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The Cauchy-Kovalevskaya theorem for the Laplacian

We consider the planar Laplacian

∆ :=
∂2

∂x2 +
∂2

∂y2

in the plane C ∼= R2, supplied with the complex coordinate z = x + iy .
The bilaplacian is ∆2 = ∆∆. The laplacian is the simplest elliptic
operator of order 2, and the bilaplacian is the simplest elliptic operator of
order 4.
Let Ω be a bounded simply connected domain whose boundary ∂Ω is a
real-analytically smooth Jordan curve. Moreover, let I be a closed arc of
∂Ω, such that both I and ∂Ω \ I are non-trivial arcs.

Theorem CK1 (Cauchy-Kovalevskaya for ∆)
If f1, f2 are real-analytic on the closed arc I , then there exists a solution u
locally near I of the following Cauchy problem: ∆u = 0 and

u|I = f1, ∂nu|I = f2.



The Cauchy-Kovalevskaya theorem for the bilaplacian

Theorem CK2 (Cauchy-Kovalevskaya for ∆2)
If fj are all real-analytic on the closed arc I for j = 1, 2, 3, 4, then there
exists a solution u locally near I of the following Cauchy problem:
∆2u = 0 and

∂j−1
n u|I = fj , j = 1, 2, 3, 4.

Remark
We should compare Theorems CK1 and CK2 with the the corresponding
Dirichlet problems. In the context of Theorem CK1, the Dirichlet
problem would ask for a solution in Ω with just u|∂Ω given. In the
context of Theorem CK2, the Dirichlet problem would ask for a solution
in Ω with just u|∂Ω and ∂nu|∂Ω given.



The theorem of Holmgren

We apply the uniqueness theorem of Holmgren to this elementary setting.
As a matter of fact, the Cauchy-Kovalevskaya theorem usually includes a
statement that the solution is unique among real-analytic solutions.
Holmgren’s theorem gives uniqueness generally.

Theorem H1 (Holmgren)
The local solution u of Theorem CK1 is unique. Moreover, if u extends
as a solution throughout Ω, then u is unique throughout Ω.

Theorem H2 (Holmgren)
The local solution u of Theorem CK2 is unique. Moreover, if u extends
as a solution throughout Ω, then u is unique throughout Ω.

Remark
As a local problem, the Cauchy-Kovalevskaya theorem and Holmgren’s
theorem combine to supply the final answer. Here, we shall consider
instead the non-local problem.



The non-local Holmgren uniqueness problem 1

Problem NLH1
Let I be an arc of ∂Ω. Suppose u solves ∆u = 0 on Ω, and that u
extends C 1-smoothly to Ω ∪ I with local boundary data

(1) u|I = 0 OR

(2) u|I = 0 and ∂nu|I = 0.

Does it follow that u = 0 identically?

Remark
It is clear that under condition (2), we have uniqueness, by Holmgren’s
theorem. Similarly, under condition (1) we have non-uniqueness, as we
may consider the Dirichlet problem with data which vanish on I but not
on the remaining arc ∂Ω \ I . So the non-local Holmgren uniqueness
problem is uninteresting for ∆.



The non-local Holmgren uniqueness problem 2

Problem NLH2
Let I be an arc of ∂Ω. Suppose u solves ∆2u = 0 on Ω, and that u
extends C 3-smoothly to Ω ∪ I with local boundary data

(1) u|I = ∂nu|I = 0, OR

(2) u|I = ∂nu|I = ∂2
nu|I = 0, OR

(3) u|I = ∂nu|I = ∂2
nu|I = ∂3

nu|I = 0.

Does it follow that u = 0 identically?

Remark
It is clear that under condition (3), we have uniqueness, by Holmgren’s
theorem. Similarly, under condition (1) we have non-uniqueness, as we
may consider the Dirichlet problem with data which vanish on I but not
on the remaining arc ∂Ω \ I . However, it is not clear at all what happens
under condition (2).



An illuminating example (Problem NLH2)
We consider the function

u(z) =
(1− |z |2)3

|1− z |4

on the unit disk Ω = D = {z : |z | < 1}.

Proposition
The function u is non-trivial and solves Problem NLH2 with boundary
data variant (2) for Ω = D, for any closed arc of ∂Ω which does not
contain the point 1.

Proof
Direct calculation gives that ∆2u = 0 on D. The boundary property
follows by direct inspection.

Remark
This example might lead us to believe that Problem NLH2 with boundary
data variant (2) never gives uniqueness. However, this is far from the
truth. Instead, the above example is very special and not at all generic.



The local Schwarz function

Definition
The (local) Schwarz function SI is the holomorphic function in a
neighborhood of I with S(z) = z̄ on I .

Remark
The local Schwarz function exists and is unique, provided that I is a
real-analytically smooth arc.



The main theorem

Theorem
Suppose that the local Schwarz function SI does not extend to a
meromorphic function on Ω. Then Problem NLH2 with condition (2)
obtains a unique solution. That is, if ∆2u = 0 on Ω extends to a
C 2-smooth function on Ω ∪ I , then

u|I = ∂nu|I = ∂2
nu|I = 0 =⇒ u(z) ≡ 0.

Remark
(i) In the case of the unit disk Ω = D, the local Schwarz function is
S(z) = 1/z , which is rational and hence meromorphic in D.
(ii) If the local Schwarz function SI extends to a Schwarz function for the
whole boundary ∂Ω, then Ω is a so-called quadrature domain.



Ellipses

Corollary
Suppose Ω is the interior of an ellipse ∂Ω which is not a circle. Then
Problem NLH2 with condition (2) obtains a unique solution. That is, if
∆2u = 0 on Ω extends to a C 2-smooth function on Ω ∪ I , then

u|I = ∂nu|I = ∂2
nu|I = 0 =⇒ u(z) ≡ 0.

Proof
This follows from the theorem and the well-known fact that the Schwarz
function for an ellipse develops branch points at the foci.



Proof of the main theorem (1)

We introduce the standard complex differentiation operators

∂z :=
1
2
(
∂x − i∂y ), ∂̄z :=

1
2
(
∂x + i∂y ),

so that
∆ = 4∂z ∂̄z .

We will prove the contrapositive statement, namely that: If a non-trivial
solution to Problem NLH2 with condition (2) exists, then the local
Schwarz function SI must extend meromorphically to Ω.
We consider the function F := ∂2

z u, which then solves ∂̄2
z F = 0 on Ω. As

such, it may be decomposed according to Almansi:
F (z) = F1(z) + z̄F2(z). From the boundary data, we see that F (z) = 0
on I . Since SI (z) = z̄ on I , we conclude that F1(z) + S(z)F2(z) = 0 on
I . By the uniqueness of holomorphic functions, we get that F1 + SF2 = 0
near I in Ω. Unless both F1,F2 vanish identically, the ratio S̃ := −F1/F2
defines a meromorphic extension of SI to Ω. Note here that if F2
vanishes identically, then F1 does too.



Proof of the main theorem (2)

It is still possible that F1,F2 both vanish simultaneously. What should we
do then? In this case, we have that F vanishes, so that ∂2

z u = 0. We
then consider the function G := ū, which solves ∂̄2

z G = 0 and we proceed
as in the case of F . The function G has a decomposition G = G1 + z̄G2,
where G1,G2 are holomorphic in Ω, and the non-triviality of u forces both
G1,G2 to be non-trivial, so that S̃ := −G1/G2 defines the meromorphic
extension of SI .



The non-local Holmgren uniqueness problem for the
N-laplacian

We turn to the general case of ∆N .

Problem NLH-Nn
Let I be an arc of ∂Ω. Suppose u solves ∆Nu = 0 on Ω, and that u
extends C 2N−1-smoothly to Ω ∪ I with local boundary data

∂j
nu|I = 0 for j = 0, . . . , n − 1.

Here, 1 ≤ n ≤ 2N is given. Does it follow that u = 0 identically?

Remark
It is clear that if n ≤ N we can supply additional Dirichlet data and obtain
a smooth non-trivial function u with the given boundary data. On the
other hand, we have uniqueness from Holmgren’s theorem for n = 2N.



The general version of the main theorem

We now supply the main theorem for ∆N .

Theorem
Let I be an arc of ∂Ω. Suppose u solves ∆Nu = 0 on Ω, and that u
extends C 2N−1-smoothly to Ω ∪ I with local boundary data

∂j
nu|I = 0 for j = 0, . . . , n − 1,

where N + 1 ≤ n ≤ 2N. If u is non-trivial, then w = SI (z) solves the
system of equations

∂ i
z∂

j
wQ(z ,w) = 0, 0 ≤ i + j ≤ n − 1− N.

Here, Q(z ,w) is a non-trivial function of the type

Q(z ,w) := φN(z) wN−1 + φN−1(z) wN−2 + · · ·+ φ1(z) = 0,

where the functions φj are all holomorphic in Ω.



Observations

Remark
The theorem is already interesting for n = N + 1, in which case
w = SI (z) solves the equation

φN(z) wN−1 + φN−1(z) wN−2 + · · ·+ φ1(z) = 0.

We might want to call such solutions algebraico-meromorphic.

Remark
For n = 2N, the theorem can be used to derive Holmgren’s theorem in
this special case. Indeed, assuming that a non-trivial solution exists, we
obtain that ∂N−1

w Q(z ,w) = (N − 1)!φN(z) = 0 holds on the surface
w = SI (z), so that φN(z) = 0 identically. Proceeding inductively, we
obtain that Q(z ,w) = 0 identically, so that the theorem tells us that no
non-trivial solution u can exist.
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