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In memory of Sergei SOBOLEV, 1908–1989

He pioneered the study of some functional spaces which are crucial in the study
of the partial differential equations of continuum mechanics and physics, and
the first part of these lecture notes is about these spaces, named after him.

In memory of Jacques-Louis LIONS, 1928–2001

He participated in the development of Sobolev spaces, in part with Enrico
MAGENES, applying the general theory of interpolation spaces which he had
developed with Jaak PEETRE, who further simplified the theory so that it
became more easy to use, and the second part of these lecture notes is about
these interpolation spaces.

To Lucia

To my children
Laure, Michaël, André, Marta



Preface

After publishing an introduction to the Navier1–Stokes2,3 equation and
oceanography [18], the revised version of my lecture notes for a graduate
course that I had taught in the spring of 1999, I want to follow with another
set of lecture notes for a graduate course that I had taught in the spring of
2000; that course was divided into two parts, the first part on Sobolev4 spaces,
and the second part on interpolation spaces. The first version had been avail-
able on the Internet, and after a few years, I find it useful to make the text
available to a larger audience by publishing a revised version.

When I was a student at Ecole Polytechnique, which was still in Paris,
France, on the “Montagne Sainte Geneviève”,5 I had the chance to have

1 Claude Louis Marie Henri NAVIER, French mathematician, 1785–1836. He worked
in Paris, France.

2 Sir George Gabriel STOKES, Irish-born mathematician, 1819–1903. He worked in
London, and in Cambridge, England, holding the Lucasian chair (1849–1903).

3 Reverend Henry LUCAS, English clergyman and philanthropist, 1610–1663.
4 Sergei L’vovich SOBOLEV, Russian mathematician, 1908–1989. He worked in

Leningrad, in Moscow, and in Novosibirsk, Russia. I first met him when I was a
student, in Paris in 1969, then at the International Congress of Mathematicians
in Nice in 1970, and conversed with him in French, which he spoke perfectly (all
educated Europeans did learn French in the beginning of the 20th century). I only
met him once more, when I traveled with a French group from INRIA (Institut
National de la Recherche en Informatique et Automatique) in 1976 to Akadem-
gorodok near Novosibirsk, Russia, where he worked. There is now a Sobolev Insti-
tute of Mathematics of the Siberian branch of the Russian Academy of Sciences,
Novosibirsk, Russia.

5 Geneviève, patroness of Paris, c 419 or 422–512.
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Laurent SCHWARTZ6–8 as my main teacher in mathematics in the first year
(1965–1966), and the course contained an introduction9 to his theory of dis-
tributions,10 but I only heard about Sobolev spaces in my second year (1966–
1967), in a seminar organized by Jacques-Louis LIONS11–13 for interested stu-
dents, in addition to his course on numerical analysis. I learnt a little more in
his courses at the university in the following years, and I read a course [13]
that he had taught in 1962 in Montréal, Québec (Canada), and I also read a
book [1] by Shmuel AGMON,14 corresponding to a course that he had taught
at Rice15 University, Houston, TX.

6 Laurent SCHWARTZ, French mathematician, 1915–2002. He received the Fields
Medal in 1950. He worked in Nancy, in Paris, France, at École Polytechnique,
which was first in Paris (when I had him as a teacher in 1965–1966), and then in
Palaiseau, France, and at Université Paris VII (Denis Diderot), Paris, France.

7 John Charles FIELDS, Canadian mathematician, 1863–1932. He worked in
Meadville, PA, and in Toronto, Ontario (Canada).

8 Denis DIDEROT, French philosopher and writer, 1713–1784. He worked in Paris,
France, and he was the editor-in-chief of the Encyclopédie. Université Paris 7,
Paris, France, is named after him.

9 Which means that he only considered questions of convergence for sequences, and
he did not teach anything about the topologies of D or D′, which I first learnt in
his book [15].

10 Laurent SCHWARTZ has described something about his discovery of the concept
of distributions in his biography [16].

11 Jacques-Louis LIONS, French mathematician, 1928–2001. He received the Japan
Prize in 1991. He worked in Nancy and in Paris, France, holding a chair (analyse
mathématique des systèmes et de leur contrôle, 1973–1998) at Collège de France,
Paris, France. I first had him as a teacher at Ecole Polytechnique in 1966–1967,
and I did research under his direction, until my thesis in 1971. The laboratory
dedicated to functional analysis and numerical analysis which he initiated, funded
by CNRS (Centre National de la Recherche Scientifique) and Université Paris VI
(Pierre et Marie Curie), is now named after him, the Laboratoire Jacques-Louis
Lions.

12 Pierre CURIE, French physicist, 1859–1906, and his wife Marie SK�LODOWSKA-
CURIE, Polish-born physicist, 1867–1934, jointly received the Nobel Prize in
Physics in 1903, and she also received the Nobel Prize in Chemistry in 1911.
They worked in Paris, France. Université Paris 6, Paris, France, is named after
them.

13 Alfred NOBEL, Swedish industrialist and philanthropist, 1833–1896. He created
a fund to be used as awards for people whose work most benefited humanity.

14 Shmuel AGMON, Israeli mathematician, born in 1922. He worked at The Hebrew
University, Jerusalem, Israel.

15 William Marsh RICE, American financier and philanthropist, 1816–1900.



Preface IX

I first read about interpolation spaces (in a Hilbert16,17 setting) in a book
that Jacques-Louis LIONS had written with Enrico MAGENES18 [14], and
then he gave me his article with Jaak PEETRE19 to read for the theory in
a Banach20,21 setting, and later he asked me to solve some problems about
interpolation for my thesis in 1971, and around that time I did read a few
articles on interpolation, although I can hardly remember in which of the
many articles of Jaak PEETRE I may have read about some of his results.
For the purpose of this course, I also consulted a book by BERGH22,23 &
LÖFSTRÖM24 [2].

I also learnt in other courses, by Jacques-Louis LIONS or others, in sem-
inars, and the usual process went on, learning, forgetting, inventing a new
proof or reinventing one, when asked a question by a fellow researcher or a
student, so that for many results in this course I can hardly say if I have read
them or filled the gaps in statements that I had heard, and my memory may
be inaccurate on some of these details. Some of the results may have been
obtained in my own research work, which is concerned with partial differen-
tial equations from continuum mechanics or physics, and my personal reason
for being interested in the subject of this course is that some of the ques-
tions studied have appeared in a natural way in a few practical problems. Of
course, although a few problems of continuum mechanics or physics have led
to some of the mathematical questions described in this course, many have
been added for the usual reason that mathematicians are supposed to discover
general structures hidden behind particular results, and describe something

16 David HILBERT, German mathematician, 1862–1943. He worked in Königsberg
(then in Germany, now Kaliningrad, Russia) and in Göttingen, Germany. The
term Hilbert space was coined by his student VON NEUMANN, when he worked
on his mathematical foundation of quantum mechanics.

17 János (John) VON NEUMANN, Hungarian-born mathematician, 1903–1957. He
worked in Berlin, in Hamburg, Germany, and at IAS (Institute for Advanced
Study), Princeton, NJ.

18 Enrico MAGENES, Italian mathematician, born in 1923. He worked in Pavia,
Italy.

19 Jaak PEETRE, Estonian-born mathematician, born in 1935. He worked in Lund,
Sweden.

20 Stefan BANACH, Polish mathematician, 1892–1945. He worked in Lwów (then
in Poland, now Lvov, Ukraine). There is a Stefan Banach International Mathe-
matical Center in Warsaw, Poland. The term Banach space was introduced by
FRÉCHET.

21 Maurice René FRÉCHET, French mathematician, 1878–1973. He worked in
Poitiers, in Strasbourg and in Paris, France. I do not know who introduced the
term Fréchet space.

22 Jöran BERGH, Swedish mathematician, born in 1941. He has worked in Lund,
and at Chalmers University of Technology, Göteborg, Sweden.

23 William CHALMERS Jr., Swedish merchant, 1748–1811.
24 Jörgen LÖFSTRÖM, Swedish mathematician, born in 1937. He worked at

Chalmers University of Technology, Göteborg, Sweden.
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more general after having done a systematic study, akin to a cleaning process.
For those who do not yet know much about continuum mechanics or physics,
I recommend looking first at more classical descriptions of the problems, for
example by consulting the books which have been prepared under the direc-
tion of Robert DAUTRAY25 and Jacques-Louis LIONS [4–12]. For those who
already know something about continuum mechanics or physics, I recommend
looking at my other lecture notes for reading about the defects which I know
about classical models, because other authors rarely mention these defects
even when they have heard about them: I suppose that it is the result of hav-
ing been raised as the son of a (Calvinist) Protestant minister that I learnt
and practiced the point of view that one should not follow the path of the
majority when reason clearly points to a different direction. However, although
I advocate using reason for criticizing without concessions the points of view
that are taught in order to find better “truths”, one should observe that this
approach is more suited to mathematicians than to engineers or physicists;
actually, not all “mathematicians” have been trained well enough for following
that path, and that might explain why some people initially trained as mathe-
maticians write inexact statements, which they often do not change even after
being told about their mistakes, which others repeat then without knowing
that they propagate errors; if their goal had not been to mislead others, a
better strategy would have been to point out that some statements were only
conjectures.

I have decided to write my lecture notes with some information given
in footnotes about the people who have participated in the creation of the
knowledge related to the subject of the course, and I have mentioned in [18] a
few reasons for doing that: I had great teachers26 like Laurent SCHWARTZ and
Jacques-Louis LIONS, and I have met many mathematicians, for whom I use
their first names in the text, but I have tried to give some simple biographical
data for all people quoted in the text in order to situate them both in time
and in space, the famous ones as well as the almost unknown ones; I have
seen so many ideas badly attributed and I have tried to learn more about the
mathematicians who have introduced some of the ideas which I was taught
when I was a student, and to be as accurate as possible concerning the work of
all.27 Another reason is that I enjoy searching for clues, even about questions
that might be thought irrelevant for my goals; I might be stopped by a word,

25 Ignace Robert DAUTRAY (KOUCHELEVITZ), French physicist, born in 1928.
26 Although I immediately admired their qualities, like pedagogical skill, I later

became aware of some of their defects, the discussion of which I shall postpone
until I decide to publish all the letters that I wrote to them.

27 Although I have never read much, it would be quite inefficient for me to change
my method of work for the moment, because too many people have recently shown
a tendency to badly quote their sources. In some cases, information that I had
proven something in the 1970s has been ignored, for the apparent reason that I
had told that to people who wanted to avoid mentioning my name, the strange
thing being that instead of trying to find someone who would have done similar
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wondering about its etymology, or by a new name, wondering about who this
person was, or even by a name which has been attached to a well-known
institution and I want to discover who was that forgotten person in honor of
whom the institution is named; the Internet has given me the possibility to
find such answers, sometimes as the result of many searches which had only
given small hints, and I hope that I shall be told about all the inaccuracies
that are found in my text.

I was glad to learn a few years ago the motto of Hugo of Saint Victor28

“Learn everything, and you will see afterward that nothing is useless”, and
to compare it with what I had already understood in my quest about how
creation of knowledge occurs. I have often heard people say about a famous
physicist from the past, that luck played an important role in his discovery,
but the truth must be that if he had not known beforehand all the aspects of
his problem he would have missed the importance of the new hint that had
occurred, and so this instance of “luck” reminds me of the saying “aide toi,
le ciel t’aidera” (God helps those who help themselves). Those who present
chance as an important factor in discovery probably wish that every esoteric
subject that they like be considered important and funded, but that is not at
all what the quoted motto is about. My reasons for publishing lecture notes is
to tell the readers some of what I have understood; the technical mathematical
aspects of the course are one thing, the scientific questions behind the theories
are another, but there is more than that, a little difficult to express in words:
I will have succeeded if many become aware, and go forward on the path of
discovery, not mistaking research and development, knowing when and why
they do one or the other, and keeping a higher goal in mind when for practical
reasons they decide to obey the motto of the age for a while, “publish or
perish”.

When I was a graduate student in Paris, my advisor invited me a few
times to join a dinner held for a visitor, who had usually talked in the Lions–
Schwartz seminar, which met every Friday at IHP (Institut Henri Poincaré29).
It was before Université de Paris split into many smaller universities, which
happened in 1970 or 1971, and I had heard my advisor mention a special
fund from ZAMANSKI,30 the dean of “Faculté des Sciences”. The buildings
for sciences were then known as “Halle aux Vins”, because they were being
built on a place previously used for the wine market, and it was only after
all the wine merchants had moved to Bercy, on the other bank of the river

work before me they sometimes preferred to quote one of their friends who had
used the result in the 1990s, without any mention of an author for it.

28 Hugo VON BLANKENBURG, German-born theologian, 1096–1141. He worked at
the monastery of Saint Victor in Paris, France.

29 Jules Henri POINCARÉ, French mathematician, 1854–1912. He worked in Paris,
France. There is an Institut Henri Poincaré (IHP), dedicated to mathematics and
theoretical physics, part of Université Paris VI (Pierre et Marie Curie), Paris,
France.

30 Marc ZAMANSKI, French mathematician, 1915–1996. He worked in Paris, France.
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Seine, that the complex of buildings became known as “Jussieu”,31 and I
wonder if part of the plan was not to support the local restaurants, who were
losing a lot of their customers because of the transfer of the wine market to
Bercy. It was at one of these dinners, which all took place in the restaurant
“Chez Moissonnier”, rue des fossés Saint Bernard,32–34 that I first met Sergei
SOBOLEV, probably in 1969, but I had not been aware that he had given a
talk; my understanding of English was too poor at the time for conversing
with visitors, but fortunately Sergei SOBOLEV spoke French, perfectly.35

I met Sergei SOBOLEV a second time, at the International Congress of
Mathematicians in Nice in 1970, and as he was waiting in front of me in a
line at a cafeteria, I took the occasion to ask him a question, about what
he thought were interesting mathematical areas to study, and I must have
mentioned applications, because his answer was that it was difficult to know
what could become useful, as even questions in number theory had found
applications.

I met Sergei SOBOLEV a third time in 1976, when I traveled to Novosibirsk
with a group from INRIA (Institut National de Recherche en Informa-
tique36,37 et Automatique38), and he was working then on cubature formu-
las [17], i.e., quadrature formulas in three dimensions, a subject which I did
not find interesting enough to enquire about it. Apart from the fact that he
seemed eager not to be too involved with the political establishment, which
may explain why he worked alone, the subject may have actually been more
important in the Soviet Union than in the West, as I learnt during the same

31 Antoine Laurent DE JUSSIEU, French botanist, 1748–1836. He worked in Paris,
France.

32 Bernard DE FONTAINES, French monk, 1090–1153. He founded the monastery of
Clairvaux, France, and is known as Saint Bernard de Clairvaux. He was canonized
in 1174 by ALEXANDER III, and PIUS VIII bestowed on him the title of Doctor
of the Church in 1830.

33 Orlando BANDINELLI, Italian Pope, 1105–1181. Elected Pope in 1159, he took
the name ALEXANDER III.

34 Francesco Xaverio CASTIGLIONE, Italian Pope, 1761–1830. Elected Pope in 1829,
he took the name PIUS VIII.

35 Until the beginning of the 20th century, every educated person in Europe learnt
French. I was told that Sergei SOBOLEV was born into an aristocratic family,
and that without the 1917 revolution in Russia he would have become a duke.

36 Informatique is the French word for computer science, and ordinateur is the
French word for computer, but these words were in use much before DE GAULLE

created a special committee for coining French words that had to be used in
replacement of the American words invented in technology.

37 Charles DE GAULLE, French general and statesman, 1890–1970. Elected Presi-
dent of the Republic in 1959 (by the two legislative chambers), he had then a new
constitution for France accepted (5th republic), and he was reelected by direct
election in 1965; he resigned in 1969.

38 Automatique is the French word for control theory.
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trip, when my good friend Roland GLOWINSKI39 told me about some dis-
cussions with Nicolai YANENKO,40 who had said that a numerical scheme
mentioned by the French team did not work; together with Jean CÉA,41 he
was trying to understand why the scheme did not work on Russian computers,
while it worked well in France (although it was not a very efficient scheme),
and after a few days, the explanation was found, which was that the Russian
computers did not have double precision, a feature which had existed for some
time on the American computers used in France, but such computers could
not be imported into the Soviet Union, because of the embargo decided by
United States, a consequence of the Cold War; it could have been precisely the
limitations of the computers which made the study of good cubature formulas
useful.

In his description of lives of great men, PLUTARCH42 told a story about
ARCHIMEDES43,44 and Cicero.45 At the time when Cicero became governor of
Sicily, he wanted to visit the tomb of ARCHIMEDES, and the people of Syracuse
had no idea where it was, but Cicero knew something about the tomb, which
permitted him to discover it: ARCHIMEDES had wanted to have on his tomb a
reminder of what he thought was his best result, that the surface of a sphere
of radius R is equal to the lateral surface of a tangent cylinder of same height
(i.e., with a circular base of radius R and height 2R), which is then 4π R2, so
Cicero’s aides just had to go around the cemeteries of Syracuse and look for
a tomb with a sphere and a cylinder on it.

Apparently, there was no mathematical result that Jacques-Louis LIONS

was really proud of having proven, because after his death people who had
been in contact with him insisted that what he had been most proud of was
one of his successes in manipulating people. In 1984, in a discussion with
Laurent SCHWARTZ, I had said that I was not good at following complicated
proofs and he had said that one cannot follow another person’s mind and
that only Jacques-Louis LIONS was capable of following every proof. Roger

39 Roland GLOWINSKI, French-born mathematician, born in 1937. He worked at
Université Paris VI (Pierre et Marie Curie), Paris, France, and he works now in
Houston, TX.

40 Nikolai Nikolaevich YANENKO, Russian mathematician, 1921–1984. He worked
in Novosibirsk, Russia.

41 Jean CÉA, French mathematician, born in 1932. He worked in Rennes, and in
Nice, France.

42 Mestrius PLUTARCHUS, Greek biographer, 46–120.
43 ARCHIMEDES, Greek mathematician, 287 BCE–212 BCE. He worked in Siracusa

(Syracuse), then a Greek colony, now in Italy.
44 BCE = before common era; those who insist in linking questions of date with

questions of religion may consider that it means “before Christian era”.
45 Marcus TULLIUS Cicero, Roman orator and politician, 106 BCE–43 BCE.
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PENROSE46–48 expresses the same fact that in listening to someone he actually
tries to guess what the other person says, because he cannot in general follow
the details of the other person’s reasoning, which is the way I feel; however,
he wrote that in a book whose whole argument looked quite silly to me (and
Jacques-Louis LIONS also made the same comment about the book), but I
read it entirely because my good friend Constantine DAFERMOS49–51 had
offered it to me, which I interpreted as meaning that I should have a critical
opinion about “artificial intelligence”. What had prompted that information
from Laurent SCHWARTZ about Jacques-Louis LIONS was that I always insist
that my proofs are not difficult (and that the importance is more in the
analysis about what kind of result to look for), because I always try to simplify
what I have done, so that it can be easily understood; Jacques-Louis LIONS

had this quality of looking for simplifying proofs, and he sometimes asked me
to find a general proof after he had obtained a particular result whose proof
looked much too complicated to him to be the “right one”.

I recall a remark of Jacques-Louis LIONS that a framework which is too
general cannot be very deep, and he had made this comment about semi-
group theory; he did not deny that the theory is useful, and the proof of the
Hille52,53–Yosida54 theorem is certainly more easy to perform in the abstract
setting of a Banach space than in each particular situation, but the result
applies to equations with very different properties that the theory cannot

46 Sir Roger PENROSE, English mathematician, born in 1931. He received the Wolf
Prize (in Physics!) in 1988. He has worked in London and in Oxford, England,
where he held the Rouse Ball professorship.

47 Ricardo WOLF, German-born diplomat and philanthropist, 1887–1981. He emi-
grated to Cuba before World War I; from 1961 to 1973 he was Cuban Ambassador
to Israel, where he stayed afterwards. The Wolf foundation was established in 1976
with his wife, Francisca SUBIRANA-WOLF, 1900–1981, “to promote science and
art for the benefit of mankind”.

48 Walter William Rouse BALL, English mathematician, 1850–1925. He worked in
Cambridge, England.

49 Constantine M. DAFERMOS, Greek-born mathematician, born in 1941. He
worked at Cornell University, Ithaca, NY, and he works now at Brown University,
Providence, RI.

50 Ezra CORNELL, American philanthropist, 1807–1974.
51 Nicholas BROWN Jr., American merchant, 1769–1841.
52 Einar Carl HILLE (HEUMAN), Swedish-born mathematician, 1894–1980. He

worked in Princeton, NJ, and at Yale University, New Haven, CT.
53 Elihu YALE, American-born English philanthropist, Governor of Fort St George,

Madras, India, 1649–1721.
54 Kôsaku YOSIDA, Japanese mathematician, 1909–1990. He worked in Tokyo,

Japan, where I met him during my first trip to Japan, in the fall of 1976.
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distinguish. After having written an article with Jean LERAY,55,56 who had
wanted to use the generalization of the Brouwer57 topological degree that he
had obtained with SCHAUDER,58 Jacques-Louis LIONS had observed that the
regularity hypotheses for applying the Leray–Schauder theory are too strong
and that a better approach is to use the Brouwer topological degree for finite-
dimensional approximations, and then pass to the limit, taking advantage of
the particular properties of the problem for performing that limiting process.
Maybe Jacques-Louis LIONS also thought that the theory of interpolation
spaces lacks depth because it is a general framework based on two arbitrary
Banach spaces, but certainly the theory is worth studying, and I decided to
teach it after the first part on Sobolev spaces for that reason.

In an issue of the Notices of the American Mathematical Society, Enrico
MAGENES had recalled the extreme efficiency of Jacques-Louis LIONS when
they worked together, in particular for the study of their famous interpolation
space H

1/2
00 (Ω), but Peter LAX59,60 had recalled an interesting encounter,

showing that early in his career Jacques-Louis LIONS was already playing
the functional analysis card against continuum mechanics. I had opposed my
former advisor on this question, because I wanted to understand more about
continuum mechanics and physics, and to develop new tools for going further
in the study of the partial differential equations of continuum mechanics or
physics, and in particular to show the limitations of the classical tools from
functional analysis, but despite our opposition on these important questions,
I have chosen to dedicate these lecture notes to Jacques-Louis LIONS, because
he played an important role in the development of the theory of interpolation
spaces, although the theory would have been quite difficult to use without the
simplifying work of Jaak PEETRE.

Jaak PEETRE wrote to me a few years ago that he had obtained the same
results on interpolation as Jacques-Louis LIONS, who had kindly proposed
that they publish an article together. It seems to me that Jaak PEETRE was

55 Jean LERAY, French mathematician, 1906–1998. He shared the Wolf Prize in
1979 with WEIL. He worked in Nancy, France, in a prisoner of war camp in
Austria (1940–1945), and in Paris, France; he held a chair (théorie des équations
différentielles et fonctionnelles, 1947–1978) at Collège de France, Paris, France.

56 André WEIL, French-born mathematician, 1906–1998. He received the Wolf Prize
in 1979 (shared with Jean LERAY). He worked in Aligarh, India, in Haverford,
PA, in Swarthmore, PA, in São Paulo, Brazil, in Chicago, IL, and at IAS (Institute
for Advanced Study), Princeton, NJ.

57 Luitzen Egbertus Jan BROUWER, Dutch mathematician, 1881–1966. He worked
in Amsterdam, The Netherlands.

58 Juliusz Pawel SCHAUDER, Polish mathematician, 1899–1943. He worked in Lwów
(then in Poland, now Lvov, Ukraine).

59 Peter David LAX, Hungarian-born mathematician, born in 1926. He received the
Wolf Prize in 1987, and the Abel Prize in 2005. He works at NYU (New York
University), New York, NY.

60 Niels Henrik ABEL, Norwegian mathematician, 1802–1829.
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following the influence of M. RIESZ61–65 in Lund, Sweden, while Jacques-Louis
LIONS was following the path opened by the characterization of traces of func-
tions in W 1,p by Emilio GAGLIARDO,66 who had also worked with Nachman
ARONSZAJN.67 The interpolation spaces studied in the joint article of Jacques-
Louis LIONS and Jaak PEETRE seem to depend upon three parameters, and
it is an important simplification of Jaak PEETRE to have shown that they
actually only depend upon two parameters, one parameter θ ∈ (0, 1) which
they had already introduced, and a single parameter68 p ∈ [1,∞]. The theory
of interpolation spaces as it can be taught now thus owes much more to Jaak
PEETRE than to Jacques-Louis LIONS, a point which I had not emphasized
enough before. In some instances, the name of Jacques-Louis LIONS appears
for questions of interpolation related to his joint works with Enrico MAGENES,
and that corresponds to applying the already developed theory of interpola-
tion spaces to questions of partial differential equations.

A few years ago, I had needed the support of a few friends to find the
strength to decide to revise the lecture notes which I had already written,
and to complete the writing of some unfinished ones, in view of publishing
them to attain a wider audience. I carried out the first revision of this course
in August 2002, and I want to thank Thérèse BRIFFOD for her hospitality at
that time.

I would not have been able to complete the publication of my first lecture
notes and to feel able to start revising again this second set of lecture notes
without the support of Lucia OSTONI, and I want to thank her for that and
for much more, giving me the stability that I had lacked so much in the last

61 Marcel RIESZ, Hungarian-born mathematician, 1886–1969 (the younger brother
of Frederic RIESZ). He worked in Stockholm and in Lund, Sweden.

62 Frigyes (Frederic) RIESZ, Hungarian mathematician, 1880–1956. He worked in
Kolozsvár (then in Hungary, now Cluj-Napoca, Romania), in Szeged and in
Budapest, Hungary. He introduced the spaces Lp in honor of LEBESGUE and
the spaces Hp in honor of HARDY, but no spaces are named after him, and the
Riesz operators have been introduced by his younger brother Marcel RIESZ.

63 Henri Léon LEBESGUE, French mathematician, 1875–1941. He worked in Rennes,
in Poitiers, and in Paris, France; he held a chair (mathématiques, 1921–1941) at
Collège de France, Paris, France.

64 Godfrey Harold HARDY, English mathematician, 1877–1947. He worked in Cam-
bridge, in Oxford, England, holding the Savilian chair of geometry in 1920–
1931, and in Cambridge again, holding the Sadleirian chair of pure mathematics
(established in 1701 by Lady SADLEIR) in 1931–1942.

65 Sir Henry SAVILE, English mathematician, 1549–1622. He founded professorships
of geometry and astronomy at Oxford.

66 Emilio GAGLIARDO, Italian mathematician, born in 1930. He worked in Pavia,
Italy.

67 Nachman ARONSZAJN, Polish-born mathematician, 1907–1980. He worked in
Lawrence, KS, where I visited him during my first visit to United States, in 1971.

68 Jaak PEETRE has even observed that one can use p ∈ (0,∞], and he developed
the theory of interpolation for quasi-normed spaces.
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twenty-five years, so that I could feel safer in resuming my research of giving a
sounder mathematical foundation to 20th century continuum mechanics and
physics.

I want to thank my good friends Carlo SBORDONE and Franco BREZZI for
having proposed to publish my lecture notes in a series of Unione Matematica
Italiana.

Milano,69 July 2006 Luc TARTAR

Correspondant de l’Académie des Sciences, Paris
University Professor of Mathematics

Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213-3890

United States of America

69 Two months after writing this preface, I was elected a foreign member of Istituto
Lombardo Accademia di Scienze e Lettere, Milano.
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Detailed Description of Lectures

a.b refers to definition, lemma or theorem # b in lecture # a, while (a.b)
refers to equation # b in lecture # a.
Lecture 1, Historical background : Dirichlet principle: (1.1) and (1.2); Radon
measures: (1.3).
Lecture 2, The Lebesgue measure, convolution: Convolution: 2.1 and (2.1)–
(2.3); condition on supports: (2.4); operators τa: 2.2 and (2.5); commutation
of τa with convolution: 2.3 and (2.6) and (2.7); an example of a C∞ function:
2.4 and (2.8).
Lecture 3, Smoothing by convolution: Smoothing sequences: 3.1 and (3.1);
convergence of smoothing sequences: 3.2; density of C∞

c (RN ): 3.3.
Lecture 4, Truncation; Radon measures; distributions: Truncating sequences:
4.1; smoothing characteristic functions: 4.2 and (4.1); Radon measures and
distributions: 4.3 and (4.2)–(4.5); derivation of distributions: 4.4 and (4.6)–
(4.8).
Lecture 5, Sobolev spaces; multiplication by smooth functions: Wm,p(Ω): 5.1
and (5.1); Wm,p(Ω) is a Banach space and Hm(Ω) is a Hilbert space: 5.2 and
(5.2) and (5.3); convergences in C∞

c and in D′: (5.4) and (5.5); principal value
of 1

x : (5.6)–(5.9); multiplication by smooth functions: 5.3 and (5.10); Leibniz’s
formula for functions: 5.4 and (5.11) and (5.12), and for distributions: 5.5 and
(5.13).
Lecture 6, Density of tensor products; consequences: Tensor product of func-
tions: (6.1); density of tensor products: 6.2 and (6.1)–(6.4); xjT = 0 for all j
means T = C δ0: 6.3 and (6.5) and (6.6); Ω connected and ∂T

∂xj
= 0 for all j

means T constant: 6.4 and (6.7)–(6.12); C∞
c (RN ) is dense in Wm,p(RN ) for

1 ≤ p < ∞: 6.5 and (6.13) and (6.14); Wm,p
0 (Ω): 6.6; Sobolev’s embedding

theorem: 6.7.
Lecture 7, Extending the notion of support : Being 0 on an open subset: 7.1 and
(7.1) and (7.2); partitions of unity: 7.2; being 0 on a union of open subsets: 7.3;
support of Radon measures or of distributions: 7.4; Wm,p

loc (Ω): 7.5; product of
functions in W 1,p(Ω) and W 1,q(Ω): 7.6; Lipschitz functions and W 1,∞(Ω):
7.7 and 7.8.
Lecture 8, Sobolev’s embedding theorem, 1 ≤ p < N : A domain with a cusp,
where Sobolev’s embedding does not hold: 8.1; interpolation inequality for
Lp: 8.2 and (8.1); W 1,p(RN ) ⊂ Lq(RN ) implies p ≤ q ≤ p∗: 8.3 and (8.2)–
(8.6); elementary solutions: 8.4; the Laplacian and its elementary solution:
(8.7) and (8.8); the formula used by SOBOLEV: (8.9); W 1,1(R) ⊂ C0(R): 8.5
and (8.10)–(8.12); a lemma used by GAGLIARDO and by NIRENBERG: 8.6 and
(8.13)–(8.16); estimates in various Lq(RN ) spaces by the Gagliardo–Nirenberg
method: 8.7 and (8.17)–(8.20).
Lecture 9, Sobolev’s embedding theorem, N ≤ p ≤ ∞: Sobolev’s embedding
theorem estimates for the case p = N : 9.1 and (9.1)–(9.5), and for the case
p > N : (9.6); estimates using a parametrix of the Laplacian: (9.7)–(9.9);
W 1,p(RN ) ⊂ C0,γ(RN ) for p > N : 9.2 and (9.10)–(9.13).
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Lecture 10, Poincaré’s inequality : Questions of units: (10.1)–(10.4); Poincaré’s
inequality: 10.1; when Poincaré’s inequality holds, or does not hold: 10.2.
Lecture 11, The equivalence lemma; compact embeddings : Equivalence lemma:
11.1; when compactness holds, or does not hold: 11.2.
Lecture 12, Regularity of the boundary; consequences : D(Ω): 12.1; continuous
or Lipschitz boundary: 12.2; D(Ω) is dense in W 1,p(Ω): 12.3 and (12.1)–(12.5);
linear continuous extension from W 1,p(Ω) into W 1,p(RN ): 12.4 and (12.6) and
(12.7); linear continuous extension from Wm,p(RN

+ ) into Wm,p(RN ): 12.5 and
(12.8) and (12.9).
Lecture 13, Traces on the boundary : Traces for smooth functions in one chart:
13.1 and (13.1) and (13.2); the trace operator γ0: 13.2; trace of a product:
13.3; Hardy’s inequality: 13.4 and (13.3)–(13.6); trace 0 and W 1,p

0 (ΩF ) in one
chart: 13.5, 13.6 and (13.7)–(13.9); trace 0 and W 1,p

0 (Ω): 13.7.
Lecture 14, Green’s formula: The exterior normal: 14.1 and (14.1); Green’s
formula in one chart: 14.2, 14.3 and (14.2) and (14.3); Green’s formula: 14.4;
the injection of W 1,p(Ω) into Lp(Ω) is compact: 14.5.
Lecture 15, The Fourier transform: Fourier series: (15.1); Fourier integral: 15.1
and (15.2)–(15.4); basic properties of the Fourier transform: (15.5)–(15.7);
Fourier transform of a Radon measure: (15.8) and (15.9); S(RN ): 15.2 and
(15.10); Plancherel’s formula: (15.11); Fourier transform on S ′(RN ): 15.3 and
(15.12); basic properties of the extended Fourier transform: (15.13); F1 = δ0:
15.4 and (15.14); F is an isomorphism on S(RN ), on S ′(RN ), and on L2(RN ):
15.5 and (15.15)–(15.17); F on H1(RN ): 15.6 and (15.18); Hs(RN ): 15.7;
Hm

0 (Ω) and H−m(Ω): 15.8; characterization of H−1(Ω): 15.9; C∞
c (RN ) is

dense in Hs(RN ): 15.10; F(γ0u): 15.11 and (15.19) and (15.20).
Lecture 16, Traces of Hs(RN ): γ0

(
Hs(RN )

)
= Hs−(1/2)(RN−1) for s > 1

2 :
16.1 and (16.1)–(16.5); traces of derivatives: 16.2 and (16.6)–(16.9); Hs(RN )
for 0 < s < 1: 16.3 and (16.10)–(16.14); extension of Lipschitz functions:
(16.15).
Lecture 17, Proving that a point is too small : u

r ∈ L2(RN ) for u ∈ H1(RN )
and N ≥ 3: 17.1 and (17.1) and (17.2); functions in C∞

c (RN ) vanishing near
0 are dense in H1(RN ) for N ≥ 3: 17.2 and (17.3), and for N = 2: 17.3;
estimating the norm of u

r log(r/R0)
in L2(Ω) for u ∈ H1

0 (Ω) and Ω ⊂ R2: 17.4
and (17.4)–(17.6).
Lecture 18, Compact embeddings: 〈T, ϕ〉 = 0 if derivatives of ϕ vanish on
the compact support of T up to the order of T : 18.1 and (18.1) and (18.2);
distributions with support a point: 18.2 and (18.3); a criterion for compactness
in Lp(Ω): 18.3; compact injection from W 1,p(Ω) into Lp(Ω): 18.4 and (18.4);
Poincaré’s inequality for H1

0 (Ω) if meas(Ω) < ∞: 18.5.
Lecture 19, Lax–Milgram lemma: Elliptic, parabolic, hyperbolic models using
∆: (19.1)–(19.3); second-order elliptic equations with variable coefficients:
(19.4) and (19.5); conservation of charge: (19.6); Lax–Milgram lemma: 19.1
and (19.7)–(19.9); variational formulations: (19.10)–(19.14); Neumann condi-
tion: (19.15); Lagrange multiplier for

∫
Ω

u dx = 0: (19.16) and (19.17), and
for
∫

∂Ω
u dHN−1 = 0: (19.18) and (19.19).
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Lecture 20, The space H(div;Ω): Interpretation of the Neumann condition in
the smooth case: (20.1)–(20.5); H(div;Ω): 20.1; change of variables: (20.6)–
(20.8); the normal trace on H(div;Ω): 20.2 and (20.9); H(curl;Ω): (20.10).
Lecture 21, Background on interpolation; the complex method : Holomorphic
functions: (21.1)–(21.4); the Hilbert transform: (21.5) and (21.6); the L2(R)
estimate: 21.1 and (21.7) and (21.8); M. Riesz’s convexity theorem: 21.2 and
(21.9) and (21.10); the L1(R) estimate: (21.11); Marcinkiewicz spaces: (21.12);
a more general convexity theorem: 21.3; intermediate spaces and interpolation
spaces: 21.4 and (21.13); the complex method: 21.5 and (21.14) and (21.15);
the interpolation property: 21.6 and (21.16); the trace method: (21.17) and
(21.18).
Lecture 22, Real interpolation; K-method : The K-method: 22.1 and (22.1)–
(22.3); the Gagliardo set of an element of E0 + E1: (22.4); the discrete
definition for the K-method: (22.5); (E0, E1)θ,p increases with p: 22.2 and
(22.6) and (22.7); the interpolation property: 22.3 and (22.8)–(22.11); Lorentz
spaces: (22.12); nonincreasing rearrangements: (22.13)–(22.15); K(t; f) for
f ∈ L1(Ω) + L∞(Ω): 22.4 and (22.17); Hardy’s inequality: 22.5 and (22.18)–
(22.21); Lorentz spaces as interpolation spaces: 22.6.
Lecture 23, Interpolation of L2 spaces with weights : F

(
Hs(RN )

)
: (23.1);

interpolation of L2 spaces with weights: 23.1 and (23.2)–(23.11); F
(
Lp,q(RN )

)

for 1 < p < 2: (23.12) and (23.13); PEETRE’s improvement of Sobolev’s em-
bedding theorem: (23.14)–(23.17); the scaling argument for Lorentz spaces:
(23.18).
Lecture 24, Real interpolation; J-method : The J-norm: 24.1 and (24.1); the
J-method: 24.2 and (24.2); the discrete definition for the J-method: (24.3); the
J-method and the K-method give the “same” spaces: 24.3 and (24.4)–(24.9);
a more general framework: 24.4 and (24.10)–(24.13).
Lecture 25, Interpolation inequalities; the spaces (E0, E1)θ,1: Class K(θ) or
J (θ) or H(θ): 25.1 and (25.1); characterization of classes K(θ) and J (θ):
25.2 and (25.2)–(25.6); characterization of linear continuous maps defined on
(E0, E1)θ,1: 25.3 and (25.7) and (25.8);

(
H1(R), L2(R)

)
1/2,1

⊂ C0(R): (25.9)

and (25.10); Hs(R) ⊂ Lp(s),2(R) for 0 < s < 1
2 : (25.11); exchanging E0 and

E1: 25.4 and (25.12).
Lecture 26, The reiteration theorem: Interpolation of the (E0, E1)α,∞: 26.1 and
(26.1)–(26.6); interpolation of the (E0, E1)α,1: 26.2 and (26.7)–(26.11); the
reiteration theorem: 26.3;

(
H2(R2), L2(R)

)
1/2,1

⊂ FL1(R2) and Hs(R2) ⊂
Lq(s),2(R2) for 0 < s < 1: (26.12)–(26.16).
Lecture 27, Maximal functions: Maximal functions: 27.1 and (27.1); ||M f ||p ≤
C(p)||f ||p for 1 < p ≤ ∞: 27.2 and (27.2), and not for p = 1: (27.3); a covering
lemma: 27.3; M f in a weak L1 space for f ∈ L1(RN ): 27.4 and (27.4)–(27.8);
the quasi-norm || · ||∗1 and its properties: 27.5 and (27.9)–(27.14); a variant
K∗(t; f): 27.6 and (27.15) and (27.16), its use for the weak L1 property: 27.7,
and what it implies for K(t; f): 27.8; maximal functions on Lorentz spaces:
27.9 and (27.17)–(27.22).
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Lecture 28, Bilinear and nonlinear interpolation: A nonlinear interpolation
result: 28.1 and (28.1) and (28.2); a bilinear interpolation theorem of J.-L.
LIONS: 28.2 and (28.3) and (28.4), and one of J.-L. LIONS & PEETRE: 28.3
and (28.5) and (28.6).
Lecture 29, Obtaining Lp by interpolation, with the exact norm: A variant of
K(t; f): 29.1 and (29.1), from which the Lp norm can be computed: 29.2 and
(29.2)–(29.4); a generalization for Orlicz spaces: (29.5) and (29.6); a precise
interpolation property: 29.3 and (29.7) and (29.8); using the nonincreasing re-
arrangement for evaluating norms in Lorentz spaces: 29.4 and (29.9)–(29.13).
Lecture 30, My approach to Sobolev’s embedding theorem: A simple decompo-
sition for obtaining a weak embedding theorem: (30.1)–(30.6), which one first
improves by rescaling: (30.7)–(30.9), and then by applying to ϕn(u): (30.10)–
(30.19).
Lecture 31, My generalization of Sobolev’s embedding theorem: The original
method of SOBOLEV: (31.1), is not adapted to the case of derivatives in dif-
ferent Lp(RN ) spaces: (31.2), but may be used if all derivatives belong to
the same Lorentz space: (31.3); the case p = 1 is related to the isoperimetric
inequality: (31.4)–(31.6), for which there is an additive and a multiplicative
version: 31.1 and (31.7)–(31.12); the case of derivatives in different Lorentz
spaces: 31.2 and (31.13)–(31.18), can be interpreted under a natural condition:
(31.19); a case with information on various orders of derivatives in different
directions: (31.20)–(31.23).
Lecture 32, Sobolev’s embedding theorem for Besov spaces: Sobolev’s embed-
ding theorem for Hs(RN ): 32.1; Sobolev space W s,p(RN ) and Besov space
Bs,p

q (RN ): 32.2 and (32.2); W k,p(RN ) is of class H
(

m−k
m

)
for E0 = Wm,p(RN )

and E1 = Lp(RN ): (32.3)–(32.5); Sobolev’s embedding theorem for W s,p(RN )
and Bs,p

q (RN ): (32.6) and (32.7); γ0

((
H1(RN ), L2(RN )

)
1/2,1

)
= L2(RN−1):

(32.8); γ0

(
W 1,1(RN )

)
= L1(RN−1): (32.9).

Lecture 33, The Lions–Magenes space H
1/2
00 (Ω): H1/2(R) has a kind of conti-

nuity: 33.1; H
1/2
00 (R+): 33.2 and (33.1).

Lecture 34, Defining Sobolev spaces and Besov spaces for Ω: Zygmund space:
(34.1); two definitions of W s,p(Ω): (34.2)–(34.4).
Lecture 35, Characterization of W s,p(RN ): Bs,p

∞ (RN ): 35.1 and (35.1)–(35.5);
W s,p(RN ): 35.2 and (35.6)–(35.12).
Lecture 36, Characterization of W s,p(Ω): W s,p(Ω): 36.1 and (36.1)–(36.3); a
bounded open set for which W 1,∞(Ω) is not dense in W 1,p(Ω) for p < ∞:
36.2.
Lecture 37, Variants with BV spaces: Functions in W s,p(Ω) with extension
by 0 belonging to W s,p(RN ): 37.1; nonnegative distributions are Radon mea-
sures: 37.2; BV (Ω): 37.3; BV (RN ) ⊂ L1∗,1(RN ): 37.4 and (37.1) and (37.2);
some interpolations spaces with Mb(RN ) and with BV (RN ): 37.5 and (37.3)–
(37.5).
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Lecture 38, Replacing BV by interpolation spaces: B
1/p,p
∞ (R): (38.1); the linear

wave equation: (38.2); comparing B
1/p,p
∞ (RN ) to interpolation spaces between

BV (RN ) and L∞(RN ): 38.1 and (38.3) and (38.4).
Lecture 39, Shocks for quasi-linear hyperbolic systems: Linear or semi-linear
or quasi-linear wave equations: (39.1)–(39.3); appearance of shocks for the
Burgers equation: 39.1; a family of weak solutions for the initial data 0: (39.4);
Oleinik condition: (39.5) and (39.6); Hopf condition (39.7); the case of systems:
(39.8) and (39.9); the Lax–Friedrichs scheme: (39.10); the Courant–Friedrichs–
Lewy condition: (39.11).
Lecture 40, Interpolation spaces as trace spaces: (E0, E1)θ,p is a trace space:
40.1 and (40.1)–(40.6); a variant Lp0,p1(t; a) leads to the same interpolation
spaces: 40.2 and (40.7) and (40.8); traces of W 1,p(RN ): 40.3 and (40.9).
Lecture 41, Duality and compactness for interpolation spaces: Dual of E0 ∩
E1 with norm J(t; a): 41.1 and (41.1); dual of E0 + E1 with norm K(t; a):
41.2 and (41.2); dual of (E0, E1)θ,q: 41.3 and (41.3) and (41.4); interpolating
compactness: 41.4.
Lecture 42, Miscellaneous questions: Interpolating Lipschitz and monotone:
42.1; interpolation of spectral radius: 42.2; a characterization of the Radon
measures satisfying µ([k, k +1]) ≤ C for all k ∈ Z: 42.3 and (42.1) and (42.2),
and a second one: 42.4 and (42.3); an interpolation space: (42.4); bounding∑

k∈Z supk≤x≤k+1|u(x)|2: 42.5 and (42.5)–(42.7).
Biographical data: Basic biographical information for people whose name is
associated with something mentioned in the lecture notes.
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1

Historical Background

In the mid 1930s, Sergei SOBOLEV introduced some functional spaces which
have been very important in the development of partial differential equations,
mostly those related to continuum mechanics or physics. They are known as
Sobolev spaces, but others have mentioned having defined similar spaces, like
FICHERA1 and FRIEDRICHS.2 A similar idea was used a little after by Jean
LERAY in his study of weak solutions of the Navier–Stokes equation,3 and he
thought that the lack of regularity is related to turbulent flows, but although
nobody really understands at a mathematical level what turbulence is, it is
quite clear from a continuum mechanics point of view that Jean LERAY’s
ideas do not correspond to it; the ideas introduced later by KOLMOGOROV4

have received more attention, but have some defects which are not emphasized
enough.

The basic idea for defining a Sobolev space consists in using weak deriva-
tives, as Sergei SOBOLEV or Jean LERAY did in the mid 1930s; it consists in
giving a precise meaning to the statement that a function u from the Lebesgue
space Lp(Ω)5 (for a nonempty open set Ω in RN ) has all its partial derivatives
∂u
∂xj

also in Lp(Ω). However, they did not define partial derivatives for every
function in Lp(Ω), but only said that some of these functions have partial
derivatives belonging also to Lp(Ω), and the important step of defining more
general mathematical objects, which permit one to define as many derivatives

1 Gaetano FICHERA, Italian mathematician, 1922–1996. He worked in Trieste and
in Roma (Rome), Italy.

2 Kurt Otto FRIEDRICHS, German-born mathematician, 1901–1982. He worked in
Aachen, in Braunschweig, Germany, and at NYU (New York University), New
York, NY.

3 NAVIER introduced the equation in 1821, while STOKES introduced later the lin-
earized version now known as the Stokes equation, which neglects inertial effects.

4 Andrey Nikolaevich KOLMOGOROV, Russian mathematician, 1903–1987. He
received the Wolf Prize in 1980. He worked in Moscow, Russia.

5 It was F. RIESZ who introduced the Lp(Ω) spaces for 1 ≤ p ≤ ∞.
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as one may want for any locally integrable function, was performed by Laurent
SCHWARTZ, who called his objects distributions. Laurent SCHWARTZ went fur-
ther than the theory developed by Sergei SOBOLEV, which he did not know
about, and he points out that BOCHNER6,7 had also obtained some partial
results, which he also only learnt about later. Laurent SCHWARTZ told me
that some people quote GEL’FAND8,9 for developing the theory of distrib-
utions, but that what GEL’FAND did was mostly to popularize the theory.
Someone pointed out to me that WEYL10 should be quoted for the theory
too, but I have not checked that, and Laurent SCHWARTZ was not aware of
his work when I last saw him.

Once distributions are defined and their basic properties obtained, one
defines the Sobolev space Wm,p(Ω) for a nonnegative integer m, for 1 ≤ p ≤ ∞
and for an open set Ω of RN , as the space of functions u ∈ Lp(Ω) such that
Dαu ∈ Lp(Ω) for each multi-index α = (α1, . . . , αN ) with |α| = α1 + . . . +
αN ≤ m, αj ≥ 0 for j = 1, . . . , N , and Dαu = ∂α1

∂x
α1
1

. . . ∂αN

∂x
αN
N

u; one also

denotes α! = α1! . . . αN !, xα = xα1
1 . . . xαN

N , and Laurent SCHWARTZ told me
that these simplifying notations have been introduced by WHITNEY11–13. One
should be aware of the fact that some authors, like Lars HÖRMANDER,14,15

use D for denoting 1
i

∂
∂x instead; one should not be surprised then if two books

6 Salomon BOCHNER, Polish-born mathematician, 1899–1982. He worked in
München (Munich), Germany, and in Princeton, NJ. He used “Zorn’s lemma”
seven years before ZORN.

7 Max August ZORN, German-born mathematician, 1906–1993. He worked at
UCLA (University of California at Los Angeles), Los Angeles, CA, and at Uni-
versity of Indiana, Bloomington, IN, where I met him in 1980.

8 Izrail Moiseevic GEL’FAND, Russian-born mathematician, born in 1913. He
received the Wolf Prize in 1978. He worked in Moscow, Russia, and at Rutgers
University, Piscataway, NJ.

9 Henry RUTGERS, American colonel, 1745–1830.
10 Hermann Klaus Hugo WEYL, German-born mathematician, 1885–1955. He

worked in Göttingen, Germany, at ETH (Eidgenössische Technische Hochschule),
Zürich, Switzerland, and at IAS (Institute for Advanced Study), Princeton, NJ.

11 Hassler WHITNEY, American mathematician, 1907–1989. He shared the Wolf
Prize in 1982 with KREIN. He worked at Harvard University, Cambridge, MA,
and at IAS (Institute for Advanced Study), Princeton, NJ.

12 Mark Grigorievich KREIN, Ukrainian mathematician, 1907–1989. He shared the
Wolf Prize in 1982 with WHITNEY. He worked in Moscow, in Kazan, Russia, in
Odessa and in Kiev, Ukraine.

13 John HARVARD, English clergyman, 1607–1638.
14 Lars HÖRMANDER, Swedish mathematician, born in 1931. He received the Fields

Medal in 1962, and the Wolf Prize in 1988. He worked in Stockholm, Sweden,
at Stanford University, Stanford, CA, at IAS (Institute for Advanced Study),
Princeton, NJ, and in Lund, Sweden.

15 Leland STANFORD, American businessman, 1824–1893.
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contain similar formulas with different constants, and one should check what is
the definition of symbols like D, or how the Fourier transform16,17 is defined.

The reason that Sergei SOBOLEV introduced the space W 1,2(Ω), which
is also denoted H1(Ω) (but should not be confused with the Hardy space,18

which I shall denote H1), is that it is a natural space for solving the Laplace
equation,19,20 also called the Poisson equation,21 of the form −∆u = f with
boundary conditions. It was probably in relation to the Dirichlet principle,22

which consists in noticing that if a function u of class C2 minimizes the func-
tional J defined by

J(v) =
∫

Ω

|grad(v)|2 dx − 2
∫

Ω

f v dx (1.1)

among all functions having a given boundary value, then u satisfies

−∆u = f in Ω. (1.2)

The name for the principle was chosen by RIEMANN,23 who had heard it
from DIRICHLET, but it had been used before by GAUSS24 and by GREEN.25

16 Jean-Baptiste Joseph FOURIER, French mathematician, 1768–1830. He worked
in Auxerre, and in Paris, France; he accompanied BONAPARTE in Egypt, he was
prefect in Grenoble, France, until the fall of NAPOLÉON, and he worked in Paris
again afterward. The first of three universities in Grenoble, France, Université
de Grenoble I, is named after him, and the Institut Fourier is its department of
mathematics.

17 Napoléon BONAPARTE, French general, 1769–1821. He became Premier Consul
after his coup d’état in 1799, was elected Consul for life in 1802, and he proclaimed
himself Emperor in 1804, under the name NAPOLÉON I (1804–1814, and 100 days
in 1815).

18 The term has been introduced by F. RIESZ.
19 Pierre-Simon LAPLACE, French mathematician, 1749–1827. He worked in Paris,

France. He was made count in 1806 by NAPOLÉON and marquis in 1817 by
LOUIS XVIII. In his memoirs written during his exile in St Helena, BONAPARTE

wrote that he had removed LAPLACE from the office of Minister of the Interior,
which he held in 1799, after only six weeks, “because he brought the spirit of the
infinitely small into the government”.

20 Louis Stanislas Xavier de France, 1755–1824, comte de Provence, duc d’Anjou,
was King of France from 1814 to 1824, under the name of LOUIS XVIII.

21 Siméon Denis POISSON, French mathematician, 1781–1840. He worked in Paris,
France.

22 Johann Peter Gustav LEJEUNE DIRICHLET, German mathematician, 1805–
1859. He worked in Breslau (then in Germany, now Wroc�law, Poland), in Berlin
and in Göttingen, Germany.

23 Georg Friedrich Bernhard RIEMANN, German mathematician, 1826–1866. He
worked in Göttingen, Germany.

24 Johann Carl Friedrich GAUSS, German mathematician, 1777–1855. He worked in
Göttingen, Germany.

25 George GREEN, English mathematician, 1793–1841. He was a miller and never
held any academic position.
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WEIERSTRASS26 had pointed out later that the functional might not attain
its minimum, and I think that the complete solution of the Dirichlet principle
was one in the famous list of problems which HILBERT proposed in 1900 at the
International Congress of Mathematicians in Paris, France; the introduction
of Sobolev spaces, which are Hilbert spaces, together with some developments
in functional analysis, by FRÉCHET, F. RIESZ, and BANACH is one way to
attack the problem, which I think was first solved by POINCARÉ. As the
principle is also named after THOMSON,27 it is possible that Sergei SOBOLEV

had considered the question of electrostatics, a simplification of the Maxwell
equation.28,29

HADAMARD30 introduced the notion of well-posed problems and he proved
that there are continuous functions f for which the solution u is not of class C2.
One way to avoid this difficulty is to work with the family of Hölder spaces
Ck,α, where k is a nonnegative integer and 0 < α ≤ 1, named after Ernst
HÖLDER31,32 or LIPSCHITZ33; questions like f ∈ Ck,α implies u ∈ Ck+2,α

for 0 < α < 1 were investigated by GIRAUD34 and for Hölder continuous
coefficients by SCHAUDER, but the similar statement is false for α = 1,
and an adapted space was introduced by Antoni ZYGMUND.35 An under-
lying question is related to singular integrals acting on Hölder spaces C0,α for
0 < α < 1, and the work of GIRAUD was extended to Lp spaces for 1 < p < ∞

26 Karl Theodor Wilhelm WEIERSTRASS, German mathematician, 1815–1897. He
first taught in high schools in Münster, in Braunsberg, Germany, and then he
worked in Berlin, Germany.

27 William THOMSON, Irish-born physicist, 1824–1907. He was made baron Kelvin
of Largs in 1892, and thereafter known as Lord Kelvin. He worked in Glasgow,
Scotland.

28 James CLERK MAXWELL, Scottish physicist, 1831–1879. He worked in
Aberdeen, Scotland, in London, in Cambridge, England, holding the first
Cavendish professorship of physics (1871–1879).

29 Henry CAVENDISH, English physicist and chemist (born in Nice, not yet in France
then), 1731–1810. He was wealthy and lived in London, England.

30 Jacques Salomon HADAMARD, French mathematician, 1865–1963. He worked in
Bordeaux, in Paris, France; he held a chair (mécanique analytique et mécanique
céleste, 1909–1937) at Collège de France, Paris, France.

31 Ernst HÖLDER, German mathematician, 1901–1990. He worked in Leipzig, and at
Johannes Gutenberg-Universität, Mainz, Germany. I once saw him at a meeting
at the Mathematisches Forschungsinstitut in Oberwolfach, Germany.

32 Johannes GUTENBERG, German inventor and printer, 1397–1468. He worked in
Mainz, Germany, where the university is named after him.

33 Rudolf Otto Sigismund LIPSHITZ, German mathematician, 1832–1903. He
worked in Breslau (then in Germany, now Wroc�law, Poland) and in Bonn,
Germany.

34 Georges GIRAUD, French mathematician, 1889–1943?.
35 Antoni Szczepan ZYGMUND, Polish-born mathematician, 1900–1992. He worked

in Warsaw, Poland, in Wilno (then in Poland, now Vilnius, Lithuania), and at
the University of Chicago, Chicago IL.



1 Historical Background 5

by Alberto CALDERÓN36 and Antoni ZYGMUND, so that for 1 < p < ∞,
f ∈ Lp(Ω) implies u ∈ W 2,p

loc (Ω); the question for adapted boundary con-
ditions was investigated by Shmuel AGMON, Avron DOUGLIS37 and Louis
NIRENBERG,38,39 but the case p = 2 had been understood earlier, because
one can use the Fourier transform, and there were simpler methods for prov-
ing regularity results in this case, by Louis NIRENBERG, or by Jaak PEETRE.
In the late 1950s and early 1960s, Sobolev spaces were used in a more sys-
tematic way for solving linear partial differential equations from continuum
mechanics or physics, with suitable boundary conditions, the Lax–Milgram
lemma40 being the cornerstone for the elliptic cases, but others had obtained
the same result, like Mark VISHIK41; a generalization to evolution problems
was worked out by Jacques-Louis LIONS, and after his development of the real
methods for interpolation of Banach spaces with Jaak PEETRE, he studied the
application to Sobolev spaces of noninteger order with Enrico MAGENES; the
late 1960s saw the generalization to nonlinear partial differential equations,
but using the same tools used for the linear cases.

The use of Sobolev spaces and the study of their properties was facili-
tated by the theory of distributions, which used some results of functional
analysis developed for that purpose, and which is a natural generalization of
the previously developed theory of Radon measures.42 Laurent SCHWARTZ

insisted that it had been good for the invention of the theory of distributions

36 Alberto Pedro CALDERÓN, Argentine-born mathematician, 1920–1998. He
received the Wolf Prize in 1989. He worked at Buenos Aires, Argentina, at OSU
(Ohio State University), Columbus, OH, at MIT (Massachusetts Institute of Tech-
nology), Cambridge, MA, and at the University of Chicago, Chicago, IL. He kept
strong ties with Argentina, as can be witnessed from the large number of math-
ematicians from Argentina having studied harmonic analysis, and often working
now in United States.

37 Avron DOUGLIS, American mathematician, 1918–1995. He worked at University
of Maryland, College Park, MD.

38 Louis NIRENBERG, Canadian-born mathematician, born in 1925. He received
the Crafoord Prize in 1982. He works at NYU (New York University), New York,
NY.

39 Holger CRAFOORD, Swedish industrialist and philanthropist, 1908–1982. He
invented the artificial kidney, and he and his wife Anna-Greta CRAFOORD, 1914–
1994, established the Crafoord Prize in 1980 by a donation to the Royal Swedish
Academy of Sciences, to reward and promote basic research in scientific disci-
plines that fall outside the categories of the Nobel Prize (which have included
mathematics, geoscience, bioscience, astronomy, and polyarthritis).

40 Arthur Norton MILGRAM, American mathematician, 1912–1960. He worked in
Syracuse, NY, and in Minneapolis, MN.

41 Mark Iosipovich VISHIK, Russian mathematician, born in 1921. He worked at the
Russian Academy of Sciences, Moscow, Russia.

42 Johann RADON, Czech-born mathematician, 1887–1956. He worked in Hamburg,
in Greifswald, in Erlangen, Germany, in Breslau (then in Germany, now Wroc�law,
Poland) before World War II, and in Vienna, Austria, after 1947.
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that Bourbaki43,44 had chosen to define integration by the approach of Radon
measures, probably following ideas from WEIL, because it would have been
much more difficult for him to think of that generalization if Bourbaki had
chosen the abstract measure theory45–47 and started with Borel measures48

instead, like probabilists do. Of course nothing could have been done with-
out the development of a good theory of integration by LEBESGUE (actually
first done two years earlier by W.H. YOUNG49–52,), and although integra-
tion is more easy to understand than differentiation if one considers that
ARCHIMEDES had computed the area below a parabola (without even having
at his disposal a Cartesian equation of the parabola as analytical geometry
was only invented by DESCARTES53), while one had to wait almost two thou-
sand years to see the invention of differential calculus by NEWTON54 (and

43 Nicolas Bourbaki is the pseudonym of a group of mathematicians, mostly
French; those who chose the name certainly knew about a French general named
BOURBAKI.

44 Charles Denis Sauter BOURBAKI, French general, 1816–1897. Of Greek ancestry,
he declined an offer of the throne of Greece in 1862.

45 René DE POSSEL had left the Bourbaki group on this occasion, because he
advocated the abstract measure theory.

46 Lucien Alexandre Charles René DE POSSEL, French mathematician, 1905–1974.
He worked in Marseille, in Clermont-Ferrand, in Besançon, France, in Alger
(Algiers) (then in France, now the capital of Algeria), and in Paris, France. I
had him as a teacher for my DEA (diplôme d’études approfondies) in numerical
analysis, at Institut Blaise Pascal in Paris, in 1967–1968.

47 Blaise PASCAL, French mathematician and philosopher, 1623–1662. The Univer-
sité de Clermont-Ferrand II, Aubière, France, is named after him.

48 Félix Edouard Justin Emile BOREL, French mathematician, 1871–1956. He
worked in Lille and in Paris, France.

49 William Henry YOUNG, English mathematician, 1863–1942. He worked in Liv-
erpool, England, in Calcutta, India, holding the first Hardinge professorship
(1913–1917), in Aberystwyth, Wales, and in Lausanne, Switzerland. There are
many results attributed to him which may be joint work with his wife, Grace
CHISHOLM, as they collaborated extensively; their son, Laurence, is known for
his own mathematical results, and among them the introduction of Young mea-
sures in the Calculus of Variations, whose use in partial differential equations I
pioneered in the late 1970s, not knowing at the time that he had introduced them
(although I had first met him in 1971 in Madison WI), as I had heard about them
as parametrized measures in seminars on control theory.

50 Sir Charles HARDINGE, 1st Baron HARDINGE of Penshurst, English diplomat,
1858–1944. He was Viceroy and Governor-General of India (1910–1916).

51 Grace Emily CHISHOLM-YOUNG, English mathematician, 1868–1944.
52 Laurence Chisholm YOUNG, English-born mathematician, 1905–2000. He worked

in Cape Town, South Africa, and at University of Wisconsin, Madison, WI.
53 René DESCARTES, French mathematician and philosopher, 1596–1650. Univer-

sité de Paris 5 is named after him.
54 Sir Isaac NEWTON, English mathematician, 1643–1727. He held the Lucasian

chair (1669–1701) at Cambridge, England.
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LEIBNIZ55 who made it more efficient), it is useful to observe that the pre-
vious understanding of integration was not good enough. Although one usu-
ally teaches first the Riemann integral, with Darboux56 sums, there are not
enough Riemann-integrable57 functions in order to make some natural spaces
complete, and this can be done by using the Lebesgue integral. Although the
space L1(R) of Lebesgue-integrable58 functions of a real variable is complete,
it is not a dual, but one can consider L1(R) as a subset of the dual of Cc(R),
the space of continuous functions with compact support,59 so that bounded
sequences in L1(R) may approach a Radon measure (in the weak 
 topology);
for example the sequence un defined by un(x) = n on (0, 1/n) and un(x) = 0
elsewhere converges to the Dirac60 mass61 at 0, and as one checks that for
every ϕ ∈ Cc(R) one has

∫
R

un(x)ϕ(x) dx → ϕ(0), the Dirac mass at 0 corre-
sponds to the linear functional ϕ 
→ ϕ(0). More generally, a Radon measure µ
on an open subset Ω of RN is a linear form ϕ 
→ 〈µ, ϕ〉 on Cc(Ω), the space of
continuous functions with compact support in Ω, such that for every compact
K ⊂ Ω, there exists a constant C(K) such that

|〈µ, ϕ〉| ≤ C(K)max
x∈K

|ϕ(x)| for all ϕ ∈ Cc(Ω) with support ⊂ K. (1.3)

[Taught on Monday January 17, 2000. The course met on Mondays,
Wednesdays, and Fridays.]

55 Gottfried Wilhelm VON LEIBNIZ, German mathematician, 1646–1716. He worked
in Frankfurt, in Mainz, Germany, in Paris, France and in Hanover, Germany, but
never in an academic position.

56 Jean Gaston DARBOUX, French mathematician, 1842–1917. He worked in Paris,
France.

57 The starting point of LEBESGUE may have been his characterization of the
Riemann-integrable functions, as those functions whose points of discontinuity
form a set of (Lebesgue) measure zero, i.e. a set which for every ε > 0 can be
covered by intervals whose sums of lengths is less than ε.

58 They are actually equivalence classes, as one identifies two functions which are
equal almost everywhere (abbreviated a.e.), i.e. which only differ on a set of
(Lebesgue) measure 0.

59 For a continuous function f defined on a topological space and taking values in
a vector space, the support is the closure of the set of x such that f(x) �= 0.

60 Paul Adrien Maurice DIRAC, English physicist, 1902–1984. He received the Nobel
Prize in Physics in 1933. He worked in Cambridge, England, holding the Lucasian
chair (1932–1969).

61 The intuition of a point mass (or charge) is obvious for anyone interested in
physics, but DIRAC went much further than dealing with these objects, as he was
not afraid of taking derivatives of his strangely defined “function”, a quite bold
move which was given a precise mathematical meaning by Laurent SCHWARTZ

in his theory of distributions.



2

The Lebesgue Measure, Convolution

The Lebesgue measure on RN is invariant by translation, by rotation and by
mirror symmetry, i.e., if a ∈ RN and M ∈ L(RN ;RN ) belongs to the orthog-
onal group O(N) (i.e., satisfies MT M = I), then for a Lebesgue-measurable
set A its image B by the isometry x 
→ a + M x is also Lebesgue-measurable
and has the same measure as A. A rigid displacement is the particular case
where M is a rotation, i.e., belongs to the special orthogonal group SO(N),
which is the subgroup of O(N) for which the determinant of M is +1.

One can “construct” nonmeasurable sets by using the axiom of choice,
the classical example being to start with the unit circle S1, and to define
equivalence classes, so that two points are equivalent if one can be obtained
from the other by applying a rotation of an integer angle n ∈ Z; then one
uses the axiom of choice in order to assert that there exists a subset A which
contains exactly one element in each equivalence class, and denoting An =
n + A the subset obtained from A by a rotation of n, one finds that S1 is
partitioned into the An, n ∈ Z, so that if A was Lebesgue-measurable, all
the An would have the same measure and this measure could not be > 0
because the measure of S1 is finite, but if the measure was 0, S1 would be a
countable union of subsets of measure 0 and would have measure 0, and as
A can have neither a positive measure nor a zero measure there only remains
the possibility that it is not measurable (so that there is no paradox ).

A more subtle construction was carried out in R3 by HAUSDORFF,1 and
then used and simplified by BANACH and TARSKI2, giving the Hausdorff–
Banach–Tarski “paradox”: if N ≥ 3, if A and B are two closed bounded sets of
RN with nonempty interior, then there exists a positive integer m, a partition

1 Felix HAUSDORFF, German mathematician, 1869–1942. He worked in Leipzig,
in Greifswalf and in Bonn, Germany. He wrote literary and philosophical work
under the pseudonym of Paul MONGRÉ.

2 Alfred TARSKI (TEITELBAUM), Polish-born mathematician, 1902–1983. He
worked in Warsaw, Poland, and at UCB (University of California at Berkeley),
Berkeley, CA.
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of A into (disjoint) subsets A1, . . . , Am, a partition of B into (disjoint) subsets
B1, . . . , Bm, such that for i = 1, . . . ,m the subset Bi is the image of Ai by
a rigid displacement; of course some of the subsets are not measurable if A
and B have different measures [I have read the statement (but not seen the
proof) that for N = 2 there does exist a finitely additive measure defined for
all subsets and invariant by translation and rotation, so such a paradoxical
decomposition cannot be performed in R2].

Up to a multiplication by a constant, the Lebesgue measure is the only
nonzero Radon measure which is invariant by translation, so that it is uniquely
defined if we add the requirement that the volume of the unit cube be 1.
For any locally compact3 commutative4 group there exists a nonzero Radon
measure which is invariant by translation, unique up to multiplication by a
constant, a Haar measure5 of the group. For the additive group Z, a Haar
measure is the counting measure; for the additive group RN , a Haar measure
is the Lebesgue measure dx, and dt

t is a Haar measure for the multiplicative
group (0,∞) (which is isomorphic to the additive group R by the logarithm,
whose inverse is the exponential).

The convolution product can be defined for any locally compact group for
which one has chosen a Haar measure, but we shall only use it for the additive
group RN . For f, g ∈ Cc(RN ), the convolution product h = f 
g is defined by

h(x) =
∫

RN

f(y)g(x − y) dy =
∫

RN

f(x − y)g(y) dy, (2.1)

showing that the convolution product is commutative. One has f 
g ∈ Cc(RN )
and a localization of support,

support(f 
 g) ⊂ support(f) + support(g). (2.2)

The convolution product is associative, i.e., for a, b, c ∈ Cc(RN ) one has
(a 
 b) 
 c = a 
 (b 
 c); one has to be careful that associativity may be lost
for some generalizations with functions (or distributions) with noncompact
support.

For convolution of continuous functions with compact support, Young’s
inequality6 holds, which asserts that for f, g ∈ Cc(RN ) one has

3 I have heard Laurent SCHWARTZ say that the result is not true for some groups
which are not locally compact.

4 In the noncommutative case one distinguishes between invariance by action of
the group on the left and invariance by action of the group on the right.

5 Alfréd HAAR, Hungarian mathematician, 1885–1933. He worked in Göttingen,
Germany, in Kolozsvár (then in Hungary, now Cluj-Napoca, Romania), in
Budapest and in Szeged, Hungary.

6 William Henry YOUNG worked on so many problems with his wife, Grace
CHISHOLM-YOUNG, that it is not clear if a result attributed to him was obtained
jointly with his wife or not.
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||f 
 g||r ≤ ||f ||p||g||q if 1 ≤ p, q, r ≤ ∞ and
1
r

=
1
p

+
1
q
− 1, (2.3)

where for 1 ≤ s ≤ ∞, ||h||s means ||h||Ls(RN ). If p or q or r is 1, it is just
an application of Hölder’s inequality7 and it is optimal, while for other cases
one may prove it by applying Hölder’s inequality, or Jensen’s inequality,8 a
few times, but the constant is not optimal and the best constant C(p, q) for
which one has ||f 
 g||r ≤ C(p, q)||f ||p||g||q has been found independently by
William BECKNER,9 who used probabilistic methods, and by Elliot LIEB10 and
BRASCAMP,11 who used nonprobabilistic methods (equality holds for some
particular Gaussians). Of course, under the preceding relation between p, q, r,
the convolution product extends from Lp(RN ) × Lq(RN ) into Lr(RN ) with
the same inequality (2.3), and this can be proven either directly or by using
the density12 of Cc(RN ) in Lp(RN ) for 1 ≤ p < ∞, and the (sequential) weak

 density of Cc(RN ) in L∞(RN ).

Lemma 2.1. (i) If 1 < p < ∞, f ∈ Lp(RN ) and g ∈ Lp′
(RN ) (where

p′ denotes the conjugate exponent of p, defined by 1
p + 1

p′ = 1), then
f 
 g ∈ C0(RN ), the space of continuous (bounded) functions converging to 0
at infinity.
(ii) If f ∈ L1(RN ) and g ∈ L∞(RN ), then f 
 g belongs to BUC(RN ), the
space of bounded uniformly continuous functions.

Proof : In that case Young’s inequality (2.3) follows from Hölder’s inequal-
ity, which gives

∣
∣∫

RN f(y)g(x − y) dy
∣
∣ ≤ ||f ||p||g||p′ for all x. There exists a

sequence fn ∈ Cc(RN ) converging to f in Lp(RN ) strong, and a sequence
gn ∈ Cc(RN ) converging to g in Lp′

(RN ) strong, and as f 
 g − fn 
 gn =
f 
 (g − gn) + (f − fn) 
 gn, one deduces that ||f 
 g − fn 
 gn||∞ ≤
||f ||p||g − gn||p′ + ||f − fn||p||gn||p′ → 0, so that f 
 g is the uniform limit

7 Otto Ludwig HÖLDER, German mathematician, 1859–1937. He worked in
Leipzig, Germany. He was the father of Ernst HÖLDER.

8 Johan Ludwig William Valdemar JENSEN, Danish mathematician, 1859–1925.
He never held any academic position, and worked for a telephone company.

9 William Eugene BECKNER, American mathematician. He works at University of
Texas, Austin, TX.

10 Elliott H. LIEB, American mathematician. He worked at IBM (International Busi-
ness Machines), at Yeshiva University, New York, NY, at Northeastern University,
Boston, MA, at MIT (Massachusetts Institute of Technology), Cambridge, MA,
and in Princeton, NJ.

11 Herm Jan BRASCAMP, Dutch mathematical physicist. He works in Groningen,
The Netherlands.

12 Notice that I admit that this density has been proven when constructing the
Lebesgue measure. Although we shall study later an explicit way of approaching
functions in Lp(RN ) by functions in C∞

c (RN ), the proof will use the fact that
Cc(R

N ) is dense, and will not be an independent proof of that result.
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of the sequence fn 
 gn ∈ Cc(RN ), and it belongs to the closure of Cc(RN ) in
L∞(RN ), which is13,14 C0(RN ).

Using a sequence fn ∈ Cc(RN ) converging to f in L1(RN ) strong, one
has ||f 
 g − fn 
 g||∞ ≤ ||f − fn||1||g||∞, so that f 
 g is the uniform limit
of the sequence fn 
 g, and it is enough to show that each fn 
 g is bounded
uniformly continuous, as a uniform limit of such functions also belongs to the
same space BUC(RN ).15 As the function fn belongs to Cc(RN ) it is uniformly
continuous, so that |fn(a) − fn(b)| ≤ ωn(|a − b|) with limt→0 ωn(t) = 0. One
has (fn 
 g)(x)− (fn 
 g)(x′) =

∫
RN

(
fn(x− y)− fn(x′ − y)

)
g(y) dy, but if the

support of fn is included in the closed ball centered at 0 with radius Rn the
integral may be restricted to the set of y such that |y−x| ≤ Rn and |y−x′| ≤
Rn, so that |(fn 
 g)(x) − (fn 
 g)(x′)| ≤

∫
|y−x|≤Rn,|y−x′|≤Rn

|fn(x − y) −
fn(x′ − y)| |g(y)| dy ≤ ωn(|x − x′|)||g||∞meas

(
B(0, Rn)

)
, showing that fn 
 g

is uniformly continuous, and it is bounded by (2.3). ��
Of course, the property of commutativity of the convolution product

extends to the case where it is defined on Lp(RN )×Lq(RN ) (i.e., if p, q ≥ 1 and
1
p + 1

q ≥ 1), and similarly the property of associativity of the convolution prod-
uct extends to the case of functions belonging to La(RN ), Lb(RN ), Lc(RN ),
with a, b, c ≥ 1, 1

a + 1
b ≥ 1, 1

b + 1
c ≥ 1, and 1

a + 1
b + 1

c ≥ 2, and can be proven
directly using Fubini’s theorem.16

However, one must be careful that there are other cases where the convo-
lution products f1 
 f2, f2 
 f3, (f1 
 f2) 
 f3 and f1 
 (f2 
 f3) are all defined,
for example if in each convolution product considered at least one of the func-
tions has compact support,17 but with (f1 
 f2) 
 f3 = f1 
 (f2 
 f3): let f1 = 1,

13 Using the Aleksandrov one point compactification of RN with a point ∞, Cc(R
N )

is the subset of functions which are 0 in a neighborhood of ∞ and C0(R
N ) is the

subset of functions which are 0 at ∞.
14 Pavel Sergeevich ALEKSANDROV, Russian mathematician, 1896–1982. He work-

ed in Smolensk, and in Moscow, Russia.
15 If hn ∈ BUC(RN ) then ||hn||∞ = Mn < ∞ and |hn(x)−hn(y)| ≤ ωn(|x−y|) with

limσ→0 ωn(σ) = 0; if ||hn − h||∞ = εn → 0, then ||h||∞ ≤ infn

(
Mn + εn

)
< ∞,

and because |h(x) − h(y)| ≤ |h(x) − hn(x)| + |hn(x) − hn(y)| + |hn(y) − h(y)| ≤
2εn+ωn(|x−y|), one has |h(x)−h(y)| ≤ ω(|x−y|) with ω(σ) = infn

(
2εn+ωn(σ)

)
,

so that limσ→0 ω(σ) = 0 and ω is a modulus of uniform continuity for h.
16 Guido FUBINI, Italian-born mathematician, 1879–1943. He worked in Catania,

in Genova (Genoa), in Torino (Turin), Italy, and after 1939 in New York, NY.
17 For a measurable function f , the definition of support must be different than

the one for continuous functions, because a function is an equivalence class of
functions equal almost everywhere, and the definition of the support of f must
not change if one changes f on a set of measure 0. For an open set ω one says
that f = 0 on ω if f is equal to 0 almost everywhere in ω; if for a family ωi, i ∈ I,
of open sets such that one has f = 0 on ωi for each i ∈ I, then f = 0 on
ω =

⋃
i∈I

ωi, and in the case where I is not countable one may use a partition
of unity for showing that the support of f is the closed set whose complement is
the largest open set on which f = 0.
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f2 ∈ Cc(R) with
∫

R
f2(x) dx = 0, and let f3 be the Heaviside18 function,

defined by f3(x) = 0 for x < 0 and f3(x) = 1 for x > 0; one sees immediately
that f1 
 f2 = 0 and f4 = f2 
 f3 ∈ Cc(R), and one has to check that f2 can
be chosen in such a way that

∫
R

f4(x) dx = 0; if one chooses f2 with support
in [−1,+1], with

∫ +1

−1
f2(y) dy = 0 and

∫ +1

−1
(1 − y)f2(y) dy = 0, then one has

f4(x) =
∫ x

−1
f2(y) dy, and

∫
R

f4(x) dx =
∫ +1

−1
(1 − y)f2(y) dy = 0.

If one uses locally integrable functions, i.e., measurable functions which are
integrable on every compact, denoted by L1

loc(R
N ), then for f, g ∈ L1

loc(R
N )

one can define the convolution product f 
 g if the following condition is
satisfied:

for every compact C ⊂ RN there exist compact sets A,B ⊂ RN such that
x ∈ support(f), y ∈ support(g) and x + y ∈ C imply x ∈ A, y ∈ B.

(2.4)
For example, if f, g ∈ L1

loc(R) vanish on (−∞, 0), then f 
 g is well defined
and (f 
 g)(x) =

∫ x

0
f(y)g(x − y) dy shows that f 
 g ∈ L1

loc(R) and vanishes
on (−∞, 0); TITCHMARSH19 has proven that if the support of f starts at a
and the support of g starts at b, then the support of f 
 g starts at a + b,
and Jacques-Louis LIONS has generalized this result to similar situations in
RN , proving that the closed convex hull of the support of f 
 g is equal to
the (vector) sum of the closed convex hull of the support of f and the closed
convex hull of the support of g.

Definition 2.2. For a vector a ∈ RN , and f ∈ L1
loc(R

N ), τaf denotes the
function defined by (τaf)(x) = f(x − a) for almost every x ∈ RN . ��

This means that the graph of τaf is obtained from that of f by a translation
of vector (a, 0). Of course, one has

τb(τaf) = τa+bf for all a, b ∈ RN , f ∈ L1
loc(R

N ). (2.5)

An important property of convolution is that it commutes with translation;
this is of course related to the fact that the Lebesgue measure is invariant by
translation.

18 Oliver HEAVISIDE, English engineer, 1850–1925. He worked as a telegrapher, in
Denmark, and in Newcastle upon Tyne, England, and then he did research on his
own, living in the south of England. He developed an operational calculus, which
was given a precise mathematical explanation by Laurent SCHWARTZ using his
theory of distributions, but we also owe him the simplified version of Maxwell’s
equation using vector calculus, which should be called the Maxwell–Heaviside
equation (he replaced a set of 20 equations in 20 variables written by MAXWELL

by a set of 4 equations in 2 variables).
19 Edward Charles TITCHMARSH, English mathematician, 1899–1963. He worked

in London, in Liverpool, and in Oxford, England, where he held the Savilian chair
of geometry.
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Lemma 2.3. (i) If the convolution product of f and g is defined (i.e., if f, g ∈
L1

loc(R
N ) and (2.4) holds), then

τa(f 
 g) = (τaf) 
 g = f 
 (τag) for every a ∈ RN . (2.6)

(ii) If k ≥ 0, f ∈ Ck
c (RN ), the space of functions of class Ck with compact

support and g ∈ L1
loc(R

N ), then f 
 g ∈ Ck(RN ) and if |α| ≤ k one has

Dα(f 
 g) = (Dαf) 
 g almost everywhere. (2.7)

Proof : One has
(
(τaf) 
 g

)
(x) =

∫
RN (τaf)(y)g(x− y) dy =

∫
RN f(y − a)g(x−

y) dy, which by a change of variable in the integral is
∫

RN f(y)g(x−a−y) dy =
(f 
 g)(x − a) =

(
τa(f 
 g)

)
(x), showing that (τaf) 
 g = τa(f 
 g), and it is

also f 
 (τag) by commutativity of the convolution product.
If e1, . . . , eN is the canonical basis of RN , then a function h has a partial

derivative ∂h
∂xj

at x if and only if 1
ε (h − τε ej

h) has a limit at x when ε tends
to 0 (with ε = 0, of course). If f ∈ C1

c (RN ), then 1
ε (f − τε ej

f) converges
uniformly to ∂f

∂xj
so that if one takes the convolution product with a function

g ∈ L1
loc(R

N ), one finds that 1
ε (f − τε ej

f)
g converges uniformly on compact
sets to ∂f

∂xj

g; if one defines h = f 
g, one has 1

ε (f −τε ej
f)
g = 1

ε (h−τε ej
h)

by (2.6), so that the limit must be ∂h
∂xj

and it is equal to ∂f
∂xj


 g. A reiteration
of this argument then gives Dα(f 
 g) = (Dαf) 
 g if |α| ≤ k. ��

If f ∈ C∞
c (RN ) (which in Laurent SCHWARTZ’s notation is D(RN )), then

f 
 g belongs to Ck(RN ) for all k, i.e., f 
 g ∈ C∞(RN ) (which in Laurent
SCHWARTZ’s notation is E(RN )). We shall see that there are enough functions
in C∞

c (RN ) for approaching any function in Lp(RN ) for 1 ≤ p < ∞, but just
one particular function in C∞

c (RN ) has to be constructed explicitly, and the
properties of convolution will help for the rest of the argument.

Lemma 2.4. The function  defined on RN by

(x) =
{

exp
( −1

1−|x|2
)

if |x| < 1
0 if |x| ≥ 1

(2.8)

belongs to C∞
c (RN ).

Proof : It is nonnegative, and continuous because if |x| → 1 with |x| < 1,
then −1

1−|x|2 → −∞ and (x) → 0; obviously  has for support the closed unit

ball. One has ∂�
∂xj

= −2xj

(1−|x|2)2 , and by induction Dα = Pα(x)
(1−|x|2)2|α|  for a

polynomial Pα; when |x| → 1 with |x| < 1, the exponential wins over the term
1

(1−|x|2)2|α| so that Dα → 0, showing that all derivatives of  are continuous,
and therefore  ∈ C∞

c (RN ). ��
[Taught on Wednesday January 19, 2000.]
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Smoothing by Convolution

Once one knows a nonzero function from C∞
c (RN ), like (2.8), convolution and

scaling help create automatically a lot of such functions, enough for approach-
ing all functions in Lp(RN ) for 1 ≤ p < ∞. For doing this, the concept of a
smoothing sequence is used.

Definition 3.1. (i) A smoothing sequence is a sequence n ∈ C∞
c (RN ) such

that support(n) → {0}, with
∫

RN |n(x)| dx bounded and
∫

RN n(x) dx → 1
as n → ∞.
(ii) A special smoothing sequence is defined by

n(x) = nN1(nx), (3.1)

where 1 ∈ C∞
c (RN ) is nonnegative, has integral 1 and has support in the

closed unit ball centered at 0. ��

Starting from an arbitrary nonzero function ϕ ∈ C∞
c (RN ), one may assume

that it is nonnegative by replacing it by ϕ2, that it has its support in the closed
unit ball centered at 0 by replacing it by ϕ(k x) for k large enough, and that it
has integral 1 by multiplying it by a suitable constant. This gives a function
1, which is then rescaled by (3.1), so that the integral of n is 1, and its
support is in the closed ball centered at 0 with radius 1

n .

Lemma 3.2. (i) If 1 ≤ p < ∞, f ∈ Lp(RN ) and n is a smoothing sequence,
then f 
 n → f in Lp(RN ) strong as n → ∞.
(ii) If f ∈ L∞(RN ) and n is a smoothing sequence, then f 
 n → f in
L∞(RN ) weak 
 and in Lq

loc(R
N ) strong for 1 ≤ q < ∞ as n → ∞, i.e., for

every compact K one has
∫

K
|f 
 n − f |q dx → 0 as n → ∞.

Proof : (i) There exists a sequence fm ∈ Cc(RN ) which converges to f in
Lp(RN ) strong as m → ∞. One writes f
n−f = (f−fm)
n+(fm
n−fm)+
(fm−f), so that if one chooses m such that ||f−fm||p ≤ ε, and if C is a bound
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for all the L1(RN ) norms of n, one has ||(f−fm)
n||p ≤ ||f−fm||p||n||1 ≤
C ε, so that ||f 
 n − f ||p ≤ C ε + ||fm 
 n − fm||p + ε, and it remains to
show that for m fixed fm 
n converges to fm in Lp(RN ) strong as n → ∞. If∫

RN n(x) dx = κn, one writes fm
n−fm = (fm
n−κnfm)+(κn−1)fm, and
because κn → 1 the second part tends to 0 in Lp(RN ) strong, and the first part
is
∫

RN n(y)
(
fm(x−y)−fm(x)

)
dy, which tends to 0 uniformly (and in Lp(RN )

strong because its support stays bounded), because of the uniform continuity
of fm, and because the support of n tends to {0}; indeed, if support(n)
is included in the ball centered at 0 with radius rn, and ηm is the modulus
of uniform continuity of fm, one has

∣
∣∫

RN

(
fm(x − y) − fm(x)

)
n(y) dy

∣
∣ ≤∫

RN |n(y)| dy
(
max|y|≤rn

|fm(x − y) − fm(x)|
)
≤ C ηm(rn).

(ii) For f ∈ L∞(RN ), one wants to show that f 
 n converges to f in
L∞(RN ) weak 
 as n → ∞, and this means that for every g ∈ L1(RN ) one
has
∫

RN (f 
 n)(x)g(x) dx →
∫

RN f(x)g(x) dx. One notices that, by Fubini’s
theorem, one has

∫
RN (f
n)(x)g(x) dx =

∫ ∫
RN×RN f(y)n(x−y)g(x) dx dy =∫

RN f(y)(g 
 ̌n)(y) dy, where ̌n(y) = n(−y) for all y ∈ RN , so that ̌n is
a smoothing sequence and by the first part g 
 ̌n converges to g in L1(RN )
strong as n → ∞, so that

∫
RN f(y)(g 
 ̌n(y) dy →

∫
RN f(y)g(y) dy as n → ∞.

In order to show that
∫

K
|f 
n−f |q dx → 0 for a compact K and 1 ≤ q < ∞,

one notices that the integral only uses values of f in a ball centered at 0 with
radius R0 large enough (for the ball to contain K and K + support(̌n)), so
that if f̃ coincides with f inside the ball centered at 0 with radius R0 and is 0
outside it, then the integral is

∫
K
|f̃ 
 n − f̃ |q dx, which does converge to 0 as

n → ∞ because f̃ 
 n converges to f̃ in Lq(RN ) as n → ∞, as a consequence
of the first part and of the fact that f̃ belongs to Lq(RN ). ��

Of course, because n ∈ C∞
c (RN ), one has f 
 n ∈ C∞(RN ) and Dα(f 


n) = f 
 (Dαn) for all multi-indices α, but the support of f 
 n is not
compact in general.

Lemma 3.3. (i) For 1 ≤ p < ∞, the space C∞
c (RN ) is dense in Lp(RN ).

(ii) C∞
c (RN ) is (sequentially) weak 
 dense in L∞(RN ).

Proof : (i) If 1 ≤ p < ∞, fm 
n ∈ C∞
c (RN ) because fm has compact support.

Because f − fm 
 n = (f − fm) + (fm − fm 
 n), the argument used in the
first part of the Lemma 3.2 shows that there are sequences mk and nk such
that fmk


 nk
converges to f in Lp(RN ) strong as k → ∞.

(ii) For f ∈ L∞(RN ), one defines gm by gm(x) = f(x) if |x| ≤ m and
gm(x) = 0 if |x| > m; then, as m → ∞, gm converges to f in L∞(RN ) weak

 and Lq

loc(R
N ) strong for 1 ≤ q < ∞; one concludes by noticing that for m

fixed gm 
 n converges to gm in L∞(RN ) weak 
 and Lq
loc(R

N ) strong for
1 ≤ q < ∞, and this argument uses the fact that on bounded sets of L∞(RN )
the weak 
 topology is metrizable. ��
[Taught on Friday January 21, 2000.]
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Truncation; Radon Measures; Distributions

For reasons which will become clear later, it is useful to define in a more
general setting the truncation step used previously.

Definition 4.1. (i) A truncating sequence is a sequence θn ∈ C∞
c (RN ) which

is bounded in L∞(RN ), and such that θn(x) → 1 for almost every x and
Dαθn → 0 in L∞(RN ) strong for each multi-index α with |α| ≥ 1, as n → ∞.
(ii) A special truncating sequence is defined by θn(x) = θ1

(
x
n

)
with θ1 ∈

C∞
c (RN ), 0 ≤ θ1(x) ≤ 1 for all x, and θ1(x) = 1 for |x| ≤ 1 (and usually with

θ1(y) = 0 for |y| ≥ 2). ��

That such a θ1 exists follows easily from the smoothing by convolution,
and more precisely one has the following result.

Lemma 4.2. Let 0 < a < b < c, then there exists θ ∈ C∞
c (RN ) with 0 ≤

θ(x) ≤ 1 for all x, with θ(x) = 1 if |x| ≤ a, θ(x) = 0 if |x| ≥ c, and∫
RN θ(x) dx =

∫
|x|≤b

dx.

Proof : Let f be the characteristic function of the ball centered at 0 with radius
b; let ε satisfy 0 < ε < min{b−a, c−b}, and let ε ∈ C∞

c (RN ) be nonnegative,
with support in the ball centered at 0 with radius ε, and

∫
RN ε(x) dx = 1.

Then θ = f 
 ε satisfies all the desired properties, the last one coming from
the fact that for two functions f, g ∈ L1(RN ), one has

∫

RN

(f 
 g)(x) dx =
(∫

RN

f(x) dx

)(∫

RN

g(x) dx

)
. �� (4.1)

Of course, if h ∈ Lp(RN ) and θn is a truncating sequence, h θn converges
almost everywhere to h and is bounded by C |h|, and h θn → h in Lp(RN )
strong if 1 ≤ p < ∞, by the Lebesgue dominated convergence theorem, and
in L∞(RN ) weak 
 and Lq

loc(R
N ) strong for 1 ≤ q < ∞ in the case p = ∞.



18 4 Truncation; Radon Measures; Distributions

After these preliminaries, one defines Radon measures and distributions
on an open set Ω of RN in the following way.

Definition 4.3. (i) A Radon measure µ in Ω is a linear form defined on
Cc(Ω) (the space of continuous functions with compact support in Ω), ϕ 
→
〈µ, ϕ〉, such that for every compact K ⊂ Ω there exists a constant C(K) such
that

|〈µ, ϕ〉| ≤ C(K)||ϕ||∞ for all ϕ ∈ Cc(Ω) with support(ϕ) ⊂ K. (4.2)

One writes µ ∈ M(Ω), and the elements of Cc(Ω) are called test functions.
(ii) A distribution S in Ω is a linear form defined on C∞

c (Ω) (the space of
C∞ functions with compact support in Ω), ϕ 
→ 〈S, ϕ〉, such that for every
compact K ⊂ Ω there exists a constant C(K) and a nonnegative integer m(K)
such that

|〈S, ϕ〉| ≤ C(K) max
|α|≤m(k)

||Dαϕ||∞ for all ϕ ∈ C∞
c (Ω) with support(ϕ) ⊂ K.

(4.3)
One writes S ∈ D′(Ω), and the elements of C∞

c (Ω) are called test functions.
(iii) If one can take m(K) = m0 for all compact K ⊂ Ω, then the distribution
is said to have order1 ≤ m0. ��

Radon measures are distributions of order ≤ 0, and actually every dis-
tribution of order ≤ 0 is a Radon measure.2 L1

loc(Ω) denotes the space of
locally integrable functions in Ω, i.e., the (equivalence classes of) Lebesgue-
measurable functions which are integrable on every compact K ⊂ Ω; it is not
a Banach space but it is a Fréchet space (i.e., it is locally convex, metrizable
and complete), and a sequence fn converges to 0 in L1

loc(Ω) if and only if for

1 If T ∈ D′(Ω) has a finite order, Laurent SCHWARTZ defined its order as the
smallest nonnegative integer m such that T is of order ≤ m, but I do not like his
definition. The distribution pv 1

x
, the principal value of 1

x
, which will be defined

in (5.7), is a distribution of order ≤ 1 but it is not a Radon measure; however,
one sees easily that (5.7) makes sense (with natural bounds) if one uses test
functions ϕ ∈ C0,α

c (R), the space of Hölder continuous functions of order α which
have compact support, so that I find natural to say that pv 1

x
is a distribution

of order ≤ α, for every α > 0, while with the definition of Laurent SCHWARTZ

it is called a distribution of order 1. The discrepancy comes from the fact that
Laurent SCHWARTZ limited himself to taking test functions in spaces Ck

c of
functions of class Ck with compact support, while he could as well have used
spaces Ck,α

c of functions with compact support whose derivatives of order k are
Hölder continuous of order α, and define distributions of order ≤ k + α.

2 For showing this, one must observe that if T is a distribution of order 0, then
one can extend the definition of 〈T, ϕ〉 to test functions ϕ ∈ Cc(Ω) instead of
ϕ ∈ C∞

c (Ω), by choosing a special smoothing sequence �ε and then defining
〈T, ϕ〉 = limε→0〈T, ϕ��ε〉, with ε > 0 small enough in order to have support(ϕ)+
support(�ε) ⊂ Ω.
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every compact K ⊂ Ω one has
∫

K
|fn(x)| dx → 0. One identifies any function

f ∈ L1
loc(Ω) with a Radon measure (and therefore with a distribution), which

one usually also writes f , defined by the formula

〈f, ϕ〉 =
∫

Ω

f(x)ϕ(x) dx for all ϕ ∈ Cc(Ω). (4.4)

It is not really such a good notation, because it relies upon having selected
the Lebesgue measure dx and it would be better to call this measure (or
distribution) f dx; this abuse of notation is of no consequence for open sets of
RN , and corresponds to the usual identification of L2(Ω) with its dual, but
when one deals with a differentiable manifold one should remember that there
is no preferred volume form like dx.

If a ∈ Ω, the Dirac mass at a, which is denoted by δa, is defined by

〈δa, ϕ〉 = ϕ(a) for all ϕ ∈ Cc(Ω), (4.5)

and it is a Radon measure (and therefore a distribution). If a sequence an ∈ Ω
converges to the boundary ∂Ω of Ω and cn is an arbitrary sequence, then
µ =

∑
n cnδan

is a Radon measure in Ω because in the formula 〈µ, ϕ〉 =∑
n cnϕ(an), only a finite number of an belong to the compact support K

of ϕ.
Physicists use the notation δ(x − a) instead of δa, and they define δ(x)

as the “function” which is 0 for x = 0 and has integral 1; of course there
is no such function and it is actually a measure, but after studying Radon
measures and distributions one learns which formulas are right, and one can
then decide quickly if a formula used by physicists can be proven easily, or
if it is a questionable one, either by showing that it is false or by noticing
that mathematicians do not know yet how to make sense out of the formal
computations used by physicists in that particular case.

One can create a lot of distributions by taking derivatives, and it is one of
the important properties of distributions that they have as many derivatives
as one wants, and as locally integrable functions are measures and therefore
distributions, one then has a way to define their derivatives.

Definition 4.4. If α = (α1, . . . , αN ) is a multi-index with αj ≥ 0 for j =
1, . . . , N , then for any distribution T ∈ D′(Ω) one defines the distribution
DαT by the formula

〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉 for all ϕ ∈ C∞
c (Ω). �� (4.6)

One must first check that DαT is a distribution, i.e., for any compact
K ⊂ Ω one must bound |〈DαT, ϕ〉| for ϕ ∈ C∞

c (Ω) with support(ϕ) ⊂ K,
and the bound should only involve the sup norm of a fixed finite number
of derivatives of ϕ. As |〈DαT, ϕ〉| = |(−1)|α|〈T,Dαϕ〉| ≤ C(K)max|β|≤m(K)

||Dβ(Dαϕ)||∞, and as Dα+β is a derivation of order ≤ m(K) + |α|, this is
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bounded by C(K)max|γ|≤m(K)+|α| ||Dγϕ||∞, so DαT is a distribution. One
deduces that if T is a distribution of order ≤ m0 then DαT is a distribution
of order ≤ m0 + |α|.

One must then check that the formula is compatible with the notion of
derivative for smooth functions, i.e., if f ∈ C1(Ω), then ∂f

∂xj
∈ C0(Ω), and as

both f and ∂f
∂xj

are locally integrable they are distributions and one must check
that the derivative of the distribution associated to f (which should have been
denoted by f dx) is the distribution associated to ∂f

∂xj
, and this means that

one should check that for every ϕ ∈ C∞
c (Ω) one has

∫
Ω

(
∂f
∂xj

ϕ+f ∂ϕ
∂xj

)
dx = 0,

but this is
∫

Ω
∂(f ϕ)

∂xj
dx, and because f ϕ has compact support, one can invoke

Fubini’s theorem and one may start by integrating in xj , and then in the
other variables; one has to integrate on an open set O of R a function with
compact support, and O could be made of a countably infinite number of open
intervals, but only a finite number of intervals have to be taken into account,
and for each of these intervals one integrates the derivative of a C1 function
vanishing near the ends of the interval and the integral is then 0.

The Heaviside function H is defined by

H(x) =
{

0 for x < 0
1 for x > 0,

(4.7)

and one has
〈

dH
dx , ϕ

〉
= −

〈
H, dϕ

dx

〉
= −

∫∞
0

dϕ
dx dx = ϕ(0) for all ϕ ∈ C∞

c (R),
so that

dH

dx
= δ0. (4.8)

Let u = −1 + 2H, which is the sign function, and let D be d
dx , so that

D u = 2δ0; noticing that u3 = u and u2 = 1, one discovers the following
“paradox”, that D(u3) = 2δ0 but 3u2D u = 6δ0. Of course one would have
been in trouble with checking if D(u2), which is 0, coincides with 2uD u,
because the multiplication of u by δ0 is not defined; one can actually multiply
any Radon measure by a continuous function, but u is not continuous. At this
point one should remember that products are not always defined, and this
question will be considered in the next lecture.
[Taught on Monday January 24, 2000.]
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Sobolev Spaces; Multiplication by Smooth
Functions

With the notion of distributions, it is now easy to give the definition of what
Sobolev spaces are.

Definition 5.1. For a nonnegative integer m, for 1 ≤ p ≤ ∞ and for an
open set Ω ⊂ RN , the Sobolev space Wm,p(Ω) is the space of (equivalence
classes of) functions u ∈ Lp(Ω) such that Dαu ∈ Lp(Ω) for all derivations
Dα of length |α| ≤ m. It is a normed space equipped with the norm ||u|| =∑

|α|≤m ||Dαu||p, or the equivalent norm

||u||m,p =
(∫

Ω

(∑
|α|≤m |Dαu|p

)
dx
)1/p if 1 ≤ p < ∞

||u||m,∞ = max|α|≤m ||Dαu||∞ if p = ∞. ��
(5.1)

Lemma 5.2. (i) For 1 ≤ p ≤ ∞ and m ≥ 0 the Sobolev space Wm,p(Ω) is a
Banach space.
(ii) For p = 2, Wm,2(Ω) is denoted1 by Hm(Ω) and is a Hilbert space, for the
scalar product

((u, v)) =
∫

Ω

⎛

⎝
∑

|α|≤m

Dαu Dαv

⎞

⎠ dx. (5.2)

Proof : (i) Let un be a Cauchy2–4 sequence in Wm,p(Ω), i.e., for every ε > 0
there exists n(ε) such that for n, n′ ≥ n(ε) one has ||un − un′ ||m,p ≤ ε.
1 The specialists of harmonic analysis use the same notation for Hardy spaces,

which I shall denote by Hq when using them (for 0 < q ≤ ∞).
2 Augustin Louis CAUCHY, French mathematician, 1789–1857. He was made baron

by CHARLES X. He worked in Paris, France, went into exile after the 1830 revo-
lution and worked in Torino, Italy, returned from exile after the 1848 revolution,
and worked in Paris again. The concept of a Cauchy sequence was first introduced
a few years before him by BOLZANO.

3 Charles-Philippe de France, 1757–1836, comte d’Artois, duc d’Angoulême, pair
de France, was King of France from 1824 to 1830 under the name CHARLES X.

4 Bernhard Placidus Johann Nepomuk BOLZANO, Czech mathematician and
philosopher, 1781–1848. He worked in Prague (then in Austria, now capital of
the Czech Republic).
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This implies that for each multi-index α with |α| ≤ m one has ||Dαun −
Dαun′ ||p ≤ ε, i.e., Dαun is a Cauchy sequence in Lp(Ω), and as Lp(Ω) is
complete (because one uses the Lebesgue measure, for which the Riesz–Fischer
theorem5 applies), one deduces that Dαun → fα in Lp(Ω) strong as n → ∞.
One must then prove that fα = Dαf0 and that un tends to f0 in Wm,p(Ω). For
this one uses the derivative in the sense of distributions, and for all ϕ ∈ C∞

c (Ω)
and all multi-indices α with |α| ≤ m one has

〈Dαf0, ϕ〉 = (−1)|α|〈f0,D
αϕ〉 = (−1)|α| limn→∞〈fn,Dαϕ〉 =

limn→∞〈Dαfn, ϕ〉 = 〈fα, ϕ〉, (5.3)

showing that Dαf0 = fα, so that f0 ∈ Wm,p(Ω) and Dαun → Dαf0 in Lp(Ω)
for |α| ≤ m; by taking the limit n′ → ∞, one finds that ||un − f0||m,p ≤ ε for
n ≥ n(ε), i.e., un → f0 in Wm,p(Ω).

(ii) The proposed formula for the scalar product is indeed linear in u and
anti-linear in v, and for v = u it gives the square of the norm. ��

In the proof, one has shown some kind of continuity for the derivations
on D′(Ω). Indeed, there exists a topology on C∞

c (Ω) for which the dual is
D′(Ω), on which one uses the weak 
 topology (which coincides with the weak
topology); these topologies are not metrizable, but it is rarely necessary to
know what they are; nevertheless, it is useful to know that a sequence Tn

converges to T∞ in D′(Ω) if and only if

〈Tn, ϕ〉 → 〈T∞, ϕ〉 for all ϕ ∈ C∞
c (Ω), (5.4)

but as the topology is not metrizable, one should remember that the knowl-
edge of converging sequences does not characterize what the topology is. Any
derivation Dα is indeed linear continuous from D′(Ω) into itself, but the
argument in (5.3) has only shown that it is sequentially continuous. Although
it is rarely necessary to use the precise topology on C∞

c (Ω) or on D′(Ω), it
is useful to check that all the operations which one defines are sequentially
continuous, and for that one should know what the convergence of a sequence
in C∞

c (Ω) means, i.e.,

ϕn converges to ϕ∞ in C∞
c (Ω) if and only if there exists

a compact K ⊂ Ω such that support(ϕn) ⊂ K for all n and
for all multi-indices α one has ||Dαϕn − Dαϕ∞||∞ → 0. (5.5)

The next step is to define multiplication of distributions by smooth
functions.

Laurent SCHWARTZ has shown that it is not possible to define a product
for distributions in an associative way, and more precisely he noticed that

(
pv

1
x
· x
)
· δ0 = 1 · δ0 = δ0, while pv

1
x
· (x · δ0) = pv

1
x
· 0 = 0, (5.6)

5 Ernst Sigismund FISCHER, Austrian-born mathematician, 1875–1954. He worked
in Brünn (then in Austria-Hungary, now Brno, Czech Republic), in Erlangen, and
in Köln (Cologne), Germany.
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where the principal value of 1
x is the distribution denoted by pv 1

x , defined by
〈

pv
1
x

, ϕ

〉
= lim

n→∞

∫

n |x|>1

ϕ(x)
x

dx for all ϕ ∈ C∞
c (R). (5.7)

CAUCHY had already defined the notion of principal value, so formulas like
(5.7) were usual and Laurent SCHWARTZ proved that it defines a distribution
of order ≤ 1, because if support(ϕ) ⊂ [−a,+a], then
∫

|x|≥ 1
n

ϕ(x)
x

dx =
∫

1
n≤|x|≤a

ϕ(x) − ϕ(0)
x

dx →
∫

|x|≤a

ϕ(x) − ϕ(0)
x

dx, (5.8)

which exists because |ϕ(x) − ϕ(0)| ≤ |x| ||D ϕ||∞. This distribution satisfies
x pv 1

x = 1 (and it is odd and homogeneous of degree −1); that it is not a Radon
measure can be seen by constructing a sequence of functions ϕk ∈ C∞

c (RN )
which stay uniformly bounded, keep their support in a fixed compact set and
for which

〈
pv 1

x , ϕk

〉
→ +∞; taking ϕk nonnegative with support in [0, 1] and

ϕk(x) = 1 for 1
k ≤ x ≤ 1 − 1

k , one has
〈
pv 1

x , ϕk

〉
≥
∫ 1− 1

k
1
k

dx
x . Some physicists

write formulas where

π δ(x) · π δ(x) − 1
x
· 1
x

could be equal to
C

x2
, (5.9)

and we know that δ(x) should be δ0 and is a Radon measure but not a function,
and as 1

x and 1
x2 are not locally integrable functions because of the singularities

at 0, making distributions out of them requires some care, and the case of
1
x leads to (5.7), and similarly HADAMARD had defined the finite part of
1

xk , and Laurent SCHWARTZ defined by analogy a distribution fp 1
xk . Neither

δ0 · δ0 nor pv 1
x · pv 1

x can be defined, but physicists do not pretend to define
these products and they notice that the same “infinities” appear in trying
to define them, so that the difference seems to make sense; it is not entirely
clear what such a formula could mean, and one should check why physicists
play with such quantities in order to discover what mathematical statements
explain their observations, but one guess is that they need results of what I
call compensated integrability or compensated regularity.6,7 Another possibility
6 What I call compensated integrability or compensated regularity is a different

notion than compensated compactness, a term which I have introduced with
François MURAT, but which some authors have used out of the correct con-
text, for designing a result of compensated regularity. For example, in R2,
∂f
∂x

∂g
∂y

and ∂f
∂y

∂g
∂x

are not defined if f, g ∈ W 1,p(R2) with 1 ≤ p < 2, but

a = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

can be defined by preferring to write b = ∂
∂x

(
f ∂g

∂y

)
− ∂

∂y

(
f ∂g

∂x
)

or c = ∂
∂y

(
∂f
∂x

g
)
− ∂

∂x

(
∂f
∂y

g
)
, because b and c are defined for f, g ∈ W 1,p(R2) with

4
3
≤ p < 2, by using Sobolev’s embedding theorem.

7 François MURAT, French mathematician, born in 1947. He works at CNRS
(Centre National de la Recherche Scientifique) at Université de Paris VI (Pierre
et Marie Curie).
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is to take ε > 0 and to observe that as ε tends to 0, x
x2+ε2 converges in

the sense of distributions to pv 1
x , and that ε

x2+ε2 converges in the sense of
distributions to π δ0; then Sε = x−ε

x2+ε2 converges in the sense of distributions
to S0 = pv 1

x − π δ0, and Tε = x+ε
x2+ε2 converges in the sense of distributions to

T0 = pv 1
x + π δ0, but SεTε = x2−ε2

(x2+ε2)2 is the derivative of −x
x2+ε2 and converges

in the sense of distributions to U0 = − d
dx

(
pv 1

x

)
(which is fp 1

x2 , the finite part
of 1

x2 ); it is tempting to say that S0T0 is U0, which is formally what (5.9) says.
Lars HÖRMANDER has actually shown that some products of distributions are
defined, using his notion of wave front set, and indeed S0T0 is defined, but I
have not checked what his definition gives for that product.

Definition 5.3. If T ∈ D′(Ω) and ψ ∈ C∞(Ω), then ψ T (or T ψ) is the
distribution defined by

〈ψ T, ϕ〉 = 〈T, ψ ϕ〉 for all ϕ ∈ C∞
c (Ω). �� (5.10)

Notice that one only defines the product of a distribution by a function
in C∞(Ω) (or more generally of a distribution of order ≤ m by a function in
Cm(Ω)), but first one must check that ψ T is a distribution, and this follows
from Leibniz’s formula. Leibniz’s formula in one dimension states that

dn(f g)
dxn

=
n∑

m=0

(
n

m

)
dmf

dxm

dn−mg

dxn−m
, (5.11)

where the binomial coefficient
(

n
m

)
is n!

m!(n−m)! ; it is easily proven by induction,
starting from (f g)′ = f ′g +f g′. Writing a generalization of Leibniz’s formula
to the N -dimensional case is simplified by using a notation for multi-indices.

Definition 5.4. If α = (α1, . . . , αN ), then |α| means |α1| + . . . + |αn|, β ≤
α means βj ≤ αj for j = 1, . . . , N , α! means α1! . . . αN !, and

(
α
β

)
means

(
α1
β1

)
. . .
(
αN

βN

)
= α!

β!(α−β)! . ��

Then, Leibniz’s formula has the same form

Dα(f g) =
∑

β≤α

(
α

β

)
Dβf D(α−β)g, (5.12)

and it is easily proven by induction on N .
One has ||Dα(ψ ϕ)||∞ ≤

∑
β≤α

(
α
β

)
||Dβψ||L∞(K)||Dα−βϕ||∞ if support(ϕ)

is contained in a compact K ⊂ Ω, so that one has max|α|≤m ||Dα(ψ ϕ)||∞ ≤
C(K)max|α|≤m ||Dαϕ||∞; one also deduces that if T is a distribution of order
≤ m, then ψ T is also a distribution of order ≤ m.

One must also check that the notation is compatible with the classical
multiplication, i.e., if f ∈ L1

loc(Ω) and T is the corresponding distribution
(which should be written f dx), then the distribution S associated to ψ f is
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indeed ψ T as was just defined. This follows from the definition, as 〈S, ϕ〉 =∫
Ω

(ψ f)ϕdx =
∫

Ω
f(ψ ϕ) dx = 〈T, ψ ϕ〉 = 〈ψ T, ϕ〉 for all ϕ ∈ C∞

c (Ω).
The mapping (ψ, T ) 
→ ψ T from C∞(Ω) × D′(Ω) into D′(Ω) is sequen-

tially continuous. The space C∞(Ω) is a Fréchet space and ψn → ψ∞ in
C∞(Ω) as n → ∞ means that for every compact K ⊂ Ω and for every
multi-index α, Dαψn → Dαψ∞ uniformly on K as n → ∞. The topol-
ogy of D′(Ω) is more technical to describe but a sequence Tn converges
to T∞ in D′(Ω) if and only if 〈Tn, ϕ〉 → 〈T∞, ϕ〉 as n → ∞, for all
ϕ ∈ C∞

c (Ω). Because the subspace C∞
K (Ω) of the functions in C∞

c (Ω) which
have their support in K is a Fréchet space, it has Baire’s property,8 from
which Banach–Steinhaus theorem9 follows, so that if Tn → T∞ as n → ∞,
then there exists a constant C(K) and an integer m(K) independent of n such
that |〈Tn, χ〉| ≤ C(K)max|α|≤m(K) ||Dαχ||∞ for all χ ∈ C∞

K (Ω). Therefore
〈(ψnTn−ψ∞T∞), ϕ〉 = 〈(ψn−ψ∞)Tn, ϕ〉+ 〈ψ∞(Tn−T∞), ϕ〉, so that one has
|〈(ψnTn −ψ∞T∞), ϕ〉| ≤ |〈Tn, (ψn −ψ∞)ϕ〉|+ |〈Tn −T∞, ψ∞ϕ〉|, and the first
term tends to 0 because for each multi-index α, Dα

(
(ψn − ψ∞)ϕ

)
converges

uniformly to 0 by using Leibniz’s formula, and the second term tends to 0 by
definition.

Proposition 5.5. For ψ ∈ C∞(Ω), T ∈ D′(Ω) and any multi-index α, one
has

Dα(ψ T ) =
∑

β≤α

(
α

β

)
(Dβψ)(Dα−βT ). (5.13)

Proof : One proves that ∂(ψ T )
∂xj

= ∂ψ
∂xj

T + ψ ∂T
∂xj

for j = 1, . . . , N , because

for every ϕ ∈ C∞
c (Ω) one has 〈∂(ψ T )

∂xj
, ϕ〉 = −〈ψ T, ∂ϕ

∂xj
〉 = −〈T, ψ ∂ϕ

∂xj
〉 =

〈T,−∂(ψ ϕ)
∂xj

+ ϕ ∂ψ
∂xj

〉 = 〈 ∂T
∂xj

, ψ ϕ〉 + 〈 ∂ψ
∂xj

T, ϕ〉 = 〈 ∂ψ
∂xj

T + ψ ∂T
∂xj

, ϕ〉. Then
(5.13) follows by induction. ��

If ψ ∈ C∞(Ω) and a ∈ Ω, then ψ δa = ψ(a)δa, because 〈ψ δa, ϕ〉 =
〈δa, ψ ϕ〉 = (ψ ϕ)(a) = ψ(a)〈δa, ϕ〉 for all ϕ ∈ C∞

c (Ω). In particular xjδ0 = 0
for j = 1, . . . , N .

As 〈x pv 1
x , ϕ〉 = 〈pv 1

x , x ϕ〉 = limn→∞
∫
|x|≥ 1

n

x ϕ(x)
x dx =

∫
R

ϕ(x) dx =

〈1, ϕ〉 for all ϕ ∈ C∞
c (R), one has x pv 1

x = 1. Notice that x
(
pv 1

x + C δ0

)
= 1

for all C, but pv 1
x can be shown to be the only solution T of xT = 1 which

is odd.
[Taught on Wednesday January 26, 2000.]

8 René-Louis BAIRE, French mathematician, 1874–1932. He worked in Montpellier
and in Dijon, France.

9 Hugo Dyonizy STEINHAUS, Polish mathematician, 1887–1972. He worked in
Lwów (then in Poland, now Lvov, Ukraine) until 1941, and after 1945 in Wroc�law,
Poland.
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Density of Tensor Products; Consequences

Having enlarged the class of functions by introducing distributions, some par-
tial differential equations that had been studied before may have gained new
solutions which could not be considered before, and some other partial differ-
ential equations do not get new solutions. For example, the equation x f = 0
a.e. in R for f ∈ L1

loc(R) only has 0 as a solution, but for distributions
f ∈ D′(R), f = c δ0 is a solution which is a Radon measure and not a (locally
integrable) function (although physicists do call the Dirac measure a “func-
tion”); it is useful to know that one has found all the distributions T ∈ D′(R)
solutions of xT = 0.

Definition 6.1. The tensor product f1 ⊗ f2 of a real (or complex) function
f1 defined on a set X1 and a real (or complex) function f2 defined on a
set X2 is the real (or complex) function defined on X1 × X2 by the formula
(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2) for all (x1, x2) ∈ X1 × X2. ��

For defining convolution of distributions, Laurent SCHWARTZ used tensor
products of distributions, and the uniqueness of tensor products requires that
one shows the density of finite combinations of tensor products in a suitable
topology, which is what Lemma 6.2 is about.

Lemma 6.2. If T ∈ D′(RN1 × RN2) and

〈T, ϕ1 ⊗ ϕ2〉 = 0 for all ϕ1 ∈ C∞
c (RN1), ϕ2 ∈ C∞

c (RN2), (6.1)

then T = 0.

Proof : First one assumes that T is a Radon measure µ and let ψ ∈ Cc(RN1 ×
RN2) with support in K. One chooses η1 ∈ Cc(RN1) equal to 1 on B(0, R1)
and η2 ∈ Cc(RN2) equal to 1 on B(0, R2), so that K ⊂ B(0, R1)×B(0, R1), in
order to have ψ = (η1⊗η2)ψ. One uses Weierstrass’s theorem for approaching
ψ uniformly by a sequence of polynomials Pn on a compact K ′ containing
support(η1)× support(η2), and because every polynomial is a finite combina-
tion of tensor products, one obtains
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〈µ, ψ〉 = 〈µ, (η1 ⊗ η2)ψ〉 = lim
n→∞

〈µ, (η1 ⊗ η2)Pn〉 = 0. (6.2)

Then, if T is a distribution satisfying (6.1), one chooses two smoothing
sequences 1ε ∈ C∞

c (RN1), 2ε ∈ C∞
c (RN2) and one defines µε ∈ D′(RN1 ×

RN2) by

〈µε, ϕ〉 = 〈T, ϕ 
 (1ε ⊗ 2ε)〉 for all ϕ ∈ C∞
c (RN1 × RN2). (6.3)

Of course, µε is a Radon measure, because the sup norm of any derivative of
ϕ 
 (1ε ⊗ 2ε) can be obtained from the sup norm of ϕ; µε satisfies condition
(6.1) because if ϕ = ψ1 ⊗ ψ2 then ϕ 
 (1ε ⊗ 2ε) is a tensor product, namely
(ψ1 
 1ε) ⊗ (ψ2 
 2ε), and by the first part µε = 0, and then

〈T, ϕ〉 = lim
ε→0

〈T, ϕ 
 (1ε ⊗ 2ε)〉 = 0. �� (6.4)

Lemma 6.3. If T ∈ D′(RN ) and xjT = 0 for j = 1, . . . , N , then there exists
C ∈ R such that T = C δ0.

Proof : For N = 1, let ϕ ∈ C∞
c (R) satisfies ϕ(0) = 0, then ϕ(x) = xψ(x)

and ψ ∈ C∞
c (R); indeed, Taylor’s1 expansion formula for ϕ near 0 is

ϕ(x) = ϕ′(0)x + . . . + ϕ(n)(0)
n! xn + o(xn), so that ψ(x) = ϕ′(0) + . . . +

ϕ(n)(0)
n! xn−1 + o(xn−1) shows that one must take ψ(0) = ϕ′(0), and more

generally ψ(n−1)(0) = ϕ(n)(0)
n for n ≥ 1, and as Leibniz’s formula gives

ϕ(n)(x) = xψ(n)(x) + nψ(n−1)(x), the derivatives of ψ are continuous at
0. One deduces that 〈T, ϕ〉 = 〈T, xψ〉 = 〈xT, ψ〉 = 0. Let θ ∈ C∞

c (R) with
θ(0) = 1, then every function ϕ ∈ C∞

c (R) may be written in the form

ϕ(x) = ϕ(0)θ(x) + xψ(x) for a function ψ ∈ C∞
c (R), (6.5)

because ϕ − ϕ(0)θ vanishes at 0, so that

〈T, ϕ〉 = 〈T, ϕ(0)θ + xψ〉 = ϕ(0)〈T, θ〉, (6.6)

i.e., T = C δ0 with C = 〈T, θ〉.
One uses an induction on the dimension N . For ψ ∈ C∞(RN−1), the

mapping ϕ 
→ 〈T, ϕ ⊗ ψ〉 for ϕ ∈ C∞
c (R) defines an element of D′(R) that

one denotes by Uψ and because 〈x1Uψ, ϕ〉 = 〈Uψ, x1ϕ〉 = 〈T, x1ϕ ⊗ ψ〉 =
〈x1T, ϕ ⊗ ψ〉 = 0, one deduces that x1Uψ = 0, so that Uψ = C(ψ)δ0. One
checks that ψ 
→ C(ψ) defines a distribution V ∈ D′(RN−1). For j = 2, . . . , N ,
one has 〈T, ϕ ⊗ xjψ〉 = 〈xjT, ϕ ⊗ ψ〉 = 0, i.e., C(xjψ) = 0, which means
〈V, xjψ〉 = 0 or xjV = 0, so that by induction V = C∗δ0, and therefore
〈T, ϕ⊗ψ〉 = ϕ(0)C(ψ) = C∗ϕ(0)ψ(0). One deduces that T = C∗δ0 by Lemma
6.2, because T − C∗δ0 vanishes on tensor products. ��
1 Brook TAYLOR, English mathematician, 1685–1731. He worked in London,

England.
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Lemma 6.4. Let Ω be a connected open set of RN . If T ∈ D′(Ω) satisfies
∂T
∂xj

= 0 for j = 1, . . . , N , then T is a constant, i.e., there exists C such that
〈T, ϕ〉 = C

∫
Ω

ϕ(x) dx for all ϕ ∈ C∞
c (Ω).

Proof : By a connectedness argument it is enough to show the result with Ω
replaced by any open cube Ω0 ⊂ Ω. One uses an induction on the dimension
N , and one starts with the case N = 1, Ω0 being an interval (a, b). One
notices that if ϕ ∈ C∞

c (a, b) satisfies
∫ b

a
ϕ(x) dx = 0, then ϕ = dψ

dx for a
function ψ ∈ C∞

c (a, b), and ψ is given explicitly by ψ(x) =
∫ x

a
ϕ(t) dt. One

chooses η ∈ C∞
c (a, b) such that

∫ b

a
η(x) dx = 1, and then every ϕ ∈ C∞

c (a, b)
can be written as ϕ = (

∫ b

a
ϕ(t) dt)η + dψ

dx for a function ψ ∈ C∞
c (a, b), because

the integral of ϕ − (
∫ b

a
ϕ(t) dt)η is 0, so for all ϕ ∈ C∞

c (a, b) one has

〈T, ϕ〉 =
〈
T,
(∫ b

a
ϕ(t) dt

)
η + dψ

dx

〉
=
(∫ b

a
ϕ(t) dt

)
〈T, η〉 −

〈
dT
dx , ψ

〉
=

C
(∫ b

a
ϕ(t) dt

)
,

(6.7)

with C = 〈T, η〉, and that means T = C.
Writing Ω0 = ω × (a, b) where ω is a cube in RN−1, then for ϕ ∈ C∞

c (ω)
one defines Tϕ ∈ D′(a, b) by

〈Tϕ, ψ〉 = 〈T, ϕ ⊗ ψ〉 for ψ ∈ C∞
c (a, b), (6.8)

and one checks immediately that this indeed defines a distribution Tϕ on (a, b)
because the bounds on derivatives of ϕ ⊗ ψ only involve a finite number of
derivatives of ψ and the support of ϕ⊗ ψ is the product of the supports of ϕ
and of ψ, so that it stays in a fixed compact set when the support of ψ stays
in a fixed compact set, ϕ being kept fixed. Then
〈

d Tϕ

dxN
, ψ
〉

= −
〈
Tϕ, dψ

dxN

〉
= −

〈
T, ϕ ⊗ dψ

dxN

〉
= −

〈
T, ∂(ϕ⊗ψ)

∂xN

〉
=

〈
∂T

∂xN
, ϕ ⊗ ψ

〉
= 0,

(6.9)

so that Tϕ is a constant Cϕ, i.e., 〈T, ϕ ⊗ ψ〉 = Cϕ

∫ b

a
ψ(t) dt for every ϕ ∈

C∞
c (ω) and ψ ∈ C∞

c (a, b). One then uses this formula to show that ϕ 
→ Cϕ

defines a distribution S on ω, as it is obviously linear and in order to obtain
the desired bounds one chooses a function ψ ∈ C∞

c (a, b) with
∫ b

a
ψ(t) dt = 0

and the bounds for S follow easily from the bounds for T , so that one can
write

〈T, ϕ ⊗ ψ〉 = 〈S, ϕ〉
∫ b

a

ψ(t) dt for all ϕ ∈ C∞
c (ω), ψ ∈ C∞

c (a, b). (6.10)

Then for j = 1, . . . , N − 1 one has

0 =
〈

∂T
∂xj

, ϕ ⊗ ψ
〉

= −
〈
T, ∂(ϕ⊗ψ)

∂xj

〉
= −

〈
T, ∂ϕ

∂xj
⊗ ψ
〉

=

−
〈
S, ∂ϕ

∂xj

〉 ∫ b

a
ψ(t) dt =

〈
∂S
∂xj

, ϕ
〉 ∫ b

a
ψ(t) dt

(6.11)
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so that ∂S
∂xj

= 0, and by the induction hypothesis S is a constant C∗, so that
one has shown

〈T, ϕ ⊗ ψ〉 = C∗

(∫

ω

ϕ(y) dy

)(∫ b

a

ψ(t) dt

)

= C∗

∫

Ω0

(ϕ ⊗ ψ)(x) dx, (6.12)

which implies T = C∗ by Lemma 6.2, because T − C∗ vanishes on tensor
products. ��

Once multiplication has been defined, and Leibniz’s formula has been
extended, one can prove density results.

Lemma 6.5. For 1 ≤ p < ∞, and any integer m ≥ 0, the space C∞
c (RN ) is

dense in Wm,p(RN ).

Proof : Let θn be a special truncating sequence, i.e., θn(x) = θ1

(
x
n

)
, with θ1 ∈

C∞
c (RN ), 0 ≤ θ(x) ≤ 1 on RN and θ(x) = 1 for |x| ≤ 1. For u ∈ Wm,p(RN ),

one defines un = θnu, and one notices that un → u in Wm,p(RN ) strong as
n → ∞. Indeed, one has |un(x)| ≤ |u(x)| almost everywhere, and un(x) →
u(x) as n → ∞, and by the Lebesgue dominated convergence theorem one
deduces that un → u in Lp(RN ) strong as n → ∞. Then for |α| ≤ m one has
Dαun =

∑
β≤α

(
α
β

)
DβθnDα−βu, and the term for β = 0 converges to Dαu

again by the Lebesgue dominated convergence theorem, while the terms for
|β| > 0 contains derivatives of θn which converge uniformly to 0, so that one
has Dαun → Dαu in Lp(RN ) strong as n → ∞.

Then one approaches un by functions in C∞
c (RN ) by convolution with

a smoothing sequence ε for a sequence of ε converging to 0, and using a
diagonal argument there is a sequence un 
 ε(n) ∈ C∞

c (RN ) which converges
to u in Wm,p(RN ) strong as n → ∞. The crucial point is to notice that for
|α| ≤ m one has

Dα(ε 
 un) = ε 
 Dαun,
which converges to Dαun in Lp(RN ) strong as ε → 0.

(6.13)

Indeed, for any test function ϕ ∈ C∞
c (RN ), one has

〈Dα(ε 
 un), ϕ〉 = (−1)|α|〈ε 
 un,Dαϕ〉 = (−1)|α|〈un, ̌ε 
 Dαϕ〉 =
(−1)|α|〈un,Dα(̌ε 
 ϕ)〉 = 〈Dαun, ̌ε 
 ϕ〉 = 〈ε 
 Dαun, ϕ〉,

(6.14)
where f̌ is defined by f̌(x) = f(−x). ��

For p = ∞, the same method shows that one can approach any u ∈
Wm,∞(RN ) by a sequence ψn ∈ C∞

c (RN ) such that for every |α| ≤ m, Dαψn

converges to Dαu in L∞(RN ) weak 
 and Lq
loc(R

N ) strong for every finite q
as n → ∞.

If Ω is an open set of RN , it is not true in general that C∞
c (Ω) is dense

in Wm,p(Ω), and one is led to the following definition.

Definition 6.6. Wm,p
0 (Ω) is the closure of C∞

c (Ω) in Wm,p(Ω). ��
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If the boundary ∂Ω is Lipschitz, then the functions of Wm,p
0 (Ω) are 0 on

the boundary, as will be seen later. If ∂Ω is too small, then it may happen
that Wm,p

0 (Ω) = Wm,p(Ω); this is related to the fact that the functions in
Wm,p(Ω) are not necessarily continuous, and Sobolev’s embedding theorem,
given now and proven later, tells for what values of m and p functions in
Wm,p(Ω) are automatically continuous.

Theorem 6.7. (Sobolev’s embedding theorem2,3) (i) If 1 ≤ p < N
m then

Wm,p(RN ) ⊂ Lr(RN ) with 1
r = 1

p − m
N , but Wm,p(RN ) is not a subspace

of Ls(RN ) for s > r.
(ii) If p = N

m then Wm,p(RN ) ⊂ Lq(RN ) for every q ∈ [p,∞), but Wm,N (RN )
is not a subspace of L∞(RN ) if p > 1; however, WN,1(RN ) ⊂ C0(RN ).
(iii) If N

m < p < ∞ then Wm,p(RN ) ⊂ C0(RN ), the space of continu-
ous functions tending to 0 at ∞. If N

k < p < N
k−1 for an integer k, then

W k,p(RN ) ⊂ C0,γ(RN ), the space of Hölder continuous functions of order γ,
with γ = k − N

p . ��

For example if Ω = RN \ F , where F is a finite number of points and
p ≤ N

m , then Wm,p
0 (Ω) = Wm,p(Ω) and coincides with Wm,p(RN ), as will be

shown later.
It is useful to recall that any closed set K of RN can be the zero set of a C∞

function, because RN \K can be written as the countable union of open balls
B(zn, rn), and if ϕ ∈ C∞

c (RN ) has its support equal to the closed unit ball and
is positive in the open unit ball, then one considers the series

∑
n cnϕ

(
x−zn

rn

)

and one can choose the sequence cn such that the series converges uniformly,
as well as any of its derivatives. Therefore the zero set of a smooth function
can be as irregular as one may wish (among closed sets, of course).

It is useful to recall that there are open sets with thick boundary, for
example if one has an enumeration of the points with rational coordinates of
RN , z1, . . . , zn, . . ., and for ε > 0 one considers Aε =

⋃
n B(zn, ε 2−n), then

Aε is open, has Lebesgue measure ≤ ε and its boundary is its complement
RN \ Aε which has infinite Lebesgue measure.
[Taught on Friday January 28, 2000.]

2 The part of (iii) concerning Hölder continuity seems to be an improvement due
to MORREY.

3 Charles Bradfield Jr. MORREY, American mathematician, 1907–1980. He worked
at UCB (University of California at Berkeley), Berkeley, CA.
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Extending the Notion of Support

As I recalled in footnote 59 of Lecture 1, for a continuous function u from
a topological space X into a vector space, the support of u, denoted by
support(u), is the closure of the set of points x ∈ X such that u(x) = 0.
As mentioned in footnote 17 of Lecture 2, one needs a different definition for
locally integrable functions, and one can actually define the support of any
Radon measure or any distribution in a similar way, by characterizing the
complement of the support as the largest open set on which u is 0; this leads
to the following definition.

Definition 7.1. A Radon measure µ ∈ M(Ω) is said to be 0 on an open
subset ω ⊂ Ω if

〈µ, ϕ〉 = 0 for all ϕ ∈ Cc(ω). (7.1)

A distribution T ∈ D′(Ω) is said to be 0 on an open subset ω ⊂ Ω if

〈T, ϕ〉 = 0 for all ϕ ∈ C∞
c (ω). �� (7.2)

For a Radon measure, being 0 on ω as in (7.1) or considering it as a distri-
bution and being 0 on ω as in (7.2) coincide (by smoothing by convolution, as
in the second part of the proof of Lemma 7.3). In order to define the support
of a Radon measure or a distribution, one must deduce that being 0 on a
family of open sets implies being 0 on its union, and this is done by using a
partition of unity.

Lemma 7.2. Let F be a closed set of RN and let Ui, i ∈ I, be an open covering
of F . Then for each i ∈ I there exists θi ∈ C∞

c (Ui) with 0 ≤ θi ≤ 1 on RN

and
∑

i∈I θi = 1 on an open set V containing F , the sum being locally finite,
i.e., for each x ∈

⋃
i∈I Ui there exists an open set Wx containing x such that

only a finite number of θj are not identically 0 on Wx.

Proof : Let 1 ∈ C∞
c (RN ), with support(1) ⊂ B(0, 1), such that 1 ≥ 0

and
∫

RN 1(x) dx = 1, and for ε > 0 let ε(x) = ε−N1

(
x
ε

)
. For each x ∈

F there exists i(x) ∈ I such that x ∈ Ui(x) and 0 < r(x) ≤ 1 such that
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B
(
x, 4r(x)

)
⊂ Ui(x). For n ≥ 1, let Fn = {x ∈ F | n − 1 ≤ |x| ≤ n}, and

as Fn is compact and covered by the open balls B
(
x, r(x)

)
for x ∈ Fn, it is

covered by a finite number of them, with centers y ∈ Gn, Gn being a finite
subset of Fn. One chooses εn = miny∈Gn

r(y) > 0, and for y ∈ Gn one denotes
by χy the characteristic function of B

(
y, 2r(y)

)
and αy

n = εn

 χy, so that

αy
n ∈ C∞

c

(
B
(
y, 3r(y)

))
⊂ C∞

c (Ui(y)) and αy
n = 1 on B

(
y, r(y)

)
, and therefore

βn =
∑

y∈Gn
αy

n ≥ 1 on the open set Vn =
⋃

y∈Gn
B
(
y, r(y)

)
which contains

Fn (and βn ≥ 0 elsewhere).
For j ∈ I, let ηj be the sum of all αy

n for which i(y) = j; there might be
an infinite number of such y, but the sum is locally finite and ηj ∈ C∞(Uj)
because when n− 1 ≤ |y| ≤ n the function αy

n is 0 outside B(y, 3), because of
the choice r(y) ≤ 1; if F is compact, there are only a finite number of terms,
so that ηj ∈ C∞

c (Uj) in this case. Similarly, let ζ =
∑

j∈I ηj , the sum being
also locally finite and equal to

∑
n βn, so that ζ ≥ 1 on V =

⋃
n Vn. Choose

ψ ∈ C∞(RN ) such that ψ = 0 on V and ψ > 0 on RN \ V . For j ∈ I, let
θj = ηj

ζ+ψ , which is C∞ because ζ +ψ does not vanish (as ζ ≥ 1 and ψ = 0 on
V and ψ > 0 and ζ ≥ 0 outside V ), so that support(θj) ⊂ support(ηj) ⊂ Uj .
One has

∑
j∈I θj = ζ

ζ+ψ , which is 1 on V as ψ = 0 on V . ��

Lemma 7.3. If a Radon measure µ ∈ M(Ω) or a distribution T ∈ D′(Ω) is
0 on ωi ⊂ Ω for i ∈ I, then it is 0 on

⋃
i∈I ωi.

Proof : Let ω =
⋃

i∈I ωi and ϕ ∈ C∞
c (ω) with support K. There is a finite

number of functions θi ∈ C∞
c (ωi) with

∑
i θi = 1 on K, so that ϕ =

∑
i∈I θiϕ,

and as θiϕ ∈ C∞
c (ωi) one has 〈T, θiϕ〉 = 0 and by summing in i one deduces

that 〈T, ϕ〉 = 0.
If ψ ∈ Cc(ω), then for a smoothing sequence n one defines ϕn = ψ 
 ϕn,

and for n large enough the support of all the ϕn stays in a fixed compact
set K ′ of Ω; considering µ as a distribution, the preceding result shows that
〈µ, ϕn〉 = 0 for n large enough, but as ϕn → ψ uniformly on K ′ one has
〈µ, ψ〉 = limn→∞〈µ, ϕn〉 = 0. ��

Definition 7.4. For a Radon measure µ ∈ M(Ω), the support, denoted by
support(µ), is the closed set which is the complement of the largest open
set where µ is 0. For a distribution T ∈ D′(Ω), the support, denoted by
support(T ), is the closed set which is the complement of the largest open set
where T is 0. ��

The definitions make sense because the largest open set is the union of all
open sets where µ is 0, or where T is 0 (it is empty if no such open set exists).
The second part of the proof of Lemma 7.3 shows that for µ ∈ M(Ω), the
two definitions of being 0 coincide, so the two definitions of support coincide.

Partitions of unity will be useful for studying how functions in Sobolev
spaces behave near the boundary of an open set. There are properties of
Sobolev spaces which do depend upon the smoothness of the boundary ∂Ω,
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but for some other properties the boundary plays no role, and these properties
are said to be local, and they may be expressed for larger spaces.

Definition 7.5. For an open set Ω ⊂ RN , an integer m ≥ 0 and 1 ≤ p ≤ ∞,
the space Wm,p

loc (Ω) is the space of distributions T ∈ D′(Ω) such that for every
ϕ ∈ C∞

c (Ω) one has ϕT ∈ Wm,p(Ω). ��

One checks immediately that the space L1
loc(Ω), described previously as

the set of (equivalence classes of) Lebesgue-measurable functions T such that
for any compact K ⊂ Ω one has χKT ∈ L1(ω), where χK is the characteristic
function of K, is identical with the space described in Definition 7.5 for m = 0
and p = 1, which is the space of distributions T such that ϕT ∈ L1(Ω) for
every ϕ ∈ C∞

c (Ω).
Of course, Wm,p

loc (Ω) is a Fréchet space, but (assuming Ω = ∅) it is not a
Banach space.

Sobolev’s embedding theorem implies that for 1 ≤ p < N one has
W 1,p(RN ) ⊂ Lp∗

(RN ) with 1
p∗ = 1

p − 1
N , and one deduces that for any

open set Ω ⊂ RN one has W 1,p(Ω) ⊂ Lp∗

loc(Ω). Indeed, for ϕ ∈ C∞
c (Ω) and

u ∈ W 1,p(Ω), the function ϕu also belongs to W 1,p(Ω) and is 0 outside the
support of ϕ, and by extending it by being 0 outside Ω, one finds a function
ϕ̃ u ∈ W 1,p(RN ) ⊂ Lp∗

(RN ), showing that one has ϕu ∈ Lp∗
(Ω). Without a

Lipschitz boundary, W 1,p(Ω) may not be a subspace of Lp∗
(Ω).

Lemma 7.6. (i) If 1 ≤ p, q, r ≤ ∞ and 1
r = 1

p + 1
q , then for u ∈ W 1,p(Ω) and

v ∈ W 1,q(Ω) one has u v ∈ W 1,r(Ω) (and ||u v||1,r ≤ C||u||1,p||v||1,q).
(ii) If 1 ≤ p, q, s < N and 1

s = 1
p + 1

q − 1
N , then for u ∈ W 1,p(Ω) and

v ∈ W 1,q(Ω) one has u v ∈ W 1,s
loc (Ω).

Proof : The first part is a consequence of applying Hölder’s inequality to the
formula ∂(u v)

∂xj
= ∂u

∂xj
v + u ∂v

∂xj
. To prove the formula, one must show that

−
∫

Ω
u v ∂ϕ

∂xj
dx =

∫
Ω

(
∂u
∂xj

v + u ∂v
∂xj

)
ϕdx for every ϕ ∈ C∞

c (Ω). One chooses
θ ∈ C∞

c (Ω) with θ = 1 on the support K of ϕ, and the formula to be proven
does not change if one replaces u by θ u (as the derivative of θ vanishes on the
support of ϕ), but as θ u extended by 0 outside Ω is a function of W 1,p(RN ),
one may approach it by a sequence wn ∈ C∞

c (RN ), and as the formula is true
for u replaced by wn one just lets n tend to ∞ and each term converges to
the right quantity.

The second part is similar and consists in using the fact that on the support
K of ϕ one has u ∈ Lp∗

(K) and v ∈ Lq∗
(K) (by the remark preceding Lemma

7.6, which relies on Sobolev’s embedding theorem). ��

Definition 7.7. For a nonempty set A ⊂ RN , the space of Lipschitz contin-
uous functions on A, denoted by Lip(A), is the space of bounded (continuous)
functions u on A such that there exists M with |u(a)−u(b)| ≤ M |b−a| for all
a, b ∈ A; the space of locally Lipschitz continuous functions on A, denoted by
Liploc(A), is the space of (continuous) functions u on A such that for every



36 7 Extending the Notion of Support

compact K ⊂ A there exists M(K) with |u(a) − u(b)| ≤ M(K)|b − a| for all
a, b ∈ K, i.e., the restriction of u to K belongs to Lip(K). ��

Of course, Liploc(A) is a Fréchet space, and it is only a Banach space when
A is compact, in which case it coincides with Lip(A).

Lemma 7.8. (i) W 1,∞(RN ) = Lip(RN ).
(ii) If Ω is an open subset of RN , then Lip(Ω) ⊂ W 1,∞(Ω), and W 1,∞(Ω) ⊂
L∞(Ω) ∩ Liploc(Ω).
(iii) If u ∈ W 1,∞(Ω) and ||grad(u)||∞ ≤ K, then one has |u(x) − u(y)| ≤
K dΩ(x, y), where dΩ is the geodesic distance from x to y in Ω, the shortest
length of a smooth path connecting x to y in Ω.

Proof : (i) If u ∈ W 1,∞(RN ), and n is a special smoothing sequence, then
un = n 
 u ∈ C∞(RN ), ||un||∞ ≤ ||u||∞ and

∣
∣
∣
∣∂un

∂xj

∣
∣
∣
∣
∞ ≤

∣
∣
∣
∣ ∂u
∂xj

∣
∣
∣
∣
∞ ≤

||grad(u)||∞ for j = 1, . . . , N , and as this inequality applies to any direction
(not only the N directions of the canonical basis) it implies that |grad(un)| ≤
||grad(u)||∞ in RN , so that |un(x) − un(y)| ≤ |x − y| ||grad(u)||∞ for all
x, y ∈ RN ; as a subsequence um of un converges almost everywhere to u as
m → ∞, one deduces that |u(x) − u(y)| ≤ |x − y| ||grad(u)||∞ for almost
every x, y ∈ RN , i.e., u is Lipschitz continuous with Lipschitz constant
||grad(u)||∞. Conversely, if u ∈ Lip(RN ) and un = u 
 n ∈ C∞(RN ),
then for any h ∈ RN one has un − τs hun = (u − τs hu) 
 n, implying
||un − τs hun||∞ ≤ ||u − τs hu||∞ ≤ K s |h|, where K is the Lipschitz con-
stant of u, so that after dividing by s and letting s tend to 0 one deduces that
||grad(un)||∞ ≤ K and then letting n tend to ∞ gives ||grad(u)||∞ ≤ K.

(ii) The preceding argument is valid if u ∈ Lip(Ω), as u
n is well defined
at a short distance from the boundary.

(iii) The passage from a bound on ||grad(u)||∞ to a bound on |u(x)−u(y)|
for u ∈ C∞(Ω) relies on the fact that the segment [xy] is included in Ω, and
it can be replaced by the sum of the lengths of segments for a polygonal path
joining x to y and staying inside Ω, and the infimum of these quantities is the
geodesic distance dΩ(x, y). ��

If Ω is the open subset of R2 defined in polar coordinates by −π < θ < π
and r > 1, then the function u = θ satisfies ∂u

∂x = − y
r2 and ∂u

∂y = x
r2 , so

that u ∈ W 1,∞(Ω), but for ε > 0 small the points with Cartesian coordinates
(−2,−ε) and (−2,+ε) are at Euclidean1,2 distance 2ε while the difference
in values of θ is converging to 2π as ε → 0 (the geodesic distance tends to
2
√

3 + 4π
3 ).

[Taught on Monday January 31, 2000.]
1 EUCLID of Alexandria, “Egyptian” mathematician, about 325 BCE–265 BCE. It

is not known where he was born, but he worked in Alexandria, Egypt, shortly
after it was founded by ALEXANDER the Great, in 331 BCE.

2 Alexandros Philippou Makedonon, 356 BCE–323 BCE, was King of Macedon as
ALEXANDER III, and is referred to as ALEXANDER the Great, in relation with
the large empire that he conquered.
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Sobolev’s Embedding Theorem, 1 ≤ p < N

One has H1(R2) = W 1,2(R2) ⊂ Lp(R2) for every p ∈ [2,∞) by Sobolev’s
embedding theorem, but the similar property does not hold for all open sets
Ω, and a Lipschitz boundary will be assumed.

Lemma 8.1. Let Ω = {(x, y) | 0 < x < 1, 0 < y < x2} ⊂ R2. Then H1(Ω) ⊂
Lp(Ω) for p > 6.

Proof : One checks for which value α ∈ R the function u(x) = xα belongs
to Lq(Ω) and as

∫ 1

0
xα q+2 dx =

∫
Ω

xα q dx dy, one finds that the condition is
α q + 2 > −1. Applying this remark to u and ∂u

∂x and q = 2, one finds that
u ∈ H1(Ω) if and only if 2(α − 1) + 2 > −1, i.e., α > − 1

2 , and u ∈ Lp(Ω) if
and only if α p

6 > − 1
2 , i.e., H1(Ω) is not a subset of Lp(Ω) for p > 6. ��

Of course, the same limitations occur for other cusps on the boundary,
like for Ω = {(x, y) | 0 < x < 1, 0 < y < xγ}, with γ > 1.

A part of Sobolev’s embedding theorem asserts that for 1 ≤ p < N one has
W 1,p(RN ) ⊂ Lp∗

(RN ) with 1
p∗ = 1

p − 1
N , or p∗ = N p

N−p , and one deduces then
that W 1,p(RN ) ⊂ Lq(RN ) for every q ∈ [p, p∗] by the following application of
Hölder’s inequality.

Lemma 8.2. If 1 ≤ p0 < pθ < p1 ≤ ∞, then

||u||pθ
≤ ||u||1−θ

p0
||u||θp1

for all u ∈ Lp0(Ω) ∩ Lp1(Ω)
with θ ∈ (0, 1) defined by 1

pθ
= 1−θ

p0
+ θ

p1
.

(8.1)

Proof : One applies Hölder’s inequality ||f g||1 ≤ ||f ||q||g||q′ with f =
|u|(1−θ)pθ and g = |u|θ pθ , with q = p0

(1−θ)pθ
and q′ = p1

θ pθ
, which are conjugate

exponents. ��
The preceding result is not restricted to the Lebesgue measure, and the

restriction that p0 ≥ 1 is not necessary (although the notation ||v||r is not a
norm for 0 < r < 1).

Sobolev’s embedding theorem is natural if one considers the question of
scaling.
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Lemma 8.3. If 1 ≤ q < p or 1 ≤ p < N and q > p∗, defined by 1
p∗ = 1

p − 1
N ,

there is no finite constant C such that ||u||q ≤ C ||u||1,p for all u ∈ C∞
c (RN ).

Proof : For λ > 0, one applies the inequality

||u||q ≤ C ||u||p + C ||grad(u)||p for u ∈ C∞
c (RN ) (8.2)

to the function v defined by

v(x) = u
(x

λ

)
for x ∈ RN , (8.3)

and one notices that for 1 ≤ r < ∞ one has

||v||r =
(∫

RN

∣
∣u
(

x
λ

)∣∣r dx
)1/r

=
(∫

RN |u(y)|r λN dy
)1/r = λN/r||u||r

||grad(v)||r = λ−1+N/r||grad(u)||r,
(8.4)

so that, if (8.2) is true one deduces

λN/q||u||q ≤ C λN/p||u||p + C λ−1+N/p||grad(u)||p for u ∈ C∞
c (RN ), (8.5)

i.e., an inequality of the form

||u||q ≤ C λα||u||p + C λβ ||grad(u)||p for all λ > 0

with α = N
p − N

q , β = N
p∗ − N

q .
(8.6)

If one had α < 0 and β < 0, then by letting λ tend to ∞ one would deduce
the contradiction ||u||q = 0 for all u ∈ C∞

c (RN ); this corresponds to the case
q < p. Similarly, if one had α > 0 and β > 0 one would deduce the same
contradiction by letting λ tend to 0; this corresponds to the case p < N and
q > p∗. ��

If the inequality is true for q = p∗, then the same argument shows that
one has ||u||p∗ ≤ C ||grad(u)||p for all u ∈ C∞

c (RN ). However, this is not
a proof that the inequality is true, as for example the inequality ||u||∞ ≤
C ||grad(u)||N implies no contradiction by the preceding scaling argument,
but it is not true for N > 1.

One reason why one cannot deduce by a scaling argument that the limiting
case of the Sobolev’s embedding theorem does not hold for p = N , is that in
the larger context of the Lorentz1,2 spaces all the spaces Lp,q(RN ) scale in
the same way for different values of q ∈ [1,∞]. If all the partial derivatives
of u are estimated in LN,1(RN ) it does provide a bound for the sup norm

1 George Gunther LORENTZ, Russian-born mathematician, born in 1910. He
worked in Toronto, Ontario (Canada), at Wayne State University, Detroit, MI,
in Syracuse, NY, and at University of Texas, Austin, TX.

2 Anthony WAYNE, American general, 1745–1796.
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of u, while for any q > 1 there exist unbounded functions v with all partial
derivatives in LN,q(RN ).

The method of Sergei SOBOLEV for proving his famous embedding theorem
for W 1,p(RN ) in the case 1 < p < N was based on properties of an elementary
solution of the Laplacian

∆ =
N∑

i=1

∂2

∂x2
i

. (8.7)

Definition 8.4. If P (ξ) =
∑

α aαξα is a polynomial in ξ ∈ RN (with
constant coefficients), and P (D) denotes the differential operator P (D) =∑

α aαDα, an elementary solution of P (D) is any distribution E such that
P (D)E = δ0. ��

Elementary solutions are not unique, but a particular elementary solution
may often be selected by using symmetry arguments, and in the case of ∆,
one finds a radial function of the form

E =

⎧
⎨

⎩

CNr2−N for N ≥ 3
C2 log r for N = 2
r
2 for N = 1,

(8.8)

with r2 =
∑N

i=1 x2
i . Anticipating the properties of convolution with distribu-

tions, one has

u = u 
 ∆E =
N∑

i=1

∂u

∂xi



∂E

∂xi
, (8.9)

and Sobolev’s embedding theorem would be a consequence of Young’s inequal-
ity (2.3) if one had ∂E

∂xi
∈ LN ′

(RN ), but as these derivatives are of the order of
r1−N this fails to be the case; however, Sergei SOBOLEV proved that Young’s
inequality (2.3) still holds if instead of a function in Lq(RN ) one uses the
function r−N/q. This line of argument does not work for p = 1, and that case
was proven by Louis NIRENBERG, but a more important generalization was
noticed later by Jaak PEETRE, using the theory of interpolation that he had
developed in parallel with Jacques-Louis LIONS; actually, the particular result
of interpolation in Lorentz spaces is also a consequence of a result obtained
by O’NEIL3, who was extending a result of HARDY and LITTLEWOOD4 about
nonincreasing rearrangements.

A second method for proving Sobolev’s embedding theorem was developed
independently by Emilio GAGLIARDO and by Louis NIRENBERG, but the same

3 Richard Charles O’NEIL, American mathematician. He has worked at Rice
University, Houston, TX, and in Albany, NY.

4 John Edensor LITTLEWOOD, English mathematician, 1885–1977. He worked in
Manchester and in Cambridge, England, where he held the newly founded Rouse
Ball professorship (1928–1950).
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idea has also been used by Olga LADYZHENSKAYA.5,6 Of course, one always
proves inequalities for smooth functions with compact support, and then one
extends the results to Sobolev spaces by density.

Lemma 8.5. W 1,1(R) ⊂ C0(R) and

||f ||∞ ≤ 1
2

∣
∣
∣
∣

∣
∣
∣
∣
df

dx

∣
∣
∣
∣

∣
∣
∣
∣
1

for all f ∈ W 1,1(R). (8.10)

Proof : One takes f ∈ C∞
c (R) and by density (8.10) holds for f ∈ W 1,1(R).

From
f(x) =

∫ x

−∞

df

dx
(y) dy = −

∫ ∞

x

df

dx
(y) dy, (8.11)

one deduces |f(x)| ≤
∫ x

∞
∣
∣ df
dx

∣
∣ dy and |f(x)| ≤

∫∞
x

∣
∣ df
dx

∣
∣ dy, and adding gives

2|f(x)| ≤
∫

R

∣
∣ df
dx

∣
∣ dx; varying x gives (8.10). The constant 1

2 cannot be
improved by taking f increasing and then decreasing. Every element f ∈
W 1,1(R) is a limit of a sequence fn ∈ C∞

c (R) and fn converges uniformly,
because

||fn − fm||C0(R) = ||fn − fm||∞ ≤ 1
2

∣
∣
∣
∣

∣
∣
∣
∣
dfn

dx
− dfm

dx

∣
∣
∣
∣

∣
∣
∣
∣
1

→ 0. �� (8.12)

Lemma 8.6. For N ≥ 2, and i = 1, . . . , N , let fi be a measurable function
independent of xi, and assume that fi ∈ LN−1 in its N − 1 variables, i.e.,

∂fi

∂xi
= 0; f i = fi

∣
∣
∣
∣
xi=0

∈ LN−1(RN−1), (8.13)

then

F =
N∏

i=1

fi ∈ L1(RN ) and ||F ||1 ≤
N∏

i=1

||f i||N−1. (8.14)

Proof : For N = 2 one has F (x1, x2) = f1(x2)f2(x1) and ||F ||1 = ||f1||1||f2||1.
For N ≥ 3, let

gi =
(∫

R

|fi|N−1dxN

)1/(N−2)

, i = 1, . . . , N − 1; G =
N−1∏

i=1

gi, (8.15)

so gi is independent of xi and xN , gi ∈ LN−2 in its N − 2 arguments, and
||gi||N−2 ≤ ||f i||(N−1)/(N−2)

N−1 ; by induction one has G ∈ L1 in the arguments
x1, . . . , xN−1. By Hölder’s inequality, one has
5 Olga Aleksandrovna LADYZHENSKAYA, Russian mathematician, 1922–2004. She

worked at the Steklov Mathematical Institute, in Leningrad, USSR, then St
Petersburg, Russia.

6 Vladimir Andreevich STEKLOV, Russian mathematician, 1864–1926. He worked
in Kharkov, and in St Petersburg (then Petrograd, USSR), Russia.



8 Sobolev’s Embedding Theorem, 1 ≤ p < N 41

∫
R
|F | dxN ≤

∏N−1
i=1 g

(N−2)/(N−1)
i fN = G(N−2)/(N−1)fN ,

∫
RN |F | dx ≤

(∫
RN−1 |G| dx1 . . . dxN−1

)N−2
N−1 ||fN ||N−1 ≤

∏N
i=1 ||f i||N−1. ��

(8.16)

Lemma 8.7. For a > 1 and 1 < p < ∞, one has

(∫
RN |u|N a/(N−1) dx

)(N−1)/N ≤ a
2

(
∏N

i=1

∣
∣
∣
∣
∣
∣ ∂u
∂xi

∣
∣
∣
∣
∣
∣
p

)1/N(∫
RN|u|(a−1)p′

dx
)1/p′

for all u ∈ C∞
c (RN ).

(8.17)
For p = 1 one has

||u||1∗ ≤ 1
2

(
N∏

i=1

∣
∣
∣
∣

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

∣
∣
∣
∣
1

)1/N

for all u ∈ C∞
c (RN ). (8.18)

Proof : Applying Lemma 8.5 with f = |u|a for u ∈ C∞
c (RN ) (because |u|a is

of class C1 and Lemma 8.5 only requires the function to belong to W 1,1(R)),
one obtains |u(x)|a ≤ a

2

∫
R
|u|a−1

∣
∣ ∂u
∂xi

∣
∣ dxi = fN−1

i , where one has chosen

fi =
(

a

2

∫

R

|u|a−1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣ dxi

)1/N−1

for i = 1, . . . , N, (8.19)

and then Lemma 8.6 implies

∫
RN |u(x)|N a/(N−1) dx ≤

∣
∣
∣
∣
∣
∣
∏N

i=1 fi

∣
∣
∣
∣
∣
∣
1
≤
∏N

i=1 ||f i||N−1 =
(

a
2

)N/(N−1)∏N
i=1

(∫
RN |u|a−1

∣
∣
∣ ∂u
∂xi

∣
∣
∣ dx
)1/(N−1)

≤
(

a
2

)N/(N−1)∏N
i=1

∣
∣
∣
∣
∣
∣ ∂u
∂xi

∣
∣
∣
∣
∣
∣
1/(N−1)

p

(∫
RN |u|(a−1)p′

dx
)N/(N−1)p′

,

(8.20)

and taking the power (N − 1)/N gives (8.17). For p = 1, one takes a = 1 and
one uses the first line of (8.20). ��

Sobolev’s embedding theorem W 1,p(RN ) ⊂ Lp∗
(RN ) follows in the case

1 ≤ p < N by choosing a such that N a
N−1 = (a − 1)p′, and this common value

appears to be p∗. This proof does not give the best constants.
[Taught on Wednesday February 2, 2000.]
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If one writes Λ =
(∏N

i=1

∣
∣
∣
∣ ∂u
∂xi

∣
∣
∣
∣
p

)1/N , and one defines Φ by

Φ(a) =
∫

RN

|u|N a/(N−1) dx, (9.1)

then the case p = N of (8.17) is

Φ(a) ≤
(

aΛ

2

)N/(N−1)

Φ(a−1) for all a > 1, where Λ =

(
N∏

i=1

∣
∣
∣
∣

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

∣
∣
∣
∣
N

)1/N

.

(9.2)
One deduces that a bound on ||u||1,N , which gives a bound on Φ(N − 1) =
||u||NN and a bound on Λ, implies a bound for ||u||q for all q > N , and more
precisely

Φ(a) ≤
(

a!
(N − 1)!

)N/(N−1)(
Λ

2

)(a+1−N)N/(N−1)

||u||NN for all integers a ≥ N.

(9.3)

After taking the logarithm by using Stirling’s formula,1–3 a! ≈
(

a
e

)a√2π a,
one finds

lim sup
a→∞

1
a

(
Φ(a)

)(N−1)/(N a) ≤ Λ

2e
, or lim sup

q→∞

||u||q
q

≤ (N − 1)Λ
2N e

. (9.4)

Lemma 9.1. For u ∈ W 1,N (RN ), there exists ε > 0 depending on
||grad(u)||N such that eε |u| is locally integrable.
1 It is an improvement by STIRLING of a formula obtained by DE MOIVRE.
2 James STIRLING, Scottish-born mathematician, 1692–1770. He worked in Lon-

don, England, and then as a manager in a mining company in Scotland.
3 Abraham DE MOIVRE, French-born mathematician, 1667–1754. He moved to

London, England, but could not obtain an academic position.
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Proof : One chooses κ > (N−1)Λ
2N e and ε > 0 such that ε κ e < 1. By (9.4) one

has ||u||q ≤ κ q for q ≥ qc with qc large enough ≥ N , so that

∫

RN

∞∑

q=qc

(ε |u|)q

q!
dx =

∞∑

q=qc

∫

RN

(ε |u|)q

q!
dx ≤

∞∑

q=qc

(ε κ q)q

q!
< ∞. (9.5)

For a compact K, estimating
∫

K
eε |u| dx requires also a bound of

∫
K
|u|r dx

for 0 ≤ r < qc, which by Hölder’s inequality and (9.3) can be estimated in
terms of ||u||N and meas(K). ��

Lemma 9.1 was obtained in a different way by Louis NIRENBERG and Fritz
JOHN4 as a property of the space BMO(RN ) (bounded mean oscillation5),
which they had introduced in part for studying the limiting case p = N of
Sobolev’s embedding theorem.

For the case p > N , one notices that when (a−1)p′ and N a
N−1 are equal they

take the negative value − N p
p−N , so that if one writes qk = − N p

p−N + α βk with

β = N(p−1)
p(N−1) > 1, then the choice of a giving (a− 1)p′ = qk gives N a

N−1 = qk+1;

one chooses α = p2

p−N so that q0 = p. Using a ≤ qk

p′ ≤ α
p′ β

k, one finds that

∫

RN

|u|qk+1 dx ≤
(

α Λ βk

2p′

)N/(N−1)(∫

RN

|u|qk dx

)β

. (9.6)

This gives an estimate of ||u||qk
for all k in terms of ||u||1,p (which gives a

bound on ||u||p and on Λ) and k; as ||u||∞ = limr→∞ ||u||r one must show
that ||u||qk

is bounded independently of k. By homogeneity of the formula, one
has qk+1 = N

N−1 + qkβ, so that if one puts |u| = α Λ
2p′ |v|, the formula becomes

∫
RN |v|qk+1 dx ≤ βk N/(N−1)

(∫
RN |v|qk dx

)β . Writing f(k) = log
(∫

RN |v|qk dx
)
,

one deduces f(k + 1) ≤ Ak + β f(k) with A = N log β
N−1 , and by induction this

gives f(k) ≤ A
(
(k − 1) + (k − 2)β + . . . + 2βk−3 + βk−2

)
+ βkf(0) for k ≥ 2,

and as qk = − N p
p−N + α βk one finds that f(k)

qk
→ 1

α

(
f(0) + A

(β−1)2

)
, giving a

bound for ||u||∞ in terms of ||u||1,p.
A different way to obtain a bound in L∞(RN ), following Sergei SOBOLEV

method is to replace the elementary solution E of ∆ by a parametrix,6 which
instead of solving ∆E = δ0 satisfies

∆F = δ0 + ψ with ψ ∈ C∞
c (RN ), (9.7)

4 Fritz JOHN, German-born mathematician, 1910–1994. He worked at University
of Kentucky, Lexington, KY, and at NYU (New York University), New York, NY.

5 BMO(RN ) is the space of locally integrable function for which there exists C
such that

∫
Q
|u − uQ| dx ≤ C meas(Q) for every cube Q, denoting by uQ the

average of u on Q, i.e., meas(Q)uQ =
∫

Q
u(x) dx.

6 The word has been coined by HADAMARD.
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and it is natural to take

F = θ E with θ ∈ C∞
c (RN ) equal to 1 in a small ball around 0. (9.8)

The derivatives ∂F
∂xj

are O(r1−N ) near 0 as the partial derivatives of E, but
F has compact support, so that grad(F ) ∈ Lq(RN ) for 1 ≤ q < N

N−1 , and in
particular for q = p′ if p > N , so one deduces

u = u 
 (∆F − ψ) =
∑N

i=1
∂u
∂xi


 ∂F
∂xi

− u 
 ψ

so that ||u||∞ ≤
∑n

i=1

∣
∣
∣
∣ ∂u
∂xi

∣
∣
∣
∣
p

∣
∣
∣
∣ ∂F
∂xi

∣
∣
∣
∣
p′ + ||u||p||ψ||p′ .

(9.9)

I suppose that it is the way Sergei SOBOLEV had proven that W 1,p(RN ) ⊂
L∞(RN ) for N < p < ∞; he might have known that by density of C∞

c (RN ) in
W 1,p(RN ) one has actually W 1,p(RN ) ⊂ C0(RN ), and he must have known
the argument of scaling that leads to (9.10), but probably not the argument for
obtaining (9.11), as the Hölder continuity property is attributed to MORREY.

Lemma 9.2. For p > N , one has W 1,p(RN ) ⊂ C0,γ(RN ) with γ = 1 − N
p ,

and

||u||∞ ≤ C ||u||1−θ||grad(u)||θp with θ =
N

p
for all u ∈ W 1,p(RN ), (9.10)

and

|u(x) − u(y)| ≤ C |x − y|γ ||grad(u)||p for all u ∈ W 1,p(RN ), (9.11)

Proof : Whatever the way one has obtained a bound ||u||∞ ≤ A ||u||p +
B ||grad(u)||p when p > N , the scaling argument implies (9.10): one ap-
plies the inequality to v(x) = u

(
x
λ

)
, and that gives ||u||∞ ≤ A |λ|N/p||u||p +

B |λ|−1+N/p||grad(u)||p, and then one chooses the best λ > 0, and that gives
(9.10).

Integrating d
dtu(x − t h) from 0 to 1 one obtains

|u(x − h) − u(x)| ≤ |h|
∫ 1

0

|grad(u)|(x + t h) dt, (9.12)

and taking the norm in Lp(RN ) of both sides (and using the triangle inequal-
ity) one obtains

||τhu − u||p ≤ |h| ||grad(u)||p, (9.13)

and as ||grad(τhu − u)||p ≤ 2||grad(u)||p, applying (9.10) to τhu − u gives
(9.11). ��

That Sobolev’s embedding theorem cannot be improved is shown by con-
structing counter-examples. For instance, if ϕ ∈ C∞

c (RN ) is equal to 1 in a
small ball around 0, then rαϕ ∈ Lp(RN ) is equivalent to pα + N − 1 > −1,
i.e., α > −N

p and rαϕ ∈ W 1,p(RN ) is equivalent to α−1 > −N
p ; if 1 ≤ p < N
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and q > p∗ one can choose α such that α − 1 > −N
p but α < −N

q , giving a
function in W 1,p(RN ) which does not belong to Lq(RN ).

For the case p = N , one considers functions | log r|βϕ, and one finds that
| log r|βϕ ∈ W 1,N (RN ) if and only if | log r|β−1r−1ϕ ∈ LN (RN ), i.e., if and
only if N(β − 1) < −1, and there exists β > 0 satisfying this inequality if
N > 1 (for N = 1, Lemma 8.5 has shown that W 1,1(R) ⊂ C0(R)).

As mentioned before, Sobolev’s embedding theorem can be made more pre-
cise by using Lorentz spaces, Lp,q, which increase with q, with Lp,p = Lp and
Lp,∞ a space introduced by MARCINKIEWICZ,7 which is the space of (equiv-
alence classes of) measurable functions satisfying

∫
ω
|f | dx ≤ C meas(ω)1/p′

for every measurable set ω. Jaak PEETRE has proven that for 1 < p < N
one has W 1,p(RN ) ⊂ Lp,p∗

(RN ), and I proved the case p = 1, extending the
result of Louis NIRENBEG that W 1,1(RN ) ⊂ L1∗

(RN ). For p = N , the result
of Fritz JOHN and Louis NIRENBEG using BMO(RN ) was improved by Neil
TRUDINGER,8 who proved that if u ∈ W 1,N (RN ), then for every C > 0 one has
eC |u|N/(N−1) ∈ L1

loc(R
N ), but that is not true for all functions in BMO(RN )

(because C log r belongs to BMO(RN )). The result was extended by Häım
BREZIS9 and Stephen WAINGER10 who proved that if u has all its partial
derivatives in the space LN,q(RN ), with 1 < q < ∞, then eC |u|q′ ∈ L1

loc(R
N )

for every C > 0.
Questions about the best constants in Sobolev’s embedding theorems have

been investigated by Thierry AUBIN11 and by Giorgio TALENTI12; a good class
of functions for finding the optimal constants are those of the form 1

(1+a r2)k .
The preceding results can be extended to functions having derivatives

∂u
∂xj

∈ Lpj (RN ), not all pj being equal (it occurs naturally if one coordi-
nate denotes time and the others denote space, for example). In 1978, I vis-
ited Trento, Italy, and heard a talk on this subject by Alois KUFNER,13 who
followed the natural approach of Emilio GAGLIARDO14 or Louis NIRENBERG,

7 Józef MARCINKIEWICZ, Polish mathematician, 1910–1940. He worked in Wilno,
then in Poland, now Vilnius, Lithuania. He died during World War II, presumably
executed by the Soviets with thousands of other Polish officers.

8 Neil Sidney TRUDINGER, Australian mathematician, born in 1942. He works at
Australian National University, Canberra, Australia.

9 Häım R. BREZIS, French mathematician, born in 1944. He works at Université
Paris VI (Pierre et Marie Curie), Paris (and it seems at Rutgers University, Pis-
cataway, NJ.).

10 Stephen WAINGER, American mathematician, born in 1936. He works at Uni-
versity of Wisconsin, Madison, WI.

11 Thierry AUBIN, French mathematician, born in 1942. He worked in Lille, and at
Université Paris VI (Pierre et Marie Curie), Paris, France.

12 Giorgio G. TALENTI, Italian mathematician, born in 1940. He works in Firenze
(Florence), Italy.

13 Alois KUFNER, Czech mathematician. He works in Prague, Czech Republic.
14 Just after the talk, I met Emilio GAGLIARDO, whom I had first met the week

before in Pavia, and learnt that he was also teaching in Trento; he was no longer
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as the method of Sergei SOBOLEV cannot be used in this case (at least, I do
not see how one could use it), but I learnt afterwards that it had been obtained
earlier by TROISI.15 I have obtained a generalization of all these methods for
the case where the partial derivatives belong to different Lorentz spaces, by
a different method (the methods that have been described do not seem to be
sufficient for proving such a general result).
[Taught on Friday February 4, 2000.]

interested in the ideas that he had introduced in the past, and he continued the
explanations that he had given me a few days before on his favorite subject,
applying mathematics to music.

15 Mario TROISI, Italian mathematician, born in 1934. He worked in Salerno, Italy.
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Poincaré’s Inequality

For 1 ≤ p < ∞, one usually takes the norm of the space W 1,p(RN ) to be

(∫

RN

|u|p| dx +
∫

RN

|grad(u)|p dx

)1/p

, (10.1)

but one should notice that adding
∫

RN |u|p dx and
∫

RN |grad(u)|p dx is a
strange practice, which mathematicians follow almost all the time, and which
makes physicists wonder if mathematicians know what they are talking about,
because they ignore the question of units. In real problems x usually denotes
the space variables, which are measured in units of length (L), while t denotes
the time variable, measured in units of time (T ), and if one considers the wave
equation

∂2u

∂t2
− c2

N∑

j=1

∂2u

∂x2
j

= 0, (10.2)

c is a characteristic velocity, measured in units LT−1, and the equation is
consistent as each of the terms of the equation is measured in units U T−2,
whatever the unit U for u is (u could be a vertical displacement if one looks
at small waves on the surface of a lake or a swimming pool and N = 2 in that
case, or a pressure if one looks at propagation of sound in the atmosphere,
or in the ocean, or in the ground, and N = 3 in that case). For nonlinear
equations, like the Burgers equation1

∂u

∂t
+ u

∂u

∂x
= 0, (10.3)

the dimension of u must be that of a velocity LT−1, but some physicists
prefer to introduce a characteristic velocity c and write it ∂u

∂t + c u ∂u
∂x = 0 and

in that case u has no dimension.

1 Johannes Martinus BURGERS, Dutch-born mathematician, 1895–1981. He
worked at University of Maryland, College Park, MD.
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Mathematicians studying equations from continuum mechanics or physics
should be careful about the question of units, and as Sobolev spaces were orig-
inally introduced for studying solutions of partial differential equations from
continuum mechanics or physics, this question does occur naturally in study-
ing them. The quantities

∫
RN |u|p dx and

∫
RN |grad(u)|p dx are not measured

in the same units, the first term having dimension UpLN and the second one
having dimension UpLN−p, and it would be more natural when dealing with
physical problems to use a norm like

(∫

RN

|u|p dx + Lp
0

∫

RN

|grad(u)|p dx

)p

, (10.4)

where L0 is a characteristic length, but as was already noticed when the
argument of scaling was used in relation with Sobolev’s embedding theorem,
one can start from an inequality written without paying attention to units and
then deduce from it a better one which does take into account this question.

An important remark is that for some open sets Ω and some particular
subspaces of W 1,p(Ω) one can avoid adding the terms

∫
Ω
|u|p dx, because

Poincaré’s inequality2 holds.

Definition 10.1. If 1 ≤ p ≤ ∞ and Ω is a nonempty open subset of RN ,
one says that Poincaré’s inequality holds for a subspace V of W 1,p(Ω) if there
exists a constant C such that one has ||u||p ≤ C ||grad(u)||p for all u ∈ V . ��

Of course, C then has the dimension of a length, and if there is no char-
acteristic length that one can attach to Ω, then one expects that Poincaré’s
inequality does not hold.

Lemma 10.2. (i) If meas(Ω) < ∞ and if the constant function 1 belongs to
a subspace V of W 1,p(Ω), then Poincaré’s inequality does not hold on V .
(ii) Poincaré’s inequality does not hold on W 1,p

0 (Ω) if Ω contains arbitrarily
large balls, i.e., if there exists a sequence rn → ∞ and points xn ∈ Ω such
that B(xn, rn) ⊂ Ω.
(iii) If Ω is included in a strip of width d, i.e., there exists ξ ∈ RN with
|ξ| = 1 and Ω ⊂ {x ∈ RN | α < (ξ.x) < β} and d = β − α, then ||u||p ≤
C0 d ||grad(u)||p for all u ∈ W 1,p

0 (Ω), where C0 is a universal constant, i.e.,
independent of which Ω is used.
(iv) If p = ∞, Poincaré’s inequality holds on W 1,∞

0 (Ω) if and only if there
exists C < ∞ such that for all x ∈ Ω one has dist(x, ∂Ω) ≤ C, where dist is
the Euclidean distance.
(v) If meas(Ω) < ∞, then Poincaré’s inequality holds for W 1,p

0 (Ω) for 1 ≤ p ≤
∞, and one has ||u||p ≤ C(p)meas(Ω)1/N ||grad(u)||p for all u ∈ W 1,p

0 (Ω).
(vi) If the injection of V into Lp(Ω) is compact, then Poincaré’s inequality
holds on a subspace V of W 1,p(Ω) if and only if the constant function 1 does
not belong to V .
2 I have been told that this kind of inequality was introduced by POINCARÉ in his

work on tides.



10 Poincaré’s Inequality 51

Proof : (i) If meas(Ω) < ∞, then 1 ∈ W 1,p(Ω), but as grad(1) = 0 one must
have C = 0, which is incompatible with 1 ∈ V .

(ii) Let ϕ ∈ Cc(RN ) with ϕ = 0 and support(ϕ) ⊂ B(0, 1), then one defines
un by un(x) = ϕ

(
x−xn

rn

)
, which belongs to C∞

c (Ω), and one has ||un||p =

r
N/p
n ||ϕ||p and ||grad(un)||p = r

−1+N/p
n ||grad(ϕ)||p; if the inequality was true

one would have 1 ≤ C
rn

, so that if Poincaré’s inequality holds on W 1,p
0 (Ω) it

gives an upper bound for the size of balls included in Ω.
(iii) One starts from the case N = 1, where one has maxx∈R |v(x)| ≤

1
2

∫
R

∣
∣ dv
dx

∣
∣ dx for all v ∈ C∞

c (R), so if for an interval I = (α, β) one has u ∈
C∞

c (I), one deduces that ||u||p ≤ ||u||∞d1/p and as
∫

I

∣
∣du
dx

∣
∣ dx ≤

∣
∣
∣
∣du
dx

∣
∣
∣
∣
p
d

1
p′ , one

deduces that ||u||p ≤ d
2

∣
∣
∣
∣du
dx

∣
∣
∣
∣
p

for all u ∈ C∞
c (I) (this argument does not give

the best constant C(p) for 1 ≤ p < ∞). One deduces the case of the strip by
applying the preceding inequality in an orthogonal basis whose last vector is
eN = ξ, so that the strip is defined by α < xN < β, and for each choice of x′ =
(x1, . . . , xN−1) one has

∫ β

α
|u(x′, xN )|p dxN ≤ 2−pdp

∫ β

α

∣
∣ ∂u
∂xN

(x′, xN )|p dxN ,
and one integrates then this inequality in x′ in order to obtain Poincaré’s
inequality in the case 1 ≤ p < ∞.

(iv) In the case p = ∞, the condition is necessary because of (ii), and it is
sufficient because for each x ∈ Ω there exists z ∈ ∂Ω with |x − z| ≤ C, and
if u ∈ C∞

c (Ω) there exists y on the segment [x, z] and outside the support of
u such that |u(x)| = |u(x)− u(y)| ≤ C ||grad(u)||∞; then the same inequality
extends to W 1,∞

0 (Ω).
(v) If p = ∞, it follows from (iv). If 1 ≤ p < ∞, one chooses q < N

such that 1 ≤ q ≤ p < q∗, and one uses Sobolev’s embedding theorem
||u||q∗ ≤ C ||grad(u)||q for all u ∈ C∞

c (RN ), and Hölder’s inequality: ||u||p ≤
||u||q∗meas(Ω)α with α = 1

p − 1
q∗ and ||grad(u)||q ≤ ||grad(u)||pmeas(Ω)β

with β = 1
q − 1

p , so that α + β = 1
N . Without the precise estimate for the

constant it can also be proven by the compactness argument used in (vi).
There is a different proof for the case p = 2 based on Fourier transform, and
also a proof of the compactness property using Fourier transform, and they
will be shown later.

(vi) The necessity that 1 should not belong to V follows from (i). That
this condition is sufficient is the consequence of what I call the equivalence
lemma (Lemma 11.1), by taking E1 = V , A = grad and E2 =

(
Lp(Ω)

)N and
B the injection into E3 = Lp(Ω). ��

Of course, if Ω1 ⊂ Ω2 and Poincaré’s inequality holds for W 1,p
0 (Ω2), then

it holds for W 1,p
0 (Ω1), because each function of u ∈ W 1,p

0 (Ω1) can be extended
by 0 and gives a function ũ ∈ W 1,p

0 (Ω2).
[Taught on Monday February 7, 2000.]
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The Equivalence Lemma; Compact
Embeddings

Questions of equivalence of norms play an important role in the theoreti-
cal part of numerical analysis, because interpolation formulas or quadrature
formulas are used on a triangulation made with small elements and it is
important to know how the errors behave in terms of the size of these elements.
In 1974, I was told about a classical result named after James BRAMBLE1

and one of his students named HILBERT2; I discovered later that it is based
on results by Jacques DENY3 and Jacques-Louis LIONS. I developed a more
general framework, which also generalizes a different type of result by Jaak
PEETRE, which I had seen mentioned in a footnote, in a book by Jacques-Louis
LIONS and Enrico MAGENES in order to prove the Fredholm alternative4 for
elliptic boundary value problems. I call my framework (Lemma 11.1) the equiv-
alence lemma, and at a theoretical level it is useful in order to obtain many
variants of Poincaré inequalities in various subspaces of Sobolev spaces, but it
requires enough regularity of the boundary in order to satisfy the hypothesis
of compactness.

Lemma 11.1. (equivalence lemma) Let E1 be a Banach space, E2, E3 normed
spaces (with || · ||j denoting the norm of Ej), and let A ∈ L(E1, E2), B ∈
L(E1, E3) such that one has:

(a) ||u||1 ≈ ||Au||2 + ||B u||3
(b) B is compact.

Then one has the following properties:
(i) The kernel of A is finite dimensional.

1 James H. BRAMBLE, American mathematician. He has worked at University of
Maryland, College Park, MD, at Cornell University, Ithaca, NY, and at Texas
A&M University, College Station TX.

2 Stephen R. HILBERT, American mathematician. He works in Ithaca, NY.
3 Jacques DENY, French mathematician, born in 1918. He worked at Université

Paris-Sud XI, Orsay, France, where he was my colleague from 1975 to 1982.
4 Erik Ivar FREDHOLM, Swedish mathematician, 1866–1927. He worked in Stock-

holm, Sweden.
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(ii) The range of A is closed.
(iii) There exists a constant C0 such that if F is a normed space and

L ∈ L(E1, F ) satisfies Lu = 0 whenever Au = 0, then one has ||Lu||F ≤
C0||L|| ||Au||2 for all u ∈ E1.

(iv) If G is a normed space and M ∈ L(E1, G) satisfies M u = 0 whenever
Au = 0 and u = 0, then ||u||1 ≈ ||Au||2 + ||M u||G.

Proof : (i) On X = ker(A), the closed unit ball for || · ||1 is compact. Indeed
if ||un||1 ≤ 1, then B un stays in a compact of E3 by (b) so a subsequence
B um converges in E3, so that it is a Cauchy sequence in E3, and as Aum = 0
it is a Cauchy sequence in E2 and therefore (a) implies that um is a Cauchy
sequence in E1, which converges as E1 is a Banach space. By a theorem of F.
RIESZ, X must be finite dimensional.

(ii) As a consequence of the Hahn5–Banach theorem, X being finite di-
mensional has a topological supplement Y , i.e., X ∩ Y = {0} and there exist
πX ∈ L(E1,X) and πY ∈ L(E1, Y ) such that e = πX(e)+πY (e) for all e ∈ E1,
and in particular Y is closed as it is the kernel of πX , so that Y is a Banach
space.

One shows then that there exists α > 0 such that ||Au||2 ≥ α ||u||1 for
all u ∈ Y . Indeed, if it was not true there would exist a sequence yn ∈ Y
with ||yn||1 = 1 and Ayn → 0, and again taking a subsequence such that
B ym converges in E3 one finds that ym would be a Cauchy sequence in Y
and its limit y∞ ∈ Y would satisfy Ay∞ = 0, i.e., y∞ ∈ X, so that y∞ = 0,
contradicting the fact that ||y∞||1 = limm ||ym||2 = 1.

Then if fn ∈ R(A) satisfies fn → f∞ in E2, one has fn = Aen = A(πXen+
πY en) = AπY en. If one writes yn = πY en, one has α||yn − ym||1 ≤ ||Ayn −
Aym||2 = ||fn − fm||2 so that yn is a Cauchy sequence in Y and its limit y∞
satisfies Ay∞ = f∞, showing that R(A) is closed.

(iii) As A is a bijection from Y onto R(A) it has an inverse D, and as one
considers R(A) equipped with the norm of E2, D ∈ L(R(A), Y ) with ||D|| ≤ 1

α
by the previously obtained inequality (it shows that R(A) is a Banach space,
although one has not assumed that E2 is a Banach space, and the closed graph
theorem has not been used). With this definition of D one has y = D Ay for
all y ∈ Y , and in particular D Ae = πY e for all e ∈ E1 because Ae = AπY e.
From the hypothesis Lu = 0 for u ∈ X, one has Le = LπY e = LD Ae for
all e ∈ E1, so that ||Le||F ≤ ||L|| ||D|| ||Ae||2, and therefore C0 may be taken
to be the norm of D in L(R(A), Y ).

(iv) One has ||Ae||2 + ||M e||G ≤ (||A|| + ||M ||)||e||1, and if the norms
were not equivalent one could find a sequence en ∈ E1 with ||en||1 = 1 and
||Aen||2 + ||M en||G → 0. As before, a subsequence em would be such that
B em is a Cauchy sequence in E3, and as Aem → 0 in E2, em would be a
Cauchy sequence in E1, converging to a limit e∞, which would satisfy the
contradictory properties ||e∞||1 = 1, Ae∞ = 0 and M e∞ = 0. ��

5 Hans HAHN, Austrian mathematician, 1879–1934. He worked in Vienna, Austria.
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Other applications of the equivalence lemma 11.1 will be encountered later,
but a crucial hypothesis is the compact injection assumption without which
the result may be false (but it is not always false); for example, taking 1 ≤
p < ∞ and E1 = W 1,p(R), A = d

dx , E2 = E3 = Lp(R) and B the injection of
W 1,p(R) into Lp(R) (which is not compact), then the range of A is not closed,
and its closure is Lp(R) if p > 1, and the subspace of functions in L1(R) with
integral 0 if p = 1.

A compactness result, attributed to RELLICH6,7 and to KONDRAŠOV,8

asserts that if Ω is a bounded open set of RN with a continuous bound-
ary ∂Ω, then the injection of W 1,p(Ω) into Lp(Ω) is compact, and it can
be deduced from a result associated with the names of M. RIESZ, FRÉCHET

and KOLMOGOROV, but it can be proven easily from the result for W 1,p
0 (Ω′)

proven below, once extension properties have been studied (Lemma 12.4 and
12.5). For unbounded open sets, or for bounded sets with nonsmooth bound-
aries, the situation is not as simple, but for the case of W 1,p

0 (Ω) the smoothness
of the boundary is not important.

Most compactness theorems use in some way the basic results of ARZELÁ9

and ASCOLI10: if un is a bounded sequence of real continuous functions on
a separable compact metric space X, then for each x ∈ X one can extract
a subsequence um such that um(x) converges, and by a diagonal argument
this can be achieved for all x in a countable dense subspace; this is extended
to other points if one assumes that the sequence is equicontinuous at every
point, a way to say that at any point y the functions are continuous in the
same way, i.e., for every ε > 0 there exists δ > 0, depending upon y and ε
but not upon n, such that d(y, z) ≤ δ implies |un(y)− un(z)| ≤ ε for all n. In
order to cover many applications to weak convergence or weak 
 convergence
like the Banach–Alaoglu11 theorem, one also uses a maximality argument like
Zorn’s lemma, hidden in the proof of Tikhonov’s12 theorem, that any product
of compact spaces is compact.

For functions in Sobolev spaces, which are not necessarily continuous but
can be approached by smooth functions, one needs to control precisely the
error, and some smoothness properties of the boundary will be needed if one
works with W 1,p(Ω), but the following result is only concerned with W 1,p

0 (Ω).

6 Franz RELLICH, German mathematician, 1906–1955. He worked at Georg-
August-Universität, Göttingen, Germany.

7 Georg Augustus, 1683–1760. Duke of Brunswick-Lüneburg (Hanover), he became
King of Great Britain and Ireland in 1727, under the name of GEORGE II.

8 Vladimir Iosifovich KONDRAŠOV, Russian mathematician, 1909–1971.
9 Cesare ARZELÁ, Italian mathematician, 1847–1912. He worked in Palermo, and

in Bologna, Italy.
10 Giulio ASCOLI, Italian mathematician, 1843–1896. He worked in Milano (Milan),

Italy.
11 Leonidas ALAOGLU, Canadian-born mathematician.
12 Andrĕı Nikolaevich TIKHONOV, Russian mathematician, 1906–1993. He worked

in Moscow, Russia.
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Lemma 11.2. (i) If Ω is an unbounded open subset of RN such that there
exists r0 > 0 and a sequence xn ∈ Ω converging to infinity with B(xn, r0) ⊂ Ω,
then the injection of W 1,p

0 (Ω) into Lp(Ω) is not compact.
(ii) If 1 ≤ p ≤ ∞ and Ω is an open set with meas(Ω) < ∞, then the injection
of W 1,p

0 (Ω) into Lp(Ω) is compact.

Proof : (i) Let ϕ ∈ Cc(RN ), with support(ϕ) ⊂ B(0, r0), and ϕ = 0, then
un = τxn

ϕ ∈ W 1,p
0 (Ω), ||un||1,p is constant, but no subsequence converges

strongly in Lp(Ω) because un converges to 0 in Lp(Ω) weak (weak 
 if p = ∞)
and it cannot converge strongly to 0 as its norm stays constant, and not 0.

(ii) One starts with the case where Ω is bounded. For a bounded sequence
un ∈ W 1,p

0 (Ω) one wants to show that it belongs to a compact set of Lp(Ω),
i.e., there is a subsequence which converges strongly in Lp(Ω). To prove that
property it is enough to show that for every ε > 0 one can find a compact set
Kε of Lp(Ω) such that each un is at a distance at most C ε of Kε, i.e., one can
decompose un = vn,ε + wn,ε, with ||wn,ε||p ≤ C ε and vn,ε ∈ Kε; indeed for a
subsequence one has lim supm,m′→∞ ||um − um′ ||p ≤ 2C ε, so that a diagonal
subsequence is a Cauchy sequence.

To do this, one extends the functions un by 0 outside Ω (still calling
them un instead of ũn), so that one has a bounded sequence un ∈ W 1,p(RN )
with support in a fixed bounded set of RN . For a special smoothing sequence
ε(x) = 1

εN 1

(
x
ε

)
(with 1 ∈ C∞

c (RN ), support(1) ⊂ B(0, 1), 1 ≥ 0 and∫
RN 1 dx = 1), one takes vn,ε = un 
 ε. This gives ||vn,ε||∞ ≤ ||un||p||ε||p′

and
∣
∣
∣
∣∂vn,ε

∂xj

∣
∣
∣
∣
∞ ≤

∣
∣
∣
∣∂un

∂xj

∣
∣
∣
∣
p
||ε||p′ , i.e., for ε > 0 fixed vn,ε stays in a bounded

set of Lipschitz functions, and keeps its support in a fixed compact set of
RN , and a subsequence converges uniformly on RN , so that the sequence of
restrictions to Ω converges strongly in L∞(Ω), and therefore in Lp(Ω), by
Arzelá–Ascoli theorem. In order to estimate ||un − vn,ε||p, one notices that
(un − un 
 ε)(x) =

∫
RN ε(y)

(
un(x) − un(x − y)

)
dy, i.e., un − un 
 ε =∫

RN ε(y)(un − τyun) dy, so that ||un −un 
ε||p ≤
∫

RN ε(y)||un − τyun||p dy,
but as one has ||un−τyun||p ≤ |y| ||grad(un)||p and

∫
RN |y|ε(y) dy = Aε, one

deduces ||un −un 
ε||p ≤ AB ε, where B is an upper bound for ||grad(un)||p
for all n.

If Ω is unbounded but has finite measure, one chooses r0 < r1 < ∞ such
that the measure of Ω \ B(0, r0) is < η, and one chooses θ ∈ C∞

c (RN ) such
that θ = 1 on B(0, r0) and support(θ) ⊂ B(0, r1). The sequence un − θ un is
bounded in W 1,p(RN ) and is 0 outside Ω \ B(0, r0) (one should avoid using
its support, which is closed and could be very big if ∂Ω is thick).

For p = ∞, the maximum distance from a point of Ω \ B(0, r0) to its
boundary is at most C(N)η1/N , and as one can take a common Lipschitz
constant for all the functions un − θ un, one deduces that they are uniformly
small in L∞(Ω), and as θ un stays in a bounded set of W 1,p

0

(
Ω ∩B(0, r1)

)
, it

remains in a compact of Lp
(
Ω ∩ B(0, r1)

)
by applying the result for the case

of bounded open sets.
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For 1 ≤ p < ∞, one bounds the norm of ||un − θ un||p by using Sobolev’s
embedding theorem, choosing q < N such that 1 ≤ q ≤ p < q∗ < ∞, and
as un − θ un is bounded in W 1,q(RN ) and therefore in Lq∗

(RN ), one has
||un − θ un||p ≤ ||un − θ un||q∗meas

(
Ω \ B(0, r0)

)α with α = 1
p − 1

q∗ > 0,
proving the desired uniform small bound for ||un − θ un||p.

For p = 2, one can give a different proof, using the Fourier transform. ��
It is now time to start studying the many questions where the regularity of

the boundary plays a role: approximation by smooth functions, compactness,
extension to the whole space, traces on the boundary.
[Taught on Wednesday February 9, 2000.]
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Regularity of the Boundary; Consequences

For approaching functions in W 1,p(Ω) but not in W 1,p
0 (Ω), one needs smooth

functions whose support intersects the boundary ∂Ω.

Definition 12.1. D(Ω) denotes the space of functions which are the restric-
tions to Ω of functions in C∞

c (RN ). ��

For some nice open sets Ω, D(Ω) is dense in W 1,p(Ω) for 1 ≤ p < ∞, but
this is not true for some open sets, like a disc in the plane from which one
removes a closed segment [a, b], the intuitive reason being that functions in
D(Ω) are continuous across the segment, while there are functions in W 1,p(Ω)
which are discontinuous across it (and for giving a mathematical meaning to
this idea, one will have to define a notion of trace on the boundary). The
preceding example is one where the open set is not locally on one side of the
boundary, and will be ruled out for the moment, but one should remember
that there are applications where one must consider open sets of this type, in
the study of crack propagation, or in the scattering of waves by a thin plate,
for example.

Definition 12.2. (i) An open set Ω of RN is said to have a continuous
boundary, if for every z ∈ ∂Ω, there exists rz > 0, an orthonormal basis
e1, . . . , eN , and a continuous function F of x′ = (x1, . . . , xN−1) such that
{x ∈ Ω | |x − z| < rz} = {x ∈ RN | |x − z| < rz, xN > F (x′)}.
(ii) An open set Ω of RN is said to have a Lipschitz boundary, if the same
property holds with F being a Lipschitz continuous function. ��

These conditions are usually referred to as Ω having the segment property
or the cone property, and more precise notions are used. Notice that e1, . . . , eN

and F vary with the point z, that the origin of the coordinate system may
also change with z, and that Ω is locally on only one side of the boundary.

With the preceding definition, assuming a < b, the open set {(x, y) ∈ R2 |
x > 0, a x2 < y < bx2} is an open set with continuous boundary if a b < 0,
but not if a b ≥ 0.
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Lemma 12.3. Let Ω be a bounded open set with continuous boundary. If 1 ≤
p < ∞, then D(Ω) is dense in W 1,p(Ω).

If u ∈ W 1,∞(Ω), there exists a sequence un ∈ D(Ω) such that un ⇀ u
in L∞(Ω) weak 
 and Lq(Ω) strong for 1 ≤ q < ∞, and for j = 1, . . . , N ,
∂un

∂xj
⇀ ∂u

∂xj
in L∞(Ω) weak 
 and Lq(Ω) strong for 1 ≤ q < ∞.

Proof : Ω being bounded, ∂Ω is compact, and as it is covered by the open
balls B(z, rz) for z ∈ ∂Ω, it is covered by a finite number of them, with
centers z1, . . . , zm. There exists ε > 0 such that

⋃m
i=1 B(zi, rzi

) contains
all the points at distance ≤ ε from ∂Ω, so that Ω is covered by the open
sets B(z1, rz1), . . . , B(zm, rzm

) and U = {x ∈ Ω | dist(x, ∂Ω) > ε}. Let
θ1, . . . , θm, ζ be a partition of unity associated to this covering, so that
θi ∈ C∞

c

(
B(zi, rzi

)
)
, i = 1, . . . ,m, ζ ∈ C∞

c (U) and
∑m

i=1 θi + ζ = 1 on Ω,
so that every u ∈ W 1,p(Ω) can be decomposed as

∑m
i=1 θiu + ζ u. As ζ u has

support in U , it can be approached by functions in C∞
c (Ω) by smoothing

by convolution. For each i, in order to approximate vi = θiu by functions in
D(Ω), one chooses the set of orthogonal directions which gives a continuous
equation for the boundary, and one uses the fact that for a rigid displacement
f (i.e., f(x) = Ax + a for a special orthogonal matrix A and a vector a), and
f(ω) = ω′, if ϕ ∈ W 1,p(ω′) and ψ is defined by ψ(x) = ϕ

(
f(x)

)
then one

has ψ ∈ W 1,p(ω). One studies the case of a special domain ΩF defined by
ΩF = {x ∈ RN | xN > F (x′)} with F (uniformly) continuous (as one actu-
ally only uses functions which have their support in a fixed compact set, one
only needs F continuous, and because it is uniformly continuous on compact
sets, one may change F far away in order to make it uniformly continuous).
If v ∈ W 1,p(ΩF ) and v has compact support, one wants to approach it by
functions from D(ΩF ), and for this one translates it down, i.e., for h > 0 one
defines

vh(x′, xN ) = v(x′, xN + h), (12.1)

and then one truncates vh and one regularizes the result by convolution.
In doing the truncation, one regularizes F by convolution, and because F

is uniformly continuous one can obtain in this way a function G ∈ C∞(RN−1)
such that

F − h

6
≤ G ≤ F +

h

6
on RN−1; (12.2)

one chooses η ∈ C∞(R) such that

η(t) = 0 for t ≤ −2
3

; η(t) = 1 for t ≥ −1
3

, (12.3)

and one truncates vh by defining

wh(x) = vh(x)η
(

xN − G(x′)
h

)
, (12.4)

so that wh(x) = vh(x) if xN ≥ F (x′) − h
6 because xN ≥ G(x′) − h

3 and
wh(x) = 0 if xN ≤ F (x′) − 5h

6 because xN ≤ G(x′) − 2h
3 . Because of the
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truncation one has

∂wh

∂xj
(x′, xN ) = ∂v

∂xj
(x′, xN + h)η

(
xN−G(x′)

h

)
−

v(x′, xN + h)η′
(

xN−G(x′)
h

) ∂G
∂xj

(x′)

h for j < N

∂wh

∂xN
(x′, xN ) = ∂v

∂xN
(x′, xN + h)η

(xN−G(x′)
h

)
+

v(x′, xN + h)η′(xN−G(x′)
h

)
1
h , (12.5)

because the partial derivatives of vh might have another part which is sup-
ported on xN = F (x′) − h but this part is killed by the term η

(xN−G(x′)
h

)
.

Therefore if Wh is the restriction of wh to ΩF , one has ∂Wh

∂xj
(x′, xN ) =

∂v
∂xj

(x′, xN + h) in ΩF for j ≤ N , so that Wh converges to v in W 1,p(ΩF )

strong if p < ∞. In order to approach Wh by functions in D(ΩF ), one ap-
proaches wh by convolutions by smooth functions and one restricts them to
ΩF . ��

There is another way to do the preceding two steps of truncation and
regularization in one single step, and the idea is to do a convolution of v with
a sequence of nonnegative smoothing functions n ∈ C∞

c (RN ) with integral
1 whose support shrinks to {0}. However, unless F is Lipschitz continuous,
one must not use a special smoothing sequence, and one lets the support
of n shrink to {0} in a special way. If K = support(), the convolution
(v 
)(x) =

∫
RN v(x− y)(y) dy is only defined if x−K ⊂ ΩF , and one wants

this set of x to contain ΩF , or better to contain ΩF−η for some η > 0; in
doing this, one assumes that |y′| ≤ ε for y ∈ K, so that |F (x′)−F (y′)| ≤ ω(ε)
where ω is the modulus of uniform continuity of F , and one asks that y ∈ K
implies yN ≤ −η − ω(ε).

This method also applies in some different situations, like for Ω = {(x, y) |
x > 0, 0 < y < x2}, which is not an open set with continuous boundary with
our definition, but D(Ω) is dense, and in order to show that the cusp at 0 is
not a problem one notices that if one translates Ω by a vector (−a,−b) with
a > 0 and b > a2, then one obtains an open set Ω′ which contains Ω, giving
room for translating (by small amounts) and smoothing by convolution.

Lemma 12.4. Let Ω be a bounded open set with Lipschitz boundary. Then
there exists a linear continuous extension P from W 1,p(Ω) into W 1,p(RN )
for 1 ≤ p ≤ ∞ (an extension is characterized by the property that P u

∣
∣
Ω

= u

for every u ∈ W 1,p(Ω)).

Proof : One constructs the extension for the dense subspace D(Ω), and using
a partition of unity, it is enough to construct the extension for ΩF , where F
is Lipschitz continuous. One defines P u by

P u(x′, xN ) =
{

u(x′, xN ) if xN > F (x′)
u(x′, 2F (x′) − xN ) if xN < F (x′). (12.6)
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In that way P u is continuous at the interface ∂ΩF and one has

∂P u
∂xj

(x′, xN ) = ∂u
∂xj

(x′, xN ) if xN > F (x′) and j ≤ N

∂P u
∂xj

(x′, xN ) = ∂u
∂xj

(x′, 2F (x′) − xN ) + 2 ∂F
∂xj

(x′) ∂u
∂xN

(x′, 2F (x′) − xN )

if xN < F (x′) and j < N

∂P u
∂xN

(x′, xN ) = − ∂u
∂xN

(x′, 2F (x′) − xN ) if xN < F (x′),
(12.7)

and one verifies on these formulas that P is indeed linear continuous. ��
The extension constructed in Lemma 12.4 is the same whatever p is, but

this method does not apply for showing that there exists a continuous exten-
sion from Wm,p(Ω) into Wm,p(RN ) for m ≥ 2 because higher-order deriva-
tives of F might not exist. STEIN1 has constructed a different extension which
maps Wm,p(Ω) into Wm,p(RN ) for all m ≥ 0 and all p ∈ [1,∞], but we shall
only consider a simpler one which can be used for open sets with smooth
boundary, and the idea is shown for Ω = RN

+ = {x ∈ RN | xN > 0}.

Lemma 12.5. There is a linear continuous extension from Wm,p(RN
+ ) into

Wm,p(RN ), defined by

P u(x′, xN ) =
{

u(x′, xN ) if xN > 0∑m
j=1 αju(x′,−j xN ) if xN < 0,

(12.8)

with suitable coefficients αj , j = 1, . . . ,m.

Proof : Using the techniques already presented, one shows that D(RN
+ ) is dense

into Wm,p(RN
+ ). In order to check that the definition defines a continuous

operator, one must show that derivatives up to order m − 1 are continuous
on xN = 0. As for smooth functions taking tangential derivatives (i.e., not
involving ∂

∂xN
) commutes with restricting to xN = 0, it is enough to check

that ∂kP u
∂xk

N

is continuous for k = 0, . . . , m − 1. One finds the condition to be

m∑

j=1

αj(−j)k = 1 for k = 0, . . . , m − 1, (12.9)

and as this linear system has a Vandermonde2 matrix, it is invertible and the
coefficients αj , j = 1, . . . , m are defined in a unique way. ��

The extension property of Lemma 12.4 does not necessarily hold for open
sets which only have a Hölder continuous boundary of order θ < 1. This can
be checked in the plane for the open set Ω = {(x, y) | 0 < x,−x1/θ < y <

1 Elias M. STEIN, Belgian-born mathematician, born in 1931. He received the Wolf
Prize in 1999. He worked at The University of Chicago, Chicago, IL, and in
Princeton, NJ.

2 Alexandre-Théophile VANDERMONDE, French mathematician, 1735–1796.
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x1/θ}, by showing that H1(Ω) is not (continuously) embedded in all Lp(Ω)
for 2 ≤ p < ∞, which would be the case if a continuous extension existed,
because Sobolev’s embedding theorem asserts that H1(R2) is (continuously)
embedded in all Lp(R2) for 2 ≤ p < ∞.

For ϕ ∈ C∞
c (R2) with ϕ(0) = 1 one defines ψ by ψ(x) = xαϕ(x), and one

checks for what values of α the function ψ belongs to Lp(Ω) or to H1(Ω).
The function ψ belongs to Lp(Ω) if and only if

∫ 1

0
xp α+1/θ dx < ∞, i.e.,

pα + 1
θ > −1, and ψ belongs to H1(Ω) if and only 2(α − 1) + 1

θ > −1; the
(excluded) critical value αC = 1

2 − 1
2θ = θ−1

2θ (which is < 0) corresponds to
the (excluded) critical value pC = − 1

αC
− 1

θ αC
= 2(1+θ)

1−θ , so that H1(Ω) is not
embedded in Lp(Ω) for p > pC .
[Taught on Friday February 11, 2000.]



13

Traces on the Boundary

For an open set with a continuous boundary, there is a notion of restriction to
the boundary (called a trace) for functions of W 1,p(Ω), which is easily derived
for the case of ΩF , with F continuous.

Lemma 13.1. For u ∈ D(ΩF ) and 1 ≤ p < ∞, one has

∣
∣
∣
∣u
(
x′, F (x′)

)∣∣
∣
∣
Lp(RN−1)

≤
(p

2

)1/p
∣
∣
∣
∣

∣
∣
∣
∣

∂u

∂xN

∣
∣
∣
∣

∣
∣
∣
∣

1/p

Lp(ΩF )

||u||(p−1)/p
Lp(ΩF ) . (13.1)

Proof : If v ∈ C∞
c (R) one has

2|v(0)|p =
∫ 0

−∞

d(|v|p)
dt

dt−
∫ ∞

0

d(|v|p)
dt

dt≤p

∫

R

|v|p−1|v′| dt≤p ||v||p−1
p ||v′||p.

(13.2)
One applies this inequality to v(t) = u

(
x′, t + F (x′)

)
and then one integrates

in x′, using Hölder’s inequality. ��
For p = ∞, the functions of W 1,∞(ΩF ) are locally uniformly continuous

(each function is an equivalence class and one element of the equivalence class
is continuous), and the trace is just the restriction to the boundary.

Definition 13.2. The linear continuous operator of trace on the boundary,
defined by extension by (uniform) continuity of the operator of restriction
defined for D(Ω) will be denoted by γ0. ��

Notice that γ0 is not defined as the restriction to the boundary, because
the boundary has measure 0, and the restriction to a set of measure 0 is not
defined for functions which are not smooth enough.

Lemma 13.3. If 1 ≤ p, q, r ≤ ∞ and 1
r = 1

p + 1
q , then for u ∈ W 1,p(ΩF ) and

v ∈ W 1,q(ΩF ) one has u v ∈ W 1,r(ΩF ) and γ0(u v) = γ0u γ0v.
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Proof : The formula is true if u, v ∈ D(ΩF ) and as both sides of the equality
use continuous mappings on W 1,p(ΩF ) × W 1,q(ΩF ), the formula is true by
density. ��

Using a partition of unity one can then define a notion of trace on the
boundary for u ∈ W 1,p(Ω) if Ω has a continuous boundary, but one should be
careful that the definition depends upon the choice of the partition of unity
and the choice of local orthonormal bases. One should be aware that the
usual area measure on the boundary, i.e., the (N − 1)-dimensional Hausdorff
measure, is not defined for F continuous; for F Lipschitz continuous it is√

1 + |∇F (x′)|2 dx′, and it has the important property of being invariant
by rigid displacements (rotations and translations). Using the invariance by
rotation of the (N − 1)-dimensional Hausdorff measure, one can show that
for a bounded open set with a Lipschitz boundary the trace does not depend
upon the choice of the partition of unity or the choice of local orthonormal
bases.

Some notion of trace can be defined for other open sets, for example some
which are not even locally on one side of their boundary. For example, let Ω be
the open set of R2 defined in polar coordinates by 0 < r < 1 and 0 < θ < 2π,
i.e., the open unit disc slit on the nonnegative x axis. One can apply Lemma
13.1 to the open subsets Ω+ defined by 0 < r < 1 and 0 < θ < π and Ω−
defined by 0 < r < 1 and π < θ < 2π, so that one can define two traces on the
piece of the boundary corresponding to y = 0, 0 < x < 1, one from the side
of Ω+ and one from the side of Ω−; these two traces are not necessarily the
same for u ∈ W 1,p(Ω), although they are the same for functions in D(Ω) (and
D(Ω) is not dense in W 1,p(Ω) in this case); there is actually a compatibility
condition at 0 between the traces on the two sides if p > 2.

An important result is to identify W 1,p
0 (Ω), which is by definition the

closure of C∞
c (Ω) in W 1,p(Ω), as the kernel of γ0, and this makes use of the

simple form1 of Hardy’s inequality (13.3).

Lemma 13.4. (Hardy’s inequality) For p > 1,

if f ∈ Lp(R+) and g(t) = 1
t

∫ t

0
f(s) ds for t > 0, then

g ∈ Lp(R+) and ||g||p ≤ p
p−1 ||f ||p.

(13.3)

Proof : By density, it is enough to prove the result for f ∈ C∞
c (R+), for which

g is 0 near 0 and decays in C
t for large t (so that g does not belong to L1(R+)

when f ∈ L1(R+) and
∫∞
0

f(t) dt = 0). One has

t g′(t) + g(t) = f(t), (13.4)

and one multiplies by p |g|p−1sign(g) and integrates on (0,∞), and obtains

p

∫ ∞

0

f |g|p−1sign(g) dt =
∫ ∞

0

t(|g|p)′ dt + p

∫ ∞

0

|g|p dt = (p − 1)
∫ ∞

0

|g|p dt

(13.5)
1 A more general form of Hardy’s inequality will be seen at Lemma 22.5.



13 Traces on the Boundary 67

observing that
∫∞
0

t(|g|p)′ dt = −
∫∞
0

|g|p dt because t |g(t)|p → 0 as t → ∞
(because p > 1); one concludes by using Hölder’s inequality. ��

One shows that the constant is optimal, although no nonzero function
gives an equality in (13.3) (because equality in Hölder’s inequality requires
f = λ g for some λ > 0, and then (13.4) implies g(t) = C tλ−1 for t > 0, which
does not belong to Lp(R+)), by considering the case

f(t) =
{

α tα−1 for 0 < t < T
0 for t > T

g(t) =
{

tα−1 for 0 < t < T
T α

t for t > T
, (13.6)

for p−1
p < α < 1 and letting T tend to +∞ shows that the constant cannot be

replaced by
(

1
α

)1/p (and that no such inequality is true for p = 1 by letting α
tend to 0).

Another proof of Hardy’s inequality (13.3) uses Young’s inequality (2.3) for
convolution, noticing that (0,∞) is a multiplicative group with Haar measure
dt
t , then one has g(t) =

∫ t

0
f(s) s

t
ds
s , i.e., g is the convolution product of f with

the function h defined by h(t) = 0 for 0 < t < 1 and h(t) = 1
t for 1 < t < ∞

(so that h ∈ L1
(
R+; dt

t

)
).

Lemma 13.5. For F continuous, and 1 < p < ∞, one has
∣
∣
∣
∣

∣
∣
∣
∣
u(x′, xN ) − γ0u(x′)

xN − F (x′)

∣
∣
∣
∣

∣
∣
∣
∣
Lp(ΩF )

≤ p

p − 1

∣
∣
∣
∣

∣
∣
∣
∣

∂u

∂xN

∣
∣
∣
∣

∣
∣
∣
∣
Lp(ΩF )

for all u ∈ W 1,p(ΩF ).

(13.7)

Proof : For u ∈ C∞
c (ΩF ), one applies Hardy’s inequality (13.3) to f(t) =

∂u
∂xN

(x′, F (x′) + t), one takes the power p and then integrates in x′. Then
one extends the inequality to u ∈ W 1,p(ΩF ) by a density argument, valid for
p < ∞. ��

For p = +∞, (13.7) is true if one replaces p
p−1 by 1.

Lemma 13.6. If F is Lipschitz continuous and p > 1, then W 1,p
0 (ΩF ) is the

subspace of u ∈ W 1,p(ΩF ) satisfying γ0u = 0.

Proof : If u ∈ W 1,p
0 (ΩF ) then there exists a sequence ϕn ∈ C∞

c (ΩF ) such that
ϕn → u in W 1,p(ΩF ); as γ0 is continuous from W 1,p(ΩF ) to Lp(RN−1), γ0u
is the limit of γ0ϕn, and is 0 because each ϕn is 0 near ∂ΩF and γ0 is the
restriction to the boundary for functions in D(ΩF ).

Conversely, for u ∈ W 1,p(ΩF ) satisfying γ0u = 0, one must approach
u by a sequence from C∞

c (ΩF ). First one truncates at ∞, i.e., one chooses
θ ∈ C∞

c (RN ) such that θ(x) = 1 for |x| ≤ 1 and one approaches u by un

defined by un(x) = u(x)θ
(

x
n

)
, and one has γ0un = 0 by Lemma 13.3, and un

converges to u (using Lebesgue dominated convergence theorem). One may
then assume that the support of u is bounded.
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Then one wants to truncate near the boundary, and for this one uses
Lemma 13.5, which implies

u

xN − F (x′)
∈ Lp(ΩF ). (13.8)

Let η ∈ C∞(R) with η(t) = 0 for t ≤ 1 and η(t) = 1 for t ≥ 2. One approaches
u by un defined by

un(x) = u(x)η
(
n
(
xN − F (x′)

))
. (13.9)

The sequence un converges to u in Lp(ΩF ) strong by the Lebesgue dominated
convergence theorem (if p = ∞ the convergence is in L∞(ΩF ) weak 
 and Lq

loc

strong for all q < ∞, of course). Similarly ∂un

∂xj
has a term ∂u

∂xj
η
(
n
(
xN−F (x′)

))

which converges to ∂u
∂xj

, but also another term nu η′(n
(
xN − F (x′)

))
wj with

wj ∈ L∞(ΩF ), as it is − ∂F
∂xj

if j < N and 1 if j = N . This last term tends
to 0 by the Lebesgue dominated convergence theorem because one may write
it u

xN−F (x′)ζn

(
xN − F (x′)

)
wj with ζn(t) = n t η′(n t), and ζn is bounded by

supt∈(1,2) t |η′(t)| and ζn(t) tends to 0 for every t > 0. One may then assume
that u has its support bounded and bounded away from the boundary.

The last part is to regularize by convolution. ��

Lemma 13.7. If Ω is bounded with Lipschitz boundary and p > 1, then
W 1,p

0 (Ω) is the subspace of u ∈ W 1,p(Ω) satisfying γ0u = 0.

Proof : One uses a partition of unity and a local change of orthonormal basis
and one applies the preceding result. ��
[Taught on Monday February 14, 2000.]
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Green’s Formula

An important result is Green’s formula, or simply integration by parts, for
which one needs the boundary to be smooth enough so that a normal is
defined almost everywhere (for the (N − 1)-dimensional Hausdorff measure).

Definition 14.1. If Ω is an open set with Lipschitz boundary, ν denotes the
unit exterior normal. ��

For the case of ΩF defined as ΩF = {(x′, xN ) | xN > F (x′)} for a Lipschitz
function F , one has

νj

(
x′, F (x′)

)
=

∂F
∂xj

(x′)
√

1 + |∇F (x′)|2
for j <N ; νN

(
x′, F (x′)

)
=

−1
√

1 + |∇F (x′)|2
.

(14.1)

Lemma 14.2. If F is Lipschitz continuous, u ∈ W 1,p(ΩF ), v ∈ W 1,p′
(ΩF ),

then one has
∫

ΩF

(
u

∂v

∂xN
+

∂u

∂xN
v
)

dx =

∫

∂ΩF

γ0u γ0v νN dHN−1, i.e., −
∫

RN−1

γ0u γ0v dx′.

(14.2)

Proof : For u, v ∈ D(ΩF ) and each x′ ∈ RN−1, one has
∫ ∞

F (x′)

(
u

∂v

∂xN
+

∂u

∂xN
v

)
dxN =

∫ ∞

F (x′)

∂(u v)
∂xN

dxN =−u
(
x′, F (x′)

)
v
(
x′, F (x′)

)
.

(14.3)
Integrating this equality in x′ shows that the formula is true for u, v ∈ D(ΩF ),
and as both sides of the equality are continuous functionals if one uses the
topologies of W 1,p(ΩF ) and W 1,p′

(ΩF ), the lemma is proven (in the case
where p = 1 or p = ∞, one first approaches the function in W 1,∞(ΩF ) and
its partial derivatives in L∞(ΩF ) weak 
 and the other function in W 1,1(ΩF )
strong). ��
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Lemma 14.3. If F is Lipschitz continuous, u ∈ W 1,p(ΩF ), v ∈ W 1,p′
(ΩF ),

then for every j = 1, . . . , N one has
∫

ΩF

(
u

∂v

∂xj
+

∂u

∂xj
v

)
dx =

∫

∂ΩF

γ0u γ0v νj dHN−1. (14.4)

Proof : The case j = N has been proven. If j < N and if one makes only xj

vary, the intersection with ΩF can be an arbitrary open subset of R, i.e., a
countable union of open intervals, so in order to avoid this technical difficulty
one uses a new orthogonal basis, with last vector e′N = 1√

1+ε2 (eN + ε ej)
(where e1, . . . , eN is the initial basis). Of course ε > 0 is taken small enough,
so that using y to denote coordinates in the new basis, the open set can be
written as yN > G(y′) with G Lipschitz continuous. Therefore the preceding
lemma shows that

∫
ΩG

(
u ∂v

∂yN
+ ∂u

∂yN
v
)
dy =

∫
∂ΩG

γ0u γ0v (ν.e′N ) dHN−1. One
observes that ∂u

∂yN
= 1√

1+ε2
∂u

∂xN
+ ε√

1+ε2
∂u
∂xj

and similarly (ν.e′N ) = 1√
1+ε2 νN +

ε√
1+ε2 νj , so that after multiplication by

√
1 + ε2, one obtains a relation of

order 1 in ε; the equality for ε = 0 is true as it is the preceding lemma, so
that the equality of the coefficients of ε gives the desired relation. ��

Lemma 14.4. For any bounded open set Ω with Lipschitz boundary one has∫
Ω

(
u ∂v

∂xj
+ ∂u

∂xj
v
)
dx =

∫
∂Ω

γ0u γ0v νj dHN−1 for j = 1, . . . , N , for all u ∈
W 1,p(Ω), v ∈ W 1,p′

(Ω).

Proof : One uses a partition of unity and the fact that one has a formu-
lation invariant by rigid displacements, for example by writing the formula∫

Ω

(
u (∇ v.e) + (∇u.e) v

)
dx =

∫
∂Ω

γ0u γ0v (ν.e) dHN−1 for all vectors e (of
course, the fact that the Lebesgue measure dx is also invariant by rigid dis-
placements is also used). ��

It should be noticed that even for a C∞ function F , the set of x′ such that
F (x′) = λ can be a general closed set; actually, for any closed set K ⊂ RN−1,
there exists G ∈ C∞, with G ≥ 0 and {x′ | G(x′) = 0} = K. In constructing
G, one notices that the complement of K is a countable union of open balls
RN−1 \ K =

⋃
n B(Mn, rn) (for example for each point M /∈ K and M with

rational coordinates, one keeps the largest open ball centered at M which
does not intersect K). One chooses a function ϕ ∈ C∞

c (RN−1) such that
{x | ϕ(x) = 0} = B(0, 1), and one may assume ϕ ≥ 0. One defines G by
G(x) =

∑
n cnϕ

(
x−Mn

rn

)
with all cn > 0, and G satisfies the desired property

if one chooses the cn converging to 0 fast enough so that the series converges
uniformly, as well as any of its derivatives (so that DαG ∈ C0(RN−1) for any
multi-index α).

However, there is a result of SARD1 which says that for most λ the set
is not that bad; for example, if F ∈ C1(R), then except for a set of λ with

1 Arthur SARD, American mathematician, 1909–1980. He worked in New York,
NY.
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measure 0, at any point x with F (x) = λ one has F ′(x) = 0, so these points
are isolated.

The next question is to identify the range of γ0, for a bounded open set Ω
with Lipschitz boundary for example. This was done by Emilio GAGLIARDO,
but although γ0 is surjective from W 1,1(Ω) onto L1(∂Ω), it is not so for p > 1,
and the image of W 1,p(Ω) by γ0 is not Lp(∂Ω) for p > 1. Actually for p = ∞
it is W 1,∞(∂Ω), the space of Lipschitz continuous functions on the boundary,
and as p varies from 1 to ∞ one goes from traces having no derivatives in L1

to traces having one derivative in L∞, and one can guess that for 1 < p < ∞
the traces have 1− 1

p derivatives in Lp, if one finds a way to express what this
means. The characterization of the traces is simpler in the case p = 2 because
one can use the Fourier transform, which will be studied for that reason.

Before doing that, one now has a simple way to prove that the injection
of W 1,p(Ω) into Lp(Ω) is compact in the case of bounded open sets with
Lipschitz boundary, the case of continuous boundary being left for later.

Lemma 14.5. If Ω is bounded with Lipschitz boundary, then the injection of
W 1,p(Ω) into Lp(Ω) is compact.

Proof : One uses a continuous extension P from W 1,p(Ω) to W 1,p(RN ), as
constructed in Lemma 12.4. Let η ∈ C∞

c (RN ) such that η(x) = 1 for x ∈ Ω,
and let Ω′ be a bounded open set containing support(η). Then if a sequence
un is bounded in W 1,p(Ω), the sequence of extensions P un is bounded in
W 1,p(RN ), and the sequence of truncated functions η(P un) is bounded in
W 1,p

0 (Ω′), so that a subsequence η(P um) belongs to a compact of Lp(Ω′),
and the sequence of restrictions to Ω, which is um, belongs to a compact of
Lp(Ω). ��
[Taught on Wednesday February 16, 2000.]
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The Fourier Transform

A decomposition in Fourier series of a scalar function f in one variable con-
sists in writing

f(x) =
∑

n∈Z

cne2i π n x/T for some (complex) coefficients cn, n ∈ Z. (15.1)

If the series converges the function f must be periodic with period T .
A decomposition in Fourier integral of a scalar function f in one variable

consists in writing

f(x) =
∫

R

f̂(ξ)e2i π x ξ dξ for some function f̂ . (15.2)

The generalization to functions of N variables leads to the following definition.
Having learnt the theory from Laurent SCHWARTZ, I use his notation, but
most mathematicians do not put the coefficient 2π in the integral, and some
different powers of π occur then in their formulas, in the argument of the
exponentials or multiplying some integrals, and one should be aware of the
fact that different books may use different constants.

Definition 15.1. For f ∈ L1(RN ), the Fourier transform of f is the function
Ff (or f̂) defined on (the dual of) RN by

Ff(ξ) =
∫

RN

f(x)e−2i π(x.ξ) dx. (15.3)

One also defines F by

Ff(η) =
∫

RN

f(y)e+2i π(y.η) dy. �� (15.4)

Of course, F is defined so that Ff = F f .
From a scaling point of view, one should remember that, if using L to

denote a length unit for measuring x and U to denote a unit for measuring u,
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then ξ scales as L−1 (because the exponential must be computed on a number,
i.e., with no dimension), and Fu scales as U LN .

The Fourier transform F maps L1(RN ) into C0(RN ), but one impor-
tant property is that it extends as an isometry from L2(RN ) to itself, with
inverse F .

Another important property is that it transforms derivation into multipli-
cation, or more generally1 it transforms convolution into product, and one can
check easily the following properties:

if f, g ∈ L1(RN ), one has f 
 g ∈ L1(RN ) and F(f 
 g) = Ff Fg, (15.5)

if f ∈ L1(RN ) and xjf ∈ L1(RN ), one has
∂(Ff)

∂ξj
= F(−2iπ xjf), (15.6)

if f ∈ L1(RN ) and
∂f

∂xj
∈ L1(RN ), one has F ∂f

∂xj
= 2i π ξjFf. (15.7)

The definition of Fourier transform extends immediately to Radon mea-
sures with finite total mass, i.e., those for which

there exists C such that |〈µ, ϕ〉| ≤ C ||ϕ||∞ for all ϕ ∈ Cc(RN ), (15.8)

(and the total mass of µ is the smallest value of C). If (15.8) holds, the linear
mapping ϕ 
→ 〈µ, ϕ〉 extends in a unique way to the Banach space Cb(RN ) of
continuous bounded functions on RN equipped with the sup norm || · ||∞, with
the same inequality (15.8) being true for all ϕ ∈ Cb(RN ). Then one defines
µ by

µ(ξ) = 〈µ, e−2i π(·.ξ)〉 for all ξ ∈ RN , (15.9)

and the Lebesgue dominated convergence theorem shows that µ is continuous,
so that one has µ ∈ Cb(RN ). It may be useful to recall that Cb(RN ) is not
separable.2

In order to define the Fourier transform for some distributions, Laurent
SCHWARTZ introduced a particular (Fréchet) space of rapidly decaying C∞

functions.

1 Laurent SCHWARTZ has generalized the definition of convolution product to pairs
of distributions if the condition (2.4) holds for their supports, and ∂T

∂xj
appears

then to be the convolution of T with ∂δ0
∂xj

, so derivations are indeed particular

cases of convolutions.
2 One way to show that a normed space E is not separable is to exhibit an

uncountable collection of elements ei ∈ E, i ∈ I, such that there exists α > 0
with ||ei − ej ||E ≥ α whenever i, j ∈ I with i �= j. For E = Cb(R

N ), one chooses
ϕ0 ∈ Cc(R) with 0 ≤ ϕ0 ≤ 1, ϕ0(0) = 1 and support(ϕ0) ⊂ B

(
0, 1

2

)
, and one con-

siders the collection of functions fη defined by fη(x) =
∑

m∈ZN η(m)ϕ0(x − m),

where η is any mapping from ZN into {−1, +1}, so for η1 �= η2 one has
||fη1 − fη2 ||E = 2, and the cardinal of the collection is 2ℵ0 .
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Definition 15.2. The space of rapidly decaying C∞ functions S(RN ) is

S(RN ) = {u ∈ C∞(RN ) | P Dαu ∈ L∞(RN )
for all polynomials P and all multi-indices α}. �� (15.10)

By repeated use of (15.6) and (15.7), one checks easily that F maps S(RN )
into itself, and that Plancherel’s formula3

∫

RN

(Ff)g dx =
∫

RN

f(Fg) dx for all f, g ∈ S(RN ) (15.11)

holds.4 Laurent SCHWARTZ used (15.11) for choosing the definition of Fourier
transform on the dual S ′(RN ) of S(RN ), which he called the space of tempered
distributions.

Definition 15.3. A tempered distribution is an element T ∈ S ′(RN ); one
defines FT ∈ S ′(RN ) by

〈FT, ϕ〉 = 〈T,Fϕ〉 for all ϕ ∈ S(RN ). �� (15.12)

One finds easily that the analog of (15.6) and (15.7) holds, i.e., that for
T ∈ S ′(RN ) one has

∂(FT )
∂ξj

= F(−2iπ xjT ) for j = 1, . . . , N,

F ∂T
∂xj

= 2i π ξjFT for j = 1, . . . , N.
(15.13)

Lemma 15.4. (i) If ϕ0 ∈ S(RN ) is defined by ϕ0(x) = e−π |x|2 , then Fϕ0 =
ϕ0.
(ii) Fδ0 = 1, and F1 = δ0.

Proof : (i) One notices that ∂ϕ0
∂xj

= −2π xj ϕ0, so that by (15.6) and (15.7)

one has ∂Fϕ0
∂ξj

= −2π ξj Fϕ0 for j = 1, . . . , N , so that Fϕ0(ξ) = C e−π |ξ|2 .
One finds that C = 1 by using the definition (15.3) for ξ = 0 and using∫

R
e−π x2

dx = 1.
(ii) One may deduce that Fδ0 = 1 by using (15.9), if one notices that

this definition coincides with that of (15.12). One has δ0 ∈ S ′(RN ) because
S(RN ) ⊂ C0(RN ), and noticing that xjδ0 = 0 gives ∂(Fδ0)

∂xj
= 0, one deduces

that Fδ0 is a constant C by Lemma 6.4, which is 1 by using ϕ0 in (15.12).
Similarly, 1 ∈ S ′(RN ) because S(RN ) ⊂ L1(RN ), and noticing that ∂1

∂xj
= 0

3 Michel PLANCHEREL, Swiss mathematician, 1885–1967. He worked in Genève
(Geneva), in Fribourg, and at ETH (Eidgenössische Technische Hochschule),
Zürich, Switzerland.

4 The left side of (15.11) is
∫

RN

(∫
RN e−2i π(x.ξ)f(x) dx

)
g(ξ) dξ, and Fubini’s theo-

rem applies because
∫ ∫

RN×RN |f(x)| |g(ξ)| dx dξ < ∞, so that one may exchange
the order of integrations; after that, one exchanges the names of x and ξ.
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gives ξjF1 = 0, one deduces that F1 = C δ0 by Lemma 6.3, and the constant
C is 1 by using ϕ0 in (15.12). ��

There are other classical methods for computing Fourier transforms, like
changing paths of integration in the complex plane, but the observations of
Laurent SCHWARTZ used in the proof of Lemma 15.3 are often more easy to
apply.

Following the example of DIRAC, physicists write
∫

e−2i π(x.ξ) dx = δ(ξ),
but Laurent SCHWARTZ’s extension of Fourier transform has shown that this
is a loose way of saying F1 = δ0, which means

∫

RN

(∫

RN

e−2i π(x.ξ)ϕ(x) dx

)
dξ = ϕ(0) for all ϕ ∈ S(RN ), (15.14)

but Fubini’s theorem does not apply to the integral on the left.

Lemma 15.5. (i) F is an isomorphism from S(RN ) onto itself, with inverse
F .
(ii) F is an isomorphism from S ′(RN ) onto itself, with inverse F .
(iii) F is an isometry from L2(RN ) onto itself, with inverse F .

Proof : (i) For ϕ ∈ S(RN ), one uses (15.14) for τ−yϕ, which gives

ϕ(y)=
∫

RN

(∫
RN e−2i π(x.ξ)ϕ(x+y) dx

)
dξ=

∫
RN

(∫
RN e−2i π(z−y.ξ)ϕ(z) dz

)
dξ

=
∫

RN e2i π(y.ξ)Fϕ(ξ) dξ = F(Fϕ)(y),
(15.15)

i.e., F(Fϕ) = ϕ, showing that F is a left inverse of F , but taking the complex
conjugate gives FFϕ = F(Fϕ) = ϕ, showing that F is a right inverse of F .

(ii) By (15.12), for T ∈ S ′(RN ) and ϕ ∈ S(RN )

〈FFT, ϕ〉 = 〈FT,Fϕ〉 = 〈T,FFϕ〉 = 〈T, ϕ〉, (15.16)

showing that FFT = T , and similarly FFT = T .
(iii) One uses Plancherel’s formula (15.11) with f ∈ S(RN ) and g = Ff =

F f , and because Fg = FF f = f , one obtains
∫

RN

|Ff |2 dξ =
∫

RN

|f |2 dx for all f ∈ S(RN ) (15.17)

and because S(RN ) is dense in L2(RN ) (as it contains C∞
c (RN ) which is

dense) (15.17) is true for all f ∈ L2(RN ). ��
Of course, one cannot define the Fourier transform of an arbitrary distrib-

ution on RN , as one cannot even define the Fourier transform for all smooth
functions independently of what their growth at ∞ is, and keep all the known
properties. For example, in one dimension the function exp(x) = ex satisfies
dexp
dx = exp and if Fexp was defined with the property (15.7) one would have

2i π ξ Fexp = Fexp, so that the support of Fexp would be included in the
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zero set of 2i π ξ − 1, which is empty5–7, so that one would have Fexp = 0, a
useless extension, incompatible with keeping F an isomorphism.

Lemma 15.6. For u ∈ H1(RN ) one has
∫

RN |u|2 dx =
∫

RN |Fu|2 dξ

∫
RN |grad(u)|2 dx =

∫
RN 4π2|ξ|2|Fu|2 dξ.

(15.18)

Proof: The first part is (15.17), and the second follows from F ∂u
∂xj

= 2i π ξjFu,
and again (15.17) and then summing in j. ��

Lemma 15.6 suggests a natural extension for defining Sobolev spaces with
noninteger order.

Definition 15.7. For a real s ≥ 0, Hs(RN ) = {u ∈ L2(RN ) | |ξ|sFu ∈
L2(RN )}.

For a real s < 0, Hs(RN ) = {u ∈ S ′(RN ) | (1 + |ξ|2)s/2Fu ∈ L2(RN )}.
��

The Fourier transform is an isometry on L2(RN ), and because it satisfies
FDαu = (2i π)|α|ξαFu for all u ∈ S ′(RN ) and all multi-indices α, one sees
that if s is a nonnegative integer m, Definition (15.15) for Hs(RN ) gives the
same space as Wm,2(RN ).

For s < 0, the space Hs(RN ) is not a subset of L2(RN ), and in order to
use F one starts from an element of S ′(RN ), but one cannot use (1 + |ξ|)sFu
because (1 + |ξ|)s is not a C∞ function.

Of course, H−s(RN ) is the dual of Hs(RN ), but the notation for an open
set Ω is different.

Definition 15.8. For an open set Ω ⊂ RN , and a positive integer m, one
denotes by Hm

0 (Ω) the closure of C∞
c (Ω) in Hm(Ω), and H−m(Ω) the dual

of Hm
0 (Ω). ��

5 GELFAND has extended the Fourier transform, with values into a much larger
space than D′(RN ), a space of analytic functionals A′(CN ), the dual space of a
space of analytic functions A(CN ). For T ∈ D′, the expected relation 〈FT, ϕ〉 =
〈T,Fϕ〉 shows that one must take test functions ϕ such that Fϕ ∈ C∞

c (RN ), i.e.,
ϕ = Fψ with ψ ∈ C∞

c (RN ); it is easy to see that if ψ ∈ C∞
c (RN ) then Fψ and

Fψ extend to an analytic function on CN satisfying a special growth condition
|Fψ(ξ+i η)| ≤ ||ψ||L1e2π 
 |η| if the support of ψ is included in B(0, �); the Paley–
Wiener theorem, extended by Laurent SCHWARTZ to the case of distributions,
gives a more precise characterization of what Fψ can be. One should pay attention
that because a nonzero analytic function cannot have compact support, there is
no notion of support for analytic functionals. With this extension of the Fourier
transform, one then has Fexp = C δz0 with z0 = 1

2i π
.

6 Raymond Edward Alan Christopher PALEY, English mathematician, 1907–1933.
7 Norbert G. WIENER, American mathematician, 1894–1964. He worked at MIT

(Massachusetts Institute of Technology), Cambridge, MA.
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Lemma 15.9. H−1(Ω) = {T ∈ D′(Ω) | T = f0 −
∑N

j=1
∂fj

∂xj
, f0, . . . , fN ∈

L2(Ω)}. If Poincaré’s inequality holds for H1
0 (Ω), then every g0 ∈ L2(Ω) can

be written as
∑N

j=1
∂gj

∂xj
, with g1, . . . , gN ∈ L2(Ω).

Proof : The mapping u 
→
(
u, ∂u

∂x1
, . . . , ∂u

∂xN

)
is an isometry of H1

0 (Ω) onto
a closed subspace of L2(Ω)N+1, so a linear continuous form L on H1

0 (Ω) is
transported onto this subspace and extended to a linear continuous form on
L2(Ω)N+1, so that there exist f0, . . . , fN ∈ L2(Ω) such that L(ϕ) =

∫
Ω

(
f0ϕ+

∑N
j=1 fj

∂ϕ
∂xj

)
dx for all ϕ ∈ H1

0 (Ω), or equivalently for all ϕ ∈ C∞
c (Ω), but

this means that L(ϕ) = 〈T, ϕ〉 with T = f0 −
∑N

j=1
∂fj

∂xj
, and because C∞

c (Ω)
is dense in H1

0 (Ω), one has L = T .
If Poincaré’s inequality holds for H1

0 (Ω), the mapping u 
→
(

∂u
∂x1

, . . . , ∂u
∂xN

)

is an isometry of H1
0 (Ω) onto a closed subspace of L2(Ω)N , and every linear

continuous form L on H1
0 (Ω) has the form L(ϕ) =

∑N
j=1 gj

∂ϕ
∂xj

dx for all
ϕ ∈ H1

0 (Ω), with g1, . . . , gN ∈ L2(Ω), and in particular if g0 ∈ L2(Ω) one can
write

∫
Ω

g0ϕdx in this way. ��

Lemma 15.10. For any s ∈ R, C∞
c (RN ) is dense in Hs(RN ).

Proof : Consider the space FHs of functions in L2 with the weight (1+ |ξ|2)s,
i.e.,
∫

RN (1 + |ξ|2)s|u(ξ)|2 dξ < ∞. One can approach any function in FHs by
functions with compact support by truncation, defining un by un(ξ) = u(ξ) if
|ξ| ≤ n and un(ξ) = 0 if |ξ| > n, and by the Lebesgue dominated convergence
theorem, un converges to u in FHs. Any u ∈ FHs having compact support
can be approached by functions in C∞

c (RN ) because for a smoothing sequence
m one has m
u → u in L2(RN ), and because the supports stay in a bounded
set one has m 
 u → u in FHs. Therefore C∞

c (RN ) is dense in FHs, so that
S(RN ) is dense in FHs. Using the Fourier transform one deduces that S(RN )
is dense in Hs(RN ). Let m ≥ s be a nonnegative integer then one can approach
any function v ∈ S(RN ) by a sequence in C∞

c (RN ), the convergence being
in Hm(RN ) strong, and therefore also in Hs(RN ) strong, and this is done by
approaching v by v(x)θ

(
x
n

)
with θ ∈ C∞

c (RN ) with θ(x) = 1 for |x| ≤ 1. ��
In the characterization of the traces of functions from Hs(RN ) (for s > 1

2 ),
one will use the following result.

Lemma 15.11. If u ∈ S(RN ) and v ∈ S(RN−1) is the restriction of u on the
hyperplane xN = 0, i.e.,

v(x′) = u(x′, 0) for x′ ∈ RN−1, (15.19)

then one has

Fv(ξ′) =
∫

R

Fu(ξ′, ξN ) dξN for ξ′ ∈ RN−1. (15.20)
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Proof : Because Fδ0 = 1, one has (15.14), i.e., ϕ(0) =
∫

R
Fϕ(ξ) dξ. One uses

this relation for the function xN 
→ u(x′, xN ), and then one takes the Fourier
transform in x′ of both sides of the equality. ��

Notice that in (15.20), the same symbol F is used for the Fourier transform
in N or N − 1 variables, and even 1 variable in the proof.
[Taught on Friday February 18, 2000.]
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Traces of Hs(RN)

Lemma 16.1. For s > 1
2 , functions of Hs(RN ) have a trace on the hyperplane

xN = 0, belonging to Hs− 1
2 (RN−1). The mapping γ0 is surjective from

Hs(RN ) onto Hs− 1
2 (RN−1).

Proof : To prove the first part, it is enough to show that there exists C such
that for all u ∈ S(RN ) and v defined by v(x′) = u(x′, 0) for x′ ∈ RN−1

one has ||v||Hs−(1/2)(RN−1) ≤ C ||u||Hs(RN ). By (15.20) one has Fv(ξ′) =∫
R
Fu(ξ′, ξN ) dξN , and Cauchy–(Bunyakovsky)–Schwarz inequality1,2 implies

|Fv(ξ′)|2 ≤
(∫

R

(1 + |ξ|2)s|Fu(ξ′, ξN )|2 dξN

)(∫

R

dξN

(1 + |ξ|2)s

)
(16.1)

Using the change of variable ξN = t
√

1 + |ξ′|2, one has
∫

R

dξN

(1 + |ξ|2)s
=
(√

1 + |ξ′|2
)1−2s

∫

R

dt

(1 + t2)s
= C(s)

(
1 + |ξ′|2

)(1/2)−s
,

(16.2)
giving

(
1 + |ξ′|2

)s−(1/2)|Fv(ξ′)|2 ≤ C(s)
∫

R

(1 + |ξ|2)s|Fu(ξ′, ξN )|2 dξN , (16.3)

which gives the desired result by integrating in ξ′, because C(s) < ∞ if and
only if s > 1

2 .

1 Viktor Yakovlevich BUNYAKOVSKY, Ukrainian-born mathematician, 1804–1889.
He worked in St Petersburg, Russia. He studied with CAUCHY in Paris (1825),
and he proved the “Cauchy–Schwarz” inequality in 1859, 25 years before
SCHWARZ.

2 Hermann Amandus SCHWARZ, German mathematician, 1843–1921. He worked at
ETH (Eidgenössische Technische Hochschule), Zürich, Switzerland, and in Berlin,
Germany.
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In order to prove the surjectivity, one shows that for v ∈ Hs−(1/2)(RN−1)
the function u defined by

Fu(ξ′, ξN ) = Fv(ξ′)ϕ
(

ξN√
1+|ξ′|2

)
1√

1+|ξ′|2
,

with ϕ ∈ C∞
c (R) and

∫
R

ϕ(t) dt = 1,

(16.4)

is such that u ∈ Hs(RN ); because (16.4) implies
∫

R
Fu(ξ′, ξN ) dξN = Fv(ξ′),

it implies v = γ0u because of (15.20). Indeed, for all ξ′ ∈ RN−1, one has

∫
R
(1+|ξ|2)s|Fu(ξ′, ξN )|2 dξN =

∫
R
(1+|ξ|2)s

∣
∣
∣
∣ϕ
(

ξN√
1+|ξ′|2

)∣∣
∣
∣

2
1

1+|ξ′|2 dξN =

C(1 + |ξ′|2)s−(1/2),
(16.5)

where C =
∫

R
(1 + t2)sϕ(t)2 dt, and one has used the change of variable ξN =

t
√

1 + |ξ′|2. One obtains the desired result by integrating (16.5) in ξ′. ��
There cannot be a good notion of trace (i.e., different from 0) in the case

s ≤ 1
2 because in that case the subspace of functions of the form ψ = ϕ+ +ϕ−

with ϕ± ∈ C∞
c (RN

± ) (i.e., ψ ∈ C∞
c (RN ) equal to 0 in a neighbourhood of

xN = 0) is dense in Hs(RN ).
The condition s > 1

2 has not appeared in proving the surjectivity, but one
should notice that the function u constructed is not only in Hs(RN ) but has
other properties, so it belongs to a smaller subspace, where traces may exist
and belong to Hs−(1/2)(RN−1).

For a function u ∈ H2(RN ) for example, one can define the trace γ0u ∈
H3/2(RN−1) but also the normal derivative γ1u = γ0

∂u
∂xN

∈ H1/2(RN−1) (in
general one takes γ1u to be the normal derivative, with the normal pointing
to the outside), and a more precise result is that u 
→ (γ0u, γ1u) is surjective
from H2(RN ) onto H3/2(RN−1) × H1/2(RN−1), and more generally one has
the following surjectivity result.

Lemma 16.2. If m + 1
2 < s < m + 1 + 1

2 , and for k = 0, . . . , m, one writes

γku = γ0

(
∂ku

∂xk
N

)
, (16.6)

then u 
→ (γ0u, . . . , γmu) is surjective from Hs(RN ) onto Hs−(1/2)(RN−1) ×
. . . × Hs−m−(1/2)(RN−1).

Proof : If u ∈ S(RN ) and vk =γku, then Fvk(ξ′)=
∫

R
(2i π ξN )kFu(ξ′, ξN ) dξN ,

so if vk ∈ Hs−k−(1/2)(RN−1), then one defines uk by

Fuk(ξ′, ξN ) = Fvk(ξ′)ϕk

(
ξN√

1 + |ξ′|2

)

(1 + |ξ′|2)−(k+1)/2, (16.7)
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with

ϕk ∈ C∞
c (R) and

∫

R

(2i π t)jϕk(t) dt = δjk for j = 0, . . . , m, (16.8)

so that one has

uk ∈ Hs(RN ) with γkuk = vk and γjuk = 0 for j = 0, . . . , k− 1, k + 1, . . . , m,
(16.9)

and surjectivity is proven by using u =
∑m

k=0 uk. ��
In order to define Hs(Ω) for Ω = RN , it is useful to find a characterization

of Hs(RN ) which does not use the Fourier transform explicitly.

Lemma 16.3. For 0 < s < 1, u ∈ Hs(RN ) is equivalent to

u ∈ L2(RN ) and
∫ ∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dx dy < ∞. (16.10)

Proof : For h ∈ RN , and τhu(x) = u(x − h), one has

Fτhu(ξ) = e2i π(h.ξ)Fu(ξ), (16.11)

so that
∫

RN

|τhu−u|2 dx=
∫

RN

|1−e2i π(h.ξ)|2|Fu(ξ)|2 dξ=
∫

RN

4 sin2 π(h.ξ)|Fu(ξ)|2 dξ,

(16.12)

which implies

∫ ∫
RN×RN

|u(x)−u(y)|2
|x−y|N+2s dx dy =

∫
RN

1
|h|N+2s

(∫
RN |τhu − u|2 dx

)
dh =

∫
RN |Fu(ξ)|2

(∫
RN

4 sin2 π(h.ξ)
|h|N+2s dh

)
dξ = C

∫
RN |ξ|2s|Fu(ξ)|2 dξ,

(16.13)

where one has used the change of variable h = z
|ξ| , and using invariance by

rotation one finds

C =
∫ ∫

RN

4 sin2 π z1

|z|N+2s
dz, (16.14)

which is finite because | sin π z1| ≤ π |z| for z near 0 and s < 1, and | sin π z1| ≤
1 for z near ∞ and s > 0. ��

For an open set Ω, one could define Hs(Ω) for 0 < s < 1 in (at least)
three different ways:

(i) one may use u ∈ Hs(Ω) for u ∈ L2(Ω) and
∫ ∫

Ω×Ω
|u(x)−u(y)|2
|x−y|N+2s

dx dy < ∞,
(ii) one may use u ∈ Hs(Ω) for u = U

∣
∣
Ω

with U ∈ Hs(RN ),
(iii) one may define Hs(Ω) by interpolation.
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For a bounded open set with Lipschitz boundary, the three definitions give
the same space with equivalent norms.

If u ∈ W 1,∞(RN ) = Lip(RN ), then the restriction of u to xN = 0 is a
Lipschitz continuous function, and conversely, if v is a Lipschitz continuous
function defined on a closed set A with Lipschitz constant M , then one can
extend it to RN into a Lipschitz continuous function u defined on RN and
having the same Lipschitz constant M by

u(x) = supa∈A(v(a) − M |a − x|). (16.15)

If u ∈ H1(RN ) = W 1,2(RN ), the space of traces v is H1/2(RN−1) (Lemma
16.1), which by Lemma 16.3 means

∫ ∫
RN−1×RN−1

|v(x)−v(y)|2
|x−y|N dx dy < ∞ and

v ∈ L2(RN−1).
If u ∈ W 1,p(RN ) and 1 < p < ∞, Emilio GAGLIARDO has shown that the

space of traces v is characterized by
∫ ∫

RN−1×RN−1
|v(x)−v(y)|p
|x−y|N+p−2 dx dy < ∞ and

v ∈ Lp(RN−1).
If u ∈ W 1,1(RN ), Emilio GAGLIARDO has characterized the space of traces

as v ∈ L1(RN−1). However, Jaak PEETRE has shown that there is no linear
continuous lifting from L1(RN−1) to W 1,1(RN ); I have not yet read the detail
of the proof.
[Taught on Monday February 21, 2000.]
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Proving that a Point is too Small

Lemma 17.1. If u ∈ H1(RN ) and N ≥ 3, then u
r ∈ L2(RN ) and

∣
∣
∣
∣
∣
∣
u

r

∣
∣
∣
∣
∣
∣
2
≤ 2

N − 2
||grad(u)||2 (17.1)

Proof : One proves (17.1) for all u ∈ C∞
c (RN ), and then it extends to H1(RN )

by density. For any α ∈ R one has

0≤
∫

RN

∑N
j=1

∣
∣
∣ ∂u
∂xj

+ α xj u
r2

∣
∣
∣
2

dx=
∫

RN |grad(u)|2 dx+
∑N

j=1

∫
RN 2u ∂u

∂xj

α xj

r2

+
∫

RN
α2u2

r2 dx=
∫

RN |grad(u)|2 dx−
(
(N−2)α−α2

) ∫
RN

u2

r2 dx,
(17.2)

where one has performed an integration by parts, allowed because xj

r2 ∈
W 1,1

loc (RN ) for all j (for N ≥ 3), and
∑N

j=1
∂

∂xj

(xj

r2

)
= N−2

r2 ; one then chooses
the best value of α, i.e., α = N−2

2 . ��
The result is obviously false for N = 2, even for u smooth with u(0) = 0

as 1
r /∈ L2

loc(R
2).

Lemma 17.2. The space of functions in C∞
c (RN ) which are 0 in a small ball

around 0 is dense in H1(RN ) for N ≥ 3.

Proof : As C∞
c (RN ) is dense in H1(RN ) for all N , one must approach any

u ∈ C∞
c (RN ) by a sequence of functions which are 0 in a small ball around 0,

and this is done by taking

un(x) = u(x)θ(nx) with θ ∈ C∞(RN ), θ(r) = 0 for r ≤ 1, θ(r) = 1 for r ≥ 2.
(17.3)

One has un → u in L2(RN ) by the Lebesgue dominated convergence theorem,
and similarly ∂u

∂xj
θ(nx) → ∂u

∂xj
in L2(RN ), and in order to show that

un ∂θ
∂xj

(nx) → 0 in L2(RN ), one also applies the Lebesgue dominated conver-
gence theorem to u

r f(nx) with f(x) = r ∂θ
∂xj

. ��
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Lemma 17.2 is actually also true for N = 2, and one may use a variant
for Lemma 17.1 given at Lemma 17.4, and then a variant for the truncation
formula (17.3), but Lemma 17.3 gives a different proof.

Lemma 17.3. The space of functions in C∞
c (R2) which are 0 in a small ball

around 0 is dense in H1(R2).

Proof : One uses the Hahn–Banach theorem, and one shows that if T ∈
H−1(R2) =

(
H1(R2)

)′, and 〈T, ϕ〉 = 0 for all ϕ ∈ C∞
c (R2) which are 0

in a small ball around 0, then T = 0. Because 〈T, ϕ〉 = 0 for all ϕ ∈ C∞
c (ω)

for any open set ω such that 0 /∈ ω, one finds that the support of T can only be
{0} (if T is not 0, in which case the support of T is empty). As will be seen in
Lemma 18.2, if a distribution T has support {0}, then T =

∑
α cαDαδ0 (finite

sum), but if some cα = 0 then T /∈ H−1(R2), because FT =
∑

α cα(2i π ξ)α

and no nonzero polynomial P satisfies
∫

R2
|P (ξ)|2
1+|ξ|2 dξ < ∞. ��

One deduces that if Ω = RN \ F , where F is a finite number of points
and N ≥ 2 then H1

0 (Ω) = H1(Ω) = H1(RN ). This is not true for N = 1
as the functions in H1(R) are continuous. With some technical changes the
same proofs adapt to W 1,p(RN ) if 1 < p ≤ N . Similar ideas show that one
can approach every function of H1(RN ) for N ≥ 3 by functions in C∞

c (RN )
which vanish in a neighbourhood of a given segment, but that is not true for
N = 2 as the functions in H1(R2) have traces on the segment.

Like for the limiting case of Sobolev’s embedding theorem, there are norms
which scale in the same way, but which are not comparable; for example if
N = 2 then ||grad(u)||2 and ||u||∞ scale in the same way but functions in
H1(R2) are not necessarily bounded, and

∣
∣
∣
∣u

r

∣
∣
∣
∣
2

also scales in the same way
but u ∈ H1(R2) does not imply u

r ∈ L2(R2). However, one has the following
result.

Lemma 17.4. If Ω ⊂ B(0, R0) ⊂ R2, then there exists C such that
∣
∣
∣
∣

∣
∣
∣
∣

u

r log(r/R0)

∣
∣
∣
∣

∣
∣
∣
∣
2

≤ C ||grad(u)||2 for all u ∈ H1
0 (Ω). (17.4)

Proof : One proves the inequality for u ∈ C∞
c

(
B(0, R0)

)
so that it is true for

u ∈ C∞
c (Ω) and it then extends to H1

0 (Ω). For f smooth, one develops

∫

B(0,R0)

N∑

j=1

∣
∣
∣
∣
∂u

∂xj
+ xjf(r)u

∣
∣
∣
∣

2

dx ≥ 0, (17.5)

and one uses the integration by parts
∫

B(0,R0)

2u
∂u

∂xj
xjf(r) dx = −

∫

B(0,R0)

|u|2
(

f(r) + x2
j

f ′(r)
r

)
dx, (17.6)
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which is valid if r f(r) and r2f ′(r) belong to L1(0, R0 − ε) for every ε > 0,
and one deduces

∫

B(0,R0)

|grad(u)|2 dx ≥
∫

B(0,R0)

|u|2(2f + r f ′ − r2f2) dx. (17.7)

If one takes f = g
r2 , one has 2f+r f ′−r2f2 = g′

r − g2

r2 , and one then approaches
g = −1

2 log(r/R0)
, which corresponds to multiplying |u|2 by 1

4r2(log(r/R0))2
. ��

Because the logarithm vanishes for r = R0, it is important to have
Ω bounded; however, the same argument works if Ω is unbounded and is
outside a ball B(0, R0), but there is a problem with the entire space; actually,
Jacques-Louis LIONS and Jacques DENY have shown that the completion of
C∞

c (R2) for the norm ||grad(u)||2 is not a space of distributions on R2.
[Taught on Wednesday February 23, 2000.]
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Compact Embeddings

In order to identify distributions with support at a point, one uses the
following result.

Lemma 18.1. Let T ∈ D′(Ω) have its support in a compact K0 ⊂ Ω, and
assume that T is a distribution of order m. Then if ϕ0 ∈ C∞

c (Ω) satisfies
Dαϕ0(x) = 0 for all x ∈ K0 and all multi-indices α such that |α| ≤ m, one
has 〈T, ϕ0〉 = 0.

Proof : As T is assumed to be of order m, for every compact K ⊂ Ω there exists
C(K) such that |〈T, ϕ〉| ≤ C(K) supx∈K,|α|≤m |Dαϕ(x)| for all ϕ ∈ C∞

c (Ω)
such that support(ϕ) ⊂ K. Let ε0 > 0 be such that {x ∈ RN | d(x,K0) ≤
ε0} ⊂ Ω. For 0 < ε < ε0, let Kε = {x ∈ RN | d(x,K0) ≤ ε}, and let χε be the
characteristic function of Kε. Let 1 ∈ C∞

c (RN ) with support(1) ⊂ B(0, 1)
and

∫
RN 1(x) dx = 1, and as usual δ(x) = 1

δN 1

(
x
δ

)
for δ > 0.

If 3δ < ε0, let θδ = χ2δ 
 δ, so that θδ ∈ C∞
c (Ω), θδ(x) = 1 if x ∈ Kδ

and support(θδ) ⊂ K3δ ⊂ Kε0 . One has 〈T, ϕ0〉 = 〈T, θδ ϕ0〉, because the
difference is 〈T, (1 − θδ)ϕ0〉 and the support of 1 − θδ is included in Ω \ K0,
i.e., the largest open set where T is 0. One proves that 〈T, θδ ϕ0〉 → 0 as
δ → 0 by showing that for any multi-index α such that |α| ≤ m one has
supx∈Kε0

|Dα(θδϕ0)(x)| → 0 as δ → 0.
One has

|Dβθδ(x)| ≤ C δ−|β| for all x and |β| ≤ m. (18.1)

Because of Taylor’s expansion formula and the vanishing of the derivatives of
ϕ0 on K up to order m, one has

|Dγϕ0(x)| ≤ d(x,K0)m−|γ|η
(
d(x,K0)

)
for |γ| ≤ m and η(t) → 0 as t → 0.

(18.2)

By Leibniz’s formula, using d(x,K0) ≤ 3δ for x ∈ support(θδ), one deduces
|Dα(θδϕ0)(x)| ≤ C η

(
d(x,K0)

)
. ��
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Lemma 18.2. If T has support at a point a ∈ Ω, then T is a finite combina-
tion of derivatives of the Dirac mass at a.

Proof : If K = B(a, r) ⊂ Ω, then T has finite order m on K, and by the
preceding result, Dαϕ0(a) = 0 for all |α| ≤ m implies 〈T, ϕ0〉 = 0. A result
of linear algebra says that on any vector space if for linear forms L0, . . . , Lp

every u satisfying L1u = . . . = Lpu = 0 also satisfies L0u = 0 then there are
scalars λ1, . . . , λp such that L0 =

∑p
j=1 λjLj . Therefore there are scalars λα

for |α| ≤ m such that

〈T, ϕ〉 =
∑

|α|≤m

λαDαϕ(a) for all ϕ ∈ C∞
c (Ω) with support(ϕ) ⊂ K, (18.3)

i.e., T =
∑

|α|≤m(−1)|α|λαDαδa. ��
Most compactness results rely on the theorems of ARZELÁ and ASCOLI,

and the basic result of interest here is that if one works on a compact set K
of RN and if one has a sequence un ∈ C(K) of functions which have the same
modulus of uniform continuity, i.e., |un(x)−un(y)| ≤ ω(|x−y|) for all x, y ∈ K
and all n, with ω(t) → 0 as t → 0, then there exists a subsequence um which
converges uniformly on K, to u∞ ∈ C(K) (using a diagonal argument one
extracts a subsequence which converges on a countable dense set of K, and
the subsequence also converges at the other points by equicontinuity, and the
limit is continuous for the same reason).

To prove compactness in Lp(Ω) for 1 ≤ p < ∞, one extends the functions
by 0 and one applies a compactness result in Lp(RN ), usually attributed to
KOLMOGOROV, but I have seen the names FRÉCHET and M. RIESZ mentioned
too.

Lemma 18.3. If a sequence un is bounded in Lp(RN ) and satisfies:
(i) For every ε > 0, there exists R(ε) such that

∫
|x|≥R(ε)

|un|p dx ≤ ε for all n.
(ii) For every ε > 0 there exists δ > 0 such that if |h| ≤ δ then

∫
RN |un(x +

h) − un(x)|p dx ≤ ε.
Then there exists a subsequence um which converges strongly to u∞ ∈

Lp(RN ).

Proof : It is enough to show that for every α > 0 one can write un = vn +
wn such that ||wn||p ≤ α and that from vn one can extract a converging
subsequence vm; for the subsequence um one then has lim supm,m′→∞ ||um −
um′ ||p ≤ 2α. Starting from the selected subsequence, one then repeats the
argument with α replaced by α

2 , and so on, and a diagonal subsequence is a
Cauchy sequence.

Using θ ∈ C∞
c (RN ) such that 0 ≤ θ ≤ 1 and θ(x) = 1 for |x| ≤ R(ε), one

chooses vn = θ un and wn = (1−θ)un, and one notices that ||wn||p ≤ ε by (i),
and because τhvn−vn = (τhθ−θ)τhun+θ(τhun−un) and ||τhθ−θ||∞ ≤ M |h|,
one finds that vn is bounded in Lp(RN ), has its support in a fixed bounded
set, and satisfies (ii).
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Assuming that the functions un satisfy (ii) and have their support in a fixed
bounded set, one uses vn = un 
 δ for a special smoothing sequence δ, and
wn = un − un 
 δ; one can apply the Arzelá–Ascoli theorem to the sequence
vn, as they form a bounded sequence of Lipschitz continuous functions having
their support in a fixed compact set; because wn(x) =

∫
RN δ(y)

(
un(x) −

un(x − y)
)
dy, one has ||wn||p ≤

∫
RN δ(y)||un − τyun||p dy ≤ ε. ��

If Ω is a bounded open set with Lipschitz boundary, then there exists a
continuous extension P from W 1,p(Ω) to W 1,p(RN ) (Lemma 12.4), and this
was used in Lemma 14.5 for showing that the injection of W 1,p(Ω) into Lp(Ω)
is compact. The continuous extension may not exist if the boundary is not
Lipschitz, but Lemma 18.4 shows that the compactness property does not
require as much smoothness of the boundary.

Lemma 18.4. If Ω is a bounded open set with a continuous boundary, then
the injection of W 1,p(Ω) into Lp(Ω) is compact.

Proof : The preceding argument does not apply, and one must find a different
proof. Using a partition of unity one has to consider the case of ΩF with F
uniformly continuous, for a subsequence having support in a bounded set. One
notices that in dimension 1 one has W 1,p(0,∞) ⊂ Cb(0,∞), so that one has

∫ F (x′)+3ε

F (x′)

|u(x′, xN )|p dx ≤ C ε

∫ ∞

F (x′)

(
|u(x′, xN )|p +

∣
∣
∣
∣

∂u

∂xN
(x′, xN )

∣
∣
∣
∣

p)
dxN ,

(18.4)

which one may then integrate in x′. Using the uniform continuity of F one
can construct θ ∈ C∞(RN ) with 0 ≤ θ ≤ 1, θ(x) = 0 if xN < F (x′) + ε and
θ(x) = 1 if xN > F (x′)+2ε. One uses then vn = θ un and wn = (1−θ)un. ��

It is often useful to know different proofs of the same result. If Ω is an
open set with finite measure, then for p ∈ [1,∞] Poincaré’s inequality holds
for W 1,p

0 (Ω), as was shown in Lemma 10.2. The use of the Fourier transform
is restricted to the case p = 2, so Lemma 18.5 is more restrictive than Lemma
10.2 concerning Poincaré’s inequality, but it also shows that the injection of
H1

0 (Ω) into L2(Ω) is compact (which by the equivalence lemma 11.1 implies
Poincaré’s inequality).

Lemma 18.5. If Ω ⊂ RN is an open set with finite measure, then Poincaré’s
inequality holds for H1

0 (Ω), and the injection of H1
0 (Ω) into L2(Ω) is compact.

Proof : Let u ∈ H1
0 (Ω), extended by 0 outside Ω, and let A = ||u||2 and

B = ||grad(u)||2. Because Fu(ξ) =
∫

Ω
u(x)e−2i π (x.ξ) dx one has |Fu(ξ)| ≤

Ameas(Ω)1/2 for all ξ ∈ RN , so that
∫
|ξ|≤�

|Fu(ξ)|2 dξ ≤ A2meas(Ω)ωNN ,
where ωN is the volume of the unit ball. Because

∫
|ξ|≥�

|Fu(ξ)|2 dξ is bounded

by
∫
|ξ|≥�

4π2|ξ|2
4π2�2 |Fu(ξ)|2 dξ ≤ B2

4π2�2 , one deduces by adding these two inequal-

ities that A2 =
∫

RN |Fu(ξ)|2 dξ ≤ A2meas(Ω)ωNN + B2

4π2�2 for every  > 0,
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which explains the choice meas(Ω)ωNN = 1
2 gives A ≤ cNmeas(Ω)1/NB for

a universal constant cN (i.e., independent of the open set).
In order to prove that the injection of H1

0 (Ω) into L2(Ω) is compact, one
assumes that un ⇀ 0 in H1

0 (Ω) weak, and one wants to prove that un → 0 in
L2(Ω) strong. Indeed one may take ||un||2 ≤ A and ||grad(un)||2 ≤ B, and
because Fun(ξ) is the L2 scalar product of un by a fixed function in L2(Ω),
one has Fun(ξ) → 0 for every ξ ∈ RN . Because |Fu(ξ)| ≤ Ameas(Ω)1/2 for
all ξ ∈ RN one deduces by the Lebesgue dominated convergence theorem that∫
|ξ|≤�

|Fun(ξ)|2 dξ → 0 for any  > 0. Because
∫
|ξ|≥�

|Fun(ξ)|2 dξ ≤ B2

4π2�2 ,
one deduces that lim supn→∞ ||un||2 ≤ B

2π � , and then letting  → ∞ one has
||un||2 → 0. ��
[Taught on Friday February 25, 2000.]
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Lax–Milgram Lemma

The main reason why Sobolev spaces are important is that they are the natu-
ral functional spaces for solving the boundary value problems of continuum
mechanics and physics (at least up to now); they may be elliptic equations
like

∆u = f, (19.1)

for which one invokes the names LAPLACE or POISSON, parabolic equations
like the heat equation

∂u

∂t
− κ∆u = f, (19.2)

for which one invokes the name FOURIER, or hyperbolic equations like the
wave equation

∂2u

∂t2
− c2 ∆u = f, (19.3)

for which one invokes the names D’ALEMBERT1 or D. BERNOULLI.2

The Sobolev space H1(Ω) is adapted to problems of the form

−
∑

i,j

∂

∂xi

(
Aij

∂u

∂xj

)
= f, written − div

(
Agrad(u)

)
= f, (19.4)

when the matrix A (which is usually symmetric in applications) has bounded
measurable coefficients and satisfies the ellipticity condition that there exists
α > 0 such that

∑

ij

Aij(x)ξiξj ≥ α |ξ|2 for all ξ ∈ RN , for a.e. x ∈ Ω. (19.5)

1 Jean LE ROND, known as D’ALEMBERT, French mathematician, 1717–1783. He
worked in Paris, France.

2 Daniel BERNOULLI, Swiss mathematician, 1700–1782. He worked in St Peters-
burg, Russia, and in Basel, Switzerland.
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There are various physical interpretations possible.
(i) One may consider the stationary heat equation, so that u is the tem-

perature and Agrad(u) is the heat flux.
(ii) One may consider electrostatics, which is a simplification of Maxwell’s

equation where there is no magnetic field and no time dependence, so that u is
the electrostatic potential, E = −grad(u) is the electric field, D = Agrad(u) is
the polarization field, and f is the density of electric charge (usually denoted
by ); A is called the permittivity tensor in this case. The density of electric
energy is e = 1

2 (E.D), so using the Sobolev space H1(Ω) for u corresponds
to having a finite electric energy stored in Ω.

(iii) One may consider a different simplification of Maxwell’s equation with
no magnetic field and no time dependence either, but where one considers
that the electric current j (which must satisfy the equation of conservation
of electric charge

∂

∂t
+ div(j) = 0, (19.6)

is related to the electric field by Ohm’s law3 j = σ E (so A is the conductivity
tensor σ in this case, whose inverse is the resistivity tensor).

Whatever the physical intuition is, it only gives hints about the properties
of the solution of the equation, and one must prove its existence by precise
mathematical arguments. Garrett BIRKHOFF4 mentioned in [3] that there is
a shocking statement by POINCARÉ, who had written in an article that the
solution of an equation existed because it was a physical problem; however,
he added that POINCARÉ had immediately corrected his mistake and had
given a mathematical proof of existence in his next article. Laurence YOUNG

mentioned in [19] that even HILBERT had overlooked the question of existence
for problems of minimization; he justly pointed out that if one proves that
every minimizer of a functional must satisfy some necessary conditions of
optimality, it is not enough to check among the functions satisfying all these
already known necessary conditions of optimality, which of these gives the
lowest value to the functional that one seeks to minimize, unless one has
proven first that there exists a minimizer, and that remark is of course valid
in the classical situations where one had found only one function satisfying a
condition of optimality. Nonexistence may come from the fact that minimizing
sequences are unbounded and that the minimum is “attained” at infinity,5 but

3 Georg Simon OHM, German mathematician, 1789–1854. He worked in München
(Munich), Germany.

4 Garrett BIRKHOFF, American mathematician, 1911–1996. He worked at Harvard
University, Cambridge MA.

5 In a national undergraduate mathematical contest in the late 1960s, students were
asked to characterize the range of values of polynomials with real coefficients in
two real variables, and some students found a case that the organizers of the
competition had overlooked, that of polynomials whose range is (0, +∞) and do
not attain their minimum because minimizing sequences tend to ∞, an example
of such a polynomial being (x y − 1)2 + x2.
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in infinite-dimensional situations the minimizing sequences may stay bounded
and show oscillations (and converge only in a weak topology). It was for such
problems without solutions that Laurence YOUNG had introduced what we
now call Young measures, whose use I pioneered in the late 1970s in partial
differential equations (motivated by questions of continuum mechanics and
physics), although I called them parametrized measures, which is the name
that I had heard in seminars of control theory, as I only learnt later that they
had been introduced by Laurence YOUNG, whom I had first met in 1971.6

Equation (19.4), completed with adequate boundary conditions, is dealt in
a mathematical way by using the Lax–Milgram lemma 19.1, or some variant,
and (19.5) plays a crucial role.

Lemma 19.1. (Lax–Milgram lemma) Let V be a real Hilbert space, with norm
||·||, and let V ′ be its dual, with dual norm7 ||·||∗; let A ∈ L(V, V ′) be V -elliptic,
i.e.,

there exists α > 0 such that 〈A v, v〉 ≥ α ||v||2 for all v ∈ V. (19.7)

Then A is an isomorphism from V onto V ′.

Proof : From |〈A v, v〉| ≤ ||Av||∗||v|| one deduces

||Av||∗ ≥ α ||v|| for all v ∈ V, (19.8)

which is called an a priori inequality. (19.8) implies that all solutions of Au = f
must satisfy ||u|| ≤ 1

α ||f ||∗, but by itself this inequality does not prove the
existence of a solution, as it only says that A is injective and has closed
range.8 Because the transposed operator AT also satisfies (19.7), one deduces
that V -ellipticity also implies

||AT v||∗ ≥ α ||v|| for all v ∈ V, (19.9)

6 It was my first visit to United States, and my command of English was very poor,
so I was glad to meet people who spoke French, and Laurence YOUNG spoke it
without even a Swiss accent, for he had been in school in Lausanne, Switzerland,
when his father taught there.

7 Although every Hilbert space is isometric to its dual, one should be careful
about identifying V and V ′ because that identification may be incompatible with
another identification which has already been done for considering functions as
distributions, i.e., identifying a locally integrable function f with the Radon mea-
sure f dx, and that corresponds to having identified L2(Ω) with its dual. DIRAC’s
famous notation used in quantum mechanics shows that he had understood the
importance of distinguishing elements of L2 from elements of its dual: a “bra”
〈a | is an element of H ′ and a “ket” | b〉 is an element of H, so that the bracket
〈a | b〉 is a complex number, while | b〉〈a | is a linear operator, i.e., an element of
L(H, H); one should be aware that mathematicians have a different notation a(b)
or the tensor product b ⊗ a, and use the notations (b1, b2) for two elements of H
so that the scalar product is linear in b1 and antilinear in b2 while for physicists
〈a |b〉 is linear in b and antilinear in a.

8 If E is a Banach space and F is a normed space, and there exists β > 0 such
that M ∈ L(E, F ) satisfies ||e||E ≤ β ||M e||F for all e ∈ E, then M is injective
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so that AT is injective, and that is equivalent to A having a dense range, so
that the range of A being closed and dense must coincide with V ′; of course,
a bound for the norm of A−1 is 1

α . ��
In practice, one has a real Hilbert space V and A ∈ L(V, V ′) is defined

implicitly by a bilinear continuous form a on V × V by

a(u, v) = 〈Au, v〉 for all u, v ∈ V, (19.10)

and f ∈ V ′ is given by a linear continuous form L on V , so that one does
not need to characterize what V ′ is, and solving Au = f is equivalent to the
variational formulation

find u ∈ V such that a(u, v) = L(v) for all v ∈ V. (19.11)

For (19.4), the Hilbert space V is a closed subset of H1(Ω) containing H1
0 (Ω),

adapted to the boundary conditions that must be added to (19.4); the bilinear
continuous form a is the restriction to V × V of

a(u, v) =
∫

Ω

(
Agrad(u), grad(v)

)
dx for u, v ∈ H1(Ω); (19.12)

the linear continuous form L is the restriction to V of

L(v) =
∫

Ω

⎛

⎝f0v +
N∑

j=1

fj
∂v

∂xj

⎞

⎠ dx + 〈G, γ0v〉 for v ∈ H1(Ω), (19.13)

where f0, . . . , fN ∈ L2(Ω) and G belongs to the dual of the space of traces on
∂Ω of functions in H1(Ω) (a simple example is 〈G, γ0v〉 =

∫
∂Ω

g γ0v dHN−1

for a suitable function g defined on ∂Ω, but if Ω is bounded with Lipschitz
boundary then the space of traces is H1/2(∂Ω) and G must be taken in the
dual H−1/2(∂Ω)).

From (19.5), one deduces that

〈Av, v〉 = a(v, v) ≥ α

∫

Ω

|grad(v)|2 dx for all v ∈ H1(Ω), (19.14)

so that V -ellipticity holds if (and only if) Poincaré’s inequality holds for V .
The case of a homogeneous Dirichlet condition corresponds to V = H1

0 (Ω),
defined as the closure in H1(Ω) of C∞

c (Ω) (and characterized by γ0u = 0 on

(as M e = 0 implies ||e|| ≤ 0) and if fn → f∞ with fn ∈ Range(M) for all n,
then fn = M en and ||en − em||E ≤ β ||fn − fm||F shows that en is a Cauchy
sequence, which converges then to e∞ ∈ E, and f∞ = M e∞ ∈ Range(M),
showing that the range of M is closed. Conversely, if F is also a Banach space
and M ∈ L(E, F ) is injective with closed range, then there must exist β > 0 such
that the previous inequality holds, because Range(M) is a Banach space and the
closed graph theorem implies that M is an isomorphism from E onto Range(M),
and β can be chosen the norm of the inverse.
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∂Ω if Ω is bounded with Lipschitz boundary); Poincaré’s inequality certainly
holds for H1

0 (Ω) when Ω has finite measure or when Ω is included in a strip
with finite width; if Poincaré’s inequality holds, then for every f ∈ H−1(Ω)
there exists a unique solution u ∈ V of a(u, v) = L(v) for every v ∈ V , or
equivalently for every v ∈ C∞

c (Ω) by density, and that is exactly (19.4).
For the case of a nonhomogeneous Dirichlet condition, i.e., γ0u = g on ∂Ω,

one asks that g belongs to γ0H
1(Ω) (which is H1/2(∂Ω) if Ω is bounded with

Lipschitz boundary), so that there exists u1 ∈ H1(Ω) with γ0u1 = g; one then
looks for a solution u = u1 + U with U ∈ H1

0 (Ω) satisfying the equation with
f replaced by f + div

(
Agrad(u1)

)
∈ H−1(Ω), so that there exists a unique

solution for f ∈ H−1(Ω) and g ∈ γ0H
1(Ω).

If V = H1(Ω) then Poincaré’s inequality never holds.9 If there is a solution
u ∈ H1(Ω) of a(u, v) = L(v) for every v ∈ H1(Ω) and L has the simple
form L(v) =

∫
Ω

f v dx +
∫

∂Ω
g γ0v dHN−1 with f ∈ L2(Ω) and g ∈ L2(∂Ω),

it is useful to characterize what a solution can be in this case. Taking all
v ∈ C∞

c (Ω) gives the equation (19.4) in Ω. Then assuming that the coefficients
aij are Lipschitz continuous and that the boundary of Ω is smooth, one can
show that u ∈ H2(Ω) and then an integration by parts shows that one has
the Neumann condition10

(Aγ0grad(u).n) = g on ∂Ω. (19.15)

If the boundary is not smooth enough the solution may not belong to H2(Ω),
and the coefficients may not be smooth either, and an interpretation of the
boundary condition will be studied later, but there is another important point
to discuss, concerning existence.

If Ω has finite measure, 1 ∈ H1(Ω) and, because a(u, 1) = 0 for every
u ∈ V = H1(Ω), a necessary condition for the existence of a solution is that
L(1) = 0. With the physical interpretation of a stationary heat equation it
means that the total amount of heat is 0, adding the source of heat inside
9 When 1 ∈ V , i.e., if meas(Ω) < ∞, Poincaré’s inequality cannot hold; if Ω = RN

or simply if Ω contains balls of arbitrarily large radius, a scaling argument shows
that Poincaré’s inequality does not hold. For an arbitrary (nonempty) connected
open set Ω, one may assume that meas(Ω) = ∞ and that Ω contains the origin;
let γ0 = meas({x ∈ Ω | |x| < 1}) > 0, and for n ≥ 1 let γn = meas({x ∈
Ω | 2n−1 < |x| < 2n}) > 0; one assumes that there exists κ > 0 such that
||v||2 ≤ κ ||grad(v)||2 for all v ∈ H1(Ω), and one chooses v = h(r) with h(r) = 1
for r < 2n, h(r) = 0 for r > 2n+1 and h affine on [2n, 2n+1], i.e., h(r) = 2− 2−nr
for 2n ≤ r ≤ 2n+1; one has ||grad(v)||22 = γn+12

−2n and ||v||22 ≥ γ0 + . . . + γn,
so that one obtains in particular γn ≤ 2−2nκ2γn+1 for all n ≥ 1; if there exists
λ such that γn ≤ C 2λ n for all n ≥ 1 one deduces that γn ≤ C 2λκ22(λ−2)n for
all n ≥ 1, and by repeating the argument m times one has γn ≤ Cm2(λ−2m)n for
all n ≥ 1, which implies meas(Ω) =

∑
n≥0

γn < ∞, a contradiction; that one λ

exists follows from the upper bound of the measure of the ball, γn ≤ C 2N n.
10 Franz Ernst NEUMANN, German mathematician, 1798–1895. He worked in

Königsberg, then in Germany, now Kaliningrad, Russia.
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Ω which is
∫

Ω
f dx and the heat flux imposed on the boundary ∂Ω, which is∫

∂Ω
g dHN−1; if this condition is not satisfied then the solution of the evolution

heat equation will not converge to a limit, and it actually tends to infinity
(with a sign depending upon the sign of the total heat imposed; of course,
when the temperature becomes too large, the modeling by a linear equation
is not very good, and in a real problem the absolute temperature cannot
become negative anyway).

If the necessary condition L(1) = 0 is satisfied and if the injection of H1(Ω)
into L2(Ω) is compact then a solution exists, but it is not unique as one may
add an arbitrary constant to the solution (an example of a Fredholm alterna-
tive). If one denotes by uΩ the average of u on Ω, and by u∂Ω the average of
γ0u on ∂Ω, then the compactness assumption implies that Poincaré’s inequa-
lity ||u||2 ≤ C||grad(u)||2 holds for all u ∈ H1(Ω) satisfying uΩ = 0, and that
it also holds for all u ∈ H1(Ω) satisfying u∂Ω = 0. Even if the compactness
condition does not hold but one of these Poincaré’s inequalities is true, then
there exists a solution.

Using Poincaré’s inequality for all u ∈ H1(Ω) satisfying uΩ = 0, one
changes V to

V = {u ∈ H1(Ω) | uΩ = 0}, (19.16)

and the bilinear form is then V -elliptic and a solution exists. One only has
a(u, v) = L(v) for v ∈ C∞

c (Ω) satisfying
∫

Ω
v dx = 0 (and C∞

c (Ω) ⊂ V ), and
there exists a Lagrange multiplier11 λ such that

a(u, v) = L(v) + λ
∫

Ω
v dx for all v ∈ C∞

c (Ω), i.e.,
−div

(
Agrad(u)

)
= f + λ in Ω,

(19.17)

and then one obtains the boundary condition and λ is such that the necessary
condition must hold; if the necessary condition holds from the start, then
λ = 0 and one has found a solution of the problem.

Using Poincaré’s inequality for all u ∈ H1(Ω) satisfying u∂Ω = 0, one
changes V to

V = {u ∈ H1(Ω) | u∂Ω = 0}, (19.18)

and the bilinear form is then V -elliptic and a solution exists. One now has
C∞

c (Ω) ⊂ V , so that (19.4) holds; then one obtains the boundary condition
with a Lagrange multiplier µ appearing in the boundary condition, i.e.,

a(u, v) = L(v) + µ

∫

∂Ω

γ0v dHN−1 for all v ∈ H1(Ω), (19.19)

and µ is such that the necessary condition must hold; if the necessary condition
holds from the start, then µ = 0 and one has found a solution of the problem.
[Taught on Monday February 28, 2000.]
11 Giuseppe Lodovico LAGRANGIA (Joseph Louis LAGRANGE), Italian-born

mathematician, 1736–1813. He worked in Torino (Turin) Italy, in Berlin,
Germany, and in Paris, France. He was made a count in 1808 by NAPOLÉON.
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The Space H(div; Ω)

Let Ω be a bounded open set of RN with Lipschitz boundary, and for f ∈
L2(Ω) and g ∈ L2(∂Ω), let u ∈ H1(Ω) satisfy

a(u, v) = L(v) for all v ∈ H1(Ω), where

a(ϕ,ψ) =
∫

Ω

(∑
i,j Aij

∂ϕ
∂xj

∂ψ
∂xi

)
dx for all ϕ,ψ ∈ H1(Ω)

L(ψ) =
∫

Ω
f ψ dx +

∫
∂Ω

g γ0ψ dHN−1 for all ψ ∈ H1(Ω).

(20.1)

Using all v ∈ C∞
c (Ω) one deduces that

−
∑

i,j

∂

∂xi

(
Aij

∂u

∂xj

)
= f in Ω, (20.2)

and the question is to understand what boundary condition u satisfies.
If one assumes that

Aij ∈ W 1,∞(Ω) for i, j = 1, . . . , N, and u ∈ H2(Ω), (20.3)

then Aij
∂u
∂xj

∈ H1(Ω) for all i, j = 1, . . . , N , and an integration by parts gives

∫

Ω

f v dx=a(u, v)−
∫

∂Ω

⎛

⎝
∑

i,j

γ0

(
Aij

∂u

∂xj

)
γ0v νi

⎞

⎠ dHN−1 for all v ∈ H1(Ω),

(20.4)

so that one has
∑

i,j

γ0

(
Aij

∂u

∂xj

)
γ0v νi = g on ∂Ω, (20.5)

which can only happen if g ∈ H1/2(∂Ω), of course.
In applications, one does not always have Lipschitz coefficients Aij ,

because one often mixes different materials and there are interfaces of discon-
tinuity for the coefficients. In applications, one does not always have smooth
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boundaries, and corners in the boundary put a limit on the regularity of
the solution. For a convex domain Ω, u ∈ H1

0 (Ω) and ∆u ∈ L2(Ω) imply
u ∈ H2(Ω); the following example shows that it is not true for plane domains
with corners with angles > π.

Let Ω be the sector 0 < θ < θ0 with π < θ0 < 2π, and let u = rα cos(α θ)ϕ
with ϕ ∈ C∞

c (R2) with ϕ = 1 near the origin. Because u0 = rα cos(α θ) is
harmonic,1 i.e., satisfies ∆u0 = 0, one sees that ∆u is 0 near the origin; the
normal derivative of u on the side θ = 0 is 0, and it is also 0 on the side θ = θ0

if α θ0 = π, which gives 1
2 < α < 1, so that one does not have u ∈ H2(Ω),

which requires α > 1.
Another way to treat the problem of giving a meaning to the Neumann

condition, without having u ∈ H2(Ω), is the following argument of Jacques-
Louis LIONS.2

Definition 20.1. H(div;Ω) = {u ∈ L2(Ω;RN ) | div(u) ∈ L2(Ω)}. ��

Of course, H(div;Ω) is a Hilbert space.
One localizes by multiplying all the components of u by the same function

θ, noticing that if vj = θ uj for j = 1, . . . , N , then one has div(v) = θ div(u)+(
u.grad(θ)

)
.

If P is an invertible matrix and Ω′ = P Ω, one transports a scalar function
ϕ defined on Ω to the scalar function ψ defined on Ω′ by

ψ(P x) = ϕ(x) for x ∈ Ω, (20.6)

and one wants to transport u ∈ H(div;Ω) to v ∈ H(div;Ω′) in such a way
that one has ∫

Ω

(
u.grad(ϕ)

)
dx =

∫

Ω′

(
v.grad(ψ)

)
dx′, (20.7)

but (grad(ψ)(P x).P y)=(grad(ϕ)(x).y) gives grad(ψ)(P x)=P−T grad(ϕ)(x)
(writing P−T = (PT )−1), and one asks that

(
u(x).grad(ϕ)(x)

)
=
(
v(P x).grad(ψ)(P x)

)
|det(P )|, i.e.,

v(P x) = |det(P )|−1P u(x).
(20.8)

If P is an orthogonal3 matrix then v(P x) = P u(x).
Once one works on ΩF for a Lipschitz continuous function F , one proves

easily that
(
D(ΩF )

)N is dense in H(div;ΩF ).

1 It is the real part of zα, and every holomorphic function has its real part and its
imaginary part harmonic.

2 I believe that he proved it while I was a student, because in the first courses that
I followed he used the argument with the H2(Ω) hypothesis, and later he started
teaching the new argument with the space H(div; Ω).

3 This is the case used most of the time, but it is misleadingly simple. The gen-
eral linear case considered is of course just a simplified version for the case of
diffeomorphisms, and is related to the fact that elements of H(div; Ω) should be
considered as (N − 1)-differential forms.
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All this analysis serves for proving that
(
D(Ω)

)N is dense in H(div;Ω).
The next step is to prove that one can define the normal trace (u.ν); for
smooth functions it means

∑
j γ0ujνj , but for H(div;Ω) the definition uses a

completion argument.

Lemma 20.2. The mapping u 
→ (u.ν) =
∑

j γ0ujνj, defined from
(
D(Ω)

)N

into L∞(∂Ω), extends into a linear continuous map from H(div;Ω) into(
γ0H

1(Ω)
)′, the dual of the space of traces of functions of H1(Ω), i.e.,

H−1/2(∂Ω) (as ∂Ω has no boundary, H
1/2
0 (∂Ω) = H1/2(∂Ω)). Moreover,

the mapping is surjective.

Proof : For u ∈
(
D(Ω)

)N and v ∈ H1(Ω) one has

∫

Ω

⎛

⎝
∑

j

uj
∂v

∂xj
+ div(u) v

⎞

⎠ dx =
∫

∂Ω

⎛

⎝
∑

j

γ0uj νj

⎞

⎠ γ0v dHN−1, (20.9)

and as the left side of the identity is continuous on H(div;Ω) × H1(Ω), so is
the right side, on which one writes 〈(u.ν), γ0v〉 as a linear continuous form on
γ0H

1(Ω); notice that if one starts from an element of γ0H
1(Ω) it does not

matter which v one chooses which has this element as its trace, as the left
side will give the same value whatever the choice is.

In order to show surjectivity, one takes g ∈
(
γ0H

1(Ω)
)′ and one solves∫

Ω

(
grad(u∗).grad(v)

)
dx +

∫
Ω

u∗v dx = 〈g, γ0v〉 for all v ∈ H1(Ω), which has
a unique solution u∗ ∈ H1(Ω), which satisfies −∆u∗ + u∗ = 0 in Ω and
therefore ξ∗ = grad(u∗) belongs to H(div;Ω) and satisfies div(ξ∗) = u∗, and
the precise variational formulation says that (ξ∗.ν) = g. ��

The example of R2 with u1 = f1(x1)f2(x2) and u2 = g1(x1)g2(x2) shows
that one has u ∈ H(div;R2) if f1, g2 ∈ H1(R) and f2, g1 ∈ L2(R), so that u1

can be discontinuous along the line x2 = 0 while u2 must be continuous, and
(u.ν) = −u2 if Ω = R2

+.
In a problem of electrostatics, the potential u is in H1(Ω) and has a trace

on the boundary; more generally, on any interface u takes the same value
on both sides of the interface. The polarization field D satisfies div(D) = ,
so that D ∈ H(div;Ω) if  ∈ L2(Ω), and the normal component of D is
continuous at any interface (if it does not support a nonzero charge). For the
electric field E, it is the tangential component of E which is continuous, and
its value is the tangential derivative of the trace of u; one can actually define
the space H(curl;Ω) by

H(curl;Ω) =
{

E ∈
(
L2(Ω)

)N | ∂Ei

∂xj
− ∂Ej

∂xi
∈ L2(Ω) for all i, j = 1, . . . , N

}
,

(20.10)

and prove an analogous theorem, that the tangential trace is defined.
[Taught on Wednesday March 1, 2000.]



21

Background on Interpolation; the Complex
Method

Although the term interpolation space only appeared much later, the subject
has its origin in questions studied by M. RIESZ, and then by THORIN1, and
also by MARCINKIEWICZ; they might have been motivated by studying the
properties of the Hilbert transform.

A holomorphic function in an open set of the complex plane is a complex-
valued function which has a derivative in the complex sense, i.e.,

f(z) − f(z0)
z − z0

→ f ′(z0) as z → z0, (21.1)

and the Cauchy–Riemann equation is satisfied, i.e.,

f(x + i y) = P (x, y) + iQ(x, y) implies
∂P
∂x = ∂Q

∂y
∂P
∂y = −∂Q

∂x ,

(21.2)

so that both P and Q are harmonic, i.e., satisfy

∆P = ∆Q = 0, (21.3)

where the Laplacian is2

∆ =
∂2

∂x2
+

∂2

∂y2
. (21.4)

If one works in the upper half plane y > 0, and one imposes the real part of
f on the boundary, then P is determined (if the given trace is nice enough)
and then the partial derivatives of Q are known, so that Q is defined up to

1 G. Olof THORIN, Swedish mathematician. He was a student of Marcel RIESZ in
Lund, Sweden.

2 Geometers have a different notation, and their Laplacian is what analysts write
as −∆.
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addition of an arbitrary real constant. In this way one is led to study the
following transform named after HILBERT,

H u =
1
π

pv
1
x


 u, i.e., H u(x) = lim
ε→0

1
π

∫

|y−x|>ε

u(y)
x − y

dy, (21.5)

which relates the real part to the imaginary part on the boundary. Using the
Fourier transform one can show that

H is a surjective isometry of L2(R) onto itself, and H2 = −I, (21.6)

and more precisely, one has the following result.

Lemma 21.1. For u ∈ L2(R), one has

F(H u)(ξ) = −i sign(ξ)Fu(ξ) a.e. ξ ∈ R. (21.7)

Proof : One may use Laurent SCHWARTZ’s extension of the Fourier transform
to tempered distributions, because pv 1

x ∈ S ′(R), as it is the sum of a distrib-
ution with compact support and a bounded function.

x pv 1
x = 1 implies d

dξ

(
F
(
pv 1

x

))
= −2iπ δ0

i.e., F
(
pv 1

x

)
(ξ) = −iπ sign(ξ) + C, a.e. ξ ∈ R,

(21.8)

and one deduces C = 0 from the fact that pv 1
x is real and odd so that its

Fourier transform must be odd (of course Laurent SCHWARTZ had defined in
a natural way what it means to be even or odd for a distribution). Then one
has F(H u)(ξ) = −i sign(ξ)Fu(ξ) a.e. ξ ∈ R, so that ||H u||2 = ||u||2 and
H2 = −I. ��

M. RIESZ proved that the Hilbert transform is continuous from Lp(R)
into itself for 1 < p < ∞, but the result is not true for p = 1 or for p = ∞.3

I suppose that it was in relation to the properties of the Hilbert transform
that M. RIESZ proved the following “interpolation” result in 1926, in the case
pθ ≤ qθ; this restriction was removed by THORIN, in 1938; it is often called
the convexity theorem.

Theorem 21.2. If 1 ≤ p0, p1, q0, q1 ≤ ∞, and a linear map A is continuous
from Lp0(Ω) into Lq0(Ω′) and from Lp1(Ω) into Lq1(Ω′) then for 0 < θ < 1
it is continuous from Lpθ (Ω) into Lqθ (Ω′), where

1
pθ

=
1 − θ

p0
+

θ

p1
;

1
qθ

=
1 − θ

q0
+

θ

q1
, (21.9)

3 The Hilbert transform maps the Hardy space H1(R) into L1(R), but that is a
tautology, as it is defined as {u ∈ L1(R) | H u ∈ L1(R)}. It is a deeper result
that the Hilbert transform actually maps H1(R) into itself, a deep result that
BMO(R) is the dual of H1(R), so that the Hilbert transform maps BMO(R)
into itself and therefore maps L∞(R) into BMO(R), and a deep result that
BMO(R) = {u = f + H g |, f, g ∈ L∞(R)}.



21 Background on Interpolation; the Complex Method 105

and one has

||A||L(Lpθ (Ω);Lqθ (Ω′)) ≤ ||A||1−θ
L(Lp0 (Ω);Lq0 (Ω′))||A||θL(Lp1 (Ω);Lq1 (Ω′)). �� (21.10)

If the Hilbert transform was mapping L1(R) into itself, then by this inter-
polation result it would map Lp(R) into itself for 1 < p < 2, and by transpo-
sition for 2 < p < ∞, but it does not map L1(R) into L1(R). However, there
exists a constant C such that if u ∈ L1(R) one has

meas{x | |H u(x)| > t} ≤ C ||u||1
t

for all t > 0, (21.11)

and from that result, the continuity in L2(R) and the symmetry of the Hilbert
transform one can deduce that it maps Lp(R) into itself for 1 < p < ∞.

THORIN’s proof used a property of the modulus of holomorphic functions,
the three lines theorem (a variant of Hadamard’s three circles theorem), stating
that if f(z) is holomorphic in the strip 0 < �z = x < 1, continuous on the
closed strip 0 ≤ x ≤ 1 and such that |f(i y)| ≤ M0 and |f(1 + i y)| ≤ M1 for
all y ∈ R, then one has |f(θ + i y)| ≤ M1−θ

0 Mθ
1 for all θ ∈ (0, 1) and all y ∈ R.

After the idea of THORIN was used again by STEIN, a general complex
interpolation method was developed, by Alberto CALDERÓN, by Jacques-Louis
LIONS, and by M. KREIN.

If f ∈ Lp(Ω), then Hölder’s inequality gives
∫

E
|f | dx ≤ ||f ||pmeas(E)1/p′

for all measurable subsets E of Ω, and MARCINKIEWICZ introduced a space
sometimes called weak Lp (which one should not confuse with Lp equipped
with the weak topology), and denoted by Lp,∞ in the scale of Lorentz spaces,
which is the space of (equivalence classes of) measurable functions g for which
there exists C such that

∫

E

|g| dx ≤ C meas(E)1/p′
for all measurable subsets E ⊂ Ω. (21.12)

It contains Lp(Ω) but if Ω ⊂ RN and 1 ≤ p < ∞ it also contains functions
like 1

|x|N/p . In 1939, MARCINKIEWICZ published the following result, as a note
without proof, and proofs were written later by Mischa COTLAR4 and by
Antoni ZYGMUND.

Lemma 21.3. If 1 ≤ p0, p1, q0, q1 ≤ ∞, and a linear map A is continuous
from Lp0(Ω) into Lq0,∞(Ω′) and from Lp1(Ω) into Lq1,∞(Ω′) then for 0 <
θ < 1 it is continuous from Lpθ (Ω) into Lqθ (Ω′) under the condition that
pθ ≤ qθ, where pθ and qθ are given by (21.9). ��

The results of M. RIESZ, THORIN, and MARCINKIEWICZ, were general-
ized as theories of interpolation, and the main contributors were Nachman
4 Mischa COTLAR, Ukrainian-born mathematician, born in 1913. He worked in

Buenos Aires and in La Plata, Argentina, at Rutgers University, Piscataway, NJ,
and in Caracas, Venezuela.
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ARONSZAJN, Alberto CALDERÓN, Emilio GAGLIARDO, KREIN, Jacques-Louis
LIONS and Jaak PEETRE, but similar techniques have been used by specialists
of harmonic analysis, like STEIN. I suppose that a part of the motivation of
Jacques-Louis LIONS was the question of identifying traces of Sobolev spaces
and their variants, following the characterization of traces of W 1,p(RN ) by
Emilio GAGLIARDO.

Definition 21.4. Let E0 and E1 be normed spaces, continuously embedded
into a topological vector space E so that E0 ∩ E1 and E0 + E1 are defined.

An intermediate space between E0 and E1 is any normed space E such
that E0 ∩ E1 ⊂ E ⊂ E0 + E1 (with continuous embeddings).

An interpolation space between E0 and E1 is any intermediate space E
such that every linear mapping from E0 + E1 into itself which is continuous
from E0 into itself and from E1 into itself is automatically continuous from
E into itself. It is said to be of exponent θ (with 0 < θ < 1), if there exists a
constant C such that one has

||A||L(E;E) ≤ C ||A||1−θ
L(E0;E0)

||A||θL(E1;E1)
for all A ∈ L(E0;E0)∩L(E1;E1). ��

(21.13)

One is interested in general methods (or functors) which construct inter-
polation spaces from two arbitrary normed spaces (or Banach spaces, or
Hilbert spaces).

Definition 21.5. For two Banach spaces E0, E1, the complex method con-
sists in looking at the space of real analytic functions f with values in E0+E1,
defined on the open strip 0 < x < 1, continuous on the closed strip 0 ≤ x ≤ 1,
and such that

f(i y) is bounded in E0 and f(1 + i y) is bounded in E1

equipped with the norm ||f || = max{supy ||f(i y)||0, supy ||f(1 + i y)||1},
(21.14)

and for 0 < θ < 1, one defines

[E0, E1]θ ={a ∈ E0+E1 | a=f(θ)}, with the norm ||a||[E0,E1]θ = inf
f(θ)=a

||f ||. ��
(21.15)

Of course such a space contains E0∩E1, as one can take f to be a constant
function taking its value in E0 ∩ E1.

Lemma 21.6. The interpolation property holds for the spaces of Definition
21.5.

Proof : If A ∈ L(E0;F0) ∩ L(E1;F1), then g(x + i y) = Af(x + i y) satisfies a
property similar to f with the spaces F0 and F1, so that one has

||Aa||[F0,F1]θ ≤ max{||A||L(E0;F0), ||A||L(E1;F1)}||a||[E0,E1]θ . (21.16)
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One may replace max{||A||L(E0;F0), ||A||L(E1;F1)} by ||A||1−θ
L(E0;F0)

||A||θL(E1;F1)
,

by considering instead g(x + i y) = e−s θ+s(x+i y)Af(x + i y), which makes
the quantity max{e−s θ||A||L(E0;F0), e

s (1−θ)||A||L(E1;F1)} appear, and then one

minimizes in s by taking es = ||A||L(E0;F0)

||A||L(E1;F1)
. ��

At least for the case of Jacques-Louis LIONS, one motivation for intro-
ducing interpolation spaces was the question of traces for variants of Sobolev
spaces. For example, if Ω = RN

+ = {x ∈ RN | xN > 0}, and one wants to
describe the trace on the boundary of a function u ∈ W 1,p(Ω), one notices
that

u ∈ W 1,p(RN
+ ) is equivalent to

u ∈ Lp
(
R+;W 1,p(RN−1)

)
and du

dxN
∈ Lp

(
R+;Lp(RN−1)

)
,

(21.17)

and he introduced a more general framework, which Jaak PEETRE also did
independently so that it gave a joint article, where they considered (strongly
measurable) functions defined on (0,∞) with values in E0 +E1 and such that

tα0u ∈ Lp0(R+;E0) and tα1
du

dt
∈ Lp1(R+;E1), (21.18)

and looked for the space spanned by u(0) for a special range of parameters
where u(0) is automatically defined. It seems that this is a four-parameter
family of spaces, but changing t into tβ shows that three parameters are
enough; it was Jaak PEETRE who finally proved that the family actually
depends only upon two parameters, and after simplification it led to the
K-method and the J-method that we are going to study.
[Taught on Wednesday March 8, 2000.]
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Real Interpolation; K-Method

Definition 22.1. Let E0 and E1 be two normed spaces, continuously embed-
ded into a topological vector space E so that

E0 ∩ E1 is equipped with the norm ||a||E0∩E1 = max{||a||0, ||a||1}
E0 + E1 is equipped with the norm ||a||E0+E1 = infa=a0+a1

(
||a0||0 + ||a1||1

)
.

(22.1)

Following Jaak PEETRE, for a ∈ E0 + E1 and t > 0 one defines

K(t; a) = inf
a=a0+a1

(
||a0||0 + t ||a1||1

)
, (22.2)

and for 0 < θ < 1 and 1 ≤ p ≤ ∞ (or for θ = 0, 1 with p = ∞), one writes

(E0, E1)θ,p =
{
a ∈ E0 + E1 | t−θK(t; a) ∈ Lp

(
R+; dt

t

)}

with the norm ||a||(E0,E1)θ,p
= ||t−θK(t; a)||Lp(0,∞;dt/t). ��

(22.3)

An idea of Emilio GAGLIARDO is to consider a plane with coordinates
x0, x1 and to associate to each a ∈ E0 + E1 a set

G(a) = {(x0, x1) | there exists a decomposition a = a0 + a1

with ||a0||0 ≤ x0, ||a1||1 ≤ x1}.
(22.4)

Each Gagliardo set G(a) is convex because if a = b0 + b1 with ||b0||0 ≤ y0 and
||b1||1 ≤ y1, then for 0 < η < 1 one has a = c0+c1 with c0 = (1−η)a0+η b0 and
c1 = (1−η)a1 +η b1 and the triangle inequality gives ||c0||0 ≤ (1−η)x0 +η y0

and ||c1||1 ≤ (1 − η)x1 + η y1. Using the function t 
→ K(t; a) is one way of
describing the boundary of this convex set.

For t > 0, a 
→ K(t; a) is a norm equivalent to the norm on E0 + E1 given
in (22.1). K(t; a) is nondecreasing in t and K(t;a)

t is nonincreasing in t, and
moreover K(t; a) is concave in t, as an infimum of affine functions, so that it is
continuous. One can give a definition of the space involving a sum instead of an
integral: on an interval en ≤ t≤ en+1 one has K(en; a)≤K(t; a)≤ eK(en; a)
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for n ∈ Z, and as the measure of (en, en+1) for the measure dt
t is 1, one

sees that

a ∈ (E0, E1)θ,p is equivalent to e−n θK(en; a) ∈ lp(Z), and
||e−n θK(en; a)||lp(Z) is an equivalent norm on (E0, E1)θ,p.

(22.5)

Lemma 22.2. If 0 < θ < 1 and 1 ≤ p ≤ q ≤ ∞, one has (E0, E1)θ,p ⊂
(E0, E1)θ,q (with continuous embedding).

Proof : Using the equivalent definition (22.5), one notices that lp is increasing
with p.

Another way to prove the same result is to notice that if 1 ≤ p < ∞, and
t0 > 0 one has K(t; a) ≥ K(t0; a) for t > t0, so that

||a||p(E0,E1)θ,p
≥ K(t0; a)p

∫∞
t0

t−θ p dt
t = K(t0; a)p t−θ p

0
θ p

implying t−θ
0 K(t0; a) ≤ C ||a||(E0,E1)θ,p

, i.e.,
||t−θK(t; a)||L∞(0,∞,dt/t) ≤ C ||a||(E0,E1)θ,p

,

(22.6)

and by Hölder’s inequality one obtains

||a||(E0,E1)θ,q
= ||t−θK(t; a)||Lq(0,∞,dt/t)≤C ′ ||a||(E0,E1)θ,p

for p≤q≤∞. ��
(22.7)

Because for a ∈ E0 + E1 one has K(t; a) ≥ min{1, t}||a||E0+E1 , one
sees that if (E0, E1)θ,p is not reduced to 0 one must have t−θ min{1, t} ∈
Lp
(
R+; dt

t

)
, so that the space (E0, E1)θ,p is reduced to 0 if θ < 0 or if θ > 1,

and also in the cases θ = 0 or θ = 1, if p < ∞.
Because for a ∈ E0 ∩ E1 one has the decompositions a = a + 0 and

a = 0+a, one finds that K(t; a) ≤ min{1, t}||a||E0∩E1 , so that for all the pairs
(θ, p) which are considered one has E0 ∩ E1 ⊂ (E0, E1)θ,p (with continuous
embedding).

It will be important to characterize as much as possible what these inter-
polation spaces are in each context, but the interpolation property comes
automatically.

Lemma 22.3. If A is linear from E0 +E1 into F0 +F1 and maps E0 into F0

with ||Ax||F0 ≤ M0||x||E0 for all x ∈ E0, and maps E1 into F1 with ||Ax||F1 ≤
M1||x||E1 for all x ∈ E1, then A is linear continuous from (E0, E1)θ,p into
(F0, F1)θ,p for all θ, p, and for 0 < θ < 1 one has

||Aa||(F0,F1)θ,p
≤ M1−θ

0 Mθ
1 ||a||(E0,E1)θ,p

for all a ∈ (E0, E1)θ,p. (22.8)

Proof : For each decomposition a = a0 + a1 with a0 ∈ E0 and a1 ∈ E1, one
has Aa = Aa0 + Aa1, and

K(t;Aa) ≤ ||Aa0||F0 + t ||Aa1||F1 ≤ M0||a0||E0 + tM1||a1||E1 =

M0

(
||a0||E0 + t M1

M0
||a1||E1

)
.

(22.9)



22 Real Interpolation; K-Method 111

Taking the infimum on all decompositions of a, (22.9) implies

K(t;Aa) ≤ M0K

(
tM1

M0
; a
)

. (22.10)

Using s = t M1
M0

one deduces that t−θK(t;Aa) ≤ M1−θ
0 Mθ

1 s−θK(s; a) and as
dt
t = ds

s one finds that

||Aa||(F0,F1)θ,p
≤M1−θ

0 Mθ
1 ||s−θK(s; a)||Lp(0,∞,dt/t) =M1−θ

0 Mθ
1 ||a||(E0,E1)θ,p

for all a ∈ (E0, E1)θ,p,
(22.11)

which is (22.8). ��
An important example is the case E0 = L1(Ω), E1 = L∞(Ω), for which

the corresponding interpolation spaces are the Lorentz spaces:1 for 1 < p < ∞
and 1 ≤ q ≤ ∞ one writes

Lp,q(Ω) =
(
L1(Ω), L∞(Ω)

)
1/p′,q

, (22.12)

and one will find that Lp,p(Ω) = Lp(Ω) (with equivalent norms). For a func-
tion f ∈ L1(Ω)+L∞(Ω) one can calculate explicitly K(t; f), and the formula
makes use of the nonincreasing rearrangement of f , a notion introduced by
HARDY and LITTLEWOOD. For a measurable scalar function f on Ω such that

for every λ > 0,meas{x ∈ Ω | |f(x)| > λ} < ∞, (22.13)

one can define the nonincreasing rearrangement of f , denoted by f∗. It is the
only (real) nonincreasing function defined on

(
0,meas(Ω)

)
which is equimea-

surable to |f |, and it can be defined by

λ ∈
[
f∗(t+), f∗(t−)

]
if and only if

meas{x ∈ Ω | |f(x)| > λ} ≤ t ≤ meas{x ∈ Ω | |f(x)| ≥ λ}.
(22.14)

If necessary, one extends f∗(t) to be 0 for t > meas(Ω). One basic property
is that for any (piecewise) continuous function Φ defined on [0,∞) one has

∫

Ω

Φ(|f(x)|) dx =
∫ meas(Ω)

0

Φ
(
f∗(t)

)
dt. (22.15)

Lemma 22.4. If E0 = L1(Ω) and E1 = L∞(Ω) then for any function f ∈
L1(Ω) + L∞(Ω) one has

K(t; f) =
∫ t

0

f∗(s) ds for all t > 0, if one extends f∗ by 0 for t > meas(Ω).

(22.16)
1 LORENTZ had introduced these spaces before the interpolation theories were

developed.
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Proof : If one decomposes f = f0 + f1 with f0 ∈ L1(Ω) and ||f1||L∞(Ω) ≤ λ
(and λ > 0), then the infimum of ||f0||L1(Ω) is obtained by taking f1(x) = f(x)
whenever |f(x)| ≤ λ, and f1(x) = λ f(x)

|f(x)| whenever |f(x)| > λ, and this shows
that

K(t; f)=inf
λ>0

(

t λ+
∫

|f(x)|>λ

(|f(x)|−λ) dx

)

=inf
λ>0

(

t λ+
∫

f∗(s)>λ

(f∗(s)−λ) ds

)

.

(22.17)

The infimum is attained for any λ in the interval [f∗(t+), f∗(t−)] and is∫ t

0
f∗(s) ds (one extends f by 0 outside Ω and f∗ by 0 for t > meas(Ω)).

Indeed let τ be such that λ ∈ [f∗(τ+), f∗(τ−)], then
∫

f∗(s)>λ
(f∗(s)−λ) ds +

t λ =
∫ τ

0
f∗(s) ds+λ(t− τ), and it is enough to check that

∫ τ

t
f∗(s) ds+λ(t−

τ) ≥ 0 for all τ > 0; this is a consequence of f∗(s) ≥ λ for s < t and f∗(s) ≤ λ
for s > t. ��

In order to compare two definitions of Lorentz spaces, we shall use the
general form of Hardy’s inequality, which extends (13.3).

Lemma 22.5. Let 1 ≤ q ≤ ∞ and α < 1, then

tαϕ ∈ Lq
(
R+; dt

t

)
and ψ(t) = 1

t

∫ t

0
ϕ(s) ds imply

tαψ ∈ Lq
(
R+; dt

t

)
and ||tαψ||Lq(0,∞;dt/t) ≤ 1

1−α ||tαϕ||Lq(0,∞;dt/t).

(22.18)

Proof : The case q = ∞ is obvious, because |ϕ(t)| ≤ M t−α for all t > 0 implies
|ψ(t)| ≤ M t−α

1−α for all t > 0.
For 1 ≤ q < ∞, one uses the fact that Cc(R+) is dense in the space of ϕ

such that tαϕ ∈ Lq
(
R+; dt

t

)
, so that one may assume that ϕ ∈ Cc(R+), in

which case ψ vanishes near 0 and behaves as C
t for t large. As ψ is of class C1

and
t ψ′(t) + ψ(t) = ϕ(t), (22.19)

one multiplies by tα q|ψ|q−2ψ and integrates against dt
t ; one finds

∫ ∞

0

t ψ′tα q|ψ|q−2ψ
dt

t
=

1
q

∫ ∞

0

tα qd|ψ|q = −α

∫ ∞

0

tα q|ψ|q dt

t
, (22.20)

because tαψ(t) tends to 0 at ∞. This shows that

(1−α)
∫ ∞

0

|tαψ|q dt

t
=
∫ ∞

0

|tαψ|q−2tαψ tαϕ
dt

t
≤ ||tαψ||q−1

q ||tαϕ||q, (22.21)

by Hölder’s inequality, where || · ||q denotes the norm of Lq
(
R+; dt

t

)
. ��
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Lemma 22.6. For 1 < p < ∞ and 1 ≤ q ≤ ∞ one has

Lp,q(Ω) =
(
L1(Ω), L∞(Ω)

)
1/p′,q

=
{
f ∈ L1(Ω) + L∞(Ω) | t1/pf∗(t) ∈ Lq

(
R+; dt

t

)}
and

||t1/pf∗||Lq(0,∞,dt/t) is an equivalent norm,

(22.22)

showing that Lp,p(Ω) = Lp(Ω) with an equivalent norm. Lp,∞(Ω) is the weak
Lp space of MARCINKIEWICZ, with an equivalent norm.

Proof : The definition of the interpolation space would have t−θK(t; f) ∈
Lq
(
R+; dt

t

)
, with θ = 1

p′ , and as K(t; f) =
∫ t

0
f∗(s) ds ≥ t f∗(t) because

f∗ is nonincreasing, it implies t−θK(t; f) ≥ t1−θf∗(t) = t1/pf∗(t). Con-
versely, if t1/pf∗ ∈ Lq

(
R+; dt

t

)
, then Hardy’s inequality (13.3) implies

t1/p 1
t

∫ t

0
f∗(s) ds ∈ Lq

(
R+; dt

t

)
, because α = 1

p < 1, and t1/p 1
t

∫ t

0
f∗(s) ds =

t−θK(t; f).
The definition of the weak Lp space of MARCINKIEWICZ is that there

exists M such that for every measurable subset ω of Ω one has
∫

ω
|f | dx ≤

M meas(ω)1/p′
. The statement is then the consequence of the fact that for

t > 0 one has supmeas(ω)=t

∫
ω
|f | dx =

∫ t

0
f∗(s) ds, and this is seen by choosing

λ ∈ [f∗(t+), f∗(t−)] and defining ω0 = {x | |f(x)| > λ} and ω1 = {x |
|f(x)| ≥ λ, so that meas(ω0) ≤ t ≤ meas(ω1) (and |f(x)| = t on ω1 \ω0). If ω
is not a subset of ω1, one increases the integral of |f | by replacing the part of
ω which is not in ω1 by a part of the same measure in ω1 \ ω; if ω is a subset
of ω1 but does not contain ω0, one increases the integral of |f | by replacing a
part of ω which is not in ω0 by a corresponding part of the same measure in
ω0 \ ω, so that finally the subsets of measure t for which the integral of |f | is
maximum must contain ω0 and be contained in ω1.
[Taught on Friday March 10, 2000.]
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Interpolation of L2 Spaces with Weights

We want to consider now Sobolev spaces Hs(Ω) when s is not an integer,
which were defined for Ω = RN using the Fourier transform at Definition
15.7, and discussed for more general open sets Ω ⊂ RN after Lemma 16.3.
They are indeed interpolation spaces with the particular choice p = 2, and
for p = 2 the interpolation spaces belong to the larger family of spaces named
after Oleg BESOV1, the Besov spaces.

For s ∈ R, if

Fs = {v ∈ L2
loc(R

N ) | (1 + 4π2|ξ|2|)s/2v ∈ L2(RN )}, (23.1)

then the Fourier transform F is an isometry from Hs(RN ) onto Fs and the
inverse Fourier transform F is an isometry from Fs onto Hs(RN ). The interpo-
lation property implies then that F maps continuously

(
Hα(RN ),Hβ(RN )

)
θ,p

into (Fα, Fβ)θ,p and F maps (Fα, Fβ)θ,p into
(
Hα(RN ),Hβ(RN )

)
θ,p

, so that
(
Hα(RN ),Hβ(RN )

)
θ,p

coincides with the tempered distributions whose
Fourier transform belongs to (Fα, Fβ)θ,p (and one deduces in the same way
that it is an isometry if one uses the corresponding norms).

Identifying interpolation spaces between Sobolev spaces Hs(RN ) is then
the same question as interpolating between some L2 spaces with weights, and
this new question can be settled easily in a more general setting.

Lemma 23.1. For a (measurable) positive function w on Ω, let

E(w)=
{

u |
∫

Ω

|u(x)|2w(x) dx < ∞
}

with ||u||w =
(∫

Ω

|u(x)|2w(x) dx

)1/2

.

(23.2)

If w0, w1 are two such functions, then for 0 < θ < 1 one has
(
E(w0), E(w1)

)
θ,2

=E(wθ) with equivalent norms, where wθ =w1−θ
0 wθ

1.

(23.3)
1 Oleg Vladimirovich BESOV, Russian mathematician, born in 1933. He works at

the Steklov Institute of Mathematics, Moscow, Russia.
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Proof : One uses a variant of the K functional adapted to L2 spaces, namely

K2(t; a) = inf
a=a0+a1

(
||a0||20 + t2||a1||21

)1/2
, (23.4)

and one checks immediately that K2(t; a) ≤ K(t; a) ≤
√

2 K2(t; a) for all
a ∈ E0 + E1, whatever the normed spaces E0, E1 of the abstract theory are.

For E0 = E(w0) and E1 = E(w1), for any a ∈ E0 + E1 and t > 0 one can
calculate explicitly K2(t; a):

K2(t; a)2 = inf
a=a0+a1

(∫

Ω

(
|a0(x)|2w0(x) + t2|a1(x)|2w1(x)

)
dx

)
, (23.5)

and one is led to choose for a0(x) the value λ which minimizes |λ|2w0(x) +
t2|a(x)−λ|2w1(x), and as λ is characterized by λw0(x)−t2(a(x)−λ)w1(x) = 0,
one finds

a0(x) = t2w1(x)
w0(x)+t2w1(x) a(x)

a1(x) = w0(x)
w0(x)+t2w1(x) a(x)

(23.6)

(which are measurable), and this optimal choice gives

|a0(x)|2w0(x) + t2|a1(x)|2w1(x) =
t2w0(x)w1(x)

w0(x) + t2w1(x)
|a(x)|2, (23.7)

so that

K2(t; a) =
(∫

Ω

t2w0(x)w1(x)
w0(x) + t2w1(x)

|a(x)|2 dx

)1/2

. (23.8)

For 0 < θ < 1 one has

||t−θK2(t; a)||2L2(0,∞,dt/t) =
∫ ∞

0

∫

Ω

t−2θ t2w0(x)w1(x)
w0(x) + t2w1(x)

|a(x)|2 dx
dt

t
,

(23.9)

which one computes by integrating in t first, by Fubini’s theorem, and after

making the change of variable t = s
√

w0(x)
w1(x) , so that dt

t = ds
s , one finds

∫ ∞

0

t−2θ t2w0(x)w1(x)
w0(x) + t2w1(x)

dt

t
= w0(x)1−θw1(x)θ

∫ ∞

0

t1−2θ

1 + t2
dt, (23.10)

which gives

||t−θK2(t; a)||L2(0,∞,dt/t) = C
(∫

Ω
|a(x)|2wθ(x) dx

)2 with
C2 =

∫∞
0

t1−2θ

1+t2 dt = π
2 sin(π θ) . ��

(23.11)

Using the theory of interpolation, one can improve the Hausdorff–Young
inequality,2 which asserts that the Fourier transform maps Lp(RN ) into
2 YOUNG had proven the result when p′ is an even integer, and HAUSDORFF had

proven the general case.
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Lp′
(RN ) if 1 ≤ p ≤ 2, and this improvement uses Lorentz spaces. Indeed

Ff(ξ) =
∫

RN f(x)e−2i π(x.ξ) dx gives immediately ||Ff ||∞ ≤ ||f ||1, where
|| · ||p denotes the Lp(RN ) norm; on the other hand ||Ff ||2 = ||f ||2, so that
the interpolation property asserts that

Fourier transform maps
(
L1(RN ), L2(RN )

)
θ,p

into
(
L∞(RN ), L2(RN )

)
θ,p

.

(23.12)

The important reiteration theorem 26.3 (of Jacques-Louis LIONS and Jaak
PEETRE) will show that these spaces are in the family of Lorentz spaces, and
the result will then be that for 1 < p < 2 and 1 ≤ q ≤ ∞

Fourier transform maps Lp,q(RN ) into Lp′,q(RN ), for 1<p<2, 1≤q≤∞,
(23.13)

and in particular, because p < p′, it maps Lp(RN ) into Lp′,p(RN ) ⊂ Lp′
(RN ).

Results concerning convolution can also be improved using the theory of
interpolation and Lorentz spaces, and in particular the Sobolev’s embedding
theorem can be improved, as noticed by Jaak PEETRE. The classical result is
that

for 1 ≤ p < N one has W 1,p(RN ) ⊂ Lp∗
(RN ), with

p∗ = N p
N−p , i.e., 1

p∗ = 1
p − 1

N ,
(23.14)

and this will be improved into

for 1 ≤ p < N one has W 1,p(RN ) ⊂ Lp∗,p(RN ) ⊂ Lp∗
(RN ). (23.15)

In his original proof, Sergei SOBOLEV used a convolution formula

u =
∑

j

∂u

∂xj



∂E

∂xj
for an elementary solution E of ∆, (23.16)

and
{

E = CN

|x|N−2 for N ≥ 3
E = C2 log(|x|) for N = 2

implies
∂E

∂xj
∈ LN ′,∞(RN ). (23.17)

Together with the reiteration theorem 26.3 and a duality theorem of Jacques-
Louis LIONS and Jaak PEETRE, which asserts3 that LN ′,∞(RN ) is the dual
of LN,1(RN ), one finds that for 1 < p < N and 1 ≤ q ≤ ∞, convolution of
Lp,q(RN ) by LN ′,∞(RN ) gives a result in Lp∗,q(RN ).

However, this argument does not give Sobolev’s embedding theorem for
p = 1, which was proven by Louis NIRENBERG by a different method (also
introduced by Emilio GAGLIARDO), or the improvement that W 1,1(RN ) is

3 The result of Jacques-Louis LIONS and Jaak PEETRE is valid for general Banach
spaces, and the particular result for Lorentz spaces may have been known before.
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continuously embedded in L1∗,1(RN ), which I proved. The reason is that
convolution of L1(RN ) by any Lorentz space La,b(RN ) gives a result in
La,b(RN ) and not better, because one can approach the Dirac mass δ0 by
a bounded sequence in L1(RN ).

This is something that one should be aware of, that different ways of using
the theory of interpolation may lead to results in different interpolation spaces,
usually differing only in the second parameter.

The usual scaling arguments, for example, are insensitive to the second
parameter for the Lorentz spaces, and cannot be used to check that a given
result is optimal. For example, if u ∈ L1(RN ) + L∞(RN ) and for λ = 0
let U be defined by U(x) = u(λx) for x ∈ RN , then any decomposition of
u = a0 + a1 with a0 ∈ L1(RN ) and a1 ∈ L∞(RN ) gives a decomposition
U = A0 + A1 with Aj(x) = aj(λx) for x ∈ RN and j = 1, 2. Then one has
||A0||L1(RN ) = |λ|−N ||a0||L1(RN ) and ||A1||L∞(RN ) = ||a1||L∞(RN ), so that

U(x) = u(λx) for x ∈ RN implies K(t;U) = |λ|−NK(t |λ|N ;u), so

||U ||Lp,q(RN ) = |λ|−N/p||u||Lp,q(RN ),
(23.18)

and the parameter q does not appear in the way the norm changes.
[Taught on Monday March 13, 2000.]
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Real Interpolation; J-Method

Jaak PEETRE developed another interpolation method, the J-method, which
is a dual method compared to the K-method.

The K-method is the natural result of investigations which originated
in questions of traces: if u ∈ Lp0(R+;E0) and u′ ∈ Lp1(R+;E1) with
1 ≤ p0, p1 ≤ ∞, then u ∈ C0([0, 1];E0 + E1), so that u(0) exists and the
question is to characterize the space of such values at 0 (traces). As one can
change u(t) in u(tλ) with λ > 0 and not change u(0), one then discovers natu-
rally that one can consider spaces of functions such that tα0u ∈ Lp0(R+;E0)
and tα1u′ ∈ Lp1(R+;E1), and for some set of parameters u(0) exists. These
ideas may have started with Emilio GAGLIARDO, and I do not know if he
had first identified the traces of functions from W 1,p(RN ) on an hyperplane
before or after thinking of the general framework, but certainly Jacques-Louis
LIONS and Jaak PEETRE perfected the framework, and the K-method is Jaak
PEETRE’s further simplification, which shows that the family of interpolations
spaces that they had introduced only depends upon two parameters.

If one wants to characterize the duals of the spaces obtained, then one
finds easily that these dual spaces are naturally defined as integrals, and
one considers then questions like that of identifying which are the elements
a ∈ E0 +E1 which can be written as

∫∞
0

v(t) dt where tβ0v ∈ Lq0(R+;E0) and
tβ1v ∈ Lq1(R+;E1), for the range of parameters where the integral is defined.
Again, looking at v(tλ) shows that there are not really four parameters, but
one important observation is that these spaces are (almost) the same as the
ones defined by traces, and I do not know if Emilio GAGLIARDO had investi-
gated such questions before the basic work of Jacques-Louis LIONS and Jaak
PEETRE. The J-method is then the simplification by Jaak PEETRE of the
preceding framework.

Definition 24.1. For v ∈ E0 ∩ E1 and t > 0, one writes

J(t; v) = max{||v||0, t||v||1}. �� (24.1)
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The case t = 1 corresponds to the usual norm on E0 ∩ E1, which makes
both injections into E0 or E1 continuous and with norms at most 1; J(t; v)
then gives a family of equivalent norms on E0 ∩ E1.

Definition 24.2. For 0 < θ < 1 and 1 ≤ p ≤ ∞, or for θ = 0, 1, and p = 1,
one defines

(E0, E1)θ,p;J =
{
a =
∫∞
0

v(t) dt
t ∈ E0 + E1 | v(t) ∈ E0 ∩ E1 a.e. t > 0,

and t−θJ
(
t; v(t)

)
∈ Lp

(
R+; dt

t

)}
with

||a||θ,p;J = infv ||t−θJ(t; v)||Lp(0,∞;dt/t), the infimum being taken on all

v with
∫∞
0

v(t) dt
t = a. ��

(24.2)

As every a ∈ E0 ∩ E1 can be written as a =
∫∞
0

ϕ(t)a dt
t with ϕ having

compact support in R+ and satisfying
∫∞
0

ϕ(t) dt
t = 1, one could consider

other values of θ, p, but the infimum of ||t−θJ(t; v)||Lp(0,∞;dt/t) would be 0 in
these cases. Indeed one may replace ϕ by ϕ(λ t) and let λ tend to ∞, and the
infimum tends to 0 if θ < 0 or if θ = 0 and p > 1; similarly letting λ tend to
0 the infimum tends to 0 if θ > 1 or if θ = 1 and p > 1.

As noted by Jaak PEETRE, one can avoid every question of measurability
by using a discrete description, based on defining

an =
∫ 2n+1

2n

v(t)
dt

t
∈ E0 ∩ E1 and a =

∑

n∈Z

an. (24.3)

The important property of this family of spaces is the following equivalence
result, which says that apart from the extreme cases θ = 0, 1, where the two
methods use different values of p anyway, the J-method gives the same spaces
as the K-method.

Lemma 24.3. For 0 < θ < 1 and 1 ≤ p ≤ ∞, the J-method gives the same
spaces as the K-method, with equivalent norms.

Proof : Let a ∈ (E0, E1)θ,p;J , so that a =
∫∞
0

u(s) ds
s with s−θJ

(
s;u(s)

)
∈

Lp
(
0,∞, ds

s

)
. Using the decompositions u = u + 0 = 0 + u, one deduces that

for u ∈ E0 ∩ E1 one has K(t;u) ≤ min{||u||0, t ||u||1}, (24.4)

and because a 
→ K(t; a) is a norm, one deduces that

K(t; a) ≤
∫ ∞

0

K
(
t;u(s)

) ds

s
≤
∫ ∞

0

min{||u(s)||0, t ||u(s)||1}
ds

s
, (24.5)

and because for u ∈ E0 ∩ E1 one has ||u||0 ≤ J(s;u) and ||u||1 ≤ 1
sJ(s;u),

one deduces that

min{||u(s)||0, t ||u(s)||1} ≤ min
{

1,
t

s

}
J
(
s;u(s)

)
, (24.6)
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so that

t−θK(t; a) ≤
∫ ∞

0

min

{(
t

s

)−θ

,

(
t

s

)1−θ
}

s−θJ
(
s;u(s)

) ds

s
. (24.7)

This is a convolution product for the multiplicative group R+ with Haar
measure dt

t , of the function t−θJ
(
t;u(t)

)
which belongs to Lp

(
R+; dt

t

)
and

the function min{t−θ, t1−θ}, which belongs to L1
(
R+; dt

t

)
, so that one has

||t−θK(t; a)||Lp(0,∞;dt/t) ≤ C
∣
∣
∣
∣t−θJ

(
t;u(t)

)∣∣
∣
∣
Lp(0,∞;dt/t)

, (24.8)

proving that (E0, E1)θ,p;J ⊂ (E0, E1)θ,p with continuous embedding.
In order to prove the opposite continuous embedding, one must start from

a ∈ (E0, E1)θ,p and construct u(t) ∈ E0 ∩ E1 such that a =
∫∞
0

u(t) dt
t and

t−θJ
(
t;u(t)

)
∈ Lp

(
R+; dt

t

)
, and for that it is enough to ensure that one can

construct such a u satisfying J
(
t;u(t)

)
≤ C K(t; a) for all t > 0. This fact is

true in a slightly more general context, one chooses

u(t) = un for en < t < en+1, so that a =
∫ ∞

0

u(t)
dt

t
means a =

+∞∑

−∞
un,

(24.9)

and the basic construction is shown in Lemma 24.4. Because a ∈ (E0, E1)θ,p ⊂
(E0, E1)θ,∞, one has K(t; a) ≤ C tθ and the hypothesis of Lemma 24.4 is
indeed satisfied. ��

Lemma 24.4. If a ∈ E0 + E1 satisfies

K(t; a) → 0 as t → 0 and
K(t; a)

t
→ 0 as t → ∞, (24.10)

then, for a universal constant C,

for n ∈ Z there exists un ∈ E0 ∩ E1 so that if
u is defined by u(t) = un for en < t < en+1, then

a =
∫∞
0

u(t) dt
t and J

(
t;u(t)

)
≤ C K(t; a) for all t > 0.

(24.11)

Proof : Let C0 > 1, and for each n ∈ Z let a = a0,n + a1,n with a0,n ∈ E0,
a1,n ∈ E1 and ||a0,n||0 + en||a1,n||1 ≤ C0K(en; a). In particular ||a0,n||0 → 0
as n → −∞ and ||a1,n||1 → 0 as n → +∞, and one chooses

un = a0,n+1 − a0,n = a1,n − a1,n+1 ∈ E0 ∩ E1, (24.12)

and for i < j one has ui + . . . + uj = a0,j+1 − a0,i = a − a1,j+1 − a0,i,
which converges to a in E0 + E1 as i → −∞ and j → +∞. Because
K(t; a) is nondecreasing in t and K(t;a)

t is nonincreasing in t, one has



122 24 Real Interpolation; J-Method

K(en; a) ≤ K(t; a) ≤ K(en+1; a) and t
en+1 K(en+1; a) ≤ K(t; a) ≤ t

en K(en; a)
for en < t < en+1, and

||un||0≤||a0,n+1||0+||a0,n||0≤C0K(en+1; a)+C0K(en; a) ≤
C0(1 + e)K(t; a)

t ||un||1≤ t ||a1,n+1||1+t ||a1,n||1≤C0
t

en+1 K(en+1; a)+C0
t

en K(en; a) ≤
C0(1 + e)K(t; a),

(24.13)

so that J
(
t;u(t)

)
≤ C0(1 + e)K(t; a). ��

[Taught on Wednesday March 15, 2000.]



25

Interpolation Inequalities, the Spaces
(E0, E1)θ,1

Definition 25.1. Let E be a normed space; for 0 ≤ θ ≤ 1, one says that

E is of class K(θ) if E0 ∩ E1 ⊂ E ⊂ (E0, E1)θ,∞;K

E is of class J (θ) if (E0, E1)θ,1;J ⊂ E ⊂ E0 + E1

E is of class H(θ) if (E0, E1)θ,1;J ⊂ E ⊂ (E0, E1)θ,∞;K . ��
(25.1)

Of course, for 0 < θ < 1 the indices J and K may be dropped as the
two interpolation methods give the same spaces, but for the extreme values
θ = 0, 1 the only interpolation spaces that we use correspond to p = 1 for the
J-method or p = ∞ for the K-method.

The reiteration theorem 26.3 will state that if F0 is of class H(θ0) and
F1 is of class H(θ1) with θ0 = θ1, then for 0 < θ < 1 and 1 ≤ p ≤ ∞
one has (F0, F1)θ,p = (E0, E1)η,p with η = (1 − θ)θ0 + η θ1. Therefore, if
F0 = (E0, E1)θ0,p0 and F1 = (E0, E1)θ1,p1 , the interpolation space (F0, F1)θ,p

is the same, whatever the precise values p0 and p1 are, if θ0 = θ1. However,
the interpolation spaces do depend upon p0 and p1 in the case θ0 = θ1, and
in that case they may be new spaces, i.e., not included in the family indexed
by θ, p.

Lemma 25.2. (i) For a normed space E,

E is of class K(θ) if and only if E0 ∩ E1 ⊂ E and there exists C such that
K(t; a) ≤ C tθ||a||E for all t > 0 and all a ∈ E.

(25.2)
(ii) For a Banach space E,

E is of class J (θ) if and only if E ⊂ E0 + E1 and there exists C such that
||a||E ≤ C t−θJ(t; a) for all t > 0 and all a ∈ E0 ∩ E1

or if and only if
there exists C such that ||a||E ≤ C ||a||1−θ

0 ||a||θ1 for all a ∈ E0 ∩ E1.
(25.3)
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Proof : (i) It means ||a||(E0,E1)θ,∞;K ≤ C ||a||E for all a ∈ E. Because
||a||(E0,E1)θ,∞;K = ||t−θK(t; a)||L∞(0,∞), the condition is K(t; a) ≤ C tθ||a||E
for all t > 0.

(ii) It means ||a||E ≤ C ||a||(E0,E1)θ,1;J for all a ∈ E, and the necessary
condition follows from the fact that

for a ∈ E0 ∩ E1 one has ||a||(E0,E1)θ,1;J ≤ t−θ
0 J(t0; a) for all t0 > 0. (25.4)

Indeed, if ϕ ∈ L1
(
R+; dt

t

)
and

∫∞
0

ϕ(t) dt
t = 1, then every a ∈ E0 ∩E1 can be

written as a =
∫∞
0

u(t) dt
t with u(t) = ϕ(t)a for t > 0, and one has

||a||(E0,E1)θ,1;J ≤
∫ ∞

0

t−θ|ϕ(t)|J(t; a)
dt

t
; (25.5)

then for t0 > 0, one takes a sequence ϕn converging to δt0 (for example ϕn(t) =
n if t0 < t < n+1

n t0 and ϕn(t) = 0 otherwise), and one obtains (25.4) by letting
n → ∞. Having shown that ||a||E ≤ C t−θJ(t; a) = C max{||a||0, t ||a||1} for
all a ∈ E0 ∩ E1 and all t > 0, one takes the minimum in t, which is attained
for t = ||a||0

||a||1 , so that mint>0 t−θJ(t; a) = C ||a||1−θ
0 ||a||θ1 for all a ∈ E0 ∩ E1,

and the condition ||a||E ≤ C t−θJ(t; a) for all a ∈ E0 ∩ E1 and all t > 0 is
then equivalent to ||a||E ≤ C ||a||1−θ

0 ||a||θ1 for all a ∈ E0 ∩ E1. Conversely,
assume that there exists a constant C such that ||a||E ≤ C t−θJ(t; a) for
all a ∈ E0 ∩ E1 and all t > 0; for b ∈ (E0, E1)θ,1;J and a decomposition
b =

∫∞
0

u(t) dt
t with u(t) ∈ E0 ∩ E1 for t > 0 and

∫∞
0

t−θJ
(
t;u(t)

)
dt
t < ∞,

one has
||b||E ≤

∫ ∞

0

||u(t)||E
dt

t
≤
∫ ∞

0

C t−θJ
(
t;u(t)

) dt

t
, (25.6)

the integral converging in E because it is a Banach space; taking the infimum
on all decompositions of b gives ||b||E ≤ C||b||(E0,E1)θ,1;J . ��

Actually, Jacques-Louis LIONS and Jaak PEETRE had observed something
slightly more general, which is very useful, and often used with the reiteration
theorem 26.3.

Lemma 25.3. For a Banach space F , a linear mapping L from E0 ∩E1 into
F extends into a linear continuous mapping from (E0, E1)θ,1;J into F if and
only if

there exists C such that ||La||F ≤ C ||a||1−θ
0 ||a||θ1 for all a ∈ E0∩E1. (25.7)

Proof : The continuity from (E0, E1)θ,1;J into F is ||La||F ≤ C ||a||(E0,E1)θ,1;J

for all a ∈ (E0, E1)θ,1, or just for all a ∈ E0 ∩ E1, which is dense in
(E0, E1)θ,1;J ; then one uses (25.3) with E = (E0, E1)θ,1;J . Conversely, for
b ∈ (E0, E1)θ,1;J , b =

∫∞
0

u(t) dt
t with u(t) ∈ E0 ∩ E1 for t > 0 and∫∞

0
t−θJ

(
t;u(t)

)
dt
t < ∞, one has

||Lb||F ≤
∫ ∞

0

||Lu(t)||F
dt

t
≤
∫ ∞

0

C t−θJ
(
t;u(t)

) dt

t
, (25.8)
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the integral converging in F because it is a Banach space; taking the infimum
on all decompositions of b gives ||Lb||F ≤ C||b||(E0,E1)θ,1;J . ��

For example, Sobolev space H1/2(R) is not embedded in L∞(R), but for
the slightly smaller interpolation space

(
H1(R), L2(R)

)
1/2,1

one has

(
H1(R), L2(R)

)
1/2,1

⊂ C0(R), (25.9)

the space of continuous functions tending to 0 at ∞, because of the fact that
H1(R) ⊂ C0(R) with the precise estimate

||u||L∞(R) ≤ ||u||1/2
L2(R)||u

′||1/2
L2(R) for all u ∈ H1(R); (25.10)

then by using the reiteration theorem 26.3, one finds that

for 0 < s <
1
2
,Hs(R) ⊂ Lp(s),2, with

1
p(s)

=
1
2
− s. (25.11)

Therefore, one should be aware that some results which are not true for limit-
ing cases, like Sobolev’s embedding theorems, may be obtained by the theory
of interpolation because the limiting case is actually true if one uses a slightly
different space, and the difference does not really matter, because of the reit-
eration theorem 26.3.

Exchanging the two spaces is a special case of the reiteration theorem 26.3,
but it is seen easily directly.

Lemma 25.4. One has (E1, E0)θ,p = (E0, E1)1−θ,p for 0 < θ < 1 and 1 ≤
p ≤ ∞; the same result holds for θ = 0 or 1, and p = 1 or p = ∞.

Proof : One uses F0 = E1 and F1 = E0, and denoting by KF (t; a) the K
functional using the spaces F0, F1, for any decomposition a = a0 + a1 with
a0 ∈ E0 and a1 ∈ E1, one has

KF (t; a) = inf(||a1||1 + t ||a0||0) = t inf
(
||a0||0 +

1
t
||a1||1

)
= tK

(
1
t
; a
)

,

(25.12)

so that the change of variable t = 1
s gives ||t−θKF (t; a)||Lp(0,∞;dt/t) =

||s1−θK(s; a)||Lp(0,∞;dt/t). For the limiting case θ = 0 or 1, and p = 1,
one uses the J-method, and for a ∈ E0 ∩ E1 one observes that JF (t; a) =
min{||a||E1 , t ||a||E0} = t min

{
||a||E0 ,

1
t ||a||E1

}
= t J

(
1
t ; a
)
; with the change

of variable t = 1
s and v(s) = u(t), one has ||t−θJF

(
t;u(t)

)
||Lp(0,∞;dt/t) =

||s1−θJ
(
s; v(s)

)
||Lp(0,∞;dt/t). ��

[Taught on Friday March 17, 2000.]
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The Lions–Peetre Reiteration Theorem

The reiteration theorem 26.3 is proven in two steps.

Lemma 26.1. If G0 ⊂ (E0, E1)θ0,∞ and G1 ⊂ (E0, E1)θ1,∞ with 0 ≤ θ0 =
θ1 ≤ 1 (and continuous embeddings), then for 0 < θ < 1 and 1 ≤ p ≤ ∞,
or for θ = 0 or 1 with p = ∞, one has (G0, G1)θ,p ⊂ (E0, E1)η,p with η =
(1 − θ)θ0 + θ θ1.

Proof : One uses the K-method and the continuous embeddings mean that

there exists C0 with K(t; g0) ≤ C0t
θ0 ||g0||G0 for all g0 ∈ G0 and all t > 0,

there exists C1 with K(t; g1) ≤ C1t
θ1 ||g1||G1 for all g1 ∈ G1 and all t > 0.

(26.1)
For a ∈ G0 + G1, let

KG(t; a) = inf
a=g0+g1

(
||g0||G0 + t ||g1||G1

)
, (26.2)

then

K(t; a) ≤ K(t; g0) + K(t; g1) ≤ C0t
θ0 ||g0||G0 + C1t

θ1 ||g1||G1 , (26.3)

and minimizing among all decompositions of a one deduces that

t−ηK(t; a) ≤ C0t
θ0−ηKG

(
C1

C0
tθ1−θ0 ; a

)
. (26.4)

Because θ1 = θ0, one may use the change of variable

s = tθ1−θ0 , (26.5)

and as s−θ = t−θ(θ1−θ0) = tθ0−η one finds

t−ηK(t; a) ≤ s−θKG

(
C1

C0
s; a
)

, (26.6)

and using ds
s = |θ1 − θ0| dt

t ), one deduces that a ∈ (G0, G1)θ,p implies a ∈
(E0, E1)η,p. ��
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Lemma 26.2. If (E0, E1)θ0,1 ⊂ H0 and (E0, E1)θ1,1 ⊂ H1 with 0 ≤ θ0 =
θ1 ≤ 1 (and continuous embeddings), then for 0 < θ < 1 and 1 ≤ p ≤ ∞,
or for θ = 0 or 1 with p = 1, one has (E0, E1)η,p ⊂ (H0,H1)θ,p with η =
(1 − θ)θ0 + θ θ1.

Proof : One uses the J-method and the fact that for t > 0 one has

||u||H0 ≤ C0 ||u||(E0,E1)θ0,1 ≤ C ′
0 t−θ0J(t;u) for all u ∈ E0 ∩ E1

||u||H1 ≤ C1 ||u||(E0,E1)θ1,1 ≤ C ′
1 t−θ1J(t;u) for all u ∈ E0 ∩ E1.

(26.7)

For a ∈ (E0, E1)η,p one has a =
∫∞
0

u(t) dt
t with u(t) ∈ E0 ∩ E1 and

t−ηJ
(
t;u(t)

)
∈ Lp

(
R+; dt

t

)
. One chooses

λ = θ1 − θ0 = 0, (26.8)

and because u(t) ∈ E0 ∩ E1 ⊂ H0 ∩ H1, one can estimate

JH

(
tλ;u(t)

)
= max{||u(t)||H0 , t

λ ||u(t)||H1}, and
||u(t)||H0 ≤ C ′

0t
−θ0J

(
t;u(t)

)
and ||u(t)||H1 ≤ C ′

1t
−θ1J

(
t;u(t)

)
, so that

max{||u(t)||H0 , t
λ ||u(t)||H1} ≤ C t−θ0J

(
t;u(t)

)
, with C = max{C ′

0, C
′
1}.
(26.9)

One has −λ θ − θ0 = −(θ1 − θ0)θ − θ0 = −η, so that

(tλ)−θJH

(
tλ;u(t)

)
≤ C t−ηJ

(
t;u(t)

)
, (26.10)

and then

v(tλ) = u(t) implies a =
∫∞
0

u(t) dt
t = λ

∫∞
0

v(t) dt
t

and t−θJH

(
t; v(t)

)
∈ Lp

(
R+; dt

t

)
,

(26.11)

showing that a ∈ (H0,H1)θ,p. ��
Then Lemma 26.1 and Lemma 26.2 imply the reiteration theorem of

Jacques-Louis LIONS and Jaak PEETRE.

Theorem 26.3. (reiteration theorem) If 0 ≤ θ1 = θ0 ≤ 1, (E0, E1)θ0,1 ⊂
F0 ⊂ (E0, E1)θ0,∞ and (E0, E1)θ1,1 ⊂ F1 ⊂ (E0, E1)θ1,∞, then for 0 < θ < 1
and 1 ≤ p ≤ ∞ one has (F0, F1)θ,p = (E0, E1)η,p with η = (1 − θ)θ0 + θ θ1,
with equivalent norms.

Proof : Both Lemma 26.1 and Lemma 26.2 apply, showing that (F0, F1)θ,p is
both included in and contains (E0, E1)η,p. ��

As an application, let us consider the limiting case of Sobolev’s embedding
theorem in R2, where H1(R2) is not embedded in L∞(R2) but nevertheless for
0 < s < 1 the space Hs(R2) =

(
H1(R2), L2(R2)

)
1−s,2

is actually embedded

into
(
L∞(R2), L2(R2)

)
1−s,2

, which is La(s),2(R2) with 1
a(s) = 1−s

2 by the
reiteration theorem 26.3. The result follows from the fact that

X =
(
H2(R2), L2(R2)

)
1/2,1

⊂ FL1(R2) ⊂ C0(R2) ⊂ L∞(R2). (26.12)
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As both X and H1(R2) are of class H(1/2) for E0 = H2(R2) and E1 = L2(R2),
the reiteration theorem 26.3 implies

Hs(R2) =
(
H1(R2), L2(R2)

)
1−s,2

=
(
X,L2(R2)

)
1−s,2

⊂
(
L∞(R2), L2(R2)

)
1−s,2

= La(s),2(R2).
(26.13)

In proving (26.12), one notices that

for s >
N

2
one has Hs(RN ) ⊂ FL1(RN ) ⊂ C0(RN ), (26.14)

because u ∈ Hs(RN ) implies (1 + |ξ|)sFu ∈ L2(RN ) and as (1 + |ξ|)−s ∈
L2(RN ), one deduces that Fu ∈ L1(RN ). Because H2(R2) ⊂ L∞(R2), one
deduces that ||Fu||L1(R2) ≤ C ||D2u||L2(R2) +C ||u||L2(R2) for all u ∈ H2(R2),
and by rescaling, i.e., applying the inequality to uλ defined by uλ(x) = v(λx)
for all x ∈ RN , one deduces that

||Fu||L1(R2) ≤ C |λ| ||D2u||L2(R2) +
C

|λ| ||u||L2(R2) for all λ > 0, (26.15)

because ||Fuλ||L1(R2) = ||Fu||L1(R2) for all λ > 0 (so that ||Fu||L1(R2) scales
as ||u||L∞(R2)); taking the best λ gives ||u||FL1(R2)≤C ′ ||D2u||1/2

L2(R2)||u||
1/2
L2(R2);

this implies

||u||FL1(R2) ≤ C ′ ||u||1/2
H2(R2)||u||

1/2
L2(R2), which is equivalent to

(
H2(R2), L2(R2)

)
1/2,1

⊂ FL1(R2)
(26.16)

by Lemma 25.2; of course, the same scaling argument works directly with
L∞(R2) in place of FL1(R2).
[Taught on Monday March 20, 2000.]
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Maximal Functions

Before a general theory of interpolation had been developed, for which the
interpolation property is proven for linear continuous mappings, some non-
linear interpolation method had already been used, for example for proving
that the maximal function maps Lp(RN ) into itself for 1 < p ≤ ∞. Probably
because this classical proof is well known to specialists of harmonic analysis,
who are experts in the theory of singular integrals, they rarely mention the
theory of interpolation when they use this type of argument.

Definition 27.1. For f ∈ L1
loc(R

N ), the maximal function M f is defined by

M f(x) = sup
r>0

∫
B(x,r)

|f(y)| dy

|B(x, r)| , (27.1)

where B(x, r) is the ball centered at x and with radius r > 0, and |B(x, r)| is
its volume. ��

The concept was introduced by HARDY and LITTLEWOOD, who proved
the following result in dimension 1, the general case being due to WIENER.

Lemma 27.2. If 1 < p ≤ ∞, then f ∈ Lp(RN ) implies M f ∈ Lp(RN ), with

||M f ||p ≤ C(p)||f ||p for all f ∈ Lp(RN ), and C(p) → ∞ as p → 1. ��
(27.2)

This will be proven below, but the fact that the result is not true for p = 1
and that C(p) must tend to ∞ as p tends to 1 is seen easily by considering for f
the characteristic function of the unit ball, for which one has M f(x) ≥ 1

(1+r)N

(with r = |x|, as usual), because for s = 1 + r one has
∫

B(x,s)
|f(y)| dy =

|B(0, 1)|, as B(x, s) contains B(0, 1), and |B(x, s)| = sN |B(0, 1)|. Therefore
M f does not belong to L1(RN ), and as ||M f ||p → ∞ as p → 1, one must
have C(p) → ∞. The same argument shows that

if f ∈ L1(RN ) and f = 0, then M f ∈ L1(RN ), (27.3)
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as it is bounded below by C
rN for r large, and in this case one has a result

involving the weak L1 space, which has a definition analogous to that of
the Marcinkiewicz spaces for p > 1, which coincides with the Lorentz spaces
Lp,∞ for p > 1; however, the weak L1 space is not included in the family of
interpolation spaces between L1(RN ) and L∞(RN ), as it is not a subset of
L1(RN ) + L∞(RN ) (but it may have been included in the original definition
of Lorentz spaces). The proof of the result for p = 1 uses the classical covering
lemma 27.3, which was probably known to either VITALI1 or BESICOVITCH,2

who have proven more refined covering results.

Lemma 27.3. Let A be a measurable subset of RN , covered by a family of
(closed) balls Bi = B(Ci, ri), i ∈ I, whose radii satisfy 0 < ri ≤ R0 < ∞ for
all i ∈ I. Then for each ε > 0 there exists a subfamily J ⊂ I such that the
balls Bj are disjoint for j ∈ J , and |A| ≤ (3 + ε)N

∑
j∈J |Bj |.

Proof : For 0 < α < 1 one chooses a ball Bj1 with radius rj1 ≥ (1−α) supi∈I ri,
and one discards all the balls which intersect Bj1 , and one repeats the process
as long as there are any balls left. In that way, one has selected a finite or infi-
nite subfamily J such that the balls Bj are disjoint for j ∈ J by construction.
If
∑

j∈J |Bj | = +∞ the result is proven. If
∑

j∈J |Bj | < ∞ and if the family
is infinite one has |Bjn

| → 0, so that rjn
→ 0 as n → ∞, and therefore all

the balls have been discarded at some time; indeed, if one has (1−α)ri > rjn

then the ball Bi must have been discarded before step n, or the ball Bjn
could

not have been selected at step n; if the family is finite then all the balls have
been either selected or discarded after a finite number of steps. Any ball Bi

has been discarded because it intersects a selected ball Bjm
, so that one has

rjm
≥ (1 − α)ri, which implies that Bi ⊂ B(Cjm

, k rjm
) with k > 1 + 2

1−α ;
therefore, A ⊂

⋃
j∈J B(Cj , k rj), so that |A| ≤ kN

∑
j∈J |Bj | and taking α

small one can choose k ≤ 3 + ε. ��

Lemma 27.4. For f ∈ L1(RN ) one has

meas{x ∈ RN | |M f(x)| ≥ t} ≤ 3N ||f ||1
t

for every t > 0. (27.4)

Proof : Let
Ωs = {x ∈ RN | |M f(x)| > s}, (27.5)

1 Giuseppe VITALI, Italian mathematician, 1875–1932. After teaching in high
school in Genova (Genoa), he worked in Modena, in Padova (Padua), and in
Bologna, Italy. The department of pure and applied mathematics of Università
degli Studi di Modena e Reggio Emilia is named after him.

2 Abram Samoilovitch BESICOVITCH, Russian-born mathematician, 1891–1970.
He worked in Petrograd, Russia, in Liverpool and in Cambridge, England, where
he held the Rouse Ball professorship (1950–1958).
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so that for every x ∈ Ωs there exists r(x) > 0 with
∫

B(x,r(x))
|f(y)| dy

|B(x, r(x))| > s. (27.6)

One uses the lemma for the covering of Ωs by all the balls B
(
x, r(x)

)
with

x ∈ Ωs, and the radii r(x) are bounded because

s |B(0, 1)|r(x)N = s
∣
∣B
(
x, r(x)

)∣∣ <
∫

B(x,r(x))

|f(y)| dy ≤ ||f ||1. (27.7)

One finds a disjoint family of balls with centers x ∈ X ⊂ Ωs such that

|Ωs| ≤ (3 + ε)N
∑

x∈X

∣
∣B
(
x, r(x)

)∣∣ ≤ (3 + ε)N
∑

x∈X

∫
B(x,r(x))

|f(y)| dy

s ≤
(3+ε)N

s ||f ||1,
(27.8)

and by letting ε tend to 0 gives |Ωs| ≤ 3N

s ||f ||1 and choosing s = t − η for
η > 0 and letting η tend to 0 gives the desired bound. ��

Definition 27.5. ||f ||∗1 denotes

the smallest constant C≥0 such that meas{x | |f(x)|≥ t} ≤ C

t
for all t>0,

(27.9)

which is not a norm. ��

Because for f ∈ L1(Ω) one has tmeas{x | |f(x)| ≥ t} ≤ ||f ||1, one deduces
that ||f ||1 ≤ ||f ||∗1 for all f ∈ L1(Ω). Despite the notation, || · ||∗1 is not a
norm; one sees easily that

||λ f ||∗1 = |λ| ||f ||∗1 for all scalars λ, (27.10)

but the triangle inequality does not always hold. For example, if for Ω = (0, 1)
one takes f(t) = 1

t and g(t) = 1
1−t , and h = f +g, so that ||f ||∗1 = ||g||∗1 = 1,

one has h(t) = 1
t(1−t) and by symmetry its nonincreasing rearrangement is

h∗(t) = h
(

t
2

)
for 0 < t < 1, and the supremum of t h

(
t
2

)
= 4

2−t is ||h||∗1 = 4.
Actually, one always has

√
||f1 + f2||∗1 ≤

√
||f1||∗1 +

√
||f2||∗1 for all f1, f2, (27.11)

because for 0 < s < t < ∞ one has

{x | |f1(x) + f2(x)| ≥ t} ⊂ {x | |f1(x)| ≥ s} ∪ {x | |f2(x)| ≥ t − s}, (27.12)

so that

meas({x | |f1(x) + f2(x)| ≥ t}) ≤ ||f1||∗1
s

+
||f2||∗1
t − s

; (27.13)
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the minimum in s of the right side is attained with s = γ
√

||f1||∗1 and t−s =
γ
√
||f2||∗1, so that t = γ(

√
||f1||∗1 +

√
||f2||∗1), i.e., γ = t√

||f1||∗1+
√

||f2||∗1
,

and putting in (27.13) one obtains

meas({x | |f1(x) + f2(x)| ≥ t}) ≤
√

||f1||∗1+
√

||f2||∗1

γ =
(
√

||f1||∗1+
√

||f2||∗1)
2

t .
(27.14)

Definition 27.6. If f is a measurable function on Ω for which there exists C
such that meas{x ∈ Ω | |f(x)| ≥ s} ≤ C

s for s > s0 (and s0 > 0), then one
defines

K∗(t; f) = inf
f=g+h

(
||g||∗1 + t ||h||∞

)
for t > 0. �� (27.15)

Because ||g||∗1 ≤ ||g||1 for every g ∈ L1(Ω), one deduces that

K∗(t; f) ≤ K(t; f) for f ∈ L1(Ω) + L∞(Ω). (27.16)

Lemma 27.7. If there exists C such that meas{x ∈ Ω | |f(x)| ≥ s} ≤ C
s for

s > s0, then one has t f∗(t) ≤ K∗(t; a) for all t > 0.

Proof : Because |f1| ≤ |f2| a.e. in Ω implies ||f1||∗1 ≤ ||f2||∗1, one deduces
that among all the decompositions f = g + h with ||h||∞ ≤ λ, the one for
which ||g||∗1 is lowest corresponds to |g| = (|f | − λ)+ (and |h| = min{|f |, λ}).
For ε > 0 there exists λ ≥ 0 such that ||(|f | − λ)+||∗1 + t λ ≤ (1 + ε)K∗(t; f);
if g = (|f | − λ)+, then as the nonincreasing rearrangement of g is (f∗ − λ)+,
one has t (f∗(t) − λ)+ ≤ ||g||∗1 ≤ (1 + ε)K∗(t; f) − t λ. If λ ≤ f∗(t) it means
t (f∗(t) − λ) ≤ ||g||∗1 ≤ (1 + ε)K∗(t; f) − t λ, while if λ > f∗(t) it means 0 ≤
||g||∗1 ≤ (1+ε)K∗(t; f)−t λ, and in both cases one has t f∗(t) ≤ (1+ε)K∗(t; f),
and letting ε tend to 0 gives the desired bound. ��

For f ∈ L1(Ω) + L∞(Ω) one then has t f∗(t) ≤ K∗(t; f) ≤ K(t; f) for all
t > 0.

Lemma 27.8. Let 0 < θ < 1 and 1 ≤ q ≤ ∞. If there exists C such that
meas{x ∈ Ω | |f(x)| ≥ s} ≤ C

s for s > s0 and t−θK∗(t; f) ∈ Lq
(
R+; dt

t

)

then f ∈ L1(Ω) + L∞(Ω) and t−θK(t; f) ∈ Lq
(
R+; dt

t

)
, i.e., f ∈ Lp,q(Ω) for

p = 1
1−θ , and ||t−θK(t; f)||Lq(0,∞;dt/t) ≤ 1

θ ||t−θK∗(t; f)||Lq(0,∞;dt/t).

Proof : As K∗(t; f) is nondecreasing in t, t−θK∗(t; f) ∈ Lq
(
R+; dt

t

)
implies

t−θK∗(t; f) ∈ L∞(R+; dt
t

)
, i.e., K∗(t; f) ≤ C tθ for t > 0, so that f∗(t) ≤

C tθ−1 for t > 0, and therefore f ∈ L1(Ω) + L∞(Ω). One has t1−θf∗(t) ∈
Lq
(
R+; dt

t

)
, and by Hardy’s inequality (13.3) one deduces t−θK(t; f) ∈

Lq
(
R+; dt

t

)
with the precise estimate shown. ��

One can now finish the proof of the Hardy–Littlewood/Wiener theorem
that the maximal function maps Lp(RN ) into itself for 1 < p ≤ ∞, and obtain
the same result for Lorentz spaces.



27 Maximal Functions 135

Lemma 27.9. For 1 < p < ∞ and 1 ≤ q ≤ ∞, f ∈ Lp,q(RN ) implies
M f ∈ Lp,q(RN ) and ||M f ||Lp,q(RN ) ≤ 3N/p

p−1 ||f ||Lp,q(RN ).

Proof : For g, h ∈ L1(RN ) + L∞(RN ) one has
∫

B(x,r)
|g(y) + h(y)| dy ≤

∫
B(x,r)

|g(y)| dy +
∫

B(x,r)
|h(y)| dy ≤

|B(x, r)|
(
M g(x) + M h(x)

)
a.e. x ∈ RN for all r > 0,

(27.17)

so that the maximal function is subadditive, i.e.,

M(g + h) ≤ M g + M h a.e. in RN . (27.18)

For each decomposition f = g + h with g ∈ L1(RN ) and h ∈ L∞(RN ), one
then has M f ≤ M g + M h, i.e., M f = g0 + h0 with 0 ≤ g0 ≤ M g and
0 ≤ h0 ≤ M h, so that

t (M f)∗(t) ≤ K∗(t;M f) ≤ ||g0||∗1 + t ||h0||∞ ≤ ||M g||∗1 + t ||M h||∞ ≤
3N ||g||1 + t ||h||∞,

(27.19)
so that

t (M f)∗(t) ≤ 3N inf
f=g+h

(
||g||1 +

t

3N
||h||∞

)
= 3NK

(
t

3N
; f
)

. (27.20)

If f ∈ Lp,q(RN ) then t−θK(t; f) ∈ Lq
(
R+; dt

t

)
with θ = 1

p′ , and one deduces
that

||t1−θ(M f)∗||Lq(0,∞;dt/t) ≤ 3N(1−θ)||t−θK(t; f)||Lq(0,∞;dt/t), (27.21)

and then Hardy’s inequality (Lemma 22.5) implies

||t−θK(t;M f)||Lq(0,∞;dt/t) ≤
3N(1−θ)

θ
||t−θK(t; f)||Lq(0,∞;dt/t). �� (27.22)

[Taught on Wednesday March 22, 2000.]
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Bilinear and Nonlinear Interpolation

Another family of nonlinear interpolation results is based on the method of
traces of Jacques-Louis LIONS and Jaak PEETRE. One considers the space
of (weakly) differentiable functions from (0,∞) to E0 + E1 such that tα0u ∈
Lp0(R+;E0) and tα1u′ ∈ Lp1(R+;E1) and for suitable values of α0, p0, α1, p1

(namely α0 + 1
p0

> 0 and α1 + 1
p1

< 1) these functions are automatically
continuous on [0, 1] with values in E0 + E1 and the space spanned by u(0)
is an interpolation space. Using the change of function v(s) = u(sγ) with
γ > 0 amounts to replacing α0, α1 by β0, β1 defined by β0 = γ α0 + γ−1

p0

and β1 = γ α1 − γ−1
p′
1

, or β0 + 1
p0

= γ
(
α0 + 1

p0

)
and β1 + 1

p1
= γ
(
α1 +

1
p1

)
+ 1 − γ, so that the family of interpolation spaces depends upon at most

three parameters. However, Jaak PEETRE proved that the corresponding space
is equal to (E0, E1)θ,p, and one can choose γ such that β0 + 1

p0
= θ and

β1 + 1
p1

= θ, and p is defined by 1
p = 1−θ

p0
+ θ

p1
. This will be shown later, but

assuming that the characterization has been obtained, one can deduce a few
properties.

The interpolation property for a linear operator A ∈ L(E0;F0)∩L(E1;F1)
follows immediately, because v(t) = Au(t) gives tα0v ∈ Lp0(R+;F0) and
tα1v′ ∈ Lp1(R+;F1). Actually, as was noticed by Jacques-Louis LIONS, one
can deduce a nonlinear interpolation theorem.

Lemma 28.1. If E0 ⊂ E1, F0 ⊂ F1, and A is a possibly nonlinear operator
from E1 into F1 which satisfies

||A(u) − A(v)||1 ≤ M1||u − v||1 for all u, v ∈ E1

A maps E0 into F0 with ||A(u)||0 ≤ M0||u||0 for all u ∈ E0,
(28.1)

then for 0 < θ < 1 and 1 ≤ p ≤ ∞,

A maps (E0, E1)θ,p into (F0, F1)θ,p, and
||A(u)||(F0,F1)θ,p

≤ C||u||(E0,E1)θ,p
for all u ∈ (E0, E1)θ,p.

(28.2)
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Proof : Defining v(t) = A
(
u(t)
)
, one has ||v(t + h) − v(t)||F1 = ||A

(
u(t +

h)
)
− A
(
u(t)
)
||F1 ≤ M1||u(t + h) − u(t)||E1 , and dividing by |h| and letting

h tend to 0 one deduces that ||v′(t)||F1 ≤ M1||u′(t)||E1 for a.e. t ∈ (0,∞).
Therefore, as for the linear case, one deduces that tα0v ∈ Lp0(R+;F0) and
tα1v′ ∈ Lp1(R+;F1). ��

In 1970, Jacques-Louis LIONS had asked me to consider the case where A
is only Hölder continuous, where his idea does not work, and I noticed that his
result can be proven directly by the K-method in a way which can be extended
to the case of Hölder continuous mappings as will be shown later, and this was
also noticed by Jaak PEETRE. One just notices that for every decomposition
a = a0+a1 one has A(a) = b0+b1 with b0 = A(a0) and b1 = A(a)−A(a0) and
||b0||0 ≤ M0||a0||0 and ||b1||1 = ||A(a)−A(a0)||1 ≤ M1||a− a0||1 = M1||a1||1,
so that K

(
t;A(a)

)
≤ M0K

(
t M1
M0

; a
)
.

There were other interpolation theorems, for example by Jaak PEETRE or
by Felix BROWDER1 but under the assumption that the mapping is Lipschitz
continuous from E0 to F0 and from E1 to F1. An application considered
by Jacques Louis LIONS was to interpolate the regularity of the solution of
some variational inequalities, as he had done for linear (elliptic or parabolic)
equations with Enrico MAGENES, but in his example the mapping considered
is not Lipschitz continuous from E0 to F0, and I suppose that it was the reason
for his particular hypothesis.

The same idea of Jacques-Louis LIONS applies to a bilinear setting (and I
have generalized it to a nonlinear setting).

Lemma 28.2. Let B be bilinear from (E0 + E1) × (F0 + F1) into G0 + G1,
satisfying

B maps E0 × F0 into G0, and ||B(e0, f0)||G0 ≤ M0||e0||E0 ||f0||F0

for all e0 ∈ E0, f0 ∈ F0,

B maps E0 × F1 into G1, and ||B(e0, f1)||G1 ≤ M1||e0||E0 ||f1||F1

for all e0 ∈ E0, f1 ∈ F1,

B maps E1 × F0 into G1, and ||B(e1, f0)||G1 ≤ M1||e1||E1 ||f0||F0

for all e1 ∈ E1, f0 ∈ F0.

(28.3)

Then

for 0 < θ, η < 1 with θ + η < 1 and 1 ≤ p, q, r ≤ ∞ with 1
r = 1

p + 1
q ,

B maps (E0, E1)θ,p × (F0, F1)η,q into (G0, G1)θ+η,r and
||B(e, f)||(G0,G1)θ+η,r

≤ C ||e||(E0,E1)θ,p
||f ||(F0,F1)η,q

for all e ∈ (E0, E1)θ,p, f ∈ (F0, F1)η,q.

(28.4)

1 Felix Earl BROWDER, American mathematician, born in 1928. He worked at Yale
University, at The University of Chicago, Chicago, IL, and at Rutgers University,
Piscataway, NJ.
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Proof : Any e ∈ (E0, E1)θ,p can be written as e = u(0) with tθ||u(t)||E0 ∈
Lp
(
R+; dt

t

)
and tθ||u′(t)||E1 ∈ Lp

(
R+; dt

t

)
, and any f ∈ (F0, F1)η,q can

be written as f = v(0) with tη||v(t)||F0 ∈ Lq
(
R+; dt

t

)
and tη||v′(t)||F1 ∈

Lq
(
R+; dt

t

)
. One defines w(t) = B

(
u(t), v(t)

)
, and B(e, f) = w(0); because

tθ+η||w(t)||G0 ∈ Lr
(
R+; dt

t

)
and w′(t) = B

(
u(t), v′(t)

)
+ B
(
u′(t), v(t)

)
, one

has tθ+η||w′(t)||G1 ∈ Lr
(
R+; dt

t

)
, so that B(e, f) ∈ (G0, G1)θ+η,r with corre-

sponding bounds. ��
The same result was essentially obtained by O’NEIL, who derived precise

bounds for the convolution product analogous to those for the product.2

The product corresponds to the choice E0 = F0 = G0 = L∞(Ω) and
E1 = F1 = G1 = L1(Ω) (with M0 = M1 = 1), and in this case the result
states that if 1 < p, q, r < ∞ with 1

r = 1
p + 1

q and 1 ≤ a, b, c ≤ ∞ and
1
c = 1

a + 1
b , then the product is continuous from Lp,a(Ω)×Lq,b(Ω) into Lr,c(Ω)

(the limiting cases will be discussed when studying the duals of interpolation
spaces); as a particular case, the product is continuous from Lp(Ω) × Lq(Ω)
into Lr(Ω), a simple consequence of Hölder’s inequality.

The convolution product corresponds to the choice E0 = F0 = G0 =
L1(RN ) and E1 = F1 = G1 = L∞(RN ) (with M0 = M1 = 1), and in
this case the result states that if 1 < p, q, s < ∞ with 1

s = 1
p + 1

q − 1 and
1 ≤ a, b, c ≤ ∞ and 1

c = 1
a + 1

b , then the convolution product is continuous
from Lp,a(RN )×Lq,b(RN ) into Lr,c(RN ). As a particular case, the convolution
product is continuous from Lp(RN )×Lq(RN ) into Ls,1(RN ), an improvement
from Young’s inequality (2.3); one cannot take a = p and b = q, which would
give 1

2 < c < 1, but one may choose a ≥ p and b ≥ q such that c = 1
(Jaak PEETRE has actually defined interpolation spaces with 0 < θ < 1 and
0 < p ≤ ∞, but for 0 < p < 1 they are only quasi-normed spaces).

There is another bilinear interpolation result, due to Jacques-Louis LIONS

and Jaak PEETRE, with quite different assumptions.

Lemma 28.3. Let B be bilinear from (E0 + E1) × (F0 + F1) into G0 + G1,
satisfying

B maps E0 × F0 into G0, and ||B(e0, f0)||G0 ≤ M0||e0||E0 ||f0||F0

for all e0 ∈ E0, f0 ∈ F0,

B maps E1 × F1 into G1, and ||B(e1, f1)||G1 ≤ M1||e1||E1 ||f1||F1

for all e1 ∈ E1, f1 ∈ F1.

(28.5)

Then
for 0 < θ < 1 and 1 ≤ p, q, r ≤ ∞ with 1

r = 1
p + 1

q − 1,

B maps (E0, E1)θ,p × (F0, F1)θ,q into (G0, G1)θ,r, and
||B(e, f)||(G0,G1)θ,r

≤ C ||e||(E0,E1)θ,p
||f ||(F0,F1)θ,q

for all e ∈ (E0, E1)θ,p, f ∈ (F0, F1)θ,q. ��

(28.6)

2 HARDY and LITTLEWOOD have shown that
∫ t

0
(f g)∗ ds ≤

∫ t

0
f∗g∗ ds for all

t > 0.
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It should be noticed that there are situations where both theorems can
be used but give different results, in the second parameter (the first one is
usually the same, compatible with scaling properties). For example, applying
this last bilinear theorem to the product with E0 = F0 = G0 = L∞(Ω), and
E1 = F1 = L2(Ω) and G1 = L1(Ω), one only obtains that the product maps
Lp,a(Ω) × Lp,b(Ω) into Lp/2,c(Ω) with 2 < p < ∞ and 1 ≤ a, b, c ≤ ∞ and
1
c = 1

a + 1
b − 1, while the first bilinear theorem gives the result in Lp/2,1(Ω)

(but it has used more general information, that the product of a function in
L1(Ω) and a function in L∞(Ω) is defined).

A similar situation arises for the so-called Riesz–Thorin theorem, which
states that if a linear mapping is continuous from Lp0(Ω) into Lq0(Ω′) and
from Lp1(Ω) into Lq1(Ω′), then for 0 < θ < 1 it is continuous from Lpθ (Ω) into
Lqθ (Ω′), where 1

pθ
= 1−θ

p0
+ θ

p1
and 1

qθ
= 1−θ

q0
+ θ

q1
. M. RIESZ had only proven

this result under the additional assumption that pθ ≤ qθ, and this condition
was removed by THORIN. The K-method follows the approach of M. RIESZ

and implies that the mapping is continuous from Lpθ,p(Ω) into Lqθ,p(Ω′) for
any p ∈ [1,∞], but if one chooses p = pθ, the space Lqθ,pθ (Ω′) is only included
in Lqθ (Ω′) if pθ ≤ qθ. The complex method is the generalization of THORIN’s
idea, and an example of STEIN; although it is more precise in this example,
for other questions, it has a defect of having only one parameter.
[Taught on Friday March 24, 2000.]



29

Obtaining Lp by Interpolation, with the Exact
Norm

Talking about variants of interpolation methods, it is useful to obtain Lp(Ω)
as an interpolation space between L1(Ω) and L∞(Ω), but with the exact Lp

norm. I describe below the way I solved this question in 1970, in order to
answer a question of Häım BREZIS.

Definition 29.1. For a ∈ E0 + E1, one defines

L∗(s; a) = inf{||a0||0 | a = a0 + a1 with a0 ∈ E0, a1 ∈ E1 and ||a1||1 ≤ s}. ��
(29.1)

In relation to the associated Gagliardo (convex) set G(a) introduced in
(22.4), i.e., the set of (x0, x1) ∈ [0,∞) × [0,∞) such that there exists a de-
composition a = a0 + a1 with a0 ∈ E0, a1 ∈ E1 and ||a0||0 ≤ x0, ||a1||1 ≤ x1,
the boundary of this set has the equation x0 = L∗(x1; a).

Lemma 29.2. For E0 = L1(Ω) and E1 = L∞(Ω), and 1 < p < ∞ one has
∫ ∞

0

p(p − 1)sp−2L∗(s; a) ds =
∫

Ω

|a(x)|p dx for all a ∈ L1(Ω) + L∞(Ω).

(29.2)

Proof : The optimal decomposition consists in taking a1(x) = a(x) if |a(x)| ≤ s

and a1(x) = s a(x)
|a(x)| if |a(x)| > s, so that

L∗(s; a) =
∫

|a(x)|≥s

(|a(x)| − s) dx. (29.3)

Then, using Fubini’s theorem, one has

∫∞
0

p(p − 1)sp−2L∗(s; a) ds =
∫∞
0

p(p − 1)sp−2
(∫

|a(x)|≥s
(|a(x)| − s) dx

)
ds =

∫
Ω

(∫ |a(x)|
0

p(p − 1)sp−2(|a(x)| − s) ds
)

dx =
∫

Ω
|a(x)|p dx. ��

(29.4)
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The extension to Φ convex of class C2 on R with Φ(0) = Φ′(0) = 0 is
straightforward and was suggested by Häım BREZIS when I showed him my
construction:
∫ ∞

0

Φ′′(s)L∗(s; a) ds =
∫

Ω

Φ(|a(x)|) dx for all a ∈ L1(Ω) + L∞(Ω), (29.5)

and one uses Taylor’s expansion formula with remainder,

Φ(h) = Φ(0) + Φ′(0)h +
∫ h

0

(h − s)Φ′′(s) ds. (29.6)

If Φ is convex with Φ(0) = Φ′(0) = 0 then Φ′′ is a nonnegative measure and
one must use a Stieltjes integral.1

Therefore, the same approach can deal with Orlicz spaces.2

Lemma 29.3. If A is a linear mapping from L1(Ω) + L∞(Ω) into L1(Ω′) +
L∞(Ω′) which is continuous from L1(Ω) into L1(Ω′) with norm M1 and which
is continuous from L∞(Ω) into L∞(Ω′) with norm M∞, then for 1 < p < ∞
it is continuous from Lp(Ω) into Lp(Ω′) with norm ≤ M

1/p
1 M

1/p′

∞ .

Proof : For every decomposition a = a0 +a1 with ||a1||1 ≤ s one has a decom-
position Aa = Aa0 + Aa1 with ||Aa||1 ≤ M∞s and as ||Aa||0 ≤ M1||a0||0
one deduces that

L∗(M∞s;Aa) ≤ M1L
∗(s; a), (29.7)

so that
∫

Ω′ |Aa(x)|p dx =
∫∞
0

p(p − 1)sp−2L∗(s;Aa) ds =
Mp−1

∞
∫∞
0

p(p − 1)σp−2L∗(M∞σ;Aa) dσ ≤
M1M

p−1
∞
∫∞
0

p(p − 1)σp−2L∗(σ; a) dσ = M1M
p−1
∞
∫

Ω
|a(x)|p dx. ��

(29.8)

In order to describe some technical improvements concerning embedding
theorems of spaces of Sobolev type into Lorentz spaces, it is useful to derive
equivalent ways to check that a function belongs to a Lorentz space Lp,q(Ω),
with 1 < p < ∞ and 1 ≤ q ≤ ∞. The definition used is that f ∈ Lp,q(Ω) means
that t−1/p′

K(t; f) ∈ Lq
(
R+; dt

t

)
, and as K(t; f) can be expressed in terms

of the nonincreasing rearrangement f∗ of f (defined on
(
0,meas(Ω)

)
and

extended by 0 in order to have it defined on (0,∞)) by K(t; f) =
∫ t

0
f∗(s) ds,

f ∈ Lp,q(Ω) is equivalent to t−1/p′(∫ t

0
f∗(s) ds

)
∈ Lq

(
R+; dt

t

)
, but because

t f∗(t) ≤
∫ t

0
f∗(s) ds, f ∈ Lp,q(Ω) implies t1/pf∗(t) ∈ Lq

(
R+; dt

t

)
, or

1 Thomas Jan STIELTJES, Dutch-born mathematician, 1856–1894. He worked in
Leiden, The Netherlands, and in Toulouse, France.

2 W�ladys�law Roman ORLICZ, Polish mathematician, 1903–1990. He worked in
Lwów (then in Poland, now Lvov, Ukraine) and in Poznan, Poland.
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t(1/p)−(1/q)f∗(t) ∈ Lq(0,∞), which was the definition used by LORENTZ. It
is indeed equivalent if 1 < p < ∞ by Hardy’s inequality (13.3), but this
definition can also be used for p = 1.

Lemma 29.4. Assume that

for every λ > 0 one has meas{x | |f(x)| > λ} < ∞, (29.9)

and for n ∈ Z,

one chooses an ∈ [f∗(en+), f∗(en−)], so that
meas{x | |f(x)| > an} ≤ en ≤ meas{x | |f(x)| ≥ an}.

(29.10)

Then one has

f ∈ Lp,q(Ω) if and only if en/pan ∈ lq(Z). (29.11)

If moreover an → 0 as n → +∞, then

f ∈ Lp,q(Ω) if and only if en/p(an − an+1) ∈ lq(Z). (29.12)

Proof : For en < t < en+1 one has f∗(en+1−) ≤ f∗(t) ≤ f∗(en+), so that
an+1 ≤ f∗(t) ≤ an; this implies

α ||en/pan||lq(Z) ≤ ||t1/pf∗(t)||Lq(0,∞;dt/t) ≤ β ||en/pan||lq(Z), (29.13)

for two positive constants α, β, which is (29.11). Of course (29.11) implies
(29.12), and to prove the converse, one writes bn = an − an+1, so that an =
bn +bn+1 + . . ., and enan = enbn +e−1en+1bn+1 + . . ., so that enan is obtained
from enbn by a convolution with cn defined by cn = 0 for n > 0 and cn =
en for n ≤ 0, and then an application of Young’s inequality (2.3) gives the
result. ��
[Taught on Monday April 3, 2000.]
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My Approach to Sobolev’s Embedding
Theorem

One can obtain a nonoptimal embedding theorem W 1,p(RN ) ⊂ Lq(RN ) by
decomposing u ∈ W 1,p(RN ) as

u = (u − u 
 ε) + u 
 ε, (30.1)

where ε is a special smoothing sequence, using the estimates

||τhu − u||p ≤ |h| ||grad(u)||p for all h,

u − u 
 ε =
∫

(u − τyu)ε(y) dy, so that
||u − u 
 ε||p ≤

∫
|y| |ε(y)| dy ||grad(u)||p = C ε ||grad(u)||p,

(30.2)

and
||u 
 ε||∞ ≤ ||u||p||ε||p′ ≤ C ||u||pε−N/p′

. (30.3)

This means that using E0 = Lp(RN ) and E1 = L∞(RN ), one has

K(t;u) ≤ C ε + C t ε−N/p′
for all ε > 0, (30.4)

and taking the best ε gives

K(t;u) ≤ C tp
′/(N+p′), i.e., W 1,p(RN ) ⊂ (E0, E1)θ,∞ = Lqθ,∞(RN ), (30.5)

with θ = p′

N+p′ > 0, so that qθ > p and choosing any q ∈ (p, qθ) one has shown
that

one has q > p and ||u||q ≤ A ||u||p + B ||grad(u)||p for all u ∈ W 1,p(RN ).
(30.6)

Notice that (30.5) and (30.6) are not as precise as Sobolev’s embedding the-
orem, so the precise value of q obtained is not important (as long as q > p),
but I have observed that from a nonoptimal embedding theorem like (30.6),
one can derive the best-known embeddings after using two different scaling
arguments.
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The first step is the usual scaling argument; one should not add ||u||p and
||grad(u)||p which are not measured in the same unit, and one applies the
inequality to uλ defined by uλ(x) = u

(
x
λ

)
, and (30.6) becomes

|λ|N/q||u||q ≤ A |λ|N/p||u||p + B |λ|(N/p)−1||grad(u)||p
for all u ∈ W 1,p(RN ) and all λ > 0.

(30.7)

Notice that in the case 1 ≤ p < N one must have q ≤ p∗ = N p
N−p , or a

contradiction would be obtained by letting λ tend to 0. One chooses the best
λ in (30.7), and one finds that there exists η ∈ (0, 1] such that

||u||q ≤ C ||u||1−η
p ||grad(u)||ηp for all u ∈ W 1,p(RN ). (30.8)

This inequality is now scale invariant, and that requires that η satisfies

1
q

=
1 − η

p
+ η

(
1
p
− 1

N

)
=

1
p
− η

N
. (30.9)

My second step is a different scaling argument, which consists in applying
the inequality to functions ψ(u). When I looked for a good choice of ψ, I was
led to consider a sequence of functions ϕn(|u|) adapted to u, which involves
the levels an used in Lemma 29.4, namely

ϕn is defined by ϕn(0) = 0, ϕ′(v) = 1 if an < v < an−1, and
ϕ′(v) = 0 if v < an or v > an−1,

(30.10)

and defining
γn =

∣
∣
∣
∣grad

(
ϕn(u)

)∣∣
∣
∣ for n ∈ Z, (30.11)

one notices that

|grad(u)| ∈ Lp(RN ) is equivalent to γn ∈ lp(Z). (30.12)

For any r < ∞ one has
∫

RN |ϕn(u)|r dx ≥ |an − an−1|rmeas{x | |u(x)| ≥ an−1} ≥ |an − an−1|ren−1

∫
RN |ϕn(u)|r dx ≤ |an − an−1|rmeas{x | |u(x)| > an} ≤ |an − an−1|ren,

(30.13)

and having comparable lower and upper bounds is the main reason for my
choice of the functions ϕn. Using (30.8) for ϕn(u) instead of u, one deduces
that

|an − an−1|e(n−1)/q ≤ C
(
|an − an−1|en/p

)1−η
γη

n, i.e.,
|an − an−1|en/p∗ ≤ (C e1/q)1/ηγn, for all n ∈ Z,

(30.14)

where one has used (30.9), using 1
p∗ = 1

p −
1
N even for p ≥ N . The second part

of (30.14) is |an−an−1|en/p∗ ∈ lp(Z), and in the case 1 ≤ p < N corresponding
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to p∗ = N p
N−p < ∞, Lemma 29.4 gives the improvement by Jaak PEETRE of

the original result of Sergei SOBOLEV, namely W 1,p(RN ) ⊂ Lp∗,p(RN ).
In the case p = N one has p∗ = ∞, so that

for p = N one has |an − an−1| ∈ lN (Z). (30.15)

Let bn = an − an+1 ≥ 0, then as n tends to −∞ one has an = bn + bn+1 +
. . .+bm−1 +am, and by Hölder’s inequality one has |an−am| ≤ (|bn|N + . . .+
|bm−1|N )1/N |n − m|1/N ′

, and one deduces that

for every ε > 0 there exists C(ε) such that |an|N
′ ≤ ε |n|+C(ε) for all n ≤ 0.

(30.16)

For κ > 0 one chooses ε < 1
κ , and one computes the integral of eκ |u|N′

on
the set where |u(x)| ≥ a0; on the set where an+1 ≤ |u(x)| < an, which
has a measure ≤ en+1, one has |u(x)| ≤ an, so that κ |u|N ′ ≤ κ|an|N

′ ≤
κ ε |n| + κC(ε) for all n ≤ 0, and therefore

∫

|u(x)|≥a0

eκ |u|N′

dx ≤
0∑

n=−∞
en eκ ε |n|+κ C(ε) < ∞. (30.17)

Therefore u ∈ W 1,N (RN ) implies eκ |u|N′
∈ L1

loc(R
N ) for all κ > 0, which

is the improvement by Neil TRUDINGER of a result of Fritz JOHN and Louis
NIRENBERG, who had improved the result of Sergei SOBOLEV for the limiting
case p = N by introducing the space BMO(RN ) (containing W 1,N (RN )), and
they proved that for every function in BMO(RN ) one has eε |u| ∈ L1

loc(R
N )

for ε small enough.
For p > N one has p∗ < 0, so that from |an − an−1|en/p∗ ∈ lp(Z), one

deduces that
∑0

n=−∞ |an − an−1| < ∞, and therefore that |an| ≤ M for all
n ∈ Z. Having proven that W 1,p(RN ) ⊂ L∞(RN ), the scaling argument shows
that one must have

||u||∞ ≤ C ||u||1−θ
p ||grad(u)||θp, and

1
p
− θ

N
= 0, i.e., θ =

N

p
, (30.18)

which must have been what Sergei SOBOLEV had proven, and in order to
find MORREY’s improvement of the Hölder continuity, one applies (30.18) to
v = τhu − u, for which one has ||v||p ≤ |h| ||grad(u)||p and ||grad(v)||p ≤
2||grad(u)||p, and one obtains the estimate

||τhu − u||∞ ≤ C |h|1−(N/p)||grad(u)||p, i.e.,

W 1,p(RN ) ⊂ C0,α(RN ) for α = 1 − N
p .

(30.19)

[Taught on Wednesday April 5, 2000.]
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My Generalization of Sobolev’s Embedding
Theorem

The original method of proof of Sergei SOBOLEV consisted in writing

u =
∑

j

∂u

∂xj



∂E

∂xj
for an elementary solution E of ∆, (31.1)

and it is not adapted to the case where the derivatives are in different spaces.
A different proof, by Louis NIRENBERG, and also by Emilio GAGLIARDO,

can be used for the case where

∂u

∂xj
∈ Lpj (RN ) for j = 1, . . . , N ; (31.2)

In the late 1970s, I had heard a talk about this question by Alois KUFNER,
then I was told that it had been noticed earlier by TROISI.

The case where the derivatives are in the same Lorentz space Lp,q(RN )
with 1 < p < N can be treated with the theory of interpolation, as was done
by Jaak PEETRE, but the limiting case where

∂u

∂xj
∈ LN,p(RN ) for j = 1, . . . , N, (31.3)

was treated by Häım BREZIS and Stephen WAINGER by analyzing a formula
of O’NEIL about the nonincreasing rearrangement of a convolution product.
The case p = 1 in (31.3) gives u ∈ C0(RN ), by noticing that Cc(RN ) is dense
in LN,1(RN ), whose dual is LN ′,∞(RN ), which contains the derivatives ∂E

∂xj
.

The case p = ∞ in (31.3) gives eε |u| ∈ L1
loc(R

N ), and u actually belongs to
BMO(RN ).

As far as I know, these classical methods do not permit one to treat the case
where the derivatives are in different Lorentz spaces; of course, this question
is quite academic, but serves as a training ground for situations which often
occur where one has different information in different directions, for example
because some coordinates represent space and another one represents time
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(and one has simplified the physical reality so that the model used has a fake
velocity of light equal to +∞).

First, it is useful to observe that Sobolev’s embedding theorem for p = 1 is
related to the isoperimetric inequality. The classical isoperimetric inequality
says that among measurable sets A of RN with a given volume, the (N − 1)-
dimensional measure of the boundary ∂ A is minimum when A is a sphere;
equivalently, for a given measure of the boundary, the volume is maximum for
a sphere. Analytically it means that

meas(A) ≤ C0

(
meas(∂ A)

)N/(N−1)
, (31.4)

and it tells what the best constant C0 is, while Sobolev’s embedding theorem
for W 1,1(RN ) gives

∫

RN

|u|1∗
dx ≤ C1||grad(u)||N/(N−1)

1 , (31.5)

but does not insist on identifying what the best constant C1 is. The rela-
tion between the two inequalities is that one can apply the last inequality to
u = χA, the characteristic function of A, assuming that A has a finite perime-
ter; of course, χA does not belong to W 1,1(RN ), but as its partial derivatives
∂χA

∂xj
are Radon measures, one may apply the inequality to χA 
 ε and then

let ε tend to 0; in this way one learns that C0 ≤ C1. Conversely, knowing
the isoperimetric inequality, one can approach a function u by a sum of char-
acteristic functions, using An = {x | nε ≤ u(x) < (n + 1)ε} and deduce
Sobolev’s embedding theorem, so that C1 ≤ C0 and the two inequalities are
then essentially the same. However, the proof of the last part involves the
technical study of functions of bounded variation (denoted by BV ), which is
classical in one dimension, but is indebted to the work of Ennio DE GIORGI1,
FEDERER2 and Wendell FLEMING3 for the development of the N -dimensional
case.

As I observed, starting from Sobolev’s embedding theorem W 1,1(RN ) ⊂
L1∗

(RN ) (proven by Louis NIRENBERG), one can easily derive all the results
already obtained, except for the question of identifying the best constants.
For that, one uses the functions ϕn adapted to u, writes

||ϕn(u)||1∗ ≤ C0||ϕ′
n(u)grad(u)||1 ≤ ||ϕ′

n(u)grad(u)||pen/p′
, (31.6)

by Hölder’s inequality, and deduces the same inequality as before, |an−1 −
an|en/p∗ ∈ lp(Z).

1 Ennio DE GIORGI, Italian mathematician, 1928–1996. He received the Wolf Prize
in 1990. He worked at Scuola Normale Superiore, Pisa, Italy.

2 Herbert FEDERER, Austrian-born mathematician, born in 1920. He worked at
Brown University, Providence, RI.

3 Wendell Helms FLEMING, American mathematician, born in 1928. He works at
Brown University, Providence, RI.
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However, for the case of derivatives in (different) Lorentz spaces, I could
only prove it by using a multiplicative variant of the isoperimetric inequal-
ity/Sobolev’s embedding theorem.

Lemma 31.1. The Sobolev’s embedding theorem W 1,1(RN ) ⊂ L1∗
(RN ) in its

additive version

||u||1∗ ≤ A

N∑

j=1

∣
∣
∣
∣

∣
∣
∣
∣
∂u

∂xj

∣
∣
∣
∣

∣
∣
∣
∣
1

for all u ∈ W 1,1(RN ), (31.7)

is equivalent to the multiplicative version

||u||1∗ ≤ N A

⎛

⎝
N∏

j=1

∣
∣
∣
∣

∣
∣
∣
∣
∂u

∂xj

∣
∣
∣
∣

∣
∣
∣
∣
1

⎞

⎠

1/N

for all u ∈ W 1,1(RN ). (31.8)

Proof : One rescales with a different scaling in different directions, i.e., one
applies the additive version to v defined by

v(x1, . . . , xN ) = u

(
x1

λ1
, . . . ,

xN

λN

)
, (31.9)

and one obtains

(λ1 . . . λN )1/1∗ ||u||1∗ ≤ Aλ1 . . . λN

∑

j

1
λj

∣
∣
∣
∣ ∂u

∂xj

∣
∣
∣
∣
1
. (31.10)

Then one notices that

if λ1 . . . λN = µ > 0, the minimum of
∑

j
αj

λj
is attained when

λj = β αj for all j and the Lagrange multiplier β satisfies
βNα1 . . . αN = µ, so the minimum is N

µ (α1 . . . αN )1/N .
(31.11)

One applies (31.11) to the case αj =
∣
∣
∣
∣ ∂u
∂xj

∣
∣
∣
∣
1

and one finds the multiplicative
version, as the powers of µ are identical on both sides of the inequality (because
the inequality is already invariant when one rescales all the coordinates in the
same way). The multiplicative version implies the additive version by the
geometric-arithmetic inequality

(a1 . . . aN )1/N ≤ a1 + . . . + aN

N
for all a1, . . . , aN > 0, (31.12)

which, putting aj = ezj , is but the convexity property of the exponential
function. ��
Lemma 31.2. Let u satisfy

∂u

∂xj
∈ Lpj ,qj (RN ), with 1 < pj < ∞ and 1 ≤ qj ≤ ∞, for j = 1, . . . , N.

(31.13)
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Let peff , p∗eff and qeff be defined by

1
peff

= 1
N

∑
j

1
pj

1
p∗

eff
= 1

peff
− 1

N

1
qeff

= 1
N

∑
j

1
qj

.

(31.14)

Then one has
|an−1 − an|en/p∗

eff ∈ lqeff (Z). (31.15)

One may allow some pj to be 1 or ∞, but using only qj = +∞ in that case.

Proof : Let fj = ∂u
∂xj

for j = 1, . . . , N . One applies the multiplicative version
to ϕn(u), and one has to estimate ||ϕ′

n(u)fj ||1. A classical result of HARDY

and LITTLEWOOD states that for all f ∈ L1(Ω) + L∞(Ω) and all measurable
subsets ω ⊂ Ω one has

∫

ω

|f(x)| dx ≤
∫ meas(ω)

0

f∗(s) ds, (31.16)

and as the measure of the points where ϕ′
n(u) = 0 is at most en, one deduces

that
||ϕ′

n(u)fj ||1 ≤ K(en; fj) for j = 1, . . . , N, (31.17)

and then, using Hölder’s inequality,

e−nθj K(en; fj) ∈ lqj (Z) with θj = 1
p′

j
for j = 1, . . . , N, imply

e−n/p′
eff ||ϕn(u)||1∗ ≤ N A

(∏
j e−nθj K(en; fj)

)1/N

∈ lqeff (Z),
(31.18)

which gives (31.14). In the case where pj = 1, one has (31.18) with θj = 0
and qj = +∞, and in the case where pj = ∞, one has (31.18) with θj = 1
and qj = +∞. ��

For interpreting Lemma 31.2, one assumes that

for all λ > 0, one has meas{x | |u(x)| > λ} < +∞, (31.19)

which is a way to impose that u tends to 0 at ∞.
If peff < N then it means u ∈ Lp∗

eff ,qeff (RN ).
If peff = N and qeff = 1, which means that qj = 1 for j = 1, . . . , N ,

then one has |an−1 − an| ∈ l1(Z), so that one deduces a bound for an, i.e.,
u ∈ L∞(RN ); using the density of C∞

c (RN ) in Lpj ,1(RN ), one deduces that
u ∈ C0(RN ).

If peff = N and 1 < qeff < ∞, then for every κ > 0 one has eκ |u|q
′
eff ∈

L1
loc(R

N ).
If peff = N and qeff = ∞, which means that qj = ∞ for j = 1, . . . , N ,

one deduces that |an| ≤α |n| + β, so that there exists ε0 > 0 such that
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eε0|u| ∈L1
loc(R

N ). This is the case when all the derivatives belong to
LN,∞(RN ), and because log(|x|) is such a function, it is not always true
that eκ |u| ∈ L1

loc(R
N ) for all κ > 0. For that particular space of functions,

u belongs to BMO(RN ), which Fritz JOHN and Louis NIRENBERG had in-
troduced for studying the case of W 1,N (RN ), and they proved that for every
function in BMO(RN ) there exists ε0 > 0, depending upon the semi-norm of
u in BMO(RN ), such that eε0|u| ∈ L1

loc(R
N ).

If peff > N then one has u ∈ L∞(RN ). By considering (u − α)+
or (u + α)− for α > 0 (and letting then α tend to 0), one may assume
that u ∈ L1(RN ), and in applying the usual rescaling argument one
starts from a bound ||u||∞ ≤ C

(
||u||r,s +

∑
j ||∂ju||pj ,qj

)
, where || · ||p

denotes the norm in Lp and || · ||p,q denotes the norm in Lp,q. Applying
this inequality to u

(
x1
λ1

, . . . , xN

λN

)
, and writing µ = λ1 · · ·λN , one obtains

||u||∞ ≤ C
(
µ1/r ||u||r,s +

∑
j µ1/pj λ−1

j ||∂ju||pj ,qj

)
; the inequality between the

arithmetic mean and the geometric mean implies
∑

j µ1/pj λ−1
j ||∂ju||pj ,qj

≥
N µ(1/peff )−(1/N)

(∏
j ||∂ju||pj ,qj

)1/N , with equality if all µ1/pj λ−1
j ||∂ju||pj ,qj

are equal, so that ||u||∞≤C
(
µ1/r ||u||r,s+N µ1/peff µ−1/N

(∏
j ||∂ju||pj ,qj

)1/N);
because minimizing µa A + µ−bB for µ > 0 gives aµa−1A − b µ−b−1B = 0
and µ = (bB/aA)1/(a+b), so that the minimum is C ′AηB1−η with
η = b

a+b , one deduces that ||u||∞ ≤ C ′′||u||θr,s

(∏
j ||∂ju||pj ,qj

)(1−θ)/N , with

θ = (1/N)−(1/peff )
(1/r)+(1/N)−(1/peff ) . Choosing r = pi, s = qi, and applying the preceding

inequality to the case where u is replaced by τt ei
u− u, one deduces that u is

Hölder-continuous of order γi in its ith variable, with γi =
(1/N)−(1/peff )

(1/pi)+(1/N)−(1/peff ) .
Having different information on derivatives in different directions is usual

for parabolic equations like the heat equation. For example, letting Ω be an
open set of RN , given u0 ∈ L2(Ω), one can show that there exists a unique
solution u of ∂u

∂t −∆u = 0 in Ω×(0, T ) satisfying the initial condition u(x, 0) =
u0(x) in Ω and the homogeneous Dirichlet boundary condition γ0u = 0 on
∂Ω × (0, T ), in the sense that u ∈ C

(
[0, T ];L2(Ω)

)
, u ∈ L2

(
(0, T );H1

0 (Ω)
)

and ∂u
∂t ∈ L2

(
(0, T );H−1(Ω)

)
.

If u0 ∈ H1
0 (Ω) then the solution also satisfies u ∈ C0

(
[0, T ];H1

0 (Ω)
)
,

∆u, ∂u
∂t ∈ L2

(
(0, T );L2(Ω)

)
= L2

(
Ω × (0, T )

)
; if the boundary is of class C1

or if the open set Ω is convex (or if an inequality holds for the total curvature
of the boundary), then one has u ∈ L2

(
(0, T );H2(Ω)

)
.

If u0 belongs to an interpolation space between H1
0 (Ω) and L2(Ω) then

one has intermediate results, but this requires enough smoothness for the
boundary.

As an example, consider a function

u(x, t) defined on RN × R and satisfying u,
∂u

∂t
,∆u ∈ L2(RN+1), (31.20)
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and this implies that ∂u
∂xj

∈ L2(RN+1) for j = 1, . . . , N (by using Fourier
transform, for example). Denoting the dual variables by (ξ, τ), the informa-
tion is equivalent to Fu, τ Fu, |ξ|2Fu ∈ L2(RN+1) (and therefore ξjFu ∈
L2(RN+1) for j = 1, . . . , N). One has

(1 + |τ | + |ξ|2)Fu ∈ L2(RN+1), and if one shows 1
1+|τ |+|ξ|2 ∈ Lp,∞(RN+1)

for some p ∈ (2,∞), then Fu ∈ Lq,2(RN+1) with 1
q = 1

2 + 1
p and

u ∈ Lq′,2(RN+1), (31.21)

the last property being due to the fact that 1 < q < 2 and F maps
L1(RN+1) into L∞(RN+1) and L2(RN+1) into itself, and by interpolation
it maps Lq,2(RN+1) into Lq′,2(RN+1). One has 1

1+|τ |+|ξ|2 ∈ L∞(RN+1), and
it is the behavior at ∞ that is interesting for obtaining the smallest value of
p, so that one checks for what value of p one has 1

|τ |+|ξ|2 ∈ Lp,∞(RN+1) and
one obtains the same information for the smaller function 1

1+|τ |+|ξ|2 . One uses
the homogeneity properties of the function, and for λ > 0 one computes

meas
{

(ξ, τ) | 1
|τ |+|ξ|2 ≥ λ

}
= C λ−1−(N/2)

with C = meas
{

(ξ, τ) | 1
|τ |+|ξ|2 ≥ 1

}
,

(31.22)

by using the change of coordinates τ = λ−1τ ′ and ξ = λ−1/2ξ′. This corre-
sponds to p = 1 + N

2 = N+2
2 , which gives q = 2(N+2)

N+6 and q′ = 2(N+2)
N−2 if

N ≥ 3, so one has

for N ≥ 3, one has u ∈ L2(N+2)/(N−2),2(RN+1) ∩ L2(RN+1),
for N = 2, one has u ∈ Lr(R3) for all r ∈ [2,∞),
for N = 1, one has u ∈ L∞(R2) ∩ L2(R2).

(31.23)

[Taught on Friday April 7, 2000.]
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Sobolev’s Embedding Theorem for Besov
Spaces

Using the Fourier transform one can obtain an embedding result for spaces
Hs(RN ) into Lorentz spaces.

Lemma 32.1. (i) For 0 < s < N
2 one has Hs(RN ) ⊂ Lp(s),2(RN ) with 1

p(s) =
1
2 − s

N .
(ii) For s > N

2 one has Hs(RN ) ⊂ FL1(RN ) ⊂ C0(RN ).

Proof : (i) One has Fu(ξ) = (1 + |ξ|s)Fu(ξ) 1
1+|ξ|s , and as u ∈ Hs(RN )

means (1 + |ξ|s)Fu(ξ) ∈ L2(RN ), one must check in which Lorentz space
the function 1

1+|ξ|s is. For 0 < s < N
2 one has 1

1+|ξ|s ≤ 1
|ξ|s ∈ LN/s,∞(RN ),

so that Fu ∈ La(s),2(RN ) with 1
a(s) = 1

2 + s
N . Because F−1 = F maps

L1(RN ) into L∞(RN ) and L2(RN ) into itself, it maps
(
L1(RN ), L2(RN )

)
θ,2

into
(
L∞(RN ), L2(RN )

)
θ,2

; the first space is Lp(θ),2(RN ) if 1
p(θ) = 1−θ

1 + θ
2 ,

and the last space is Lq(θ),2(RN ) with 1
q(θ) = 1−θ

2 + θ
∞ = 1 − 1

p(θ) , so that
q(θ) = p(θ)′. Therefore Fu ∈ La(s),2(RN ) implies u ∈ Lb(s),2(RN ) with
b(s) = a(s)′, i.e., 1

b(s) = 1
2 − s

N .
(ii) For s > N

2 one has 1
1+|ξ|s ∈ L2(RN ), so that Fu ∈ L1(RN ), and one

uses the fact that F or F map L1(RN ) into C0(RN ). ��
Of course, one can improve the result for s > N

2 , and show that Hs(RN )
is embedded into Ck,α(RN ) when N

2 +k < s < N
2 +k +1 with α = s− N

2 −k,
but for Sobolev spaces corresponding to p = 2, the Fourier transform is not a
good tool, and proofs must be obtained in a different way.

Definition 32.2. For 1 ≤ p ≤ ∞ and 0 < s < 1, the Sobolev space W s,p(RN )
is defined as

W s,p(RN ) =
(
W 1,p(RN ), Lp(RN )

)
1−s,p

. (32.1)

For 1 ≤ p, q ≤ ∞, and 0 < s < 1 one defines the Besov space Bs,p
q (RN ) as

Bs,p
q (RN ) =

(
W 1,p(RN ), Lp(RN )

)
1−s,q

. �� (32.2)
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If k is a positive integer and k < s < k + 1, one may define the Sobolev
space W s,p(RN ) or the Besov space Bs,p

q (RN ) in at least two ways; one
way is that u ∈ W k,p(RN ) and for all multi-indices α of length |α| = k
one has Dαu ∈ W s−k,p(RN ) or Bs−k,p

q (RN ); another way is to define it as(
Wm,p(RN ), Lp(RN )

)
θ,q

, with q = p or not, with an integer m ≥ k + 1, and
with (1 − θ)m = s. Of course, there are a few technical questions to check in
order to show that these two definitions coincide.

Before using scaling arguments for Wm,p(RN ), it is useful to remark that
an equivalent norm is ||u||p +

∑
|α|=m ||Dαu||p; it means that for 0 < |β| < m

one can bound ||Dβu||p in terms of ||u||p and all the norms ||Dαu||p for the
multi-indices of length exactly equal to m.

One starts in one dimension, noticing that if ϕ ∈ C∞
c (R) is equal to 1 near

0, then (ϕH)′ = δ0 + ψ, where H is the Heaviside function, and ψ ∈ C∞
c (R);

one deduces that (ϕH) 
 u′′ = u′ + ψ′ 
 u, from which one deduces that
||u′||p ≤ ||ϕH||1||u′′||p + ||ψ′||1 ||u||p. Similarly, if 0 < k < m, one replaces
the Heaviside function by the function K defined by K(t) = tm−k−1

(m−k)! H(t) for
all t, so that (ϕK)(m−k) = δ0 + χ with χ ∈ C∞

c (R), and deriving k times
and taking the convolution with u one finds that ||u(k)||p ≤ ||ϕK||1||u(m)||p +
||χ(k)||1 ||u||p. In order to bound ||Dβu||p, one writes γ = (0, β2, . . . , βN ),
α = (m+β1−|β|, β2, . . . , βN ) and v = Dγu, so that for almost all x2, . . . , xN

one can use the one-dimensional result in order to derive a bound for the norm
of Dβu = Dβ1

1 v in terms of v and Dαu = D
m−|β|
1 v; then one takes the power

p and integrates in x2, . . . , xN ; one finishes by using an induction argument
on N .

By the usual scaling argument,

for |β| < m one has ||Dβu||p ≤ C ||u||1−θ
p

( ∑

|α|=m

||Dαu||p
)θ with θ =

|β|
m

,

(32.3)
so that

(
Wm,p(RN ), Lp(RN )

)
(m−k)/m,1

⊂ W k,p(RN ) if 0 < k < m. (32.4)

To use the reiteration theorem 26.3, one also needs to check that one has
the inclusion

W k,p(RN ) ⊂
(
Wm,p(RN ), Lp(RN )

)
(m−k)/m,∞. (32.5)

To do this, one tries the usual decomposition u = ε
u+(u−ε
u), where ε is
a special smoothing sequence; for |α| = m one writes Dα(ε
u) = Dβε
Dγu
with α = β + γ and |β| = m − k and |γ| = k, so that ||ε 
 u||W m,p(RN ) ≤
C εk−m; one has u(x) − (ε 
 u)(x) =

∫
RN ε(y)

(
u(x) − u(x − y)

)
dy, and if

k = 1 one just uses the fact that ||u − τyu||p ≤ C |y| ||grad(u)||p, but if k > 1
one must be more careful, and besides the condition

∫
RN 1(y) dy = 1 one
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also imposes the conditions
∫

RN yγ1(y) dy = 0 for all multi-indices γ with
1 ≤ |γ| ≤ k− 1. One uses Taylor’s expansion formula with integral remainder
f(1) = f(0) + f ′(0) + . . . + f(k−1)(0)

(k−1)! +
∫ 1

0
(1−t)k−1f(k)(t)

(k−1)! dt for the function f

defined by f(t) = u(x − t y), using the fact that for 1 ≤ |γ| ≤ k − 1 one
has
∫

RN ε(y)Dγu(x)yγ dy = 0, and one deduces that ||u − ε 
 u||p ≤ C εk,
and this decomposition is valid for all ε ∈ (0, 1), which proves the assertion
(because Wm,p(RN ) ⊂ Lp(RN )).

Repeated applications of Sobolev’s embedding theorem for W 1,q(RN ) show
that if p > N

m one has Wm,p(RN ) ⊂ L∞(RN ), and a scaling argument then

gives ||u||∞ ≤ C||u||1−θ
p

(∑
|α|=m ||Dαu||p

)θ with θ = N
m p , and this means

that

if p >
N

m
one has

(
Wm,p(RN ), Lp(RN )

)
θ,1

⊂ L∞(RN ) with 1 − θ =
N

mp
.

(32.6)
From this, using the reiteration theorem 26.3 one deduces that

for 0<s< N
p one has W s,p(RN )⊂Lp(s),p(RN ) and Bs,p

q (RN )⊂Lp(s),q(RN )

with 1
p(s) = 1

p − s
N .

(32.7)
Another problem where an interpolation space with second parameter 1

is useful is the question of traces of Hs(RN ) spaces. For s > 1
2 , functions in

Hs(RN ) have a trace on RN−1, which belongs to Hs−(1/2)(RN−1), and one
can reiterate this argument, so that functions in Hs(RN ) have a trace on
RN−k if s > k

2 , and the trace belongs to Hs−(k/2)(RN−k); the continuity of
functions in Hs(RN ) for s > N

2 then appears as a natural question related to
taking traces on subspaces.

Functions in H1/2(RN ) do not have traces on RN−1, because the space of
functions in C∞

c (RN ) which vanish near RN−1 is dense in H1/2(RN ) (so that
the only continuous way to define traces is to have the traces of all functions
equal to 0), but the slightly smaller space

(
H1(RN ), L2(RN )

)
1/2,1

does have
traces on RN−1, and the space of traces is exactly L2(RN−1), i.e.,

γ0

((
H1(RN ), L2(RN )

)
1/2,1

)
= L2(RN−1). (32.8)

That traces exist and belong to L2(RN−1) follows immediately from the stan-
dard estimate ||γ0u||2 ≤ C ||u||1/2

2 ||∂Nu||1/2
2 , but I had not heard about this

remark before a talk by Shmuel AGMON in 1975, where he discussed some
joint work1 with Lars HÖRMANDER where they had proven surjectivity by an
argument of functional analysis, working explicitly on the transposed oper-
ator. I constructed an explicit lifting by adapting an argument which I had
1 They were working on questions of scattering and they needed a space whose

Fourier transform has traces on spheres, with traces belonging to L2; they then
introduced the Fourier transform of the space described here.
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used for proving2,3 the theorem of Emilio GAGLIARDO that

γ0

(
W 1,1(RN )

)
= L1(RN−1), (32.9)

and it is useful to describe that result first.
The idea is shown in the case of R2, and given a function f ∈ L1(R)

one wants to construct u ∈ W 1,1(R2) whose trace on the x axis is f . One
uses a standard approximation argument used in numerical analysis, based
on continuous piecewise affine functions.

For a mesh size h > 0, one considers the space Vh of functions in L1(R)
which are affine on each interval (k h, (k + 1)h) for k ∈ Z, and continuous at
the nodes k h, k ∈ Z; because there exists 0 < α < β such that α(|g(0)| +
|g(1)|) ≤

∫ 1

0
|g(x)| dx ≤ β(|g(0)| + |g(1)|) for all affine functions on (0, 1), one

deduces that for g ∈ Vh one has 2α h
∑

k∈Z |g(k h)| ≤ ||g||1 =
∫

R
|g(x)| dx ≤

2β h
∑

k∈Z |g(k h)|; the important observation is that Vh ⊂ W 1,1(R) and for
g ∈ Vh one has ||g′||1 =

∑
k∈Z |g((k + 1)h) − g(k h)| ≤ 2

∑
k∈Z |g(k h)| ≤

1
α h ||g||1.

A function g ∈ Vh is lifted to a function in W 1,1(R2) by the explicit formula
G(x, y) = g(x)e−|y|/h, and one checks immediately that the trace of G is g
and that ||G||1 = 2h ||g||1,

∣
∣
∣
∣∂G

∂y

∣
∣
∣
∣
1

= 2||g||1 and
∣
∣
∣
∣∂G

∂x

∣
∣
∣
∣
1

= 2h ||g′||1 ≤ 2
α ||g||1.

Once one knows that the union of all Vh for h > 0 is dense one has a way
to lift f ∈ L1(R) by writing it as a series

∑∞
n=1 gn, choosing 0 < ε < 1 and

choosing g1 such that ||f−g1||1 ≤ ε ||f ||1, then g2 such that ||(f−g1)−g2||1 ≤
ε ||f − g1||1 ≤ ε2||f ||1, and so on, so that

∑∞
n=1 ||gn||1| ≤ 1

1−ε ||f ||1.
The density is proven by approximating functions in Cc(R), which is a

dense subspace of L1(R). For ϕ ∈ Cc(R) one constructs the interpolated4

function Πhϕ which is the function of Vh such that Πhϕ(k h) = ϕ(k h) for all
k ∈ Z; one checks easily that |Πhϕ(x)−ϕ(x)| ≤ ω(h) for all x, where ω is the
modulus of uniform continuity of ϕ, so that when hn → 0, the sequence Πhn

ϕ
converges uniformly to ϕ and as support(Πhϕ) ⊂ support(ϕ) + [−h,+h] one
also has ||Πhn

ϕ − ϕ||1 → 0.
Jaak PEETRE has shown that there does not exist a linear continuous

lifting from L1(RN−1) into W 1,1(RN ).
[Taught on Monday April 10, 2000.]

2 When I was a student, I had tried to read Emilio GAGLIARDO’s article, but not
knowing much Italian at the time I had trouble understanding what he was doing
with all these cubes which appeared in his proof. Many years after, I constructed
my own proof, but I did not check if my understanding of Italian is good enough
now for reading his proof; I thought that my argument must have been identical
to his original idea, but Françoise DEMENGEL told me that it is different.

3 Françoise DEMENGEL, French mathematician. She works in Cergy-Pontoise,
France.

4 Here we encounter the other meaning of the word interpolation, going back to
LAGRANGE, a classical tool in numerical analysis.
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Again the idea is shown in the case of R2, and given a function f ∈ L2(R)
one wants to construct u ∈

(
H1(R2), L2(R2)

)
1/2,1

whose trace on the x

axis is f . For a (positive) mesh size h one considers the space Vh of
functions in L2(R) which are affine on each interval (k h, (k + 1)h) for
k ∈ Z, and continuous at the nodes k h, k ∈ Z; because there exists
0 < α < β such that α (|g(0)|2 + |g(1)|2)1/2 ≤

(∫ 1

0
|g(x)|2 dx

)1/2 ≤
β(|g(0)|2 + |g(1)|2)1/2 for all affine functions on (0, 1), one deduces that for
g ∈ Vh one has

√
2α

√
h
(∑

k∈Z |g(k h)|2
)1/2 ≤ ||g||2 =

(∫
R
|g(x)|2 dx

)1/2 ≤
√

2β
√

h
(∑

k∈Z |g(k h)|2
)1/2; the important observation is that Vh ⊂ H1(R)

and for g ∈ Vh one has ||g′||2 = 1√
h

(∑
k∈Z |g((k + 1)h) − g(k h)|2

)1/2 ≤
2√
h

(∑
k∈Z |g(k h)|2

)1/2 ≤ C
h ||g||2.

A function g ∈ Vh is lifted to a function in H1(R2) by the explicit formula
G(x, y) = g(x)e−|y|/h, and one checks immediately that the trace of G is g and
that ||G||2 =

√
h ||g||2,

∣
∣
∣
∣∂G

∂y

∣
∣
∣
∣
2

= 1√
h
||g||2 and

∣
∣
∣
∣∂G

∂x

∣
∣
∣
∣
2

=
√

h ||g′||2 ≤ C√
h
||g||2.

One then has ||G||L2(R2) ≤
√

h ||g||2 and ||G||H1(R2) ≤ C√
h
||g||2 for 0 < h < 1,

so that ||G||(H1(R2),L2(R2))1/2,1
≤ C||G||1/2

H1(R2)||G||1/2
L2(R2) ≤ C ′||g||2. Then one

uses the fact that the union of all Vh for h > 0 is dense, so that any f ∈ L2(R)
can be written as a series

∑∞
n=1 gn, with

∑∞
n=1 ||gn||2| ≤ C ||f ||2.

Although functions in H1/2(R) are not continuous, as they are not even
bounded, piecewise smooth functions which are discontinuous at a point do
not belong to H1/2(R). For example, let ϕ ∈ C∞

c (R) with ϕ = 1 near 0 and let
u = ϕH where H is the Heaviside function; then u′ = δ0+ψ with ψ ∈ C∞

c (R),
so that 2i π ξFu(ξ) = 1 + Fψ(ξ) so that |Fu| behaves like 1

2π |ξ| near ∞, so
that (1 + |ξ|1/2)|Fu| /∈ L2(R), i.e., u /∈ H1/2(R).

As it seems that functions in H1/2(R) cannot have discontinuities at a
point, one expects some kind of continuity, but of a different nature as the
value at a point does not make sense. The following ideas have been introduced
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by Jacques-Louis LIONS and Enrico MAGENES, and some related work has
been done by Pierre GRISVARD.1

Lemma 33.1. If u ∈ H1/2(R) then one has |u(x)−u(−x)|√
|x|

∈ L2(R).

Proof : By Hardy’s inequality (13.3) one has
∣
∣
∣
∣ |u(x)−u(0)|

|x|
∣
∣
∣
∣
2
≤ 2||u′||2 for u ∈

H1(R), and similarly
∣
∣
∣
∣ |u(−x)−u(0)|

|x|
∣
∣
∣
∣
2
≤ 2||u′||2, so that

∣
∣
∣
∣ |u(x)−u(−x)|

|x|
∣
∣
∣
∣
2
≤

4||u′||2 for all u ∈ H1(R). One considers the mapping u 
→ u − ǔ which
maps H1(R) into L2 for the measure dx

|x|2 and L2(R) into L2 for the measure
dx, so that it maps H1/2(R) =

(
H1(R), L2(R)

)
1/2,2

into the corresponding

interpolation space, which is L2 for the measure dx
|x| . ��

Similarly, Jacques-Louis LIONS and Enrico MAGENES noticed that when
considering the interpolation spaces

(
H1

0 (Ω), L2(Ω)
)
θ,2

for a bounded open

set with a Lipschitz boundary, it does give H1−θ
0 (Ω) for θ = 1

2 (and one has
Hs

0(Ω) = Hs(Ω) for 0 ≤ s ≤ 1
2 ), but for θ = 1

2 it gives a new space, which
they denoted by H

1/2
00 (Ω).

Lemma 33.2. If u ∈ H
1/2
00 (R+) =

(
H1

0 (R+), L2(R+)
)
1/2,2

, then u√
x

∈
L2(R+).

Proof : As u ∈ H1
0 (R+) implies u

x ∈ L2(R+) by Hardy’s inequality (13.3), one
has

(
H1

0 (R+), L2(R+)
)
1/2,2

⊂
(
L2
(
R+; dx

x2

)
, L2
(
R+; dx

))
1/2,2

=
L2
(
R+; dx

x

)
. ��

(33.1)

A related result is that if u ∈ H1
0 (Ω) the extension ũ of u by 0 outside Ω

belongs to H1(RN ) and similarly if u ∈ Hs
0(Ω) (closure of C∞

c (Ω) in Hs(Ω))
then ũ ∈ Hs(RN ) for 0 ≤ s ≤ 1 if s = 1

2 , but not for s = 1
2 , because

1 ∈ H
1/2
0 (Ω) = H1/2(Ω) and the extension by 0 is piecewise smooth and

discontinuous, so that it is not in H1/2(RN ). Actually, H
1/2
00 (Ω) is character-

ized either as the space of functions in H1/2(Ω) such that u√
d(x)

∈ L2(Ω),

where d(x) is the distance of x to the boundary ∂Ω, or as the space of functions
u ∈ H1/2(Ω) such that ũ ∈ H1/2(RN ).

A related difficulty is that any partial derivative ∂
∂xj

maps H1(Ω) into
L2(Ω) and L2(Ω) into H−1(Ω), and it does map H1−s(Ω) into H−s(Ω) =(
Hs

0(Ω)
)′ for 0 ≤ s ≤ 1 and s = 1

2 , but not for s = 1
2 , because in this case it

maps H1/2(Ω) into the dual of H
1/2
00 (Ω).

This technical difficulty appears when one solves boundary value problems
like −∆u = f in Ω with the boundary ∂Ω made of two disjoint pieces, ΓD

where a Dirichlet condition is imposed, and ΓN where a Neumann condition
1 Pierre GRISVARD, French mathematician, 1940–1994. He worked in Nice, France.
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is imposed; in the case where the parts ΓD and ΓN have a common boundary,
the precise pairs of data allowed are a little technical to characterize. If all the
boundary is ΓN then the precise space is H−1/2(∂Ω), the dual of H1/2(∂Ω)
(traces of functions of H1(Ω)), but the important point is that one cannot
restrict an element of H−1/2(∂Ω) to a part ΓN whose boundary is smooth
enough, because restriction is the transpose of the operator of extension by 0,
and this extension operation ˜ does not act on H1/2(ΓN ) if the (N − 1)-
dimensional Hausdorff measure of ΓD is positive.

These technical difficulties may seem quite academic, but some models
in continuum mechanics lead to using operations which are not defined in
an obvious way, and it is important to understand if one should reject some
laws as being nonphysical or if one should try to overcome the mathematical
difficulty that they represent. One such example is the static law of friction due
to COULOMB,2 which involves a sign of a normal force at the boundary and
an inequality on the strength of a tangential force at the boundary; if one uses
linearized elasticity, the natural information coming from the finiteness of the
stored elastic energy gives the various forces as normal traces of functions in
H(div;Ω), i.e., elements in H−1/2(∂Ω); unfortunately, one cannot define the
absolute value of an arbitrary element in H−1/2(∂Ω). However, one can define
what a nonnegative element is by stating that it is a nonnegative measure, so
the question is to find a way to express Coulomb’s law which makes sense from
a mathematical point of view, although there are indications that Coulomb’s
law is not exactly what real materials follow, because dynamics does play a
role.
[Taught on Wednesday April 12, 2000.]

2 Charles Augustin DE COULOMB, French engineer, 1736–1806.
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Defining Sobolev Spaces and Besov Spaces
for Ω

One has proven that for all integers 0 < k < m and all 1 ≤ p ≤ ∞ one
has
(
Wm,p(RN ), Lp(RN )

)
θ,1

⊂ W k,p(RN ) ⊂
(
Wm,p(RN ), Lp(RN )

)
θ,∞ with

m(1− θ) = k. For s > 0 which is not an integer one defines the Sobolev space
W s,p(RN ) as

(
Wm,p(RN ), Lp(RN )

)
η,p

with m > s and (1 − η)m = s, and
one deduces from the reiteration theorem 26.3 that one also has W s,p(RN ) =(
Wm1,p(RN ),Wm2,p(RN )

)
ζ,p

with equivalent norms if m1,m2 are nonnega-
tive integers such that s = (1 − ζ)m1 + ζ m2 for some ζ ∈ (0, 1) (i.e., either
m1 > s > m2 or m1 < s < m2), and this is still true even if m1,m2 are
nonnegative real numbers which are not necessarily integers, always under
the condition ζ ∈ (0, 1), of course.

Similarly, if for s > 0 and 1 ≤ q ≤ ∞ one defines the Besov space
Bs,p

q (RN ) as
(
Wm,p(RN ), Lp(RN )

)
η,q

with m > s and (1 − η)m = s, one
deduces that for nonnegative reals s1, s2 such that s = (1 − ζ)s1 + ζ s2 with
ζ ∈ (0, 1), one has Bs,p

q (RN ) =
(
W s1,p(RN ),W s2,p(RN )

)
ζ,q

and Bs,p
q (RN ) =

(
Bs1,p

q1
(RN ), Bs2,p

q2
(RN )

)
ζ,q

with equivalent norms, for all 1 ≤ q1, q2 ≤ ∞.
If s is not an integer, one has W s,p(RN ) = Bs,p

p (RN ).
Although one has H1(RN ) =

(
H2(RN ), L2(RN )

)
1/2,2

, the case for p = ∞
is different and the space W 1,∞(RN ) which is the space Lip(RN ) of Lipschitz
continuous functions is a proper subspace of

(
W 2,∞(RN ), L∞(RN )

)
1/2,∞,

which coincides with a space introduced by Antoni ZYGMUND and denoted
by Λ1(RN ),

Λ1(RN ) = {u ∈ L∞(RN ) | there exists C such that
|u(x − h) + u(x + h) − 2u(x)| ≤ C |h| for all x, h ∈ RN ,

(34.1)

or equivalently u ∈ L∞(RN ) and ||τhu + τ−hu− 2u||∞ ≤ C|h| for all h ∈ RN .
One deduces also that if s > k where k is a positive integer, then for

every multi-index α with |α| = k the derivation Dα is linear continuous from
W s,p(RN ) into W s−|α|,p(RN ) and also from Bs,p

q (RN ) into B
s−|α|,p
q (RN ),
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if 1 ≤ p, q ≤ ∞. This follows immediately from the fact that for any in-
teger m ≥ k the derivation Dα is linear continuous from Wm,p(RN ) into
Wm−|α|,p(RN ), and after choosing m1,m2 such that k ≤ m1 < s < m2 and
computing ζ ∈ (0, 1) such that s = (1− ζ)m1 + ζ m2, one applies the interpo-
lation property, and Dα maps continuously

(
Wm1,p(RN ),Wm2,p(RN )

)
ζ,q

=

Bs,p
q (RN ) into

(
Wm1−|α|,p(RN ),Wm2−|α|,p(RN )

)
ζ,q

= B
s−|α|,p
q (RN ).

For Ω an open subset of RN , one may define the Sobolev W s,p(Ω) for all
positive real s which are not integers in at least two different ways; the first
one will be denoted by Xs,p for the discussion,

W s,p(Ω) = space of restrictions of functions from W s,p(RN ), (34.2)

with the quotient norm

||u||W s,p(Ω) = inf
U |Ω=u

||U ||W s,p(RN ); (34.3)

the second one will be denoted by Y s,p for the discussion,

W s,p(Ω) =
(
Wm1,p(Ω),Wm2,p(Ω)

)
ζ,p

with 0 < ζ < 1
and m1,m2 nonnegative integers such that s = (1 − ζ)m1 + ζ m2.

(34.4)
Of course, one can also give two definitions for defining the Besov spaces
Bs,p

q (Ω).
Because the restriction to Ω is linear continuous from Wm1,p(RN ) into

Wm1,p(Ω) and also linear continuous from Wm2,p(RN ) into Wm2,p(Ω), it
is continuous from W s,p(RN ) =

(
Wm1,p(RN ),Wm2,p(RN )

)
ζ,p

into Y s,p =
(
Wm1,p(Ω),Wm2,p(Ω)

)
ζ,p

, and as every element of Xs,p is the restriction of
an element from W s,p(RN ), one deduces that Xs,p ⊂ Y s,p.

If the boundary of Ω is smooth enough so that there exists a continu-
ous extension P which maps Wm1,p(Ω) into Wm1,p(RN ) and Wm2,p(Ω) into
Wm2,p(RN ), then it maps Y s,p =

(
Wm1,p(Ω),Wm2,p(Ω)

)
ζ,p

into W s,p(RN ) =
(
Wm1,p(RN ),Wm2,p(RN )

)
ζ,p

, so that every element of Y s,p is the restriction
to Ω of an element of W s,p(RN ), i.e., one has Y s,p ⊂ Xs,p.

The extension property has been shown for W 1,p(Ω) if Ω is bounded with
a Lipschitz boundary (Lemma 12.4), and an analogous situation has been
described for W k,p(RN

+ ) and 0 ≤ k ≤ m (Lemma 12.5), and it extends to the
case of bounded open sets with smooth boundary. As was mentioned before,
STEIN has constructed an extension valid for all Wm,p(Ω) if Ω is bounded
with a Lipschitz boundary.
[Taught on Monday April 17, 2000.]
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Characterization of W s,p(RN)

Before giving a characterization of W s,p(Ω) in the case of a bounded open
set with a Lipschitz boundary, it is useful to begin with the case of RN . One
starts with a preliminary result.

Lemma 35.1. If 0 < s < 1 and 1 ≤ p ≤ ∞ one has

Bs,p
∞ (RN )=

(
W 1,p(RN ), Lp(RN )

)
1−s,∞={u∈Lp(RN ) | ||u−τhu||p≤C |h|s

for all h ∈ RN}.
(35.1)

Proof : If u ∈ W 1,p(RN ) one has ||u − τhu||p ≤ |h| ||grad(u)||p and if
u ∈ Lp(RN ) one has ||u − τhu||p ≤ 2||u||p, and as the mapping u 
→
u − τhu is linear, one finds that for θ ∈ (0, 1) one has ||u − τhu||p ≤
C |h|1−θ||u||(W 1,p(RN ),Lp(RN ))θ,∞ for all u ∈

(
W 1,p(RN ), Lp(RN )

)
θ,∞.

Conversely, assume that u ∈ Lp(RN ) and ||u − τhu||p ≤ C |h|s for all
h ∈ RN . One decomposes

u = ε 
 u + (u − ε 
 u), (35.2)

where ε is a special smoothing sequence, i.e., ε(x) = 1
εN 1

(
x
ε

)
, with 1 ∈

C∞
c (RN ) and

∫
RN 1(x) dx = 1, but one adds the hypothesis that 1 is an

even function. One has

u(x) − (ε 
 u)(x) =
∫

RN ε(y)
(
u(x) − u(x − y)

)
dy, so that ||u − ε 
 u||p ≤

∫
RN |ε(y)| ||u − τyu||p dy ≤

∫
RN C |ε(y)| |y|s dy = C ′ εs.

(35.3)
One has ||ε 
 u||p ≤ ||ε||1||u||p = C ||u||p, and for any derivative ∂j = ∂

∂xj

one has ∂j(ε 
 u) = (∂jε) 
 u, but one needs a better estimate than ||∂j(ε 

u)||p ≤ ||(∂jε)||1||u||p = C

ε ||u||p, which has not used all the information on
u. Changing y into −y in the integral, one can write ∂j(ε 
 u)(x) as either∫

RN (∂jε)(y)u(x − y) dy or
∫

RN (∂jε)(−y)u(x + y) dy or as the half sum of
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these two terms, and this is where having chosen for 1 an even function is
useful, as ∂jε is an odd function, so that

∂j(ε 
 u)(x) =
1
2

∫

RN

(∂jε)(y)
(
u(x − y) − u(x + y)

)
dy, (35.4)

from which one deduces

||∂j(ε 
 u)||p ≤ 1
2

∫
RN |(∂jε)(y)| ||τyu − τ−yu||p dy ≤

C
∫

RN |(∂jε)(y)| |h|s dy = C ′′εs−1.
(35.5)

For E0 = W 1,p(RN ) and E1 = Lp(RN ), this shows that K(t;u) ≤ C1(1 +
εs−1) + C2t εs, and choosing ε = 1

t for t ≥ 1, one obtains K(t;u) ≤ C3t
1−s,

and for 0 < t < 1 one has K(t;u) ≤ t ||u||p (because in the case E0 ⊂ E1 one
always has the decomposition u = 0+u), so that t−θK(t;u) ∈ L∞(0,∞) with
θ = 1 − s. ��

Lemma 35.2. For 0 < s < 1 and 1 ≤ p < ∞,

W s,p(RN ) =
{

u ∈ Lp(RN ) |
∫ ∫

RN×RN

|u(x) − u(y)|p
|x − y|N+s p

dx dy < ∞
}

, (35.6)

or equivalently u ∈ Lp(RN ) and
∫

RN

( ||u−τyu||p
|y|s

)p dy
|y|N < ∞.

Proof : Let E0 = W 1,p(RN ) and E1 = Lp(RN ). If u ∈ W s,p(RN ) = (E0, E1)θ,p

with θ = 1−s, one has a decomposition u = u0+u1 with u0 ∈ E0, u1 ∈ E1 and
||grad(u0)||p + t ||u1||p ≤ 2K(t;u) and t−θK(t;u) ∈ Lp

(
R+; dt

t

)
. For y ∈ RN

one has

||u − τyu||p ≤ ||u0 − τyu0||p + ||u1 − τyu1||p ≤ |y| ||grad(u0)||p + 2||u1||p ≤
C
(
|y| + 1

t

)
K(t;u),

(35.7)
and the choice t = 1

|y| gives ||u − τyu||p ≤ C |y|K
(

1
|y| ;u

)
. Denoting by σN−1

the (N − 1)-Hausdorff measure of the unit sphere, this gives

∫
RN

( ||u−τyu||p
|y|s

)p dy
|y|N ≤ C

∫
RN

( |y|K( 1
|y| ;u)

|y|s
)p dy

|y|N =

C σN−1

∫∞
0

[
|y|1−sK

(
1
|y| ;u

)]p dy
|y| = C σN−1

∫∞
0

(
t−θK(t;u)

)p dt
t < ∞.

(35.8)
Conversely, assume that u ∈ L2(RN ) and

∫ ∫
RN×RN

|u(x)−u(y)|p
|x−y|N+s p dx dy < ∞, so

that if one writes F (z) = ||u−τzu||p for z ∈ RN , one has
∫

RN

F (z)
|z|N+s p dz < ∞.

Let

F (r) = the average of F on the sphere |y| = r, so that
∫
|y|=r

|F (y)|p dHN−1 ≤
∫
|y|=r

|F (y)|p dHN−1
(35.9)
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by Hölder’s inequality, so that
∫ ∞

0

|F (r)|p
rs p

dr

r
=

1
σN−1

∫

RN

F (z)
|z|N+s p

dz ≤
∫

RN

F (z)
|z|N+s p

dz < ∞. (35.10)

Then as for the preceding lemma one decomposes u = ε 
 u + (u − ε 
 u)
for an even special smoothing sequence with support(1) ⊂ B(0, 1), and one
obtains

||u − ε 
 u||p ≤
∫

RN |ε(y)| ||u − τyu||p dy =
∫

RN |ε(y)|F (y) dy ≤
C
εN

∫
|y|≤ε

F (y) dy = C
εN

∫
|y|≤ε

F (y) dy = CσN−1
ε

∫ ε

0
F (r) dr,

(35.11)

and using the fact that ∂jε is odd, one obtains

||∂j(ε 
 u)||p ≤ 1
2

∫
RN |∂jε(y)| ||τyu − τ−yu||p dy ≤

1
2

∫
RN |∂j

(
F (y) + F (−y)

)
dy ≤ C

εN−1

∫
|y|≤ε

F (y) dy ≤ CσN−1
ε2

∫ ε

0
F (r) dr.

(35.12)
One deduces that K(t;u) ≤ C

(
1 + 1

ε2

∫ ε

0
F (r) dr

)
+ C t

ε

∫ ε

0
F (r) dr, so that

for t > 1 one takes ε = 1
t and one has K(t;u) ≤ C + C t2

∫ 1/t

0
F (r) dr (and

K(t;u) ≤ t ||u||p for t < 1). Then with θ = 1−s, one has t−θK(t;u) = C t−θ +
C tst

∫ 1/t

0
F (r) dr, and as the desired condition t−θK(t;u) ∈ Lp

(
R+; dt

t

)
is

invariant by the change of t into 1
t , one has to show that the function G defined

on (0, 1) by G(ε) = 1
ε

∫ ε

0
F (r)
εs dr belongs to Lp

(
(0, 1); dε

ε

)
, as a consequence

of the hypothesis that F (r)
rs ∈ Lp

(
R+; dε

ε

)
, and this is like deriving Hardy’s

inequality (13.3). ��
Of course, the proof also applies to the case p = ∞, but is covered by the

previous lemma.
[Taught on Wednesday April 19, 2000.]
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Characterization of W s,p(Ω)

One can now deduce a characterization of W s,p(Ω) in the case of a bounded
open set of RN with a Lipschitz boundary, with 0 < s < 1 and 1 ≤ p ≤ ∞.

Lemma 36.1. If Ω is a bounded open set of RN with a Lipschitz boundary,
then for 0 < s < 1 and 1 ≤ p < ∞,

u∈W s,p(Ω) if and only if u∈Lp(Ω) and
∫ ∫

Ω×Ω

|u(x)−u(y)|p
|x−y|N+s p

dx dy<∞.

(36.1)

Proof : If u ∈ W s,p(Ω), defined as the restriction to Ω of a function U ∈
W s,p(RN ), then one has U ∈ Lp(RN ) and therefore by restriction u ∈ Lp(Ω),
and

∫ ∫
Ω×Ω

|u(x)−u(y)|p
|x−y|N+s p dx dy =

∫ ∫
Ω×Ω

|U(x)−U(y)|p
|x−y|N+s p dx dy ≤

∫ ∫
RN×RN

|U(x)−U(y)|p
|x−y|N+s p dx dy < ∞.

(36.2)

Let u ∈ Lp(Ω) satisfy
∫ ∫

Ω×Ω
|u(x)−u(y)|p
|x−y|N+s p dx dy < ∞. For a partition of

unity θi, i ∈ I, each θiu satisfies a similar property, because

|(θiu)(x) − (θiu)(y)| ≤ |θi(x)| |u(x) − u(y)| + |θi(x) − θi(y)| |u(y)| ≤
C |u(x) − u(y)| + C |x − y| |u(y)|,

(36.3)

using the assumption that each θi is a Lipschitz continuous function. One
deduces that |(θiu)(x) − (θiu)(y)|p ≤ C ′ |u(x) − u(y)|p + C ′ |x − y|p |u(y)|p,
and one must show that

∫ ∫
Ω×Ω

|x−y|p|u(y)|p
|x−y|N+s p dx dy < ∞; this is a consequence

of
∫

Ω
|x−y|p

|x−y|N+s p dx ≤ M uniformly in y ∈ Ω, which holds because if Ω has

diameter d, the integral is bounded by
∫
|z|≤d

|z|p
|z|N+s p dz = C

∫ d

0
dt
tα < ∞,

as α = 1 + s p − p < 1. Using a local change of basis, one is led to con-
sider the case of ΩF = {(x′, xN ) | xN > F (x′} for F Lipschitz contin-
uous, and one extends u by symmetry, defining P u(x′, xN ) = u(x′, xN )



170 36 Characterization of W s,p(Ω)

if xN > F (x′) and P u(x′, xN ) = u(x′, 2F (x′) − xN ) if xN < F (x′). If
for x = (x′, xN ) one defines x = (x′, 2F (x′) − xN ), so that (x) = x,
then the integral

∫ ∫
RN×RN

|P u(x)−P u(y)|p
|x−y|N+s p dx dy can be cut into four parts,

one is I =
∫ ∫

ΩF ×ΩF

|u(x)−u(y)|p
|x−y|N+s p dx dy, which is finite by hypothesis; two

parts have the form
∫ ∫

ΩF ×(RN\ΩF )
|u(x)−u(y)|p
|x−y|N+s p dx dy, which is ≤ KpI be-

cause |x − y| ≤ K |x − y| for all x ∈ ΩF , y ∈ RN \ ΩF , and the fourth part
is
∫ ∫

(RN\ΩF )×(RN\ΩF )
|u(x)−u(y)|p
|x−y|N+s p dx dy, which is ≤ KpI because |x − y| ≤

K |x−y| for x, y ∈ RN \ΩF ; indeed, the map x = (x′, xN ) 
→
(
x′, xN −F (x′)

)

is Lipschitz continuous from ΩF onto RN
+ , and its inverse is Lipschitz continu-

ous, as it is z = (z′, zN ) 
→
(
z′, zN +F (z′)

)
, and one is reduced to studying the

same inequalities for RN
+ , i.e., in the case F = 0, where one has |x−y| ≤ |x−y|

if xN > 0 > yN , and |x − y| = |x − y| for all x, y. ��
Of course, the proof adapts to the case p = ∞, the only difference coming

from the fact that the norm is not expressed by an integral. It is important to
notice that without any regularity hypothesis on a set A ⊂ RN , any Lipschitz
continuous function defined on A can be extended to RN , and the same
result is true for Hölder continuous functions. To show this, one assumes
that C1 ≤ u(x) ≤ C2 for all x ∈ A, and that there exists α ∈ (0, 1] and
K ≥ 0 such that |u(x) − u(y)| ≤ K |x − y|α for all x, y ∈ A, then one
defines v(x) = supy∈A u(y) − K |x − y|α, and this gives a Hölder contin-
uous function which coincides with u on A, and then one truncates it by
w(x) = min

{
C2,max{C1, v(x)}

}
.

One should notice that W 1,∞(Ω) contains the space Lip(Ω) of Lipschitz
continuous functions, but may be different if Ω is not a bounded open set with
a Lipschitz boundary, because u ∈ W 1,∞(Ω) only implies that there exists K
such that |u(x) − u(y)| ≤ K dΩ(x, y) where dΩ(x, y) is the geodesic distance
from x to y, the infimum of the lengths of paths from x to y which stay in Ω,
and the geodesic distance from x to y could be much larger than the Euclidean
distance from x to y.

As a way to ascertain the importance of the regularity of the boundary
in proving some properties of Sobolev spaces, I describe a counter-example
which I had constructed in order to answer (partially) a question that Sergei
VODOP’YANOV1 had asked a few years ago in a talk at Carnegie Mellon Uni-
versity; I mentioned my result to my good friend Edward FRAENKEL,2 who
had studied domains with irregular boundaries, and he later mentioned it
to O’FARRELL,3 who gave a more general construction. After learning about

1 Sergei Konstantinovitch VODOP’YANOV, Russian mathematician. He works in
the Sobolev Institute of Mathematics in Novosibirsk, Russia.

2 Ludwig Edward FRAENKEL, German-born mathematician, born in 1927. He
worked in London, in Cambridge, in Brighton, and in Bath, England.

3 Anthony G. O’FARRELL, Irish mathematician, born in 1947. He worked at UCLA
(University of California at Los Angeles), Los Angeles, CA, and at National Uni-
versity of Ireland, Maynooth, Ireland.
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O’FARRELL’s construction, I contacted Sergei VODOP’YANOV, who mentioned
that he had also solved the case p > 2.

Lemma 36.2. For N ≥ 2, there exists a (bounded) connected open set Ω such
that W 1,∞(Ω) is not dense in W 1,p(Ω) for 1 ≤ p < ∞.

Proof : I only give the proof for N = 2 and for the case 2 < p < ∞; for the
case 1 ≤ p ≤ 2, O’FARRELL has introduced a more technical construction.
One defines Ω = (A ∪ B)

⋃
n Cn, where A is the open set {(x, y) | x > 0, y <

0, x2 + y2 < 1}, B is the open set {(x, y) | x < 0, y < 0, x2 + y2 < 1},
and for n ≥ 1 the passage Cn is defined in polar coordinates by {(x, y) |
0 ≤ θ ≤ π, 2−n − εn < r < 2−n}, and the sequence εn is chosen to satisfy
0 < εn < 2−n−1, so that the passages do not overlap, but also εn → 0
sufficiently rapidly so that

∑
n εn 2n p < ∞ for every p ∈ [1,∞).

One checks immediately that the function u∗ defined by u∗ = 0 in A,
u∗ = π in B and u∗ = θ in all Cn belongs to W 1,p(Ω) for 1 ≤ p < ∞.
This function u∗ cannot be approached in W 1,p(Ω) by functions in W 1,∞(Ω).
Indeed, because A is a bounded open set with a Lipschitz boundary, functions
in W 1,p(A) have an extension in W 1,p(R2) (Lemma 12.4), which is a con-
tinuous function as p > N = 2, so that u ∈ W 1,p(Ω) implies u ∈ C0(A),
and the linear form LAu = u(0) is continuous, where u(0) is computed
from the side of A. The same argument applies for B, and the linear form
LBu = u(0) is continuous, where u(0) is now computed from the side of B.
One has LB(u∗) − LA(u∗) = π, and u∗ cannot be approached by functions
from W 1,∞(Ω) because LB(u) = LA(u) for all u ∈ W 1,∞(Ω), so that any
function v belonging to the closure of W 1,∞(Ω) must satisfy LB(v) = LA(v).
Indeed, if u ∈ W 1,∞(Ω) one has |u(x) − u(y)| ≤ ||grad(u)||∞dΩ(x, y) where
dΩ(x, y) is the shortest distance from x to y when one stays in Ω, and letting
x tend to 0 from the side of A and y tend to 0 from the side of B, one has
dΩ(x, y) → 0 because there are arbitrary short paths by using the passages
Cn for large n. ��

For the general case 1 ≤ p < ∞, O’FARRELL starts with a Cantor set
of positive measure4 in a segment embedded in an open set of R2, and he
constructs passages through the complement of the Cantor set in such a way
that going from one side to the other by using the passages can be done
with dΩ(x, y) ≤ C d(x, y) for all x, y ∈ Ω; then he defines a function taking
different values on both sides of the Cantor set, which cannot be approached
by functions in W 1,∞(Ω) because they take the same value on both sides of
the Cantor set, and for functions in W 1,1(Ω) the restriction to any side of the
Cantor set is continuous.

The classical Cantor set has measure zero, and is used in the construction
of a nondecreasing function f∞ on [0, 1], with f∞(0) = 0, f∞(1) = 1, but is
constant on disjoint intervals In, n ≥ 1 such that

∑
n length(In) = 1; this

4 Georg Ferdinand Ludwig Philipp CANTOR, Russian-born mathematician, 1845–
1918. He worked in Halle, Germany.
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construction is often called the “devil’s staircase”, as it has infinitely many
flat levels (steps) and it goes up from 0 to 1 without having any jump.

The particular function f∞ constructed satisfies f∞(1 − x) = 1 − f∞(x)
for all x ∈ [0, 1], and f∞(3x) = 2f∞(x) for all 0 ≤ x ≤ 1

3 , and it is Hölder
continuous of order α = log 3

log 2 ; it is the unique fixed point of the mapping
T defined on functions ϕ which are continuous on [0, 1] with ϕ(0) = 0 and
ϕ(1) = 1, and T (ϕ) = ψ means ψ(x) = 1

2ϕ(3x) for 0 ≤ x ≤ 1
3 , ψ(y) = 1

2 for
1
3 ≤ y ≤ 2

3 , and ψ(z) = 1 − ψ(1 − z) for 2
3 ≤ z ≤ 1; one usually starts from

f0(x) = x for all x and one defines fn = T (fn−1) for n ≥ 1 and fn converges
to f∞ uniformly.
[Taught on Friday April 21, 2000.]
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Variants with BV Spaces

The characterizations of W s,p(Ω) and W s,p(RN ) provide a characterization
of which functions u ∈ W s,p(Ω) are such that the extension of u by 0 outside
Ω, denoted by ũ, belong to W s,p(RN ).

Lemma 37.1. Let Ω be a bounded open set of RN with a Lipschitz boundary.
Then, for 0 < s < 1 and 1 ≤ p ≤ ∞ one has ũ ∈ W s,p(RN ) if and only if
u ∈ W s,p(Ω) and d−su ∈ Lp(Ω), where d(x) denotes the distance from x to
the boundary ∂Ω.

Proof : One shows the case p < ∞, the case p = ∞ being easier, using the
fact that the functions used are Hölder continuous of order s. ũ ∈ Lp(RN ) is

equivalent to u ∈ Lp(Ω) and
∫ ∫

RN×RN

|ũ(x)−ũ(y)|p
|x−y|N+s p dx dy < ∞ is equivalent

to
∫ ∫

Ω×Ω
|u(x)−u(y)|p
|x−y|N+s p dx dy < ∞ and

∫ ∫
Ω×(RN\Ω)

|u(x)|p
|x−y|N+s p dx dy < ∞, i.e.,

u ∈ W s,p(Ω) and ϕu ∈ Lp(Ω) where |ϕ(x)|p =
∫

RN\Ω
1

|x−y|N+s p dy for x ∈ Ω.
Because B

(
0, d(x)

)
⊂ Ω one has |ϕ(x)|p ≤

∫
|z|≥d(x)

1
|z|N+s p dz = cN

d(x)s p , so
that |ϕ(x)| ≤ C d(x)−s. This shows that if u ∈ W s,p(Ω) and d−su ∈ Lp(Ω)
then ũ ∈ W s,p(RN ).

In order to prove the other implication, one uses a partition of unity,
θi, i ∈ I, and one notices that vi = θiu ∈ W s,p(Ω) and if ũ ∈ W s,p(RN ) one
has ṽi = θiũ ∈ W s,p(RN ), and as I is finite it is enough to show that for
each i one has d−svi ∈ Lp(Ω). This corresponds to proving that |ϕ| ≥ C d−s

in the case of ΩF when F is Lipschitz continuous; by using the mapping
(x′, xN ) 
→

(
x′, xN − F (x′)

)
whose inverse is

(
x′, xN ) 
→ (x′, xN + F (x′)

)

which are both Lipschitz continuous, one has to consider the case F = 0,
and in that case one has

∫
yN <0

1
|x−y|N+s p dy = K |xN |−s if xN > 0, by an

argument of homogeneity, and K is the value of the integral for xN = 1. ��
The devil’s staircase is an example of a function which is not absolutely

continuous, a term equivalent to having the derivative in L1, and the derivative
in the sense of distribution is actually a nonnegative measure whose support
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is the Cantor set, and it is useful to show Laurent SCHWARTZ’ proof that
nonnegative distributions are Radon measures.

Lemma 37.2. If a distribution T ∈ D′(Ω) is nonnegative in the sense that
〈T, ϕ〉 ≥ 0 for all ϕ ∈ C∞

c (Ω) such that ϕ ≥ 0, then T is a nonnegative Radon
measure.

Proof : Let K be a compact in Ω and let θ ∈ C∞
c (Ω) satisfy θ ≥ 0 everywhere

and θ = 1 on K. Then for every ϕ ∈ C∞
c (Ω) with support(ϕ) ⊂ K, one

has −||ϕ||∞θ ≤ ϕ ≤ ||ϕ||∞θ, so that −||ϕ||∞〈T, θ〉 ≤ 〈T, ϕ〉 ≤ ||ϕ||∞〈T, θ〉,
i.e., |〈T, ϕ〉| ≤ CK ||ϕ||∞, with CK = 〈T, θ〉. Then one extends this inequality
to the case where ϕ ∈ Cc(Ω) with support(ϕ) ⊂ K, showing that T is a
Radon measure, by applying the preceding inequality to ε
ϕ for a smoothing
sequence ε (and using CK′ for a larger compact set). Of course one also proves
in this way that 〈T, ϕ〉 ≥ 0 for all ϕ ∈ Cc(Ω) such that ϕ ≥ 0. ��

In one dimension, one says that a function f has bounded variation if there
exists a constant C such that for all N and all increasing sequences x1 < x2 <
. . . < xN one has

∑N−1
i=1 |f(xi) − f(xi+1)| ≤ C. One then proves that such a

function f has a limit on the left and a limit on the right at every point, with at
most a countable number of points of discontinuity, and that f = g−h where
g and h are nondecreasing, and as one checks easily by regularization that
the derivative of a nondecreasing function is a nonnegative Radon measure,
one finds that if f has bounded variation then f ′ is a Radon measure with
finite total mass, and the converse is true, because any Radon measure µ can
be written as µ+ − µ− for nonnegative Radon measures µ+, µ−, and every
nonnegative Radon measure is the derivative in the sense of distributions of
a nondecreasing function.

In order to define functions of bounded variation in more than one
space dimension, one needs to define the space Mb(RN ) of bounded Radon
measures.

If K is a compact, then C(K) the space of continuous functions on
K equipped with the sup norm is a Banach space, whose dual M(K) is
the space of Radon measures on K, equipped with the dual norm ||µ|| =
sup||ϕ||∞≤1 |〈µ, ϕ〉|. If Mn are distinct points in K then µ =

∑
n cnδMn

belongs
to M(K) if and only if

∑
n |cn| < ∞ and one has ||µ|| =

∑
n |cn|.

If Ω is open, then Cc(Ω) and its dual M(Ω) of all the Radon measures in
Ω are not Banach spaces (nor Fréchet spaces either), and if a sequence Mn of
points tends to the boundary ∂Ω then µ =

∑
n cnδMn

belongs to M(Ω) for
all coefficients cn (as each compact K only contains a finite number of these
points).

The space Mb(Ω), the space of bounded Radon measures, also called the
space of measures with finite (total) mass or the space of measures with finite
total variation, is the space of µ ∈ M(Ω) such that there exists C with
|〈µ, ϕ〉| ≤ C||ϕ||∞ for all ϕ ∈ Cc(Ω), and such a µ can be extended to all
ϕ ∈ C0(Ω), the space of bounded continuous functions in Ω which tend to 0
at the boundary ∂Ω of Ω, which is a Banach space with the sup norm, so that
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Mb(Ω) is the dual of C0(Ω) and is a Banach space. If Mn are distinct points
in Ω then µ =

∑
n cnδMn

belongs to Mb(Ω) if and only if
∑

n |cn| < ∞ and
one has ||µ|| =

∑
n |cn|.

The generalization to more than one space dimension has been studied by
Ennio DE GIORGI, FEDERER and Wendell FLEMING, but the earlier names
TONELLI1 and Lamberto CESARI2,3 are often mentioned.

Definition 37.3. For an open set Ω ⊂ RN , a function u belongs to BV (Ω),
the space of functions of bounded variation in Ω if u ∈ L1(Ω) and ∂u

∂xj
∈

Mb(Ω) for j = 1, . . . , N . ��

Lemma 37.4. BV (RN ) is continuously embedded in L1∗,1(RN ) for N ≥ 2,
and in L∞(R) for N = 1. If ε is a smoothing sequence and u ∈ BV (RN )
then ε 
 u is bounded in W 1,1(RN ). Moreover

BV (RN ) = {u ∈ L1(RN ) | ||τhu − u||1 ≤ C |h| for all h ∈ RN}. (37.1)

Proof : For j = 1, . . . , N , and ϕ ∈ C∞
c (RN ) one has

〈∂(�ε�u)
∂xj

, ϕ〉 = −〈ε 
 u, ∂ϕ
∂xj

〉 = −〈u, ̌ε 
 ∂ϕ
∂xj

〉 =

−〈u, ∂(�̌ε�ϕ)
∂xj

〉 = 〈 ∂u
∂xj

, ̌ε 
 ϕ〉,
(37.2)

and as ̌ε 
 ϕ is continuous with compact support and has a sup norm ≤
C ||ϕ||∞ one deduces that

∣
∣〈∂(�ε�u)

∂xj
, ϕ〉
∣
∣ ≤ C ||ϕ||∞; as ∂(�ε�u)

∂xj
∈ C∞(Ω),

it means that
∣
∣
∣
∣∂(�ε�u)

∂xj

∣
∣
∣
∣
1
≤ C. By my improvement of Sobolev’s embedding

theorem for p = 1 (proven by Louis NIRENBERG), ε
u stays in a bounded set
of the Lorentz space L1∗,1(RN ) if N ≥ 2 (or a bounded set of L∞(R) if N = 1);
of course, ε 
 u converges to u in L1(RN ) strong, and because L1∗,1(RN ) is
a dual (as will be proven later), one has u ∈ L1∗,1(RN ). For u ∈ BV (RN )
one has τhu − u ∈ L1(RN ), and ε 
 (τhu − u) → τhu − u in L1(RN ) as
ε → 0, but as it is also τh(ε 
 u)− (ε 
 u) one has ||τh(ε 
 u)− (ε 
 u)||1 ≤
|h| ||grad(ε 
 u)||1 ≤ C |h|, which gives ||τhu − u||1 ≤ C |h| for all h ∈ RN .
Conversely if u ∈ L1(RN ) and ||τhu − u||1 ≤ C |h| for all h ∈ RN , then for
h = t ej one has

τt ej
u−u

t ⇀ ∂u
∂xj

in the sense of distributions as t → 0, but

as
τt ej

u−u

t is bounded in L1(RN ) and L1(RN ) ⊂
(
C0(RN )

)′ = Mb(RN ), the
limit belongs to Mb(RN ). ��

The fact that u ∈ W 1,p(RN ) is equivalent to u ∈ Lp(RN ) and ||τhu −
u||p ≤ C |h| for all h ∈ RN is true for 1 < p ≤ ∞, but not for p = 1.
1 Leonida TONELLI, Italian mathematician, 1885–1946. He worked in Cagliari,

in Parma, in Bologna, and in Pisa, Italy. The department of mathematics of
Università di Pisa, Pisa, Italy, is named after him.

2 Lamberto CESARI, Italian-born mathematician, 1910–1990. He worked in Pisa,
in Bologna, Italy, at Purdue University, West Lafayette, IN, and at University of
Michigan, Ann Arbor, MI.

3 John PURDUE, American industrialist, 1802–1876.
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However, the difference between W 1,1(RN ) and BV (RN ) is not seen for some
interpolation spaces defined with these two spaces.

Lemma 37.5. For 0 < θ < 1 and 1 ≤ q ≤ ∞ one has

(
Mb(RN ), L∞(RN )

)
θ,q

=
(
L1(RN ), L∞(RN )

)
θ,q

= Lp,q(RN ) for p =
1

1 − θ
,

(37.3)
and
(
BV (RN ),Mb(RN )

)
θ,q

=
(
BV (RN ), L1(RN )

)
θ,q

= B1−θ,1
q (RN )

(
W 1,1(RN ),Mb(RN )

)
θ,q

=
(
W 1,1(RN ), L1(RN )

)
θ,q

= B1−θ,1
q (RN ).

(37.4)

Proof : One uses the fact that L1(RN ) ⊂ Mb(RN ) and for u ∈ L1(RN )
the norm of u in L1(RN ) and the norm of u in Mb(RN ) coincide. Let
E0 = Mb(RN ), E1 = L∞(RN ), and F0 = L1(RN ), then F0 ⊂ E0, so that
(F0, E1)θ,q ⊂ (E0, E1)θ,q; conversely a ∈ (E0, E1)θ,q means a =

∫∞
0

u(t) dt
t

with u(t) ∈ E0 ∩ E1 a.e. t ∈ (0,∞) and t−θ max{||u(t)||E0 , t ||u(t)||E1} ∈
Lq
(
R+; dt

t

)
, but as E0∩E1 = F0∩E1 and ||u(t)||E0 = ||u(t)||F0 , one has u(t) ∈

F0 ∩ E1 a.e. t ∈ (0,∞) and t−θ max{||u(t)||F0 , t ||u(t)||E1} ∈ Lq
(
R+; dt

t

)
, so

that a ∈ (F0, E1)θ,q. The same argument gives
(
BV (RN ),Mb(RN )

)
θ,q

=
(
BV (RN ), L1(RN )

)
θ,q

(
W 1,1(RN ),Mb(RN )

)
θ,q

=
(
W 1,1(RN ), L1(RN )

)
θ,q

.
(37.5)

One observes that
(
BV (RN ), L1(RN )

)
θ,∞ ⊂

(
W 1,1(RN ), L1(RN )

)
θ,∞, so

that these two spaces are equal, and one then uses the reiteration theorem
26.3. Indeed, the linear map u 
→ τhu − u ∈ L1(RN ) has a norm ≤ C |h| in
BV (RN ) and a norm ≤ 2 on L1(RN ) and therefore a norm ≤ C |h|1−θ on(
BV (RN ), L1(RN )

)
θ,∞, i.e., one has ||τhu − u||1 ≤ C |h|1−θ on this space,

which is the characterization of elements of
(
W 1,1(RN ), L1(RN )

)
θ,∞. ��

[Taught on Monday April 24, 2000.]
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Replacing BV by Interpolation Spaces

Solving nonlinear partial differential equations sometimes requires a careful
use of adapted functional spaces, and knowing the theory of interpolation
spaces is helpful for creating a large family of such spaces, some of them quite
useful.

Many of the nonlinear partial differential equations which are studied have
their origin in continuum mechanics or physics, but very few mathematicians
take time to try to understand what the right equations and the right questions
should be, and many work for years on distorted equations without knowing
it; there are unfortunately many who know the defects of the models that they
use but prefer to hide them in order to pretend that they are working on some
useful realistic problem. It is wiser to be aware of the defects of the models,
but it happens that very honest mathematicians are unaware of some practical
limitations of the equations that they study, and when Jean LERAY told me
that he did not want the Germans to know that he had worked on questions of
fluid dynamics,1 and that he had said that he was a topologist, I first thought
that it was for fear that his results on the Navier–Stokes equation could be
used by the enemy, which would have been very naive, as they were much too
theoretical to be of any practical use, but more likely he had meant that he
did not want to be forced to work on practical problems in fluid dynamics.
Many do not seem to realize that the equations that mathematicians work
with under the name of the Navier–Stokes equation are oversimplified and
therefore not so realistic, but the motivation of a mathematician for working

1 In 1984, I had mentioned the political difficulties that I was encountering in the
French university system, and Jean LERAY had explained to me the origin of the
political difficulties that he had encountered himself almost forty years earlier.
As an officer in the French army, he had been taken prisoner and he had spent
most of World War II in a German camp, while a famous member of the Bourbaki
group had dodged the draft; inside the camp, he had continued to do research, and
he had even organized a university, of which he was the chancellor. He worked
on topology, and soon after introduced the basic ideas for sheaf theory, which
another member of the Bourbaki group plagiarized afterward.
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on these simplified equations is that Jean LERAY had not been able to solve
some particular questions about them; however, I have no good explanation for
the fact that a good mathematician who had to describe what the equations
are about could show such an appalling level of understanding of continuum
mechanics as to forget mentioning Galilean2 invariance, or the isotropy of the
fluid involved, leading to an invariance of the equations under rotations. It
would be wiser to know about all these properties, and to mention them, of
course, but also to explain what one tries to achieve by working on simplified
or deficient models; indeed, if a technical difficulty has been identified on a
realistic model, it is easier to try to overcome it by working first on a simplified
model, even if it has lost some of the realistic features of the problem that
one would like to solve; having explained what one is trying to achieve should
help when coming back to more realistic questions afterward.

The space BV has been widely used in situations where solutions are
discontinuous, but there are reasons to think that this functional space is not
adapted to most nonlinear partial differential equations where discontinuous
solutions are found; indeed, outside cases where the maximum principle can
be used, or in one space dimension, spaces modeled on W 1,1 or BV are not
adapted to linear partial differential equations with constant coefficients, so
that it is unlikely that they could serve in a linearized version for studying
stability of solutions under perturbations.

Of course, there are problems where a space like BV is asked for, and
geometric measure theory is often the framework that one imposes to look for
a domain with finite perimeter (i.e., whose characteristic function belongs to
BV ), or to look for a set with finite (N−1)-dimensional Hausdorff measure. In
“applications” to minimal surfaces, one often hears about soap bubbles, but
hardly anyone working on problems of that type seems to know anything about
the chemistry involved in a soapy layer. In “applications” to image process-
ing, hardly anyone working on problems of that type seems to know anything
about the physical processes leading to the creation of the images, either opti-
cal devices, radar applications, or NMR (nuclear magnetic resonance), whose
name has been changed to MRI (medical resonance imaging) because of the
fear that the term “nuclear” generates in the grossly uninformed3 public. How-
ever, it is worth repeating that for numerical applications, any nonphysical
approach may be used if it leads to an efficient algorithm, but why should one
be so interested in some part of mathematics which only leads to inefficient
algorithms?

The main class of partial differential equations where discontinuous
solutions appear for intrinsic reasons is that of hyperbolic conservation
2 Galileo GALILEI, Italian mathematician, 1564–1642. He worked in Siena, in Pisa,

in Padova (Padua), and again in Pisa, Italy.
3 Obviously, politicians like to keep everyone uninformed, to maintain control of the

population, but scientists could certainly do better when it comes to explaining
what the resonance of nuclei is, and why it has nothing to do with fission, or with
fusion.
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laws; this class covers important situations in continuum mechanics, but too
little is understood about it from a mathematical point of view. Because
of their practical importance, numerical simulations of these problems are
performed, for example in order to compute the flow of (compressible) air
around an airplane. The (Franco-British) Concorde was the only commer-
cial plane which flew over Mach4–6 1, but most commercial planes fly fast
enough to require computations of transonic flows; indeed, the speed of sound
depends upon the temperature and the pressure, and the shape given to
the wings of the plane makes more air go below the wing and creates a
slight surpression below the wing and a high depression above the wing;
at the cruise velocity of large commercial jets, the speed of sound in that
depression (which sucks the plane upward) is then less than the velocity
of the plane. Numerical simulations have become much less expensive than
using small-scale planes in wind tunnels, and the shape of the plane can be
improved (mostly for diminishing the fuel consumption of the plane, rarely
for diminishing the noise that it makes), but the mathematical knowledge of
these questions, mostly due to the work of GARABEDIAN7 and of Cathleen
MORAWETZ,8–10 is still insufficient for corroborating the intuition of the
engineers.

4 Ernst MACH, Czech-born physicist, 1838–1916. He worked in Graz, Austria, at
Charles University in Prague (then in Austria, now capital of the Czech republic),
and in Vienna, Austria.

5 CHARLES IV of Luxembourg, 1316–1378. German king and King of Bohemia (in
1346) and Holy Roman Emperor (in 1355) as Karl IV; he founded the University
of Prague in 1348.

6 The Mach number is the ratio of the velocity of the plane to the speed of sound.
7 Paul Roesel GARABEDIAN, American mathematician. He works at NYU

(New York University), New York, NY.
8 Cathleen SYNGE MORAWETZ, Canadian-born mathematician, 1923. She works

at NYU (New York University), New York, NY. Her father was John Lighton
SYNGE, Irish mathematician, 1897–1995, who worked in Dublin, Ireland, but he
had also worked in Toronto, Ontario (Canada), at OSU (Ohio State University),
Columbus, Ohio, and at Carnegie Tech (Carnegie Institute ot Technology), now
CMU (Carnegie Mellon University), Pittsburgh, PA, where he was the head of
the mathematics department from 1946 to 1948.

9 Andrew CARNEGIE, Scottish-born businessman and philanthropist, 1835–1919.
Besides endowing the school that became Carnegie Institute ot Technology and
later Carnegie Mellon University when it merged with the Mellon Institute of
Industrial Research, he funded about three thousand public libraries, named
Carnegie libraries in United States.

10 Andrew William MELLON, American financier and philanthropist, 1855–1937.
He funded the Mellon Institute of Industrial Research in Pittsburgh, PA, which
merged in 1967 with the Carnegie Institute ot Technology to form Carnegie Mellon
University.
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For 1 < p < ∞, the Besov space

B
1/p,p
∞ (R) =

(
W 1,p(R), Lp(R)

)
1/p′,∞ = {u ∈ Lp(R) | ||τhu − u||p ≤ C |h|1/p

for all h ∈ R}
(38.1)

contains discontinuous (piecewise smooth) functions (while for 1 < q < ∞, the
space B

1/p,p
q (R) does not contain piecewise smooth discontinuous functions).

The excluded case p = 1 corresponds to BV (R), and p = ∞ corresponds to
L∞(R), so why think that the case 1 < p < ∞ is better?

Linear partial differential equations with constant coefficients can be solved
by using elementary solutions, and for elliptic equations this leads to singular
integrals which can be studied using the Calderón–Zygmund theorem, which
requires 1 < p < ∞. For example, solving ∆u = f for f ∈ Lp(RN ) gives

∂2u
∂xi∂xj

∈ Lp(RN ) for i, j = 1, . . . , N , if 1 < p < ∞, but the result is false for
p = 1 or p = ∞, and f ∈ L1(RN ) does not imply that the derivatives ∂u

∂xi

belong to BV (RN ).
There are, however, other spaces which can be used for replacement, using

the Hardy space H1(RN ) instead of L1(RN ), and the space BMO(RN ) instead
of L∞(RN ), and indeed, operators defined by singular integrals act from
H1(RN ) into itself and from BMO(RN ) into itself; actually, the interpola-
tion spaces between H1(RN ) and BMO(RN ) are the same as the already
studied interpolation spaces between L1(RN ) and L∞(RN ), but these results
cannot be derived so easily. However, there is another obstacle, which suggests
that the choice p = 2 is the only right one.

The (scalar) wave equation in a general medium has the form

(x)
∂2u

∂t2
−

N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (38.2)

where the coefficients  and aij , i, j = 1, . . . , N belong to L∞(RN ), satisfy the
symmetry condition aji(x) = aij(x) a.e. x ∈ RN for all i, j = 1, . . . , N , satisfy
the positivity property (x) ≥ − > 0 a.e. x ∈ RN , and also satisfy the elliptic-
ity property that for some α > 0 one has

∑N
i,j=1 aij(x)ξiξj ≥ α |ξ|2 for all ξ ∈

RN , a.e. x ∈ RN . Under these conditions, the Cauchy problem is well posed
if one imposes u|t=0 = u0 ∈ H1(RN ) and ∂u

∂t

∣
∣
t=0

= u1 ∈ L2(RN ), and one has

conservation of total energy, sum of the kinetic energy 1
2

∫
RN (x)

∣
∣∂u

∂t

∣
∣2 dx,

and of the potential energy 1
2

∫
RN

(∑N
i,j=1 aij(x) ∂u

∂xi

∂u
∂xj

)
dx. It would seem

natural to expect that with smooth coefficients, like for the simplified wave
equation in a homogeneous isotropic material ∂2u

∂t2 − c2∆u = 0, one could
take u0 ∈ W 1,p(RN ) and u1 = 0 for example and find the solution u(·, t) ∈
W 1,p(RN ) for t > 0 (or for t < 0 as the wave equation is invariant through
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time reversal), but Walter LITTMAN11 has shown that this only happens for
p = 2.

Could the space B
1/2,2
∞ (RN ) then be used for quasi-linear hyperbolic equa-

tions, where one expects some discontinuities to occur?
It is useful to compare BV (RN ) with the Besov space B

1/p,p
∞ (RN ), which

is the space of u ∈ Lp(RN ) such that ||τhu − u||p ≤ C |h|1/p for all h ∈ RN .

Lemma 38.1. One has BV (RN ) ∩ L∞(RN ) ⊂ B
1/p,p
∞ (RN ), and more

precisely (
BV (RN ), L∞(RN )

)
1/p′,p

⊂ B1/p,p
∞ (RN ). (38.3)

If χ is a characteristic function, then χ ∈ B
1/p,p
∞ (RN ) implies χ ∈

BV (RN ) (and conversely).

Proof : The linear mapping u 
→ τhu − u is continuous from BV (RN ) into
L1(RN ) with norm ≤ C |h|, and from L∞(RN ) into itself with norm ≤ 2, so
that

u 
→ τhu − u is continuous from
(
BV (RN ), L∞(RN )

)
1/p′,p

into
(
L1(RN ), L∞(RN )

)
1/p′,p

= Lp(RN ) with norm ≤ C |h|1/p.
(38.4)

If χ ∈ B
1/p,p
∞ (RN ) one has

∫
RN |χ(x−h)−χ(x)|p dx ≤ C |h| for all h ∈ RN ;

because χ is a characteristic function, then χ(x− h)−χ(x) can only take the
values −1, 0, 1, so that |χ(x − h) − χ(x)|p = |χ(x − h) − χ(x)|, from which
one deduces that ||τhχ − χ||1 ≤ C |h| for every h ∈ RN , and as one also has
||χ||1 = ||χ||pp, one deduces that χ ∈ BV (RN ) (the first part implying the
converse). ��
[Taught on Wednesday April 26, 2000.]

11 Walter LITTMAN, American mathematician. He works at University of Minnesota
Twin Cities, Minneapolis, MN.
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Shocks for Quasi-Linear Hyperbolic Systems

Quasi-linear hyperbolic equations have properties quite different from semi-
linear hyperbolic equations, mostly because discontinuities may appear even
when initial data are very smooth. For second-order equations modeled on the
linear wave equation

∂2u

∂t2
− c2∆u = 0, (39.1)

semi-linear equations are of the form

∂2u

∂t2
− c2∆u = F

(
u,

∂u

∂t
,

∂u

∂x1
, . . . ,

∂u

∂xN

)
, (39.2)

where the higher-order part is linear with constant coefficients, while for quasi-
linear equations the higher-order part is still linear but with coefficients which
depend upon lower-order derivatives; in the case N = 1 one has for example

∂2u

∂t2
− f

(
∂u

∂x

)
∂2u

∂x2
= 0. (39.3)

This equation was first studied by POISSON in 1807, as a model for a com-
pressible gas; the classical relation p = c  leads to an incorrect value of the
velocity of sound (which had been estimated by NEWTON), and LAPLACE

seems to have proposed the use of the relation p = c γ ; POISSON had found
some special solutions (which are called simple waves now), but he left them
in an implicit form, so that it took forty years before someone pointed out
that there was a problem, which STOKES explained in 1848 by the forma-
tion of discontinuities. STOKES computed the correct jump conditions to
impose for discontinuous solutions, by using the conservation of mass and
the conservation of momentum, and these conditions were rediscovered by
RIEMANN in 1860, but instead of being called the Stokes conditions or the
Stokes–Riemann conditions, they are now known as the Rankine–Hugoniot
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conditions.1,2 The defects of these (isentropic) models were not obvious then,
as thermodynamics was barely in its infancy at the time, and even STOKES

was wrongly convinced later by THOMSON (who later became Lord Kelvin)
and by Rayleigh,3 who told him that his discontinuous solutions were not
physical because they did not conserve energy.4

The appearance of discontinuities is more easily seen in first-order equa-
tions, for which a classical model5 is the Burgers equation ∂u

∂t + u ∂u
∂x = 0.

Using the method of characteristic curves, one finds easily the critical time of
existence of a smooth solution.

Lemma 39.1. Let u0 be a smooth bounded function on R. If u0 is nonde-
creasing, there exists a unique smooth solution of ∂u

∂t + u ∂u
∂x = 0 for t > 0

satisfying u(x, 0) = u0(x) for x ∈ R. If infx∈R
du0
dx (x) = −α < 0, there is a

unique smooth solution for 0 < t < Tc = 1
α , and there is no smooth solution

over an interval (0, T ) with T > Tc.

Proof : Assume that there exists a smooth solution for 0 < t < T . For y ∈ R

one defines the characteristic curve with initial point y by dz(t)
dt = u(z(t), t) and

z(0) = y, and one deduces that d[u(z(t),t)]
dt = ∂u

∂x (z(t), t) dz(t)
dt + ∂u

∂t (z(t), t) = 0,
so that u(z(t), t) = u(z(0), 0) = u0(y) for 0 < t < T ; this gives dz(t)

dt = u0(y),
i.e., z(t) = y + t u0(y). This shows that on the line x = y + t u0(y) for 0 <
t < T the smooth solution is given by u(x, t) = u0(y). If u0 is nondecreasing,

1 William John Macquorn RANKINE, Scottish engineer, 1820–1872. He worked in
Glasgow, Scotland.

2 Pierre Henri HUGONIOT, French engineer, 1851–1887.
3 John William STRUTT, third baron Rayleigh, English physicist, 1842–1919. He

received the Nobel Prize in Physics in 1904. He held the Cavendish professorship
at Cambridge, England, 1879–1884.

4 Around 1880, STOKES was editing his works, but he did not reproduce his 1848
derivation of the jump condition, and he apologized for his “mistake”, because
he had been (wrongly) convinced by Rayleigh and THOMSON (who became Lord
Kelvin in 1892) that his solutions were not physical because they did not conserve
energy, so that one deduces that none of them understood well that mechanical en-
ergy can be transformed into heat. If one has learnt thermodynamics, one should
not disparage these great scientists of the 19th century for their curious mistake,
and one should recognize that there are things which take time to understand.
One learns now that thermodynamics is not about dynamics, and it is still not
so well understood a subject, and mathematicians should pay more attention to
it; ignoring thermodynamics, and publishing too much on isentropic equations,
for example, tends to make engineers and physicists believe that mathematicians
do not know what they are talking about, but believing all the rules of thermo-
dynamics shows that one is lacking critical judgment, as some of the rules are
obviously wrong and should be changed into a better theory, that one cannot yet
describe, as some parts still have to be discovered.

5 The function u has the dimension L T−1 of a velocity; some physicists prefer to
write ∂u

∂t
+c u ∂u

∂x
= 0, where c is a characteristic velocity and u has no dimension.
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the mapping y 
→ y + t u0(y) is a global diffeomorphism from R onto R for
any t > 0 (it is increasing), so that there exists a unique global smooth
solution for all t > 0. If there exist y1 < y2 with u0(y1) > u0(y2), then the
characteristic line with initial point y1 catches upon the characteristic line
with initial point y2 and a smooth solution cannot exist up to the time of
encounter of the two characteristic lines as it would have to take two different
values at their intersection; one can easily check that for any T > Tc one can
find two characteristic lines which intersect before T .

One can check directly that the solution is well defined for 0 < t < T
because the mapping y 
→ y + t u0(y) is a global diffeomorphism from R
onto R for 0 < t < Tc, and in order to show that there is no solution on
(0, T ) with T > Tc, one defines v = ∂u

∂x and one checks that d[v(z(t),t)]
dt =

[v(z(t), t)]2, so that v(z(t), t) = u′
0(y)

1+t u′
0(y) , so that the smooth solution satisfies

limt→Tc
supx∈R

∂u
∂x = +∞. ��

The analog of the implicit formula used by POISSON would be to say that
the solution must satisfy u(x, t) = u0

(
x − t u(x, t)

)
, and seeing the limitation

in time on this formula is less obvious.
After the critical time Tc one cannot have smooth solutions, and the

correctly defined solution will be discontinuous at some points, so that the
product of u by ∂u

∂x is not defined, and it is important to write the equa-

tion in conservation form, ∂u
∂t + ∂(u2/2)

∂x = 0, and to consider the weak solu-
tions, i.e., the solutions in the sense of distributions. The jump conditions
which STOKES had computed correspond to saying that if ∂u

∂t + ∂v
∂x = 0

and u, v are continuous on each side of a curve with equation x = ϕ(t)
and s = ϕ′(t) denotes the velocity of the (possible) discontinuity at time
t, then one has jump(v) = s jump(u), where jump(w) = w

(
ϕ(t)+, t

)
−

w
(
ϕ(t)−, t

)
= (w+)− (w−) (noticing that changing x into −x changes v into

−v, changes the sign of jump(u) and of jump(v), but changes also the sign
of s).

Unfortunately, there are too many weak solutions; for example, for u0 = 0
there is a global smooth solution which is u = 0, but there are infinitely
many weak solutions by taking x0 arbitrary, a > 0 arbitrary, and defining
u by

u(x, t) =

⎧
⎪⎨

⎪⎩

0 for x < x0 − t a
u(x, t) = −2a for x − t a < x0

u(x, t) = 2a for 0 < x < t a
u(x, t) = 0 for t a < x.

(39.4)

In order to reject all nonphysical weak solutions, one then decides to keep
only the discontinuities for which u− > u+; the method of characteristic curves
gives a local Lipschitz continuous solution when one starts from a nondecreas-
ing function and by continuity it gives such a Lipschitz continuous solution in
the other case u− < u+, i.e., when one starts from the discontinuous function
jumping from u− up to u+ (called a rarefaction wave). This selection rule,
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called an “entropy” condition,6 and related to a more general Lax condition,
extends to the more general equation

∂u

∂t
+

∂f(u)
∂x

= 0 (39.5)

only if the nonlinearity f is a convex function; the case of a general (smooth)
f has been solved by Olga OLEINIK,7 and the Oleinik condition is that one
accepts or rejects a discontinuity according to the position of the chord joining(
u−, f(u−)

)
and

(
u+, f(u+)

)
with respect to the graph of the function f :

one accepts the discontinuity u− > u+ if and only if
the chord is above the graph,

one accepts the discontinuity u− < u+ if and only if
the chord is below the graph.

(39.6)

Under the Oleinik condition there is a unique piecewise smooth solution,
but in order to study weak solutions without having to assume that they are
piecewise smooth, Eberhard HOPF8 derived the equivalent Hopf condition

∂ϕ(u)
∂t

+
∂ψ(u)

∂x
≤ 0 in the sense of distributions for all convex ϕ, (39.7)

and these ϕ are called “entropy” functions9 and ψ the corresponding “en-
tropy flux”, defined by ψ′ = ϕ′f ′. Peter LAX extended the idea to systems of
conservation laws,

∂U

∂t
+

∂F (U)
∂x

= 0, with U(x, t) ∈ Rp, (39.8)

but not all functions ϕ on Rp are entropies, because ∇ϕ∇F = ∇ψ implies
compatibility conditions that ϕ must satisfy, i.e., curl(∇ϕ∇F ) = 0, and the
trivial entropies ϕ(U) = ±Ui for i = 1, . . . , p just correspond to the given
system of equations.10

6 By analogy with conditions imposed by thermodynamics for the system of com-
pressible gas dynamics.

7 Olga Arsen’evna OLEINIK, Ukrainian-born mathematician, 1925–2001. She
worked in Moscow, Russia.

8 Eberhard Frederich Ferdinand HOPF, Austrian-born mathematician, 1902–
1983. He worked at MIT (Massachusetts Institute of Technology), Cambridge,
MA, in Leipzig, in München (Munich), Germany, and at Indiana University,
Bloomington, IN, where I met him in 1980.

9 Again, this is only by analogy with thermodynamics, and these “entropies” are
rarely related with the thermodynamic entropy.

10 It is not clear if the right notion of solution has been found, but all the physical
examples seem to be endowed with a strictly convex “entropy”, which sometimes
is the total energy!
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One way to construct such admissible weak solutions is to consider a regu-
larization by artificial viscosity

∂Uε

∂t
+

∂F (Uε)
∂x

− ε
∂2Uε

∂x2
= 0 for ε > 0. (39.9)

The scalar case with f(u) = u2

2 (also called the Burgers–Hopf equation) was
first solved by Eberhard HOPF using a nonlinear change of function which
transforms the equation into the linear heat equation, and this transformation
was also found by Julian COLE,11,12 and is now known as the Hopf–Cole
transform. The scalar case with a general f was solved by Olga OLEINIK, and
the scalar case with more than one space variable,13 ∂u

∂t +
∑N

j=1
∂fj(u)

∂xj
= 0

was obtained by KRUZHKOV.14

The important difference between the scalar case and the vectorial case
(regularized by artificial viscosity), is that there are simple BV estimates for
the scalar case, which are unknown for the vector case; the BV estimates
are used to prove convergence by a compactness argument, but any uniform
estimate in a Besov space (Bs,p

q )loc(RN ) with s > 0 would be sufficient. Unfor-
tunately, the estimates for the scalar case are based on the maximum principle,
and the same argument cannot be extended to systems.

There is another method due to James GLIMM,15 which proves existence
for some systems if the total variation is small enough.

I have introduced another approach, based on the compensated compact-
ness method which I had partly developed with François MURAT, which does
not need estimates in Besov spaces, but which requires a special understanding
of how to use entropies to generate a kind of compactness; Ron DIPERNA16,17

was the first to find a way to apply my method to systems.

11 Julian D. COLE, American mathematician, 1925–1999. He worked at Caltech
(California Institute of Technology), Pasadena, CA, at UCLA (University of Cal-
ifornia at Los Angeles), Los Angeles, CA, and at RPI (Rensselaer Polytechnic
Institute), Troy, NY.

12 Kilean VAN RENSSELAER, Dutch diamond merchant, c. 1580–1644.
13 A scalar equation in N variables is not a good physical model for N > 1, because

it implies a very strong anisotropy of the space (due to a particular direction of
propagation).

14 Stanislav Nikolaevich KRUZHKOV, Russian mathematician, 1936–1997. He work-
ed in Moscow, Russia.

15 James G. GLIMM, American mathematician, born in 1934. He worked at MIT
(Massachusetts Institute of Technology), Cambridge, MA, at NYU (New York
University), New York, NY, and at SUNY (State University of New York), Stony
Brook, NY.

16 Ronald J. DIPERNA, American mathematician, 1947–1989. He worked at Brown
University, Providence, RI, at University of Michigan, Ann Arbor, MI, at Univer-
sity of Wisconsin, Madison, WI, at Duke University, Durham, NC, and at UCB
(University of California at Berkeley), Berkeley, CA.

17 Washington DUKE, American industrialist, 1820–1905.
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Of course, the preceding list of methods is not exhaustive, and there has
been other partially successful approaches.

The BV estimate in the scalar case can be linked to a L1(R) contraction
property, which was noticed by Barbara KEYFITZ18 in one dimension and by
KRUZHKOV in dimension N . This property is strongly related to the maximum
principle, and I have noticed with Michael CRANDALL19 that if a map S from
L1(Ω) into itself satisfies

∫
Ω

S(f) dx =
∫

Ω
f dx for all f , then S is an L1

contraction if and only if S is order preserving; as order-preserving properties
do not occur for realistic systems, one cannot expect L1 contraction properties
for systems; Michael CRANDALL and Andrew MAJDA20 later applied the same
idea for some discrete approximations, the simplest of which for ∂u

∂t + ∂f(u)
∂x = 0

being the Lax–Friedrichs scheme,

1
∆t

(
Un+1

i − 1
2
(Un

i−−1 + Un
i+1)
)

+
1

2∆x

(
f(Un

i+1) − f(Un
i−1)
)

= 0, (39.10)

where Un
i is expected to approximate U(i∆x, n∆ t); starting with a bounded

initial data u0, satisfying α ≤ u0(x) ≤ β a.e. x ∈ R, one chooses for exam-
ple U0

i = 1
∆ x

∫ (i+1)∆ x

i ∆ x
u0(y) dy for all i, and the explicit scheme generates

the numbers Un
i for n > 0, but one must impose the Courant–Friedrichs–

Lewy21,22 condition (known as the CFL condition)

∆t

∆x
sup

v∈[α,β]

|f ′(v)| ≤ 1, (39.11)

which imposes that the numerical velocity of propagation ∆ x
∆ t is at least equal

to the real velocity of propagation; under this condition one has α ≤ Un
i ≤ β

for all i and all n > 0, and it is exactly the condition which imposes that
18 Barbara Lee KEYFITZ, Canadian-born mathematician, born in 1944. She worked

at Columbia University, New York, NY, in Princeton, NJ, at Arizona State Uni-
versity, Tempe, AZ, in Houston, TX, and at the FIELDS Institute for Research
in Mathematical Sciences, Toronto, Ontario (Canada).

19 Michael Grain CRANDALL, American mathematician, born in 1940. He worked
at Stanford University, Stanford, CA, at UCLA (University of California at Los
Angeles), Los Angeles, CA, at University of Wisconsin, Madison, WI, and he
works now at UCSB (University of California at Santa Barbara), Santa Barbara,
CA.

20 Andrew Joseph MAJDA, American mathematician, born in 1949. He worked at
UCB (University of California at Berkeley), Berkeley, CA, in Princeton, NJ, and
at NYU (New York University), New York, NY.

21 Richard COURANT, German-born mathematician, 1888–1972. He worked in
Göttingen, Germany, and at NYU (New York University), New York, NY. The
department of mathematics of NYU (New York University) is now named after
him, the Courant Institute of Mathematical Sciences.

22 Hans LEWY, German-born mathematician, 1904–1988. He received the Wolf Prize
in 1984. He worked in Göttingen, Germany, at Brown University, Providence, RI,
and at UCB (University of California at Berkeley), Berkeley, CA.
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Un+1
i is a nondecreasing function of Un

i−1 and of Un
i+1, and the l1(Z) con-

traction property follows. Of course this approach creates solutions such that
||τhu(·, t)−u(·, t)||1 ≤ ||τhu0−u0||1, which gives a BV estimate if u0 ∈ BV (R).
This scheme is only of order 1 and tends to smooth out the discontinuities
too much, but higher-order schemes are not order preserving; there is, how-
ever, a class of higher-order schemes, called TVD schemes (total variation
diminishing), for which the total variation is not increasing.

Obtaining BV estimates for general systems of conservation laws, or more
generally obtaining some estimates on fractional derivatives using interpola-
tion spaces is certainly a difficult open question, and some new ideas or some
new functional spaces may be needed for that important question.
[Taught on Friday April 28, 2000.]
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Interpolation Spaces as Trace Spaces

The possibility of defining the spaces (E0, E1)θ,p for 0 < θ < 1 and 1 ≤ p ≤ ∞
as spaces of traces has been mentioned, and it is time to explain the proof. One
notices that if t−θK(t; a) is bounded then one can decompose a = a0(t)+a1(t)
with ||a0(t)||0 + t ||a1(t)||1 ≤ 2K(t; a) ≤ C tθ, so that a1(t) → 0 in E1 as
t → ∞, and because the traces are taken as t → 0, there will be a change of t
into 1

t .

Lemma 40.1. Let 0 < θ < 1 and 1 ≤ p ≤ ∞. If v(t) ∈ E0 and v′(t) ∈
E1 with tθ||v(t)||0 ∈ Lp

(
R+; dt

t

)
and tθ||v′(t)||1 ∈ Lp

(
R+; dt

t

)
, then v(0) ∈

(E0, E1)θ,p. Conversely, every element of (E0, E1)θ,p can be written as v(0)
with v satisfying the preceding properties.

Proof : Let a ∈ (E0, E1)θ,p, i.e., e−n θK(en; a) ∈ lp(Z). For n ∈ Z one chooses
a decomposition a = a0,n + a1,n with a0,n ∈ E0, a1,n ∈ E1 such that

||a0,n||0 + en||a1,n||1 ≤ 2K(en; a), (40.1)

and one notices that

||a0,n+1 − a0,n||1 = ||a1,n+1 − a1,n||1 ≤

2e−(n+1)K(en+1; a) + 2e−nK(en; a) ≤ 4e−nK(en; a).
(40.2)

One defines the function u with values in E0 by u(en) = a0,n, and extends u
to be affine in each interval (en, en+1); this gives

||u(t)||0 ≤ max{||a0,n||0, ||a0,n+1||0} ≤ 2K(en+1; a) ≤ 2eK(en; a) (40.3)

on the interval (en, en+1); in the case p = ∞, one deduces that t−θ||u(t)||0 ≤
e−n θ2eK(en; a) on the interval (en, en+1) and t−θ||u(t)||0 ∈ L∞(R+; dt

t

)
,

while if 1 ≤ p < ∞ one has
∫ en+1

en t−θ p||u(t)||p0 dt
t ≤ e−n θ p(2e)pK(en; a)p and
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t−θ||u(t)||0 ∈ Lp
(
R+; dt

t

)
. On the interval (en, en+1) one has u′ = a0,n+1−a0,n

en+1−en ,
and

||u′(t)||1 ≤ 4e−nK(en; a)
en+1 − en

=
4

e − 1
e−2nK(en; a). (40.4)

In the case p = ∞, one deduces that

t2−θ||u′(t)||1 ≤ e(2−θ)(n+1) 4
e − 1

e−2nK(en; a) =
4e2−θ

e − 1
e−θ nK(en; a) (40.5)

on the interval (en, en+1) and t2−θ||u′(t)||1 ∈ L∞(R+; dt
t

)
, while if 1 ≤ p < ∞

one has
∫ en+1

en t(2−θ)p||u′(t)||p1 dt
t ≤ e(2−θ)(n+1)p 4p

(e−1)p e−2n pK(en; a)p =

C e−θ n pK(en; a)p,
(40.6)

so that t2−θ||u′(t)||1 ∈ Lp
(
R+; dt

t

)
. Defining v(s) = u

(
1
s

)
gives v(s) → a as

s → 0, tθ||v(t)||0 ∈ Lp
(
R+; dt

t

)
and tθ||v′(t)||1 ∈ Lp

(
R+; dt

t

)
.

Conversely, assume that tθ||v(t)||0 and tθ||v′(t)||1 belong to Lp
(
R+; dt

t

)
.

Then for t > ε > 0 one has ||v(t) − v(ε)||1 ≤
∫ t

ε
||v′(s)||1 ds ≤ C t1−θ, so that

v(t) tends to a limit in E0 + E1 as s tends to 0. Then using the decomposi-
tion v(0) = v(t) +

(
v(0) − v(t)

)
, one has tθ||v(t)||0 ∈ Lp

(
R+; dt

t

)
, and from

||v(0)−v(t)||1
t ≤ 1

t

∫ t

0
||v′(s)||1 ds one deduces by Hardy’s inequality (13.3) that

tθ−1||v(0) − v(t)||1 ∈ Lp
(
R+; dt

t

)
; then one changes t into 1

t , or one notices
that it says that v(0) ∈ (E1, E0)1−θ,p, which is (E0, E1)θ,p. ��

The initial definition of trace spaces by Jacques-Louis LIONS and Jaak
PEETRE used four parameters and considered functions satisfying tα0u ∈
Lp0(0,∞;E0) with tα1u′∈Lp1(0,∞;E1), for suitable parameters α0, α1, p0, p1;
they had noticed that the family depended on at most three parameters by
changing t into tλ, but they had also introduced the important parameter θ; it
was Jaak PEETRE who later1 found that the family depended upon only two
parameters, and developed the simpler K-method and J-method that have
been followed in this course.

1 Jacques-Louis LIONS’s interests had switched to other questions concerning the
use of functional analysis in linear and then nonlinear partial differential equa-
tions, in optimization and control problems and in their numerical approxima-
tions. After writing his books with Enrico MAGENES, his interest in interpolation
spaces became marginal, but he used the ideas when necessary; after finding a
nonlinear framework for interpolating regularity for variational inequalities, he
thought of a generalization and he probably found that it was a good problem for
a student instead of investigating the question himself. Developing this idea made
the first part of my thesis, and the second part answered another (slightly acad-
emic) question that he had thought of, and I characterized the traces of functions
satisfying u3 ∈ L2

(
(0, T ); H1(Ω)

)
and ∂u

∂t
∈ L2

(
(0, T ); L2(Ω)

)
.
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With the same arguments used in the preceding proposition, the charac-
terization of trace spaces is similar to studying the following variant, where
one defines Lp0,p1(t; a) as

Lp0,p1(t; a) = inf
a=a0+a1

(
||a0||p0

0 + t ||a1||p1
1

)
, (40.7)

and one defines the space (E0, E1)θ,p;L as

(E0, E1)θ,p;L =
{

a ∈ E0 + E1 | t−θLp0,p1(t; a) ∈ Lp

(
R+;

dt

t

)}
. (40.8)

The lack of homogeneity may look strange, and if trace spaces had not been
defined before it would not even be obvious that (E0, E1)θ,p;L is a vector
subspace, and it is actually a space already defined.

Lemma 40.2. For 0 < θ < 1 and 1 ≤ p0, p1, p ≤ ∞, one has (E0, E1)θ,p;L =
(E0, E1)θ,p, with θ defined by 1−θ

θ
= 1−θ

θ
p0
p1

, and p =
(
(1 − θ)p0 + θ p1

)
p.

Proof : If one defines Kq(t; a) =
[
infa=a0+a1

(
||a0||q0 + tq||a1||q1

)]1/q and one
lets q tend to ∞, one obtains K∞(t; a) = infa=a0+a1

(
max{||a0||0, t ||a1||}

)
,

and one has K∞(t; a) ≤ K(t; a) ≤ 2K∞(t; a) for all a ∈ E0 + E1. Geo-
metrically, for the Gagliardo set associated to a, i.e., {(x0, x1) | there ex-
ists a decomposition a = a0 + a1 with ||a0||0 ≤ x0, ||a1||1 ≤ x1}, the
line x0 = t x1 intersects it at x0 = K∞(t; a), x1 = K∞(t;a)

t . Similarly
one defines L∞(s; a) = infa=a0+a1

(
max{||a0||p0

0 , s ||a1||p1
1 }
)
, and one has

L∞(s; a) ≤ Lp0,p1(s; a) ≤ 2L∞(s; a) for all a ∈ E0 + E1, and in order to
find the same point of the Gagliardo set one chooses s = tp1K∞(t; a)p0−p1 ,
so that K∞(t; a)p0 = s K∞(t;a)p1

tp1 , and one deduces L∞(s; a) = K∞(t; a)p0 ;
then one notices that t 
→ s = tp1K∞(t; a)p0−p1 is a good change of vari-
able, because t 
→ K∞(t; a) is nondecreasing and t 
→ K∞(t;a)

t is nonin-
creasing, and one deduces that ds

s = C(t)dt
t with min{p0, p1} ≤ C(t) ≤

max{p0, p1} for all t > 0, so that
∫∞
0

s−θ pL∞(s; a)p ds
s < ∞ is equiva-

lent to
∫∞
0

t−θ p p1K∞(s; a)p p0−θ p(p0−p1) dt
t < ∞. This gives the condition

p = p p0 − θ p(p0 − p1) = (1− θ)p0 p + θ p1 p, and θp = θ p1 p = p− (1− θ)p0p,
so that (1−θ)p = (1−θ)p0p and eliminating p between these last two formulas
gives the desired formula for θ. ��

Lemma 40.3. If u ∈ W 1,p(RN ), then its trace γ0u on xN = 0 satisfies

γ0u ∈ W 1/p′,p(RN−1) = B1/p′,p
p (RN−1) =

(
W 1,p(RN−1), Lp(RN−1)

)
1/p,p

.

(40.9)

Proof : Using xN as the variable t (and using only the fact that u ∈ W 1,p(RN
+ )),

one finds that u ∈ W 1,p(RN ) implies u ∈ Lp
(
0,∞;W 1,p(RN−1)

)
and
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u′ ∈ Lp
(
0,∞;Lp(RN−1)

)
, and this corresponds to θ = 1

p for E0 =
W 1,p(RN−1) and E1 = Lp(RN−1). ��

In defining interpolation spaces, one has not really used the fact that E0

and E1 are normed vector spaces, and one can extend the theory to the case
of commutative (Abelian) groups, and moreover the norm can be replaced by
a quasi-norm, satisfying [a] ≥ 0, [−a] = [a] for all a, [a] = 0 if and only if
a = 0, and the c-triangle inequality [a + b] ≤ c([a] + [b]) for all a, b (one calls
then [·] a c-norm). One notices that if one defines  by (2c)� = 2 then there
is a 1-norm || · || such that ||a|| ≤ [a]� ≤ 2||a|| for all a, and such a norm is
defined by ||a|| = infa=

∑n

i=1
ai

[ai]�, where the infimum is taken over all n and
all decompositions of a.

One can define the space (E0, E1)θ,p if E0, E1 are quasi-normed Abelian
groups, and with 0 < θ < 1 as usual, but for a larger family of p, as one may
take 0 < p ≤ ∞, obtaining a quasi-normed space in the case 0 < p < 1, even
if E0 and E1 are normed spaces.

If || · || is a 1-norm and for α > 0 one defines [u] = ||u||α, then [·] is a
c-norm if one has (a + b)α ≤ c(aα + bα) for all a, b ≥ 0, and one checks easily
that one may take c = 1 if α ≤ 1 and c = 2α−1 if α ≥ 1. One may then
consider the variant Lp0,p1(t; a) for 0 < p0, p1 ≤ ∞, as a particular case of
using quasi-norms.
[Taught on Monday May 1, 2000.]
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Duality and Compactness for Interpolation
Spaces

To characterize the dual of (E0, E1)θ,p for 0 < θ < 1 and 1 ≤ p < ∞, one
needs a few technical results.

First of all there is a new hypothesis, that E0 ∩ E1 is dense in E0 and
dense in E1; this implies that E′

0 and E′
1 are subspaces of (E0 ∩E1)′, because

if j0 is the injection of E0∩E1 into E0, then jT
0 is a continuous mapping from

E′
0 into (E0 ∩ E1)′ whose range is dense, while the hypothesis that the range

of j0 is dense implies that jT
0 is injective. Therefore E′

0 ∩E′
1 and E′

0 + E′
1 are

well defined. One denotes by || · ||k the norm on Ek and by || · ||∗k the norm
on E′

k for k = 1, 2.

Lemma 41.1. Assume that E0 ∩ E1 is dense1 in E0 and dense in E1. For
t > 0, the dual space of E0 ∩ E1 equipped with the norm J(t; a;E0, E1) =
max{||a||0, t ||a||1} is E′

0 + E′
1 equipped with the norm K

(
1
t ; b;E

′
0, E

′
1

)
=

infb0+b1=b

(
||b0||∗0 + 1

t ||b1||∗1
)
.

Proof : If a ∈ E0 ∩ E1 and b ∈ E′
0 + E′

1 with a decomposition b = b0 +
b1, b0 ∈ E′

0, b1 ∈ E′
1, then one has |〈b, a〉| ≤ |〈b0, a〉|+ |〈b1, a〉| ≤ ||b0||∗0||a||0 +

1
t ||b1||∗1t ||a||1 ≤

(
||b0||∗0+ 1

t ||b1||∗1
)
max{||a||0, t ||a||1}, so that by minimizing

among all the decompositions of b one deduces that

|〈b, a〉|≤K

(
1
t
, b;E′

0, E
′
1

)
J(t; a;E0, E1) for all a ∈ E0∩E1, b ∈ E′

0+E′
1, t > 0.

(41.1)
Conversely, let L be a linear continuous form on E0 ∩ E1 equipped with the
norm J(t; a;E0, E1), and let M = ||L||, so that |L(a)| ≤ M max{||a||0, t ||a||1}
for all a ∈ E0 ∩ E1; one uses the Hahn–Banach theorem in order to find a
linear continuous form L∗ on E0 × E1, equipped with the norm ||(a0, a1)|| =
max{||a0||0, t ||a1||1}, which extends the linear form L̃ defined on the diagonal

1 Of course, this precludes using E0 = L1(Ω) and E1 = L∞(Ω) directly, but the
same result is valid, and proven using the reiteration theorem 26.3 together with
Lemma 41.1 applied to E0 = L1(Ω) and E1 = Lp(Ω) for some p < ∞.
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of (E0 ∩ E1) × (E0 ∩ E1) by L̃(a, a) = L(a), for which one has |L̃(a, a)| =
|L(a)| ≤ M max{||a||0, t ||a||1} = M ||(a, a)||, so that ||L̃|| ≤ M and therefore
there exists an extension L∗ on E0 × E1 satisfying ||L∗|| ≤ M . Any linear
continuous form on E0 × E1 can be written as (a0, a1) 
→ 〈b0, a0〉 + 〈b1, a1〉
with b0 ∈ E′

0 and b1 ∈ E′
1, and the norm of that linear continuous form is

obviously ≤ ||b0||∗0+ 1
t ||b1||∗1, but it is actually equal to that quantity because

one can choose a0 ∈ E0 with ||a0||0 = 1 and 〈b0, a0〉 = ||b0||∗0 and a1 ∈ E1

with ||a1||1 = 1
t and 〈b1, a1〉 = 1

t ||b1||∗1 (again by an application of the Hahn–
Banach theorem); one then deduces that L(a) = L̃(a, a) = 〈b0, a〉 + 〈b1, a〉 =
〈b0 + b1, a〉 for all a ∈ E0 ∩E1, and ||b0||∗0 + 1

t ||b1||∗1 ≤ M , so that L is given
by the element b = b0 + b1 ∈ E′

0 + E′
1, which satisfies K

(
1
t ; b;E

′
0, E

′
1

)
≤ M .

It remains to show that b is defined in a unique way, i.e., that 〈b, a〉 = 0
for all a ∈ E0 ∩E1 implies b = 0; indeed, because |〈b0, a〉| = |〈b1, a〉| ≤ C ||a||1
for all a ∈ E0 ∩ E1 and E0 ∩ E1 is dense in E1, b0 extends in a unique way
to an element of E′

1, which then coincides with −b1 on the dense subspace
E0 ∩ E1 of E1, so that one has b0, b1 ∈ E′

0 ∩ E′
1 and b0 + b1 = 0. ��

Lemma 41.2. Assume that E0 ∩ E1 is dense in E0 and dense in E1. For
s > 0, the dual space of E0 +E1 equipped with the norm K(s; a;E0, E1) =
infa0+a1=a

(
||a0||0+s ||a1||1

)
is E′

0∩E′
1 equipped with the norm J

(
1
s ; b;E′

0, E
′
1

)
=

max
{
||b||∗0, 1

s ||b||∗1
}
.

Proof : If a ∈ E0 + E1 and b ∈ E′
0 ∩ E′

1 with a decomposition a = a0 + a1,
then one has |〈b, a〉| ≤ |〈b, a0〉| + |〈b, a1〉| ≤ ||b||∗0||a0||0 + 1

s ||b||∗1s ||a1||1 ≤
max
{
||b||∗0, 1

s ||b||∗1
}
(||a||0 + s ||a||1), so that by minimizing among all the

decompositions of a one deduces that

|〈b, a〉|≤ J

(
1
s
, b;E′

0, E
′
1

)
K(s; a;E0, E1) for all a ∈ E0+E1, b ∈ E′

0∩E′
1, s> 0.

(41.2)

Conversely, if L is a linear continuous form on E0 + E1 equipped with the
norm K(s; a;E0, E1), then it is a linear continuous form on E0 and also a
linear continuous form on E1, so that L is given by an element b ∈ E′

0 ∩ E′
1.

For computing the norm of L, for 0 < ε < 1, x, y > 0 one chooses
a0 ∈ E0 with ||a0||0 = x and 〈b, a0〉 ≥ (1 − ε)x ||b||∗0 and a1 ∈ E1 with
||a1||1 = y and 〈b, a1〉 ≥ (1 − ε)y ||b||∗1, so that a = a0 + a1 satisfies
K(s; a;E0, E1) ≤ x + s y and |〈b, a〉| ≥ (1 − ε)(x ||b||∗0 + y ||b||∗1), so that
||L|| ≥ (1− ε)x ||b||∗0+y ||b||∗1

x+s y , and letting ε tend to 0 and either x or y tend to
0, one finds ||L|| ≥ max

{
||b||∗0, 1

s ||b||∗1
}
. ��

The main result about duality for interpolation spaces, which has already
been mentioned for Lorentz spaces, is the following.

Lemma 41.3. Assume that E0 ∩ E1 is dense in E0 and dense in E1. Then,
for 0 < θ < 1 and 1 ≤ q < ∞, one has

(
(E0, E1)θ,q

)′ = (E′
0, E

′
1)θ,q′ with

equivalent norms, where 1
q + 1

q′ =1.
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Proof : We shall prove that
(
(E0, E1)θ,q;J

)′ ⊂ (E′
0, E

′
1)θ,q′;K and (E′

0, E
′
1)θ,q′;J ⊂

(
(E0, E1)θ,q;K

)′
,

(41.3)
and the result will follow from the identity (with equivalent norms) between
the interpolation spaces defined by the J-method and the K-method.

In order to prove the first inclusion, one takes a′ ∈
(
(E0, E1)θ,q;J

)′,
and as a′ defines a linear continuous form on E0 ∩ E1, a preceding lemma
asserts that for every ε > 0 there exists a sequence bn ∈ E0 ∩ E1 such that
J(2n; bn;E0, E1) = 1 and K(2−n; a′;E′

0, E
′
1) − ε min{1, 2−n} ≤ 〈a′, bn〉.

For a sequence αn such that 2−θ nαn ∈ lq(Z), one defines a(α) =∑
n∈Z αn bn, and one has a(α) ∈ (E0, E1)θ,q;J with ||a(α)||θ,q;J ≤ ||2−θ nαn||q

because of the normalization chosen for the sequence bn; the partic-
ular choice for the sequence bn implies

∑
n∈Z αn

(
K(2−n; a′;E′

0, E
′
1) −

ε min{1, 2−n}
)

≤ 〈a′, a(α)〉 ≤ ||a′|| ||a(α)||θ,q;J ≤ ||a′|| ||2−θ nαn||q (notice
that αn min{1, 2−n} ∈ l1); by letting ε tend to 0 one deduces that∑

n∈Z αnK(2−n; a′;E′
0, E

′
1) ≤ ||a′|| ||2−θ nαn||q for all such sequences αn.

As
∑

n∈Z αn βn ≤ M ||2−θ nαn||q for all sequences αn is equivalent to
||2θ nβn||q′ ≤ M , one deduces that ||2θ nK(2−n; a′;E′

0, E
′
1)||q′ ≤ ||a′||, i.e.,

a′ ∈ (E′
0, E

′
1)θ,q′;K .

In order to prove the second inclusion, one takes a′ ∈ (E′
0, E

′
1)θ,q′;J , and

one writes a′ =
∑

n a′
n with a′

n ∈ E′
0 ∩E′

1 and 2−θ nJ(2n; a′
n;E′

0, E
′
1) ∈ lq

′
(Z);

then for a ∈ (E0, E1)θ,q;K one has

|〈a′, a〉| ≤
∑

n |〈a′
n, a〉| ≤

∑
n J(2n; a′

n;E′
0, E

′
1)K(2−n; a;E0, E1) ≤

M ||2θ nK(2−n; a;E0, E1)||�q(Z) ≤ M ||a||θ,q;K .��
(41.4)

When I was a student I had noticed that for 0 < θ < 1 the space (E′
0, E

′
1)θ,1

is actually a dual, although not the dual of (E0, E1)θ,∞; I had mentioned that
to my advisor, Jacques-Louis LIONS, and he had told me that Jaak PEETRE

had already made that observation.2 The idea is to observe that l1 is the dual
of c0, and that one can define a new3 interpolation space modeled on c0, con-
sidering that the usual interpolation space indexed by θ, p is actually modeled
on lp(Z). For 0 < θ < 1 and two Banach spaces E0, E1 continuously embed-
ded into a common topological vector space, one defines the space (E0, E1)θ;c0

2 It is quite natural that in the process of doing research one finds results which have
already been found before, and Ennio DE GIORGI had once said “chi cerca trova,
chi ricerca ritrova” (the first part reminds one of the “seek and you will find” from
the gospels, but the play on the prefix does not work well in English, although
one could replace seek and find by search and discover in order to use research
and rediscover). Sometimes, one may find the result by a different method and it
may be worth publishing if the new proof is simpler than the previous one, or if
it contains ideas which could be useful for other problems; of course, one should
mention the author of the first proof, even if he/she has not published it.

3 Obviously, one can describe more general classes of interpolation spaces, and Jaak
PEETRE has actually developed a quite general framework for doing that.
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as the space of a ∈ E0 + E1 such that 2−θ nK(2n; a) ∈ c0(Z), equipped with
same norm as (E0, E1)θ,∞ (this space is the closure of E0∩E1 in (E0, E1)θ,∞).
The proof of the previous proposition easily extends to show that the dual of
(E0, E1)θ;c0 is (E′

0, E
′
1)θ,1 with an equivalent norm.

Another useful result concerning interpolation spaces is the question of
compactness.

Lemma 41.4. If A is a linear mapping from a normed space F into E0 ∩E1,
such that A is linear continuous from F into E0 and compact from F into E1,
then for 0 < θ < 1 the mapping A is compact from F into (E0, E1)θ,1 (and
therefore compact from F into (E0, E1)θ,p for 1 ≤ p ≤ ∞).

If B is a linear mapping from E0 + E1 into a normed space G, such that
B is linear continuous from E0 into G and compact from E1 into G, then for
0 < θ < 1 the mapping B is compact from (E0, E1)θ,∞ into G (and therefore
compact from (E0, E1)θ,p into G for 1 ≤ p ≤ ∞).

Proof : If ||fn||F ≤ 1, then Afn is bounded in E0 and belongs to a compact
subset of E1, so that a subsequence fm converges in E1, so that it is a Cauchy
sequence; one has ||x||θ,1 ≤ C ||x||1−θ

0 ||x||θ1 for all x ∈ (E0, E1)θ,1, and applying
this inequality to x = fm − fm′ one deduces that Afm is a Cauchy sequence
in (E0, E1)θ,1, so that A is compact from F into (E0, E1)θ,1.

Let ||en||θ,∞ ≤ 1 so that for each ε > 0 there exists a decomposition
en = e0

n + e1
n with ||e0

n||0 + ε ||e1
n||1 ≤ 2K(ε; en) ≤ 2εθ; then ||B e0

n||G ≤
2||B||L(E0,G)ε

θ, and B e1
n belongs to a compact subset of G so that a sub-

sequence B e1
m converges in G, and therefore for this subsequence one has

lim supm,m′→∞ ||B e1
m − B e1

m′ ||G ≤ 4||B||L(E0,G)ε
θ; using Cantor diagonal

subsequence argument one finds that B en contains a converging subsequence
in G, so that B is compact from (E0, E1)θ,∞ into G. ��
[Taught on Wednesday May 3, 2000.]
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Miscellaneous Questions

During 1974–1975, I spent a year at University of Wisconsin, Madison, WI,
and I often had discussions with Michael CRANDALL; among our joint results
that we did not publish there was a question related to interpolation. The
motivation for looking at the problem was some kind of generalization which
had been published, for which it was not clear if there was any example
showing that it was indeed a genuine1 generalization, and as our result did
not cover the same situations as the published theorem, it might well have
been more general than the previous ones in some cases. Although we started
by proving some observations for linear mappings, and then extended the
method to a nonlinear setting, I present the results in reverse order.

Lemma 42.1. Let Ω be a bounded (Lebesgue) measurable subset of RN and
let F be a nonlinear mapping from L∞(Ω) into itself satisfying the following
properties:

(a) F is Lipschitz continuous from L∞(Ω) into itself,
(b) F is monotone (in the L2 sense), i.e.,

∫
Ω

(
F (u2)−F (u1)

)
(u2−u1) dx ≥

0 for all u1, u2 ∈ L∞(Ω).
Then for every p > 2, F is Lipschitz continuous from Lp(Ω) into itself (i.e.,
F is Lipschitz continuous with respect to the distance Lp, and hence it extends
in a unique way as a Lipschitz continuous mapping from Lp(Ω) into itself).

1 My advisor had once mentioned that when reading a highly abstract article one
should first look at the examples. On a previous occasion, I had applied his advice
and shown that a generalization of the Lax–Milgram lemma was not a genuine
one, and that all the examples of the proposed new theory could be dealt with
in a classical way, once a particular observation had been made; a friend insisted
that I publish the observation, and it became my shortest article. Of course, in
such situations, it is better to avoid mentioning names, and one should remember
that even the best mathematicians have made mistakes (I was told that a great
mathematician had his ego a little bruised after publishing a perfectly good proof,
when he realized that no object satisfied all the hypotheses of his theorem, which
therefore was a quite useless one).
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Proof : Let M∞ be the Lipschitz constant for F with respect to the distance
L∞. For 0 < ε < 1

M∞
and v ∈ L∞(Ω) there is a unique u ∈ L∞(Ω) solution

of the equation u + εF (u) = v, as it is the unique fixed point of the mapping
u 
→ v − εF (u), which is a strict contraction; moreover the mapping v 
→ u
is Lipschitz continuous with a constant ≤ 1

1−ε M∞
, and if one defines the

mapping Gε by Gε(v) = v − u = εF (u) then Gε is Lipschitz continuous with
a constant ≤ ε M∞

1−ε M∞
.

For v1, v2 ∈ L∞(Ω), one subtracts u1 + εF (u1) = v1 from u2 + εF (u2) =
v2 and one multiplies by F (u2) − F (u1), giving ε

∫
Ω
|F (u2) − F (u1)|2 dx ≤

ε
∫

Ω
|F (u2) − F (u1)|2 dx +

∫
Ω

(
F (u2) − F (u1)

)
(u2 − u1) dx =

∫
Ω

(
F (u2) −

F (u1)
)
(v2 − v1) dx, so that ||Gε(v2) − Gε(v1)||2 ≤ ||v2 − v1||2. In particular

Gε has a unique extension to L2(Ω) (which is a contraction).
Having shown that Gε is Lipschitz continuous on L∞(Ω) with a constant ≤

ε M∞
1−ε M∞

and Lipschitz continuous on L2(Ω) with a constant ≤ 1, one deduces
by nonlinear interpolation that Gε is Lipschitz continuous on Lp(Ω) with
a constant ≤

(
ε M∞

1−ε M∞

)θ if θ is defined by 1
p = θ

∞ + 1−θ
2 , and as one has

θ = p−2
p > 0 one deduces that the constant may be made small by taking

ε small. Assuming then that ε has been chosen small enough so that the
Lipschitz constant of Gε in Lp(Ω) is ≤ K < 1, then for every u1, u2 ∈ L∞(Ω),
one defines vj = uj + εF (uj) for j = 1, 2, and one deduces that ε ||F (u2) −
F (u1)||p = ||G(v2) − G(v1)||p ≤ K ||v2 − v1||p ≤ K (||u2 − u1||p + ε ||F (u2) −
F (u1)||p), so that ||F (u2)−F (u1)||p ≤ Mp||u2 − u1||p with Mp = K

ε(1−K) . ��
In the case of linear mappings, the idea is that one may use unbounded

(densely defined) closed operators by considering their resolvents, i.e., the
bounded operators (A − λ I)−1 for some λ ∈ C. In particular, if for a real
Hilbert space H a closed unbounded operator A has a dense domain and
satisfies 〈Au, u〉 ≥ 0 for all u ∈ D(A), then for λ < 0 the resolvent exists and
is a contraction. Then for ε > 0 the bounded operator I − (I + εA)−1 is also
a contraction, while if A is bounded its norm is O(ε), and by interpolation
it will have a small norm in an interpolation space and it will show that the
operator is bounded in that space. The preceding proposition has followed
the same scenario in a nonlinear setting, but one can deduce more in a linear
setting by using the spectral radius of an operator.2

Lemma 42.2. Let A be a linear mapping from E0 + E1 into itself satisfying
A ∈ L(E0;E0) with spectral radius 0 and A ∈ L(E1;E1) with spectral radius
1 (where E0 and E1 are Banach spaces). Then for 0 < θ < 1 and 1 ≤ p ≤ ∞,
the spectral radius (θ, p) of A on (E0, E1)θ,p satisfies the inequality (θ, p) ≤
1−θ
0 θ

1.

Proof : One uses the fact that (A) = limn→∞ ||An||1/n, and the fact that
||An||L((E0;E1)θ,p,(E0,E1)θ,p) ≤ C ||An||1−θ

L(E0;E0)
||An||θL(E1;E1)

with C depending

2 If A ∈ L(E; E) for a Banach space E, the spectrum of A is the nonempty closed
set of λ ∈ C for which A − λ I is not invertible, and the spectral radius �(A) is
the maximum of |λ| for λ in the spectrum of A.
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upon which equivalent norm is used for (E0, E1)θ,p (but not on n); taking the
power 1

n and letting n tend to ∞ gives the result. ��
If f is holomorphic, then the spectrum of f(A) is the image by f of

the spectrum of A, and using the preceding lemma one deduces that if
K0 is the spectrum of A in E0, K1 is the spectrum of A in E1, and Kθ,p

is the spectrum of A in (E0, E1)θ,p, then for every holomorphic function
f one has maxz∈Kθ,p

|f(z)| ≤ (maxz∈K0 |f(z)|)1−θ(maxz∈K1 |f(z)|)θ. I once
asked Ciprian FOIAS3 if he knew some situation where the spectrum strongly
depends upon the space used, but I did not understand his answer.

I do not know any good example of applications of these results obtained
with Michael CRANDALL, which is one reason why I never wrote that proof
before, but I find interesting the fact that with respect to interpolation a
monotonicity property is almost like a Lipschitz condition. Actually, the
last inequality giving a localization of the spectrum suggests that one could
develop notions of interpolation of sets.

Finally, I want to mention a result which I found a few years ago, while I
was teaching a graduate course on mathematical methods in control, because
I wanted to explain the following result of Yves MEYER,4 which he had used
in connection with a control problem.5

Lemma 42.3. Let dµ be a Radon measure on R and T > 0. A necessary and
sufficient condition that there exists a constant C(T ) such that

∫
R
|Ff(ξ)|2 dµ ≤ C(T )

∫ T

0
|f(x)|2 dx

for all functions f ∈ L2(R) which vanish outside (0, T )
(42.1)

is that
sup
k∈Z

µ([k, k + 1]) ≤ C ′ < ∞. �� (42.2)

3 Ciprian Ilie FOIAS, Romanian-born mathematician, born in 1933. He worked in
Bucharest, Romania, at Université Paris Sud XI, Orsay, France (where he was my
colleague in 1978–1979), at Indiana University, Bloomington, IN, and at Texas
A&M, College Station, TX.

4 Yves François MEYER, French mathematician, born in 1939. He worked at Uni-
versité Paris Sud XI, Orsay (where he was my colleague from 1975 to 1979),
at Université Paris IX-Dauphine, Paris, and at ENS-Cachan (Ecole Normale
Supérieure de Cachan), Cachan, France.

5 The title of his article mentioned the control of deformable structures in space,
but only contained a result of control for the scalar wave equation, although a
little idealistic, as the control was applied at a point inside the domain. I guess
that Jacques-Louis LIONS had understood that the control of flexible structures
in space is an important question, but because elasticity with large displacement is
too difficult a subject, and even the linearized version of elasticity is a complicated
hyperbolic system, he had started by considering questions related to a scalar
wave equation, but he had probably forgotten to point out how far these questions
really are from controlling large deformable structures.



202 42 Miscellaneous Questions

After looking at his proof, I found that with very little change one could
prove the following variant.

Lemma 42.4. Let dµ be a Radon measure on R. The condition (42.2) is
equivalent to the existence of a constant C such that
∫

R

|Ff(ξ)|2 dµ ≤ C

(∫

R

|f(x)|2 dx

)1/2(∫

R

(1 + x2)|f(x)|2 dx

)1/2

, (42.3)

for all functions f such that
∫

R
(1 + x2)|f(x)|2 dx < ∞. ��

Using the characterization of the space (E0, E1)1/2,1 of Jacques-Louis
LIONS and Jaak PEETRE, it means that one can replace the right side of
the inequality by the norm of f in a corresponding interpolation space; here
E1 is L2(R) for the Lebesgue measure dx while E0 is L2 for the measure
(1 + x2) dx, and it is not difficult to characterize (E0, E1)1/2,1 as

(E0, E1)1/2,1 =

⎧
⎨

⎩
f ∈ L2(R) |

∑

k≥1

(∫

2k≤|x|≤2k+1
2k|f(x)|2 dx

)1/2

< ∞

⎫
⎬

⎭
.

(42.4)
To prove that the condition is necessary, Yves MEYER considers a function ϕ ∈
L2(R) whose Fourier transform does not vanish on (0, 1) (if ϕn converges to δ0

then Fϕn converges to 1), and applies the inequality to f defined by f(x) =
e2iπ k xϕ(x) so that for ξ ∈ [k, k+1] one has |Ff(ξ)| ≥ γ = minη∈(0,1) |Fϕ(η)|.
That the condition is sufficient is a consequence of the following lemma.

Lemma 42.5. There exists a constant C ′′ such that

∑

k∈Z

sup
ξ∈[k,k+1]

|Ff(ξ)|2 ≤ C ′′
(∫

R

|f(x)|2 dx

)1/2(∫

R

(1 + x2)|f(x)|2 dx

)1/2

,

(42.5)
for all functions f ∈ L2(R) such that

∫
R
(1 + x2)|f(x)|2 dx < ∞.

Proof : Let ak =
(∫

[k,k+1]
|Ff(ξ)|2 dξ

)1/2 and bk =
(∫

[k,k+1]

∣
∣dFf(ξ)

dξ

∣
∣2 dξ

)1/2;
the usual proof of continuity of functions of the Sobolev space H1

(
(0, 1)

)

gives supξ∈[k,k+1] |Ff(ξ)|2 ≤ K2ak(a2
k + b2

k)1/2, and summing in k and using
Cauchy–Schwarz inequality gives

∑
k∈Z supξ∈[k,k+1] |Ff(ξ)|2≤K2

(∫
R
|Ff(ξ)|2 dξ

)1/2

×
(
∫

R
(|Ff(ξ)|2+

∣
∣
∣dFf(ξ)

dξ

∣
∣
∣
2

dξ

)1/2

,
(42.6)

which is essentially the desired result. ��
With the remark concerning interpolation, and exchanging the roles of

f and Ff , this lemma says a little more about the fact that the functions
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from
(
H1(R), L2(R)

)
1/2,1

are continuous and tend to 0 at ∞, as it gives some
precise way how the functions tend to 0 at ∞, as it implies that

∑

n∈Z

sup
x∈[n,n+1]

|u(x)|2 < ∞. (42.7)

In the case of functions with support in (0, T ), my variant gives the same
growth in 1+T found by Yves MEYER, who notices that the growth is optimal
for large values of T , because if f is the characteristic function of (0, T ), then∫

R
|Ff(ξ)|2 dξ = T . In the case of RN one can easily generalize the proof and

consider Radon measures dµ ≥ 0 for which there exists a constant C such
that µ(Q) ≤ C for every cube of size 1, and consider functions f such that
∑

k≥1

(∫
2k≤|x|≤2k+1 2kN |f(x)|2

)1/2
dx < ∞; for functions with support in a

bounded set K, one obtains a growth like
(
1 + diameter(K)

)N , but it is not
clear to me if the diameter of K is the correct geometric quantity to use in
such an inequality.
[Taught on Friday May 5, 2000.]
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Abbreviations and Mathematical Notation

Abbreviations for states: For those not familiar with geography, I have men-
tioned a few states in the United States of America: AZ = Arizona, CA =
California, CT = Connecticut, IL = Illinois, IN = Indiana, KS = Kansas, KY
= Kentucky, MA = Massachusetts, MD = Maryland, MI = Michigan, MN =
Minnesota, NC = North Carolina, NJ = New Jersey, NY = New York, OH =
Ohio, PA = Pennsylvania, RI = Rhode Island, TX = Texas, WI = Wisconsin.

• a.e.: almost everywhere.
• B(x, r): open ball centered at x and radius r > 0, i.e., {y ∈ E | ||x−y||E < r}
(in a normed space E).
• BMO(RN ): space of functions of bounded mean oscillation on RN , i.e., semi-

norm ||u||BMO < ∞, with ||u||BMO = supcubes Q

∫
Q

|u−uQ| dx
|Q| < ∞ (uQ =

∫
Q

u dx

|Q| , |Q| = meas(Q)).
• BV (Ω): space of functions of bounded variation in Ω, whose partial deriv-
atives (in the sense of distributions) belong to Mb(Ω), i.e., have finite total
mass.
• C(Ω): space of scalar continuous functions in an open set Ω ⊂ RN (E0(Ω)
in the notation of L. SCHWARTZ).
• C(Ω;Rm): space of continuous functions from an open set Ω ⊂ RN into
Rm.
• C(Ω): space of scalar continuous and bounded functions on Ω, for an open
set Ω ⊂ RN .
• C0(Ω): space of scalar continuous bounded functions tending to 0 at the
boundary of an open set Ω ⊂ RN , equipped with the sup norm.
• Cc(Ω): space of scalar continuous functions with compact support in an
open set Ω ⊂ RN .
• Ck

c (Ω): space of scalar functions of class Ck with compact support in an
open set Ω ⊂ RN .
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• Ck(Ω): space of scalar continuous functions with continuous derivatives up
to order k in an open set Ω ⊂ RN .
• Ck(Ω): restrictions to Ω of functions in Ck(RN ), for an open set Ω ⊂ RN .
• C0,α(Ω): space of scalar Hölder continuous functions of order α ∈ (0, 1)
(Lipschitz continuous functions if α = 1), i.e., bounded functions for which
there exist M such that |u(x)− u(y)| ≤ M |x− y|α for all x,y ∈ Ω ⊂ RN ; it
is included in C(Ω).
• Ck,α(Ω): space of functions of Ck(Ω) whose derivatives of order k belong
to C0,α(Ω) ⊂ C(Ω), for an open set Ω ⊂ RN .
• curl: rotational operator (curl(u))i =

∑
jk εijk

∂uj

∂xk
, used for open sets Ω ⊂

R3.
• Dα: ∂α1

∂x
α1
1

. . . ∂αN

∂x
αN
N

(for a multi-index α with αj nonnegative integers, j =

1, . . . , N).
• D′(Ω): space of distributions T in Ω, dual of C∞

c (Ω) (D(Ω) in the notation
of L. SCHWARTZ, equipped with its natural topology), i.e., for every com-
pact K ⊂ Ω there exists C(K) and an integer m(K) ≥ 0 with |〈T, ϕ〉| ≤
C(K) sup|α|≤m(K) ||Dαϕ||∞ for all ϕ ∈ C∞

c (Ω) with support in K.
• div: divergence operator div(u) =

∑
i

∂ui

∂xi
.

• F : Fourier transform, Ff(ξ) =
∫

RN f(x)e−2iπ(x.ξ) dx.
• F : inverse Fourier transform, Ff(ξ) =

∫
RN f(x)e+2iπ(x.ξ) dx.

• grad(u): gradient operator, grad(u) =
(

∂u
∂x1

, . . . ∂u
∂xN

)
.

• Hs(RN ): Sobolev space of tempered distributions (∈ S ′(RN )), or functions
in L2(RN ) if s ≥ 0, such that (1 + |ξ|2)s/2Fu ∈ L2(RN ) (L2(RN ) for s = 0,
W s,2(RN ) for s a positive integer).
• Hs(Ω): space of restrictions to Ω of functions from Hs(RN ) (for s ≥ 0), for
an open set Ω ⊂ RN .
• Hs

0(Ω): for s ≥ 0, closure of C∞
c (Ω) in Hs(Ω), for an open set Ω ⊂ RN .

• H−s(Ω): for s ≥ 0, dual of Hs
0(Ω), for an open set Ω ⊂ RN .

• H(div;Ω): space of functions u ∈ L2(Ω;RN ) with div(u) ∈ L2(Ω), for an
open set Ω ⊂ RN .
• H(curl;Ω): space of functions u ∈ L2(Ω;R3) with curl(u) ∈ L2(Ω;R3), for
an open set Ω ⊂ R3.
• H1(RN ): Hardy space of functions f ∈ L1(RN ) with Rjf ∈ L1(RN ), j =
1, . . . , N , where Rj , j = 1, . . . , N are the (M.) Riesz operators.
• H(θ): class of Banach spaces satisfying (E0, E1)θ,1;J ⊂ E ⊂ (E0, E1)θ,∞;K .
• J(t; a): for a ∈ E0 ∩ E1, J(t, a) = max{||a||E0 , t ||a||E1}.
• J (θ): class of Banach spaces satisfying (E0, E1)θ,1;J ⊂ E ⊂ E0 + E1.
• ker(A): kernel of a linear operator A ∈ L(E,F ), i.e., {e ∈ E | Ae = 0}.
• K(t; a): for a ∈ E0 + E1, K(t, a) = infa=a0+a1

(
||a0||E0 + t ||a1||E1

)
.

• K(θ): class of Banach spaces satisfying E0 ∩ E1 ⊂ E ⊂ (E0, E1)θ,∞;K .
• L(E;F ): space of linear continuous operators M from the normed space E

into the normed space F , i.e., with ||M ||L(E;F ) = supe �=0
||M e||F
||e||E < ∞.
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• Lp(A), L∞(A): Lebesgue space of (equivalence classes of a.e. equal) mea-
surable functions u with ||u||p =

(∫
A
|u(x)|p dx

)1/p
< ∞ if 1 ≤ p < ∞, with

||u||∞ = inf{M | |u(x)| ≤ M a.e. in A} < ∞, for a Lebesgue measurable set
A ⊂ RN (spaces also considered for the induced (N−1)-dimensional Hausdorff
measure if A = ∂Ω for an open set Ω ⊂ RN with a smooth boundary).
• Lp

loc(A): (equivalence classes of) measurable functions whose restriction to
every compact K ⊂ A belongs to Lp(K) (for 1 ≤ p ≤ ∞), for a Lebesgue
measurable set A ⊂ RN .
• Lp

(
(0, T );E

)
: (weakly or strongly) measurable functions u from (0, T ) into

a separable Banach space E, such that t 
→ ||u(t)||E belongs to Lp(0, T ) (for
1 ≤ p ≤ ∞).
• |α|: length of a multi-index α = (α1, . . . , αN ), |α| = |α1| + . . . + |αN |.
• Lip(Ω): space of scalar Lipschitz continuous functions, also denoted by
C0,1(Ω), i.e., bounded functions for which there exists M such that |u(x) −
u(y)| ≤ M |x − y| for all x,y ∈ Ω ⊂ RN ; it is included in C(Ω).
• loc: for any space Z of functions in an open set Ω ⊂ RN , Zloc is the space
of functions u such that ϕu ∈ Z for all ϕ ∈ C∞

c (Ω).

• M f : maximal function of f , i.e., M f(x) = supr>0

∫
B(x,r)

|f(y)| dy
|B(x,r)| .

• M(Ω): space of Radon measures µ in an open set Ω ⊂ RN , dual of Cc(Ω)
(equipped with its natural topology), i.e., for every compact K ⊂ Ω there
exists C(K) with |〈µ, ϕ〉| ≤ C(K)||ϕ||∞ for all ϕ ∈ Cc(Ω) with support in K.
• Mb(Ω): space of Radon measures µ with finite total mass in an open set
Ω ⊂ RN , dual of C0(Ω), the space of continuous bounded functions tending
to 0 at the boundary of Ω (equipped with the sup norm), i.e., there exists C
with |〈µ, ϕ〉| ≤ C ||ϕ||∞ for all ϕ ∈ Cc(Ω).
• meas(A): Lebesgue measure of A, sometimes written |A|.
• | · |: norm in H, or sometimes the Lebesgue measure of a set.
• || · ||: norm in V .
• || · ||∗: dual norm in V ′.
• p′: conjugate exponent of p ∈ [1,∞], i.e., 1

p + 1
p′ = 1.

• p∗: Sobolev exponent of p ∈ [1, N), i.e., 1
p∗ = 1

p −
1
N for Ω ⊂ RN and N ≥ 2.

• R+: (0,∞).
• RN

+ : {x ∈ RN | xN > 0}.
• R(A): range of a linear operator A ∈ L(E;F ), i.e., {f ∈ F | f = Ae for
some e ∈ E}.
• Rj : Riesz operators, j = 1, . . . , N , defined by F(Rju)(ξ) = i ξjFu(ξ)

|ξ| on
L2(RN ); natural extensions to RN of the Hilbert transform, they map Lp(RN )
into itself for 1 < p < ∞, and L∞(RN ) into BMO(RN ).
• S(RN ): Schwartz space of functions u ∈ C∞(RN ) with xαDβu bounded for
all multi-indices α,β with αj , βj nonnegative integers for j = 1, . . . , N .
• S ′(RN ): tempered distributions, dual of S(RN ), i.e., T ∈ D′(RN ) and there
exists C and an integer m ≥ 0 with |〈T, ψ〉| ≤ C sup|α|,|β|≤m ||xαDβψ||∞ for
all ψ ∈ S(RN ).
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• 
: convolution product (f 
 g)(x) =
∫
y∈RN f(x − y)g(y) dy.

• supp(·): support; for a continuous function u from a topological space into
a vector space, it is the closure of {x | u(x) = 0}, but for a locally integrable
function f , a Radon measure µ, or a distribution T defined on an open set
Ω ⊂ RN , it is the complement of the largest open set ω where f , µ, or T is 0,
i.e., where

∫
ω

ϕf dx = 0, or 〈µ, ϕ〉 = 0 for all ϕ ∈ Cc(Ω), or 〈T, ϕ〉 = 0 for all
ϕ ∈ C∞

c (Ω).
• Wm,p(Ω): Sobolev space of functions in Lp(Ω) whose derivatives (in the
sense of distributions) of length ≤ m belong to Lp(Ω), for an open set Ω ⊂ RN .
• Wm,p(Ω;Rm): Sobolev space of functions from Ω into Rm whose compo-
nents belong to Wm,p(Ω), for an open set Ω ⊂ RN .
• x′: in RN , x = (x′, xN ), i.e., x′ = (x1, . . . , xN−1).
• xα: xα1

1 . . . xαN

N for a multi-index α with αj nonnegative integers for j =
1, . . . , N , for x ∈ RN .
• ∆: Laplacian

∑N
j=1

∂2

∂x2
j

, defined on any open set Ω ⊂ RN .

• δij : Kronecker symbol, equal to 1 if i = j and equal to 0 if i = j (for
i, j = 1, . . . , N).
• εijk: for i, j, k ∈ {1, 2, 3}, completely antisymmetric tensor, equal to 0 if two
indices are equal, and equal to the signature of the permutation 123 
→ ijk if
indices are distinct (i.e., ε123 = ε231 = ε312 = +1 and ε132 = ε321 = ε213 =
−1).
• γ0: trace operator, defined for smooth functions by restriction to the bound-
ary ∂Ω, for an open set Ω ⊂ RN with a smooth boundary, and extended by
density to functional spaces in which smooth functions are dense.
• Λ1: Zygmund space, |u(x+h)+u(x−h)−2u(x)| ≤ M |h| for all x,h ∈ RN .
• ν: exterior normal to Ω ⊂ RN , open set with Lipschitz boundary.
• ε: smoothing sequence, with ε(x) = 1

εN 1

(
x
ε

)
with ε > 0 and 1 ∈

C∞
c (RN ) with

∫
x∈RN 1(x) dx = 1, and usually 1 ≥ 0.

• τh: translation operator of h ∈ RN , acting on a function f ∈ L1
loc(R

N ) by
τhf(x) = f(x − h) a.e. x ∈ RN .
• ΩF : {x ∈ RN | xN ≥ F (x′)}, for a continuous function F , where x′ =
(x1, . . . , xN−1).
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