can consider S as
a subring of R. Now by Corollary 1.1.10, we can find elements f E S,
xl,... , xr E R, algebraically independent over S f and such that R f is inte-
gral over S f [xi,. . . , xr] . Now R f = C[X f], Sf = C[Yf] where X f, Yf denote
the principal open sets in X and Y defined by the nonvanishing of f. So
S f [1,... , xr] ^S f ® C[x1 i ... , xr] can be viewed as the coordinate ring of

Yf x A. The restriction of cp to Xf can be factored as Xf - Yf x A?' p Yf,
where / is a finite dominant morphism. The principal open set Yf satisfies

(Yf) = X f .

By Proposition 2.2.11, /' is surjective, as is pr. Therefore Yf lies in
(p(X). U

A variety X is a noetherian topological space, so, as in the affine case,
we define the dimension of a variety to be its dimension as a topological
space. If X is irreducible, its field C(X) of rational functions coincides with
C(U) for any affine open subset U of X. As U is dense in X, we have
dim X = dim U. Hence, by the affine case, we obtain that the dimension of
X is equal to the transcendence degree of C(X) over C.

Similarly, if X is an irreducible variety, f E C(X ), we have dim X f =
dim X. For example, by identifying the set of square matrices of order n with
entries in C with the affine space Ant , we can consider the subset GL (n, C)
of matrices with nonzero determinant as a principal open subset of Ant . We
then have dim GL (n, C) = n2.

We now look at the dimension of subvarieties.

Proposition 2.2.14. Let X be an irreducible variety, Y a proper, closed,
irreducible subset. Then dim Y < dim X.

Proof. We can assume that X is affine and let d =dim X. Then C[Y] ^C[X]/P
for P a nonzero prime ideal of C[X]. By Noether's normalization

lemma, we can choose transcendence bases of C(X) and C(Y) contained
in C[X] and C[Y] respectively. Suppose dim Y > d and let yl, ... , yd al-
gebraically independent elements in C[Y]. Then their preimages xl,... , xd

in C[X] are clearly algebraically independent as well. Let f be a nonzero
element in P. As dim X = d, there must be a nontrivial polynomial rela-
tion g(f, xl,... , xd) = 0, where g E C[Tp, Tl, ... ,Td]. As f 0, we can
assume that h(Tl,... , Td) = g(0, T1,. . . , Td) is a nonzero polynomial. Now
h(yl,... , yd) = 0, contradicting the independence of the yti. O
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Definition 2.2.15. We define the codimension codimX Y of a subvariety
Y of the variety X as codimX Y = dim X - dim Y.

We shall prove that the irreducible subvarieties of codimension 1 are
precisely the irreducible components of hypersurfaces.

Corollary 2.2.16. Let X be an irreducible af,)"ine variety, Y a closed irre-
ducible subset of codimension 1. Then Y is a component of V (f) for some
f e C[X].

Proof. By assumption Y X, so there exists a non zero f E C[X] van-
ishing on Y. Then Y C V (f) X. Let Z be an irreducible component
of V(f) containing Y. Proposition 2.2.14 says that dim Z < dim X, while
dim Y < dim Z with equality only if Y = Z. Since codimX Y = 1, equality
must hold. O

In the situation of the corollary, it is not usually possible to make Y
be precisely V(f ). However this can be done when Y has codimension 1 in
some affine space A or more generally when C[X] is a unique factorization
domain. (See Exercise 6.)

We shall now see a converse to Corollary 2.2.16.

We defined a hypersurface in Aas the zero set of a single nonconstant
polynomial f E C[Xl,... , X7,]. More generally, when V is an affine variety,
a nonzero nonunit f E C[V] defines a hypersurface in V. For example
SL(n, C) is the hypersurface in GL(n, C) or in defined by 1.

Proposition 2.2.17. All irreducible components of a hypersurface in A"
have codimension 1.

Proof. It suffices to consider the zero set V of an irreducible polynomial f E
C [X 1 i ... , X7]. As f is nonconstant, at least one variable, say X, actually
occurs in f. Let x2 be the restriction of XZ to V, so C (V) = C (x 1, ... ,
We claim that x1,. . . , x1_ 1 are algebraically independent over C. Otherwise
there exists a nontrivial polynomial relation g (x i , ... , x1_) = 0, whence
g (X i , ... , X1_) vanishes on V. As 1(V) _ (f), g would be a multiple of
f, which is impossible as Xoccurs in f. We conclude that dim V > n - 1,
which must be an equality by Proposition 2.2.14. D

We now generalize this result to arbitrary affine varieties.

Theorem 2.2.18 (Krull's Hauptidealsatz). Let V be an irreducible affine
variety, f a nonzero nonunit in C[V], Y an irreducible component of V (f ).
Then Y has codimension 1 in V.
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Proof. Let p = Z(Y) C R = C[V] and let Yi, ... , Yt be the components
of V(f) other than Y, pZ = Z(Y). The Nullstellensatz 1.1.6 implies that

_ P n P1 n n fit. Choose g E P1 n n pt \ p (such a g exists as Y
is not contained in Yl U U Yt). Then Vg is an irreducible affine variety
having the same dimension as V and Y fl Vg is precisely the zero set of f
in Vg. Since Y fl Vg is a principal open set in Y, it suffices to prove that its
codimension in Vg is 1. So we may assume Y = V (f ), P _ \/INJ.

Now we apply Noether's normalization Lemma 1.1.8 to the domain R =
C[V]. We obtain that R is integral over a subring S which is isomorphic to
the polynomial ring C[T1i... ,Td], where d =dim V. Let E = C(V) and F
the field of fractions of S. Since the field extension ElF is finite, we may
consider its norm NEWF. As R is integral over S, NEIF takes elements of R
into S.

Set fo = NEIF(f). We want to see foS = /jR fl S. As f is integral
over S, we have a relation f + ai f '-1 + + aj = 0. By the properties
of the norm, we have fo = a (where m = [E : F(f )]). Then 0 = (f' +
ai fk-i + ... + ak) a1 - f a -1(fk-1 + al fk-2 + ... + ak-i) + f0, so
foE fR. This implies fo S c /jRnS. Now let g E /jRnS, so g'' = fh,
for some positive integer r and some h E R. Taking norms, we obtain
9r[E:F] = NEIF(f)NEIF(It). AS NE1F(It) E S, we obtain g E Sfo.

We have replaced the prime ideal p _ /fiT by the prime ideal p fl S =
foS. Now S is a unique factorization domain and it is easy to see that

if two different irreducible factors appear in the decomposition of fo, then
foS would not be prime. We obtain then that, up to a unit factor, fo is a

power of a nonconstant irreducible polynomial p; whence p fl S = pS.

If S is viewed as the affine algebra of Ad, then pf1S defines a hypersurface
in Ad, which has codimension 1, by Proposition 2.2.17. This means that the
fraction field of S/(p fl S) has transcendence degree d - 1 over C. On the
other hand, R integral over S clearly implies R/p integral over S/(p fl S),
so the two fraction fields have equal transcendence degree. As the fraction
field of R/p is C(Y), we obtain dim Y = d - 1. D

Corollary 2.2.19. Let V be an irreducible variety, U an open subset in V,
f a nonzero nonunit in Ov(U), and Y an irreducible component of V(f).
Then Y has codimension 1 in V.

Proof. Just cut down with an affine open subset of U meeting Y and apply
Theorem 2.2.18. U

Definition 2.2.20. Let us recall that a subset of a topological space X is
called locally closed if it is the intersection of an open set with a closed set.
A finite union of locally closed sets is called a constructible set.
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Theorem 2.2.21 (Chevalley theorem). Let cp : X - Y be a morphism of
varieties. Then cp maps constructible sets to constructible sets. In particular,
cp(X) is constructible in Y.

Proof. A locally closed subset of a variety is itself a variety, so it suffices to
prove that o(X) is constructible. We may assume that Y is irreducible. We
proceed by induction on dim Y. For dim Y = 0, there is nothing to prove.
By induction, we can assume cP dominant.

Choose an open subset U of Y contained in o(X ), using Proposition
2.2.13. Then the irreducible components W,,. . . , Wt of Y \ U have smaller
dimension than Y (Proposition 2.2.14). By induction, the restrictions of cP
to ZZ = c-1(WZ), 1 < i < t, have images which are constructible in WZ,
hence also constructible in Y. Therefore o(X) is constructible, being the
union of U and the finitely many cP (ZZ) . LI

The next proposition will be used in the construction of the quotient of
an algebraic group by a subgroup. To prove it we need two lemmas.

Lemma 2.2.22. Let X, Y be affine varieties such that C[X] = C[Y] [ f ], for
some element f e C[X]. We consider the morphism cp : X - Y defined by
the inclusion C[Y] y C[X]. Assume that f is transcendental over C(Y).
Then

a) cp is an open morphism.

b) If Y' is an irreducible closed subvariety of Y, then cp-1(Y') is an irre-
ducible closed subvariety of X of dimension equal to dim Y' + 1.

Proof. a) We may assume that X = Y x Al and that cp is the projection
on the first factor. Let g = o gi f Z E C[X] = C[Y] [ f ]. Then cp(Xy) _
U oYyz. As the image of principal open sets is open, cp is open.
b) Let Q = Z(Y') C C[Y]. Then cp-1(Y') = V(P), for P = QC[X]. Then
C[X]/P (C[Y]/Q)[f]. Since the last ring is an integral domain, P is a
prime ideal and cp-1(Y') is irreducible. As C[cp-1(Y')] ^C[Y'] [f], with f
transcendental over C(Y'), dim cp-1(Y') = dim Y' + 1. O

Lemma 2.2.23. Let X, Y be affine varieties such that C[X] = C[Y] [ f ], for
some element f e C[X]. We consider the morphism cp : X - Y defined by
the inclusion C[Y] y C[X]. Assume that f is algebraic over C(Y). Then
there is a nonempty open subset U of X with the following properties.

a) The restriction of cp to U defines an open morphism U -+ Y.

b) If Y' is an irreducible closed subvariety of Y and X' is an irreducible
component of cp-lY' that intersects U, then dim X' = dim Y'.
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c) Forx E U the fiber cp'(cp(x)) is a finite set with [C(X) : C(Y)] elements.

Proof. We have C[X] = C[Y] [T]/I, where I is the ideal of C[Y] [T] of poly-
nomials in the variable T vanishing at f. Let F be the minimal polynomial
of f over C(Y). Let a be a common denominator of the coefficients of F,
so F E C[Y]a [T]. Let fi,. . . , fn be the roots of F in some extension field
of C(Y). Since charC(Y) = 0, the roots are distinct and the discriminant
d = flZ< (fti - f3)2 is a nonzero element of C(Y), which can be expressed
polynomially in the coefficients of F. It follows that there exist b E C[Y]
and m > O such that a"''d = b.

We may replace X and Y by the principal open sets Xdb and Ya6i re-
spectively. We are then reduced to prove the lemma when, moreover, the
following hold.

1. I contains the minimal polynomial F of f. From this it follows, using
the division algorithm that I is the ideal generated by F. It also follows
that C[X] is a free C[Y]-module.

2. If F(T) _ 2 o hZTz, then for all y E Y the polynomial F(y)(T) _
I=o h2(y)Ti has distinct roots.

We shall show that in this situation the statements of the lemma hold
with U = X. We may assume that

X= {(y, t) E Y x Al F(y)(t) = 0},

and that the morphism cp : X -+ Y is the first projection. Let G E C[Y][T]
and denote by g its class in C [X ] . Then

Xy = {(y, t) E X : G(y)(t) 4 0}.

Write G = QF -}- R, where R = 7i riTi is a polynomial in T of degree
< n = deg F. Then cp(Xy) is the set of y e Y such that not all roots
of F(y)(T) are roots of R(y)(T). Since the first polynomial has n distinct
roots, this is the set of y E Y such that R(y) is not the zero polynomial. We
then have

n-1
(P(X9) = UYri,

2=0

whence a).

Next let Y' as in b) and let Q = Z(Y'). Then cp-1(Y') = Z(QC[X]).
Let A = C[Y]/Q and denote by F the image of F in A[T]. We claim that
QC[X] is a radical ideal, i.e. A[T]/(F) has no nonzero nilpotent elements.
Let H E A[T] and assume that Htm is divisible by F. We may assume that
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deg H <n. It follows from Property 2 that F has distinct roots and that
H is divisible by F as polynomials with coefficients in the quotient field
of A. But, since H has lower degree than F, this can only be if H = 0,
which implies the claim. As QC[X] is radical, it is an intersection of prime
ideals of C[X], say QC[X] _ fl2 1 P. We may assume that there are no
inclusions among the P. The irreducible components of cp-1(Y') are the
V(P). We show that Pi fl C[Y] = Q,1 < i < r. If this is not so, we have,
say Pl fl C[Y] Q. Take xl E (Pl f1 C[Y]) \ Q and xi E PZ \ Pl (2 < i < r).
Then x1x2 ... x,. E QC[X]. Since C[X] is free over C[Y], it follows that
x2 ... x,. E QC[X] \ Pi, which is impossible if r > 1. If r = 1, we have a
contradiction, since QC[X] fl C[Y] = Q.

It follows that the quotient field of C[X]/Pi is an algebraic extension of
the quotient field of A, which proves b).

If Y' is a point then Q is a maximal ideal of C[Y] and A = C. The
preceding analysis shows that now p' (Y') is the zero dimensional variety
defined by the C-algebra C[T]/(F). Since F is a polynomial of degree n
with distinct roots, c) follows.

Proposition 2.2.24. Let X and Y be irreducible varieties and let cp : X -+
Y be a dominant morphism. Let r := dim X - dim Y. There is a nonempty
open subset U of X with the following properties.

a) The restriction of cp to U is an open morphism U -+ Y.

b) If Y' is an irreducible closed subvariety of Y and X' an irreducible com-
ponent of cp-1(Y') that intersects U, then dim X' = dim Y' + r. In par-
ticular, if y E Y, any irreducible component of cp-ly that intersects U
has dimension r.

c) If C(X) is algebraic over C(Y), then for all x E U the number of points
of the fiber cp-1(cpx) equals [C(X) : C(Y)].

Proof. Assume that we have a factorization cp = cpl o cp2i where (P2 : X -
Z,(P1 : Z - Y are dominant morphisms and Z is irreducible. If a) and b)
hold for cpl and cp2i they also hold for cp. To prove the theorem, we can
assume that X and Y are afFine. Since C[X] is a C[Y]-algebra of finite type,
we can find a factorization of cp

X = Xr Xr_1 ` - ... ? X1 Xo = Y,

where each cpi is a morphism of the type of the morphism cp considered either
in Lemma 2.2.22 or in Lemma 2.2.23. In particular, when C(X) is algebraic
over C(Y), every (pi is of the type considered in Lemma 2.2.23. We then
obtain the proposition from these lemmas. O



40 2. Algebraic Varieties

Corollary 2.2.25. In Proposition 2.2.24, a) can be replaced by the following
stronger property:

a') For any variety Z, the restriction of cp to U defines an open morphism
UxZ-YxZ.
Proof. It suffices to prove this for Z affine. Observe that if a') holds for Z
and Z' is a closed subvariety of Z, then a') also holds for Z'. Hence it suffices
to establish a') for Z = A'"`. This will follow if we prove the corresponding
result in the cases of Lemma 2.2.22 and Lemma 2.2.23. The first case is
trivial. For the second one, a') follows by observing that if F is the minimal
polynomial over C(Y) of an element f in C(X), then F is also the minimal
polynomial of f over C(Y x A'"`).

In 2.2.9 we defined finite morphism of affine varieties. We now see that
a finite morphism has finite fibers. Let us recall that if B is an A-algebra of
finite type, then B is finite over A if and only if B is integral over A.

Proposition 2.2.26. Let cp : X --> Y be a finite morphism of affine vari-
eties.

a) cp is closed.

b) cp-1(y) is finite for all y e Y.

Proof. Let A = C[X], B = C[Y].
a) Let Z = V(I) be a closed subset of X and J = cp*-1(I). The points of
cp(Z) are cp*-1(97t), with 9Jt a maximal ideal of A containing I. Identifying
B/J with a subring of A/I via cp*, A/I is a finite B/J-algebra. For O2 a
maximal ideal of B containing J, O2' = sJT/J is a maximal ideal of B/J and
by the Going Up theorem, there exists a maximal ideal 932' of A/I such
that 4M' _ 931' fl (B/J). Let 931 be the maximal ideal of A containing I
corresponding to 9lt'. We have 02 = cp*-1(9lt). It follows that cp(Z) = V(J);
hence cp(Z) is closed in Y.

b) By a), cp(X) = V(Ker cp*). As A is a finite (B/ Ker cp*)-algebra, there
is a finite number of maximal ideals of A lying above a maximal ideal of
B/(Ker cp*). So the result follows.

Definition 2.2.27. Let cp : X --> Y be a morphism of affine varieties. We
say that cp is locally finite at a point x e X if there exist a finite morphism

Y' --> Y and an isomorphism v of an open neighborhood U of x onto an
open set in Y' such that µ o v is the restriction of cp to U.

Lemma 2.2.28. Let cp : X --> Y, z/ : Y -+ Z be morphisms of affine vari-
eties. If cp is locally finite in x and b is so in cp(x), then b o cp is locally
finite in x.
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Proof. We may assume that Y is the principal open set where Z' is
finite over Z, with f e C[Z']. If Y' is finite over Y, then C[Y'] = B f, where
B is integral over C[Z']. Hence B is integral over C[Z]. It follows that
Y' is isomorphic to a principal open set Vy, where V is finite over Z, with
g E C[V]. O

Lemma 2.2.29. Let cp : X -+ Y be a dominant morphism of irreducible
varieties. We consider B = C[Y] as a subring of A = C[X]. Assume that
A = B[a], for some a e A. Let x e X. Then one of the two following
statements holds:

a) cp-1(cpx) is finite and cp is locally finite in x,

b)

Proof. We have A = B[T]/I, where I is the ideal of the polynomials f E
B[T] with f(a) = 0. Let E : B -+ C be the morphism defining cpx. It extends
to a morphism B[T] -+ C[T]. If E(I) = 0, then C[cp-1(cpx)] ^C[T]; whence

'(px) A'.
If E(I) 0, the polynomials in E(I) vanish in a(x); hence E(I) contains

non-constant polynomials and no non-zero constants. This implies that
cp-1(cpx) is finite. It also follows that there is f e I of the form fTn + -I-
frnTrn + ... + fog where E(fn) _ ... E(frn+i) _ 0,E(frn.) 0,m> 0. Put
s=fn an-rn Then

sa is integral over B[s] and a is integral over the subring
B[s1] of the quotient field of B. But since s E B[a], it follows that s is
integral over B[s-1], i.e. that s is integral over B. Now the assertion of a)
follows by observing that As = B[sa, s]S. O

Proposition 2.2.30. Let cp : X -+ Y be a dominant morphism of irreducible
varieties. We consider B = C[Y] as a subring of A = C[X]. Let x e X. If
the fiber cp-1(cpx) is finite, then cp is locally finite in x. Moreover dim X =
dim Y.

Proof. We have A = B[al,... , an]. If h = 1, the assertion is true by Lemma

2.2.29. We have a factorization of cp: X - X' Y, where C[X'] = B[al].
Clearly zb-1('bx) is finite. By induction on h we may assume that '/ is locally
finite in x. We may then assume that there is a finite morphism of affine
varieties b' : X" - X' such that X is an affine open subset of X" and that
zb is induced by zb'.

Let F =cps-1(cp'x). If F is infinite, by 2.2.29, it is isomorphic to Al. Let
E be a component of 'b'' (F) of dimension > 1 passing through x. Now
X fl E is an open subset of E containing x, hence must be infinite. But
X fl E lies in the finite set cp-1(cpx) and we get a contradiction. Hence the
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components of /'-1(F) of dimension > 1 do not contain x. Replacing X by
a suitable open neighborhood of x we may assume that no such component
exists. Then F is finite. The theorem then follows by using Lemmas 2.2.28
and 2.2.29. D

Definition 2.2.31. A point x of an irreducible variety X is normal if there
exists an affine open neighborhood U of x such that C[U] is integrally closed.
A variety is normal if all its points are normal.

We now state a version of Zariski's main theorem.

Theorem 2.2.32. Let cp : X - Y be a morphism of irreducible varieties
that is bijective and birational. Assume Y to be normal. Then cp is an
isomorphism.

Proof. Let x E X. Replace X and Y by afFine open neighborhoods U of
x, respectively V of cpx. We deduce from Proposition 2.2.30 that we may
assume that U is isomorphic to an afFine open subset of an afFine variety
V' which is finite over V. By the birationality assumption, C(V') ^J C(V).
Now the normality of Y implies that the finite morphism V' - V is in fact
an isomorphism. This shows that cp is an isomorphism of geometric spaces,
hence an isomorphism of varieties. El

We shall now define the tangent space of a variety V at a point x. If
f(X1,.. . , Xn) E C[Xl,... , Xn], x = (xi,... , xn) is a point in An, we define
the differential of f at x as

df = (af/aX) (x)(X - xi).

It follows from the definition that for f, g E C[Xl,... , Xn],
d f + g) f

an afFine variety in Ac, x a point in V, we define the tangent
space to V at the point x as the linear variety Tan(V) C Ac defined by the
vanishing of all d f , for f E 72(V). It is easy to see that for any finite set
of generators of Z(V), the corresponding d f generate Notice
that the tangent space to a linear variety is the variety itself at any of its
points.

We now want to give an intrinsic definition of the tangent space. For a
variety V C fin, x E V, let M = Z(x) be the maximal ideal of R = C[V]
vanishing at x. We have C[V]/MX ^C; hence MX/M is a C-vector space
(finite dimensional since M is a finitely generated R-module). Now d f ,

for arbitrary f E C[Xl,... , Xn] can be viewed as a linear function on n
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(taking x as the origin), hence as a linear function on the vector subspace
Tan(V) of .fin. Since, for f E Z(V), d f vanishes on

Tan(V) f in C[V] = C[Xl,... , X}/I(V).
We then obtain a C-linear map d from R to the dual space of
Since R = C E M as C vector spaces and d(C) = 0, we may view d as a
map from M to the dual space of

Proposition 2.2.33. The map d defines an isomorphism from MX/M to
the dial space of

Proof. The map is surjective because a linear function g on Tan(V) is the
restriction of a linear function on An (with the origin at x) given by a linear
polynomial f(X1,... , Xn) such that d f is the given g. We now prove that
Ker d = M. Suppose d f , f E Mme, vanishes on f being the

N
image of some nonconst ant f E C [X 1, ... , X } . We have d f = a2 d f Z,

N N
for some a2 E C, f2 E 1(V). Setting g = f - a2d f 2, we see that digN
vanishes on all of An; hence it is identically 0. Since f was nonconstant,
we may assume that g is also. Then g must contain no linear term, i.e. g
belongs to the square of the ideal (X1,. .. , Xn). The image of this ideal in

N
R is Mme, and g has the same image f as f in R, so we conclude f E M.

We can now pass to the local ring since C9w = RM and
= MX RMX . We obtain an isomorphism of C-vector spaces between the

tangent space Tan(X) and the dual vector space of over C. For
an algebraic variety V, we define the tangent space of V at a point x as
(9fl/9fl2)*

If X, Y are algebraic varieties, x E X, a morphism of varieties p : X -+ Y
induces a C-algebra morphism p* : COY (U) -+ Ox (gyp-1(U) ), for U an open
subset of Y containing p(x). It is clear that ,? sends to IflX and

2 to 93, hence defines a C-algebra morphism from to
9i Considering the dual morphism, we obtain a morphism denoted

and called the differential mapping of p at the point x, from Tan(X)
to

Proposition 2.2.34. Let cp : X -+ Y be an isomorphism of varieties, x E
X. Then Tan(X) is isomorphic to

Proof. It is clear that is the inverse of dp, so the two tangent
spaces are isomorphic.
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We now look at the dimension of the tangent space. If X C Atm is
an affine variety and Z(X) is generated by fi,. . . , IN, the tangent space
Tan(X) at a point x of X is defined by the equations

=0, 1 < i < N.
j=1

Hence the dimension of Tan(X) is n - r for r the rank of the matrix
We now look at the dimension of the tangent

space as x varies in X. Let p be the rank of the matrix (af/aX)l<<N,l<<fl
with entries in C[Xl,... , Xn]. Then all minors of order greater that p van-
ish and there exist non-zero minors Ok of order p. Hence in the matrix
((af/aX)()) all minors of order > p vanish, so r < p and the points for
which r < p are precisely those for which 0k(x) = 0 for all k. Therefore
there is a minimum value s for x E X, and the points x E X
for which dimTan(X) > s form a proper closed subset of X.

We shall see in Proposition 2.2.36 below that, for X an irreducible vari-
ety, this minimum value s of dimTan(X) is equal to dim X. We say that
x is a simple point or regular point or nonsingular point if dim Tan(X) =
dim X. Otherwise we say that x is a singular point. A variety is called
nonsingular or smooth if all its points are simple. Otherwise it is called
singular. It is clear that .41and Pare smooth varieties. Exercise 9 gives
examples of smooth and singular plane cubic curves.

Proposition 2.2.35. Let V be a hypersurface in .41n. Then dim Tan(V) >
n - 1 for all x E V and equality holds in a nonempty open subset of V.

Proof. We have V = V (f ), for some nonconstant f E C[Xl,... , X] and
Tan(V) is defined by d f = 1 a (x) (Xi - xi) = 0. We then have
dim Tan(V) = n - 1 unless (af/aX)() = 0 for all i = 1, ... , n and this
condition determines a proper closed subset in V.

Proposition 2.2.36. Let X be an irreducible algebraic variety, x E X.
Then dim Tan(X) > dim X and equality holds in a nonempty open subset
of X.

Proof. As the statement is local, it is enough to consider the case of an
affine variety. By Proposition 1.1.27, there exists a birational equivalence
cp : X - Y, where Y is a hypersurface in the affine space An, where n =
1 + dim X. According to Proposition 1.1.26, there exist nonempty open
subsets U C X, V C Y such that co determines an isomorphism between
them. By Proposition 2.2.35, the set W of regular points of Y is open and
dim Tan(Y)y = n - 1, for y E W. The set V f1 W is also open and so is
cp-1(V fl W) C U. Since the dimension of the tangent space is invariant by
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isomorphisms (Proposition 2.2.34), dim Tan(X) = dim X, for x E p1 (V n
W). D

Remark 2.2.37. In the case of reducible varieties, the last result is no
longer true. If, for example, X = X1 U X2, with dim X1 = 1, dim X2 = 2,
and x is a simple point in X1, not in X2, we will have dim Tan(X) = 1,
whereas dim X = 2.

We may define the dimension of the variety X at a point x, denoted by
dimes X as the maximum of the dimensions of the irreducible components of
X through x. We then say that a point x of X is nonsingular if dim TAX =
dimes X.

Proposition 2.2.38. Let ,o : X - Y be a dominant morphism of irreducible
varieties. Then there exists a nonempty open subset U of X such that for
all x E U, fo(x) is a nonsingular point in Y and is a surjection from
TAX onto

Proof. By Proposition 2.2.36 we can take a nonempty open subset U C
Y of regular points of Y such that p' (U) is open and dense in X and

(PIco-1 (U) : p-1(U) - U is regular and surjective. Hence ,o induces a C-
algebra monomorphism p* : COY (U) - OX (Sp-1(U)) . As p* sends to
9)IX and 2 to 9J, we have the following commutative diagram

-4 9)2X

,- 9J/ 9J,
where the upper horizontal arrow is injective. The statement on the sur-
jectivity of is a consequence of the following lemma. (See [Sh] 116.2
Lemma 2.) D

Lemma 2.2.39. With the hypothesis in Proposition 2.38, there exists a
nonempty open subset V C X such that is surjective for x E V.

Proof. The surjectivity of TV -+ is dual to the injectivity of
o* : 9J (X) /9fl2 - We shall prove that, if u1, ... ,Urn are local
parameters at Sp(x) E Y, i.e. u2 Eand their images form a basis of
the vector space /(x)' then d (p* (ui)),. . . , d (p* (Urn)) are linearly
independent. Considering the inclusion of into the power series ring,
it is visible that u1, ... , urn are algebraically independent and since Sp(X) is
dense in Y, it follows that uiOSp,... , u,nOSp are also algebraically independent
as rational functions on X. We complete them to a system v1 = u1 0
Sp, ... , vrn = Urn o Sp, vrn+1,... , vn of n = dim X algebraically independent
functions.
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The lemma will be proved if we check that for any system w1, ... , wn
of algebraically independent functions on X, the set of points z at which
w1, ... , wn are local parameters for Oz is open and nonempty. We assume
that X C AN, with coordinates X l, ... , X N . We prove that for points z of
a nonempty open subset U C X all differentials dzx2 can be expressed as
linear combinations of dzw,, ... ,dzwn. If these were linearly dependent, it
would then follow that dim TX < n. Now, each x2 is related to w1, ... , wn
by a relation

(2.1) F'2 (x2, w1, ... , wn) = 0,

FZwith FZ an irreducible polynomial and hence, as char C = 0, y 0.
axe

Suppose that

FZ = aoxnZ + aixnZ-1 + ... + ani,

with a3 E C [w1, ... , wn] . Now d a3 are linear combinations of dew,, ... ,dawn .

Using the Leibniz rule of the differential dx, it follows from (2.1) that

DF2 ni(z)dx2 + x2 dzao + ... + dzani = 0
axe

DF2
at any point z E X. The points at which all (z) y 0 form a nonempty

axe
open set in X and at such points dzx2, i = 1, ... , N, can be presented as
linear combinations of dew,,... ,dzwn. Hence the lemma is proved. D

We shall now introduce the notion of completeness for varieties.

Definition 2.2.40. A variety X is called complete if for all varieties Y,
pre : X x Y -+ Y is a closed map (i.e. sends closed subsets to closed
subsets).

Evidently a single point, viewed as a variety, is complete. It is also clear
that X is complete if and only if all its irreducible components are. Clearly,
for a variety X to be complete it suffices that it satisfies the condition in
the definition for varieties Y irreducible and affine. The affine line Al is not
complete as V (X,X2 - 1) C Al x Al projects to a nonclosed subset of A1.

Remark 2.2.41. The analogous property for topological spaces of the con-
dition in the definition of complete variety is a characterization of compact
spaces. More precisely, a theorem of Kuratowski gives that for a Hausdorff
space X compactness is equivalent to the following property: the projec-
tion pre : X x Y -+ Y is a closed map for any topological space Y, with
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X x Y endowed with the usual product topology. (See [E] 3.1.16.) Hence
completeness of varieties can be understood as an analogue of compactness
of topological spaces.

The next proposition gives the first properties of completeness. We leave
its proof as an exercise. (See Exercise 17.)

Proposition 2.2.42. Let X, Y be varieties.

a) If X is complete and Y is closed in X, then Y is complete.
b) If X and Y are complete, then X x Y is complete.
c) If cc : X -+ Y is a morphism and X is complete, then cp(X) is closed and

complete.

d) If Y is a complete subvariety of X, then Y is closed.
e) If X is complete and aff ne, then dim X = 0.
f) A complete quasiprojective variety is projective.

Proposition 2.2.43. Any projective variety is complete.

Proof. By Proposition 2.2.42 a), it is enough to prove that pre : Jn x Y -+ Y
is closed for any variety Y. We may assume that Y is affine and irreducible;
let R = C [Y] . Let UZ = {(xO : x1 : xn) C Tn : x2 0} be the affine
open sets covering F. The affine open sets V := UZ x Y cover F x Y.
If Xo, X 1, ... , Xn are homogeneous coordinates in Ian, then C[V2] can be
described as R[Xo/XZ,... , Xn/XZ]. Take any closed set Z in F x Y and
any point y e Y \ pr2(Z). We want to find a neighborhood of y in Y
of the form Yf which is disjoint from pre (Z). This amounts to finding
f e R, f ¢ M = Z(f) such that f vanishes on pre (Z), i.e. such that
ji (pr2 (f)) C 1(Z2), for jj: V IPn x Y, ZZ = Z f1 V2. The existence of
such f will follow from Nakayama's lemma applied to a suitable R-module,
which we now proceed to construct.

We first consider the polynomial ring S = R[Xo,... , Xn], with the natu-
ral grading S = Sm. We construct a homogeneous ideal I C S by letting

consist of all f(Xo,. .. , Xn) C Sm such that f(Xo/X2,. .. , Xn/XZ) C
1(Z2) for all i.

Let f e Z(ZZ), for i fixed. We claim that multiplication by a sufficiently
high power of XZ will take f into I. Indeed, if we view f as a polynomial
in Xo/XZ,... , Xn/XZ, then X "2 f becomes a homogeneous polynomial of
degree m in Xo,... , Xm for large m. Now (Xr/X)f C R3 vanishes on
ZZ fl V3 = Z3 fl V while (X'/X')f vanishes at all points of Z3 not in
V2. Since j is arbitrary, we conclude that X' f lies in Im+1.

Now ZZ and UZ x {y} are disjoint closed subsets of the affine variety U, so
their ideals Z(ZZ) and MRZ together generate the unit ideal H1. In particular,
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we have an equality 1 = f Z +3 mj3 g2j, where f Z E Z(ZZ), mE M, g2j E R.
We have seen that multiplication by a sufficiently high power of XZ takes
f E I(Z) into I. We can choose it large enough so that it works for all
i and moreover it takes g2j into S. So we obtain X m E Im + MSm, for
all i. Enlarging m even more, we can get all monomials of degree m in
Xo,... , Xn to lie in Im + MSm. This implies that Sm = MSm. We
can now apply Nakayama's lemma ([Ma] 1.M) to the finitely generated R-
module Sm/Im which satisfies M(Sm/Im) = Sm/Im and obtain that there
exists f E R, f ¢ M such that f(Sm/Im) = 0, thus f Sm C Im. In particular,
fXr E Im, so f vanishes on pre(Z). D
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Exercises

(1) Let X = {(x, y) E A2 : x2 = y3}. Define cp : X -3 A1 by cp(x, y) _
xy-1 if (x, y) (0,0) and cp(0, 0) = 0. Show that cp is a morphism
of irreducible varieties which is birational and bijective but is not an
isomorphism of varieties.

(2) For X, Y irreducible varieties, prove dim(X x Y) = dim X + dim Y.

(3) Product of projective varieties. If X C Ian, Y C 1p""' are projective vari-
eties the Cartesian product cannot be straightforwardly identified with
a subset of IP x Ip"". We consider the map cp : PT x Ipm - IP9, where
q = (n + 1)(m + 1) - 1, defined by

co((xp,... , xn), (yp, ... , ym)) =
(xoyo,. . . ,XOYm,X1YO, ...,xlym, ....,xnym).

a) Prove that cp is well defined and its image is closed in Ip9. Prove that
if X is closed in 1P" and Y is closed in IPtm, then cp(X x Y) is closed
in 1p9.

Hint: Use the covering of the projective space by affine open sets.
b) Prove that the construction of X x Y as a closed set of Ip9 is com-

patible with the product of prevarieties defined in Proposition 2.1.6.

(4) Exhibit a constructible subset of A2 not locally closed.

(5) Prove that constructible subsets of a topological space X form the
boolean algebra generated by the open (resp. closed) subsets of X,
i.e. the smallest collection containing all open (resp. closed) subsets
which is closed under intersections, finite unions, and complements.

(6) Let V be an irreducible affine variety for which C[V] is a unique factor-
ization domain. Prove that each closed subset W of codimension 1 has
the form V(f) for some f E C[V].
Hint: First treat the case W irreducible. Show that minimal prime ideals
of C[V] are principal.

(7) Let X C An be an affine variety. If fi,.. . , f,. generate Z(X), prove that
d fl, ... , dx f,. generate for x E X.

(8) Prove that a conic, i.e. a plane algebraic curve of degree two, is smooth
if and only if it is nondegenerate.

(9) Consider the cubic C = V(Y2 - X3 - aX - b) C A3. Prove that C has a
singular point if and only if disc (X3 + aX + b) = 0. Prove that C has
at most one singular point.
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Consider the projective closure C of C. Prove that it has a single
point P at infinity, which is nonsingular and that TanP(C) is the line at
infinity.

(10) a) Consider the cubic C = V(YZ - (X - a)2(X - b)) C A3, with a b.

Find the singular point P of C. Show that there are exactly two lines
through P such that P is a triple solution of the intersection of the
line with C. In this case, we say that P is a node of C. Make a change
of variables (over C) taking the equation of C to Y2 = X3 - X2 and
draw this curve (over l[8).

b) Consider the cubic C = V (Y2 - (X - a)3) C A3. Find the singular
point P of C. Show that there is exactly one line through P such
that P is a triple solution of the intersection of the line with C. In
this case, we say that P is a cusp of C. Make a change of variables
taking the equation of C to Y2 = X3 and draw this curve.

(11) Let us denote by Sing V the set of singular points of a variety V. Let V
be an algebraic variety, V2, 1 < i < n, its irreducible components. Prove
that

n
Sing V= U Sing V U U (V fl Vj).

i=1 i#j

(12) Let W be a subvariety of a variety V, j : W - V the canonical injection
and x E W. Prove that the map d j : T(W) -+ T(V) is injective.

(13) Let X, Y be algebraic varieties, x E X, y E Y. Prove

Tan(X x Y)(,) ^Tan(X) Tan(Y)y.

(14) The tangent cone. If f E C[Xl,... , X], we consider the Taylor expan-
sion f = fo + fl -I- + Id of f at x = (xi,.. . , E Cn, where

1

21 . .
i1+...+2n=k

a f
. in ! Dxi1 ... Dxn

(x)(11'1 - (Xn -

and d is the total degree of f. We denote by in(f) the initial form of
f, i.e. the homogeneous polynomial fk such that fo = = fk-1 = 0
and fk 0. If V is an affine variety in tin, x E V, we define the tangent
cone TC(V)X of V at x by TC(V)X := V({in(f) f E I(V)}). It is
clear that TC(V)X = Tan(V) if x is a simple point of V.
a) Prove that TC(V )X is a cone with vertex in x, i.e. that if y E TC(V )X,

the line joining x to y is contained in TC(V)X.
b) Compute the tangent cones of the cubic curves in Exercise 10 at the

singular points.
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(15) a) Let R be a noetherian local ring, with unique maximal ideal 9JL.
Prove that 9Jt is generated as an R-module by Ii,... , f, 9J/9J2
is generated as an R/9lt-module by the images of Ii,.. . , f.

b) Recall that a local ring (R, 9J) is called regular if its Krull dimension
coincides with the minimal number of generators of 9J. Prove that
for x a simple point of an algebraic variety X, the local ring O is a
regular local ring, hence is integrally closed in C(X).

Hint: See [A-M], chap. 11.
(16) Let V be an n-dimensional C-vector space, with exterior algebra AV.

To a subspace W of V of dimension d, we associate the point in IP(AdV)
corresponding to vl A nvd, for (Vi,. . . , vd) a basis of W. Let cp denote
the map obtained in this way from the collection Ed(V) of subspaces of
V of dimension d to the projective space IP(AdV).
a) Prove that cp is well defined and its image is a closed subset of IP(AdV ).

This projective variety is called Grassmann variety.
b) Write down the equations for the Grassmann variety of lines in A3.

(17) Provide the proof of Proposition 2.2.42.
Hint: For c) use that the graph of cp is closed in X x Y (Proposition
2.2.8). For e) apply c) to morphisms X - Al and use that A1 is not
complete.

(18) To an element A E GL(2, C), i.e.

A=I a b I
c d

we associate a map

a, b, c, d e C, det A = ad - be 0,

cPa :
(x:y) H (ax+by:cx+dy).

a) Prove that cpA is an automorphism of the variety lpl and cpA is the
identity if and only if A is a scalar matrix.

b) Let PGL(2, C) be the quotient group of GL(2, C) by the subgroup of
scalar matrices. Prove that the map

PGL(2, C) - Aut lPl
A H 'PA

is a group isomorphism.
Hint: Prove that an automorphism of is determined by the images of
the three points 0 = (0:1),1 = (1: 1), oo = (1:0).





Part 2

Algebraic Groups



In Part 2, we introduce algebraic groups which are algebraic varieties
endowed with a compatible group structure. We are mainly interested in
linear algebraic groups, that is, closed subgroups of some general linear
group, as these appear as differential Galois groups of linear homogeneous
differential equations. We shall see that, for an algebraic group, being a
linear algebraic group and being an afne variety is equivalent. The fact
that the quotient of an algebraic group by a closed subgroup is an algebraic
group will be used in the fundamental theorem of Picard-Vessiot theory. In
chapter 4, we introduce the notion of Lie algebra and define the Lie algebra
associated to a linear algebraic group. The concept of solvability and the
Lie-Kolchin theorem will be used in the characterization of linear differential
equations solvable by quadratures. We present the classification of the closed
subgroups of the special linear group of degree 2 and give a geometric proof
for the determination of the finite ones.

Throughout Part 2, C will denote an algebraically closed field of char-
acteristic 0.



Chapter 3

Basic Notions

In this chapter we define and provide examples of algebraic groups. We
give the notion of a connected algebraic group. We see that a linear al-
gebraic group is an affine variety and reciprocally that an affine algebraic
group is a closed subgroup of some general linear group. We consider ac-
tions of algebraic groups on algebraic varieties. We end the chapter with
the construction of the quotient of an algebraic group by a normal closed
subgroup.

3.1. The notion of algebraic group

Definition 3.1.1. An algebraic group over C is an algebraic variety G de-
fined over C, endowed with the structure of a group and such that the two
maps : G x G - G, where (x, y) = x y and G : G - G, where t (x) =
are morphisms of varieties.

Translation by an element y e G, i.e. x H xy is clearly a variety
automorphism of G, and therefore all geometric properties at one point of
G can be transferred to any other point, by suitable choice of y. For example,
since G has simple points (Proposition 2.2.36), all points must be simple;
hence G is nonsingular.

Example 3.1.2. The additive group Ga is the affine line Al with the group
law (x,y) = x + y, so t(x) = -x and e = 0. The multiplicative group Gm is
the principal open set C* C Al with group law (x, y) = xy, so t(x) = x-1
and e = 1. Each of these two groups is irreducible, as a variety, and has
dimension 1. It can be proven that they are the only (up to isomorphism)
affine algebraic groups with these two properties. (See Exercise 11 in chapter
4.

55
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Example 3.1.3. The general linear group GL(n, C) is the group of all in-
vertible n x nmatrices with entries in C with matrix multiplication. As
already noted, the set M(n, C) of all n x n matrices over C may be identi-
fied with the affine space of dimension n2 and GL(n, C) with the principal
open subset defined by the non-vanishing of the determinant. Viewed thus
as an affine variety, GL(n, C) has a coordinate ring generated by the re-
striction of the n2 coordinate functions together with 1/det(Xz3). The
formulas for matrix multiplication and inversion make it clear that GL(n, C)
is an algebraic group. Notice that GL(1, C) _

If V is a finite dimensional C-vector space we define GL(V) as the group
of C-vector space automorphisms of V. If n =dims V, we have GL(V) ^GL(n,

C).

Example 3.1.4. Taking into account that a closed subgroup of an algebraic
group is again an algebraic group, we can construct further examples. We
consider the following subgroups of GL(n, C):

(1) SL(n, C) :_ {A E GL(n, C) : det A = 1} (special linear group);

(2) T (n, C) := {(a3) E GL(n, C) az = 0, i > j} (upper triangular
group);

(3) U(n, C) :_ {(a23) E GL(n, C) a22 = 1, az3 = 0, i > j} (upper
triangular unipotent group);

(4) D(n, C) :_ {(a3) E GL(n, C) : a2 = 0, i 74 j} (diagonal group).

A linear algebraic group is a closed subgroup of some GL (n, C). The
groups above are then examples of linear algebraic groups.

Example 3.1.5. The direct product of two or more algebraic groups, i.e.
the usual direct product of groups endowed with the algebraic variety struc-
ture of the product (see Proposition 2.1.6 and Example 2.2.4), is again an
algebraic group. For example D (n, C) may be viewed as the direct product
of n copies of Gm, while affine Ti-space may be viewed as the direct product
of Ti copies of Ga.

3.2. Connected algebraic groups

Let C be an algebraic group. We assert that only one irreducible component
of C contains the unit element e. Indeed, let X1,. .. , Xm be the distinct
irreducible components containing e. The image of the irreducible variety
X 1 x x Xm under the product morphism is an irreducible subset X 1 Xm
of C which again contains e. So X1 Xm lies in some X. On the other
hand, each of the components X1,.. . , Xm clearly lies in X 1 Xm. Then
m must be 1.
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We denote by G° this unique irreducible component containing e and
call it the identity component of G.

Proposition 3.2.1. Let G be an algebraic group.

a) G° is a normal subgroup of finite index in G, whose cosets are the con-
nected as well as irreducible components of G.

b) Each closed subgroup of finite index in G contains G°.

c) Every finite conjugacy class of G has at most as many elements as
[G: G°].

Proof. a) For each x E G°, x-iG° is an irreducible component of G con-
taining e, so x-1G0 = G°. Therefore G° _ (G°)-1, and further G°G° =
i.e. G° is a (closed) subgroup of G. For any x E G, xG°x-1 is also an ir-
reducible component of G containing e, so xG°x-1 = G° and G° is normal.
Its (left or right) cosets are translates of G°, and so must also be irreducible
components of G; as G is a Noetherian space there can only be finitely many
of them. Since they are disjoint, they are also the connected components
of G.

b) If H is a closed subgroup of finite index in G, then each of its finitely
many cosets is also closed. The union of those cosets distinct from H is also
closed and then, H is open. Therefore the left cosets of H give a partition
of G° into a finite union of open sets. Since G° is connected and meets H,
we get G° C H.
c) Write n = [G G°] and assume that there exists an element x E G
with a finite conjugacy class having a number of elements exceeding n. The
mapping from G to G defined by a F-+ axa-1 is continuous. The inverse
image of each conjugate of x is closed and, as there are finitely many of
them, also open. This yields a decomposition of G into more than n open
and closed sets, a contradiction.

We shall call an algebraic group G connected when G = G°. As usual in
the theory of linear algebraic groups, we shall reserve the word "irreducible"
for group representations.

The additive group Ga (C) and the multiplicative group Gm (C) are con-
nected groups. The group GL (n, C) is connected, as it is a principal open
set in the affine space of dimension n2. The next proposition will allow us to
deduce the connectedness of some other algebraic groups. We first establish
the following lemma.

Lemma 3.2.2. Let U, V be two dense open subsets of an algebraic group G.
ThenG=UV.
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Proof. Since inversion is a homeomorphism, V-1 is again a dense open set.
So is its translate xV -1, for any given x E G. Therefore, U must meet
xV -1, forcing x E U V.

For an arbitrary subset M of an algebraic group G, we define the group
closure GC (M) of M as the intersection of all closed subgroups of G con-
taining M.

Proposition 3.2.3. Let G be an algebraic group, f2 XZ -+ G, i E I, a
family of morphisms from irreducible varieties XZ to G, such that e E Y =
f(X) for each i E I. Set M = UZEIYZ . Then

a) GC(M) is a connected subgroup of G.
b) For some finite sequence a = (ai,. . . , an) in I, GC(M) = YQi ... YQn ,

e2=±1.

Proof. We can if necessary enlarge I to include the morphisms x H f(x)1
from XZ to G. For each finite sequence a = (ai,. . . , an) in I, set Ya
Ya1 ... Yan . The set Ya is constructible, as it is the image of the irreducible
variety Xal x x Xan under the morphism fai x x fan composed with mul-
tiplication in G, and moreover Ya is an irreducible variety passing through e
(since closure and homeomorphic image of an irreducible set are so). Given
two finite sequences b, c in I, we have Yb Y C Y(b,c), where (b, c) is the se-
quence obtained from b and c by juxtaposition. Indeed, for x E Y, the
map y H yx sends Yb into Y(b,c) , hence by continuity Yb into Y(b,c) , i. e.

YbYc C Y(b,c). This last inclusion shows as well that multiplication by an
element in Yb sends Y into Y(b,c) , hence Y as well. Let us now take a
sequence a for which Ya is maximal. For each finite sequence b, we have
Ya C Ya Yb C Y(a,b) = Ya. Setting b = a, we have Ya stable under multi-
plication. Choosing b such that Yb = Y 1, we also have Ya stable under
inversion. We have then that Ya is a closed subgroup of G containing all Y
so Ya = G C (M) , proving a).

Since Ya is constructible, Lemma 3.2.2 shows that Ya = Ya Ya = Y(a,a),
so the sequence (a, a) satisfies b). U

Corollary 3.2.4. Let G be an algebraic group, Y, i E I, a family of closed
connected subgroups of G which generate G as an abstract group. Then G
is connected. D

Corollary 3.2.5. The algebraic groups SL(n, C), U(n, C), D(n, C), T (n, C)
(see Example 3.1.4) are connected.

Proof. Let UZ3 be the group of all matrices with 1's on the diagonal, arbi-
trary entry in the (i, j) position and 0's elsewhere, for 1 < i, j < n, i j.
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Then the UZ3 are isomorphic to (GQ(C), and so connected, and generate
SL(n, C). Hence by Corollary 3.2.4, SL(n, C) is connected. The UZ3 with
i <j generate U(n, C); whence U(n, C) is connected.

The group D(n, C) is the direct product of n copies of (G,,,,(C), whence
connected. Finally, T (n, C) is generated by U(n, C) and D(n, C); whence is
also connected. O

3.3. Subgroups and morphisms

Lemma 3.3.1. Let E be a constructible subset of a topological space X.
Then E contains a dense open subset of its closure.

Proof. We have E = U 1 UZ n V, where UZ are open in X and VZ are closed
in X. We can assume V irreducible (by substituting each V if necessary by
the union of its irreducible components). Let Uz := UZ \ (UVj); clearly
Uz is open in X. As V is irreducible, we have V n Uz = V. Let us observe
that Ui n (i4,UZ n V) = Uz n V. We take U := U , Uz ; then U is
open in X. Now U n E = U n (U,UZ n V) = U 1 Uz n V. We have
UnE=u1U*nV=U1V=E. U2- 2 2-

Proposition 3.3.2. Let H be a subgroup of an algebraic group G, H its
closure.

a) H is a subgroup of G.
b) If H is constructible, then H = H.

Proof. a) Inversion being a homeomorphism, it is clear that H' = H-1 =
H. Similarly, translation by x E H is a homeomorphism, so x H= xH = H,
i.e. HH C H. In turn, if x E H, Hx C H, so H x = Hx C H. This says
that H is a group.
b) If H is constructible, by Lemma 3.3.1, it contains a dense open subset U
of H. Since H is a group, by part a), Lemma 3.2.2 shows that H = U U C

H a group of
G

NG(H) G

a G is contained in Nc(H), we say that H' normalizes H.

Proposition 3.3.3. Let A, B be closed subgroups of an algebraic group G.
If B normalizes A, then AB is a closed subgroup of G.
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Proof. Since B C N(A), AB is a subgroup of G. Now AB is the image of
A x B under the product morphism G x G -+ G; hence it is constructible
by Theorem 2.2.21 and therefore closed by Proposition 3.3.2 b).

By definition a morphism of algebraic groups is a group homomorphism
which is also a morphism of algebraic varieties.

Proposition 3.3.4. Let cp : G - G' be a morphism of algebraic groups.
Then

a) Ker cp is a closed subgroup of G.

b) Im cp is a closed subgroup of G'.

c) o(G°) = o(G)°.
d) dim G = dim(Ker cp) -I- dim(Im cp) .

Proof. a) cp is continuous and Ker cp is the inverse image of the closed
set {e}.

b) cp(G) is a subgroup of G'. It is also a constructible subset of G', by
Theorem 2.2.21 , so it is closed by Proposition 3.3.2 b).
c) cp(G°) is closed by b) and connected; hence it lies in cp(G)°. As it has
finite index in cp(G), it must be equal to cp(G)°, by Proposition 3.2.1b).

d) The fibres of the morphism G -+ cp(G) induced by cp are the cosets of G
modulo Ker cp; hence they all have dimension equal to dim(Ker cp). So d)
follows from Proposition 2.2.24.

3.4. Linearization of afne algebraic groups

We have seen that any closed subgroup of GL (n, C) is an affine algebraic
group. We shall now see that the converse is also true.

Let G be an algebraic group, V an affine variety. We say that V is a
G-variety if the algebraic group G acts on the affine variety V, i.e. we have
a morphism of algebraic varieties

GxV - V
(x,v) H x.v

satisfying x1.(x2.v) _ (x1x2).v, for any xl, x2 in G, v in V, and e.v = v, for
any v E V.

Let V, W be G-varieties. A morphism cp : V -+ W is a G-morphism, or
is said to be equivariant if cp(x.v) = x.cp(v), for x E G, v E V.
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The action of G over V induces an action of G on the coordinate ring
C[V] of V defined by

G x C[V]
(x,f)

- C[V]

H x. f: v H f (x-l.v).
In particular, we can consider two different actions of G on its coordinate

ring C[G] associated to the action of G on itself by left or right translations.
To the action of G on itself by left translations defined by

GxG - G
(x,y) H xy

corresponds the action

G x C[G] - C[G]31) (x,f) A(f):yf(x'y).
To the action of G on itself by right translations defined by

GxG - G
(x,y) H yx-i

corresponds the action

G x C[G] - C[G]
(x, f) '-+ p(f) : y'-+ f(yx).

We can use right translations to characterize membership in a closed
subgroup:

Lemma 3.4.1. Let H be a closed subgroup of an algebraic group G, I the
ideal of C[G] vanishing on H. Then

H={xEG:p(I)CI}.
Proof. Let x E H. If f E I, f(yx) = 0 for all y E H; hence
p(f) E I, i.e. px(I) C I. Assume now px(I) C I. In particular, if f E I,
then p( f) vanishes at e E H, then f(x) = f(ex) = p (f) (e) = 0, so
x E V(Z(H)) = H (Exercise 4 in chapter 1), as the preceding equality holds
for all f E I. O

Lemma 3.4.2. Let G be an algebraic group and V an affine variety both
defined over the field C. Assume that G acts on V and let F be a finite
dimensional C-vector subspace of the coordinate ring C[V] of V.
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a) There exists a finite dimensional subspace E of C[V] including F which
is stable tender the action of G.

b) F itself is stable under the action of G if and only if cp*F C C[G] ®c F,
where cp : C x V - V is given by cp(x, v) = x-l.v

Proof. a) If we prove the result in the case in which F has dimension 1,
we can obtain it for a finite dimensional F by summing up the subspaces
E corresponding to the subspaces of F generated by one vector of a chosen
basis of F. So we may assume that F =< f > for some f E C[V]. Let
cp : G x V - V be the morphism giving the action of G on V, cp* : C[V] -
C[G x V] = C[G] ® C[V] the corresponding morphism between coordinate
rings. Let us write cp* f = > g2 ® f2 E C[G] ® C[V]. (Note that this
expression is not unique.) For x E G, v E V, we have (x.f)(v) = f(x'.v) _
f(o(x',v)) _ (o*f)(x_l,v) _ >g(x')f(v) and then x.f = 9i(x-1)fz

So every translate x. f of f is contained in the finite dimensional C-vector
space of C[V] generated by the functions f2. So E _ (x.f I x E G) is a
finite-dimensional G-stable vector space containing f.
b) If (p*F C C[G] ®c F, then the functions fi in the proof of a) can be taken
to lie in F; therefore F is stable under the action of G. Conversely, let F
be stable under the action of G and extend a vector space basis {f} of F
to a basis {f} U {h3} of C[V]. If cp* f = >ri ® fi + >s3 ® for x E G,
we have x.f = > r2(x-1)fZ+> s3(x-1)h3. Since this element belongs to F,
the functions s3 must vanish identically on G, hence must be 0. We then
have cp*F C C[G] ®c F.

Theorem 3.4.3. Let G be an affine algebraic group. Then G is isomorphic
to a closed subgroup of some GL(n, C).

Proof. Choose generators fi,. . . , fn for the coordinate algebra C[G]. By
applying Lemma 3.4.2 a), we can assume that the f2 are a C-basis of a C-
vector space F which is G-stable when considering the action of G by right
translations. If cp : G x G - G is given by (x, y) H yx, by Lemma 3.4.2
b), we can write cp* f;, _ > m® f3, where m23 E C[G]. Then
f(yx) _ > m(x)f3 (y); whence p(f) _ > m(x) f3. In other words,
the matrix of pF in the basis {f} is (m3(x)). This shows that the map

G - GL(n, C) defined by x H (m3(x)) is a morphism of algebraic
groups.

Notice that f2(x) = f(ex) _ >mjj(x)fj(e), i.e. fi = >fj(e)mj. This
shows that the m3 also generate C[G]; in particular, 't/i is injective. Moreover
the image group G' _ 't/'(G) is closed in GL(n, C) by Proposition 3.3.4 b).
To complete the proof we therefore need to show only that 't/i G - G'
is an isomorphism of varieties. But the restriction to G' of the coordinate
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P+Q

Figure 1. Sum of two points.

functions XZ are sent by b* to the respective mz3, which were just shown to
generate C[G]. So b* is surjective and thus identifies C[G"] with C[G].

We now give an example of an algebraic group which is not affine, hence
not a linear algebraic group.

Example 3.4.4. We consider the curve E in the projective plane Tc given
by the equation

Y2Z = X3 + aXZ2 + bZ3,

with 4a3 + 27b2 0. We have seen (Exercise 9 in chapter 2) that E is
nonsingular, has a unique point 0 at infinity, namely 0 = (0:1:0), and
that the tangent line to E at 0 is the line at infinity Z = 0. Moreover, the
intersection of E with Z = 0 has the point 0 as a triple solution. The set
E(C) of the points of E with coordinates in C is then the set of points with
coordinates in C of the affine plane curve with equation

Y2=X3+aX+b
plus the point 0. A plane nonsingular cubic is called an elliptic curve. We
now define a sum on E(C). Let us note that the intersection of E with a line
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Figure 2. Doubling of a point.

l defined over C consists in three points, distinct or not, with coordinates
in C. If P, Q are two distinct points on E (resp. if P is a point on E),
denote by l the line joining P and Q (resp. the tangent to E at P). Let PQ
(resp. PP) be the third point in the intersection l fl E. (If l is the tangent
at P, we count P twice.) Let P + Q (resp. 2P) be the third point in the
intersection of E with the line joining PQ (resp. PP) and 0. (See Figures
1 and 2.) It is clear that this sum is commutative, has 0 as identity element
and that for P = (xp, yP) E E, -P = (xp, -yP). Let us now write this
sum in coordinates. We distinguish three cases.

(1) If P = (xp, yP) Q = (xQ, yQ) and xP xQ, the equation of
the line l is Y = aX + Q, with a = (yQ - yP)/(xQ -
(ypxQ - 2,/Qxp)/(xQ - xp). Substituting in the equation of E, we
obtain a monic polynomial in X of degree 3, in which the coefficient
of X2 is -a2, so the coordinates of P -+ Q are

xP+Q = a2 - xP - xQ, yP+Q - -axp+Q -

(2) IfP#QandxP=xQ,P-+Q=O.
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(3) The equation of the tangent line to E at the point P = (xp, yP)
is Y = aX + Q, with a = (34 + (-4 + axp +
2b)/2yP. Again substituting in the equation of E, we obtain a
monic polynomial in X of degree 3, in which the coefficient of X2
is -a2, so the coordinates of 2P are

x2P = CY2 - Zxp, y2p = -ax2p -,Q.

The more delicate point is proving that the defined law is associative.
One tedious form to do it is by direct computation using the formulae above.
A geometric proof based on the fact that a pencil of cubic curves is deter-
mined by eight points can be found in [Fu] or [Hus]. A third proof using
Riemann-Roch theorem can be found in [Si].

We then have on the projective curve E a group structure and the for-
mulae obtained above show that the maps giving the sum and the opposite
element are morphisms of varieties; hence E is an algebraic group.

3.5. Homogeneous spaces

Let G be an algebraic group. A homogeneous space for G is a G-variety
V on which G acts transitively. An example of homogeneous space for G
is V = G, with the action given by left or right translations introduced in
Section 3.4.

Lemma 3.5.1. Let V be a G-variety.

a) For v E V, the orbit G.v is open in its closure.
b) There exist closed orbits.

Proof. By applying Proposition 2.2.13 to the morphism G - V, x x.v,
we obtain that G.v contains a nonempty open subset U of its closure. Since
G.v is the union of the open sets x.U, x E G, assertion a) follows. It implies
that for v E V, the set Sv = G.v \ G.v is closed. It is also G-stable, hence a
union of orbits. As the descending chain condition on closed sets is satisfied,
there is a minimal set S. By a), it must be empty. Hence the orbit G.v is
closed, proving b). D

Lemma 3.5.2. Let G be an algebraic group and G° its identity component.
Let V be a homogeneous space for G.

a) Each irreducible component of V is a homogeneous space for G°.

b) The components of V are open and closed and V is their disjoint union.

Proof. Let V' be the orbit of G° in V. Since G acts transitively on V, it
follows from Proposition 3.2.1 that V is the disjoint union of finitely many
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translates x.V'. Each of them is a G°-orbit and is irreducible. It follows from
Lemma 3.5.1 that all G°-orbits are closed. Now the xV' are the irreducible
components of V and each of them is a Go-orbit, so a) is proved. As V is the
disjoint union of the closed sets xV' and there is a finite number of them,
b) follows. 0
Proposition 3.5.3. Let G be an algebraic group and let : V -+ W be an
equivari ant morphism of homogeneous spaces for G. Put r = dim V -dim W.

a) For any variety Z the morphism (co, Id) : V x Z -+ W x Z is open.
b) If W' is an irreducible closed subvariety of W and V' an irreducible com-

ponent of co ' W', then dim V' = dim W' + r. In particular, if y E W,
then all irreducible components of co 1y have dimension r.

Proof. Using Lemma 3.5.2, we reduce the proof to the case when G is
connected and V, W are irreducible. Then co is surjective, hence dominant.
Let U C V be an open subset with the properties of Proposition 2.2.24 and
Corollary 2.2.25. Then all translates x. U, x E G, enjoy the same properties.
Since these cover V, we have a) and b). 0

A homogeneous space V for G is a principal homogeneous space or G-
torsor if the morphism

GxV - VxV
(x,v) H (x.v,v)

is an isomorphism. The action of G on V is then transitive and the stabilizer
subgroup of any element in V is trivial. Clearly, V = G with the action
given by left translations is a G-torsor. It is called the trivial G-torsor.
More generally, we say that a G-torsor is trivial if it is G-isomorphic to
G. In particular, G with the action given by right translations is a trivial
G-torsor.

3.6. Characters and semi-invariants

Definition 3.6.1. A character of an algebraic group G is a morphism of
algebraic groups G -+ Gm.

For example, the determinant defines a character of GL(n, C). If xl, X2
are characters of an algebraic group G, so is their product defined by (X1X2)(x)
= X1(x)x2(x). This product gives the set X(G) of all characters of G the
structure of a commutative group. The identity element is the character xo
such that xo(x) = 1 for all x E G.

Example 3.6.2. A morphism x : (Ga -+ (G,n would be given by a polynomial
x(x) satisfying X(x + y) = X(x)X(y). We then obtain X ((GQ) = 1.
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Example 3.6.3. Given a character x of SL(n, C), n > 2, by composition
with the morphism Ga - SL (n, C), x H I + xe2 , where we denote by
e2 , i j, the matrix with entry 1 in the position (i, j) and 0's elsewhere,
we obtain a character of Ga. As the subgroups UZj = {I + xe23 : x E C}
generate SL(n, C), we obtain X (SL(n, C)) = 1.

Example 3.6.4. A character of Gm is defined by x H xn, for some n E
hence X (Gm) Z. As D (n, C) Gm x x Gm, we obtain X (D (n, C))
Zx xZ.

If G is a closed subgroup of GL(V), for each x E X(G), we define
VX = {v E V : x.v = x(x)v, for all x E G}. Evidently VX is a G-stable
subspace of V. Any nonzero element of VX is called asemi-invariant of G
of weight x. Conversely if v is any nonzero vector which spans a G-stable
line in V, then it is clear that x.v = X(x)v defines a character x of G.

More generally, if cp : G -+ GL(V) is a rational representation, i.e. a
rational map which is also a group homomorphism, then the semi-invariants
of G are by definition those of cp(G).

Lemma 3.6.5. Let cp : G - GL(V) be a rational representation. Then the
subspaces VX, X E X (G), are in direct sum; in particular, only finitely many
of them are nonzero.

Proof. Otherwise, we could choose a minimal n > 2 and nonzero vectors
v2 E VXi, for distinct XZ,1 < i < n, such that vl-I- +vn = 0. Since the XZ are
distinct, Xl(x) x2(x) for some x E G. But 0 = cp(x)(>v2) _ XZ(x)v2f
so > xl(x)-lx2(x)v2 = 0. The coefficient of v2 is different from 1; so we can
subtract this equation from the equation > vZ = 0 to obtain a nontrivial
dependence involving < n - 1 characters, contradicting the choice of n. O

Lemma 3.6.6. Let cp : G - GL(V) be a rational representation. Let H be
a closed normal subgroup of G. Then each element of cp(G) permutes the
spaces VX for X E X(H).

Proof. We can assume that G C GL(V). If x E G, y E H, v E VX, then
y.(x.v) _ (yx).v = x(x-lyx).v = x.(x(x-lyx).v) = X(x-lyx)x.v and the
function y H X(x-lyx) is clearly a character x' of H, so x maps VX into VX'.

3.7. Quotients

The aim of this section is to prove that if G is a linear algebraic group and
H a closed normal subgroup of G, then the quotient G/H has the natural
structure of a linear algebraic group, with coordinate ring C[G/H] ^ C[G]H.
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If V is a finite dimensional C-vector space, then GL(V) acts on exterior
powers of V by x.(vl A n vk) = x.vl n n x.vk. If M is a d-dimensional
subspace of V, it is especially useful to look at the action on L = ndM,
which is a 1-dimensional subspace of ndV.

Lemma 3.7.1. For x E GL(V), M a d-dimensional subspace of V, L =
ndM, we have xL = L if and only if xM = M.

Proof. The "if" part is clear. For the other implication, we can choose a
basis v1, ... , vn in V such that vi,... , vl is a basis of M f1 xM, v1i ... , vd is
a basis of M, and v1, ... ,v, vd+1i... , v2d_l is a basis of xM. By hypothesis
x(v1 n n vd) is a multiple of v1 n n vd but, on the other hand, it is a
multiple of v1 n n vl n vd+1 n ... , v2d_l forcing l = d. D

Proposition 3.7.2. Let G be a linear algebraic group, H a closed subgroup
of G. Then there is a rational representation cP : G -+ GL(V) and a 1-
dimensional subspace L of V such that H = {x E G : cp(x)L = L}.

Proof. Let I be the ideal in C[G] vanishing on H. It is a finitely generated
ideal. By Lemma 3.4.2, there exists a finite dimensional subspace W of
C[G], stable under all px, x E G, which contains a given finite generating
set of I. Set M = W f1 I, so M generates I. Notice that M is stable under
all px, x E H, since by Lemma 3.4.1, H = {g E G : py1 = I}. We claim
that H = {x E G : M}. Assume that we have pgM = M. As M
generates I, we have px I = I ; hence x E H.

Now take V = ndW, L = ndM, for d = dim M. By Lemma 3.7.1, we
have the desired characterization of H. 0

Theorem 3.7.3. Let G be a linear algebraic group, H a closed normal
subgroup of G. Then there is a rational representation zb : G -+ GL(W)
such that H = Ker /i.

Proof. By Proposition 3.7.2, there exists a morphism cp : G -+ GL(V) and
a line L such that H = {x E G : cp(x)L = L}. Since each element in H
acts on L by scalar multiplication, this action has an associated character
Xo : H -+ Gm. Consider the sum in V of all nonzero TjX for all characters x of
H. By Lemma 3.6.5, this sum is direct and of course includes L. Moreover,
by Lemma 3.6.6, cp(G) permutes the various V. So we can assume that V
itself is the sum of the V.

Now let W be the subspace of End V consisting of those endomorphisms
which stabilize each TjX, X E X(H). There is a natural isomorphism W

End V. Now GL(V) acts on End V by conjugation. Notice that the
subgroup cp(G) stabilizes W, since cp(G) permutes the TjX and W stabilizes
each of them. We then obtain a group morphism /i : G --+ GL(W) given
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by /(x)(y) = so /' is a rational representation. Let us
now check H = Ker '/'. If x e H, then cp(x) acts as a scalar on each VX, so
conjugating by cp(x) has no effect on W; hence x e Ker b. Conversely, let
x e G, 4'(x) = I. This means that cp(x) stabilizes each VX and commutes
with End V. But the center of End VX is the set of scalars, so cp(x) acts
on each VX as a scalar. In particular, cp(x) stabilizes L C VXo, forcing
xEH.
Corollary 3.7.4. The quotient G/H can be given a structure of linear al-
gebraic group endowed with an epimorphism ir: G -+ G/H.

Proof. We consider the representation / G -+ GL(W) with kernel H
given by Theorem 3.7.3 and its image Y = Im 'b. By Theorem 2.2.21, Y is a
constructible set and, as it is a subgroup of GL(W), by Proposition 3.3.2, it
is a closed subgroup of GL(W). We have a group isomorphism G/H ^Y;
hence we can translate the linear algebraic group structure of Y to G/H.
Moreover /i induces an epimorphism of algebraic groups ir : G -+ G/H. O

Definition 3.7.5. Let G be an algebraic group, H a closed subgroup of G.
A Chevalley quotient of G by H is a variety X together with a surjective
morphism ir : G -+ X such that the fibers of ir are exactly the cosets of H
in G.

In Corollary 3.7.4, we have established that there exists a Chevalley
quotient of a linear algebraic group G by a closed normal subgroup H.
However, it is not clear if Chevalley quotients are unique up to isomorphism
nor if they satisfy the usual universal property of quotients. These properties
characterize categorical quotients which we define next.

Definition 3.7.6. Let G be an algebraic group, H a closed subgroup of G. A
categorical quotient of G by H is a variety X together with an epimorphism
r G -+ X that is constant on all cosets of H in G with the following
universal property: given any other variety Y and a morphism cp : G -+ Y
that is constant on all cosets of H in G there is a unique morphism P : X -+
Y such that cp = P o ir.

It is clear that categorical quotients are unique up to unique isomor-
phism. Our aim is to prove that Chevalley quotients are categorical quo-
tients. We then will have a quotient of G by H defined uniquely up to
isomorphism and satisfying the universal property.

Theorem 3.7.7. Chevalley quotients are categorical quotients.

Proof. We first construct a categorical quotient in the category of geometric
spaces. Define G/H to be the set of cosets of H in G. Let ir : G -+ G/H
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be the map defined by x -+ xH. Give G/H the structure of a topological
space by defining U C G/H to be open if and only if ir-1(U) is open in G.
Next define a sheaf 0 = 0c/H of C-valued functions on G/H as follows: if
U C G/H is open, then CP(U) is the ring of functions f on U such that 1071
is regular on 7r-1(U). (This defines indeed a sheaf of functions.) In order
to check the universal property, let Eb : G -+ Y be a morphism of geometric
spaces constant on the cosets of H in G. We get the induced map of sets
Eli : G/H - Y, xH - fi(x), clearly satisfying /i = i o 71. We prove that
/i is a morphism of geometric spaces. To check continuity, take an open
subset V C Y and note that U :_ b -1(V) is open in G/H, by the definition
of the topology in G/H and the continuity of b. Finally, for f E COY (V ),

E Oc/H, because E

Now we take (G/H, 71) as above and let (X, Eb) be a Chevalley quo-
tient. Using the universal property established above, we get a unique G-
equivariant morphism b : G/H -+ X such that /i = o 71. We will prove
that b is an isomorphism of geometric spaces, which will imply that G/H
is a variety and that X is a categorical quotient.

By Lemma 3.5.2, we can assume that G is a connected algebraic group.
First of all, it is clear that b is a continuous bijection. If U C G/H is open,
then b(U) _ and by Proposition 3.5.3 a), it follows that b(U) is
open, which implies that Eb is a homeomorphism.

In order to prove that b is an isomorphism, the following has to be
established: If U is an open set in X, the homomorphism of C-algebras
0x(U) - Oc/x(b-1(U)) defined by b * is an isomorphism. By definition
of 0c/H this means that, for any regular function f on V = (U) such
that f(gh) = 1(g), Vg E V, h E H, there is a unique regular function F on
U such that F(i(g)) = 1(g). Let I' _ {(g, f(g)) : g E V} C V x Al be the
graph of f and put I'' _ (sb, Id)(I'), so I'' C U x A1. Since I' is closed in
V x .4\l, Proposition 3.5.3 a) shows that (sb, Id) (V x A1 \ I') = U x A1 \ I''
is open in U x .4\i. Hence I'' is closed in U x Al. Let a : I'' -+ U be the
morphism induced by the projection on the first component. It follows from
the definition that A is bijective and birational. By Zariski's Main Theorem
2.2.32, A is an isomorphism. This implies that there exists a regular function
F on U such that I'' _ {(u, F(u)) : u E U}, which is what we wanted to
prove. This finishes the proof of the theorem.

We recall that the action of G on itself by translation on the left gives
an action of G on its coordinate ring C[G] defined by f(x-ly)
for f E C[G], x, y E G. (See (3.1).)

Proposition 3.7.8. Let G be a linear algebraic group, H a closed normal
subgroup of G. We have C[G/H] ^ C[G]H.
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Proof. We consider the epimorphism ir given by Corollary 3.7.4. If f E
C[G/H], then f = f o ir E C[G]. Moreover, for x E H, y E G, we have
Ax(f)(y) = f(x-iy) _ (f oir)(x-iy) = f(ir(x-ly)) = f(ir(y)) = 1(y), so
A(f) = f and fE C[G]H.

If f E C[G]H, then f is a morphism G -+ A1 which is constant on
the cosets of H in G. Hence, by the universal property of the quotient
G/H established in Theorem 3.7.7, there exists F E C[G/H] such that
f=Foir.
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Exercises

(1) Determine the dimension of each of the linear algebraic groups
GL(n, C), SL(n, C), T(n, C), U(n, C), and D(n, C).

(2) Determine the dimension of the orthogonal group

O(n, C) :_ {A E GL(n, C) : AAT = Id}
and of the special orthogonal group

SO(n, C) :_ {A E O(n, C) : det A = 1}.
(3) Let G be an algebraic group, H a subgroup of G. Prove that

a) If H is commutative, so is H.
b) If H is normal in G, so is H.

(4) Let Gl, G2 be algebraic groups, Ml, Pl C Gl, M2 C G2 and cp : Gi -4 G2
a morphism of algebraic groups. We denote by GC(M) the group closure
of a subset M of an algebraic group G. We recall that for a subset S of
a group G we define the centralizer CG(S) of S in G as

CG(S)={xEG:xsx-1=s, `dsES}.
If a subgroup H of G is contained in Cc(S), we say that H centralizes S.

Prove that
a) If Ml is a dense subset of Pi, then GC(M1) = GC(Pl).
b) If Ml normalizes (resp. centralizes) Pl, then GC(Ml) normalizes

(resp. centralizes) GC(Pi).
c) GC(Mi x M2) = GC(Ml) x GC(M2).
d) cp(GC(Mi)) = GC(cp(Ml))

(5) Let G be an affine algebraic group, let µ : G x G -4 G, c : G -4 G be the
morphisms giving the group structure, and let e be the morphism from
the trivial group into G, p the constant morphism from G in G sending
all elements to e.
a) Express the group axioms for G in terms of commutative diagrams

of morphisms of affine varieties involving the morphisms µ, c, e, p and
the identity automorphism of G.

b) Write down the commutative diagrams of morphisms of C-algebras
obtained from the diagrams in a) by passing from the afFine varieties
morphisms to the associated morphisms between the corresponding
coordinate rings. We obtain then that A = C[G] is endowed with
a structure given by morphisms µ* A -4 A ® A, c* A -4 A,
e* : A -+ C, making commutative the diagrams obtained. Give the
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expressions of the images of a function f E C[G] by the preceding
morphisms.
A C-algebra A with algebra morphisms µ*, e*, t* making commuta-
tive the above diagrams is called a Hopf algebra, the morphism µ* is
called coproduct, e* counit and c* coinverse.

c) Write down explicitly the morphisms µ*, t* and e* corresponding to
the additive group, the multiplicative group, and the general linear
group.

(6) Let X be an algebraic variety.
a) If G is an algebraic group, prove that the set Hom(X, G) of algebraic

varieties morphisms from X to G has a natural group structure.
b) Show that Hom(X,(Ga) is isomorphic to 0(X) as a group under ad-

dition.
c) Show that Hom(X, Gm) is isomorphic to the group of units in 0(X)

under multiplication.

(7) Burnside Theorem. Let E be a finite dimensional C-vector space and A
a subalgebra of End(E). Prove that if the only A-stable subspaces of E
are 0 and E, then A = End(E).
Hint: Prove that the minimal rank of the non-zero elements in A is 1
and that A contains all endomorphisms of rank 1.

(8) Let E be a finite dimensional C-vector space. An element x in GL(E) is
called unipotent if (x - I)n = 0 for some integer n> 0, where I denotes
identity. A subgroup G of GL(E) is unipotent if all its elements are
unipotent. If G is an unipotent subgroup of GL(E), prove that there
exists a nonzero vector in E which is fixed by all elements in G. Deduce
that a unipotent subgroup of GL(n, C) is conjugate to a subgroup of
U(n, C).

(9) Let G be an affine algebraic group. Prove that if G is connected and
dim G = 1, then G is commutative.

(10) Prove that a closed subgroup H of the upper triangular unipotent group
U(n, C) has no nontrivial characters.
Hint: A nontrivial character of H would give a nontrivial character of
the additive group (Ga(C).

(11) Let Hl, H2 be closed normal subgroups of an algebraic group G such
that Hl C H2. Let it : G -+ G/Hl be the canonical surjection.
a) Prove that ir(H2) is a closed normal subgroup of G/Hl, isomorphic

to the algebraic group H2/H1.
b) Prove that the algebraic groups G/H2 and (C/Hi)/ir(H2) are iso-

morphic.





Chapter 4

Lie Algebras and
Algebraic Groups

Lie algebras were introduced to study infinitesimal transformations. Our
aim here is to define the Lie algebra associated to a linear algebraic group.
We point out that some properties of an algebraic group are more easily read
in its Lie algebra. An important property of an algebraic group is its solv-
ability. We shall see that the solvability by quadratures of a homogeneous
linear differential equation is characterized by the solvability of the iden-
tity component of its differential Galois group. In this chapter, we present
the Lie-Kolchin theorem, which states that the connected solvable linear
algebraic groups are exactly the triangularizable ones and will be essential
in proving the characterization of solvability by quadratures by means of
the differential Galois group. We shall establish that the solvability of a
connected linear algebraic group is equivalent to the solvability of its Lie
algebra. We conclude the chapter with the classification of the subgroups of
the special linear group SL(2, C) which will be used in Kovacic's algorithm.

4.1. Lie algebras

Definition 4.1.1. A Lie algebra over a field C is a C-vector space g together
with a binary operation

:9X9-+9
called the Lie bracket ,which satisfies the following axioms:

75
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(1) Bilinearity:

[ax + by, z] = a[x, z] + b[y, z], [z, ax + by] = a[z, x] + b[z, y],

for all scalars a, b e C and all elements x, y, z E g.
(2) Alternating:

[x,x] = 0
for all x E g. This implies anticommutativity, i.e.

[x,y] = -[y,x]
for all elements x, y E g.

(3) The Jacobi identity:

[x, [y, zJJ + [y, [z, x]J + [z, [x, iJJ = 0

for all x, y, z E g.

Example 4.1.2. Any C-vector space g can be given a Lie algebra structure
with the trivial Lie bracket [x, y] = 0, for all x, y E g. Such a Lie algebra is
called abelian or commutative.

Let g be a Lie algebra. A subspace l'7 of g is a Lie subalgebra of g (resp.
an ideal of g) if [x, y] E lj for all x, y E C) (resp. for all x E g, y E l7). If Cj

is an ideal of g, the quotient g/[j inherits a natural structure of Lie algebra
given by [x -}- Ii, y -I- lj] _ [x, y] -I- lj.

Example 4.1.3. To any associative C-algebra A, one can associate a Lie
algebra L(A). As a C-vector space, L(A) is the same as A. The Lie bracket
is defined from the product in A by [x, y] := xy - yx. The associativity
of the product implies the Jacobi identity for the bracket. In particular,
the algebra of n x n matrices over C gives rise to a Lie algebra called the
general linear Lie algebra and denoted gC(n, C). Equivalently, if V is a finite
dimensional C-vector space, the algebra of endomorphisms of V gives rise to
the Lie algebra gC(V). More generally, a C-vector subspace of an associative
C-algebra which is closed under the Lie bracket [x, y] := xy - yx is a Lie
algebra. The following subspaces of gC(n, C) are clearly Lie subalgebras:

the subspace of the matrices in gC(n, C) whose trace is zero, denoted by
xC(n, C);

the subspace of upper triangular matrices in gC(n, C), denoted by t(n, C);
the subspace of strictly upper triangular matrices in gC(n, C), denoted by
n(n, C);

the subspace of diagonal matrices in gC(n, C), denoted by (n, C).
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Moreover sC(n, C) is an ideal of gC(n, C). The notation used is justified in
Example 4.2.8 below.

If Cj, Cj' are ideals of g, then, using the Jacobi identity, we see that [[j, [j']
{[x, x'] : x E [),x' E Cj'} is also an ideal of g. In particular, [g, g] is an ideal
of g

If p, q are subsets of g, we define the centralizer of p in q by

Cqp:={xEq: [x,y] =0,b'yEp}.
In particular, g(g) = ceg is called the center of g . We have g abelian if and
only if g(g) = g.

The normalizer of p in q is defined by

nqp:={xEq:[x,y]Ep,byEp}.
If p is a Lie subalgebra, then so is nep, and p is an ideal of n9p.

If are Lie algebras, a linear map t,o : g -+ g' is a morphism of Lie
algebras if Sp([x, y]) = [px, coy], for all x, y E g. A linear map d : g -+ g is
called a derivation of g if for all x, y E g

d([x,y]) = [d(x),y] + [x,d(y)].

We denote by Der g the C-vector space of derivations of g. It has a natural
structure of Lie algebra with the Lie bracket defined by

[d, d'] = do d' - d' o d, for d, d' E Der 9.

Let x E g. The Jacobi identity and the anticommutativity of the Lie
bracket imply that the linear map y H [x, y], denoted by ade x or ad x is
a derivation of g called an inner derivation of g. By the bilinearity of the
Lie bracket, the map g -+ Der g, x H [x, ] is linear. It is called the adjoint
representation of g.

An ideal of g is said to be characteristic if it is invariant under all the
derivations of g. We define by induction two decreasing chains of character-
istic ideals of g.

C'(9) = 9, C2(9) = C'(9) = [9,C(9)],...

V°(9) =, V'(9) = [9,9],..., V+'(9) =
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We call (C())>1 the central descending series of g and (V())>0 the
derived series of g. In particular D(g) := Dl (g) is the derived ideal of g.

If cp : g - g' is a Lie algebra morphism, then cp(Ci(g)) C CZ(g') and
cp(Dz(g)) C Dz(g') for all i. Moreover, these inclusions are equalities if cp is
surjective.

Proposition 4.1.4. The following conditions are equivalent.

1. There exists an integer i such that C(g) _ {0}.
2. There exists an integer j such that ad xl o ad x2 0 o ad x3 = 0 for all

xi,x2,... x E g.
3. There exists achain g = gl 3 02 3 3 gn = {0} of ideals of g such

that [g, gi] C gz+l for i <n

If these conditions are satisfied, we say that g is nilpotent.

Proof. The equivalence of 1 and 2 follows from the fact that

(adxioadx2o..'oadx)(y)=[xi,[x2,...,[x3,y]...]] E Co(g)

for all x1, X2,. . . ,x, y E g. We have 1. = 3. by taking g2 := C(g). Finally,
to show 3. = 1., it is enough to prove C(g) C g27 which is easily proved by
induction.

Proposition 4.1.5. a) If g is nilpotent, then any subalgebra and any quo-
tient of g is nilpotent.
b) Let Cj be a subalgebra of g which is contained in the center of g. Then g
is nilpotent if and only if g/Cj is nilpotent.

Proof. a) is clear. If g/Cj is nilpotent, there exists i E I`N such that Ci(g/Cj) _
{0}, so CZ(g) C [j. Since Cj is in the center of g, C1(g) C [g, Cj] _ {0}.

Proposition 4.1.6. Let g be nilpotent.

a) If g # 0, then fi(g) # 0.
b) If Cj is a subalgebra of g distinct from g, then n9(Cj) Cj.

Proof. a) The last nonzero C(g) is central in g.
b) Let j = max{i : C(g) + [j [j}. Then [C3(g) + [j, g] C [j which implies
C(g) + [j C n9(Cj).

Proposition 4.1.7. The following conditions are equivalent.

1. There exists an integer i such that Di(g) _ {0}.



4.2. The Lie algebra of a linear algebraic group 79

2. There exists achain g = go J 91 9n = {O} of ideals of g such
that [g2, gi] C gi+l for 0 < i < n - 1.

If these conditions are satisfied, we say that g is solvable .

The proof is analogous to the proof of 4.1.4.

Proposition 4.1.8. a) A nilpotent Lie algebra is solvable.

b) Subalgebras and quotients of a solvable Lie algebra are solvable.

c) Let a be an ideal of g. Then g is solvable if and only if a and g/a
are solvable.

Proof. Parts a) and b) are straightforward. If a and g/a are solvable,
then D(g) C a for some integer i and so D( g) C D3(a) _ {0} for some
integer j. So g is solvable.

4.2. The Lie algebra of a linear algebraic group

Let G be a linear algebraic group, A = C[G] its coordinate ring. We consider
the set Der A of derivations of A, i.e C-vector space endomorphisms d of A
which moreover satisfy d(xy) = d(x)y -I- xd(y) for all x, y E A. Clearly
Der A is a C-vector subspace of the C-algebra EndcA. It can be checked
that the Lie bracket of two derivations is again a derivation; hence Der A is
a Lie algebra. We have seen (Equation (3.1)) that the group G acts on A
by translations on the left by (fix f)(y) = f(x'y), for f E A, x, y E G, so
we can consider the subspace £(G) of left invariant derivations of A, i.e.

£(G) _ {d E Der A : dAx = Axd, `dx E G}.

The Lie bracket of two derivations in £(G) is again in £(C,); hence £(G) is
a Lie algebra.

Definition 4.2.1. The Lie algebra of a linear algebraic group G is the Lie
algebra £(G) of left invariant derivations of the coordinate ring C[G] of G.

We shall now compare the Lie algebra £(G) with the tangent space of
G at the identity element e, TeG = TeG°, which has a structure of C-vector
space of dimension equal to dim G, as e is a simple point. (See Section
3.1.) To this end we first give an equivalent definition of tangent space of
a variety V at a point x in terms of point derivations. We recall that the
tangent space of V at x was defined as (9R/9J)*.

A point derivation at a point x of a variety V is a C-linear map S: O -
C such that
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(4.1) 8(fg) = 8(f)g(x) + f(x)8(g).

Let D denote the C-vector space of point derivations at x. There is a
natural isomorphism Dx (9Jx/9J)*. Indeed, if S E Dx, then it vanishes
on C and 9J; hence it is determined by its values on J /9J. . We have
then a monomorphism Dx c TanxV. In the other direction, a C-linear map
9J1x/9J -+ C defines by composition a map 9 - C and can be extended
to Ox = C -I- 9x by sending the elements in C to 0. Taking into account
that, for f e ox, f(x) is the image of f under O -+ Ox/fix C, we obtain
that the map defined satisfies (4.1).

Now, as point derivations of G at e are already determined by their
restriction to A = C[G], we may pass from £(G) to De by evaluation at e.

In order to pass from the tangent space of G at e to £(G), we shall
associate to a vector x e TG a derivation *x called right convolution by x
and defined by

(f * x) (x) = x(#\x-1 f ), x e C, f E C[G],

where x is seen as a point derivation. Let us check that *x is a left invariant
derivation of A = C[G]. First, for f e A, let

n

µ* f _ fz gZ

Z=1

where fi, gz e A and µ* A -+ A ® A is the morphism induced by the
group law µ : C x G -+ G. For x, y e G, we have (x_uf)(Y) = f(xy) _
µ*(f)(x, y) _ f(x)g(y), so

n

x_h f = f2(x)g2.
i=1

Since (f * x) (x) = x(#\x-lf ), it follows that

n

f * X = x(g)f.

z=1

Hence f * x e C[G]. So right convolution by x is an endomorphism of C[G].
Now, if f,g e A, we have
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(fg*x)(x) = x(a i(fs))
= x(A-i (f)A-i (g))
= x(A_i(f))A_i(g)(e) + A_i(f)(e)x(A_i(g))
= x(A-i (f))g(x) + f(x)x(A-i (g))
= ((f*x)g+f(g*x))(x)

for all x E G, so *x is a derivation. Now, for y E G,

(A(f*x))(x) = (1 *x)(y'x)
(4.3)

X(As iyf)

= x(A-i(Af))
= ((Af)*x)(x).

Hence *x is left invariant.

Proposition 4.2.2. Let G be a linear algebraic group. The mappings

8 : `(G) De

defined by (8(d)) (f) _ (df)(e), for f E C[G], and

r1:V-,C(G)
defined by rj(x) _ *x, are mutually inverse isomorphisms of C-vector spaces.

Proof. It is clear that 8 and rj are C-linear maps. Now, for d E £(G)

r1(e(d))(.f)(x) = df(x),

for all f E C[G], x E G, so rj 0 8 = Id(Q) and, for x E De

= (1 * x)(e) = x(f)

for all f E C[G], so 8 o r = IdDe. O

Using the preceding proposition, we can identify TeG with £(G), so that
TeG inherits a Lie algebra structure. It is in fact more convenient to define
the Lie bracket directly on TeG. Looking at x, y E TeG as derivations, we
can define x ®y : A ®A - C by (x®y)(f®g) _ (xf)(yg) and

(4.4) xy=(x®y)oµ*:A-+C.
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This product is sent to the product in £(G) by Indeed, for f E A, x E G,
we have

((f *y) *x)(x) = x(A-i(f *y)) = x((A-if) *y).

Let us now set f) _ > fj ®gi. Then by (4.2), we have (Ar-if) * y =
1 y(g)f. Hence

((f *Y) * x)(T) = x(Y(9,)f.) _ Y(9i)x(fi).
=l i=t

On the other hand

(f * (x Y))(T) _ (x. y)(A-if) _ (x ® Y)(µY(Ay 1f) _ x(f)y(9).

We define then [x, y] = x y - y x.

Remark 4.2.3. For cal, w2 E C[G]* := Homc(C[G], C), we can define simi-
larly wl W2 by wl w2 = (cal 0 w2) o µ* E C[G] *. Endowed with this product,
C[G]* is an associative C-algebra whose identity element is the evaluation
ve ate = eG. (Recall that the evaluation at an element x E G is defined
by 1(x), for f E C[G].) Moreover, the map G -+ C[G]*, x H v
induces an injective morphism from G into the group of invertible elements
of C[G]*.

We saw in the discussion before Proposition 2.2.34 that a morphism of
algebraic varieties P : X -+ Y induces a C-linear map d p : TX -+ T,() Y
called the differential mapping of P at x. If G -+ G' is a morphism of
algebraic groups, we obtain a C-linear map de(p : TeG + TeG'. It is clear
that we have deldG = IdTeG and o p)e = die o d(pe. Considering the
definition of the Lie bracket on the tangent spaces given above, the following
proposition follows.

Proposition 4.2.4. If cp : G -+ G' is a morphism of algebraic groups,

is a morphism of Lie algebras.

Proof. For x, y E TeG, we have de(p(x y) = (x®y)o*o* = (x®y)o(*®
*) ° ((xoo*)®(yo*))oiil* = (xo*)

'
(yop*)

= deb (x) ' decp(y). LI



4.2. The Lie algebra of a linear algebraic group 83

Proposition 4.2.5. Let G be an algebraic group, x, y e £(G). Then

dµ(x, y) = x + y, dc(x) _ -x.

Proof. Let f e C[G] and µ* (f) _ fi ® gi, where fi, gi E C[G],1 < i
n, and µ* : C[G] - C[G x G] C[G] ® C[G] is the morphism induced by
µ. For x, y e £(G), let

eX,Y : C[C] ® C[C] - C

be defined by

f ® g -+ x(f)g(e) + f(e)y(g),

for f,g e C[G]. Then

= B=,r(µ*(/)) = f: ® 9.) _ (x(f)g(e) t.f=(e)Y(9;)).

On the other hand, we have for x e G

f(x) = f(ex) = f(e)g(x) = f(xe) = f(x)g(e).

Thus

(4.5) f = f(e)g = 1g(e)f.

So it is clear that dµ(6X,y) (f) = x(f) + y(f ).
Now, let it : G -+ G x G denote the morphism x H (x, c(x)). Then

(µ o ir)(x) = e, so dµ o d7r = 0. But dir(x) _ (x, dt(x)), so we obtain from
the formula for dµ that x + dc(x) = 0.

Example 4.2.6. We consider the additive group (Ga, whose coordinate ring
is the polynomial ring C[X]. The Lie algebra £((Ga) is 1-dimensional. Hence
as an associative algebra it is commutative, so the Lie bracket is identically
zero. Let us see that the derivation S = d/dX is left invariant (hence spans
£((Ga)). It is enough to check it for the polynomial X and left translation
byanyxE(Ga. We

We now consider the multiplicative group (G.,,,,, whose coordinate ring
is the ring of Laurent polynomials C[X, X-1]. The Lie algebra £((G.,,,,) is
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1-dimensional. The derivation defined by 8X = X extends uniquely to the
ring C[X, X-1] and is left invariant since 8(xX) = x8(X) for x E C.

In the sequel g will denote the Lie algebra of the linear algebraic group G.

Example 4.2.7. Let us compute the Lie algebra of G = GL(n, C). As
G is an open subset of the affine space An2, its tangent space at e has a
canonical basis consisting in the operators a/8X2 followed by evaluation at
the identity matrix. So, a tangent vector x is determined by the n2 elements
x2 = x(X3) which can be written as the entries of an n x n matrix. Then
(x. y) (X23) _ (X ® y)(>1k XZk ® Xk3) _ >1k xikxkj gives the usual matrix
product. Hence the C-linear map x H (x) from g in Mnxn(C) identifies g
with gC(n, C). (The map is injective as only the zero vector annihilates all
X, and so surjective as both dimensions are equal to n2.)

If Y is a subvariety of the variety X, the inclusion i : Y -+ X induces
a monomorphism dyi : TyY -+ TX, for y e Y. Then, if G' is a closed
subgroup of the algebraic group G, we can consider the Lie algebra g' of G'
as a subalgebra of the Lie algebra g of G. We shall now determine the Lie
algebras of the closed subgroups of GL(n, C) defined in Example 3.1.4.

Example 4.2.8. 1. We consider the upper triangular group T (m, C). We
can see it as the principal open set of Anon-1)'2 defined by the nonvan-
ishing of the determinant, so its tangent space in e is the whole ambient
affine space. The Lie algebra of T (m, C) is then the Lie algebra t (m, C)
of all upper triangular matrices.

2. Analogously the diagonal group D (m, C) is the principal open set of An
defined by the nonvanishing of the determinant and its Lie algebra is the
Lie algebra ti(n, C) of all diagonal matrices.

3. Let us consider the upper triangular unipotent group U (m, C). It is the
closed subset of Ant defined by the vanishing of the linear polynomials
XZZ - 1, 1 <i < n and 1 < j <i < n, so the tangent space at e
consists on the matrices (a3)i<,<n with a23 = 0 for j < i. Thus the Lie
algebra is n(n, C).

4. We now consider the special linear group SL(n, C), which is the zero set
of f(X3) = det (X 3) - 1. We consider the morphism

<p : GL(n, C) -+ GL(1, C)
A H det A.

The tangent space at e e GL(n, C) is An2. If we look at the tan-
gent space as the C-vector space of point derivations, an element a =
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(a,,,... , ann) E
A2

n corresponds to followed by
evaluation at e. Then

(4.6) dcpe(a)
_ arc 8 det

(Id) =all + a22 + ... + aE Al .
DXkIk=1 1=1

Indeed, as 8 det /BXkI is the minor of the matrix (X) obtained by
deleting the kth row and the lth column, by evaluating at the identity
matrix we obtain 1 for k =land 0 otherwise. So the Lie algebra of
SL(n, C) is the Lie algebra C) of n x n matrices with trace equal
to zero. Equation 4.6 also shows that the differential of the morphism
GL(n, C) - (G,,,, associating to each matrix its determinant is the map
gC(n, C) - C associating to each matrix its trace.

Let H be a closed subgroup of a linear algebraic group G. The inclusion
i : H -* G induces an epimorphism i* : C[G] -* C[G]/I C[H], for I the
ideal of C[G] vanishing on H. Therefore die identifies TeH with the subspace
of TeG consisting of those x for which x(I) = 0. We saw in Lemma 3.4.1 a
characterization of closed subgroups by means of right translation. We shall
now see a characterization of the Lie algebra of a closed subgroup by means
of right convolution.

Lemma 4.2.9. Let G be a linear algebraic group, H a closed subgroup of
G, I = Z(H). Let Cj be the Lie algebra of H. We have

Cj ={xEg:I*xCI}={xEg:x(I)=0}.

Proof. For x E [j, f E I, x E H, we have (f * x) (x) = x(Ax-if) = 0, since
f belongs to I. So f * x E I.

In the other direction, let x E g satisfy I * x C I. If f E I, then
(f*x)(e) = x(Ae-if) = x(f ). By hypothesis, f*x E I; hence (f*x)(e) = 0,
soxEC).

Finally if f E land x E g satisfy f*x El, then x(f) _ (f*x)(e) = 0.
Conversely if x(f) = 0 for all f E I, then since Ax-i f E I for x E H, we
have (f * x) (x) = 0, and so f * x E I.

We shall now consider the differential of right translation. We saw in Sec-
tion 3.4 that a linear algebraic group G acts on C[G] by left and right trans-
lations. For f E C[G], x, y E G, we have (Af)(y) = f(x'y),(pf)(y) _
f(yx). We then obtain group morphisms A, p : G - GL(C[G]) which can-
not be considered as morphisms of algebraic groups, since C[G] is infinite
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dimensional. However, by Lemma 3.4.2, C[G] is the union of finite dimen-
sional subspaces stable under all px (or all Let E be a subspace of
C[G] stable under all px and let cp : G x E - E be the corresponding ac-
tion. If (fi,.. . , f) is a basis of E, then we saw in 3.4.2 and the proof of
Theorem 3.4.3 that p fi = >3 m1(x)f3, for cp* (fi) _ > m23 ® i.e. that
(m)i<,3< is the matrix of in the basis (1". .. , f). We then obtain
a morphism b G - GL(n, C), x H (m23). Notice that the subspace of
C[G] spanned by the m23 includes E and all its left translates, as we have

(4.7) ()-if)(y) = f(xy) = m(y)f(x).
i

If we denote by Xthe coordinate functions on GL(n, C), we have cb* (XZj) (x)
= m13; hence, for x E g, de'cb(x) _ (x(m13)). On the other hand, consider
the action of x on the given basis of E by right convolution: (fi * x) (x) _

x(> f3(x)x(m23), by (4.7). So, x leaves E
stable and has matrix x(m23) relative to the basis (fi,.. . , fn). We have
then obtained the following result.

Proposition 4.2.10. Acting by right convolution, g leaves stable every sub-
space of C[G] stable under right translation by G. On a finite dimensional
G-stable subspace, the differential of right translation is right convolution.

We could replace right by left, with left convolution defined by

(x*f)(x) =x(PI)
forxEg,f EC[G],xEG.

4.3. Decomposition of algebraic groups

Let x E End V, for V a finite dimensional vector space over C. Then x is
nilpotent if x" = 0 for some n (equivalently if 0 is the only eigenvalue of x).
At the other extreme, x is called semisimvle if the minimal polynomial of
x has distinct roots (equivalently if x is diagonalizable over C). From the
fact that a square matrix with entries in C is conjugated to one in Jordan
canonical form, we obtain the Jordan additive decomposition stated in the
next lemma. (See [L].)

Lemma 4.3.1. Let x E End V.

a) There exist unique x3, xn E End V such that x3 is semisimple, xn is
nilpotent and x = xs + x.
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b) There exist polynomials P(T), Q(T) E C[T], without constant term such
that xs = P(x), xn = Q(x). Hence xs and xcommute with any endo-
morphism of V which commutes with x; in particular, they commute with
each other.

c) If W1 C W2 are subspaces of V, and x maps W2 into W1, then so do xs
and xn.

d) Let y E End V. If xy = yx, then (x+y)3 = xs +ys and (X+y)n = xn+yn.
D

If x E GL (V ), its eigenvalues are nonzero, and so xs is also invertible. We
can write xu 1 + xs 1 xn and then we obtain x = xs + xn = xs (1 + xs 1 xn) =
xs x. We call an element in GL (V) unipo tent if it is the sum of the identity
and a nilpotent endomorphism or, equivalently, if 1 is its unique eigenvalue.
For x E GL (V) , the Jordan multiplicative decomposition x = xs xu, with
xs semisimple, xu unipotent, is unique. Clearly the only element in GL(V)
which is both semisimple and unipotent is identity. From Lemma 4.3.1, we
further obtain

Lemma 4.3.2. Let x E GL(V).

a) There exist unique xs, xu E GL (V) such that xs is semisimple, xu is
unipotent, x = xsxu and xsxu = xuxs .

b) xs and xu commute with any endomorphism of V which commutes with x.

c) If W is a subspace of V stable under x, then W is stable under xs and xu.
d) Let y E GL(V). If xy = yx, then (Xy)s = xsys and (Xy)u = xuyu. 0

It is sometimes useful to allow V to be infinite dimensional, even though
the notions "semisimple" and "unipotent" do not carry over directly to this
case. If x E GL (V) and if V is the union of finite dimensional subspaces
stable under x, then the decompositions x I W = (xIW)8(xIW)u exist for all
such subspaces W. Moreover, the restriction of a semisimple (resp. unipo-
tent) endomorphism to an intersection W n W' is of the same type, so we
can patch together the (xIW)8 (resp. (xIW)) to obtain invertible endo-
morphisms of V, of which x is the product. These may again be denoted
xs, xu and called the Jordan parts of x. It is important to observe, using
Lemma 4.3.2 c), that xs and xu leave stable every subspace of V, finite
dimensional or not, which is stable under x. Similar remarks apply to the
additive Jordan decomposition.

If G is an arbitrary subgroup of GL(n, C), G does not necessarily contain
the semisimple and unipotent part of each of its elements. However, it is so
for closed subgroups. Applying the membership criterion 3.4.1, given x E G,
we have to see that pas and leave stable the ideal 1(C) C C [GL (n, C].
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We shall see that pxs and pare the semisimple and unipotent parts of px.
The preceding question will then follow by Lemma 4.3.2 c).

Proposition 4.3.3. Let G = GL(n, C), g = gC(n, C). If x e G (resp.
x E g), then px (resp *x) has Jordan decomposition pas p(resp *xs -I- *xn).

Proof. Since C[G] is the union of finite dimensional subspaces stable under
all px (hence under all *x by Proposition 4.2.10), Jordan decompositions do
exist. Moreover px = p8 p,, *x = *(x s -I- xn) = *xs -I- *xn and
the operators commute. So it will be enough to show that pxs and *xs are
semisimple, that pis unipotent and *xn is nilpotent.

The coordinate ring C[G] is the ring of polynomials in n2 indeterminates
XZj localized in the multiplicative system of the powers of d = det(XZ3). Let
us see that C [XZj ] is stable under both right translation and right con-
volution. For x, y e G, we have (pX3)(y) = XZ3 (yx) = >YjhXhj =
>h Xih(y)xhj; hence >h xhjXih E C[XZ3]. Similarly, we get

= >h xihXhj. From this we obtain for x E g, y E G,

(X*x)(y) = X(Ay-lXi7) - X(>yihXhj) - >yihX(Xhj) - >XhjXjh(y).
h h h

We shall now describe how G and g act on d. For x, y E G, (Px d) (y) =
det (yx) = det y det x, so pd = det x d. This shows that the vector
space spanned by d is G-stable, hence g-stable by Proposition 4.2.10 and
d * x = Tr (x) d, as the differential of the determinant is the trace. (See
Example 4.2.8 4.) From this we see how to describe the action of px or *x
on C [C] once the action on C [XZj ] is known.

In particular, as d is an eigenvector of px in any case, we have that if
p l C [XZj ] is semisimple, then px is semisimple. If p C [XZj ] is unipotent,
then its eigenvalue det x for d must be 1, so px is unipotent. Similarly, if
*x I C [XZj ] is semisimple (resp. nilpotent), then so is *x. Therefore it will be
enough to consider the actions of px, *x on C [X] ] in place of C[C].

Let E = End V, where V = Cn, and regard G as the subset GL (V) of
E, while g = g r(V) = E. The algebra C [XZ3 ] may be identified with the
symmetric algebra S(E*) on the dual space E* of E. If x e E, define an
endomorphism r : E -+ E by rx (y) = yx, and let r : E* E* be the
dual endomorphism. Then we have r( X) = >II xhj XZh and comparing
with the formulas obtained above for px and *x, we see that px (resp. *x)
is just the canonical extension of r (resp. rX) to an automorphism (resp.
derivation) of S(E*) . So it just has to be verified that the property of being
semisimple or unipotent (resp. semisimple or nilpotent) is preserved at each
step when we pass from x to r to r to px (resp. from x to rX to rX to *x).
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The passage from r to r poses no problem, neither does going from the
action on E* to the action on S(E*). It remains to treat the passage from

x E E is semisimple, choose a basis (Vi,. . . , vn) of V consisting of
eigenvectors, so that x(v2) = for some ai E C. Take in E the basis
e2 defined by e(vk) = Sjkv2, then r( e) = so r is semisimple. If
x E E is nilpotent, say xt = 0, then r( y) = yxt = 0 for all y E E, so r
is nilpotent. If x is unipotent, then n = x - 1 is nilpotent and r = 1 + rn
with rn nilpotent, so r is unipotent. 0

We shall now see that we can consider Jordan decomposition for elements
in any afne algebraic group.

Proposition 4.3.4. Let G be an affine algebraic group.

a) If x E G, there exist unique elements s, u E G such that x = su, s and
u commute, Ps is semisimple, pu is unipotent. Then we call s and u the
semisimple part of x and the unipotent part of x, respectively and denote
them xs and xu .

b) If x E g, there exist unique elements , n E g such that x = 5+n, n] = 0,
* is semisimple, *n is nilpotent. Then we call * and *n the semisimple
part and the nilpotent part of x, respectively and denote them xs and
xn.

c) If co : G - G' is a morphism of algebraic groups, then cp(x)s = (p(xs),
(p(x)u = (p(xu) , dcp(x)s = d(p(xs), d(p(x)n = d(p(xn) for all x E G, x E g.

Proof. We may embed G as a closed subgroup of some GL(n, C). (See
Theorem 3.4.3.) If I is the ideal in C[GL(n, C)] defining G, then the criterion
for x E GL(n, C) (resp. x E (n, C)) to be in G (resp. g) is that px (resp
*x) stabilize I. (See Lemmas 3.4.1, 4.2.9.) Now let x E Gand x = su its
Jordan decomposition in GL(n, C). By Proposition 4.3.3, (Px)s = Ps and
(Px)u = Pu By the remarks preceding Proposition 4.3.3, both Ps and pu
stabilize I, so s, u E G. For x E g, by an analogous argument, we obtain b).

Next consider cp : G - G' which factors into two morphisms: the epi-
morphism G -* cp(G) followed by the inclusion cp(G) y G'. It suffices to
treat each of these cases separately. In case cp is an epimorphism, right
translation by cp(x) is essentially the restriction of px to C[G'], viewed as a
subring of C[G] and similarly for right convolution. But the restriction of
a semisimple (resp. unipotent) operator to a subspace is again of the same
type. It follows that P(x) = pco(xs)pco(xu) is the Jordan decomposition of

hence that cp(xs) = cp(x)3, cp(xu) = cp(x)u and similarly for dcp(x). In
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case cp is an inclusion, the situation is just like the one considered above (G
viewed as a closed subgroup of GL(n, C)).

The proposition shows that in any affine algebraic group G, the subsets

G3={xEG:x=xs} and Gu={xEG:x=x}
are intrinsically defined and intersect in e. Similarly

gs={xEg:x=xs} and gn={xEg:x=xn}
intersect in 0. Part c) of the proposition ensures that morphisms of algebraic
groups and their differentials preserve these sets. Moreover Gu and gn are
closed sets (g being given the topology of an affine space). To see this, just
observe that the set of all unipotent (resp. nilpotent) matrices in GL(n, C)
(resp. in gC(n, C)) is closed, being the zero set of the polynomials implied
by (x - 1)n = 0 (resp. xn = 0). By contrast, GS is not in general a closed
subset of G. However, see Theorem 4.3.6.

Let us denote by T(n, C) (resp. D(n, C)) the ring of all upper triangular
(resp. all diagonal) matrices in M(n, C). A subset M of M(n, C) is said to
be triangularizable (resp. diagonalizable) if there exists x E GL(n, C) such
that xMx-1 C T(n, C) (resp. D(n, C)).

Lemma 4.3.5. If M C M(n, C) is a commuting set of matrices, then M is
triangularizable. If M has a subset N consisting of diagonalizable matrices,
N can be diagonalized at the same time.

Proof. Let V = Cn and proceed by induction on n. If x E M, A E C, the
subspace W = Ker(x - Al) is evidently stable under the endomorphisms of
V which commute with x; hence it is stable under M. Unless M consists of
scalar matrices (then we are done), it is possible to choose x and A such that
0 W V. By induction, there exists a nonzero vl E W such that Cvl
is M-stable. Applying the induction hypothesis next to the induced action
of M on V/Cv1, we obtain V2,. . . , vn E V completing the basis for V, such
that M stabilizes each subspace Cvl -I- + Cv2 (1 < i < n). The transition
from the canonical basis of V to (vi,. . . vn) therefore triangularizes M.

Now if N does not already consist of scalar matrices, we can choose x
above to lie in N. Since x is diagonalizable, V = W ® W, where the sum
W' of remaining eigenspaces of x is nonzero. As before, both W and W' are
M-stable. The induction hypothesis allows us to choose bases of W and W'
which triangularize M while simultaneously diagonalizing N. 0
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Theorem 4.3.6. Let G be a commutative linear algebraic group. Then
Gs, Gu are closed subgroups, connected if G is connected, and the product
map co : GS x Cu -+ G is an isomorphism of algebraic groups. Moreover
,K(Gs) = Bs and £(Cu) = gn

Proof. As G is commutative, by Lemma 4.3.2 d), Gs and Cu are subgroups
of G. We already observed in the remarks following Proposition 4.3.4 that
Cu is closed. As G is commutative, by Lemma 4.3.2 a), co is a group isomor-
phism. Now embed G in some GL (n, C). By Lemma 4.3.5, we may assume
that G C T (n, C) and Gs C D (n, C). This forces Gs = G I I D (n, C), so Gs
is also closed. Moreover, co is a morphism of algebraic groups.

It has to be shown that the inverse map is a morphism of algebraic
groups. To this end, it suffices to show that x H xs and x H xu are
morphisms. Since, xu = xs 1 x, if the first map is a morphism, the second
will also be. Now, if x E G, xs is the diagonal part of x; hence x H xs is
a morphism. Furthermore, if G is connected, so are Gs and Cu since there
are homomorphic images of G.

The chosen embedding of G in T(n, C) shows also that £(G8) C ti(n, C),
£(Cu) C n(n, C). Therefore £(G8) C gs and £(Gu) C gn. But co is an
isomorphism, so £(G8) ®$(Cu) = g. Since also g = Bs +n (with uniqueness
of expression), both inclusions are equalities. LI

4.4. Solvable algebraic groups

For a group G, we denote by [x, y] the commutator xyx-ly-1 of two ele-
ments x, y e G. If A and B are two subgroups of G we denote by [A, B]
the subgroup generated by all commutators [a, b] with a e A, b e B. In
particular [G, G] is called the derived subgroup of G. The identity

z[x,y]z-i - [zxz',zyz']

shows that [A, B] is normal in G if both A and B are normal in G.
We denote by Z(G) the center of a group G, i.e.

Z(G)={xEG:xy=yx,`dyEG}.

Lemma 4.4.1. a) If the index [C: Z(G)] is finite, then [G, G] is finite.
b) Let A, B be normal subgroups of G, and suppose the set

S = {[x,y} : x E A,y e B}

is finite. Then [A, B] is finite.
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Proof. a) Let n = [G : Z(G)] and let S be the set of all commutators in
G. Then S generates [G, G]. For x, y E G, it is clear that [x, y] depends
only on the cosets of x, y modulo Z(G); in particular, Card S < n2. Given
a product of commutators, any two of them can be made adjacent by suit-
able conjugation, e.g. [xl,yl][x2,y21[x3,y3] _ [xl,yl][x3,y3][z'x2z, z-1y2z],
where z = [x3, y3]. Therefore, it is enough to show that the (n + 1)th power
of an element of S is the product of n elements of S, in order to conclude
that each element of [G, G] is the product of at most n3 factors from S. This
in turn will force [G, G] to be finite. Now [x, y]fl E Z(G) and so we can write
[x, y]1 = y' [x, y]ny[x, y] = y' [x, y]n-1[x, y2]y, and the last expression
can be written as a product of n commutators by using identity (4.8).
b) We can assume that G = AB. Taking into account identity (4.8), we
see that G acts on S by inner automorphisms. If H is the kernel of the
resulting morphism from G in the group Sym(S) of permutations of S, then
clearly, H is a normal subgroup of finite index in G. Moreover, H centralizes
E _ [A, B]. It follows that H fl E is central in E and of finite index. By a),
[E, E] is finite (as well as normal in G, since E a G). So we can replace G
by G/[E, E], i.e. we can assume that E is abelian.

Now the commutators [x, y], x E A, y E E, lie in E and commute with
each other. As E is abelian and normal in G, [x, y]2 = (xyx-1)Zy-2 = [x, y2]

is another such commutator. This clearly forces [A, E] to be finite (as well
as normal in G). Replacing G by G/[A, E], we may further assume that A
centralizes E. This implies that the square of an arbitrary commutator is
again a commutator. It follows that [A, B] is finite. O

Proposition 4.4.2. Let A, B be closed subgroups of an algebraic group G.

a) If A is connected, then [A, B] is closed and connected. In particular,
[G, G] is connected if G is.

b) If A and B are normal in G, then [A, B] is closed (and normal) in G.
In particular, [G, G] is always closed.

Proof. a) For each b E B, we can define the morphism cpb A - G by
a H [a, b]. Since A is connected and cob(e) = e, by Proposition 3.2.3, the
group generated by all cpb(A), b E B is closed and connected and this is
exactly [A, B].

b) It follows from part a) that [A°, B] and [A, B°] are closed, connected (as
well as normal) subgroups of G, so by Proposition 3.3.3 their product E is
a closed normal subgroup of G. To show that [A, B] is closed, it therefore
suffices to show that E has finite index in [A, B], which is a purely group-
theoretic question. In the abstract group G/E, the image of A° (resp. B°)
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centralizes the image of B (resp. A). Since the indices [A : A°] and [B : B°]
are finite, this implies that there are only finitely many commutators in G/E
constructible from the images of A and B. Lemma 4.4.1 b) then guarantees
that [A, B]/E is finite.

by

For an abstract group G, we define the derived series DC inductively

D°G = C, DZ+1G = [DZG, D2G], i >_ 0.

We say that G is solvable if its derived series terminates in e.
If G is an algebraic group, D'G = [G, G] is a closed normal subgroup

of G, connected if G is, by Proposition 4.4.2. By induction the same holds
true for all DC. If G is a connected solvable algebraic group of positive
dimension, we have dim [G, G] < dim G.

It is easy to see that an algebraic group G is solvable if and only if there
exists a chain of closed subgroups G = G° 3 G1 3 3 Gn = e such that
G2 <C_1 and G2_1/G2 is abelian, for i = 1,... , n.

The following results from group theory are well known. (See e.g. [Sc].)

Proposition 4.4.3. a) Subgroups and homomorphic images of a solvable
group are solvable.

b) If N is a normal solvable subgroup of G for which C/N is solvable, then
G itself is solvable.

c) If A and B are normal solvable subgroups of G, so is AB. D

The following lemma will be used in the characterization of Liouville
extensions.

Lemma 4.4.4. Let G be an algebraic group, H a closed subgroup of G.
Suppose that H is normal in G and G/H is abelian. Suppose further that
the identity component H° of H is solvable. Then the identity component
G° of G is solvable.

Proof. We have [G, G] C H; whence [G°, G°] C H. By Proposition 4.4.2,
[G°, G°] is connected. Hence [G°, G°] C H°. By hypothesis H° is solvable,
whence [G°, G°] is solvable, and then G° is solvable.

Example 4.4.5. We consider the groups T(n, C) and U(n, C). We know
by Corollary 3.2.5 that they are connected. We shall now see that they are
solvable. Write T = T(n, C), U = U(n, C), D = D(n, C). First, since the
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diagonal entries in the product of two upper triangular matrices are just the
respective products of diagonal entries it is clear that [T, T] C U. Now we
know that U is generated by the subgroups UZ with i < j, each of them
isomorphic to Ga. (See the proof of Corollary 3.2.5.) By Proposition 4.4.2,
we have that [D, UZ ] C UZ is closed and connected, and clearly this group
is nontrivial. Then UZ C [D, UZj] C [T, T]. We have then proved [T, T] = U.

Now we want to prove that U is solvable. This will imply that T is
solvable as well. Let us denote by T the full set of upper triangular matrices
viewed as a ring. The subset N of matrices with 0 diagonal is a 2-sided
ideal of T. So each ideal power JNh is again a two-sided ideal. For an
element u E U, such that u = 1 + a, with a E N, we have (1 + a)' =
1 - a + a2 - a3 + ... + (-1) n-1 an-1. If we set Uh = 1 + j,fh, we obtain
[Uh, U1] C Uh+l. In particular, U is solvable.

The next theorem establishes that the connected solvable subgroups of
GL(n, C) are exactly the conjugate subgroups of T (n, C).

Theorem 4.4.6 (Lie-Kolchin). Let G be a connected solvable subgroup of
GL(n, C), n > 1. Then G is triangularizable.

Proof. Let V = Cn. Let us first assume that G is reducible, i.e. that V
admits a nontrivial invariant subspace W. If a basis of W is extended to a
basis of V, the matrices representing G have the form

((x) *

'S\ 0 'b(x)

The morphism x (x) is a morphism of algebraic groups. As G is con-
nected, (C) C GL(W) is also connected as well as solvable (Proposition
4.4.3 a)). By induction on n, (C) can be triangularized. Analogously,
we obtain that 'b(G) can be triangularized as well. We then obtain the
triangularization for G itself. We may then assume that G is irreducible.

By Proposition 4.4.2, the commutator subgroup [G, G] of G is connected,
so by induction on the length of the derived series, we can assume that [G, G]
is in triangular form.

Let Vl be the subspace of V generated by all common eigenvectors of
[G, G]. We have Vl 0, since the triangular form of [G, G] yields at least
one common eigenvector. Now, for each x E G, y E [G, G], we have x-lyx E
[G, G]; hence for each v E Vl, (x-lyx)(v) _ v, for some a E C, equivalently
y(xv) _ Axv. So, Vl is G-stable. Since G is irreducible, Vl = V, which
means that [G, G] is in diagonal form.
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Now, any element in [G, G] is a diagonal matrix. Its conjugates in G are
again in [G, G], hence also diagonal. The only possible conjugates are then
obtained by permuting the eigenvalues. Hence each element in [G, G] has a
finite conjugacy class. By Proposition 3.2.1c), [G, G] lies in the center of G.

Assume that there is a matrix y E [G, G] which is not a scalar. Let A be
an eigenvalue of y, and W the corresponding eigenspace. Since y commutes
with all elements in G, W is G-invariant; hence W = V, y = A 1.

Since [G, G] is the commutator subgroup of G, its elements have deter-
minant 1. Hence the diagonal entries must be n-th roots of unity. There are
only a finite number of these, so [G, G] is finite. But by Proposition 4.4.2,
[G, G] is connected, then [G, G] = 1, which means that G is commutative.
The result then follows from Lemma 4.3.5. 0

For an abstract group G, we define the central descending series CiG
inductively by

C1G = G, Ci+1G = [G,CG],i > 1.

We say that G is nilpotent if its central descending series terminates in e.

4.5. Correspondence between algebraic groups and Lie
algebras

In this section we study the correspondence between closed subgroups of
an affine algebraic group and Lie subalgebras of its Lie algebra. From now
on we are assuming all algebraic groups to be aff'ine. We are particularly
interested in the relation between solvability and nilpotency of an algebraic
group and its Lie algebra. For an algebraic group G, we denote by g its Lie
algebra.

For x E G, denote by i the inner automorphism of G defined by y F
xyx-1. Let AdG(x) or Ad(x) be the differential of ice. It is an automorphism
of the Lie algebra g. Since icy = i o is,, for x, y E G, we deduce that
Ad(xy) = Ad(x) o Ad(y). Hence the map

Ad : G -+GL(g) , x '-+Ad(x)

defines a representation of G, called the adjoint representation of G.

Lemma 4.5.1. For x E G, x E £(G), we have

Ad(x)(x) = vx X V-i.
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Proof. Let f E C[G], µ*(f) = fi ® 91 + + In ® 9n, fz, 9i E C[G]. Since
(vim x)(f) = fi(x)x(gi) + + f(x)x(g) (cf. (4.4) and Remark 4.2.3), it
follows from (4.2) that

(v .x)(f) = (f*x)(x).
Similarly, we have

(x*f)(x).

Let us evaluate vx x For 1 <i <n, let µ*(gi) _ p=1 2GZj ® vZj
where uZj, vE C[G]. Then I_i v(x1)u. Thus
I=i x(uj)v3 (x-1) and we deduce that

(vx'vri)(f) =(vz® ((x ® v:-')°lifi)

On the other hand, let i

i=1 f(x) X\uJ

- iZ i f(x)x(p_ig).

G - G, y H xyx-1. Then

(f 0 = f(xyx)
=

Hence

n

I °ix = f(x)(p_ig).
i=1

So we have

(v= x vy i)(f)=x(Jo ==)
0

Lemma 4.5.2. Let Hl, HZ be algebraic subgroups of G and Cj1i 1)2 their Lie
algebras. If Hl C H2i then Cj1 C 1)2.

Proof. This is a consequence of Exercise 12 in chapter 2 and Proposition
4.2.4. 0

We shall now see that for a fixed element x E g, we can construct a
closed subgroup 1-1(x) which is contained in every closed subgroup H of G
such that x belongs to its Lie algebra £(H).
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Recall from Remark 4.2.3 that C[G]* has a structure of associative al-
gebra with unit ve. If w E C[G]*, we write wn = w .n. w, for an integer

Lemma 4.5.3. For x E g, we define jX :_ {f E C[G] : xn(f) = 0 `dn E ICY}.
Then jX is a prime ideal of C[G].

Proof. Let us consider the left invariant derivation i(x) defined by i7(x)(f) _
f * x, for f E C[G]. By definition of right convolution, we have x(f) _
(i(x)(f))(e). We want to prove that

(4.10) xn(f) _ (i7n(x))(f)(e), for all n E N.

We shall proceed by induction on n. If f E C[G], µ* f = >I=1 f2 ® gi, then
>p 1 x(g2) fz. (See (4.2).) If n E N, then

P P

= (x)((x)(f)) = =

We have x(f) _ (i(x)(f))(e). Now assume that xn(g) _ (i7n(x))(g))(e), for
all g E C[G]. Then

P P

xn+i (f) _
(x" fix)°µ*(f)

_ x(f)x(g) _

It follows that xn+1 (f) _ (if1(x))(f)(e).
Now let n E I` and f E jX. Then

x"(n(x)(J)) _ i"(x)(i(x)(f))(e)
_ (9f'(x)(f))(e) .0.

Thus

(4.11) i7(X)(lX) C lx

Now let f E jX, g E C[G]. Then

ve(f9) = f(e)9(e) _ 0, X(f9) = X(f)9(e) + f(e)x(g) = 0.
Assume that xn(uv) = 0 for all u E jx and v E C[G]. Then

x1(fg) = iTh(i(x)(fg))(e) = iTh(i(x)(f)g + fr(x)(g))(e)
= xTh(i(x)(f))g + xTh(fr(x)(g)) = 0,
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since rj(x) (f) E jX. So fg E jX and we have proved that jX is an ideal of
C[G].

Finally, let f, g E C[G] \j,. Denote by p and q the smallest integers such
that xP(f) and x9(g) are non-zero. Since i(x) is a derivation of C[G], we
have:

Xp+e(f9) _ (i1P+q(X)(f9))(e)
(p + q)! mI\ I \nI_\ / I \- (

m+n=p q m!n

>11m+n=p+q min! Xm(.f)Xn(9)
= 0.

p!q!

Thus fg ¢ jX. So jX is a prime ideal of C[G]. O

We now set

:= V(j).

Then ?-L(x) is an irreducible closed subset of G. Moreover we can prove the
following proposition.

Proposition 4.5.4. Let G be an algebraic group and x E

a) The subvariety ?-L(x) is a connected and commutative algebraic subgroup
of G such that x E

b) Any closed subgroup H of G satisfying x E £(H) contains fi(x).

Proof. a) We have 7-1(x) _ {x E G : f(x) = 0, `df E jX}. By definition
of j(x), e E ?-l(x). We shall show that if x E 7-l(x) and f E jX, then

Ar-if E jX. Since the derivation i(x) is left invariant (see (4.3)), we have
(f )). From this, we deduce that

(rn(X)(.f))(x) = o,

as C jX, by (4.11). So Ar-if E jX. Now, if x, y E 7-1(x), f E jX,
f(xy) _ (y) = 0, since ar-if E jX, y E G. So xy E

As i(x)(jX) C jX, we have x E £('?-l(x)) by Lemma 4.2.9.
Let us now prove that ?-L(x) is commutative. Let I = Z('?-L(x) x fi(x)) C

C[G x G] C[G] ® C[G]. We know that I = jX ® C[G] + C[G] ® jX. (See
Exercise 7 in chapter 1.) Let f E jX. If x, y E ?-l(x), then µ* (f) (x, y) _
f(xy) = 0. Thus f(j) C I.

(p+q)!
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For p, q E ICY, denote by Jp,y the kernel of the linear form x9 on
C[G] ® C[G] and let J = flpq Jp,y. We have xP+9(f) _ (xP ® x9)(µ*(f )), so
f E jX implies that µ* (f) E J. It follows J C I. Since it is clear that I C J,
we obtain I = J.

Denote by : C[G] ® C[G] - C[G] ® C[G] the linear map defined by
(f®g) =g®f. Ifp,gEN and f EC[G],wehave

((P®) oSoµ*)(f) - ((X9®Xp) oµ*)(f) -X9+P(f) - ((XP®X9) oµ*)(f)

Thus (xp ® xq) o ( o µ* - µ*) = 0. By the preceding, we deduce that
(' o µ* - µ*)(C[G]) C I. If x, y E #H(x) and f E C[G], then

f(xy) - f(yx) = 1f(f)(x,y) - p*(f)(y,x)
= f(x)g(y) - f(y)g(x)
= (if - Q*)(f)(x,y) = 0.

So we have xy = yx.

b) Let H be a closed subgroup of G satisfying x E £(H). Let a = 1(H). By
Lemma 4.2.9, we have C a, so rfn(x)(a) C a and xn(a) _ {0}, for
n E N, by (4.10). Thus a C jX and #H(x) C H. O

Corollary 4.5.5. Let Cj be a Lie subalgebra of g and -l(Cj) the intersection
of all algebraic subgroups of G whose Lie algebra contains C).

a) H(Cj) is connected and C, C £(fl(Cj)).

b) If H is a closed connected subgroup of G, Cj its Lie algebra, we have
1([j)= H.

Proof. a) It is clear that -l(Cj) is an algebraic subgroup of G and since
_ is connected. By Proposition 4.5.4, we have

#H(x) C -l(Cj) for all x E Cj. So it follows that x E £(#H(x)) C
Hence tj C £()-l(Cj)).

b) Since -1(Cj) C H, we have £(H([j)) C [j. By a), we have equality.
Thus dim -1(Cj) = dim H =dim Cj. Since H is connected, we deduce that

=H. El

Proposition 4.5.6. Let Hl, H2 be algebraic subgroups of G and Cj1i C)2 their
Lie algebras.

a) Assume that Hl and H2 are connected. If Cj1 C [)2i then Hl C H2.

b) We have .C(Hl fl H2) = Cj1 fl Cj2.

Proof. a) If Cj1 C C)2i then H(Cj1) C So Hl C H2 by Corollary 4.5.5.
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b) We have £(Hl fl H2) C Cn fl by Lemma 4.5.2. On the other hand,
?-1(C)1 fl C) C Hl fl H2i by definition of fl(Cj). (See Corollary 4.5.5.) So
h fl1j2 c c n H2).

Lemma 4.5.7. Let cp : G -+ GL(n, C) be a morphism of algebraic groups
and cp;,j E C[G] such that cp(x) _ (cojj(x)i<j,j<n), for x E G. If X E £(G),
then dcp(x) _ (x(cojj))i<j,j<n.

Proof. We have dcp(x)(X) = x(XZ3 o cp) = x(cp2j).

Proposition 4.5.8. For G an algebraic group, g its Lie algebra, the differ-
ential of the adjoint representation AdG is ade.

Proof. Let x, y E G, x, y E g, f E C[G] and µ* (f) _ fj ® gi, where
fi, 9i E C[G]. We obtain px f = gi(x) fi. Hence

(4.12) (Y

It follows that

(4.13) x(Y*.f)=L,Y(.f.)x(9:)=(Y'x)(f).
i=1

If x E g, dAd(x) E g(g) may be identified with an element 2(x) of
End(g) and for b E End(g)* C C[GL(g)], we have

= dAd(x)(b).

Let f E C[GL(g)] and y E g. Define t9 f,y E End(g)* as follows: for
cp E End(g),

Then for x, y E g and f E C[GL(g)], we have

(dAd(X)(Y))(f) _ ((x) (y) (f) _ t9f,y((X)) = dAd(x)(t9f>y) = X(t9f,y°Ad).

On the other hand, if x E G, then

(t9f,y ° Ad)(x) _ (Ad(x)(y))(f) _ (di(y)(f) = Y(f ° 2')
But if µ* (f) _ >?1 fj ® gi, we have
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n

I = >fj(x)(p_igj).
2=1

(See (4.9).) It follows by the definition of left convolution

n n

92)(x) _ ((f(y * 9z) ° x)

We deduce therefore that

n

oAd= (fj(y * gi)
i=1

In view of Proposition 4.2.5, we obtain that

n n

X(I,Y ° Ad) _ X(f2)(Y * 9i)(e) - f(e)x(y * 92)
i=1 i=1

It follows from (4.12), (4.13) and the definition of y * gi that

n n

Ad) _ x(f)y(g) - f(e)(y x)gi.
i=1 i=1

Finally by the definition of [x, y] (4.4) (see also Remark 4.2.3) we obtain

(dAd(x)(y))(f) = x(t9f,Y o Ad) _ (x. r)(f) - (ve y =)(t)
= (x. y)(f) - (y 'x)(f) = [x, y](f).

Hence
dAd(x)(y) _ [x,y] = ad(x)(y).

U

Corollary 4.5.9. If H is a normal subgroup of G, then the Lie algebra Cj
of H is an ideal of g.

Proof. If H is normal in G, for f E Z(H) C C[G] and x E H, we have
f o i E Z(H). Hence if x E Cj, x(f o ice) = 0 by Lemma 4.2.9. Thus
Ad(x) (x) (f) = 0, and this implies that Ad(x) (x) E Cj, again by Lemma
4.2.9.

Let (xi,.. . , Xn) be a basis of g such that (xi,.. . , xp) is a basis of Cj. If
y E g, then Lemma 4.5.7 implies that for 1 < j < n, we have irE C[G]
such that
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n n.

(dAd)(y)(x) _ xi
i=1 i=1

So Ad(x)(Cj) C Cj implies that irz = 0 if 1 < j < p and p + 1 < i < n. Thus
(dAd)(x)([j) C Cj and the result follows from Proposition 4.5.8.

Lemma 4.5.10. Let cp G -+ G be a morphism of varieties such that
cp(e) = e and set : G -+ G, x F-+ p(x)x'. Then

Proof. Let 8 G -+ G x G be the morphism x F- (p(x), x-1). Then
= µ o 8. If x E £(G), then by Proposition 4.2.5, we have d(x) _

dµ(dcp(x), -x) = dcp(x) - x.

Proposition 4.5.11. Let Hl, HZ be subgroups of G. Let F be the closure
of [Hl, H2] in G. (It is a subgroup by Proposition 3.3.2.) Let g, F)i, C)2i f be
the Lie algebras of G, Hi, H2, F respectively. Let xl E Hl, x2 E H2, xl E
ill, x2 E X12. Then

[xi, XzJ, Ad(xi)(x2) - X2, Ad(xa)(Xi) - xi

are elements of f.

Proof. For xl E Hl, denote by H2 -+ F the map x2 F-+ [Xi,X2].
If x2 E Cj2i then (x2) = Ad(xi)(x2) - x2i by Lemma 4.5.10. Thus
Ad(xi)(x2) - x2 E f. Similarly, we have Ad(x2)(xl) - xl E f.

It follows that for x2 E Cj2i we have a map 'l/'x2 Hl -+ f given by
'lI)XZ (Xi) = Ad(xl) (x2)-x2. If xl E F) 1i then by Proposition 4.5.8, (xi) _
[xi,x2]; hence [xi,x2] E f. O

Corollary 4.5.12. Let G be an algebraic group and g its Lie algebra. Then
[]c([C,C]).
Proposition 4.5.13. Let G be an algebraic group, Hi, H2 connected normal
algebraic subgroups of G. By Proposition 4.4.2, H3 :_ [Hl, H2] is a con-
nected algebraic subgroup of G. Let Chi be the Lie algebra of Hi, i = 1, 2, 3.
We have

= [F)i, F)2].

Proof. We have [[ji, [j2] C Cj3 by Proposition 4.5.11.

For x, y E G, let [x, y] = xyx-ly-1 be their commutator. The identity
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[x,y]' = rx-1,xyx-11
L 1

gives [x, HZ]-1 = [x-1, H2]
We now apply Proposition 3.2.3 to the morphisms

cox : H2 -+ H3, y H [x, y], for x E H,

and obtain that there exists n e N and x1, ... , xn e H, such that the map

: H2 -+ 113, (yi,.. . , yn) H [x,, y1] ... [xn, yn]

is surjective. So, by Proposition 2.2.38, there exists y = (yi,. , yn) E H2
such that

dy(P : T( H) -+ TvyHs

is surjective.

Let s : H2 -+ H2 and e : H3 -+ H3 be defined as follows:

s(zl,... ,z) _ (yizi,. . ,ynzn), e(z) =
These are isomorphisms of varieties. For 1 < k < n and z E H2, let

Ck(z) _ [xi,yi] ... [xk_,,yk_,][xk,ykzj[xk,ykJ'... [x,,y,]'.

Finally define -y : H2 -+ H2 and v : H2 -+ H2 by

y(z1, ... , zn) _ ((i1(z1), ... , Cn(zn)), v(z1, ... , zn) = z1 ... zn.

We can easily check that

Let E := (e,. . . , e) E H. Since e and s are isomorphisms of varieties, the
differential de (v o -y) : Te (H2) -+ Te (H3) = [)3 of v o -y at the point E is
surjective.

Let uk = [x,, y,] ... [xk, Ilk], 1 <k < n. Then we easily obtain that

-1
,Ck (z) - Zuk lZykXk (z)2yk

1z11

11

where i(z) := xzx-1. If t = (t,,. . . , tn) E (Te(H2))Th = T6(H2 ), then taking
into account the definition of Ad, Proposition 4.2.5 implies that
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n

dE(v °_ Ad(uk)(Ad(yk)(Ad(xk)(tk) - tk))

As H2 is normal in G, is an ideal of g by Corollary 4.5.9; hence we
have [2, [u1, l2]] C [1j1, h2]. As H2 is connected, [Hl, H2] is closed. (See
Proposition 4.4.2.) Then Proposition 4.5.11 implies that Ad(z)([Cj1i C
[[11, 2] for all z E H2. As uk, yk E H2i to obtain the result, it suffices
therefore to prove that if y E Cj2 and x E Hl, then Ad(x)(y) - y E l'72]

But this again follows from 4.5.11 and the fact that Hl is connected. O

Corollary 4.5.14. a) If G is solvable (resp. nilpotent), then g is solvable
(resp. nilpotent).

b) Assume that G is connected. If g is solvable (resp. nilpotent), then G is
solvable (resp. nilpotent).

Proof. We have £(G) _ £(G°) and if G is solvable (resp. nilpotent), then
so is G°. So we may assume that G is connected. Then Proposition 4.5.13
implies that ,C(Dn(G)) = Dn(g) and £(CTh(G)) = Cn(g). So the result
follows. D

4.6. Subgroups of SL(2, C)

In this section, we give the classification of the subgroups of the special
linear group SL(2, C).

Theorem 4.6.1. Let G be an algebraic subgroup of SL(2, C). Then one of
the following four cases can occur.

Case 1. G is triangularizable.

Case 2. G is conjugate to a subgroup of

-c1 0):cECc o}

and case 1 does not hold.

Case 3. G is finite and cases 1 and 2 do not hold.
Case 4. G = SL(2, C) .

Proof. Let G° be the identity component of G. As any two-dimensional Lie
algebra is solvable (see Exercise 4), by applying Corollary 4.5.14, we obtain
that either dim G = 3, in which case G = SL(2, C), or else G° is solvable.
In the latter case, G° is triangularizable by the Lie-Kolchin Theorem 4.4.6.
Assume that G° is triangular.

If G° is not diagonalizable, then G° contains a matrix A of the form
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A= I )withaO,

since an algebraic group contains the unipotent and semisimple parts of
all its elements. (See Proposition 4.3.4.) Since G° is normal in G (see
Proposition 3.2.1a)), any matrix in G conjugates A into a triangular matrix.
A direct computation shows that only triangular matrices have this property.
Thus G itself is triangular. This is case 1.

Assume next that G° is diagonal and infinite, so Gcontains anon-scalar
diagonal matrix B. As G° is normal in G, any element of C conjugates B
into a diagonal matrix. A direct computation shows that any matrix with
this property must be contained in D. Therefore either G is diagonal, this
being included in case 1, or G is contained in D+, this being case 2.

Finally we observe that if G° is finite (and therefore G° _ {e}), then G
must also be finite (Proposition 3.2.1a)). This is case 3.

We shall now determine which finite groups appear as subgroups of
SL(2, (C). This is a classical result which can be found in the work of Klein,
Jordan, F4zchs, and others. It can be obtained by purely algebraic methods
(see e.g. [Kov]) but we have preferred to keep the geometric flavor of the
classical works, which moreover justifies the names used for the groups ob-
tained. The proof consists in three steps: First prove that if G is a finite
subgroup of SL(2, (C), the quotient G/Z(G) is isomorphic to a subgroup of
the special orthogonal group SO(3, I[8). Then determine the finite groups
of space rotations and finally deduce the group G corresponding to each of
those.

We recall that a unitary matrix is a matrix U E GL(n, (C) satisfying
UUT = I, a special unitary matrix is an unitary matrix with determinant
equal to 1. We consider the special unitary group defined by

SU(n) :_ {U E GL(n, (C) UUT = I and det U = 1}.

Lemma 4.6.2. Let G be a finite subgroup of SL(2, C). Then G is isomorphic
to a subgroup of the special unitary group SU(2).

Proof. We shall prove that there exists an hermitian inner product which
is invariant by any element of G. Then, taking a basis of C2 which is
orthonormal with respect to this hermitian product, each element in G is
represented by an unitary matrix.
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Take any hermitian inner product in C2 and denote x * y the product of
x, y e C2. Let M1, ... , Mr be the elements of G. We define

T

x y = * (My).
i=1

Then it is easy to check that is hermitian. Now, for M E G, we have

T

(Mx). (My) _ Mx) * (Mi My) = x y,
i=1

as Mi M runs through all the elements of G when Mi does. LI

We now consider the Hamilton quaternion algebra TiI and denote by U the
group of unit quaternions, i.e. quaternions with norm equal to 1. We take
as usual an Ilk-basis of IHI, (e, i, j, k), where e denotes the unit element, with
the product relations ij = k, i2 = j2 = k2 = -e, ij = -ji. For a quaternion
q = ae + bi + cj + dk, the conjugate quaternion is q = ae - bi - cj - dk and
the norm is I ql = qq = a2 + b2 + c2 + d2.

Lemma 4.6.3.
N SU(2).

Proof. To q = ae + bi + cj + dk e U, we associate the matrix

u v 1
Aq ' -v u J '

where u = a + bi, v = c + di. Then it is easy to check that Ay is an unitary
matrix and that q H Ay defines an isomorphism from U to SU(2).

We now intend to associate to an element in the group U of unit quater-
nions a rotation of the three dimensional space.

First, for a quaternion q E IHI, the mapping x F-3 qx defines a linear map
Aq from W' to 1W', if we consider the underlying vector space structure of IHI.
If we set q = ae + bi + cj + dk, the matrix of Aq in the basis (e, i, j, k) is

A=
a -b -c -d
b a -d c

c d a -b

d -c b a
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We have AAT = (a2 +b2 +c2 +d2)I, hence (det A)2 = (a2 +b2 +c2 +d2)4 and,
since det A contains the term a4, we have det A = (a2+b2+c2+d2)2. We now
endow I[84 with the euclidean space structure given by the standard scalar
product with respect to the basis (e, i, j, k). We have then Aq E SO(4) for
II = 1. We shall call Aq the left rotation associated to the unit quaternion
q. Moreover, q H Ay defines a group morphism from N to SO(4). We can
define as well a linear map pq : ll84 - ll84 induced by x H xq-1. If = 1,
its matrix in the basis (e, i, j, k) is

a b c d
-b a -d c

-c d a -b
-d -c b a

and we obtain analogously py E SO(4) when q = 1 and a group morphism
p : U -+ SO(4), q H pq. We call pq the right rotation associated to the
unit quaternion q. We now want to see that the definition of right and left
rotation do not depend on the chosen basis. On the euclidean space ll84, we
consider basis changes between orthonormal basis.

Lemma 4.6.4. We consider a second basis (u, v, w) in (e)T. The two basis
(e, i, j, k) and (e, u, v, w) define identical quaternion algebra structures on
ll84 if and only if the basis change matrix between them belongs to SO(4).

Proof. We set u = aili + a21j + a31k, v = a12i + a22j + a32k, w = a13i +
a23 j + a33 k, for some A := (a)1<,3<3 E GL (3, R). By calculation, we obtain
u2 = -1 if and only if lul = 1, and analogously for v and w; uv = -vu if
and only if u 1 v and analogously for u, w and v, w. Now, assuming A is
orthogonal, we obtain uv = (det A)w. 0

The preceding lemma tells that, if we consider orthonormal basis with
fixed orientation in R4, the quaternion algebra structure is determined by
the first basis vector e. We shall refer to this quaternion algebra as the
e-algebra.

Lemma 4.6.5. Let (e, i, j, k) and (f, u, v, w) be two orthonormal basis of
R4.

a) If both basis give the same orientation, then a left (resp. right) rotation
in the e-algebra is a left (resp. right) rotation in the f-algebra.

b) If the two basis give different orientations, then a left (resp. right) rota-
tion in the e-algebra is a right (resp. left) rotation in the f-algebra.
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Proof. a) Let rl be the inverse of f in the e-algebra. Then the right ro-
tation pf sends the basis (f, u, v, w) to the basis (e, ur1, of 1, wf 1); hence
it is an algebra isomorphism from the f-algebra to the e-algebra. We ob-
tain then that the left (resp. right) rotation associated to a unit quaternion
q in the e-algebra is the left (resp. right) rotation associated to the unit
quaternion of 1 (resp. f 1q) in the e-algebra.
b) Taking into account a), it is enough to consider the two basis (e, i, j, k)
and (e, i, j, -k). We obtain that multiplication between the basis vectors is
reversed when going from one algebra to the other; hence, denoting by * the
product in the second algebra, we have a * b = ba for a, b E R4. We obtain
then that left rotation associated to a unit quaternion q in one algebra is
right rotation associated to q-1 in the other algebra. U

We have then proved that the groups of left and right rotations are well
determined and do not depend on the choice of the orthonormal basis giving
the quaternion algebra structure.

Lemma 4.6.6. Every element in SO(4, Il8) can be expressed as the product
of a left rotation and a right rotation.

Proof. An element v E SO(4, ][8) has a canonical form

cos a - sin a 0 0

sin a cos a 0 0

0 0 cos /3 -sin/3
0 0 sin /3 cos /3

Looking at the matrices obtained for left and right rotations, we see that
U _ o p92, for qi = cos Bie + sin 92i, i = 1, 2, with 91 = (cE + /3)/2, 92 =
(/3-cE)/2.

We now consider the rotation \9 o py in ][84 given by x H qxq-1. It clearly
leaves invariant the axis Re; hence it leaves globally invariant its orthogonal
complement ][8i + ][8j + I[8k and by restriction we obtain an element cpy in
SO(3) and a morphism N -+ SO(3), q H cpq.

Lemma 4.6.7.
U/{±1} SO(3).

Proof. We shall prove that the morphism N -+ SO(3), q H cp9 is surjective
and its kernel is {fl}. A rotation in SO(3) can be extended to a rotation
in SO(4) leaving invariant the first axis. By Lemma 4.6.6, this last rotation
can be expressed as yl 0 P42 for some unit quaternions ql, q2. Now )yl 0 p42
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fixes e if and only if ql = q2. To determine the kernel, we have Aq o pq = I
if and only if q commutes with i, j and k, which gives q = ±1. LI

We shall now determine the finite subgroups of SO(3), i.e. the finite
groups of space rotations. To this end we shall use the following lemma.

Lemma 4.6.8 (Burnside's Lemma). Let G be a finite group acting on a
finite set X. Let r be the number of orbits and for each v E G let X7 denote
the set of elements in X fixed by a. Then we have

(4.14) r = 1
crEc

Proof. We count in two different ways the number N of pairs (v, x) E G x X
such that ax = x. For each x E X, the elements v E G such that ax = x
form the stabilizer 1(x), so

N = II(x)I =
IGI

= IGI 'GxI,
xEX xEX xEX

where Gx denotes the orbit of the element x. Now the sum (1/IGxI)
for x running through the elements in one fixed orbit is equal to 1, so
xEx(1/KxI) = r and we obtain N = IGIr. On the other hand, for each
a E G, the elements x E X such that ax = x form the set X°; hence
N = EC IX°i.

Proposition 4.6.9. Let G be a finite subgroup of SO(3, ][8). Then G is one
of the following groups.

(1) The cyclic group Cn generated by a rotation with angle 2ir/n around
an axis,

() the group formed by the identity and three axial symmetries around
orthogonal ayes, which is isomorphic to CZ x C2i

(3) the group of rotations leaving invariant an n-sided prism with reg-
ular base, which is isomorphic to the dihedral group D,

(4) the group of rotations leaving invariant a regular polyhedron, which
is isomorphic to
(a) the alternating group A4 in the case of the tetrahedron,
(b) the symmetric group S4 in the case of the cube and the octa-

hedron,
(c) the alternating group A5 in the case of the dodecahedron and

the icosahedron.
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Proof. This proof is due to Klein and is based on applying Burnside's
Lemma 4.6.8 to the action of G on the set X C S2 of poles of the rota-
tions in G different from the identity. Here 82 denotes the sphere of radius
1 centered in the origin and the poles of a rotation are the points of 82 fixed
by it, i.e. the points in which its axis cuts 82. Note that if x, -x are the
poles of a e G, then -rx, -rx are the poles of To-T-1 for T E G, so G really
acts on X. For this action (4.14) gives

1-(2(n-l)+IXI),
where Ti = IGI, since X has two elements if a I and is equal to X for
a = I. Let {Oi,... , Or} be the orbits of the action considered and let xi be
a representative of the orbit Oi, for each i. We have then axi x3 for all
a e G if i j. Set mi = Oi , n2 = I where 1(x2) denotes the stabilizer
of x2. As XI _ 1 mi and n =we obtain

1 IXI
r

mi
r

1

n n n ni
i=1 i=1

which can be written as

T

n2 n
Z=1

As 1 < 2(1-1/n) < 2 and nz > 2, since each pole is stabilized by at least one
rotation besides identity, we obtain 1 - 1/n2 > 1/2. This implies 2 < r < 3.
We now discuss the two cases r = 2 and r = 3.

r = 2: Equation r - >(m/Ti) = 2(1-1/n) reduces to ml -I-m2 = 2; hence
ml = m2 = 1. There is then exactly two poles, which means that
all elements in G have the same axis. So G is the cyclic group
generated by a rotation with angle 2ir/n, which is case 1 in the
statement.

r = 3: Equation r - >(1/Tij) = 2(1 - 1/n) reduces to

(4.15)
2 1 1 1

Ti nl n2 n3

We can assume nl < n2 <n3. As the left hand side of (4.15)
is bigger than 1, nl must be equal to 2. Now (1/n2) -I- (1/n3)
must be > 1/2; hence either n2 = 2 or n2 = 3. If n2 = 2, n3
can take any integer value m > 2 and we obtain 1 + (2/n) _
(1/2) -I- (1/2) -I- (1/m) = Ti = 2m. If n2 = 3, 1/n3 must be greater
than 1/6; hence n3 = 3,4 or 5. Summing up, the possible values
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for (rll, n2, n3) are (2, 2, m), with m > 2, (2, 3, 3), (2, 3, 4), (2, 3, 5).
The rest of the proof is the discussion of each of the cases.

(2,2,2) Equation (4.15) gives n = 4. Hence, from n =we obtain
ml = m2 = m3 = 2. As I (x) has order 2, G has three
elements of order 2. Set I (x) = {I, si}. We have s3 (xl) =
-xl and 53(x2) = -x2 as any other possibility contradicts
si (xi) = x. So the axis of s2 and 53 are orthogonal to the axis
of Si and, by a similar reasoning, to each other. We obtain
then case 2 in the statement.

(2,2, m) Equation (4.15) gives n = 2m. From n =we obtain
ml = m2 = m, m3 = 2. Now, the group I (X3) is a group of
order m consisting in rotations around the same axis; hence
it is cyclic of order m, generated by a rotation p with angle
27r/m. The orbit of xl contains m elements and is equal to
{xl, p(xl ), . , , , pm-1(x1) }, which is the set of vertices of an
m-sided regular polygon. As I(xl) has order 2, G contains
the axial symmetry around the axis 0X1, so G is the group of
rotations leaving invariant an m-sided polygon or, equivalently
the regular prism having it as base. Hence G is the dihedral
group of order n = 2m.

(2,3,3) Equation (4.15) gives n = 12; hence ml = 6, m2 = m3 = 4.
Let P1 = x3, P2, P3, P4 be the four poles in 03. As I (x3) has
order 3 and fixes P1, it permutes cyclically P2, P3, P4; hence
these are the vertices of an equilateral triangle. As each I (P) is
conjugate to I(x3), the same is true for any three points among
P1, P2i P3, P4, so these are the vertices of a regular tetrahedron
and G is the group of rotations leaving it invariant. It is easy
to see that 02 = {-P1, -P2, -P3, -P4} and that O1 is the
set of poles corresponding to the lines connecting the middle
points of the three pairs of opposite edges of the tetrahedron.

(2,3,4) Equation (4.15) gives n = 24; hence ml = 12, m2 = 8, m3 = 6.
The stabilizer I (X3) is a group of order 4 which is cyclic as
it is a subgroup of SO (2) . A generator of I (x3) permutes
cyclically four elements among the six poles in 03i hence these
are the vertices of a regular octahedron and G is the group of
rotations leaving it invariant. It contains the rotations with
angle 7r/2 and axis connecting two opposite vertices as well as
the rotations with angle 27x/3 and axis connecting the centers
of two opposite faces. Each element of G corresponds to a
permutation of the 4-element set of the pairs of opposite faces.
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The group G is also the group of rotations leaving invariant
the regular hexahedron whose vertices are the middle points
of the faces of the octahedron.

(2, 3,5) Equation (4.15) gives n = 60; hence ml = 30, m2 = 20, m3 =
12. The group I(x3) is cyclic of order 5. As 03 has 12 elements
and two of them are fixed by I(x3), this group permutes the re-
maining ten in two distinct cycles of five elements each, which
are the vertices of two regular pentagons, mutually symmet-
ric with respect to the origin. Hence 03 is the set of vertices
of an icosahedron and G is the group of rotations fixing it.
It contains the rotations with angle 2ir/5 and axis connecting
two opposite vertices, the rotations with angle 2ir/3 and axis
connecting the centers of two opposite faces and the rotations
with angle it connecting the middle points of two opposite
edges. Each element of G corresponds to an even permutation
of the 5-element set of regular tetrahedrons whose vertices are
in the center of faces of the icosahedron, as shown in Figure 1.
The group G is as well the group of rotations leaving invariant
the regular dodecahedron whose vertices are the middle points
of the faces of the icosahedron.

0

We shall now determine the finite subgroups of SL(2, C).

Proposition 4.6.10. A finite subgroup of SL(2, C) is conjugate to one of
the following.

1. a cyclic group of order n generated by the matrix

(w 0 '\0 W_1A=0
for w a primitive nth root of unity.

2. the quaternion group generated by the matrices

B:= Ii 0\
.

(01
'\0 -i)' \1 0

3. the dihedral group of order 2n generated by the matrices AW and C.

a doable cover of a regular polyhedron rotation group, which is isomorphic
to
(a) the tetrahedral group 2A4 generated by the matrices B and

1 -1+i -l+i
D 2 1+i -1-i
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Figure 1. One of the tetrahedrons inscribed in the icosahedron.

(b) the octahedral group 2S4 generated by the matrices D and

E_ 1 (1+1 0-
0 1-i

(c) the icosahedral group 2A5 generated by B, D and

1 2iF=- Q-Z'Y
4\ -Q - iry -2i 1'

where ,Q=1-V,-y=1+V'.
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Proof. Cases 1, 2, and 3 follow easily by determining the images of the
generators of the subgroups of SO(3, III) given in cases 1, 2, and 3 of Propo-
sition 4.6.9 by the isomorphisms given in Lemmas 4.6.7 and 4.6.3. We make
explicit case 2, i.e. the case of the group formed by the identity and three



114 4. Lie Algebras and Algebraic Groups

axial symmetries around orthogonal axes. Taking the symmetry axes to be
the coordinate axes, the matrices of the three symmetries are

1 0 0

0 -1 0

0 0 -1

/-10 0 7-10 0
0 1 0 ), (

0 -1 0 ,

0 0 -1 0 0 1

which correspond to the quaternions i, j, k. These in turn correspond to the
matrices in SL(2, C)

A= Ii 0
\\

o -i)' A
Ol

0)' Ak=I(Oi\
).

We can assume that A;, AJ, Ak are sent to (12)(34), (13)(24), (14)(23)
respectively by the epimorphism from SL(2, C) in SO(3, IL8) with kernel {+I}.

We now consider the alternating group A4i generated by the permuta-
tions (123) and (12)(34). Conjugation by (123) permutes cyclically (12)(34),
(13)(24) and (14)(23). Hence if D is a preimage of (123) in SL(2, C), it per-
mutes cyclically A;, Ak up to multiplication by -I. As conjugation by
one of the A's on the other two produces multiplication by -I, we can look
for a matrix D in SL(2, C) permuting cyclically A;, Ak and obtain the
matrix D in the statement.

The symmetric group S4 can be generated by the permutations (123)
and (1324). Its preimage in SL(2, C) is generated by D and a matrix E in
SL(2, C) satisfying EZ = A;, which is defined up to multiplication by -I.
We easily find that the matrix E has the form given in the statement.

The alternating group A5 is generated by the permutations (123) and
(12)(34) generating A4 and the permutation (12)(45). Both (12)(45) and
(123)(12)(45) _(13)(45) correspond to rotations with angle r around an
axis connecting the middle points of two opposite edges of one of the tetra-
hedrons inscribed in the icosahedron; hence their preimages in SL(2, C) have
order 4. Now (12)(34)(12)(45) _ (345) and we can choose its preimage in
SL(2, C) to have order 3. We look then for a matrix F in SL(2, C) satisfying
F2 = (DF)2 = -I, (AF)3 = I and obtain F as in the statement.
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Exercises

(1) Check that the Lie bracket of two derivations is a derivation and that
the Lie bracket of two left invariant derivations is again left invariant.

(2) Check that the subspaces of gC(n, C) considered in Example 4.1.3 are
Lie subalgebras of gC(n, C) and that C) is an ideal of gC(n, C).

(3) Write down the proof of Proposition 4.1.7.
(4) Let g be a Lie algebra of dimension 2 over the field C. Let (u, v) be a

basis of g as C-vector space.
a) Prove that the Lie algebra structure of g is determined by [u, v].
b) If [u, v] 0, prove that the subspace it generates is an ideal of g,

which is independent of the chosen basis and is the unique nontrivial
ideal of g.

c) Prove that g is solvable.
(5) Determine the Lie algebra of the orthogonal group

O(n, C) :_ {A E GL(n, C) : AAT = Id}

and of the special orthogonal group

SO(n, C) :_ {A E O(n, C) : det A = 1}.

(6) Prove the statements in Remark 4.2.3.
(7) Give an example of a linear algebraic group which consists of semisimple

elements but is not diagonalizable.

(8) Let V be a finite dimensional C-vector space. If N is a nilpotent endo-
morphism of V and U an unipotent endomorphism of V, we can define:

00 00 (_i)k+1
k, log(U) ;- (U - Idv)k.exp(N) :_ L

k=O

a) Prove that exp(N) is an unipotent automorphism of V, log(U) is a
nilpotent endomorphism of V and

exp(log(U)) = U, log(exp(N)) = N.
b) Prove that cpnr : (Ga - GL(V), t H exp(tN) is a morphism of alge-

braic groups. Deduce that cpnr((Ga) is a connected closed subgroup of
GL(V).

c) For N 0, prove that cpn, is an isomorphism of algebraic groups from
Ga OritO cPN((Ga).
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(9) Let V be a finite dimensional C-vector space and G be a closed subgroup
of GL(V).
a) Let U be an unipotent element of G and N =log U. Prove that

(pnr(cGd) is the smallest closed subgroup of G containing U.
b) Let N be a nilpotent endomorphism in £(G). Prove that 7-1(N) is

the set of exp(tN), t E C.

(10) Let V be a vector space of dimension r> 0.
a) Prove that if x E End(V) is nilpotent, then adx is a nilpotent en-

domorphism of gC(V). More precisely, prove that if x = 0, then
(adx)2P-i = 0.

b) Prove that if g is a Lie subalgebra of gC(V) consisting of nilpotent
endomorphisms, then VB :_ {v E V : x(v) = 0, dx E g} L: {0}.

(11) Let G be a connected affine algebraic group of dimension 1. Prove that
G is isomorphic either to the multiplicative group G,,,, or to the additive
group (Ga.
Hint: G is commutative by Exercise 9 in chapter 3 and has dimension
1; hence either G = Gs or G = G.

(12) Prove that the derived subgroup of GL(n, C) is SL(n, C) and SL(n, C)
is equal to its own derived subgroup. Conclude that for n > 2, GL(n, C)
and SL(n, C) are not solvable.
Hint: Use that each element of one of the subgroups UZ2 (see the proof
of Corollary 3.2.5) is a commutator of elements in SL(n, C).

(13) a) Prove that an abelian group is nilpotent.
b) Prove that a nilpotent group is solvable.
c) Prove that the center of a nontrivial nilpotent group is nontrivial.
d) If f : Gl - G2 is a group morphism, prove that f(C(G1)) C C( G))

and that equality holds if f is surjective.

(14) Let G be a group and H a subgroup of G contained in the center of G.
Prove that G is nilpotent if and only if G/H is nilpotent.

(15) a) Prove that a group G is nilpotent if and only if there exists a sequence
G = Gl 3 G2 3 3 Gn+l = {e} of subgroups of G such that
[G, Gk] C Gk+l, for 1 < k < n.
b) If G is a nilpotent group, H a normal subgroup of G, prove that
there exists asequence H = Hl 3 H2 3 3 Hm,+l = {e} such that
[G, Hi] C Hi+l for 1 < i < m.

(16) Let G be an algebraic group, A = C[G]. For B a C-algebra, we consider
the set Hom(A, B) of C-algebra morphisms. For f, g E Hom(A, B), we
define its product as the composition

AAA®A9B®B-B
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where the last arrow is given by the product in B. This product gives
a group structure on Hom(A, B). We denote this group by G(B). The
algebra of dual numbers is defined by C[T]/T2 or, equivalently, by C[S],
with 82 = 0. We write T(G) := G(C[8]).
a) Prove that the points of G are in 1-1 correspondence with G(C).
b) Prove that the projection C[8] -+ C, a + bS H a induces an epimor-

phism ir from T(G) onto G(C) with kernel isomorphic to the Lie
algebra g of the algebraic group G.

c) Prove that the exact sequence

splits.
We have T(G) = UXEG ir-1(x) and ir-1(x) can be identified with the
tangent space TAG of G at the point x. We call T(G) the tangent bundle
of G.

(17) Let Gl, G2 be affine algebraic groups, xl E .C(Gl), x2 E .C(GZ). For
fi e C[Gl], f2 E C[GZ], set

eXl,XZ(.fi ® f2) = Xi(.fi).f2(ec2) +.fi(ecl)X2(.f2)
Prove that the map

9: £(Gl) x £(GZ) - £(Gl x G2)
(xl,x2) H eXi,Xa

is an isomorphism of Lie algebras.





Part 3

Differential Galois
Theory



Part 3 is devoted to the Galois Theory of homogeneous linear differential
equations referred to as the Picard-Vessiot theory. It parallels classical Ga
lois theory of polynomial equations. The Picard-Vessiot extension of a linear
differential equation corresponds to the splitting field of a polynomial and its
differential Galois group to the Galois group of the polynomial. We present
the fundamental theorem of Picard-Vessiot theory as well as the characteri-
zation of homogeneous linear differential equations solvable by quadratures,
the analogue of polynomial equations solvable by radicals. The differential
Galois group of a linear differential equation defined over a differential field
K is a linear algebraic group defined over the constant field of K. The proof
of the results mentioned above are based on properties of G-varieties, the
existence of quotients for algebraic groups, the decomposition of algebraic
groups, the concept of semi-invariant, and the Lie-Kolchin theorem.

In the last chapter, we consider differential equations defined over the
field C(z) of rational functions in one variable over the field (C of complex
numbers. We present some classical analytic results concerning local solu-
tions. We end with Kovacic's algorithm, which solves a homogeneous linear
differential equation of order 2 by quadratures, whenever it is solvable.



Chapter 5

Picard-Vessiot Extensions

In this chapter we introduce differential rings and differential extensions
and define the Picard-Vessiot extension of a homogeneous linear differential
equation. We prove its existence and uniqueness in the case when the field
of constants of the differential field over which the equation is defined is
algebraically closed.

5.1. Derivations

Definition 5.1.1. A derivation of a ring A is a map d : A -+ A such that

d(a + b) = da + db d(ab) =d(a)b + a d(b).

We write as usual a' = d (a) and a", a",. . . , a(n) for successive derivations.
By induction, one can prove Leibniz's rule

(ab) (n) = a(n) b + ... + (Th))b() + ... + a b(n) .

2

If a' commutes with a, we have (a")' = na"-la'. If A has an identity
element 1, then necessarily d(1) = 0, since d(1) = d(1.1) = d(1).1+1.d(1) =
d(1) = 0. If a E A is invertible with inverse a-1, we have a.a-1 = 1 =
a'a-1 -}- a(a-1)' = 0 = (a-1)' _ -a-la'a-1. Hence if a' commutes with a,
we get (a-1)' _ -a'/a2.

Proposition 5.1.2. If A is an integral domain, a derivation d of A extends
to the fraction field Fr(A) in a unique way.

121
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Proof. For b E Fr(A), we must have (b)' = a'b b2 ab ,so there is unique-

ness. We extend the derivation to Fr(A) by defining (-i)' ;_
a b b2 ab

If

C E A \ {0}, we have

(ac\' (ac)'bc - ac(bc)' (a'c + ac')bc - ac(b'c + bc') _ a'b - ab'
be 1 b2c2 b2c2 b2 '

so the definition is independent of the choice of the representative. Now we
have

a cy + be ' (ad + bc)'bd - (ad + bc) (bd)'
b + dl

(ad
bd

)
b2d2

(a'd + ad' + b'c + bc')bd - (ad + bc)(b'd + bd') a'b - ab' c'd - cd'
b2d2 = b2 + d2 '

a cl ' (aC\' (ac)'bd - ac(bd)' (a'c + ac')bd - ac(b'd + bd')
Cb dl - \bdl b2d2 b2d2

(a'b - ab')c (c'd - cd')a a'b - ab' c a c'd - cd'
b2 d + d2 b = b2 ' d + b ' d2

Remark 5.1.3. If A is a commutative ring with no zero divisors endowed
with a derivation and S is a multiplicative system of A, following the same
steps as in the proof of Proposition 5.1.2, we can prove that the derivation
of A extends to the ring S1 A in a unique way.

5.2. Differential rings

Definition 5.2.1. A differential ring is a commutative ring with identity
endowed with a derivation. A differential field is a differential ring which is
afield.

Example 5.2.2. Every commutative ring A with identity can be made into
a differential ring with the trivial derivation defined by d(a) = 0, b'a E A.

Over 7L and over Q, the trivial derivation is the only possible one, since
d(1) = 0, and by induction, d(n) = d((n - 1) + 1) = 0 and so d(n/m) = 0.

Example 5.2.3. The ring of all infinitely differentiable functions on the
real line with the usual derivative is a differential ring.

The ring of analytic functions in the complex plane with the usual de-
rivative is a differential ring. In this case, it is an integral domain and so
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the derivation extends to its fraction field which is the field of meromorphic
functions.

Example 5.2.4. Let A be a differential ring and let A[X] be the polynomial
ring in one indeterminate over A. A derivation in A[X] extending that of
A should satisfy ( azXi)' _ (aiXi + aziXz-1X'). We can then extend
the derivation of A to A[X] by assigning to X' an arbitrary value in A[X].
Analogously, if A is a field, we can extend the derivation of A to the field
A(X) of rational functions. By iteration, we can give a differential struc-
ture to A[Xl,... , for a differential ring A and to A(Xl,... , for a
differential field A.

Example 5.2.5. Let A be a differential ring. We consider the ring A [X] of
polynomials in the indeterminates X2f i E N U {0}. By defining X' = XZ+ 1,
a unique derivation of A [XZ] is determined. We change notation and write
x = Xo, X (n) = X. We call this procedure the adjunction of a differential
indeterminate and we use the notation A{X } for the resulting differential
ring. The elements of A{X } are called differential polynomials in X. (They
are ordinary polynomials in X and its derivatives.) Iterating the process,
we define the ring of differential polynomials in n differential indeterminates
X1, ... , Xn over A by A{X1,... , Xn} = A{X1, ... , Xn_1}{Xn}.

If A is a differential field, then A{ X 1, ... , X9} is a differential integral
domain and its derivation extends uniquely to the fraction field. We denote
this fraction field by A (X 1, ... , X); its elements are differential rational
functions in X1,. . . , X.
Example 5.2.6. If A is a differential ring, we can define a derivation in
the ring Mn X n(A) of square n x n matrices by defining the derivative of
a matrix as the matrix obtained by applying the derivation of A to all its
entries. Then for n > 2, Mn X n(A) is a noncommutative ring with derivation.

In any differential ring A, the elements with derivative 0 form a subring
called the ring of constants and denoted by CA. If A is a field, so is CA.
The ring of constants CA contains the image of the ring morphism Z -3 A,
1 -+ 1. In the sequel, CK will denote the constant field of a differential
field K.

Definition 5.2.7. Let I be an ideal of a differential ring A. We say that I
is a differential ideal if a E I = a' E I, that is, if d(I) C I.

If I is a differential ideal of the differential ring A, we can define a
derivation in the quotient ring A/I by d(a) = d(a). It is easy to check that
this definition does not depend on the choice of the representative in the
coset and indeed defines a derivation in A/I.
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Definition 5.2.8. If A and B are differential rings, a map f : A - B is a
differential morphism if it satisfies

(1) f(a+b) = f(a)+f(b), f(ab) = f(a)f(b), ba, b E A; f(1) = 1.
(2) f(a)' = f(a'), Va e A.

If I is a differential ideal, the natural morphism A - A/I is a differ-
ential morphism. The meanings of differential isomorphism and differential
automorphism are clear.

Proposition 5.2.9. If f : A - B is a differential morphism, then Ker f is
a differential ideal and the isomorphism f : A/ Ker f -+ Im f is a differential
isomorphism.

Proof. For a E Ker f, we have f(a') = f(a)' = 0, so a' E Ker f. Hence
Ker f is a differential ideal.

For any a e A, we have (f (a))' _ (f (a))' = f(a') = J(7) = f('), so f
is a differential isomorphism.

5.3. Differential extensions

If A, B are differential rings, A a subring of B, we say that A C B is an
extension of differential rings if the derivation of B restricts to the derivation
of A. If S is a subset of B, we denote by A{S} the differential A-subalgebra
of B generated by S over A, that is, the smallest subring of B containing
A, the elements of S and their derivatives. If K C L is an extension of
differential fields, S a subset of L, we denote by K(S) the differential subfield
of L generated by S over K. If S is a finite set, we say that the extension
K C K(S) is differentially finitely generated.

Proposition 5.3.1. If K is a differential field, K C L a separable algebraic
field extension, the derivation of K extends uniquely to L. Moreover, every
K-automorphism of L is a differential one.

Proof. If K C L is a finite extension, we have L = K(a), for some a,
by the primitive element theorem. If P(X) is the minimal polynomial of
a over K, by applying the derivation to P(a) = 0, we obtain P(d)(a) +
P'(a)a' = 0, where p(d) denotes the polynomial obtained from P by deriving
its coefficients and P' the derived polynomial. So, a' _ -Pfd>(a)/P'(a) and
the derivation extends uniquely.

Let us now look at the existence. We have L ^K[X]/(P). We can
extend the derivation of K to K[X] by defining X' :_ -Pfd>(X)h(X) for
h(X) E K[X] such that h(X)P'(X) - 1(mod P). If h(X)P'(X) = 1 +
k(X)P(X), we have
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d(P(X)) P(d)(X) + P'(X )d(X )
P(d)(X) + P'(X) (-P(d)(X )h(X ))
P(d)(X)(1 - P'(X)h(X))
-Pfd>(X)k(X)P(X).

Therefore (P) is a differential ideal and the quotient field K[X]/(P) is a
differential ring.

The general case K C L algebraic is obtained from the finite case by
applying the Zorn lemma.

Now, if o- is a K-automorphism of L, v-ldv is also a derivation of L
extending that of K and by uniqueness, we obtain Q-ldv = d, and so
do- = vd, which gives that v is a differential automorphism.

5.4. The ring of differential operators

Let K be a differential field with a nontrivial derivation. A linear differential
operator ,C with coefficients in K is a polynomial in the variable D,

G = aD" + a1D + ap, with a2 E K.

If aL 0, we say that G has degree n. If an = 1, we say that G is
monic. The ring of linear differential operators with coefficients in K is
the noncommutative ring K[D] of polynomials in the variable D with co-
efficients in K where D satisfies the rule D a = a' + a D for a E K. We
have deg(,C1,C2) = deg(Gl) +deg(G2) and then the only left or right invert-
ible elements of K[D] are the elements of K \ {0}. A differential operator
acts on K and on differential ring extensions of K with the interpretation
D(y) = d(y), for d the derivation in the ring. To the differential operator
G = anD + a1D + ao, we associate the linear differential
equation

G(Y) = aY+ an-1Y(n-1) + ... + alY' -I- aoY = 0.

Just as for the polynomial ring in one variable over the field K, we have
a division algorithm on both left and right.

Lemma 5.4.1. For Gl, ,C2 E K[D] with GZ L 0, there exist unique differ-
ential operators Qi, R1 (resp. Q,., R,.) in K[D] such that

£i =Riga + Ri and deg Rl < deg £2
(resp. Gl = ,C2QT + Hr and deg R,. < deg,C2).

The proof of this fact follows the same steps as in the polynomial case.
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Corollary 5.4.2. For each left (resp. right) ideal I of K[D], there exists an
element G E K[D], unique up to a factor in K \ {0}, such that I = K[D]G
(resp. I=LK[DJ).

Taking into account this corollary, for two linear differential operators
Gl, £2, the left greatest common divisor will be the unique monk generator
of K[D]G1 + K[D]L2 and the left least common multiple will be the unique
monk generator of K[D]G1f1K[D],C2. Analogously, we can define right GCD
and LCM. We can compute left and right GCD with a modified version of
Euclid's algorithm.

5.5. Homogeneous linear differential equations

From now on, K will denote a field of characteristic zero.
We consider homogeneous linear differential equations over a differential

field K, with field of constants C:

L (Y) := y (n) -+- an- i y (n- i) + ... + a 1 Y' + ao y = 0, a2 E K.

If K C L is a differential extension, the set of solutions of L(Y) = 0 in L is
a CL-vector space, where CL denotes the constant field of L. We want to
see that its dimension is at most equal to the order n of L.

Definition 5.5.1. Let yi, y2, , yn be elements in a differential field K.
The determinant

w = W(yi,y2,...,y7)

yi y2 yn

Yi y2 yn

y(n-i) y(n-i) y(n-i)
1 2

is the wronskian (determinant) of yi, Y2, , yn

Proposition 5.5.2. Let K be a differential field with field of constants C,
and let yi, ... , yn E K. Then yi,... , yn are linearly independent over C if
and only if W (yi, ... ,y) 0.

Proof. Let us assume that yi, ... , yn are linearly dependent over C and
let CZy2 = 0, c2 E C not all zero. By differentiating n - 1 times this
equality, we obtain >n cjy= 0,k = 0, ... , n - 1. So the columns of the2-i 2

wronskian are linearly dependent; hence W (yi , ... , yn) = 0.

Reciprocally, let us assume W (yi , ... , yn) = 0. We then have n equalities

> i C2 y) = 0, k = 0, ... , n - 1, with Cj E K not all zero. We can assume
2
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Cl = 1 and W (y2, ... , yn) 0. By differentiating equality k, we obtain
i1 Ciy( c'y(k) = 0 and subtracting equality (k + 1), we get2- 2 2- 2 2

>1i=2 cy= 0,k = 0, ... , n - 2. We then obtain a system of homogeneous
2 2

linear equations in c2, ... , c'n with determinant W (y2, ... , yn) 0, so C2 =
= c'n = 0, that is, the Ci are constants. LI

Taking this proposition into account, we can say "linearly (in)dependent
over constants" without ambiguity, since the condition of (non)cancellation
of the wronskian is independent of the field.

Proposition 5.5.3. Let G(Y) = 0 be a homogeneous linear differential
equation of order n over a differential field K. If yl,... , y+l are solutions
of G(Y) = 0 in a differential extension L of K, then W(yl, > y+1) = 0

Proof. The last row in the wroriskian is (fl'.. . which is a linear
combination of the preceding ones. O

Corollary 5.5.4. G(Y) = 0 has at most n solutions in L linearly indepen-
dent over the field of constants.

If G(Y) = 0 is a homogeneous linear differential equation of order n over
a differential field K, yl,... , yare n solutions of G(Y) = 0 in a differential
extension L of K, linearly independent over the field of constants, we say
that {Yi, ... , y} is a fundamental set of solutions of G(Y) = 0 in L. Any
other solution of G(Y) = 0 in L is a linear combination of yl,... , yn with
constant coefficients. The next proposition can be proved straightforwardly.

Proposition 5.5.5. Let G(Y) = 0 be a homogeneous linear differential
equation of order n over a differential field K and let {Yi,. . . , y} be a basis
of the solution space of G(Y) = 0 in a differential extension L of K. Let
z3 _ cZjyz, j = 1, ... , n, with cZi constants. Then

W (zl, ... , zn) = det(c23) W (y1, .. , yn).

5.6. The Picard-Vessiot extension

We now define the Picard-Vessiot extension of a homogeneous linear differ-
ential equation which is the analogue of the splitting field of a polynomial.

Definition 5.6.1. Given a homogeneous linear differential equation ,C(Y) = 0
of order n over a differential field K, a differential extension K C L is a
Picard- Vessiot extension for £ if

1. L = K(yl, ... , yn), where yl,... , yn is a fundamental set of solutions of
,C(Y)=OinL.
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2. Every constant of L lies in K, i. e. CL = CK.

Remark 5.6.2. Let k be a differential field, K = k (z) , with z' = z, and
consider the differential equation Y' - Y = 0. As z is a solution to this
equation, if we are looking for an analogue of the splitting field, it would
be natural to expect that the Picard-Vessiot extension for this equation
would be the trivial extension of K. Now, if we adjoin a second differential
indeterminate and consider L = K (y) , with y' = y, the extension K C L
satisfies condition 1 in Definition 5.6.1. But we have (y/z)' = 0, so the
extension K C L adds the new constant y/z. Hence condition 2 in the
definition of the Picard-Vessiot extension guarantees its minimality.

In the case when K is a differential field with algebraically closed field
of constants C, we shall prove that there exists a Picard-Vessiot extension
L of K for a given homogeneous linear differential equation £ defined over
K and that it is unique up to differential K-isomorphism.

The idea for the existence proof is to construct a differential K-algebra
containing a full set of solutions of the differential equation

£(Y) = Y(n) + an_1Y(n-1 > + ... + a1Y' + aoY = 0

and then to make the quotient by a maximal differential ideal to obtain an
extension not adding constants.

We consider the polynomial ring in n2 indeterminates

<i <n-1,1 < j <n]
and extend the derivation of K to K[Y3] by defining

Y =+1,j, 0 < i < n - 2,
yn_1 = -an_1 Yn_1, -... - a1 y1j - aoyo .

Note that this definition is correct, as we can obtain the preceding ring
by defining the ring K{X 1i ... , X} in n differential indeterminates and
making the quotient by the differential ideal generated by the elements

an_1X(n-1 > + ... + a1X! + aoX . 1 c n,

that is, the ideal generated by these elements and their derivatives. Let
R := [W-1 ] be the localization of in the multiplicative system
of the powers of W = det (Yj) . The derivation of K[} ] extends to R in a
unique way. The algebra R is called the full universal solution algebra for £.

From the next two propositions we shall obtain that a maximal differ-
ential ideal P of the full universal solution algebra R is a prime ideal, hence
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R/P is an integral domain, and that the fraction field of R/P has the same
field of constants as K.

Proposition 5.6.3. Let K be a differential field and K C R be an exten-
sion of differential rings. Let I be a maximal element in the set of proper
differential ideals of R. Then I is a prime ideal.

Proof. By passing to the quotient R/I, we can assume that R has no proper
differential ideals. Then we have to prove that R is an integral domain. Let
us assume that a, b are nonzero elements in R with ab = 0. We claim that
dk(a)bk+l = 0,`dk E N. Indeed ab = 0 = 0 =d(ab) = ad(b) + d(a)b and,
multiplying this equality by b, we obtain d(a)b2 = 0. Now, if it is true for k,
0 = d(dk(a)bk+l) = (k + 1)dk(a)bkd(b) and, multiplying by b,
we obtain dl(a)b2 = 0.

Let J now be the differential ideal generated by a, that is, the ideal
generated by a and its derivatives. Let us assume that no power of b is zero.
By the claim, all elements in J are then zero divisors. In particular J R
and, as J contains the nonzero element a, J is a proper differential ideal of
R, which contradicts the hypothesis. Therefore, some power of b must be
zero.

As b was an arbitrary zero divisor, we have that every zero divisor in R
is nilpotent, in particular an = 0, for some n. We choose n to be minimal.
Then 0 = d (an) = nan-1 d (a) . As K C R, we have nan-1 0 and so d (a)
is a zero divisor. We have then proved that the derivative of a zero divisor
is also a zero divisor and so a and all its derivatives are zero divisors and
hence nilpotent. In particular, J R, so J would be proper and we obtain
a contradiction, proving that R is an integral domain. 0

Proposition 5.6.4. Let K be a differential field, with field of constants
C, and let K C R be an extension of differential rings, such that R is an
integral domain, finitely generated as a K-algebra. Let L be the fraction field
of R. We assume that C is algebraically closed and that R has no proper
differential ideals. Then, L does not contain new constants, i. e. CL = C.

Proof. 1. First we prove that the elements in CL \ C cannot be algebraic
over K. If a E CL is algebraic over K, by Exercise 5, it is algebraic over C,
so belongs to C.

2. Next we have CL C R. Indeed for any b E CL, we have b = f/g, with
f, g E R. We consider the ideal of denominators of b, J = {h E R : hb E R}.
We have h E J = hb E R = (hb)' = h'b E R = h' E J. Then J is
a differential ideal. By hypothesis, R does not contain proper differential
ideals, so J = R; hence b = 1.b E R.
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3. Here we show that for any b e CL, there exists an element c E C such
that b - c is not invertible in R. Then the ideal (b - c)R is a differential
ideal different from R, and is therefore zero. Thus b = c E C.

We now use some results from algebraic geometry. Let K be the alge-
braic closure of K, R = R ®K K. If the element b ® 1 - c ® 1 = (b - c) ® 1
is not a unit in R, then the element b - c will be a nonunit in R. So we can
assume that K is algebraically closed. Let V be the affine algebraic variety
with coordinate ring R. Then bdefines a K-valued function f over V. By
Chevalley's theorem (Theorem 2.2.21), its image 1(V) is a constructible set
in the affine line Al and hence either a finite set of points or the comple-
ment of a finite set of points. In the second case, as C is infinite, there exists
c e C such that f(v) = c, for some v e V so that f - c vanishes at v and so
b - c belongs to the maximal ideal of v. Hence b - c is a nonunit. If f(V)
is finite, it consists of a single point, since R is a domain and therefore V is
irreducible. So f is constant and b lies in K, hence in C. O

Theorem 5.6.5. Let K be a differential field with algebraically closed con-
stant field C. Let G(Y) = 0 be a homogeneous linear differential equation
defined over K. Let R be the full universal solution algebra for G and let
P be a maximal differential ideal of R. Then P is a grime ideal and the
fraction field L of the integral domain R/P is a Picard- [jessiot extension of
K for G.

Proof. R is differentially generated over K by the solutions of £(Y) = 0
and by the inverse of the wronskian, so R/P as well. By Proposition 5.6.3,
P is prime. As P is a maximal differential ideal, R/P does not have proper
differential ideals, so by Proposition 5.6.4, CL = C. Moreover, the wronskian
is invertible in R/P and so in particular is nonzero in L. We then have that
L contains a fundamental set of solutions of £ and is differentially generated
by it over K. Hence L is a Picard-Vessiot extension of K for £.

In order to obtain uniqueness of the Picard-Vessiot extension, we first
prove a normality property.

Proposition 5.6.6. Let L1i LZ be Picard- [jessiot extensions of K for a ho-
mogeneous linear differential equation G(Y) = 0 of order n and let K C L
be a differential field extension with CL = CK. We assume that 02 : LZ -+ L
are differential K-morphisms, i = 1, 2. Then vl(Ll) = v2(L2).

Proof. LetV :={yeL2:£(y)=0},i=1,2,V:={yeL:£(y)=
0}. Then V is a CK-vector space of dimension n and V is a CK-vector
space of dimension at most n. Since 0Z is a differential morphism, we have
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QZ([ Z) C V, i = 1, 2 and so, Ui(Vi) = Q2(V2) = V. From Li = K([/Z), i = 1, 2,
we get Ql(Ll) = v2(L2).

Corollary 5.6.7. Let K C L C M be differential fields. Assume that L
is a Picard-Vessiot extension of K and that M has the same constant field
as K. Then any differential K-automorphism of M sends L onto itself.

Corollary 5.6.8. Let K be a differential field, C its field of constants. As-
sume C is algebraically closed. If L is an algebraic Picard-Vessiot extension
of K, then L is a normal algebraic extension of K.

Proof. Let M be an algebraic extension of K. Then, by Proposition 5.3.1,
M is a differential extension of K and every K-automorphism of M is dif-
ferential. By Exercise 5, the extension C C CM is algebraic as well and so,
CM = C. We can now apply Corollary 5.6.7.

In the next theorem we establish uniqueness up to K-isomorphism of
the Picard-Vessiot extension.

Theorem 5.6.9. Let K be a differential field with algebraically closed field
of constants C. Let ,C(Y) = 0 be a homogeneous linear differential equa-
tion defined over K. Let Ll, L2 be two Picard- vessiot extensions of K for
,C(Y) = 0. Then there exists a differential K-isomorphism from Ll to L2.

Proof. We can assume that Ll is the Picard-Vessiot extension constructed
in Theorem 5.6.5. The idea of the proof is to construct a differential exten-
sion K C Ewith CE = C and differential K-morphisms Ll - E, L2 - E
and apply Proposition 5.6.6. We consider the ring A :_ (R/P) OK L2i which
is a differential ring finitely generated as an L2-algebra, with the derivation
defined by d (x ®y) = dx ®y -I- x ®dy. Let Q be a maximal proper differential
ideal of A. Its preimage in R/P by the map R/P - A defined by a H a 01
is zero, as R/P does not contain proper differential ideals, and it cannot
be equal to R/P, as, in this case, Q would be equal to A. So R/P injects
in A/Q by a H a 0 1, and the map L2 - A/Q given by b H 1 0 b is also
injective. Now by Proposition 5.6.3, Q is prime and so A/Q is an integral
domain. Let E be its fraction field. Now we can apply Proposition 5.6.4 to
the L2-algebra A/Q and obtain CE = CLZ = CK. By applying Proposition
5.6.6 to the maps Ll y E, extension of R/P -+ A/Q, and L2 y A/Q y E
we obtain that there exists a differential K-isomorphism Ll - L2.

We now state together the results obtained in Theorems 5.6.5 and 5.6.9.

Theorem 5.6.10. Let K be a differential field with algebraically closed field
of constants C and let ,C(Y) = y(n) + an_1Y(n-1) -{- + alY' -{- aoY = 0 be
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defined over K. Then there exists a Picard-Vessiot extension L of K for G
and it is unique up to differential K-isomorphism.

Remark 5.6.11. We have obtained the existence and uniqueness of the
Picard-Vessiot extension for a homogeneous linear differential equation de-
fined over a differential field with an algebraically closed field of constants.
Seidenberg [Se] gives an example of a differential field F and a homogeneous
linear differential equation defined over it such that any extension of F con-
taining anontrivial solution of the equation adds constants. (See Exercise
25.) For an example in which uniqueness fails, see Exercise 26 or see [Dy]
for a more detailed account of the situation.
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Exercises

(1) Prove Leibniz's rule from the definition of a derivation d.

(2) Provide an example of a ring with derivation containing an element a
such that (a2)' 2 a a'.

(3) Provide an example of a differential field K and an inseparable field
extension K C L such that the derivation of K cannot be extended to
Land an example in which the extension of the derivation of K to L is
not unique.

(4) Given a differential field K and a separably generated field extension
K C L, prove that the derivation of K can be extended to L, giving L a
differential field structure, and that for any algebraic field extension F
of K contained in L the differential field structure induced by the one
in L is unique.

(5) Let K be a differential field with field of constants C, L a differential
ring extension of K. Prove that if a constant a E L is algebraic and
separable over K, then it is algebraic over C.

(6) Provide a proof of Lemma 5.4.1.

(7) Find out what is obtained by applying the Maple instructions
rightdivision, leftdivision, GCRD, LCLM, DFactor to differential op-
erators. Work out some examples. Check that the left and right factors
of a differential operator are generally different.

(8) Let A be a differential ring, I a radical differential ideal in A.
a) For a, b elements in A, prove ab E I = ab' E I and a'b E I.
b) Let S be any subset of A. Let T :_ {x E A : xS C I}. Prove that T

is a radical differential ideal in A.

(9) Let A be a differential ring.
For a subset S of A, we denote by {S} the smallest radical differential

ideal containing S. (Note that the intersection of radical differential
ideals is a radical differential ideal.)
a) Let a E A, S C A. Prove a{S} C {aS}.
b) Let S,T be subsets of A. Prove {S} {T} C {ST}.

(10) A Ritt algebra is a differential ring which is also an algebra over the field
Q of rational numbers.
a) Let I be a differential ideal in a Ritt algebra A and let a be an element

in A. Prove an E I = (a')2' E I.
Hint: Prove an-'(a')2'-1 E I by induction on k.
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b) Prove that in a Ritt algebra the radical of a differential ideal is a
differential ideal.

(11) Let A be a differential ring.
a) Let T be a multiplicatively closed subset of A. Prove that a maximal

element in the set of radical differential ideals I of Awith I fl T = 0
is a prime ideal.

b) Prove that a radical differential ideal I of A is an intersection of prime
differential ideals.
Hint: Given x I, consider a maximal radical differential ideal con-
taining I and not containing x.

(12) Let K be a differential field, A a differential K-algebra, al,... , an arbi-
trary elements of A. Prove that there is a unique morphism of differen-
tial K- algebras e : K{Yl,... , A such that e(Yi) = ai, l < i < n,
where K{Yl,... , denotes the ring of differential polynomials in n
differential indeterminates.

(13) Let K C L be a differential field extension. The differential degree of
transcendence of K C L, is either defined as 0 or the
supremum of all integer numbers n > 1 such that there exists a differen-
tial subextension K C F with F differentially K-isomorphic to the field
K(Xl,... Xn) of differential rational functions in n indeterminates. If

0, we say that L is differentially algebraic over K.
Prove that K C L is differentially algebraic if and only if for each a E L,
there exists a differential polynomial f E K{X } such that 1(a) = 0.

(14) Let A be a differential ring, I an arbitrary ideal of A. Prove that

Ia:={aEl:aEI, foralln>1}
is the greatest differential ideal contained in I.

(15) Let B a ring, B[[T]] the ring of power series over B. We consider in
B[[T]] the derivation given by

>nbnT'.
n>1

If A is a differential ring, B a Ritt algebra, v : A -+ B a ring morphism,
we define the Taylor morphism TQ : A -+ B[[T]] associated to v by

I
a(TQ(a) _

n>o ni

Prove the following properties of the Taylor morphism.
a) TQ is a morphism of differential rings. Its kernel is (Ker v)a.
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b) TQ is a morphism of CA-algebras.
c) If B is a reduced ring, then (Ker v)a is a radical ideal.
d) If B is a domain, then (Ker v)a is a prime ideal.

(16) Let A be a Ritt algebra. Prove that
a) If I is a proper radical ideal of A, then Ia is a radical ideal.
b) If I is a prime ideal of A, then Ib is a prime ideal.
c) Minimal prime ideals over differential ideals are differential.
d) For all S C A, we have {S} _ [S], where [S] denotes the differential

ideal generated by S, i.e. the intersection of all differential ideals of
A containing S, and {S} was defined in Exercise 9.

(17) Provide a proof of Proposition 5.5.5.

(18) We consider the field of rational functions C(z) with the usual derivation
d/dz and the differential operator D := z(d/dz).
a) Prove the equality of differential operators

dr dr-1 dr
dzr z - r

dzr-1 +
z

zr
, r> 1.

d
Deduce by using induction

T

(5.2) z"'dzr =D(D-1)...(D-r+1), r> 1.

b) We consider a differential equation

(5.3) Y(n) + al(z)Y1) + ... + a_1(z)Y' + an(z)Y = 0

with a2(z) E C(z) and where the derivation is d/dz. Multiplying (5.3)
by z" and using (5.2), we obtain a differential equation in the form

D"`Y + bl(z)Dn-lY -I- ... -I- bn-1(z)DY + bn(z)Y = 0.

Give the expression of the rational functions b2 (Z) in terms of the
ai(z). Prove that the two following conditions are equivalent
1. zZa2(z) exists and is finite for all i = 1, ... n.
2. b2(Z) is holomorphic in a neighborhood of 0 for all i = 1, ... n.

(19) Gauss hypergeometric function is defined by

_ °° (a)n(b)n nF(a,b,c,z)- Z

n=0 (C)n!7L.

for a, b, c e III, c ¢ Lzo, Z E C, where the Pochhammer symbol (X)n is
defined by
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(x) = 1
(x)=x(x+i)...(x+m-i).

a) Prove that the radius of convergence of the series is 1, except when a
or b are nonpositive integers in which case the series is a polynomial.

b) Prove that Gauss hypergeometric function satisfies the differential
equation

z(z - 1) z(z - 1)

where the derivation is d/dz.

(20) Reduction of order. If G is a linear differential operator of degree n with
coefficients in a differential field K and y E K satisfies G(y) = 0, prove
that there exists a linear differential operator Gl of degree n - 1 with
coefficients in K such that

L=L1(D--).

Prove that we can obtain a fundamental set of solutions of L (Y) = 0
containing y from a fundamental set of solutions of L1 (Y) = 0.

(21) Let S be a ring, K a subfield of S. Let L1 and L2 be K-vector subspaces
of S. Prove that the following conditions are equivalent.
1. Whenever x1, X2,. . . , xn are elements of L1 which are linearly inde-

pendent over K and y1, Y2, . , yn are elements of L2 which are lin-
early independent over K, then the mm products x2 yj are also linearly
independent over K.

2. Whenever x1, X2,. . . , xn are elements of L1 which are linearly inde-
pendent over K, then these elements are also linearly independent
over L2.

3. Whenever y1, y2, ... , Ym are elements of L2 which are linearly inde-
pendent over K, then these elements are also linearly independent
over L1.

If these equivalent conditions are satisfied, we say that L1 and L2 are
linearly disjoint over K.

(22) Let S be a differential ring, K a differential subfield of S. Prove that
the field K and the subring of constants Cs of S are linearly disjoint
over the field of constants CK of K.

(23) Let K be a differential field with field of constants the field Q of ra-
tional numbers (e.g. K = Q(t), with derivation given by t' = 1).
We consider the field K(Y) of rational functions in the variable Y and
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extend derivation by Y' = Y. Prove that the extension K(Y) IK(Y3) is a
finite differential field extension which is Picaxd-Vessiot but not normal.

(24) Consider the differential field K :_ fi(t), with derivation given by t' = 1.
Prove that the extension K('y)IK, n > 2, is a finite differential field
extension which is Picard-Vessiot but not normal.

(25) We consider the field Il8 of real numbers with the trivial derivation and
the ring ]E8{X} of differential polynomials in one indeterminate over ][8.
Let A be the differential ring obtained as the quotient of ][8{X} by the
differential ideal generated by X" + 4X. Put a the class of X in A.
a) Prove that the ideal I of A generated by ai2 -F 4a2 +1 is a prime dif-

ferential ideal. Let F be the fraction field of A/I with the derivation
extended from the one in A/I. Prove that the field of constants of F
is ][8.

b) Let ri be a nonzero solution of the differential equation Y" + Y = 0
in a field containing F and let L := F(ry). Prove that the field of
constants of L is not R.
Hint: Show that the elements ryl :_ ii2 + /2 and rye := ar/2 -F a'rir/ -
ar/2 are constants and that ryl is not zero. If ryl, rye E ][8, set c =
72/ryl and observe that := //i is a root of the quadratic polynomial
(c+a)Z2 - a'Z+c- a whose discriminant is a negative real number.

(26) We consider the field II8 of real numbers with the trivial derivation and
the ring ]E8{X} of differential polynomials in one indeterminate over R.
Let A be the differential ring obtained as the quotient of ][8{X} by the
differential ideal generated by X" + X. Put a the class of X in A.

Prove that the ideal Il (resp. I2) of A generated by ai2 + a2 - 1
(resp. a'2 +a2 +1) is a prime differential ideal. Let Fl (resp. F2) be the
fraction field of A/Il (resp. A/I2) with the derivation extended from
the one in A/Il (resp. A/I2). Prove that Fl and F2 are nonisomorphic
Picard-Vessiot extensions for the equation Y" -F Y = 0 over ][8.

(27) A linear differential equation in matrix form over a differential field K
is an equation of the form

(5.4) Y'=AY,

where A is an n x n matrix with entries in K and Y is a vector of length
n. A solution to this equation is an element y e Ln, for L a differential
field extension of K, satisfying y' = Ay, where y' is the vector obtained
from y by derivation of each component.
a) Let y', ... , yr e Ln be solutions to (5.4). Prove that yl, ... , yr de-

pendent over L = yl , ... , yr dependent over CL.
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b) Prove that the set of solutions to (5.4) in Ln is a CL-vector space of
dimension <n.

c) A fundamental matrix for (5.4) is a matrix B E GL(n, L) satisfying
B' = AB, where B' is the matrix obtained from B by derivation of
each entry. Prove that two fundamental matrices for (5.4) differ by
a factor in GL(n, CL).

d) To a differential operator G = E K[D],
we associate the matrix

0 1 0 0 0

0 0 1 0 0

A =

1

0 0 0... 0 1

-ap -al -a2 ... -an-2 -an-1

Write down a fundamental matrix for Y' = AY in terms of a fun-
damental set of solutions for G(Y) = 0.

(28) Let K be a differential field, D := K[D] the ring of differential oper-
ators over K. A differential module over K (or D-module) is a finite
dimensional K-vector space which, moreover, is a left D-module. For a
differential module ,M, el,... , en a K-basis of ,M, we write

De2 = - where A = (a) E MatnX n (K) .

a) For u e M, prove Du = 0 u' = Au (where we identify M with
Kn by means of the chosen basis).

b) A morphism of differential modules is a K-linear map commuting
with D. Let M1, M2 be differential modules with bases (ei,.. . , en),
(v1, ... , vm), respectively. Let Al E M(n, K), A2 E M(m, K) be the
matrices defining the D-module structures in the chosen bases. Prove
that the K-linear map from M1 to M2 with matrix U E Mmx n (K)
in the chosen bases is a morphism of differential modules if and only
if

U' =A2U - UA1.

c) Prove that if m = n and U defines an isomorphism from M1 to M2,
then

Al = U-1 A2U - U-1 U'.
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We say that the differential equations Y' = A1Y, Y' = A2Y are
equivalent if Al = U-1 A2 U - U-1 U', for some invertible matrix U
with entries in K, i.e. if the associated D-modules are isomorphic.

d) If M1, .M2 are differential modules, we can define a differential mod-
ule structure on HomK (.M 1, M2) by

for cp E HomK(,M1i,M2), u e .M1. Prove that cp e Homx(Mi, M2)
is a morphism of differential modules if and only if Dcp = 0.

e) Giving to K a differential module structure by D1 = 0, we de-
fine the dual differential module ,M* of a differential module ,/Vl as
HomK(,/Vl, K) with the differential structure as in d). If A is the
matrix giving the differential module structure to ,M in a given ba-
sis, find the matrix giving the differential module structure to .M* in
the dual basis.

(29) Let JVl be a differential module over a differential field K. Let n =
dimK M. A cyclic vector is an element v e ,/Vl such that (v, Dv,... ,

Dn-lv) is a K-basis of M.
Assume that the differential field K contains an element x such that

x' = 1. Let (eo,. . . , en_1) be a K-basis of M. For a E CK, we consider
the element vd in ,M given by

n-i 7

va :=
(x -a)

j=0 p=0

Let us define inductively c(i, j) E ,/Vl by

{
and

a) Prove

and

for j < n - 1
0 for j> n

c(i + 1,j) := D(c(i, j)) -I- c(i, j -I- 1).

D(va)
=

(x

j=0

7

C(2,j) -
0p=

for i+j <n-1.
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b) Let T be an indeterminate and let

e(T) :=>c(i,j)
j=0

so that ei(x - a) = Dz(va) and ei(0) = ei for all i. We can write the
preceding equalities in matrix form

eo (T) eo

\ e9_i(T) J e_
for a matrix C(T) whose entries are polynomials in T. Prove that
there is at most n(n-1) elements of the form x-a such that C(x-a)
is not invertible. Conclude that there exists a set S C CK with at
most n(n -1) elements such that, for a e CK \ S, va is a cyclic vector.

(30) Let K be a differential field containing at least one nonconstant element.
a) Prove that any differential module over K contains a cyclic vector.
b) Prove that every linear differential equation in matrix form Y' = AY

is equivalent to a differential equation Y' =AMY associated to some
differential operator G.
Hint: For ,M the differential module associated to the system Y' _
AY, use that the dial module ,M* has a cyclic vector.



Chapter 6

The Galois Correspondence

In this chapter we define the differential Galois group of a homogeneous
linear differential equation and prove that it has a structure of linear alge-
braic group over the field of constants of the differential field over which the
equation is defined. We establish the fundamental theorem of differential
Galois theory, which gives a bijective correspondence between intermediate
differential fields of a Picard-Vessiot extension and closed subgroups of its
differential Galois group. We characterize differential equations which are
solvable by quadratures as those having a differential Galois group with a
solvable identity component.

6.1. Differential Galois group

Definition 6.1.1. If K C L is a differential field extension, the group
of differential K-automorphisms of L is called differential Galois

group of the extension K C L. In the case when K C L is a Picard-
Vessiot extension for the differential equation G(Y) = 0, the group G(LIK)
of differential K- automorphisms of L is also referred to as the Galois group
of G(Y) = 0 over K. We shall use the notation GaIK(G) or Gal(G) if the
base field is clear from the context.

We want to see now that if K C L is a Picard-Vessiot extension, then
the subfield of L fixed by the action of is equal to K. This fact will
be obtained as a corollary of the next proposition. The reader can compare
these results with the analogous property of Galois extensions in classical
Galois theory.

Proposition 6.1.2. Let K be a differential field with an algebraically closed
field of constants.

141
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a) If K C L is a Picard-Vessiot extension for G(Y) = 0 and x E L \ K, then
there exists a differential K-automorphism a of L such that v(x) x.

b) Let K C L C M be extensions of differential fields, where K C L and
K C M are Picard-Vessiot. Then any o E G(LIK) can be extended to a
differential K-automorphism of M.

Proof. a) We can assume that L is the fraction field of R/P with R the full
universal solution algebra for G and P a maximal differential ideal of R. Let
x= a/b, with a, b E R/P. Then x E A :_ (R/P)[b'J C K. We consider
the differential K-algebra T := A ®K A C L ®K L. Let z= x® 1- 1® x E
T. Since x K, we have z L 0, z' L 0 (if z was a constant, it would
be in K) and z is not nilpotent. (zTh = 0, for a minimal n would imply
nzn-lz' = 0; hence z' = 0.) We localize T at z and pass to the quotient
T[1/z]/Q by a maximal differential ideal Q of T[1/z]. Since z is a unit, its
image z in T[1/z]/Q is nonzero. We have maps T2 : A - T[1/z]/Q, i = 1, 2,
induced by w H w ® 1, w H 1 ® w. The maximality of P implies that
R/P has no nontrivial differential ideals, so neither has A; hence the Tz are
injective. Therefore they both extend to differential K-embeddings of L
into the fraction field E of T[1/z]/Q. By Proposition 5.6.4, E is a no new
constants extension of K, so by Proposition 5.6.6, Ti(L) = T2(L). On the
other hand, Ti(x) - T2(x) = z L 0, so Ti(x) ,-L T2(x). TIlUS T = Tl 1T2 1S a,
K-differential automorphism of L with r(x) L x.
b) As L C M is Picard-Vessiot (for the same differential equation ,C as
K C M, seen as defined over L), we can assume that M is the fraction field
of Rl /P, where Rl = L ®K R with R the full universal solution algebra for G
and P a maximal differential ideal of Rl. Then the extension of a E G(LIK)
to M is induced by o ® IdR.

Corollary 6.1.3. Let K be a differential field with algebraically closed field
of constants. If K C L is a Picard- i/essiot extension with differential Galois
group G(LIK), we have Lc(1) = K, i. e. the subfield of L which is fixed
by the action of G(LIK) is equal to K.

Proof. The inclusion K C Lc(1) is clear from the definition of G(LIK);
the inclusion LG(LIK) C K is given by Proposition 6.1.2 a). O

Now we see that the differential Galois group of a Picard-Vessiot exten-
sion is a linear algebraic group. We first see that the Galois group of a ho-
mogeneous linear differential equation of order n defined over the differential
field K is isomorphic to a subgroup of the general linear group GL(n, C) over
the constant field C of K. Indeed, if yl, y2i ... , yn is a fundamental set of so-
lutions of ,C(Y) = 0, for each a E Gal(G) and for each j E {1,. . . , n}, o(yj) is
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again a solution of G(Y) = 0, and so v(y3) _ cyz, for some cZ E CK.
Thus we can associate to each v E Gal(G) the matrix (c) E GL(n, C).
Moreover, as L = K(yl,... , yn), a differential K-automorphism of L is de-
termined by the images of the yj. Hence, we obtain an injective morphism
Gal(G) - GL(n, C) given by a H (c3). We can then identify Gal(G) with a
subgroup of GL(n, C), which is determined up to conjugation. Indeed, if we
choose a different fundamental set of solutions of G(Y) = 0, the matrix as-
sociated to v E Gal(G) differs from (c3) by conjugation by the basis change
matrix. We shall see in Proposition 6.2.1 below that Gal(G) is closed in
GL(n, C) with respect to the Zariski topology (which is defined in Section
1.1). First, we look at some examples.

Example 6.1.4. We consider the differential extension L = K(a), with
a' = a E K such that a is not a derivative in K. We say that L is obtained
from K by adjunction of an integral. We shall prove that a is transcen-
dental over K, K C K(a) is a Picard-Vessiot extension, and is
isomorphic to the additive group of C = CK.

Let us assume that a is algebraic over K and write P(X) = Xn +
bZXits irreducible polynomial over K. Then 0 = P(a) = an +Z 1 bzcen-2 = 0 = nan-la + bia"-1 + terms of degree < n - 1 = na +

bi = 0 = a = (-bi/n)' which gives a contradiction.
We now prove that K(a) does not contain new constants. Let us assume

that the polynomial with bi E K, is constant. Differentiating,
we obtain 0 =boa" -}- (nboa + bi)an-1 + terms of degree < n - 1 = bo =
nboa + bi = 0 = a = -bi/nbo = (-bi/nbo)', contradicting the hypothesis.
Let us assume that the rational function f(c)/g(c) is constant, with g monic,
of degree > 1, minimal. Differentiating, we obtain

f(cvf(c)'g(c)a - f(c)g(c)'a f(c) _
9(a)2 9(a) 9(a)

with g(a)y a nonzero polynomial of lower degree than g, since g(a) is not a
constant and g is monic. This is a contradiction.

We observe that 1 and c are solutions of Y" -
a

Y' = 0, linearly inde-
pendent over the constants, so K C K (o) is a Picard-Vessiot extension.

A differential K-automorphism of K (o) maps a to a+ c, with c E C
and a mapping c H a+ c induces a differential K-automorphism of K (a) ,
for each c E C. So

C { ( i ) } C GL(2, C).lJ
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Example 6.1.5. We consider the differential extension L = K(a), with
ci/a = a E K \ {0}. We say that L is obtained from K by adjunction of
the exponential of an integral. It is clear that K(a) = K(a) and a is a
fundamental set of solutions of the differential equation Y' - aY = 0. We
assume that CL = CK. We shall prove that if a is algebraic over K, then
an E K for some n E N. The Galois group G(LIK) is isomorphic to the
multiplicative group of C = CK if a is transcendental over K and to a finite
cyclic group if a is algebraic over K.

Let us assume that a is algebraic over K and let P(X) = Xn+an-1Xn-1+
+ ap be its irreducible polynomial. Differentiating, we get 0 =P(a)y _

Pfd>(a) + P'(a)a' = P(d)(a) + P'(a)aa = anan + +
Then P divides this last polynomial and so a' + akak = anak = ak =
a(n - k)ak, 0 < k < n - 1. Hence (an-'/ak)' = 0. In particular, a"` = cao
for some c E CL = CK. Then P(X) divides Xn - cao E K[X] and so
P(X)=X-cao.

For o- E G(LIK), we have o(a)' = v(aa) = av(a) = (Q(a)/a)' _
0 = o-(a) = ca for some c E CL = CK. If a is transcendental over K, for
each c E CK, we can define a differential K-automorphism of L by a H ca.
If an=bEK,then v(a)n=o(an)=v(b)=b=cn=l=cmustbean
nth root of unity and Gal(LIK) is a finite cyclic group.

Example 6.1.6. We consider a differential field K with algebraically closed
field of constants C, an irreducible polynomial P(X) E K[X] of degree n
and a splitting field L of P(X) over K. We shall see that K C L is a Picard-
Vessiot extension. We know by Proposition 5.3.1 that we can extend the
derivation in K to L in a unique way by defining for each root x of P(X) in L,
x _ -P(d)(x)h(x) for h(X) E K[X] such that h(X)P'(X) - 1(modP).
Moreover by reducing modulo P, we can obtain an expression of x' as a
polynomial in x of degree smaller than n. By deriving the expression ob-
tained for x', we obtain an expression for x" as a polynomial in x which
again by reducing modulo P will have degree smaller than n. Iterating the
process, we obtain expressions for the successive derivatives of x as poly-
nomials in x of degree smaller than n. Therefore x, x', ... , x(") are linearly
dependent over K. If we write down this dependence relation, we obtain a
homogeneous linear differential equation with coefficients in K satisfied by
all the roots of the polynomial P. Now, let us assume that, while comput-
ing the successive derivatives of a root x of P, the first dependence relation
found gives the differential equation
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(6.1) Y(k) + a _1Y -1 +... + a1Y' + aoY = 0, a2 E K, k < n.

Then, there exist k roots x 1, ... , x/ of P with W (x 1, ... , xj) 0 since we
would otherwise have found a differential equation of order smaller than k
satisfied by all the roots of P. Hence L is a Picard-Vessiot extension of K
for the equation (6.1) and by Proposition 5.3.1 the differential Galois group
of K C L coincides with its algebraic Galois group. Note that, as C is
algebraically closed, CL = C.

6.2. The differential Galois group as a linear algebraic group

From now on, we assume that the constant field C = CK of K is alge-
braically closed.

Proposition 6.2.1. Let K be a differential field with field of constants C,
L = K(yl,... , yn) a Picard-[jessiot extension of K. There exists a set S of
polynomials F(XZ3),1 < i, j < n, with coefficients in C such that

1) If v is a differential K-automorphism of L and v(y3) _ >?1 czjyZ, then
F(c3) = 0,VF E S.

2) Given a matrix (c) E GL(n,C) with F(c3) = 0, VF E S, there exists a
differential K-automorphism v of L such that v(y3) _ > 1 cz3yZ.

Proof. Let K{Z1,... , Z7 } be the ring of differential polynomials in n in-
determinates over K. We define a differential K-morphism cp from the ring
K{ Z1, ... , Zn } in L by Z3 H y3. Then I' Ker cp is a prime differential
ideal of K { Z1, ... , Z7}. Let L [X 3 ] ,1 < i, j < n be the ring of polynomials
in the indeterminates XZj with the derivation defined by X = 0. We de-
fine a differential K-morphism b from K { Z1, ... , Zn } to L [X3] such that
Z H > 1 X i3yi . Let 0 := b (I') . Let {wk} be a basis of the C-vector
space L. We write each polynomial in 0 as a linear combination of the wk
with coefficients polynomials in C [XZ3] . We take S to be the collection of
all these coefficients.

1. Let a be a differential K-automorphism of L and a(ye) = >It 1 c2jyi. We
consider the diagram



146 6. The Galois Correspondence

Zj

T K{Zl,... , Zn}

a

V

>X3yi L[X3] L

Xij cij

It is clearly commutative. The image of F by a o cp is 0. Its image by v o
is 0 evaluated in Xij = c. Therefore all polynomials of 0 vanish at c.
Writing this down in the basis {wk}, we see that all polynomials of S vanish
at c.
2. Let us now be given a matrix (c3) E GL(n, C) such that F(c3) = 0 for
every F in S. We consider the differential morphism

K{Z1 i ... , Zn} - K{y1,... , yn}
Zj H

It is b followed by v in the diagram above. By the hypothesis on (c), and
the definition of the set S, we see that the kernel of this morphism contains
F and so we have a differential K-morphism

a : K{y1,...,yn} -+ K{y1,...,yn}
yj H

It remains to prove that it is bijective. If u is a nonzero element in the
kernel I, then u cannot be algebraic over K, since in this case, the constant
term of the irreducible polynomial of u over K would be in I and then I
would be the whole ring. But if u is transcendental, we have

trdeg[K{yl, ... , yn} : K] > trdeg[K{vyli... , Qyn} : K].

On the other hand,

K] = K] = K]

and analogously we obtain trdeg[K{y3, vy3} K] = trdeg[K{Qy3} K],
which gives a contradiction. Since the matrix (c) is invertible, the image
contains yl,... , yn and so v is surjective.
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Therefore we have that a- is bijective and can be extended to an auto-
morphism

This proposition gives that G(LIK) is a closed (in the Zariski topology)
subgroup of GL(n, C) and then a linear algebraic group. (See Section 3.1.)

Remark 6.2.2. The proper closed subgroups of GL(1, C) C* are finite
and hence cyclic groups. So for a homogeneous linear differential equation
of order 1 the only possible differential Galois groups are C* or a finite cyclic
group, as we saw directly in Example 6.1.5 above.

Remark 6.2.3. In Example 6.1.4 above, the element a is a solution of the
nonhomogeneous linear equation Y' - a = 0 and we saw that K C K(a) is
a Picard-Vessiot extension for the equation

Y"-aY'=0.
a

More generally, we can associate to the equation

£(Y) = Y(n) -+ an_1Y(n-1) +" + a1Y' -+ aoY = b,

the homogeneous equation ,C(Y) = 0, where

i

It is easy to check that if y',... , yn is a fundamental set of solutions of
G(Y) = 0 and yo is a particular solution of G(Y) = b, then yo, yl, , yn is
a fundamental set of solutions of G(Y) = 0.

Remark 6.2.4. The full universal solution algebra R = K [Yz ] [W -1] con-
structed before Proposition 5.6.3 is clearly isomorphic, as a K-algebra, to
K ®c C[GL(n, C)], where C[GL(n, C)] = C[Xll,... , Xnn, l/ det] denotes
the coordinate ring of the algebraic group GL(n, C). (See Example 3.1.3.)
The isomorphism is given by

K ®c c[GL(n, c)]
YZi H Xi+l,j 0 < i < n - 1,1 < j < n.

If we let GL(n, C) act on itself by right translations, i.e.
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GL(n, C) x GL(n, C) -+ GL(n, C)
(g,h) F- hg'

the corresponding action of GL(n, C) on C[GL(n, C)] is

GL(n, C) x C[GL(n, C)] -+ C[GL(n, C)]
(9,f) F- Ps(f): h i-+f(h9)

(See (3.2).) If we take f to be the function Xz sending a matrix in GL(n, C)
to its entry ij, we have py(XZj)(h) = X(hg) _ (hg)Z _ =1

Now GL(n, C) acts on K ®c C[GL(n, C)] by acting on the second factor
and via the K-algebra isomorphism above we can make GL(n, C) act on
the full universal solution algebra R = If P is the maximal
differential ideal of R considered in Theorem 5.6.5 and yzj denote the images
of the elements Y in the quotient R/P, to an element v e G = G(LIK)
such that v(yZj) _ 9kiyZk, we associate the matrix (gjj) E GL(n,C).
Then both actions are compatible and the Galois group G(LIK) can be
defined as {cr e GL(n, C) v(P) = P}. So the Galois group G(LIK) is
the stabilizer of the C-vector subspace P of R. Using C-bases of P and of
Ann(P) :_ {w e Hom(R, C) : w(P) = 0}, we can write down equations
for G(LIK) in GL(n, C). This gives a second proof that G(LIK) is a closed
subgroup of the algebraic group GL(n, C).

Proposition 6.2.5. Let K be a differential field with field of constants C.
Let K C L be a Picard-Vessiot extension with differential Galois group G.
Let T be the K-algebra R/P considered in Theorem 5.6.5. We have an
isomorphism of K[G]-modules K ®K T K c C[G], where K denotes the
algebraic closure of the field K.

Proof. We shall use two lemmas. For any field F, we denote by det]
the polynomial ring in the indeterminates i, j < n localized with
respect to the determinant of the matrix

Lemma 6.2.6. Let L be a differential field with field of constants C. We
consider A := L to A by setting
Y = 0. We consider B C[YJ,1/ det] as a subring of A. The map
I H IA from the set of ideals of B to the set of differential ideals of A is a
bijection. The inverse map is given by J H J fl B.

Proof. Choose a basis {vs}SEsI of L over C, including 1. Then {vS}SEsI is
also a free basis of the B-module A. The differential ideal IA consists of the
finite sums S ) vs with all AS E I. Hence IA n B = I.

We now prove that any differential ideal J of A is generated by I = JnB.
Let {uS}SEs be a basis of B over C. Any element b E J can be written
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uniquely as a finite sum S µsus, with µs e L. By the length l(b) we will
mean the number of subindices s with µs 0. By induction on the length
of b, we shall show that b e IA. When l(b) = 0, 1, the result is clear. Assume
l(b) > 1. We may suppose that µS1 = 1 for some Si E S and µS2 E L \ C
for some s2 E S. Then b' _ s µ'Sus has a length smaller than 1(b) and so
b' E IA. Similarly (µ321b)' E IA. Therefore (µS21 b = (S2ib)1' -µ321b' E IA.
Since C is the field of constants of L, one has (µS21)' 0 and so b e IA.

Lemma 6.2.7. Let K be a differential field with field of constants C. Let
K C L be a Picard-Vessiot extension with differential Galois group G(LIK).
We consider A := L[Y3,1/ det], B := det]. The map I H IA from
the set of ideals of B to the set of G(LIK)-stable ideals of A is a bijection.
The inverse map is given by J H J fl B.

Proof. The proof is similar to that of Lemma 6.2.6. We have to verify that
any G(LIK)-stable ideal J of A is generated by I = J n B. Let {US}SES be
a basis of B over K. Any element b e J can be written uniquely as a finite
sum > c8u8, with S E L. By the length 1(b) we will mean the number of
subindices s with IBS 0. By induction on the length of b, we shall show
that b e IA. When 1(b) = 0, 1, the result is clear. Assume 1(b) > 1. We
may suppose that S1 = 1 for some s1 E S. If all S E K, then b E IA. If
not, there exists some 82 E S with S2 E L \ K. For any a E G, the length
of o-b - b is less that 1(b). Thus o-b - b e IA. By Proposition 6.1.2 a), there
exists a a with a i82 ,a82. As above, one finds a ( 521 b) - ;b e IA. Then
(a,r _, i) b = (521b) - X521 b - (,a; ) (ab - b) E IA. As s e L*
it follows that b e IA. LI

Proof of Proposition 6.2.5.
We consider the K-algebra R = det] with derivation defined

by

Y = Y+1, , 0 < i < n - 2,

= -an-1Yn-1, - ... - aiYi3 - a0Y03

as in (5.1). We consider as well the L-algebra det] with derivation
defined by the derivation in L and the preceding formulae. We now consider
the C-algebra C[X8t,1/ det] where X8t,1 < s, t < n are indeterminates, det
denotes the determinant of the matrix (Xst) and recall that C [XSt,1 / det]
is the coordinate algebra C[GL(n, C)] of the algebraic group GL(n, C). We
consider the action of the group G on GL (n, C) by translation on the left,



150 6. The Galois Correspondence

G x GL(n, C) --3 GL(n, C)
(g,h) H gh

which gives the following action of G on C[GL(n, C)]

G x C[GL(n, C)] -+ C[GL(n, C)]
(g,f) F4 Ag(f):h-f(g'h).

If we take f to be Xst, the action of an element a of G on Xst is multiplication
on the left by the inverse of the matrix of a as an element in GL(n, C). We
consider C[Xst, l/ det] with this G-action and the inclusion C[Xst, l/ det] C
L[Xst, l/ det]. Now we define the relation between the indeterminates YZ3
and Xst to be given by (Y) _ (7'ab)(Xst), where rab are the images of the
Yab in the quotient R/P of the ring R by the maximal differential ideal P.
We observe that the G-action we have defined on the Xst is compatible with
the G-action on L if we take the Y to be G-invariant. Now, the definition
of the derivation for the Yj and the rab gives Xst = 0. We then have the
following rings

KAY'" det C det] = L[Xst, det C[Xst,
det

each of them endowed with a derivation and a G-action which are com-
patible with each other. Combining Lemmas 6.2.6 and 6.2.7, we obtain a
bijection between the set of differential ideals of K[Y3,1 / det] and the set
of G(LIK)-stable ideals of C[Xst, l/ det]. A maximal differential ideal of
the first ring corresponds to a maximal G(LIK)-stable ideal of the second.
So, Q = PL[Y3,1/ det] fl C[Xst, l/ det] is a maximal G(LIK)-stable ideal of
the ring C[Xst, l/ det]. By its maximality, Q is a radical ideal and defines
a subvariety W of GL(n, C), which is minimal with respect to G(LIK)-
invariance. Thus W is a left coset in GL(n, C) for the group G(LIK) seen as
a subgroup of GL(n, C). Now, by going to the algebraic closure K of K, we
have an isomorphism from GK to WK and, correspondingly, an isomorphism
K ®c C[G] ^K ®C C[W] between the coordinate rings.

On the other hand, we have ring isomorphisms

L ®x T = L ®x (K[Yj,
1

L

L ®c C[W].
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We then have L ®K T ^L ®c C[W], for L the algebraic closure of L.
This corresponds to an isomorphism of affine varieties VL ^WL, where we
denote by V the affine subvariety of GL(n, K) corresponding to the ideal P of
K [Y 1/ det]. But both W and V are defined over K and so, by Proposition
1.1.29, we obtain VK W. Coming back to the corresponding coordinate
rings, we get K ®K T ^K ®c C[W]. Composing with the isomorphism
obtained above, we have K ®K T ^K ®c C[G], as desired.

Corollary 6.2.8. Let K C L be a Picard-Vessiot extension with differential
Galois group G(LIK). We have

dimG(LIK) = trdeg[L : K].

Proof. The dimension of the algebraic variety G is equal to the Krull di-
mension of its coordinate ring C[G]. (See Section 1.1.) It can be checked
that the Krull dimension of a C-algebra remains unchanged when tensoring
by a field extension of C. Then Proposition 6.2.5 gives that the Krull di-
mension of C[G] is equal to the Krull dimension of the algebra T (where T
denotes, as in Proposition 6.2.5, the K-algebra R/P considered in Theorem
5.6.5), which by Noether's normalization lemma (Proposition 1.1.8) is equal
to the transcendence degree of L over K. O

Remark 6.2.9. Proposition 6.2.5 can be deduced as a corollary from the
fact that the maximal spectrum V of the ring T is a G-torsor. (See [P-51],
Theorem 1.28.) In fact, the proposition states that VK is a trivial GK-torsor.

6.3. The fundamental theorem of differential Galois theory

The aim of this chapter is to establish the fundamental theorem of Picard-
Vessiot theory, which is analogous to the fundamental theorem in classical
Galois theory.

If K C L is a Picard-Vessiot extension and F an intermediate differential
field, i.e. K C F C L, it is clear that F C L is a Picard-Vessiot extension
(for the same differential equation as K C L, viewed as defined over F) with
differential Galois group G(LIF) _ {v e G(LIK) : IdF}. If H is a
subgroup of G(LIK), we denote by LH the subfield of L fixed by the action
of H, i.e. LH = {x e L : Q(x) = x, `dQ E H}. Note that LH is stable under
the derivation of L.

Proposition 6.3.1. Let K C L be a Picard-Vessiot extension, G(LIK) its
differential Galois group. The correspondences

H H LH F H G(LIF)
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define inclusion inverting mutually inverse bijective maps between the set of
Zariski closed subgroups H of G(LIK) and the set of differential fields F
withKCFCL.

Proof. It is clear that for Hl, HZ subgroups of we have Hl C
H2 LHl D LHZ and that for Fl, FZ intermediate differential fields, Fl C
F2 =

It is also straightforward to see that, for a subgroup H of G, we have
the equality LH, and, for an intermediate field F, we have
G(LILG(LIF)) = G(LIF).

We have to prove that LG(L1F) = F for each intermediate differential
field F of K C Land H = G(LILH) for each Zariski closed subgroup H of

The first equality follows from the fact observed above that F C L
is a Picard-Vessiot extension and from Corollary 6.1.3. For the second equal-
ity, it is clear that if H is a subgroup of the elements in H fix LH
elementwise. We shall now prove that if H is a subgroup (not necessar-
ily closed) of G = G(LIK), then H' := G(LILH) is the Zariski closure of H
in G. Assume the contrary, i.e. that there exists a polynomial f on GL(n, C)
(where C = CK and LIK is a Picard-Vessiot extension for an order n dif-
ferential equation) such that fH = 0 and fIH' 0. If L = K(yl, ,

we consider the matrices A = (y)O<i<n-i,i<j<n, B -
where ul,... , uare differential indeterminates. We let the Galois group
act on the right, i.e we define the matrix MQ of a E such that
(a(yi),...,cr(y)) _ (yl,... We note that, as W(yi,...,yam,) 0,
the matrix A is invertible and we define the polynomial F(ul,... , u) _
f(AB) E L{ul,... , u1,}. It has the property that F(Q(yl),... , Q(yn)) = 0,
for all v E H but not all v E H'. Assume we are taking F among all poly-
nomials with the preceding property having the smallest number of nonzero
monomials. We can assume that some coefficient of F is 1. For T E H, let
TF be the polynomial obtained by applying r to the coefficients of F. Then
(rF)(a(y1),...,a(y)) = T(F'((T-iQ(yi),... , T-1Q(yn))) = 0, for all v E H.
So, F-TF is shorter than F and vanishes for (a(yi),. . . , Q(yn)) for all v E H.
By the minimality assumption, it must vanish for (a(yi),.. . , a(y)), for all
a E H'. If F - TF is not identically zero, we can find an element a E L
such that F - a(F -TF) is shorter than F and has the same property as F.
So F - 7F - 0, for all T E H, which means that the coefficients of F are
H-invariant. Therefore, F has coefficients in LH = LH'. Now, for a E H',

a(y)) _ (aF)(a(yi), ... a(y)) _ a(F(yi,... ,y)) = 0. This
contradiction completes the proof.

Proposition 6.3.2. Let K C L be a differential field extension with differ-
ential Galois group G = G(LIK).
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a) If H is a normal subgroup of G, then LH is G-stable.

b) If F is an intermediate differential field of the extension, which is G-
stable, then is a normal subgroup of G. Moreover the restriction
morPhism

G(FIK)
Q H QIF

indices an isomorphism from the quotient G/G(LIF) into the group of
all differential K-automorPhisms of F which can be extended to L.

Proof. a) For v E G, a E LH, we want to see that va E LH. If T E H, we
have TQa = va v-1TVa = a and this last equality is true as a E LH and
v-1TQ E H, by the normality of H.
b) To see that is normal in G, we must see that for a E G, T E

Q-1TV belongs to G(LIF), i.e. it fixes every element a E F. Now
v-1TQa = a Tva = Qa and this last equality is true since va E F
because F is G-stable. Now as F is G-stable, we can define a morphism
cp : G(LIK) -3 G(FIK) by a H QlF. The kernel of p is G(LIF) and its
image consists of those differential K-automorphisms of F which can be
extended to L. O

Definition 6.3.3. We shall call an extension of differential fields K C L
normal if for each x E L \ K, there exists an element v E such that
v(x) x.

Proposition 6.3.4. Let K C L be a Picard- Uessiot extension, G := G(LIK)
its differential Galois group.

a) Let H be a closed subgroup of G. If H is normal in G, then the differential
field extension K C F := LH is normal.

b) Let F be a differential field with K C F C L. If K C F is a Picard-
Vessiot extension, then the subgroup H = G(LIF) is normal in G(LIK).
In this case, the restriction morphism

G(LIK) - G(FIK)
Q H IF

induces an isomorphism G(LIK)/G(LIF) G(FIK).

Proof. a) By Proposition 6.1.2, for x E F \ K, there exists v E G such that
ax x. By Proposition 6.3.2 a), we know that F is G-stable; hence vlF is
an automorphism of F.
b) By Corollary 5.6.7, F is G-stable. Then by Proposition 6.3.2 b), H =

G = G(LIK).
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For the last part, taking into account Proposition 6.3.2 b), it only re-
mains to prove that the image of the restriction morphism is the whole group
G(FIK) which comes from Proposition 6.1.2 b). O

The next proposition establishes the most difficult part of the funda-
mental theorem, namely that the intermediate field F corresponding to a
normal subgroup of G is a Picard-Vessiot extension of K. This result is not
proved in Kaplansky's book [K], which refers to a paper by Kolchin [Ko2}.
In fact, Kolchin establishes the fundamental theorem for the larger class of
strongly normal extensions and characterizes Picard-Vessiot extensions as
strongly normal extensions whose differential Galois group is a linear alge-
braic group. Our proof is inspired by [P-Si] and [Z], but not all details of
it can be found there. The proof given in [M] uses a different algebra T.

Proposition 6.3.5. Let K C L be a Picard-Vessiot extension, G(LIK) its
differential Galois group. If H is a normal closed subgroup of G(LIK), then
the extension K C LH is a Picard- Uessiot extension.

Proof. Let us first explain the idea of the proof. Assume that we have a
finitely generated K-subalgebra T of L satisfying the following conditions.

a) T is G-stable and its fraction field Fr(T) is equal to L.
b) For each t E T, the C-vector space generated by {Qt : Q E G} is finite

dimensional.

c) The subalgebra TK = {t E T : at = t, b'v E H} is a finitely generated
K-algebra.

d) F := LK is the fraction field Fr(TH) of TH.

With all these assumptions, let us prove that TK is generated over K
by the space of solutions of a homogeneous linear differential equation with
coefficients in K. First let us observe that, as H a G, TH is G-stable, i.e.
T(TH) = TH, for all T E G. Indeed, let t E TK,T E G. We want to see
that Tt E TH. For Q E H, we have vTt = Tt (T-lUT)t = t and the last
equality is true as the normality of H implies T-1vT E H. Thus TK is a
G-stable subalgebra of T and the restriction of the action of G to TH gives
an action of the quotient group G/H on TH.

We now take afinite-dimensional subspace Vl C TH over C which gen-
erates TH as a K-algebra id which is G-stable. Note that such a Vl exists
by conditions b) and c). Let zl, ... , z.,,,, be a basis of Vl; then the wroriskian
W (zl, ... , is not zero. The differential equation in Z

W (z1, ... , zz)
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is satisfied by any z e V1. Now, by expanding the determinant in the
numerator with respect to the first column, we see that each coefficient of the
equation is a quotient of two determinants and that all these determinants
are multiplied by the same factor det under the action of the element

e G. So these coefficients are fixed by the action of G and so, by using
Corollary 6.1.3, we see that they belong to K. Thus T H = K (V1 ) , where
V1 is the space of solutions of a linear differential equation with coefficients
in K. Therefore F = LH = Fr (TH) is a Picard-Vessiot extension of K.

We can assume that L is the Picard-Vessiot extension constructed in
Theorem 5.6.5. Let T be the K-algebra R/P considered in the construction.
We shall prove that T satisfies the conditions stated above.

a) By construction G acts on T and the fraction field Fr(T) of T is equal
to L.

b) Taking into account Remark 6.2.4, we can apply Lemma 3.4.2a) and
obtain that the orbit of an element t e T by the action of G generates a
finite dimensional C-vector space.

c) We consider the isomorphism of G-modules given by Proposition 6.2.5
and restrict the action to the subgroup H. The group H acts on both
K ®K T and K ®c C[G] by acting on the second factor. We then have
K ®x TH ^K ®c C[G]H. By Proposition 3.7.8, C[G]H C[G/H]
as C-algebras. Now C[G/H] is a finitely generated C-algebra and so
K ®K TH is a finitely generated K-algebra. Now we apply the following
two lemmas to obtain that TH is a finitely generated K-algebra.

Lemma 6.3.6. Let K be a field, K an algebraic closure of K and A
a K-algebra. If K ®K A is a finitely generated K-algebra, then there
exists a finite extension K of K such that K ®K A is a finitely generated
K-algebra.

Proof. Let {VS}SES be a K-basis of K and let {AZ ®az}i=1,,..,n generate

K ®K A as a K-algebra. If we write down the elements AZ in the K-basis
of K, only the vs s with s in some finite subset S' of S are involved. We

N
take K = K({vS}SES' ). Then the elements {v8 ® a2}SES',i=1,...,n generate
N N
K ®K A as a K-algebra. 0

Lemma 6.3.7. Let K be a field, A a finitely generated K-algebra, and
let U be a finite group of automorphisms of A. Then the subalgebra AU
of A fixed by the action of U, i. e. AU = {a e A : Qa = a, b'Q E U}, is a
finitely generated K-algebra.

Proof. For each element a e A, let us define
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S(a) = N Qa,

vEU

where N = UI, and let us consider the polynomial

N

Pa(T) _ (T - aa) = TN + (_l)iajTN_i.
QEU i=1

The coefficients ai are the symmetric functions in the roots of Pa(T)
and by the Newton formulae can be expressed in terms of the S(ai), i =
1, ... , N. Let u1, ... , u,n now generate A as a K-algebra. We consider the
subalgebra B of AU generated by the elements S(u2 ), i = 1, ... , m, j =
1, ... , N. We have Pui (ui) = 0 and so uN can be written as a linear
combination of 1, ... , uN-1 with coefficients in B. Hence each monomial
ui 1 ... um can be written in terms of monomials u1 ... u, with ai <N
and coefficients in B. Therefore each element a E A can be written in
the form

with cPa1...am

al ama = (Pa1...am u1 ... Urn
a2 <N

EB. Now, ifaEAU,wehave

a = S(a) = coai...amS . .( 11 um
ai <N

Thus AU can be generated over K by the finite set

{S(41. .. um ) }a2 <N U {S(UN) }i=l,...,m

D
N

Now by applying Lemma 6.3.6 to K ®K T H, we obtain that K ®K T H
is a finitely generated K-algebra for some finite extension K C K and
then also a finitely generated K-algebra. Now we can assume that the
extension K C K is normal and consider the Galois group U = Gal(KIK)

N
acting on K ®K A on the left factor. By applying Lemma 6.3.7, we can
conclude that T H ^K ®K T H kU ®K T H ^(K ®K T H) U is a finitely
generated K-algebra.

d) We now prove that LH is the fraction field of TH.
Let a E LH \ {0}. We want to write a as a quotient of elements in

TH. We consider the ideal J = {t E T : to E T} of denominators of a.
Since a is H-invariant, J is H-stable, i.e. HJ = J. Let s E J \ {0}.
Taking into account Remark 6.2.4, we can apply Lemma 3.4.2a) and
obtain that the elements rs, 'r E H generate a finite dimensional vector
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space E over C. Let sl,... , sP be a basis of E and w = W (sl, ... , sP) be
the wronskian. By expanding the determinant with respect to the first
row, we see that w e J. We have Tw = w, for all T E H. We
note that T H defines a character x of H; hence w is a semi-
invariant with weight X. (See Section 3.6.) Let t = wa. It belongs to
T, because w e J, and is asemi-invariant with the same weight as w,
because a is H-invariant. So a can be written as t/w the quotient of two
semi-invariants. If we find asemi-invariant u with weight 1/x, then we
would have a = (tu)/(wu) the quotient of two invariants as desired. We
consider the subalgebra of T consisting of the semi-invariants of weight
l/X, that is, Ti,X = {t e T : Tt = t/X(T), 'dT E H}. We want to prove
Ti/x 0.

To this end, we first consider the action of H on the coordinate ring
C[G] of the algebraic group G and prove C[G], 0, for each character r)
of H. Let us denote X (H) the character group of the group H. Let Ho
be the intersection of the kernels of all characters of H. It is a normal
subgroup of H and contains the commutator subgroup of H, so H/Ho is
commutative. By Theorem 4.3.6, H/Ho is isomorphic to the direct prod-
uct of its closed subgroups (H/Ho)3 = {h e H/Ho :his semisimple} and
(H/Ho)u = {h e H/Ho :his unipotent}. By Lemma 4.3.5, (H/Ho)is
conjugate to a subgroup of the upper triangular unipotent group U(n, C).
Hence by Exercise 10 in chapter 3, (H/Ho)does not have nontrivial
characters. We then have X (H) = X (H/Ho) = X ((H/Ho)s). We write
H' for (H/Ho)s. If ri is a character of H', we have r, e C[H'] and
moreover, for each x, y e H', we have (x.i,)(y) =
which gives x.i = r, r we
get C[H'], 0. Now the inclusion H' -+ G/Ho corresponds to an
epimorphism between the coordinate rings it : C[G/Ho] -+ C[H']. We
want to see that : C[G/Ho]-+ C[H']is also an epimor-
phism. Let a be a nonzero element in C[H']. Let a e C[G/Ho] such
that er(a) = a. By Lemma 3.4.2a), there exists a finite dimensional
H'-stable subspace El of C[G/Ho] containing a. As H' is semisimple
and commutative, it is diagonalizable, i.e. conjugate in the general lin-
ear group to a subgroup of the group of diagonal matrices (cf. Lemma
4.3.5). Therefore the representation of H' on El diagonalizes in a certain
basis al, , a. We can choose it such that al, , aj, with l <p are a
basis of El fl Ker it. We have a = cja = T(a) _ =1 Cj7lj (T)a7,
then ir(T(a)) _ 1Cj7)j(T)7r(aj) and, on the other hand, ir(T(a)) _
T('ir(a)) = T(a) _ i(T) P=1 cj'ir(aj). We have c3 0 for some j > l and
so 71j ('r) = i(r) which gives that a is asemi-invariant with weight
We then obtain 0 C[G/Ho], C C[G].
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Now we again consider the isomorphism of G-modules given by Propo-
sition 6.2.5 with action restricted to the subgroup H. As the group H acts
on both K ®K T and K ®c C[G] by acting on the second factor, we have

0 = (K ®c C[G])i,X 0 = (K ®x T)i/x 0 = Tl/x 0.

To obtain the last implication, we use the fact that if t e K ®If T, we
have t e K ®K T, for some finite extension K of K. We can assume
that K C K is a normal extension and take U = G(KIK). Then, if
t e (K ®If T)l,X, the element at is asemi-invariant with weight
1/X (as H acts in K ®If T by acting on the right factor and U by acting
on the left factor, both actions commute) and belongs to K ®K T T.

0

Now Propositions 6.3.1, 6.3.4, and 6.3.5 together establish the funda-
mental theorem of Picard-Vessiot theory.

Theorem 6.3.8 (Fundamental Theorem). Let K C L be a Picard-Vessiot
extension, G(LIK) its differential Galois group.

(1) The correspondences

H F F-+G(LIF)

define inclusion inverting mutually inverse bijective maps between
the set of Zariski closed subgroups H of G(LIK) and the set of
differential fields F with K C F C L.

(2) The intermediate differential field F is a Picard-Vessiot extension
of K if and only if the subgroup H = G(LIF) is normal in G(LIK).
In this case, the restriction morphism

G(LIK) -3 G(FIK)
U F-k QIF

indices an isomorphism G(LIK)/G(LIF) G(FIK).

6.4. Liouville extensions

The aim of this chapter is to characterize linear differential equations solv-
able by quadratures. This is the analogue of the characterization of algebraic
equations solvable by radicals.

Definition 6.4.1. A differential field extension K C L is called a Liouville
extension if there exists a chain of intermediate differential fields K = F1 C
F2 C C Fn = L such that FZ+1 is obtained from FZ either by adjunction
of an integral or by adjunction of the exponential of an integral.
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Proposition 6.4.2. Let L be a Liouville extension of the differential field
K, having the same field of constants as K. Then the differential Galois
group of L over K is solvable.

Proof. We assume that the extension K C L has a chain of intermediate
differential fields as in Definition 6.4.1. From Examples 6.1.4 and 6.1.5, we
obtain that K C F2 is a Picard-Vessiot extension with commutative differ-
ential Galois group. By Corollary 5.6.7, every K-differential automorphism
of L sends F2 onto itself. By Proposition 6.3.2 b), is a normal
subgroup of and is a subgroup of hence
commutative. By iteration, we obtain that is solvable.

The next proposition is the first step for a converse of Proposition 6.4.2.
In fact we shall consider generalized Liouville extensions, also admitting
algebraic extensions as constructing blocks.

Proposition 6.4.3. Let K C L be a normal extension of differential fields.
Assume that there exist elements ul,... , uE L such that for every differ-
ential automorphism v of L we have

(6.2) = alj ul +... j = 1,...,n,

with az3 constants in L (depending on v). Then K(ul,... , un) is a Liouville
extension of K.

Proof. The first of the equations (G.2) is vul = allul. Differentiating, we
obtain vui = allui and so ui/ul is invariant under each Q. (We can assume
ul 0 for otherwise it could simply be suppressed.) By the normality
of K C L, we obtain ui/ul E K. Hence the adjunction of ul to K is the
adjunction of an exponential. Next we divide each of the next n-1 equations
by the equation Qul = allul and differentiate. The result is

This is a set of equations of the same form as (G.2) in the elements (u3/ul)',
with j = 2,... , n. By induction on n, the adjunction of (u3/ul)' to K yields
a Liouville extension. Then adjoining u3/ul themselves means adjoining
integrals.
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6.5. Generalized Liouville extensions

Definition 6.5.1. A differential field extension K C L is called a generalized
Liouville extension if there exists a chain of intermediate differential fields
K = F1 C F2 C C Fn = L such that either FZ+1 is obtained from FZ by
adjunction of an integral or by adjunction of the exponential of an integral
or FZ+1 is algebraic over F.

A solution of a differential equation defined over the differential field K
is called Liouvillian if it is contained in a generalized Liouville extension
of K.

Theorem 6.5.2. Let K be a differential field with algebraically closed field
of constants C. Let L be a Picard-Vessiot extension of K. Assume that the
identity component Go of G = is solvable. Then L can be obtained
from K by a finite normal extension followed by a Liouville extension.

Proof. Let F = LcO. We know by Proposition 3.2.1 that Go is a normal
subgroup of G of finite index. Then K C F is a finite normal extension
and G(LIF) G. Then by Lie-Kolchin Theorem 4.4.6, we can apply
Proposition 6.4.3 and obtain that F C L is a Liouville extension.

To prove an inverse to this theorem we shall use the following lemma.

Lemma 6.5.3. Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Let Ll = L(z) be
an extension of L with no new constants. Write Kl = K(z). Then Kl C Ll
is a Picard- Vessiot extension and its differential Galois group is isomorphic
to G(LIL n Kr).

Proof. It is clear that Kl C Ll is a Picard-Vessiot extension as both fields
have the same field of constants and the extension is generated by the solu-
tions of the differential equation associated to the Picard-Vessiot extension
K C L. By Corollary 5.6.7, any K-differential automorphism of Ll sends
L onto itself. Thus restriction to L gives a morphism cp G(L1IK1) -+
G(LIK). An automorphism of Ll in Ker cp fixes both Kl and L and so is
the identity. Hence cp is injective and G(L1IK1) is isomorphic to a closed
subgroup of G(LIK). The corresponding intermediate field of the exten-
sion K C L is L n Kl and by the Fundamental Theorem 6.3.8 we get
G(L1IK1) G(LIL n Kr). O

Theorem 6.5.4. Let K be a differential field with algebraically closed field
of constants C. Let L be a Picard-Vessiot extension of K. Assume that L
can be embedded in a differential field M which is a generalized Liouville
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extension of K with no new constants. Then the identity component Go of
G = is solvable (whence by Theorem 6.5.2, L can be obtained from
K by a finite normal extension, followed by a Liouville extension).

Proof. We make an induction on the number of steps in the chain from
K to M. Let K(z) be the first step. Then, by induction, the differential
Galois group of L(z) over K(z) has a solvable component of the identity. By
Lemma 6.5.3, this group is isomorphic to the subgroup H of G corresponding
to L fl K(z). Assume that z is algebraic over K. Then, H has finite index
in G. In this case, by Proposition 3.2.1 b), G° = H°, hence solvable. If
z is either an integral or the exponential of an integral, by Examples 6.1.4
and 6.1.5, K(z) is a Picard-Vessiot extension of K with commutative Galois
group. Thus all differential fields between K and K(z) are normal over K.
In particular, L fl K(z) is normal over K with a commutative differential
Galois group. Thus H is normal in G with G/H commutative. So by Lemma
4.4.4, the identity component G° of G is solvable.
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Exercises

(1) Given the differential equation G(Y) = Y(n) +alY' +
aoY = 0, prove that the change Y = vZ, where v is a solution of
nv' + an_1 = 0, gives a differential equation G(Z) = 0 without term in
z-'). Prove that all solutions to G(Y) = 0 are Liouvillian if and only
if all solutions to G(Z) = 0 are Liouvillian.

(2) Let G(Y) := y(n) + alY'+aoY and let W denote the
wroriskian determinant of a fundamental set of solutions of G(Y) = 0.
Prove that if an_1 = 0, then W is constant and Gal(G) is contained in
the special linear group.

(3) Give an example of a finite Galois extension of differential fields (with
nonalgebraically closed field of constants) which is not Picard-Vessiot.

(4) Prove the claims in Remark 6.2.3.

(5) Determine the differential Galois group of the extension (C C (fi(t), where
the derivation in C(t) is given by t' = 1.

(6) Determine the differential Galois group of a homogeneous linear differ-
ential equation with coefficients in (C
a) over C(t) (with derivation given by t' = 1),
b) over C.

(7) Let Ko be a differential field with field of constants C. Let L :_
Ko(yi, , yn) be the field of differential rational functions in the differ-
ential variables yl, ... , yn over Ko. The action of a matrix v E GL(n, C)
on the vector (yi, ... , yn) extends to an action on L by differential Kp-
automorphisms. Let K := LGL(n,c) be the field fixed by this action.
Prove that K C L is a Picard-Vessiot extension with differential Galois
group GL(n, C).

(8) Let G E K[D] be a monic differential operator of degree n and consider
the differential equation G(Y) = 0. Let L be a Picard-Vessiot extension
for G(Y) = 0 and G = G(LIK) its differential Galois group. If V is
the CK-vector space of solutions to G(Y) = 0 in L, then G acts on V,
giving a faithful representation of order n of G over CK. Prove that this
representation has an invariant subspace of dimension m if and only if
G has a right factor in K[D] of degree m.
Hint: If U is an invariant subspace of dimension m, yl, ... , y,,,, a CK-
basis of U, prove that

W(Y,y1i...,ym)
W(y1i...,ym)
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is a differential equation with coefficients in K and use right division of
differential operators.

(9) A Bernouilli equation is an ordinary differential equation of the form

Y'+pY=qYf
with n 0, 1. Show that the change Z = Y-fin-1) transforms (6.3) into
a first order linear differential equation and give the expression of the
general solution of the Bernoulli equation.

(10) A Riccati equation is an ordinary differential equation of the form

Y' = qo+qiY+g2Y2
a) Prove that, if q2 ; 0, the change Z = q2Y gives a Riccati equation

of the form

Z'=po+piZ+Z2.
b) Prove that if u is a solution of the second order linear differential

equation

U"-p1 U'+poU=0,
then y = -u'/q2u is a solution of (6.4).

c) Prove that, if a particular solution y1 of (6.4) is known, the substi-
tution Y = Y1 + U leads to a Bernouilli equation in U and so we can
obtain the general solution of the Riccati equation.

(11) Taking into account Exercise 20 in chapter 5, prove that if a homoge-
neous linear differential equation of order 2 has a Liouvillian solution,
then all its solutions are Liouvillian.





Chapter 7

Differential Equations
over C(z)

In this chapter we consider linear differential equations over the field C(z) of
rational functions in the variable z over the field C of complex numbers. We
give some classical results related to local solutions of differential equations
defined over C(z). In the last part, we present Kovacic's algorithm which
determines explicitly the Liouvillian solutions to differential equations of
order 2.

We assume that the reader is familiar with the basic concepts of complex
analysis in one variable, as presented in [Al].

7.1. Fuchsian differential equations

For a linear differential equation

(7.1) Y(n) + al (z)Yin-') + ... + an-i(z)Y' + an(z) Y = 0,

with a2(z) E C(z), a point P in (C is called regular if the functions a2 have no
pole in P; otherwise P is called singular. To consider whether oo is a regular
or singular point, we make the substitution z = x-1 in (7.1). If x = 0 is a
regular (resp. singular) point for the new equation, then z = oo is a regular
(resp. singular) point for (7.1).

Definition 7.1.1. If P E C (resp. P = oo) is a singular point for (7.1), we
consider the limit limxiP(z - P)ia2(z) (resp. limzia2(z)). If this limit
exists and is finite for i = 1, ... , n, the point P is a regular singular point
for (7.1).

165



166 7. Differential Equations over C(z)

The equation (7.1) is called Fuchsian if all points in P1(C) are regular
or regular singular.

Proposition 7.1.2. For a Fuchsian differential equation with regular sin-
gular points P1,. . . , Pv in (C, the coefficients a(z) are of the form

a2(z) _ v Az(z)

u8=1(z - PS)z s

where Ai(z) is a polynomial of degree < i(v - 1). In particular

A18

where A18 are constants.
s=1

z - Ps'

Proof. By the definition of regular singular points, we have

v

a( z) _ fl(z - Ps) -ZAi (z),
s=1

where Ai (z) is an entire function of z, as there are no other singular points in
C. We now consider the behavior of these coefficients at infinity. The point
at infinity is at most a pole of a( z); consequently, Ai (z) is a polynomial in z
and limn zzai (z) finite implies that its degree is < i (v - 1). In particular

v v

al(z) _ fl(z - Ps)-lAi(z) _ ((z - Ps)-lAis),
s=1 3=1

with Ais = Pt). O

Let us now assume that 0 is a regular singular point for Equation (7.1).

We write the equation in terms of the differential operator D = z-.. We

have

r
(7.2) z"'zT

and obtain a differential equation of the form

(7.3) F(D, z)(Y) := D"Y + bl (z)Dn-1Y +... + bn-1(z)DY + bn,(z)Y = 0,

where the functions b(z) are holomorphic in a neighborhood of z = 0. (See
Exercise 18 in chapter 5.)
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We shall now see that we can obtain formally the solutions of the differ-
ential equation (7.1) as power series in the neighborhood of a regular point.
By a change of variable, we can assume that this point is 0.

Theorem 7.1.3 (Cauchy theorem). Let 0 be a regular point of (7.1). Then
there exist n power series in z, fi,. . . , fn ,which are solutions of (7.1),
linearly independent over C, with positive convergence radius. Moreover,
every power series which is a solution of (7.1) is a linear combination of
fi,. . . , fwith coefficients in C.

Proof. We look for a solution in power series y = >k>o ckzk. Multiplying
(7.1) by zn and using (7.2), we obtain

n

i=1

We write zZa2(z) _ and, for each j > 1, we set

Z=1

By substituting y in the equation, we obtain the recurrence relation

k

_0.
j=1

As Q3(k-j) = 0, for 1 < j < k <n, the recurrence is trivial fork < n-1. So
we can fix co, , cn_1 arbitrarily and the coefficients ck with k > n are de-
termined by the recurrence relation. We then obtain n linearly independent
solutions of (7.1) which are a basis of the vector space of solutions.

It remains to be seen that every solution in power series has a positive
radius of convergence. To this end, we choose C> 1, satisfying the following
conditions.

(1) for all j, k,

(2) IcI <C2' for j = 0, ... n - 1,
(3) (k(k- 1) (k - n + 1))-1 < C/kn for all k > n.

We prove by induction over k that Icki < C2'+1. Fork <n, it is true
by the choice of C. From the recurrence relation, we obtain the inequality

k

Icki
j=1
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Using the induction hypothesis,

k

Icki < non-1 . Gr2(k-j)-Fl <Gr2k+1.

C =1

Hence the coefficients ck are exponentially bounded and the power series has
a positive radius of convergence.

We shall now see how to obtain formally the solutions in the neighbor-
hood of a regular singular point. Let us assume that 0 is a regular singular
point of the equation (7.1). We look for solutions of the form

(7.4) = :i: CkZ'.
k>0

We develop the coefficients of (7.3) in Taylor series, b2(z) _ >IbZjz' and
set

Fo(D) = Dn + b10Dn-1 + b20Dn-2 + + bno
Fj(D) = b2

Dn-2 + ... + bn for j>O.

The equation can then be written as

F(D,z)(Y) = z(D)(Y) = 0
j=0

and substituting y, we obtain

F'(D, z)(y) _ >Io >I'o

>I >I7 O

zP+i+3F+'.7

(p + Z)C'iL

= >I
zp+k [>1c Fk_(p + i)ci] = 0.

This expression vanishes identically if the coefficients ci satisfy the relations

k

= 0 (k 0).
z=o

In particular, to obtain co 0, p must be a root of the polynomial equation
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Fo(X) = X+ b10Xn-1 + + bp = Xn + bl (O)Xn-1 + ... + bn(0) =0.

This equation is called indicial equation. Its roots are called local exponents
at the singular point z = 0.

From (7.2), we obtain that the indicial equation at a regular or regular
singular point P E C in terms of the coefficients of (7.1) is

X(X-i)..'(X-rt+l)
(7.6) + P)kak(z)X (X - n + k +1)

+ P)Than(z) = 0.

If oo is a regular or regular singular point, the indicial equation at oo is

(7.7) + 1(-1)klimxzkak(z)X (X + n - k - 1)
+ (-1)lim0zTha(z) = 0.

Note that at a regular point the local exponents are 0, 1, , n -1. The
local exponents for a differential equation satisfy the Fuchs relation
given in the next proposition.

Proposition 7.1.4 (Fuchs' relation). If pl(P), p2(P), , p(P) are the
local exponents at a point P E 1P1 for a Fuchsian differential equation, we
have

where only the singular points give nonzero summands.

Proof. Let us assume that Ps, 1 <s < v, are the singularities of the given
equation in C. Using the form for the coefficients of a Fuchsian equation
given by Proposition 7.1.2, we compute limz p3 (z - Ps) a, (z) = A18 and
limza, (z) = s=1 Als. Now by formulae (7.6), (7.7), we obtain

pi(ps) + p2(Ps) +... + (2) - Ais

and

n n
(p,(P) + p2(P) + + p(P) - ()) = -2 (),

P1(00) + p2(00) +... +pn(00)
=

+ Ais.
1s=
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Summing up for P1,. . . , PS and oo, we obtain that the sum of all local
exponents is equal to (v - 1) (2), and this equality can be written as in the
statement. 0

Now if two independent solutions correspond to the same exponent p, by
subtracting one from the other, we obtain another solution corresponding
to a bigger exponent p' which is also a root of the indicial equation. Hence
each local exponent gives rise to at most one solution in power series of the
form (7.4).

If Fo (p) = 0, Fo (p + k) 0 for every positive integer k, we can choose
co 0 and each of the next coefficients ck is uniquely determined by the
relations (7.5). But if both p and p+ k are local exponents, with k a positive
integer, the relation >IJ Fk_i (p + i) ci = 0 may be incompatible.

In the case in which the indicial equation has multiple roots or roots
which differ by an integer number and then we do not have a complete
system of solutions of the form (7.4), we can look for solutions in which
logarithms appear.

We distribute the local exponents in equivalent classes, obtained by
defining two local exponents to be equivalent when they differ by an in-
teger number. Let us now see how to compute the solutions corresponding
to one of these classes, formed by h distinct local exponents pi with mul-
tiplicities ri, ordered by ascendent real parts. We look for solutions of the
form

(7.8) y=zP>ukz',
k>o

where the uk are polynomials in t log z of degree smaller than n. Taking
dui

into account D(u) _ , we obtain
dt

F(D,z)(y) _ o >io ziFj(D)(zn+Zui)

\OO
oL1j=ozP

iFj(D+p+i)ui= Li
0o k= >/=o zp+k [>i=o Fk_i(D + p + i)ui = 0,

which vanishes identically if the ui satisfy the relations
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k

Fk_(D + p + i)u = 0 (k 0).
i=o

These relations can be seen as a system of linear differential equations in
the variable t = log z, of which we are interested in the general solution in
polynomials. The first equation can be written as

Fo(D + P)(uo) = Fo(A)uo + F(p)Duo + F'o (A)DZUO +... - 0.

This is the generalized indicial equation. If uo is a polynomial in t, not iden-
tically 0, this expression is a polynomial of the same degree unless Fo(p) = 0.
To obtain a solution effectively, p must then satisfy the indicial equation.
For p = pl, we have Fo(D + pl)(up) = Gl(D)(D''lup) with G1(0) 0, and
so uo must satisfy the equation D"'lup = 0.

Let us assume that we have found the polynomials uo, ul, , uk_1. If
Fo(pl + k) 0, uk is uniquely determined as a polynomial whose degree
does not exceed the degree of the preceding polynomials by the symbolic
formula

uk = k1 Fk_(D + P1 + i)(U)
Fo(D + Pi + k)

>i=o

-(Ao + A1D + A2D2 + .
) k o F(D + P1+ i)ui

Lk(uo, u1, ... , uk_1).

But if k = p2 - pl, we have Fo(D + pl + k) = Fo(D + pi) = Gi(D)D''i, with
Gi(0) 0 and so, instead of (7.9), we have the relation

Dr2uP2_P1 = Lk(uo, U1, . . , uk_1), with k = pi - p1

The structure of the solution is completely determined by uo, ,

uph _P1 as the remaining uk are determined by a relation of the form (7.9).
We can distinguish the h critical polynomials UZ Up_ p1 and express the
remaining ones explicitly in the form

uk = Ak (U1, U2,. , Uh),

where the Ui satisfy a system of equations of the form
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DY"Ul = 0
f2i(D)Ui+D?'2U2 = 0

f31(D)Ul+f32(D)U2+Dr3U3 = 0

We then obtain h1 ri linear independent solutions.

We have then seen that we can obtain n independent solutions to the
differential equation in the neighborhood of a regular singular point having
either the form (7.4) or the form (7.8). It can be proved that they have a
positive radius of convergence. (See [Po], V.17.)

Remark 7.1.5. A F uchsian homogeneous linear differential equation of or-
der two with three singular points is completely determined by its singular
points and the local exponents at each singular point.

Example 7.1.6. The Gauss hypergeometric equation

(7.10) Y" + a
lij - c Y, + z( ab 1) Y _ 0

has three singular points 0, 1, oo which are regular singular. We write down
the local exponents in the Riemann scheme:

0 1 00

0 0 a.
1-c c-a-b b

The solution relative to the singular point z = 0 and the local exponent 0
is developable in the series

(a)rj(b)rjr,
_o (c)n!

denoted as F(a, b, c; z). (See Exercise 19 in chapter 5.) It may be verified
that the series converges for Izi < 1, whenever c is not a negative integer
and diverges for Izi > 1. If a, b, c are real, the series converges for z = 1 if
c> a + b and diverges if c < a + b; it converges for z = -1 if c + 1 > a -I- b

and diverges if c + 1 < a + b.

The solution relative to z = 0 and the local exponent 1 - c is

zl-C F(a - c+ 1,b-c+ 1, 2 - c; z).
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The two solutions at z = 1 are

F(a, b, a -I- b - c + 1;1 -z),

(1-z)c-a-bF(c-a,c-b,c-a-b+ 1;1 -z).
The two solutions at z = oo are

z-a F(a, a- c+ 1,a- b+ 1;z'),

z-b F(b, b- c -I- 1,b-a+ 1;z').

The domain of convergence is 0 < Izi < 2 for the series in 1 - z and
z> 1 for the series in z-1.

Since the equation cannot have more than two linearly independent so-
lutions, there must be dependence relations between the six solutions we
have found. It can be proved that

F(a,b,c;z)= r(c)I'(c-a-b)F(a,b,a+b-c-I-1;1-z)
I'(c - a)I'(c - b)

+I'(c)
F(a)F(b)
I'F(a)F(b)+b(b) -c)(1_z)c-a -6F(c-a,c-b,c-a-b+l;l-z),

where I' denotes the Gamma function. (See [K12].)

7.2. Monodromy group

Any analytic solution of (7.1) in the neighborhood of a regular point can be
analytically continued along any path in C not passing through any singular
point. Let S be the set of singular points of (7.1), zo E 1P1 \ S. Let Ii,. , fn
be linearly independent analytic solutions in the neighborhood of zo. Let
ry E ir1(1P1 \ S, zp). By analytic continuation along 7, we obtain f',. , fn
which are solutions of (7.1) as well. We then have a matrix M(ry) E GL(n, C)
such that

The mapping

p: iri(TP' \ 5) -+ GL(n, C)
1' F- M (y)
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is a group morphism. Its image M is called monodromy group of (7.1). It
is determined up to conjugation. Since an element of the differential Galois
group of the differential equation (7.1) is determined by the images of a
fundamental set of solutions, we can see M as a subgroup of the differential
Galois group of the differential equation.

For a Ftiichsian differential equation, we have the following relation be-
tween the differential Galois group and the monodromy group.

Proposition 7.2.1. Let us assume that (7.1) is a Fwchsian differential equa-
tion. Let G be its differential Galois group, M its monodromy group. Then
G is the Zariski closure of M.

Proof. Let L be a Picard-Vessiot extension for (7.1) over C(z) and let F
denote the subfield of L fixed by M. Then G(LIF) = M. (See the proof of
Proposition 6.3.1.) Thus, by the fundamental theorem of differential Galois
theory (see Proposition 6.3.1), it is enough to prove that F = (C(z). Now
suppose that f(z) is an element in L fixed by each element of M. It follows
that f(z) is a single valued analytic function on 1P1 ((C) whose singularities
belong to the set {P1,. .. , PS} of singular points of (7.1). Since each P2
is a regular singular point, f(z) approaches a limit as z approaches P.
Consequently, f(z) has no essential singularities, so it must be meromorphic
on 1ED1((C) and therefore a rational function of z.

Remark 7.2.2. We note that Proposition 7.2.1 may fail when (7.1) is not
a Fuchsian equation. For example, the monodromy group of the equation
Y' = Y is trivial because the solution y = ez is single valued, but the
differential Galois group is ( m (See Example 6.1.5.) Note that oo is a
nonregular singularity of the equation.

Example 7.2.3. Let us again consider the hypergeometric equation

(7.12)
ab

z(z - 1) z(z - 1)

and its Riemann scheme

(7.13)
0 1

0 0 a

1-c c-a-b b

00

Let P be a regular point of the equation. With origin in P, we draw
three loops in the complex plane go, gi, gam, around 0, 1, oo, respectively,
with gogigoo = 1. (See Figure 1.) The corresponding monodromy matrices
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Figure 1. The three loops go, gl, g.

M0, M1, M satisfy M0M1M = 1 and M0, M generate the monodromy
group.

From the values of the local exponents given in the Riemann scheme, we
have that the eigenvalues of Mo are 1, e272(1-c), those of M1, 1,
and those of Mme, e27z°, e2"zb.

Remark 7.2.4. Any F4zchsian equation of order two with three singular
points can be transformed in a hypergeometric equation by means of

az+b
- a Mobius transformation S(z) =

cz -F d'
ad - be L 0 which sends the

singular points to 0, 1, oo. We then obtain an equation with a Riemann
scheme of the form

0 1 00

a /3 y,
cV /3' y'

where a + /3+ -y + a' + /3' + 'y' = 1 by F uchs' relation.
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- multiplication of the solutions by z-a(1 - z)-a. The obtained Riemann
scheme corresponds to a hypergeometric equation with adequate parame-
ters.

7.3. Kovacic's algorithm

The aim of this section is to present Kovacic's algorithm for computing Li-
ouvillian solutions of linear differential equations of order 2 defined over the
rational function field in one variable over the field of complex numbers given
in [Kov]. We give some examples of application of this algorithm which are
different than the ones given in [Kov}. In particular, the differential equa-
tions whose differential Galois group is isomorphic to 2A4i 2S4, or 2A5 are
taken from [C-H2}.

By Exercise 1 in chapter G, we can assume that the equation considered
has the form Y" = rY for some r E C(z). Hence the differential Galois
group of the equation is an algebraic subgroup of SL(2, C). (See Exercise
2 in chapter G.) The starting point of the algorithm is the determination
of the closed subgroups of SL(2, C) given in Theorem 4.6.1. We recall that
if a second order homogeneous linear differential equation has a Liouvillian
solution, then all its solutions are Liouvillian. (See Exercise 11 in chapter
G.)

It is worth noting that Kovacic's algorithm is essential in the effective
application of Morales-Ramis criterion to nonintegrability of Hamiltonian
systems. (See 3. in chapter 8.) It has been applied in [D-L] to parametric
families of differential equations, in particular to hypergeometric ones, in
order to determine when these have Liouvillian solutions.

7.3.1. Determination of the possible cases. We shall consider a differ-
ential equation

(7.14) Y" = rY, where r E C(z).

We take r 0 (C to avoid triviality. Regarding the existence of a (nonzero)
Liouvillian solution of (7.14), the possible cases are given by the next theo-
rem.

Theorem 7.3.1. There are precisely four cases that can occur.

1. The differential equation (7.14) has a solution of the form of w, where
w E C(z).

2. The differential equation (7.14) has a solution of the form of w, where w
is algebraic of degree 2 over C(z) and case 1 does not hold.
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3. All solutions of the differential equation (7.14) are algebraic over C(z)
and cases 1 and 2 do not hold.

4. The differential equation (7.14) has no Liouvillian solution.

Proof. Let (yi, y2) be a fundamental set of solutions of (7.14) and L =
C(z)(yl, Y2). Let G C SL(2, (C) be the differential Galois group of (7.14)
relative to the basis (Yl, y2). We shall consider the four cases in Theorem
4.6.1.

1. If G is triangularizable, we may assume that G is triangular. Hence for
each v E G, we have v(yl) = cQyl which implies a(y) = cQyl and so
W = Yi/yi E LG = (C(z).

2. If G is conjugate to a subgroup of D+, we may assume that G is a
subgroup of D+. Then, for v E G, we have either v(yl) = cQyl, a(y2) _
caly2 or Q(yi) _ -caly2, a(y2) _ aYi. Hence for w = yi/yi, w2 = y2/Y2,
we have either vw = w, Qw2 = w2 or vw = w2i Qw2 = w, so w is quadratic
over (C(z).

3. If G is finite, L has only a finite number of (C(z)-differential automor-
phisms, vl,... , vn. The elementary symmetric functions of Ql (Yl),. ,

cTn(yl) are then invariant by G, hence belong to C(z) and yl is algebraic
over C(z). Similarly, y2 is algebraic over (C(z); then L is a finite extension
of C(z) and all solutions of (7.14) are algebraic over C(z).

4. Assume G = SL(2, C). If (7.14) had a Liouvillian solution, then all its
solutions would be Liouvillian; hence C(z) C L would be a generalized
Liouvillian extension. But G° = SL(2, (C) is not solvable. (See Exercise
12 in chapter 4.) Hence C(z) C L is not Liouvillian (cf. Proposition
6.5.4).

Next Kovacic establishes necessary conditions for each of the three first
cases in Theorem 7.3.1 to hold. These conditions give a sufficient condition
for case 4 to hold, namely that all necessary conditions for cases 1, 2, and 3
fail.

Since r is a rational function, we may speak of the poles of r, by which
we shall always mean the poles in the finite complex plane C. If r = s/t,
with s, t E C [z] relatively prime, then the poles of r are the zeros of t and
the order of the pole is the multiplicity of the zero of t. By the order of r
at oo, we shall mean the order of oo as a zero of r; thus the order of r at oo
is deg t - deg s .

Theorem 7.3.2. The following conditions are necessary for each of the
respective cases in Theorem 7.3.1 to hold.
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Case 1. Every pole of r must have even order or else have order 1; the order
of r at oo must be even or else be greater than 2.

Case 2. r must have at least one pole that either has odd order greater than
2 or else has order 2.

Case 3. The order of a pole of r cannot exceed 2 and the order of r at o0
must be at least 2. If the partial fraction expansion of r is

a2
r= 2+ ,(z-c2) z-d3

i j

then 1 + 4a2 E Q for each i, Q = O, and if y = +
j3dj, then 1 + 4y E Q.

Proof. We examine the different cases.
Case 1. In this case, (7.14) has a solution of the form y = of w, where
w e C(z). Since y" = ry, w satisfies the Riccati equation w' + w2 = r. Both
w and r have Laurent series expansions around any point of the complex
plane. To simplify notation, we consider the Laurent series expansion of w
andr at z=0.

W = >>jt2mZ,m e 74 am E C, aµ 0,

r = >>bzTh,ri E Z, bn E C, by 0.

By substitution in the Riccati equation, we obtain

(7.15) µaµzµ-1 + + aµz2µ + =

As we need to show that every pole of r either has order 1 or else has even
order, we may assume that v < -3. Since by 0, -3 > v > min(µ -1, 2,u).
It follows that i < -1 and 2µ < µ -1. Since aµ 0, we have 2µ = v which
implies that v is even.

Now consider the Laurent series expansion of w and r at oo.

W = >1m<ijjmz, m e 7Z, am E C, aµ 0,

r = ><bzTh,n e Z, bn E C, by 0.

As we must show that either the order of r at oo is > 3 or else is even,
we may assume that v > -1. By substitution in the Riccati equation, we
obtain
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(7.16) a? z+ ... = bvzv + ... .

Just as above, -1 < v < max(µ - 1, 2µ),µ > -1, 2µ > µ - 1. Since a 4 0,
2µ = v, so v is even. We have then obtained the necessary conditions for
Case 1.

Case 2. In this case, by Theorem 7.3.1, the differential Galois group of
(7.14) must be conjugate to a subgroup G of D+, which is not triangular-
izable. (Otherwise case 1 Would hold.) Let y1, y2 be a fundamental system
of solutions of (7.14) relative to the group G. For every a E G, either
y1 = c 1 ay2 = CQY1. Clearly y1 y2 is in-
variant by G, hence belongs to C(z). Moreover y1y2 ¢ C(z), for otherwise
G would be a subgroup of the diagonal group, which is included in case 1.

Writing

1y2 - [J(z - Ci)ei (ei E 7L

we have that at least one exponent ei is odd. Without loss of generality, we
may assume that

2 2 e
yiy2 = z (z - Cz)e2

and that e is odd. Let

1 1
e = (yly2) /(y1y2) = 2 (Y1Y2) /(Y1Y2) = Zez-1 + .. .

where the dots represent terms of nonnegative order in z. Since yi = ryl
and y'2 =rye, we have

0" + 300' + 0 = 4r0 + 2r'.

Let r = >>J bnzn, where n E Z, b, 0, be the Laurent series expansion of
r at 0. From the equation above, we obtain

(e _ e2 + ges)z-s +... = v)zv-i .i......
.

If v > -2, then 0 = 8e - 6e2 + e3 = e(e - 2)(e - 4). This contradicts the
fact that e is odd. Therefore v < -2. If v < -2, then e +11 = 0, so v is odd.
We have then obtained the necessary conditions for case 2.

Case 3. In this case, (7.14) has a solution y which is algebraic over C(z),
hence has a Puiseux series expansion around any point in the complex plane.
We consider it at z = 0. Then y = a1z1` + ..., where µ E Q, a1, 0
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and the dots represent terms of order > ,u in z. Let r = >1>v bnzn, n E
Z, bn E C, by 0, be the Laurent series expansion of r at 0. By substitution
in (7.14), we obtain

µiµ - 1)aµzµ-2 +... -
It follows that v > -2, i.e. r has no pole of order greater than 2. If v = -2,
then µ(µ - 1) = b. As µ E Q, we must have 1 + 4b E Q.

So far we have shown that the partial fraction expansion of r has the
form

ai Q
r = (z - c)2

where P E C[z] and 1 + 4ai E Q for each i.
Next we consider the series expansions around oo,

EC,a 0,

r=>n<vbnzn,nEZ,bn EC,bv 0.

By substituting in (7.14), we obtain

µ(µ - 1)aµz+... =

Just as above, we obtain v < -2 and therefore P = 0. But

(z-c)2 z-d
where ry = + >3 fi3d3. Therefore >3 ,63 = 0 and µ(µ - 1) = ry. Since
µEQ, 1+4ryEQ. O

Example 7.3.3. 1. Consider the Airy equation

Y"=zY.
As r = z has order -1 at 00 and no poles in the finite complex plane,
we have that none of the cases 1, 2, 3 can hold. Hence the Airy equation
has no Liouvillian solution.
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2. Consider the Chebyshev differential equation

2

Y"+ z Y'- a Y=0,aER.z2-1 z2-1
We can make a change of variable eliminating the first order term (see
Exercise 1 in chapter 6) and obtain the equation

Y _ (a2 - 1/4)x2 - a2 - 1/2 Y
(z2-1)2

The coefficient r of Y in this equation is a function which has poles 1, -1
of order 2 and its order at oo is 2, for a fl/2. Hence cases 1, 2, and
4 can occur for any a f1/2. The partial fraction expansion of r is

8a2+1 8a2+1 3 3

16(z - 1) 16(z + 1) 16(z - 1)2 16(z x-1)2'

Hence case 3 can occur if a E Q \ {fl/2}.
If a = f1/2, the order at oo is 4, and all four cases are possible.

3. Consider the differential equation Y" = rY, where

101 - 81x2
r 48(1+3z2)2

The poles of r are fi// of order 2 and the order of r at oo is 2; hence
the necessary conditions for cases 1 and 2 are fulfilled.

The partial fraction expansion of r is

2 2

288(z - i//) + 288(z + i//) 9(z - i//)2 9(z + i//)2
Hence the necessary conditions for case 3 are also fulfilled.

4. Consider the differential equation Y" = rY, where

-128z2 + 155z - 135
r=

576z2(z - 1)Z

The poles of r are 0,1 of order 2 and the order of r at infinity is 2, so the
necessary conditions for cases 1 and 2 are fulfilled. The partial fraction
expansion of r is

115 115 15 3

576z + 576(z - 1) 64x2 16(z - 1)2

Hence the necessary conditions for case 3 are also fulfilled.
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5. Consider the differential equation Y" = rY, where

3(25z2 - (8/"5)z+19)

r 16(5z2-1)2

The poles of r are fl// of order 2 and the order of r are oo is 2, so the
necessary conditions for cases 1 and 2 are fulfilled. The partial fraction
expansion of r is

21/5 21/5 21 6

160(z - 1//5) 160(z + 100(z - 1/x)2 25(z + 1/x)2
Hence the necessary conditions for case 3 are also fulfilled.

Once we have determined which of the cases given in Theorem 7.3.2
may occur for (7.14), we try to find a solution of the form given by Theorem
7.3.1. We now describe the algorithm for each of the cases.

7.3.2. The algorithm for case 1. The goal is to find a solution of (7.14) of
the form = P of where P E C[z] and t9 E C z . Since P of = of P +`
this is of the form given in Theorem 7.3.1 for case 1, with w = P + t9. If
the partial fraction expansion of a rational function g is

v
(7.17) 9=Q+

C j-1

with Q E C[z], then

UC

4-' (z - c)31

is the sum of the negative degree terms of the Laurent series expansion of g
at the pole c. We shall refer to it as the partial fraction expansion of g at c.
The sum of the nonnegative degree terms of the Laurent series expansion of
g at oo is equal to the polynomial Q in (7.17). The local conditions given
by Theorem 7.3.2 allow us to determine the partial fraction expansion of w
at each of the poles of r and at infinity. Then these expansions are "glued"
together to form a candidate for t9. The polynomial P will take account of
the poles of w which are not poles of r.

If g = Im>p am (z - C)m, m E Z, is the Laurent series expansion of a
meromorphic function g at a pole c, we shall use, following Kovacic, the
notation
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[g]

a
g

<m<-2 Clm\z -
a_1 (the residue of g at c),

If g = >m<µ amzm, m E Z, is the Laurent series expansion of a meromorphic
function g at oo, we set

(7.19)

m
0<m<µ amz

a_1,
m

m<-2 amz '

Let us observe that -a_1 is the residue at o0 of the differential form gdz.
Let r denote the set of poles of r in the complex plane. The first step of

the algorithm will be determining the possible values for [w] and Res(w, c)
for each c E I' U {oo}. The second step discards some of the combinations
of local data by using the relation between the residues of a meromorphic
function at its different poles. For the remaining possibilities, the third step
is trying to find a suitable polynomial P.

Proposition 7.3.4. Let r E C(z) satisfy the necessary conditions for case
1 given in Theorem 7.3.2. Let I' denote the set of poles of r in the complex
plane.

Step 1. For each c E I' U {oo}, we define a rational function [wJ and two
complex numbers at, aj as described below.
(ci) If c E I' and c is a pole of order 1, then

[w}=O, at=a=1.
(c2) If c E I' and c is a pole of order 2, then

[w]=O, a=±/1+4b,
for b the coefficient of (z-c)-2 in the partial fraction expansion
for r.

(c3) If c E I' and c is a pole of order 2v > 4, then

[w}o = 2 (fa + vJ

where a is the coefficient of (z - c)-v in [/] and b is the
coefficient of (z - c)-v-1 in r - []
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(001) If the order of r at oo is > 2, then

{w]=0, a=0, a=1.
(002) If the order of r at oo is 2, then

[w]=0,
where b is the coefficient of 1/z2 in the Laurent series expan-
sion of r at oo.

(003) If the order of r at oo is -2v < 0, then

where a is the coefficient of z" in the Laurent series expansion
of at oo and b is the coefficient of z"-1 in r -

Step 2. For each family s = (s(c))CEFU{}, where s(c) _ + or -, let

cEr
If ds is a nonnegative integer, let

= (s(c)[w]c + + s(oo)[w].
cEr

Step 3. For each of the 9S considered in step 2, search for a polynomial Ps
of degree ds satisfying the differential equation

(7.20) PST + r)PS =0.

If such a polynomial exists for some s, then y = Pef is a solution
of (7.14) with P = Ps,t9 _ t9s.

If ds is not a nonnegative integer for any of the families s considered in
step 2 or there is no polynomial solution to (7.20) for any of the families s
retained for step 3, then (7.14) has no solution of the form y = of W, with
w e C(z).

Proof. We shall first prove that, if y = of W is a solution to (7.14), then the
partial fraction expansion >Z1 a2/(z - c)i of w at c for c e I' (resp. c = oo),
has the form described in step 1 of the statement for each case. If (7.14) has
a solution of the form y = of w, then w satisfies the Riccati equation, i.e.

w' + w2 = r.
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Let c E F. By a change of variable, we may assume that c = 0 and drop the
subscript.

(ci) Suppose that 0 is a pole of r of order 1, then r = b/z -{- ... , where
b 0. The Riccati equation becomes

vav av b

Since av 0, v < 1 and [w] = 0. Substituting w = a/z + w into the
Riccati equation, we have

a a2 2a_ 2 b

z2 z2 z z
Therefore -a + a2 = 0, so a = 0 or a = 1. But, for a = 0, the point
0 would be an ordinary point for the left-hand side of this equation, so
a=1.

(c2) If 0 is a pole of r of order 2, then r = b/z2 + ... , where b 0. As in
(c1), [w] = 0 and -a + a2 = b. Thus the partial fraction expansion of
wat0is

f
a where a = 2 f 2 1 -{- 4b.

(c3) If 0 is a pole of r of order 2v > 4, then 0 is a pole of w of order v, as we
saw in the proof of Theorem 7.3.2 from (7.15). We put r = - [/].
We then have r = [v']2 -{- 2r[fr] -{- r . This equality, together with
w = [w] + a + w and the Riccati equation, gives

z

(7.21)
([w]+[fr]

2).([w]-[)=-[wJ +---[w]
-2W [w] -

u2 - uW - w2 + 2r[fr] -{- r .

z z
We may observe that the right-hand side of this equation does not

have terms in z-Z, for i > v -{- 2 as v > 1. Now ([w] -{- [\/) + ([w] -
[f) = 2[w]. Hence at least one of the factors in the left-hand side of
the equation has a term in z-'. If the other factor were not zero, it
would have some term in z-Z, for i > 2, which would contradict the
observation above. We then obtain [w] = f [fr].

The coefficient of z-"-1 in the right-hand side of (7.21) is fva +
2aa + b, where a is the coefficient of z- in [fr] and b is the coefficient

of z-v-1 in 2r[fr] + r = r - [/]2. Therefore a = 2 (±b/a + v).

(c4) Finally we consider what happens when 0 is an ordinary point of r. As
in (ci), [w] = 0 and -a + a2 = 0. Contrary to the situation in (ci),
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we cannot conclude that a 0. Hence the component of the partial
fraction expansion of w at 0 is either 0 or 1/z.

We collect together what we have proved so far. Let I' be the set of
poles of r. Then

aS(C) n 1

z-c z-d2
cEI' i=1

where R E C[z], s(c) _ + or -and [wJ, are as in the statement of the
proposition. We now consider the Laurent series expansion of w at oo. Then
R will be determined by [w].

If by(ool) r has order v> 2 at oo, then r = Z>v v . The Riccati equation
z

implies that [w] = 0 and -a + a = 0, so a = 0 or 1.

(oo2) If r has order 2 at oo, then r = >i>2 v . The Riccati equation implies
z

that [w]
1 1= 0 and -ate + a = b2i so a = 2 f 2 1 + 4b2.

(003) In the other cases, the order of r at oo must be even, by the necessary
conditions in Theorem 7.3.2. Reasoning as we did in (c3), we find

that [w] = a = 2 (+ a - where a is the coefficient

of z" in [/] and b is the coefficient of z"-1 in r - [\/].

We now know that the partial fraction expansion of w has the form

w

( S(C)) n

= S(C)[W]+ +d+8(00)[w]QO.
cEf'

Now we apply the residue theorem (see e. g. [F], 10.21) to the 1-form
wdz. Its residue at a point c of the complex plane is a and its residue at 00
is -ate . We then obtain cEF a + n - a = 0; hence a - cEF a E N.

Let

S(C)9(
= s(c)[w]c +

)
+ s(oo)[w]z-c

cEr

and

n

P=fl(z_d).
i=1
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Then w = 19 + P'/P. Again, using the Riccati equation, we obtain

P" + 219P' + (19' + X92 - r) P = 0.

Conversely, if P satisfies this equation, then w = 19 + P'/P satisfies the
Riccati equation. Hence y = Pef is a solution of the differential equation
(7.14). U

Example 7.3.5. 1. Let us again consider the Chebyshev differential equa-
tion

(7.22) _ (a2 - 1/4)x2 - a2 - 1/2 Y
(z2-1)2

We shall now determine if it admits a solution of the form y = of W , with
w E C(z).

We have

[w]i=[w]_i=0,c1=a_1=,a1=a_1=.
Fora74 fl/2,

f 1 i

For a = fl/2,

[w] =0,a =0,a = 1.
Hence d = a nonnegative integer only when
a = f1/2 for s(-1) _ -s(1), s(oo) _ -and in this case d is 0. So
the differential equation (7.22) has no solution of the form e1°', with
w E C(z) for a 74 f1/2. The candidates for t9 in the case a = f1/2 are

3/4 1/4 1/4 3/4
z-l+z+l' 2 z-l+z+lAs

d = 0, we just need to check if t9 satisfies the Riccati equation

-3 4#+X92 =
(z2 -1)2We

obtain that both candidates for t9 do, so the differential equation

Y _ -3 Y
4(x2 - 1)2

admits the independent Liouvillian solutions
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Yi = (z - 1)3"4(z + 1)1/4, Y2 = (z - 1)11'4(z + 1)3/4.

We observe that both are algebraic over C (z) and satisfy y1 Y2 E C (z) .

The differential Galois group of the differential equation is the cyclic
group C4.

2. Let us again consider the equation in Example 7.3.3.3. The poles of r are
Cl = c2 = -i// of order 2. We then have, following the notations
in Proposition 7.3.4, [w]C1 = 0, a, = a 2 = 2/3, ail = a= 1/3;

[w]00 = 0, a00 = 5/8, a00 = 3/8. Then ds = a00 °O) - a22) is never
an integer. Hence case 1 is not possible.

3. Let us again consider the equation in Example 7.3.3.4. The poles of r are
0,1 of order 2. We then have [wJo = [wJl = 0, a = 5/8, a = 3/8, 4- =
1, a1 = 0; [w]00 = 0, a = 2/3, a00 = 1/3. Then ds = a00 °O) -a0(o) -as(1)

0 1

is never an integer. Hence case 1 is not possible.

4. Let us again consider the equation in Example 7.3.3.5. The poles of r are
Cl = 1/\/, c2 = -l/\/g of order 2. We then have [w]1 = [wJ2 = 0, a i =
7/10,a = 3/1O, c 2 = 3/5,a = 2/5; [w]00 = 0,a = 3/4,a = 1/4.

S(00) S(C1) S(C2)Then ds = a - c - ais never an integer. Hence case 1 is not
possible.

7.3.3. The algorithm for case 2. The goal is to find a solution of (7.14)
of the form y = e1°, where w is quadratic over (C(z). As in case 1, we will
collect local data at the poles of r and at oo. From these, some will be
retained and used to form candidates for a rational function i9. For each
of these candidates, we shall search for a polynomial P E C[z] of a certain
degree satisfying a differential equation. If no such polynomial exists for any
family, then case 2 cannot hold. If such a polynomial does exist, then w will
be obtained as a root of a quadratic equation whose coefficients are given in
terms of the rational function q5 = z9 -I- P .

Proposition 7.3.6. Let r e C(z) satisfy the necessary conditions for case
given in Theorem 7.3. ,2. Let I' denote the set of poles of r in the complex

plane.

Step 1. For each c e I' U {oo}, we define a set Ed as described below.
(ci) If c e I' and c is a pole of order 1, then

Ed _ {4}.

(c2) If c e I' and c is a pole of order , then

Ed ={2+k 1+4b : k=0,f2}f17L,
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for b the coefficient of (z-c)-2 in the partial fraction expansion
for r.

(c3) If c e I' and c is a pole of order v > 2, then

E _ {v}.

(001) If the order of r at oo is > 2, then

E = {O,2,4}.
(002) If the order of r at oo is 2, then

+4b : k=0,f2}n7G,

where b is the coefficient of 1/z2 in the Laurent series expan-
sion of r at oo.

(003) If the order of r at oo is v < 2, then

E = {v}.
Step . We consider the families (e)euoo with e E E. Those families, all

of whose coordinates are even, may be discarded. For each remaining
family, let

cEr

If d is a nonnegative integer, let

1 e2oErz-cStep
3. For each of the i9 considered in step 2, search for a polynomial P of

degree d satisfying the differential equation

(7.23)
P"'+t9P"+ (302 +30' -4r)P'

+('O" + 300' + t93 -4r'O -2r')P= 0.

If such a polynomial exists for some (es), then set b _ t9 + P'/P
and let w be a solution of the quadratic equation

1 1
(7.24) w2 + w + (2 ' + 22 - r) = 0.

Then y = of w is a solution to (7.1/x).
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If d is not a nonnegative integer for any of the families (es) considered
in step 2 or there is no polynomial solution to (7.23) for any of the families
(es) retained for step 3, then (7.14) has no solution of the form y = of w,
with w quadratic over C(z).

Proof. In case 2, the differential Galois group G of the differential equation
(7.14) is conjugate to a subgroup of

D+={ I 1 I I __1 Il\ / J l\ / J

which is not triangularizable as case 1 does not hold. Let yl, y2 be a
fundamental set of solutions of (7.14) corresponding to the subgroup of
D. For any differential automorphism a of C(z)(yl,y2) over C(z), either
a'yl = cyl, cTy2 = c-lye or vyl = -c 1y2, vy2 = cyl, for some c E (C, c 0.
We then have o-(yly2) = yiy2, for all v; hence yly2 E C(z). Moreover,
y1y2 C(z), as G is not triangularizable and so v(yly2) _ -y1y2, for some
v E G. We write

m

(Y1Y2)2 = [J(z - )ec fJ(z -

cEF i=1

where F is the set of poles of r and the exponents fi are integers. Our
goal is to determine these exponents. Let

(yiy)' = (?)' 1 e 1
m

fz

y1y2 2yiy2 2 cEr
z - c + 2 Li z - di .

As q = yl/yl + y2/y2, it follows that

(7.25) q" + 3qq' + 53 = 4rq + 2r'.

We first determine e for c E F. In order to simplify the notation, we assume
that c = 0.

(ci) Let us assume that 0 is a pole of r of order 1. The Laurent series
expansions of r and q are of the form

r=b_iz'+...(b_i0)
1

= 2ez-1 - f + ... (e E 7L, f E

Substituting these series in (7.25) and retaining all those terms that
involve z-3 and z-2, we obtain the following
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3 3 1 3ez-3 +... _ 4e2z-s _ 2e fz-z + ... + 8e3z-3 + 4 fz2 + .. .

Therefore e - 4 e2 + 8 e3 = 0, so e = 0, 2, 4. Also - Ze f + 4 e2 f
2b_1e - 2b_1. As b_1 0, e 0, 2. Hence e must be 4.

(c2) Assume that 0 is a pole of r of order 2 and let

r = b_2z2 + ... (b_2 0)
1

.. .= 2 ez-1 +.

Equating the coefficients of z-3 on the two sides of (7.25), we obtain

e - 4 e2 + 8 e3 = 2eb_2 - 4b_2.

The roots of this equation are e = 2, e = 2±2/1 + 4b_2. Of course, the
latter two roots may be discarded in the case that they are nonintegral.

(c3) Assume that 0 is a pole of r of order v > 2. Then

r = b_z_" + . .. (b_i, 0)
1

.. .= 2 ez-1 +.

Equating the coefficients of z-v-1 on the two sides of (7.25), we obtain

0 = 2eb_v - 2vb_v.

Hence e = ii.

(c4) Finally, if 0 is an ordinary point of r, as in (ci), we obtain f2 = 0, 2, 4.
We can of course exclude the possibility f2 = 0.

We have shown so far that

y1y2 = 11(z - C)ec F2,
cE I'

where e E E and P E C[z]. Set

1 e
2 z-c'

cE I'

so

1 Jiy2 =9+-.
2 Jiy2 P
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The next step of the proof is to determine the degree d of P. By the
residue theorem (applied to the differential 1-form adz), we obtain e _
>cEF e + 2d, for e the coefficient of z in the Laurent series expansion of

at oo. We discuss the different cases according to the order of r at oo.

(ooi) Assume that the order of r at oo is 1. As in (ci) we find that e = 0,2
or 4.

(002) Assume that the order of r at oo is 2. As in (c2) we find that e _
2, 2 f 2/1 + 4b_2i where b_2 is the coefficient of z2 in the Laurent
series expansion of b at oo and e must be integral.

(003) Assume that the order of r at oo is v. As in (c3) we find that e = v.

Note that at least one of the E I') is odd since y1y2 0 C(z).
Using (7.25) and the equation b _ t9 + P'/P, we obtain

(7.26) P"' + 3t9P" + (302 + 30' - 4r)P' + (t9" + 3t9t9' +X93 - 4r0 - 2r')P = 0.

Now we have - - and - 2r - 2 - 2 - 2r - - 2
Y1 Y2 Y1 Y2 Y1 Y2

1 2 1 1 2Hence = '- + - - r. Let w be a root of the quadratic equation
Y1 Y2 2 2

1 1
(7.27)

To complete the proof we need to show that y = of W is a solution of the
differential equation (7.14). From (7.27), we obtain by differentiation

(2w -)w' = 'w-

The factor (2w - q5) cannot be zero. Indeed, if b = 2w, then (7.27) would
give w' + w2 - r = 0, soy = of W would be a solution of (7.14). But then

w = Z E C(z), which is excluded, as we are assuming case 1 fails. Using
(7.27) and (7.25), we have

2(2w - q5)(w'+ w2 - r) _ -q5"- 3q5q5' - q53 +4rq5+2r' = 0.

Thus w' +w2 = r so y = of " is a solution of the differential equation (7.14).

Example 7.3.7. 1. Let us again consider the Chebyshev differential equa-
tion
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(7.2g) Y" =
(a2 - 1/4)z2 - a2 - 1/2 Y

(z2 - 1)2 '

with a i f1/2. We shall now determine if it admits a solution of the
form y = of w, with w quadratic over (C(z). We have

E1=E_1={1,2,3},

The unique triple (e1, e_1, not having all components even, satisfy-
ing that d = (e - e1 - e_1)/2 is a nonnegative integer is (1, 1, 2) and
gives d = 0. We then have

2ifz11+z+1)As
d=0, we look for w satisfying the quadratic equation

w2 + w+ (2 /+ 2X92 - r) = 0.

The root

z + 2a z2 - 1
W= 2(z2-1)

satisfies the Riccati equation. Hence

y = of w = (z2 - 1)1/4 (z + z2 - 1) a

is a solution to the Chebyshev differential equation.

2. Let us again consider the equation in Example 7.3.3.3. The poles of r are
Cl = i/\, c2 = -i/\ of order 2. Following the notations in Proposition
7.3.6, we obtain E = {2}, so the only possible value of
d = (e - eel - )/2 is negative and case 2 is not possible.

3. Let us again consider the equation in Example 7.3.3.4. The poles of r
are 0,1 of order 2. We obtain Eo = {2}, E1 = {1, 2, 3}, E = {2}, so
d = (e - eel - e2)/2 is always negative and case 2 is not possible.

4. Let us again consider the equation in Example 7.3.3.5. The poles of r
are Cl = l//, c2 = -l// of order 2. We have E =
{1, 2, 3}, so d = (e - eel - )/2 is always negative and case 2 is not
possible.
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7.3.4. The algorithm for case 3. In this section, we describe the algo-
rithm for case 3. Taking into account Theorem 4.6.1 and Proposition 4.6.10,
in this case the differential Galois group of the differential equation is either
the tetrahedral group, the octahedral group, or the icosahedral group. The
aim of the algorithm is to find an irreducible polynomial A E C(z) [T] such
that if w is a root of A, then y = of W is a solution to (7.14).

The next proposition indicates how we can find the coefficients of the
polynomial A. We recall that y = of W being a solution to Y" = rY is
equivalent to w being a solution to the Riccati equation w' + w2 = r.

Proposition 7.3.8. Let w satisfy w' + w2 = r and let

n-1T"- a2 Ti

i=O

be the minimal polynomial of w over (C(z). Then the coefficients ai satisfy

(ri-i)(i+1)ra+i + ai_i + ai + sai =0,
where s = an_ 1 and we put an = -1, a_ 1 = 0.

Ti, with an = -1. Consider the polynomialProof. Put A = n a2
> (n 2)Iz - .

aA 2 aAB = (r - T )+---+(riT+s)A,
aT az

where s = an_1. The coefficient of Tn+1 in B is -nan + nan = 0 and the
coefficient of Tn in B is

-(n - 1)a_1 + an +nan-1 + san = an-1 - s = 0,

since an = -1 and s = an_ 1. Therefore B has degree < n in T. But

B(w) = aT (w)(r_w2)+(w)+(nw+s)A(w) = dz (A(w))+(nw+s)A(w) =0.

Hence B = 0. The coefficient of T i in B is

0 a2(i + l) n ail i r - (i - 1) (n-i-i)! + (n-ia+n
Z-1 +s Z(n-i)!

(n 1 2)!
[(n - i)(i + 1)rai+l + ai_1 + a2 + sai],

t
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where a_1 = 0, which gives the relations in the statement. 0

Our aim is now to establish a converse of the preceding proposition. To
this end, we consider the following recursive differential equation

(7.29)
an -1 .

a2_1 = -a2 - sae - (n - 2) (2 + 1)ra2+1, 2 = n,. . . , 0

and define a solution of (7.29) as an element s in C(z) such that when
an,. .., a_ 1 are defined as above, then a_ 1 is identically 0.

Proposition 7.3.9. Let s be a solution of (7.29) for some n and let w be
any root of the polynomial

n

A=> a2
T Z .

z=o
(n-i)!

Then y = of w is a solution of the differential equation Y" = rY.

Proof. We claim that

ak+iA ak+iA 3/CA 8k-lA

BTk+i (T 2-r) = BTkaz+n-2k)T+s) BTU+k(n-k+l) 8Tk-i ' k = 0, 1, ... .

For k = 0, we have

aT
(T2 - r) _ (i=i (nZ)iTT2 _ r)

= naTn+i + o
aa2 +1 _ VZ o (i + 1)raz+17,i

(n - i)! (n - 1 - i)!

= nTA - >Zo (n - i)az 7,i+i _ sn-i (n - i) (i + 1)rai+1 TZ
(n - i)! Z- (n-i)!

Z,z= nTA - Z o aZ_i Z,Z - Vi (n - i) (i + 1)ra+i
(n - i)! (n-i)!

_ (nT + s)A - IIi=O (n 1 i)! (sai + ai-1 + (n - i)(i + 1)rai+l)TZ

_ (nT + s)A + o a aA
2 TZ = (nT+s)A+

.

(ri - i)! 8z

If we now assume that the equality holds for k, i.e. that we have

/c kA 3k-1

Aa aTka-laz+((n-2k+2)T+s) aT -1 +(k-1)(n-k+2)
aT3k-2

kA,

aTk
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taking in both sides the derivative with respect to T, we obtain

Dk+lA akA
T2

2T

Dk+lA 3k-iA
22k)- r) +

aTk
(

BTU+i
( +

8Tk8z + (n - )
0T'-1

which gives the equality fork + 1.
To show that y = of w is a solution of (7.14) is equivalent to show that

w' + w2 = r. We assume that w' + w2 - r 74 0 and force a contradiction.
Since A(w) = 0, we have

(W)w +-(w)=0.

Therefore

+ w - r) = --(w) + (nw + s)A(w) + -(w) =0.

Hence (DA/DT)(w) = 0. We want to prove (0'A/0T')(W) = 0 for all k. We
have A(w) _ (DA/DT)(w) = 0. Let us assume that

aTk (w)= o.

We then have

Thus

Dk+lA

aTk+l
(w)w

+ aTkaz =0.

Dk+lA Dk+lA ak+l A

BTU+i
(w)(w' + w2 - r) _ - aTkaz +

k 3k -l

+((n - 2k)c. + s)T (w) + k(n - k + 1) Tk A(w) = 0,

so (ak+lA/aTk+l)(w) = 0. But

na
8Tn

w) _ -n! 740,

so we have reached a contradiction which proves the proposition. O
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The next two propositions give information on the degree n of the min-
imal polynomial over C(z) of an element w = y'/y for y a solution of the
differential equation.

Proposition 7.3.10. Let y be a solution of (7.14) and w = y'/y. Let G
denote the differential Galois group of the equation.

a) If G is the tetrahedral group, then degC(z) w > 4 and we have equality for
some solution y.

b) If G is the octahedral group, then degC(z) w > 6 and we have equality for
some solution y.

c) If G is the icosahedral group, then w > 12 and we have equality
for some solution y.

Proof. With the notations in Proposition 4.6.10, we observe that the matrix
-D is an element of order 6 in 2A4, E is an element of order 8 in 254, and
DBF is an element of order 10 in 2A5. Let y be an eigenvector of each of
these matrices. Then w is fixed by a cyclic subgroup G1 of G of order 6, 8,
or 10 respectively, hence has degree < 4, 6, or 12 over C (z) .

Now, for any solution y of the differential equation, let G1 be the sub-
group of G fixing w. Completing y to a basis y, y2 of the space of solutions
and substituting G by a conjugate so that G is the Galois group of the
differential equation relative to the basis y, y2, we have that all matrices in

G1 have the form
d

1 . If G1 has order m, then c is an mth rootO -
of unity. We want to see that G1 is cyclic. If not, take A a matrix in G1
of maximal order n and conjugate G1 to make A diagonal. If B is another
element in G1, its order must be a divisor of n and, if B were not diagonal,

G1 would contain a matrix of the form
1 d

contradicting its finiteness.
0 1

So G1 is cyclic and C1/{±1} is a cyclic subgroup of A4, 84, or A5; hence its
order is < 3, 4, or 5. So G1 J < 6, 8,10 and degc(z)w > 4, 6,12. LI

Proposition 7.3.11. a) Suppose that (7.29) has a solution s E C(z) for
n = 4. Then the polynomial

3

T4 - a Ti E C(z)[T]
i_O (4-i)!

is irreducible over (C(z).

b) Suppose that (7.29) has a solution s E C(z) for n = 6. Then the polyno-
mial
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5

T6 - aTZ E
i=O

is irreducible over C(z).

c) Suppose that (7.29) has a solution s E C(z) for n = 12 and has no
solution in C(z) for n = 4 and n = 6. Then the polynomial

11

T12 a2 Z (

i=0
UI.

Proof. By Proposition 7.3.9, any root w of one of the three polynomials in
the statement satisfies that of w is a solution to Y" = rY. By Proposition
7.3.10, this implies degC(z) w > 4. We then obtain the irreducibility of the
polynomial in a) and b). Now, for c), if the polynomial had some factor of
degree < 12, then, by Proposition 7.3.10 again, the differential Galois group
of the equation Y" = rY would either be the tetrahedral or the octahedral
group. But then, by Proposition 7.3.8, (7.29) would have a solution for
n=4orn=G. 0

Our aim is now to find a solution to (7.29) in an effective way.

Proposition 7.3.12. Let F be any homogeneous polynomial of degree n in
solutions of (7.14). Then s = F'/F is a solution of (7.29) for n.

Proof. First we prove that if F1, F2 are elements in a differential extension
of C(z) such that s1 := F'/F1 and 82 := F2/F2 are solutions of (7.29) for n,
then 53 := (ciFi + c2F2)'/(c1F1 + c2F2) is a solution of (7.29) for n for any
c1, c2 E C. Let a, a2, a3, i = n, n - 1,... denote the sequences determined
by (7.29) for Si, s2, 53 respectively. We claim that

(ciFi + c2F2)a3 = c1Flai + c2F2a2.

This is clear for i = n, since an = -1, j = 1, 2, 3. By induction

(ciFi + c2F2)a3 1 = (ciFi -I- c2F2)[-air -I- s3a3 - (n - i)(i + 1)ra +1]
_ -[(c1F1 + c2F2)a3]' - (n - i)(i + 1)r(c1F1 + c2F2)a +1
_ -[c1Fla? + c2F2a?]' - (n - i)(i + 1)r(c1Flai+11 + c2F2a +1)
= c1Flai-i + cZF2az i

Therefore
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(ciFi + c2F2)a31 = c1F1a1 1 + czFza? 1.

Hence a31 = 0.
Now, to prove the proposition, we may assume that

n

F = yi

i=1

where y1, y2, ... , yn are solutions of (7.14). Let w2 = y/yi and denote by
Fmk the lath symmetric function of y1, ... , ym . First we claim that

O'mk = (m + 1 - k)ram,k-1 - m1 Fmk + (k + 1)Um,k+1

For m = 1, the formula is clear since a-11 = w1, 0-10 = 1 and w1 satisfies
wl = r - w?. Assuming it true for m - 1,

i
Fmk (gym-1,k +

Um-1,k-1Wm)i

(m - k)ram-1,k-1 - m-1,1 m-1,k + (k + 1)Um-1,k+1
+[(m + 1 - k)ra'm_1,k_2 - O'm-1,1 m-1,k-1 + kUm_1,k]Wm

2
+Urn-1,k-1(r - wm)

(m + 1 - k)r(am_1,k_1 + urn-1,k_2Wm)
-(a'm-1,1 + Wm) (Om-1,k + Um-1,k-1Wm)
+(k + 1) (Um-1,k+1 + (Tm-1,kWm)

(m + 1 - k) r am, k -1 - m 1 Fmk + (k + 1) Um, k+ 1

which completes the induction.

Next we use induction on i to prove that

ai = (-1)n-Z+1(n
- 2) .a'n,n_Z.

Fori=n-1, we have an-1=s=F'/F= = n1 Using (7.29), we
have

ai_ 1 = -a2 - sae - (n - i)(i + 1)rai+1
(-1)n-Z(n - 2)!a'n,n-i + o'n1(-1)n-Z(n -
-(n - i)(i + 1)r(-1)n-Z(n - 1 -
(-1)n-Z (n - i) ! cYn1 °n,n-i - (1 + 1) ran,n-1-i]

(-1)n-Z(n - 2)!(n - 2 + 1)a-n,n-i+1
(-1)n-ZCn - 2 +
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Hence

a_ = (-1)(n + l)!o,+i = 0.

The next proposition gives invariants of the groups 2A4i 254, and 2A5.

Proposition 7.3.13. Let G be the Galois group of (7.14) and let yl, y2 be
a basis of the solution space relative to the group G as given in Proposition
4.6. 10.

a) If G is the tetrahedral group, then (yi + 2/y1y2 + y2)3 E C(z).
b) If G is the octahedral group, then (yi5y2 - yly2)2 E C(z).
c) If G is the icosahedral group, then

a(yi + y2)3 + I3(yiy2(yi - y2))2 E C(z),

where

a = -5(1-f- i) + /(-1 + i) + (22- 6/L)(1 - i).

Proof. With the notations in 4.6.10, one can check that yi +2'yiy2 -I-y2
is invariant by the action of the matrix B and multiplied by a cubic root of
unity by the action of the matrix D. Hence (yi +2/y1y2 +y2)3 is fixed by
2A4i so belongs to C(z). Analogously, yly2-y1y2 is invariant by the action of
D and changes sign under the action of E, so (YY2 -YiY)2 is fixed by 254, so
belongs to C(z). Finally y1y2(yl -y2) is invariant under the action of both B
and D, so a(yl + 2/yiy2 + y2)3+Q(y1y2(yl -y2))2 is also for all a,Q E C.
Now it can be checked that a(yl -I- 2\/:yiy2 + y2)3 + /3(y1y2(yl - y2))2 is
also invariant by the action of F for the values of a and 1 6 in the statement,
hence fixed by 2A5i so belongs to C(z).

From these invariants, we obtain in each case a particular solution of
(7.29) suitable for explicit determination.

Proposition 7.3.14, a) If G is the tetrahedral group, then (7.29) has a
solution s = u'/u, where u3 E C(z), for n = 4.

b) If G is the octahedral group, then (7.29) has asolution s = u'/u, where
u2 E C(z), for n = 6.

c) If G is either the tetrahedral group, the octahedral group or the icosahedral
group, then (7.29) has asolution s = uI/u, where u E C(z), for n = 12.
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Proof. This follows from Propositions 7.3.12 and 7.3.13. LI

We now write

= fJ(z - C) E C(z),
cEC

where n = 4, 6, or 12 and e E 7G. As in the other cases, the algorithm
determines the possible values for e using local conditions, then decides
which families give a global solution. We describe the algorithm in the
following proposition.

Proposition 7.3.15. Let r E C(z) satisfy the necessary conditions for
case 3 given in Theorem 7.3.2. Let I' denote the set of poles of r in the
complex plane. Let n be the degree of the polynomial equation for w we are
looking for.

Step 1. For each c E r U {oo}, we define a set E as described below.
(c1) If c E r and c is a pole of order 1, then

E _ {12}.
(c2) If c E I' and c is a pole of order 2, then

1+4b: k=0,fl,f2,...,f2}n7L,

for b the coefficient of (z-c)-2 in the partial fraction expansion
for r.

(001) If the order of r at oo is 2, then

1+4b : k=0,fl,f2,...,f2}n7L,

where b is the coefficient of 1/z2 in the Laurent series expan-
sion of r at oo.

(002) If the order of r at oo is > 2, then

121 nE = {6+ : k = 0,±1,±2,...,±-} nZ.
n 2

Step 12. We consider the families (eC)CEruoo with e E E. For each such
family, let

d 12 (e - >ec).

cEr
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If d is a nonnegative integer, the family is retained; otherwise it
is discarded. If no families are retained, then w cannot satisfy a
polynomial equation of degree n with coefficients in (C(z).

Step 3. For each family retained from step , let

nB _ e
- c'12z

cEr
S=fJ(z_c).

cEr

Next search for a polynomial P E C(z) of degree d such that when
we define polynomials Pn, Pi,. , P_1 recursively by the formulas
below, then P_1 is identically zero.

Pn=-P
(7.30) P2-1 = -SP i -I- ((n - i)S' - SB)Pi - (n - i)(i + 1)S2rP2+1>

(i=n,n-1,...,0).
If such a polynomial exists for some (ed), let w be a root of the
polynomial

n
Sz Pi

T2=0.(n - i)!i_o

Then y = of W is a solution to (7.14).

If no polynomial P is found for any family retained from step 2, then
(7.14) has no solution of the form y = of W, with w algebraic of degree n
over C(z).

Proof. We first determine the sets E of possible values of e in step 1. For
ease of notation we assume c = 0 and write e = eo . We use the Laurent
expansions for

u1 n (2c12/n)/ n
s

u 12 u12/n 12ez -I- .. .

and for r, namely

r = b_2z_2

+ b_1z-1 +. .. ,

with b_2, b_1 E C. Note that by the necessary conditions in Proposition
7.3.2, r has no pole of order > 2. The proof is more involved than in the
other cases. We split it in several lemmas.

Lemma 7.3.16. If b_2 = 0 and b_1 # 0, then e = 12.
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Proof. We write

n
s 12ez-1 + f + .. .

and treat e and f as indeterminates. Then, using (7.29), we can write

(7.31) ai = Aiz2- + Ci f

where Ai, Bi, CZ are polynomials in e with coefficients in C satisfying the
following recursive relations.

n
An = -1, Ai-1 = (n - i - e) A,

12

n
Bn = 0, Bz-1 = (n-i-1-e)B-(m-i)(i+1)b_iAj+i,

Cn = 0, CZ_ 1 = (n - i - 1 -
n

e CZ - AZ,
12

for i = n,. . . , 0. The solution to these equations is given by

n-i-1
Ai = - fi (i-fe)

Bi

j=0

n-i-2 n-i-2
(j + 1)(n - j) fi (k

j =O k=o
k5j

n-i-2
Ci = (n-i) II (j

j=0

Since 0 = a_1 = A_1z+ B_lz-n - C_1 f z_n + ... , we obtain

n

and

n
12e

n
12

n0=A_1=-fl(j-
12e)

j=0

0 = B_1+C_if
n-1 n-1 n-1

= e).
k=0j=0

k5zj
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The first equation implies that

12l
e ,

n
for some l = 0, ... , n. Suppose that l n. Then the second equation gives

n-1

0 = b_1(l+ 1)(n- l)fl(k- 1),
k=0

which implies that b_1 = 0. This contradiction shows that l = n and there-
fore e = 12.

Lemma 7.3.17. If b_2 L 0, then e is an integer chosen from among

a) 6 + k 1 + 4b_2, k = 0, ±3, ±6 if n = 4,

b) 6 + k 1 +4b_2, k =O,±2,±4,±6 if n = 6,
c) 6 + k 1 +4b_2, k =O,±1,...,±6 if n = 12.

Proof. Writing again a2 as in (7.31) and using (7.29), we obtain

Az-1 = (n - i - 12e) Ai - (n - i)(i + 1)b_2A2+1

If y is a solution to (7.14), y = zµ+... its Puiseux series expansion, we have
µ(µ - 1) = b_2. Assuming b_2 ,-E 1/4, the differential equation has Puiseux
series solutions of the form

yl = z1`1 +... where µl = (1 + 1 + 4b_2)/2,
y2 = zµz +... where µ2 = (1 - 1 + 4b_2)/2.

By Proposition 7.3.12, (yly2-Z)'/(yiy2-Z) is a solution of (7.29) for n. Since

2 fl-Z\/
YiYn-z) - (zµi+(n-i)µ2)z-1+... _ \2 - \2 -i) 1+4b_2) z1+...
Y1 Y2

the polynomial A_1 must vanish for

n n 1
(7.32) fe = - - _ i 1 + 4b_2.

2 2 2

a) For n = 4 and b_2 L 1/4, we obtain from (7.32), e = 6 + k/1 + 4b_2i
k = 0, f3, f6. If b_2 = -1/4, by direct computation we obtain A_1 =
(e-6)5/243.
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b) For n = 6 and b_2 1/4, we obtain from (7.32), e = 6 + k/1 + 4b_2i
k = 0, f2, f4, f6. If b_2 = -1/4, by direct computation we obtain
A_1 = (e - 6)7/128.

c) For n = 12 and b_2 1/4, we obtain from (7.32), e = 6 + k/1 + 4b_2i
k = 0, +1,.. . , f6. If b_2 = -1/4, by direct computation we obtain
A_1 = (e-6)'3.

Lemma 7.3.18. If b_2 = b_1 = 0, i. e. at an ordinary point of r, we have
that (n/12)e is an integer.

Proof. As in the proof of Lemma 7.3.16, we obtain

for some l = 0, ... , n.

Let I' denote the set of poles of r. For c E I', let b denote the coefficient
of (z - c)-2 in the partial fraction expansion for r. Until now, we have
proved the following.

(1) In the tetrahedral case, (7.29) has asolution s = u'/u, for n = 4,
where

U3 = P3 f[(z -
cEr

P E C[z] and e E {6 + k 1 + 4b: k = 0, f3, f6} fl 7L.
(2) In the octahedral case, (7.29) has asolution s = u'/u, for n = 6,

where

U2 = p2 fJ(z -
cEr

P E C[z] and ecE {6 +k 1 + 4b : k = 0, +2, +4, ±6} n 7L.
(3) In either the tetrahedral case, the octahedral case, or the icosahe-

dral case, (7.29) has a solution s = u'/u, for n = 12, where

u=P
cEr

P E C[z] and e E {6+k\/1+4b:k=0,+1,...,+6}fl7L.
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Let d be the degree of the polynomial P. Then the Laurent series for s
at oo has the form

n 12

S 12
z-i

cEr

and the Laurent series for r at 00 has the form

r='yz-2+-...

since by the necessary conditions in Proposition 7.3.2, the order of r at 00
is at least 2.

If we let

d
n

cEI'

then it can be proved as in Lemma 7.3.17 that e satisfy the conditions in
the statement of Proposition 7.3.15. Also

n
d 12 (eo_ec

cEr

must be a nonnegative integer. This is the justification of step 2 of the
algorithm.

We shall complete the proof of the algorithm by showing that the recur-
sive relations of step 3 are identical with (7.29). Let

B= n eO and S=fJ(z-c).
12 z-c

cEr SEr

Then s = u'/u = P'/P +- B. Also set Pi = Sn-tPai. Using (7.29), we have

Pn
Pi- 1

-P
Sn_t+1 Pa -t 1
Sn_i+1 P(-ai - sai - (n - i)(2 + 1)rai+1)

-S(Sn-tPai)' +- (n - i)Sn-tS'Pai +- Sn_t+1P'ai

-S(P' +- PB) (Sn-tai) - (n - 2) (2 + 1)S2r(Sn-t-1 Pai+1)

-SP! +- ((n - i) - SB)Pi - (n - i) (i + 1)S2rPi+1.

This is exactly (7.30) in step 3 of the algorithm. Finally the equation
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may be rewritten as

IL'
)

n-1
aiwn = wi

( _ i I

2=0

nn-1
0 = - Sn Pwn +

SZ Pi iSn Pai i(n_i)!W = w.(n-i)!
0

Example 7.3.19. The computations in these examples have been made
with Maple.

1. Let us again consider the equation in Example 7.3.3.3. The poles of r are
cl = i/\, c2 = -i/\ of order 2. Following the notations in Proposition
7.3.15, with n = 4, we obtain {4, 5, 6, 7, 8}, E = {3,6,9}.
The only nonnegative integer value of d = (e - eel - e2)/3 is 0, with
e = 9, {e, e2} = {4, 5}. We choose eel = 5, e= 4 and put

9z + i/\8=
2

S=z --1/3.
3z

2

We obtain that the differential equation has a solution of the form
= of `', for w a root of the irreducible polynomial

4
' i Pi iT,

i=O
(4 _ i) !

where

P4=-1

P 33 = z+
9

4
2 25 /iP1=gz+ gz+216z

216
p __243y4_3v2y3_ 7172 13\/i - 1

° 32 4 432 972 864

The second choice of e1, gives the conjugate of this polynomial by
WF-

2. Let us again consider the equation in Example 7.3.3.4. The poles of r
are 0,1 of order 2. Following the notations in Proposition 7.3.15, with
n = 4, we obtain E° = {6}, El = {3, 6, 9} and E = {4, 5, 6, 7, 8},
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so d = (e - eel - )/3 is always negative. For n = 6, we obtain
Eo = {5,6,7},E1 = {3,4,5,6,7,8,9} and E = {4,6,8}, so the only
nonnegative integer value of d = (e - eel - )/2 is 0 which occurs for
eo = 5, e1 = 3, e = 8. We then put

8z-5
B= 2z(z-1)' S=z(z-1)

and obtain that the differential equation has a solution of the form
r = of W, for w a root of the irreducible polynomial

6
SZ P2

7'2
2=0 (6 - 2)i

where

P6=-1

P5=4z--2
2

P4=-z40 2 1595 165

3 + 96

z-
32

P
320 3 19085 2 11815 1353 _
9 z

-
288 z+ 288

-
z

16

P
-640 4 705 s 250795

z2
154405 52652 _

9 z + 4 z
-

1536 + 2304

-
z

512

P
2560 5 - 5275 4 1664435 s - 6136255 2 4895 8505

1

_
z z

+
z z

+
z -

27 18 4608 27648 72 1024

390462455 s 179120705 2P
5120 s 18950 5 4973285 4

+
-

°

_ -
z +

-
z

81
z

1382481 1327104
z

1327104
z

539485 54675

16384
z

16384
3. Let us again consider the equation in Example 7.3.3.5. The poles of r

are Cl = 1//, c2 = -1// of order 2. With n = 4, we obtain
{6},E = {3,6,9}, so d = (e - eel - is always negative.

With n = 6, we obtain {6},E = {3,4,5,6,7,8,9}, so
again d = (e - eel - e2)/2 is always negative. With n = 12, we
obtain {4,6,8},E2 = {5,6,7},E = {3,4,5,6,7,8,9}, so the
only nonnegative value of d = e - eel - is 0, which occurs for
eel = 4, e = 9. We put
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9z - 1/
S=z2-1/5.

z-1/5

We obtain that the differential equation has a solution of the form
= of w, for w a root of the irreducible polynomial

12 Si Pi
7'2(12 - i)!

2=O

where

P12 = -1
5P11 = 45z - v

5. 102P10 = 11(-3375x2 + 152/gz - 5)
5. 103P9 = 32 11(28125x3 - 1925gz2 + 135z + /)
2. 104P8 = 32 11(-759375x4 -F 70200E z3 - 7826x2 - 88/gz + 17)

52 104P7 = 32 11(56953125x5 - 6665625 f z4 + 1044750x3
-F12794Vz2 - 5923z + 79fg)

5. 1O6P6 = 32 11(-5980078125x6 + 174943125x4
1725505x2 - -F 2113)

52 107P5 = 33 7. 11(64072265625x7 -
+2778890625x5 + 39685405x3

151485z + 1045V')
5. 1O9P4 = 33 7.11(-4805419921875x8 +

-293245312500x6 - 5443088750x4

43387980x2 - 17165)

52 1O9P3 = 34 7. 11(24027099609375x9 -
+1983107812500z7 - 44473713750x5

620549260x3 +
-742865z + 37330

5. 1011P2 = 34 7.11(-1081219482421875x10 +
-117017314453125x8 +
+3002510531250x6 - -F 66473149190x4

-F 160581937x2

38415)
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5 1012P1 = 34 7. 11(16218292236328125x11 -
+2244771826171875z9 -

63055095468750x7 + 7315325778750i/gz6

-2085651170250x5 + 73532772890/z4

-8475909695x3 + 128675127/z2 - 6136777z + 292010
5 1014Po = 35 7.11(-405457305908203125x12

+123979833984375000Vz11 - 70303293457031250z1o

+1863791015625000Vz9 + 2080083701953125x$

-292962854250000/z7 + 98995669922500x6

-4215079100720/gz5 + 609351970405x4 -
+889866670z2 - 8527480/z + 205195).
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Exercises

(1) Consider the second order differential equation

(7.33) Y" + al (z) Y' + a2 (z)Y = 0.

a) Compute the coefficients of the differential equation obtained from
(7.33) by making the change of variables z = 1/x.

b) Express the conditions for z = oo to be a regular point for (7.33) in
terms of al, a2.

(2) Consider the differential equation

dThY dY
(7.34)

dzn
+al(z) dzn-1 + ... + a-i(z) ---+a(z)Y=0

and set

(7.35) bl(x bn- x) Y + 0dx' dx'z-1 dx
the differential equation obtained from (7.34) by making the change of
variables z = 1/x. Prove that the two following conditions are equiva-
lent.
(a) exists and is finite for all i = 1... n.
(b) exists and is finite for all i = 1... n.

(3) Consider the differential equation

(7.36) Y"- 1+zYi+ 1Y=0.
z z

a) Compute the local exponents and the solutions at the regular singular
point z = 0.

b) Check that the general solution of the equation at the neighborhood
of z = 0 is holomorphic at z = 0. A singular point where the gen-
eral solution of the differential equation is holomorphic is called an
apparent singularity.

(4) Prove the claim in Remark 7.1.5.
Hint: By a change of variable, one can assume that the three singular
points of the equation are 0, 1, oo.

(5) Consider the Chebyshev differential equation

(1-z2)Y"-zY'+a2Y=0,
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where a E R. Check that its singular points are regular. Give the local
exponents at each singular point. Find the solutions as power series in
the neighborhood of z = 0.

(6) Consider the Legendre differential equation

(1-z2)Y"-2zY'+ n(n+l)Y=O,
where Ti E N. Check that its singular points are regular. Give the local
exponents at each singular point. Find the solutions as power series in
the neighborhood of z = 0.

(7) Provide the details of the transformation of a Flichsian differential equa-
tion of order 2 with three singular points into a hypergeometric equation
outlined in Remark 7.2.4.

(8) Using Theorem 7.3.2 determine which of the cases in Theorem 7.3.1 can
occur for Bessel's equation

_ 424(n2-z2)-1

(9) Using Theorem 7.3.2 determine which of the cases in Theorem 7.3.1 can
occur for Weber's equation

V" = (z - -ri)Y, ii E C.

(10) Using Theorem 7.3.2 determine which of the cases in Theorem 7.3.1 can
occur for Legendre's equation

2z , n (n + 1)Y +
2

Y - Y, nEN.-z 1 z2-1

For the remaining exercises, the reader may consult [Kov].

(11) Apply Kovacic's algorithm to the differential equation Y" = rY, where

2 1 7 5 1
2 3 4r = z -2z+3+-+--+-.

z 4z2 z3 z4
(12) Apply Kovacic's algorithm to the Bessel's equation

4n2 - 1 _1)YnEC.
4z

(13) Apply Kovacic's algorithm to the differential equation Y" = rY, where
r is a polynomial of degree 2 in z.

(14) Apply Kovacic's algorithm to the differential equation Y" = rY, where

_1 3r
z 16z2
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(15) Apply Kovacic's algorithm to the differential equation Y' = rY, where

3 2 3r=-
16x2 9(z- 1)2 + 16z(z - 1)

(16) Apply Kovacic's algorithm to the differential equation Y" = rY, where

5z+27
r 36(z - 1)2





Chapter 8

Suggestions for Further
Reading

In this last chapter, we briefly describe some of the topics in differential
Galois theory and related areas in which active research is being performed.

1. In his lecture at the 1966 International Congress of Mathematicians
[Ko3], E. Kolchin raised two important problems in Picard-Vessiot the-
ory.
1. Given a linear differential equation G(Y) = 0 over a differential field
K, determine its Galois group (direct problem).
2. Given a differential field K, with field of constants C, and a linear al-
gebraic group G defined over C, find a linear differential equation defined
over K with Galois group G (inverse problem).

Regarding the direct problem, Kovacic's algorithm, presented in Sec-
tion 7.3, determines in particular the differential Galois group of a homo-
geneous linear differential equation of order 2. An algorithm to determine
the differential Galois group of a homogeneous linear differential equation
of order 3 has been given by Singer and Ulmer in [S-U] and for order 4
by Hessinger [Hes] and later completed by Hartmann [Hal].

Singer [S] presents a very good survey on direct and inverse problems
in differential Galois theory. Later results were given by Mitschi-Singer,
who solved the inverse problem for connected linear groups, and Hart-
mann. (See [M-51], [M-S2], [Ha2].)

2. Some interesting topics in the analytic theory of differential equations are
the Riemann-Hilbert problem, Stokes phenomenon, and generalizations
of hypergeometric equations.

215
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At the end of the 1850's, Riemann was the first to mention the prob-
lem of the reconstruction of a Fuchsian equation from its monodromy
representation. Hilbert included it, with the following formulation, as
the 21st problem in his list of Mathematical Problems given at the 1900
International Congress in Paris.

Prove that there always exists a linear differential equation of Fuch-
sian type with given singular points and a given monodromy group.

The interested reader can consult [Bo], [Z], and [P-Si], as well as
the bibliographies given there.

Consider a differential equation G(Y) = 0 defined over the field
(C({z}) of convergent Laurent series in the variable z over the complex
field and let f E C((z)) be a solution of the equation, where (C((z))
denotes the field of formal Laurent series. The main theorem of the as-
ymptotic theory of differential equations states that for a sector S at 0
with small enough opening, there exists a meromorphic function f on
S with asymptotic expansion f. The fact that uniqueness for f can be
obtained only on a sector is known as Stokes phenomenon. (See e.g.
[P-Si].)

Several authors have considered generalizations of Gauss hypergeo-
metric function in one and several variables. All of them are included in
the theory of A-hypergeometric functions due to Gel'fand, Graev, Kapra-
nov, and Zelevinsky. (See [G-K-Z].) A-hypergeometric functions are
solutions of certain partial differential systems. An independent theory
of generalized hypergeometric functions has been developed by Dwork in
[Dw].

3. At the end of the last century, Morales and Ramis used differential Ga-
lois theory to obtain nonintegrability criteria for Hamiltonian systems,
which generalize classical results of Poincare and Liapunov as well as
more recent results of Ziglin. More precisely, they established that a
necessary condition for the integrability of a Hamiltonian system is that
the identity component of the differential Galois group of the variational
equation along a particular solution, which is a linear differential equa-
tion, is abelian. (See [Mo] and [Au].) More recently, Morales, Ramis,
and Simo [M-R-S] generalized this result by considering higher vari-
ational equations. Their criterion is being used by several authors to
obtain nonintegrability of Hamiltonian systems coming from a variety of
physical problems. An account of different concepts of integrability is
given in [Go].

4. Some interesting contributions to the theory of differential fields have
been made by model theorists. The proof of the existence of a differen-
tial closure for a differential field depends heavily on the use of methods
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of model theory. The first proof of the existence of an algorithm to deter-
mine the Galois group of a linear differential equation is model theoretical
as well. (See [Hr].) Poizat [P] presents an interesting survey on the re-
lationship between differential algebra and model theory. A more recent
account of the relationship between differential Galois theory and model
theory is given in [Pi].

5. A classical problem going back to Fuchs and Schwarz and also consid-
ered by Klein in [Ku] is to determine when a given differential equation
defined over C(z) has only algebraic solutions. In [Sc], Schwarz gives a
complete answer to this question in the case of hypergeometric equations.
The work of Schwaxz has been generalized by several authors. Recently,
Beukers [Be] has obtained a necessary and sufficient condition expressed
in combinatorial terms for an A-hypergeometric system of differential
equations to have a full set of algebraic solutions.

In the case when the differential equation G(Y) = 0 is defined over
Q(z), one can consider its reduction Gp(Y) = 0 for almost all prime p,
defined as the differential equation obtained by reducing modulo p the
coefficients of G(Y) = 0. In the 1960's, Grothendieck conjectured that
the equation G(Y) = 0 has a fundamental system of algebraic solutions,
linearly independent over Q if and only if Gp(Y) = 0 has a fundamental
system of algebraic solutions in lF(z), linearly independent over lE'p(zp),
for almost all prime p. This conjecture was later generalized by Katz
(see [Kal]) who proved it for rigid systems, that is, differential systems
which are determined by their local data, i.e. its singular points and local
exponents. Later, Andre proved it for some differential systems "coming
from geometry" [An].

6. In the case of characteristic p > 0, one can consider iterative deriva-
tions, introduced by Hasse and Schmidt, which avoid the fact that a p-th
power is always aconstant. A Picard-Vessiot theory for iterative differ-
ential fields has been developed by Okugawa. (See [O].) An analogue of
Grothendieck's conjecture using iterative derivations has been proved by
Matzat [Mat].

7. The Picard-Vessiot theory presented here is Galois theory for linear differ-
ential equations. Kolchin, after some attempts to find a good differential
analogue of the concept of normality for algebraic extensions, introduced
the notion of strongly normal extension of differential fields. He devel-
oped a Galois theory of strongly normal extensions and associated to a
strongly normal extension of differential fields its differential Galois group
which has the structure of an algebraic group defined over the field of
constants of the base field. He characterized Picard-Vessiot extensions
as strongly normal extensions whose differential Galois group is a linear
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algebraic group. He presented an example of strongly normal extension
which is not Picard-Vessiot, the one obtained by adjoining a so-called
Weierstrass element, and proved that its differential Galois group is the
group of points of an elliptic curve over the field of constants.

More general nonlinear differential Galois theories have been pro-
posed by Umemura [Ui] and Malgrange [Mall], [Ma12J. Malgrange
theory has been further developed by Casale, who recovers the Morales-
Ramis-Simo theory in the framework of Malgrange theory [Ca]. Hei-
derich [He2] has elaborated a generalization of Umemura theory which
applies to differential, iterative differential, and difference fields. (See 6.
and 9.)

8. Picard-Vessiot theory was developed by Kolchin under the assumption
that the field of constants is algebraically closed. In [U2] Umemura
pointed out that classical Galois theory cannot be seen as the Picard-
Vessiot theory of algebraic extensions. Indeed, one can find examples of
finite Picard-Vessiot extensions which are not normal (see Exercises 23
and 24 in chapter 5) and Galois algebraic extensions of differential fields
which are not Picard-Vessiot (see Exercise 3 in chapter 6). Umemura in-
troduced the notion of automorphic extension of differential fields which
includes Picard-Vessiot extensions of differential fields and Galois alge-
braic extensions. He established a fundamental theorem for automorphic
extensions, analogous to Proposition 6.3.1. An automorphic extension
allows a finite extension of the constant fields. Umemura proves that the
strongly normal extensions are precisely those automorphic extensions
which do not add constants.

A Picard-Vessiot theory for differential fields with nonalgebraically
closed field of constants has been considered by Dyckerhoff using Galois
descent [Dy]. A Picard-Vessiot theory for formally real fields is being
developed by Sowa [So].

9. A difference field is a field K with a distinguished automorphism q5.
A classical example is a finite field with its Frobenius automorphism.
One can consider linear difference equations, i.e. equations of the form
G(Y) _ m(Y) + an_1Q5'i-1(Y) + + ao Y = 0, with a2 E K. A Galois
theory for difference equations has been developed which parallels differ-
ential Galois theory. (See [P-52].) Important contributions to this topic
are Di Vizio's proof of an analogue of Grothendieck's conjecture men-
tioned in point 5. for difference equations [Di] and the development of
an analogue of Malgrange theory mentioned in 7. for difference equations
accomplished by Granier [Gr].
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Differential Galois theory has seen intense research activity during the last decades
in several directions: elaboration of more general theories, computational aspects,
model theoretic approaches, applications to classical and quantum mechanics as
well as to other mathematical areas such as number theory.

This book intends to introduce the reader to this subject by presenting Picard-
Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained
way. The needed prerequisites from algebraic geometry and algebraic groups are
contained in the first two parts of the book.The third part includes Picard-Vessiot
extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quad-
ratures, Fuchsian equations, monodromy group and Kovacic's algorithm. Over one
hundred exercises will 'help to assimilate the concepts and to introduce the reader
to some topics beyond the scope of this book.

This book is suitable for a graduate course in differential Galois theory. The last
chapter contains several suggestions for further reading encouraging the reader
to enter more deeply into different topics of differential Galois theory or related
fields.
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