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Preface

Ive got to work the E qwations and the low cations
Ive got to comb the nations of it.

Russell Hoban, Riddiey Walker (1980)

We have not begun to understand the relationship between combinatorics and
conceptual mathematics,

J. Dieudonné, A Panorama of Pure Mathematics (1982)

If anything at 2ll can be deduced from the two quotations at the top of this page,
perhaps it is this: Combinatorics is an essential part of the human spirit; but it is
a difficult subject for the abstract, axiomatising Bourbaki school of mathematics to
comprehend. Nevertheless, the advent of computers and electronic communications
have made it a more important subject than ever.

This is a textbook on combinatorics. It’s based on my experience of more than
twenty years of research and, more specifically, on teaching a course at Queen Mary
and Westfield College, University of London, since 1986. The book presupposes
some mathematical knowledge. The first part (Chapters 2-11) could be studied by
a second-year British undergraduate; but I hope that more advanced students will
find something interesting here too (especially in the Projects, which may be skipped
without much loss by beginners). The second half (Chapters 12-20) is in a more
condensed style, more suited to postgraduate students.

I am grateful to many colleagues, friends and students for all kinds of contribu-
tions, some of which are acknowledged in the text; and to Neill Cameron, for the
illustration on p. 128.

I have not provided a table of dependencies between chapters. Everything is
connected; but combinatorics is, by nature, broad rather than deep. The more
important connections are indicated at the start of the chapters.

Peter J. Cameron
17 March 1994



1. What is Combinatorics?

Combinatorics is the slums of topology.
J. H. C. Whitehead (attr.)!

| have to admit that he was not bad at combinatorial analysis — a branch,
however, that even then | considered to be dried up.

Stanislaw Lem, His Master’s Voice (1968)

Combinatorics is special. Most mathematical topics which can be covered in a
lecture course build towards a single, well-defined goal, such as Cauchy’s Theorem
or the Prime Number Theorem. Even if such a clear goal doesn’t exist, there is
a sharp focus (finite groups, perhaps, or non-parametric statistics). By contrast,
combinatorics appears to be a collection of unrelated puzzles chosen at random.

Two factors contribute to this. First, combinatorics is broad rather than deep.
Its tentacles stretch into virtually all corners of mathematics. Second, it is about
techniques rather than results. As in a net,” threads run through the entire con-
struction, appearing unexpectedly far from where we last saw them. A treatment of
combinatorics which neglects this is bound to give a superficial impression.

This feature makes the teacher’s job harder. Reading, or lecturing, is inherently
one-dimensional. If we follow one thread, we miss the essential interconnectedness
of the subject.

I have attempted to meet this difficulty by various devices. Each chapter begins
with a list of topics, techniques, and algorithms considered in the chapter, and
cross-references to other chapters. Also, some of the material is set in smaller
type and can be regarded as optional. This usually includes a ‘project’ involving a
more difficult proof or construction (where the arguments may only be sketched,
requiring extra work by the reader). These projects could be used for presentations
by students. Finally, the book is divided into two parts; the second part treats topics
in greater depth, and the pace hots up a bit (though, I hope, not at the expense of
intelligibility).

As just noted, there are algorithms scattered throughout the book. These are not
computer programs, but descriptions in English of how a computation is performed.
I hope that they can be turned into computer programs or subroutines by readers
with programming experience. The point is that an explicit construction of an object
usually tells us more than a non-constructive existence proof. (Examples will be
given to illustrate this.) An algorithm resembles a theorem in that it requires a proof
(not of the algorithm itself, but of the fact that it does what is claimed of it).

! This attribution is due to Graham Higman, who revised Whitehead's definition to ‘Combinatorics
is the mews of algebra.’

? ‘Net. Anything reticulated or decussated at equal distances, with interstices between the intersec-
tions.! Samuel Johnson, Dictionary of the Englisk Language (1775).
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But what is combinatorics? Why should you read further?

Combinatorics could be described as the art of arranging objects according
to specified rules. We want to know, first, whether a particular arrangement is
possible at all, and if so, in how many different ways it can be done. If the rules
are simple (like picking a cricket team from a class of schoolboys), the existence
of an arrangement is clear, and we concentrate on the counting problem. But for
more involved rules, it may not be clear whether the arrangement is possible at all.
Examples are Kirkman’s schoolgirls and Euler’s officers, described below.

Sample problems

In this section, I will give four examples of combinatorial questions chosen to
illustrate the nature of the subject. Each of these will be discussed later in the book.

Derangements

Given n letters and n addressed envelopes, in how many ways can
the leiters be placed in the envelopes so that no letter is in the
correct envelope?

Di1scussioN. The total number of ways of putting the letters in the envelopes is the
number of permutations of n objects.? which is n! (factorial n). We will see that
the fraction of these which are all incorrectly addressed is very close to 1/e, where
e = 2.71828... is the base of natural logarithms — a surprising result at first sight.
In fact, the exact number of ways of mis-addressing all the letters is the nearest
integer to n!/e (see Exercise 1).

Kirkman’s schoolgirls

Fifteen schoolgirls walk each day in five groups of three. Arrange
the girls’ walis for 2 week so that, in that time, each pair of girls
walks together in a group just once.

DiscussioN. If it is possible at all, seven days will be required. For any given
girl must walk once with each of the other fourteen; and each day she walks with
two others. However, showing that the walks are actually possible requires more
argument. The question was posed and solved by Kirkman in 1847. The same
question could be asked for other numbers of girls (see Exercise 2). Only in 1967
did Ray-Chaudhuri and Wilson show that solutions exist for any number of girls
congruent to 3 modulo 6.

Euler’s officers

Thirty-six officers are given, belonging to six regiments and holding
six ranks (so that each combination of rank and regiment coz-
responds to just one officer). Can the officers be paraded in a
6 x 6 array so that, in any line (row or column} of the array, each
regiment and each rank occurs precisely once?

3 Permutations will be described in Chapter 3.
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DiscussioN. Euler posed this problem in 1782; he believed that the answer was ‘no’.
This was not proved until 1900, by Tarry. Again, the problem can be generalised, to
n? officers, where the number of regiments, ranks, rows and columns is n (we assume
n > 1) — see Exercise 3. There is no solution for n = 2. Euler knew solutions for
all » not congruent to 2 modulo 4, and guessed that there was no solution for » =2
{(mod 4). However, he was wrong about that. Bose, Shrikhande and Parker showed
in 1960 that there is a solution for all » except n =2 and n = 6.

A Ramsey game

This two-player game requires a sheet of paper and pencils of two
colours, say red and blue. Six points on the paper are chosen, with
no three in line. Now the players take a pencil each, and take turns
drawing a line connecting two of the chosen points. The first player
to complete a triangle of her own colour loses. (Only triangles with
vertices at the chosen points count.)

Can the game ever result in a draw?

DiscUssioN. We'll see that a draw is not possible; one or other player will be forced
to create a triangle. Ramsey proved a wide generalisation of this fact. His theorem
is sometimes stated in the form ‘Complete disorder is impossible.’

How to use this book

1. The book is divided into two parts: Chapters 2-11 and Chapters 12-20. In the
second part, along with some new material, we revisit many of the topics from the
first part and treat them from a more advanced viewpoint; also, as I mentioned
earlier, the pace is a little faster in the second paxt, In any case, a first course can be
devised using only the first part of the book. (The second~third year undergraduate
course at Queen Mary and Westfield College includes a selection of material from
Chapters 3 (Sections 3.1, 3.2, 3.3, 3.5, 3.7, 3.11, 3.12), 4 (Sections 4.1, 4.3, 4.4, 4.5), 5,
6, 7, 8 and 10; other courses treat material from Chapters 9, 11, 14-17.)

2. Chapter 3 plays a special role. The material here is central to combinatorics:
subsets, partitions, and permutations of finite sets. Within the other chapters, you are
encouraged to dabble, taking or leaving sections as you choose; but I recommend
reading all of Chapter 3 (except perhaps the Projects, see below).

3. A number of sections are designated as Projects. These are to be regarded as
less central and possibly more difficult than the others. The word suggests that
they could be worked through by individuals outside class time, and then made the
subject of presentations to the class.

4, Each chapter after this one begins with a box containing ‘topics, techniques,
algorithms and cross-references’. This is designed to give you some indication of the
scope of the chapter. Roughly speaking, topics are specific results or constructions;
techniques are of wider applicability, indicating general methods which may be
illustrated in specific cases in the chapter; algorithms are self-explanatory; and
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cross-references pinpoint at least some occurrences of the material in other chapters.
These are usually backward references, but the multidimensional nature of the
subject means that this is not always so. You should use these as pointers to places
where you might find help if you are stuck on something. The index can also be
used for this purpose.

5. The exercises are a mixed bunch; but, by and large, I have tended to avoid
‘drill’ and give more substantial problems. You will certainly learn more if you work
conscientiously through them. But I have tried not to assume that you have done all
the problems. When (as often happens) the result of an exercise is needed in a later
chapter, I have usually supplied a proof (or, failing that, a hint). Indeed, hints are
strewn liberally through the exercises, and some example solutions are given (rather
more briefly than I would expect from students!) at the end of the book.

6. The last chapter does two jobs. First, it treats {somewhat sketchily) some further
topics not mentioned earlier; second, it gives pointers to further reading in various
parts of combinatorics. I have included a small collection of unsolved problems
here, to indicate the sort of thing that research in combinatorics might involve. But
beware: these problems are unsolved; this means that somebody has given some
thought to them and failed to solve them, so they are probably more difficult than
the exercises in other chapters.

7. The numbering is as follows. Chapter A is divided into sections, of which a
typical one is Section A.B. Within a section, theorems (and similar statements such
as propositions, lemmas, corollaries, facts, algorithms, and numbered equations)
have numbers of the form A.B.C. On the other hand, diagrams are just numbered
within the chapter, as A.D, for example; and exercises are typically referred to
as ‘exetcise E of Chapter A", Some theorems or facts are displayed in a box for
easy reference. But don't read too much into the difference between displayed and
undisplayed theorems, or between theorems and propositions; it’s a matter of taste,
and consistency is not really possible.

8. An important part of combinatorics today is the algorithmic side: I can prove that
some object exists; how do I construct it? I have described algorithms for a wide
range of constructions. No knowledge of computers or programming languages is
assumed. The description of the algorithms makes use of words like ‘While ...’
‘Repeat ... until ...", and so on, These are to be interpreted as having their usual
English meaning. Of course, this meaning has been taken over by programming
languages; if you are fluent in Pascal, you will I hope find my descriptions quite
congenial. If you are a competent programmer and have access to a computer, you
are advised at several places to implement these algorithms.

What you need to know

The mathematical results that I use are listed here. You don’t need everything all
at once; the more advanced parts of algebra, for example, are only required later
in the book, so you could study algebra and combinatorics at the same time. If
all else fails, I have tried to arrange things so that you can take on trust what you
don’t know. Topics in square brackets are treated in the book, but you may feel the
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need of more explanation from a course or textbook in that subject. As you see,
combinatorics connects with all of mathematics; you will see material from many
other areas being used here.

¢ Basic pure mathematics: Sets and functions, ordered n-tuples and cartesian
products; integers, factorisation, modular arithmetic; [equivalence and order
relations].
Linear algebra: Vector spaces, subspaces; linear transformations, matrices; row
operations, 1ow space; eigenvalues of real symmetric matrices.
Abstract algebra: [Elementary group theory; finite fields].
Number theory: [Quadratic residues; two and four squares theorems).
Analysis: Basic operations (limits, differentiation, etc.); [power series].*
Topology: [Definition of metric and topological space; surfaces; Jordan curve
theorem).
o Probability: Basic concepts (for finite spaces only) [except in Chapter 19).
¢ Set theory: See Chapter 19.

Exercises

1. For n = 3,4,5, calculate the number of ways of putting n letters into their
envelopes 50 that every letter is incorrectly addressed. Calculate the ratio of this
number to n! in each case.

2. Solve Kirkman’s problem for nine schoolgirls, walking for four days.

3. Solve Euler’s problem for nine, sixteen and twenty-five officers. Show that no
solution is possible for four officers.

4, Test the assertion that the Ramsey game cannot end in a draw by playing it with
a friend. Try to develop heuristic rules for successful play.

* As will be explained in Section 4.2, our treatment of power series is formal and does not involve
questions of convergence.



2. On numbers and counting

One of them is all alone and ever more shall be so

Two of them are lily-white boys all clothed all in green Oh

Three of them are strangers o’er the wide world they are rangers
Four it is the Dilly Hour when blooms the Gilly Flower

Five it is the Dilly Bird that's seldom seen but heard

Six it is the ferryman in the boat that o’er the River floats Oh

Seven are the Seven Stars in the Sky, the Shining Stars be Seven Ch
Eight it is the Morning's break when all the World's awake Oh

Nine it is the pale Moonshine, the Shining Moon is Nine Oh

Ten Forgives all kinds of Sin, from Ten begin again Oh

English traditional folksong
from Bob Stewart, Where is Saint George? (1977)

Tori0s: Natural numbers and their representation; induction; use-
ful functions; rates of growth; counting labelled and unlabelled
structures; Handshaking Lemma

TeCHNIQUES: Induction; double counting
ALGORITHMS: Odometer Principle; [Russian peasant multiplication)

CROSS-REFERENCES:

This chapter is about counting. In some sense, it is crucial to what follows, since
counting is so basic in combinatorics, But this material is part of mathematical
culture, so you will probably have seen most of it before.

2.1. Natural numbers and arithmetic

Kronecker is often quoted as saying about mathematics, ‘God made the integers;
the rest is the work of man.’ He was referring to the natural numbers (or counting
numbers), which are older than the earliest archeeological evidence. {(Zero and the
negative numbers are much more recent, having been invented (or discovered) in
historical time.)! Since much of combinatorics is concerned with counting, the
natural numbers have special significance for us.

! See Georges Ifrah, From One to Zero: A Universal History of Numbers (1985), for an account of
the development of numbers and their representation.
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As each new class of numbers was added to the mathematical repertoire, it was
given a name reflecting the prejudice against its members, or the ‘old’ numbers were
given a friendly, reassuring name. Thus, zero and negative integers are contrasted
with the ‘natural’ positive integers. Later, quotients of integers were ‘rational’, as
opposed to the ‘irrational’ square root of 2; and later still, all numbers rational and
irrational were regarded as ‘real’, while the square root of —1 was ‘imaginary’ (and
its friends were ‘complex’).

The natural numbers are the first mathematical construct with which we become
familiar. Small children recite the names of the first few natural numbers in the same
way that they might chant a nursery rhyme or playground jingle. This gives them
the concept that the numbers come in a sequence. They grasp this in a sophisticated
way. The thyme?

One, two,
Missed a few,
Ninety-nine,
A hundred

expresses confidence that the sequence of numbers stretches at least up to 100, and
that the speaker could fill in the gap if pressed.

Order or progression is thus the most basic property of the natural numbers.?
How is this expressed mathematically? First we must stop to consider how natural
numbers are represented. The simplest way to represent the number » is by a
sequence of n identical marks, This is probably the earliest scheme mankind
adopted. It is well adapted for tallying: to move from one number to the next,
simply add one more mark. However, large numbers are not easily recognisable.
After various refinements (ranging from grouping the marks in sets of five to the
complexities of Roman numerals), positional notation was finally adopted.

This involves the choice of a base b (an integer greater than 1), and b digits (dis-
tinguishable symbols for the integers 0,1,2,...,5 — 1). (Early attempts at positional
notation were bedevilled because the need for a symbol for zero was not recognised.)
Now any natural number N is represented by a finite string of digits. Logically the
string is read from right to left; so we write it as z,_; ... %120, where each 2; is
one of our digits. By convention, the leftmost digit is never zero. The algorithm for
advancing to the next number is called the Odometer Principle. It is based on the
principle of trading in & counters in place i for a single counter in place i + 1, and
should be readily understood by anyone who has watched the odometer (or mileage
gauge) of a car.

2 T have heard the feminist version of this: ‘One, two, Mrs. Few, ...’

3 “The operations of arithmetic are based on the tacit assumption that we can clways pass from any
number to its successor, and this is the essence of the ordinal concept.’ Tobias Dantzig, Number: the
Language of Science (1930).
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(2.1.1) Odometer Principle
to find the successor of a natural number to base b
Start by considering the rightmost digit.

e If the digit we are considering is not b — 1, then replace it by
the next digit in order, and terminate the algorithm.

o If we are considering a blank space (to the left of all the digits),
then write in it the digit 1, and terminate the algorithm.

o If neither of the above holds, we are considering the digit b — 1.
Replace it with the digit 0, move one place left, and returr to
the first bullet point.

For example, if the base b is 2 and the digits are 0 and 1, the algorithm (starting
with 1) generates successively 10, 11, 100, 101, 110, ... .
Now it can be proved by induction that the string ©,—1 ... z170 represents the
positive integer
Y R Rl

(see Exercise 2).

Often the number 0 is included as a natural number. (This is most usually done
by logicians, who like to generate the whole number system out of zero, or nothing,.
But it conflicts with our childhood experience: I have never heard a child say
‘nought, one, two, ...*, and we don’t count that way.) This is done by modifying
our representation so that the digit 0 represents the number 0. This is the one
allowed exception to the rule that the left-most digit cannot be 0; the alternative,
representing 0 by a blank space, would be confusing.

The odometer of a car actually works slightly differently. It works with a fixed
number of digits which are initially all zero, so that the ‘blank space’ case of the
algorithm cannot arise. If there are k digits, then the integers 0,...,8" — 1 are
generated in turn, and then the odometer returns to 0 and the process repeats.

Now that we have a representation of positive integers, and understand how to
move to the next integer, we should explore the arithmetic operations (ambition,
distraction, uglification and derision).® Algorithms for these are taught in primary
school® I will not consider the details here. It is a good exercise to program
a computer to perform these algorithms’, or to investigate how many elementary

1 A possible exception occurs when one child has been appointed to be first, and another wishes to
claim precedence, as in ‘Zero the hero' But this is closer to the historical than the logical approach.
5 Lewis Carroll, Alice’s Adventures in Wonderland (1865).

8 These algorithms were known to the Babylonians in 1700 B.C.

" Most programming languages specify the ‘maximum integer' to be something like 32767 or
2147483647. Oflen, the answer to a counting problem will be much larger than this. To find it by
computer, you may have to write routines for arithmetic operations on integers with many digits. If
you need to do this, write your routines so that you can re-use them!
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operations are required to add or multiply two n-digit numbers (where elementary
operations might consist of referring to one’s memory of the multiplication tables,
or writing down a digit).

2.2. Induction

Induction is a very powerful principle for proving assertions about the natural
numbers. It is applied in various different forms, some of which are described in
this section. We also see that it is a consequence of our most basic intuition about
the natural numbers.

The Principle of Induction asserts the following:

(2.2.1) Principle of Induction
Let P(r) be a proposition or assertion about the natural number n.
Suppose that P(1) is true. Suppose also that, if P(n) is true, then
P(n + 1) is also true. Then P(n) is true for all natural numbers n.

Why is this true? As we saw, the basic property of the natural numbers,
recognised even by children, is that we can count up to any natural number n
starting from 1 (given sufficient patience!) Now, with the assumptions of the
Principle, P(1) is true, so P(2) is true, so (miss a few here) so P(rn — 1) is true, so
P(n) is true.

As this argument suggests, if you are reading a mathematical argument, and the
author puts in a few dots or the words ‘and so on’, there is probably a proof by
induction hiding there. Consider, for example, the function f satisfying f(1) = 2
and f(n + 1) = 2f(n) for all natural numbers n. Then

f2)=4=2%f3)=8=2% ... f(n)=2"

The dots hide a proof by induction. Let P(n) be the assertion that f(rn) = 2*. Then
P(1) holds; and, assuming that P(n) holds, we have

P(n+1)=2P(n)=2-2"=2",

so P(n + 1) also holds. So the Principle of Induction justifies the conclusion. The
point is that very simple arguments by mduction can be written out with three
dots in place of the detailed verification, but this verification could be supplied if
necessary. We'll see more examples of this later.

Now I give some alternative forms of the Principle of Induction and justify their
equivalence. The first one is transparent. Suppose that P(r) is an assertion, for
which we know that P(27) is true, and that if P(r) holds then so does P(n + 1).
Then we conclude that P(r) holds for all » > 27. (To prove this formally, let Q(n)
be the assertion that P(n + 26) is true, and verify the hypotheses of the Principle of
Induction for Q(r).)

For the next variation, let P(n) be a proposition about natural numbers. Suppose
that, for every natural number r, if P(m) holds for all natural numbers m less than
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n, then P(n) holds. Can we conclude that P(n) holds for all n? On the face of it,
this seems a much stronger principle, since the hypothesis is much weaker. (Instead
of having to prove P(n) from just the information that P(n — 1) holds, we may
assume the truth of P{m) for all smaller m.) But it is true, and it follows from the
Principle as previously stated.

We let Q(n) be the statement ‘P{m) holds for all m < n'. Now it is clear that
Q(n + 1) implies P(n), so we will have succeeded if we can prove that Q(n) holds
for all n. We prove this by induction.

First, @(1) holds: for there are no natural numbers less than 1, 50 the assertion
P holds for all of them (vacuously).

Now suppose that Q(r) holds. That is, P(r) holds for all m < n. By assumption,
P(r) also holds. Now P(m) holds for all m < n + 1 (since the numbers less than
7+ 1 are just » and the numbers less than »)% In other words, @(n + 1) holds.

Now the Principle of Induction shows that @(r) holds for all n.

The final re-formulation gives us the techmique of ‘Proof by Minimal Counterex-
ample’. Suppose that P(n) is a proposition such that it is not true that P(n) holds
for all natural numbers n. Then there is a least natural number » for which P(n) is
false; in other words, P(m) is true for all m < n but P(n) is false. For suppose that
no such n exists; then the truth of P(m) for all m < n entails the truth of P(n),
and as we have seen, this suffices to show that P(r) is true for all n, contrary to
assumption.

This argument shows that any non-empty set of natural numbers contains a
minimal element. (If § is the set, let P(n) be the assertion n ¢ $.)

2.3. Some useful functions

I assume that you are familiar with common functions like polynomials, the function
|z (the absolute value or modulus), etc.

Floor and Ceiling. The floor of a real number z, written |z |, is the greatest integer
not exceeding z. In other words, |z | is the integer m such that m <z < m+1. If z
is an integer, then [z| = z. This function is sometimes written [z]; but the notation
|z] suggests ‘rounding down’. It is the number of the floor of a building on which
z would be found, if the height of z above the ground is measured in units of the
distance between floors. (The British system of floor numbering is used, so that the
ground floor is number 0.)

The ceiling is as you would probably expect: [z] is the smallest integer not less
than #. So, if = is not an integer, then [z] = |z] + 1; if z is an integer, its floor and
ceiling are equal. In any case, you can check that

[z] = =[]

Factorial. The factorial function is defined on positive integers by the rule that n! is
the product of all the integers from 1 to n inclusive. It satisfies the condition

nl=n.(n-1) (*)

8 Let p be an integer less than n + 1. Then p < n or p = n or p > n; and the last case is impossible,
since there is no integer between n and n + 1.
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for n > 1. In fact, we can consistenily define 0! = 1; then (*) holds for all n > 0.
In fact, the conditions 0! = 1 and () actually define n! for all natural numbers n.
(This is proved by induction: 0! is defined; if n! is defined then so is (n + 1)!; so n!
is defined for all n.)

Exponential and logarithm.  These two functions are familiar from elementary
calculus. We will often use the power series expansions of them. The equation
00 Zn .1‘2
=3 —=l+z+_+...
n=0 """

n! 2

is valid for all real numbers . On the other hand, the function logz can’t be
expanded as a series of powers of z, since log 0 is undefined. Instead, we have

=] —1 n—1_n 2
logll +2) = 3> o Ty
n=1 n 2

which is valid for all z with |z| < 1 (and in fact also for z = 1).

The exponential function grows more rapidly than any power of z; this means
that e® > z° for all sufficiently large = (depending on c¢). In fact, for z > (c+ 1)}, we
have

T xc+l c

e > C+ 1) >z,

On the other hand, the logarithm function grows more slowly than any power of z.
We will often write exp{z) instead of e,

2.4. Orders of magnitude

People use the phrase ‘the combinatorial explosion’ to describe a counting function
which grows very rapidly. This is a common phenomenon, and it means that, while
we may be able to give a complete description of all the objects being counted
for small values of the parameter, soon there will be far too many for this to be
possible, and maybe even far too many for an exact count; we may have to make do
with fairly rough estimates for the counting function. I will consider now what such
rough estimates might look like. In this section, some results from later chapters will
be anticipated. If you are unfamiliar with these, take them on trust until we meet
them formally.

Let X be a set with n elements, say X = {1,2,...,n}. The number of subseis
of X is 2". This is the most familiar example of an exponential function, or funclion
with exponential growth. A function f which has (precisely) exponential growth has
the property that

fn+1) = cf(n)

for some ¢ > 1. (If ¢ = 1, the function is constant; if ¢ < 1, then f(n) — 0 asn — co.
In these cases, the term ‘exponential growth’ is not really appropriate!®) A function

Y Economists define a recession as a period when the exponential constant for the GDP is less than
1.004. Sometimes you have to run in order te stand still.
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f satisfying the above equation is given by f(n) = ac®, where a is a constant (and
is equal to the value of f(0)).

We also say that a function f has ‘exponential growth’ if it is roughly the same
size as an exponential function. So the function f(r) = 2® + n has exponential
growth, since the term n is dwarfed by 2” for large n. Formally, the function f is
said to have exponential growth if f(n)'/" tends to a limit ¢ > 1 as » — co. This
means that, for any positive number ¢, f(r) lies between (¢ — €)” and (c 4+ ¢€)” for all
sufficiently large n. The number ¢ is called the exponential constant for f.

Of course, a function may grow more slowly than exponentially. Examples
mclude
e polynomial growth with degree c, like the function f(r) = r*;
o fractional exponential growth with exponent c, like the function ¢, where 0 <
c< 1.
These functions arise in real combinatorial counting problems, as we will see.
But many functions grow faster than exponentially. Here are two examples.

The number of permutations of the set X is equal to n! = n(n —1)...1, the
product of the integers from 1 to n inclusive. We have

271—1 S n! S nn—l,

because (ignoring the factor 1) there are n — 1 factors, each lying between 2 and
n. In fact it is easy to see that the growth is not exponential. We will find better
estimates in the next chapter.

Now let P(X), the power set of X, denote the set of all subsets of X, We will
be considering subsets of P(X), under the name families of sets. How many families
of sets are there? Clearly the number is 22", This number grows much faster than
exponentially, and much faster than the factorial function. A function like this is
called a double exponential.

For comparing the magnitudes of functions like these, it is often helpful to
consider the logarithm of the function, rather than the function itself, The logarithm
of an exponential function is a (roughly) linear function. The logarithm of n! is
fairly well approximated by nlogn; and the logarithm of a double exponential is
exponential. Other possibilities are functions whose logarithms are polynomial.

Of course, this is only the beginning of a hierarchy of growth rates; but for the
most part we won’t have to consider anything worse than a double exponential.

In connection with growth rates, there is a convenient analytic notation. We
write O(f(n)) (read ‘big Oh f(r)’) to mean a (possibly unknown) function g(n) such
that, for all sufficiently large », |¢(n)| < cf(r) for some constant c. This is typically

used in the form
¢(n) = F(n) + O(f(n)),

where ¢ is a combinatorial counting function and F, f are analytic functions where
f grows more slowly than F'; this has the imterpretation that the order of magnitude
of ¢ is similar to that of . For example, in Section 3.6, we show that

logn! = nlogn —n + Oflogn).
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We write o{f(n)) (and say ‘small oh f(n)’) to man a function g(n) such that
g(n)/f(n) — 0 as n — oo; that is, g is of smaller order of magnitude than f.

There are several variants. For example, {) is the opposite of O; that is, ( f(n))
is a function g(r) with |g(r)| > cf(n) for some constant ¢ > 0. Also, g(n) ~ f(r)
means that both g(n) = O(f(n)) and g(n) = Q(f(n)) hold: roughly, f and g have
the same order of magnitude apart from a constant factor.

2.5. Different ways of counting

In combinatorics (unlike real life!®), when we are asked to count something, there
are very many different answers which can be regarded as correct. Consider the
simple problem of choosing three items from a set of five. Before we can work out
the right answer, the problem must be specified more precisely. Are the objects in
the set identical (five electrons, say, or five red billiard balls), or all different (the
ace, two, three, four, and five of spades, for example)? Does the order of selection
matter? (That is, do we just put in a hand and pull three objects out, or do we draw
them one at a time and record the order?) And are we allowed to choose the same
object more than once (say, by recording the result of each draw and returning the
object to the urn), or not? There are various intermediate cases, like making words
using the letters of a given word, where a letter may be repeated but not more often
than it occurs in the original word.

Almost always, we assume that the objects are distinguishable, like the five
spade cards. Under this assumption, the problem will be solved under the four
possible combinations of the other assumptions in Chapter 3. What if they are
indistinguishable? In this case, there is obviously only one way to select three red
billiard balls from a set of five: any three red billiard balls are identical to any other
three.

t

What difference does indistinguishability make? If the underlying objects are
distinguishable, we can assume that they carry labels bearing the numbers 1,2,...,n.
In this case, we say that the configurations we are counting are lgbelled. If the n
underlying objects are indistinguishable, we are counting unlabelled things. An
example will fllustrate the difference.

Suppose that we are interested in n towns; some pairs of towns are joined by
a direct road, others not. We are not concerned with the geographical locations,
only in whether the towns are connected or not. (This is described by the structure
known as a graph.!' See Chapter 11 for more about graphs.) Figure 1 shows the
eight labelled graphs for n = 3. If the towns are indistinguishable, then the second,

10 According to folklore, it is impossible to count the Rollright Stones consistently,

' This usage of the term is quite different from the sense in the phrase ‘the graph of y = sin2’
Some people distinguish the two meanings by different pronunciation, with a short @ for the sense
used here.
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Fig. 2.1. Graphs on three vertices

third and fifth graphs are identical, as are the fourth, sixth and seventh. So there
are just four unlabelled graphs with » = 3.

In general, let f(n) and g(n) denote the numbers of labelled and unlabelled
configurations, respectively, with » underlying objects. Then two labelled configura-
tions will be regarded as identical as unlabelled configurations if and only if there
is a permutation of {1,2,...,n} which carries one to the other. (For example, the
cyclic permutation 1 — 2 — 3 — 1 carries the second graph in Fig. 1 to the fifth.)
So at most n! labelled configurations collapse into a single unlabelled one, and we
have

f(n)/rl < g(n) < f(n).

Now there are two possibilities for the ‘order of magnitude’ behaviour.

If f(n) grows much more rapidly than n!, then the left and right hand sides
of this equation are not so very far apart, and we have a reasonable estimate for
g(n). For example, we saw that there are 22" families of subsets of the n-element set
X. The number of permutations is insignificant by comparison, so it doesn’t matter
very much whether the elements of X are distinguishable or not, that is, whether we
count labelled or unlabelled families.

But if this doesn’t occur, then more care is needed. There are just 2™ subsets of
the n-element set X, and this function grows more slowly than »!. In this case, we
can count unlabelled sets another way. If all elements of X are indistinguishable,
then the only thing we can tell about a subset of X is its cardinality; two subsets
containing the same number of elements are equivalent under a permutation. So the
number of unlabelled subsets is » + 1, since the cardinality of a subset can take any
one of the n + 1 values 0,1,2,...,n.

This theme can be refined, using the concepts of permutation group and cyecle
index. These are more advanced topics, and will be treated in Part 2 (see Chapter 15).
2.6. Double counting
We come now to a deceptively simple but enormously important counting principle:

If the same set is counted in two different ways, the answers are the
same.

This is analogous to finding the sum of all the entries in a matrix by adding the row
totals, and then checking the calculation by adding the column totals.

The principle is best illustrated by applications (of which there will be many
later) — here is one:
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(2.6.1) Handshaking Lemma
At a convention, the number of delegates who shake hands an odd
number of times is even.

To show this, let Dy,..., D, be the delegates. We apply double counting to the
set of ordered pairs (D;, D;) for which D; and D; shake hands with each other at
the convention. Let z; be the number of times that D; shakes hands, and y the
total number of handshakes that occur. On the one hand, the number of pairs is
3oy @i, since for each D; the number of choices of D; is equal to z;. On the other
hand, each handshake gives rise to two pairs (D;, D;) and (D;, D;); so the total is
2y. Thus ’

”

Z ;= 2y.

i=1
But, if the sum of » numbers is even, then evenly many of the numbers are odd.
(If we add an odd number of odd numbers and any number of even numbers, the
answer will be odd.)

The double counting principle is usually applied to counting ordered pairs.
For lovers of formalism, here is a general result, which encapsulates most of the
applications we will make of it.

(2.6.2) Proposition. Let A = {a1,...,am} and B = {by,...,b,} be sets. Let S be a
subset of A x B. Suppose that, for i = 1,...,m, the element g, is the first component
of z; pairs in S, while, for j = 1,...,n, the element b; is the second component of
y; pairs in S. Then

m n
1S1=2"z:i= y;
=1 =1

Often it happens that z; is constant (say =) and y; is also constant (say y). Then
we have
me = ny.

2.7. Appendix on set notation

The basic notation for sets s listed here. If A and B are sets, then we write z € A
if £ is an element of A, z ¢ A otherwise. Also

|A| (the cardinality of A) is the number of elements in A;

AU B (the urion) is the set of elements in A or B (or both);

AN B (the intersection) is the set of elements in both A and B;

A\ B (the difference) is the set of elements in A but not B;

AAB (the symmetric difference) is the set of elements in just one of the two sets;

A C B if every element of A belongs to B;

A = B if A and B have exactly the same elements.
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So, for example,

AAB = (A\B)U(B\ A) = (AUB)\(ANB),
|AUB| +|An B| = |4| +|B|.

The notation {z : P} means the set of all elements 2 having property P. So, for
example,
AUB={z:z€Aorze B}

Similarly, {z,y} is the set consisting of the elements z and y only. It is sometimes
called an umordered pair, since {z,y} = {y,z}. By contrast, the ordered pair (z,y)
has the property that (z,y) = (u,v) if and only if # = u and y = v. This is famikiar
from Cartesian coordinates of points in the Euclidean plane.

The Cartesian product A x B is the set of all ordered pairs (a,b), with a € A
and b € B. Similarly for more than two factors. For example, we write A™ for the
set of ordered n-tuples of elements of A, for any positive integer n. We have

|A x B|=|A|-|B|,
|4%] = |A]".

Until last century, a function was something described by a formula {typically a
polynomial or a power series); it was the ambiguity in this definition which led to
the modern version. A function f from A to B is a subset of A x B with the property
that, for any a € A, there is a unique b € B such that (a,b) € f. If (a,b) € f, we
write f(e) = b.!? Usually there is a rule for calculating b = f(a) from g, but this is
not patt of the definition.

If A= {a,@2,...,a,}, then any function f: A — B can be specified by giving
the n-tuple of values (f(a1), f(@2),..., f(@.)). Thus the number of functions from
A to B is |B|!4l. Motivated by this, the set of functions from A to B is sometimes
written B4, so that |[B4| = | B|lAl

The power set P(A) is the set of all subsets of A. Any subset X of A is specified
by its characteristic function, the function fx : A — {0,1} defined by

_ {1 ifa€eX;
Fx(a) = {0 ifad X,
(Two subsets are equal if and only if their characteristic functions are equal.) So

there are as many subsets of A as there are functions from A to {0,1}; that is,
|P(4)] =214,

2.8. Exercises

1. Criticise the following proof that 1 is the largest natural number.

Let n be the largest natural number, and suppose thann # 1. Then
n > 1, and s0 n? > n; thus n is not the largest natural number.

12 This definition is very familiar, despite appearances. You probably visualise ‘the function y = 2*' in
terms of its graph in the Euclidean plane with coordinates (z, ); and the graph consists of precisely
those ordered pairs (z,y) for which ¥ = 22, In other words, the graph is the function!
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2. Prove by induction that the Odometer Principle with base b does indeed give the
representation Z,_; ... x17Tp for the natural number

N=g, 0" 4+ 4 20h + 0.

> 2

for n > 1. (You may use the fact that (1 + 1)* < e for all n.)
(b) Use the arithmetic-geometric mean inequality’® to show that n! < (2£1)" for

n > 1, and deduce that
1 E)n
ni<e (2
forn>1.

4. (a) Prove that log  grows more slowly than z¢ for any positive number .

(b) Prove that, for any c,d > 1, we have ¢© > z¢ for all sufficiently large z.
5. (a) We saw that there are 22’ = 256 labelled families of subsets of a 3-set. How
many unlabelled families are there?

(b) Prove that the number F(n) of unlabelled families of subsets of an n-set
satisfies log, Fi(n) = 2" 4+ O(nlogn).
6. Verify that the numbers of graphs are given in Table 1 for n < 5.

3. (a) Prove by induction that

n 2 3 4 5
labelled 2 8 64 1024
unlabelled 2 4 11 34

Table 2.1. Graphs
7. Suppose that an urn contains four balls with different colours. In how many
ways can three balls be chosen? As in the text, we may be interested in the order

of choice, or not; and we may return balls to the urn, allowing repetitions, or not.
Verify the results of Table 2,

order order
. important  unimportant
repetition
allowed 64 20
repetition
not allowed 24 4

Table 2.2. Selections

8. A Boolean function takes n arguments, each of which can have the value TRUE
or FALSE. The function takes the value TRUE or PALSE for each choice of values of
its argumentis. Prove that there are 22" different Boolean functions. Why is this the
same as the number of families of sets?

13 The arithmetic-geometric mean inequality states that the arithmetic mean of a list of positive
numbers is greater than or equal to their geometric mean, with equality only if all the numbers are
equal. Can you prove it? (HINT: Do the special case when all but one of the numbers are equal by
calculus, and then the general case by induction.)
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9. Logicians define a natural number to be the set of all its predecessors: so 3 is the
set {0,1,2}. Why do they have to start counting at 07

10. A function f has polyromial growth of degree d if there exist positive real numbers
@ and b such that an? < f(n) < bn? for all sufficiently large n. Suppose that f has
polynomial growth, and g has exponential growth with exponential constant greater
than 1 (as defined in the text). Prove that f(n) < g(n) for all sufficiently large n. If
f(n) = 10°2'%° and g(n) = (1.000001)", how large is ‘sufficiently large’?
11. Let B be a set of subsets of the set {1,2,...,v}, containing exactly b sets.
Suppose that

e every set in B contains exactly k& elements;

e fori=1,2,...,v, the element i is contained in exactly » members of B.
Prove that bk = vr.

Give an example of such a system, with v =6,k =3,b=4,r = 2.

12. The ‘Russian peasant algorithm’ for multiplying two natural numbers m and n
works as follows.!

(2.7.3) Russian peasant multiplication
to multiply two natural numbers m and n
Write m and n at the head of two columns.
REPEAT the sequence
o halve the last number in the first column (discarding the re-
mainder} and write it under this number;
e double the last number in the second column and write it under
this number;
UNTIL the last number in the first column is 1.
For each even number in the first column, delete the adjacent
entry in the second column. Now add the remaining numbers in
the second column. Their sum is the answer.

For examnple, to calculate 18 x 37:

18 37

74
148
296
592

= N e O

666
Table 2.3. Multiplication

ProOBLEMS. (i) Prove that this method gives the right answer.

1 No tables needed, except two times!
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(ii) What is the connection with the primary school method of long multiplication?
HINT FoR (i) AND (ii): Express m (and n) to the base 2.

(iil) Suppose we change the algorithm by squaring (instead of doubling) the numbers
in the second column, and, in the last step, multiplying (rather than adding)
the undeleted numbers, Prove that the number calculated is n™. How many
multiplications does this method require?

13. According to the Buddha,

Scholars speak in sixteen ways of the state of the soul after death.
They say that it has form or is formless; has and has not form,
or neither has nor has not form; it is finite or infinite; or both or
neither; it has one mode of consciousness or several; has limited
consciousness or infinite; is happy or miserable; or both or neither.

How many different possible descriptions of the state of the soul after death do you
recognise here?

14. The library of Babel'® consists of interconecting hexagonal rooms. Each room
contains twenty shelves, with thirty-five books of uniform format on each shelf.
A book has four hundred and ten pages, with forty lines to a page, and eighty
characters on a line, taken from an alphabet of twenty-five orthographical symbols
(twenty-two letters, comma, period and space). Assuming that one copy of every
possible book is kept in the library, how many rooms are there?

15. COMPUTER PROJECT. Develop a suite of subroutines for performing arithinetic on
integers of arbitrary size, regarded as strings of digits. (You should deal with input
and output, arithmetic operations — note that division should return a quotient
and a remainder — and comparisons. You might continue with exponentiation and
factorials, as well as various combinatorial functions to be defined later.)

15 Jorge Luis Borges, Labyrinths (1964).
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The emphasis on mathematical methods seems to be shifted more towards
combinatorics and set theory — and away from the algorithm of differential
equations which dominates mathematical physics.

J. von Neumann & O. Morganstern,
Theory of Games and Economic Behaviour (1944).

The process is directed always towards analysing and separating the material
into a collection of discrete counters, with which the detached intellect can
make, observe and enjoy a series of abstract, detailed, artificial patterns of
words and images (you may be reminded of the New Criticism). ..

Elizabeth Sewell, ‘Lewis Carroll and T. S. Eliot as Nonsense Poets’
in Neville Braybrooke (ed.), 7. S. Efiot {1958).

ToPics: Subsets, binomial coefficients, Pascal’s Triangle, Bmomial
Theorem; [congruences of binomial coefficients); permutations, or-
dered and unordered selections, eycle decomposition of a perinuta-
tion; estimates for the factorial function; relations; [finite topolo-
gies; counting trees]; partitions, Bell numbers

TECHNIQUES: Binomial coefficient identities; use of double counting;
estimates via integration

ALGORITHMS: Sequential and recursive generation of combinatorial
objects

CROS5-REFERENCES: Odometer Principle; double counting {Chap-
ter 2); recurrence relations (Chapter 4)

This chapter is about the central topic of ‘classical’ comnbinatorics, what is often
referred to as ‘Permutations and Coimnbinations’. Given a set with n elemments, how
many ways can we choose a selection of its elements, with or without respect to the
order of selection, or divide it up into subsets? We'll define the various numbers
involved, and prove some of their properties; but these echo through subsequent
chapters.
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3.1. Subsets

How many subsets does a set of n elements have?

The number of subsets is 2". There are several different ways to see this. Perhaps
most easily, for each of the n elements of the set, there are two choices in building
a subset (viz., put the element in, or leave it out); all combinations of these choices
are possible, giving a total of 2",

Linplicitly, this argument sets up a bijection between the subsets of a set X and
the functions from X to {0,1}. The function fy corresponding to the subset YV is
defined by the rule

1 ifzeY
fr(z) = {0 fagv.
Conversely, a function f corresponds to the set Y = {z € X : f(z) = 1}. The
function fy is called the characteristic funciion or indicator function of Y.

If X ={0,1,...,n — 1}, then we can represent a function f : X — {0,1} by
the n-tuple (f(0), f(1),..., f(n — 1)) of its values. Thus subsets of X correspond to
n-tuples of zeros and ones.

We can take this one step further, and regard the n-tuple as the base 2 repre-
sentation of an integer

N=f(n—1)2""" 4 ...+ f(1)2 + £(0),

as described in Chapter 2. Each n-tuple corresponds to a unique integer; the smallest
is 0 (corresponding to the empty set), and the largest is 2" + ... +2+1=2" -1
{corresponding to the whole set X), and every integer between represents a unique
subset. So the number of subsets is equal to the number of integers between 0 and
2" — 1 (inclusive), namely 2"

Note that this method gives a convenient nuinbering of the subsets of the set
{0,...,n—1}: the k'® subset X corresponds to the integer k, where 0 < k < 2" —1.
The set X is easily recovered by writing & to base 2. The numbering has some
further virtues. For example, the set X depends only on &, and not on the particular
value of n used; replacing n by a larger value doesn’t change it. So we get a unique
set X of non-negative integers corresponding to each non-negative integer k. For
another nice property, see Exercise 2.

Yet another proof of the formula for the number F(n) of subsets of an n-set is
obtained by noting that we can find all subsets of {1,...,7+41} by taking all subsets
of {l,...,n} and extending each in the two possible ways — either do nothing,
or add the element n + 1. So F(n + 1) = 2F(n). This is a recurrence relation, by
which the value of F is determined by its values on sinaller arguinents. Recurrence
relations form the subject of the next chapter.

3.2. Subsets of fixed size

Let n and k be non-negative mtegers, with 0 < & < n. The binomial coefficient (',:) is
defined to be the number of k-element subsets of a set of n elements, {The number
obviously doesn’t depend on which n-element set we use.) This number is often
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written as "Cy, and is read ‘n choose £°. It is called a binomial coefficient (for reasons
to be elaborated later).

(3.2.1) Formula for binomial coefficients
(n)_n(n—l)...(n—k+l)_ nl

k kk—1)...1  k{n—k)

Note that (g) =1 (the empty set) and (:) =1 (the whole set) — the proposed
formula is correct in these cases, in view of the convention that 0! = 1 (see
Section 2.3). .

As suggested by the name, we prove this by counting choices. Given a set X of
n elements, in how many ways can we choose a set of & of them? Clearly there are
n possible choices for the ‘first’ element, (n — 1) choices for the ‘second’, ... , and
(n—k +1) choices for the ‘4*; in total, n{n —1)...(n—k + 1). But we put the terms
“first’, ‘second’, etc., in quotes because a subset has no distinguished first, second, ...
element. In other words, if the same & elements were chosen in a different order, the
same subset would result. So we must divide this nuinber by the nuinber of orders
in which the & elements could have been chosen. Arguing exactly as before, there
are k choices for which one is ‘first’, (¥ — 1) for which is ‘second’, and so on. Division
gives the middle expression in the box. Now the third expression is equal to the
second because n(n — 1)...(n — k + 1) = nl/(n — k)!; the denominator cancels all
the factors fromn n — & on in the nunerator.

Once we have a forinula, there are two possible ways to prove assertions or
identities about binomial coefficients. There is a combinatorial proof, arguing from
the definition {we will nterpret (:) as the number of ways of choosing a team of %
players from a class of n pupils); and there is an algebraic proof, from the formula.

We give a few simnple ones.
ny [ n
kKl \n-k)

FIRST PROOF. Choosing a team of & from a class of n is equivalent to choosing the
n — k people to leave out.

(8.2.2) Fact.

SEcOND PrOOF. It's obvious fromn the last formula in the box.

n n—1
(&) --(20)
FirsT PROOF. We choose a team of ¥ and designate one team imember as captain.
There are (’,:) possible teams and, for each team, there are & choices for the captain.

(3.2.3) Fact.
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Alternatively, we could choose the captain first (in n possible ways), and then the
remainder of the team (k — 1 from the remaining n — 1 class members).

Note that this is an application of the ‘double counting’ principle described in
Section 2.6.

SECOND PRroOF. Try it yourself!

You will find that the SECOND PROOFs above probably cowne more naturally to
you. For this reason, I'll concentrate on the combinatorial style of proof for the next
couple of results. Remember that the algebraic proof is not always appropriate or
even possible — sometimes we won't have a formula for the numbers in question,
or the formula is too complex. (See the discussion of Stirling numbers in Section 5.3

for examples of this.)
n+1 n n
()20 +6)

PROOF. We have a class of n + 1 pupils, one of whom is soinehow ‘distinguished’, and
wish to pick a team of k. We could either include the distimguished pupil (in which
case we must choose the other ¥ — 1 team embers fromn the remaining n pupils),
or leave hiin out {when we have to choose the whole team from the remaining n).

£()--

k=0

(3.2.4) Fact.

(3.2.5) Fact.

PROOF. This one is easy — there ate 2" subsets altogether (of arbitrary size).

id n>2 (211)
kz=1:) (k n)
PROOF. The right-hand side is the number of ways of picking a team of n from a

class of 2n. Now suppose that, of the 2n pupils, n are girls and n are boys. In how
many ways can we pick a team of k girls and n — k boys? Obviously this nuimnber is

(:) (nf k), which is equal to (’;)2, by Fact 3.2.2. The result now follows.

The definition of the binomial coefficient (:) actually makes sense for any non-
negative integers n and k: if k¥ > n, then there are no k-subsets of an n-set, and
E: = (. The (first) formula gives the right answer, since if ¥ > n then one of the
actorsm the numerator is zero. (This cannot be assumed, since the argument we
gave is only valid if £ < n.) However, the second forinula inakes 1o sense {unless,
very dubiously, we assume that the factorial of a negative integer is infinite!).

Facts 3.2.2-4 above remain valid with this more general interpretation. (You
should check this.)

Sometimes it is convenient to widen the definition still further. For example, if
k < 0, we should define (’;) = (), in order that Fact 3.2.2 should hold in general. We’ll

(3.2.6) Fact.
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see in Chapter 4 that it is possible to relax the requirement that » is a non-negative
integer even further. The most general definition, using the forinula, works for any
real number n and any infeger k: we set

(n>={n(n—1)...(n—k+1) k> 0:
k k! .
0 if £ <0.

3.3. The Binomial Theorem and Pascal’s Triangle

Fact 3.2.5 above can be generalised to the celebrated Binomial Theorem.! A binomial
is a polynomial with two terms; the Binomial Theoremn states that, if a power of a
binomial is expanded, the coefficients in the resulting polynomial are the binomial
coefficients {from which, obviously, they get their name).

(3.8.1) Binomial Theorem

(148 =3 (Z)t".

k=0

FirsT PROOF. It’s clear that (1 + £)" is a polynomial in ¢ of degree n. To find the
coefficient of ¥, cousider the product

(T+8){(1+¢5)...(1+9) (n factors).

The expansion is obtained by choosing either 1 or ¢ fromn each factor in all possible
ways, inultiplying the chosen terms, and adding all the results. A terin ¢* is obtained
when ¢ is chosen fromn & of the factors, and 1 from the other n — k factors. There

are (Z) ways of choosing these k factors; so the coefficient of t* is (:), as claimed.

SECOND PROOF. The theorem can be proved by imduction on n, It is trivially true
for n = (. Assuming the result for n, we have

I+ ={1+)"-(1 +%)

(£ Q) 1o

the coefficient of #* on the right is (kfl) + (’,:) {the first terin coming from ¢*-? . ¢
and the second from ¢* - 1); and

(2)+(@)- (1)

! Proved by Sir Isaac Newton in about 1666.

by Fact 3.2.4.
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The Binomial Theorein allows the possibility of completely different proofs of
properties of binomial coefficients, some of which are quite difficult to prove in other
ways. Here are a couple of examples. First, a proof of Fact 3.2.3.

Differentiate the Binomial Theorem with respect to #:

n(l+6)"" = Zk( )t’“ -
k=1

The coefficients of t*~! on the left and right of this equation are n(:::) and k('k‘)
respectively.

(3.3.2) Fact. For n > 0, the numbers of subsets of an n-set of even and of odd
cardinality are equal (viz,, 2"7!).

PROOF. Put £ = —1 in the Binomial Theoremn to obtain

0=(-1y =3 (})

k=0

n n
= 0-=0)
k odd

keven

hence

But the two sides of this equation are just the nuinbers of subsets of even, resp. odd,
cardinality.

If n is odd, then k is even if and only if n — % 18 odd; so comnplementation sets up
a bijection between the subsets of even and odd size, proving the result. However, in
general, a different argument is required. The map X — XA{n} (thatis, if n € X,
then remove it; otherwise put n into X) is a bijection on subsets of {1,...,n} which
changes the cardinality by 1, and hence reverses the parity; so there are equally
many sets of either parity.

The arguimnent can be refined to calculate the number of sets whose size lies m
any particular congruence class. I illustrate by calculating the number of sets of size
divisible by 4. I assuine that n is a multiple of 8. (The answer takes different forms
depending on the congruence class of n mod 8.)

(3.3.3) Proposition. If n is 2 muliiple of 8, then the number of sets of size divisible
by 4 is 272 4 2(n-2)/2,

For example, if n = 8, the munber of such sets is (g) + (i) + (:) =26 4 28,
PROOF. We let A be the required nuinber, and B the number of sets whose size is
congruent to 2 (mod 4). By Fact 3.3.2, A+ B = 2",

Now substitute ¢ = i in the Binomial Theorem. Note that 1 +i = v/2¢"/4, and
8o {since n is a multiple of 8), (1 +1)* = 2”2 Thus

2"/ = (") it

2 s
Take the real part of the right-hand side, noting that i* = 1,3,—1, —i according as
k =0,1,2 or 3 (mod 4). We obtain A — B = 2% From this and the expression for
A + B above, we obtain the value of A (and that of B).
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REMARK. By taking the imaginary part of the equation, we find the nuimnbers of sets
with size congruent to 1, or to 3, mod 4.

The binomial coefficients are often written out in the form of a triangular array,
known as Pascal’s Triangle:?

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3 3 21 7 1
1 8 28 5 70 56 28 7 1

Thus, (2) is the k*® element in the n*® row, where both the rows an the elements
in them are numbered starting at zero. Fact 3.2.4 shows that each internal element
of the triangle is the sum of the two elements above it (i.e., above and to the left
and right). Moreover, the borders of the triangle are filled with the number 1 (since
(8) = (:) = 1). With these two rules, it is very easy to continue the triangle as far
as necessary. This suggests that Pascal’s Triangle is an efficient tool for calculating
binomial coefficients. (See Exercise 7.)

3.4. Project: Congruences of binomial coefficients

A popular school project is to examine the patterns forined by the entries of Pascal’s
Triangle modulo a prime. For example, the first eight rows mod 2 are as follows:

T
If T consists of the first 2 rows, then the first 2"+ rows look like 770 T .

Thus the patiern has a ‘self-similarity’ of the kind more usually associated with
fractals than with combinatorics! A similar pattern holds for congruence modulo
other primes, except that the copies of T are multiplied by the entries of the p-rowed
Pascal triangle.

2 Not surprisigly, this object was known long before Pascal. I owe to Robin Wilson the information
that it appears in the works of the Majorcan theologian Ramon Llull {1232-1316). Llull also
gives tables of combinations and mechanieal devices for generating them, complete graphs, trees,
elc. However, combinatorics for him was only a tool in his logical system, and logic was firmly
subservient to theology. In his first major work, a commentary on Al-Ghazali, he says, ‘We will speak
briefly of Logic, since we should speak of God.!
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The mathematical formulation is remarkably simple. It was discovered by Luca
in the nineteenth century.

(3.4.1) Lucas® Theorem
Let p be prime, and let m = ag + ayp + ... + axp*, n = by + bip +
oo+ bp*, where 0 < a;,b; < p fori =0,...,k— 1. Then

(£)<6)

Note. We assume here the usual conventions for binomial coefficients, in particular, () = 0ifa < b

Proor. 1t suffices to show that, if m = cp + ¢ and n = dp + b, where 0 < a,b < p, then

()= () o

Fora=ag, b=bp,and c=a;+...+axp*}, d = b + ...+ bep*~!; and then induction finishes the
job.

This assertion can be proved directly, but there is a short proof using the Binomial Theorem,
The key is the fact that, if p is prime, then

14+t =144 (mod p).

This is because each binomial coefficient (5), for 1 < i < p—1, is a multiple of p, so all intermediate
terms in the Binomial Theorem vapish mod p. (For (2) = p!/i!(p ~ i}!, and p divides the numerator
but not the denominator.) Thus (congruence mod p):

A+ =1 +)*1 +1)°
=1+ +8)°

50 50

j=o
Since 0 < a,b < p, the only way to obtain a term in t® = ¢4+ in this expression is to take the
term i = d in the first sum and the term j = b in the second; this gives

(7) =) moen.

a3 required.

3.5. Permutations

There are two ways of regarding a permutation, which I will call ‘active’ and
‘passive’. Let X be a finite set. A permutation of X, in the active sense, is a
one-to-one mapping fromn X to itself. For the passive sense, we asswine that there
is a natural ordering of the elements of X, say {21,7z2,...,2.}. (For example, X
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might be {1,2,...,n}.) Then the passive representation of the permnutation = is the
ordered n-tuple (7(2,),7(22),- .-, 7m(2a)).?

In the preceding paragraph, I wrote 7(z) for the result of applying the function
7 to the element z. However, in the algebraic theory of permutations, we often have
to compose permutations, i.e., apply one and then the other. In order that the result
of applying first m; and then 7, can be called m 73, it is 1nore natural to denote the
image of z under 7 as zn. Then

z(mimy) = (2m )7y,

which looks like a kind of associative law!*

As is (I hope) familiar to you, the set of all permutations of {1,...,n}, equipped
with the operation of comnposition, is a group. It is known as the symmetric group
of degree n, denoted by S, (or sometimes Sym(n)). The syminetric groups form one
of the oldest and best-loved families of groups.

From now on, we take X = {1,2,...,n}.
A permutation 7 can be represented in so-called two-line notation as

( 1 2 ...n )
Ir 2z ... nn/~
The top row of this symbol can be in any order, as long as zx is directly under z

for all z. If the top row is in natural order, then the botton row is the passive forin
of the permnutation.

(3.5.1) Proposition. The number of permutations of an n-set is n!.

PROOF. Take the top row of the two-rowed symbol to be (1 2 ... n). Then there
are n choices for the first element in the bottomn row; n — 1 choices for the second
{anything except the first chosen elemment); and so on.

Note that this formula is correct when n = 0: the only permnutation of the emnpty
set is the ‘emnpty function’.

There is another, shorter, representation of a permnutation, the cycle form. A
cycle, or cyclic permutation, is a permutation of a set X which maps

Ty Ty L. Ty o 2,
where 23,...,2, are all the elements of X in some order. It is represented as
(z1 22 ... z,) {not to be confused with the passive formm of a permutation!) The
cycle is not unique: we can start at any point, so (¢; ... Tn 21 ... i—1) represents

the same cycle.

2 In the nineteenth century, it was more usual to refer to a passive permutation as a permutation,
synonymous with ‘rearrangement’. An active permutation was called a substitution.

* We say that permutations act on ihe right if they compose according to this rule.
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(3.5.2) Proposition. Any permutation can be written as the composition of cycles on
pairwise digjoint subsets. The representation is nnique, apart from the order of the
factors, and the starting-points of the cycles.

The proof of this theorem is algorithmic. Let = be a permutation of X.

(3.5.3) Decomposition into disjoint cycles
WHILE there is a point of X not yet assigned to a cycle,
e choose any such point z;
o let m be the least positive integer such that z7™ = z;
e construct the cycle (z 7 ... zn™1),
RETURN the product of all cycles constructed.

PROOF. In the algorithin, we use the notation #™ for the comnposition of m copies of
. We first have to show that the construction makes sense, that is, (z 7 ... z7™1)
really is a cycle. This could only fail if the sequence of elements contains a repetition.
But, if 27* = 279, where 0 < i < j < m, then (because 7 is one-to-one) it holds that
z = zn/~*; but this contradicts the choice of m as least integer such that zn™ = z.

Next, we establish that the cycles use disjoint sets of points. Suppose that z7° =
y7/, and suppose that z is chosen before y. If y7™ = y, then zr*t™=F = yn™ =y,
contradicting the fact that y (when chosen) doesn’t already lie in a cycle.

It is clear that any point of X lies in one of the chosen cycles. Finally, the
composition of all these cycles is equal to . For, given a point z, there is a unique
y and ¢ such that z = y7'. Then the cycle containing y agrees with 7 in mapping =
to yn't!, and all the other cycles have no effect on 2.

ExaMPLE. The permnutation (; 2 g), in cycle notation, is (1 3 4)(2 6)(5). This

is just one of 36 different expressions: there are 3! = 6 ways to order the three cycles,
and 321 =6 choices of starting points.

3.6. Estimates for factorials
Since many kinds of combinatorial objects (for example, binomial coefficients) can
be expressed in terms of factorials, it is often imnportant to know roughly how large
n! is, In Exercise 3 of the last chapter, upper and lower bounds were found by ad
hoc methods. In this section, a more systematic approach will yield better estimates.
I will prove:
(3.6.1) Theorem.
nlogn—n+1<logn! <nlogn —n+ (log(n +1)+2 —log 2).
From this, it follows that

logn! = nlogn —n + O(log n).
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This is weaker than an asymptotic estimate for n! itself: the exponentials of the
upper and lower bounds are ¢(n/e)* and 1(n + 1)e’(n/e)", which differ by a factor
of (n + 1)e/2. A more precise estimate (not proved here) is:

(3.6.2) Stirling’s Formula
e w3 (100(2)

PROOF oF THEOREM. The mmain tool is shown in the pictures of Fig. 3.1.  Since

44

y=logz 7? y=!oga:

1 223 n-ln 1 23 n=1n n+tl

(2) (b)
Fig. 3.1. Suins and integrals

y = log z is an increasing function of z for all positive z (its derivative, 1/, is
positive), the tops of the rectangles in Fig. 3.1(a) all lie above the curve y = log z,
and those in Fig. 3.1(b) lie below the curve. In other words,

n n n4+1
jllog:ml:v:SZlogz’ﬁ/2 log z dz.

. =2
The term in the mniddle is log n!. So
nlogn—n+1<logn! < (n+1)log(n+1)— (n+1) —2log2 + 2,
The lower bound is exactly what is needed. For the upper bound, note that
n+l dy 1

1 _logn = / & 2
og(n+1)—logn 3 <o

so nlog(n + 1) < nlogn + 1. Combining this with the upper bound, we obtain

logn! <log(n+1) + nlogn —n + 2log2 — 2.

If you are interested, you could regard the proof of Stirling’s Formnula as a
project.’ A lower bound only slightly weaker than Stirling’s is given in Exercise 11.

Exercise 12 gives an example of the use of Stirling’s Formula to estimnate a
binomial coeflicient. A weaker result can be obtained much more easily:

5 An accessible proof can be found in Alan Slomson, Introduction to Combinatories (1991).



32 3. Subsets, partitions, permutations
(3.8.3) Proposition.
22(2n + 1) < (2:> <9,

ProoF. Immediate fromn the fact that the 2n + 1 binomial coefficients (25"), for
i =0,...,2n, have sum 2?", and the middle one is the largest.

3.7. Selections
In how many ways can one select & objects from a set of size n?

The answer differs according to the terms of the problem, as we saw in Chapter 2.
Specifically, is the order in which the objects are chosen significant (a permulation)
or not (a combination)? and is the same object permitted to feature more than once
in the selection, or not? (The tern ‘permutation’ is used in a more general sense
than in the last section: this is what might more accurately be called a ‘partial
permutation’.)

(3.7.1) Theorem. The number of selections of k objects from a set of n objects is
given by the following table:

Permutations and combinations
Order significant Order not significant

Repetitions nF n+k—1
allowed k

Repetitions n

not allowed ™~ 1)+ (n—k+1) (k)

Proor. For the column ‘order significant’, these are straightforward. If repetitions
are allowed, there are n choices for each of the k objects; if repetitions are not
allowed, there are n choices for the first, n — 1 for the second, n — k + 1 for the k%",

For ‘order not significant’, if repetitions are not allowed, we are counting the
k-subsets of an n-set, which we already know how to do, The final eniry is a bit
harder,

(3.7.2) Lemma. The number of choices of k objects from n with repetitions allowed
and order not significant is equal {o the number of ways of choosing n non-negative
integers whose sum is k.

PROOF. Given a choice of k objects from the set a,,. .., an, let z; be the number of
times that the object a; gets chosen. Then z; > 0, %, z; = k. Conrversely, given
(%1,...,%x), form a selection by choosing object a; just z; times.
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(3.7.3) Lemma. The number of n-tuples of non-negative integers zy,...,%n. With
it za=kis (n:i;l) — (n+il:—1f.

ProOF. Consider the following correspondence. Put n + & — 1 spaces in a row,
and fill » — 1 of them with markers. Let z; be the number of spaces before the
first marker; z; the number of spaces between the (i — 1)* and i*" marker, for
2 <i<n—1; and z, the number of spaces after the n** marker. Then z; > 0,
Yoy =(n+k—1)—(n—1) =k Conversely, given z,,...,z,, put markers after z,
spaces, after z; more spaces, ..., after z,—, more spaces (so that z, spaces remain).

EXAMPLE. Suppose that n = 3, k¥ = 4. The pattern of spaces and markers
ODORO®O

corresponds to the values 2; = 2, 2; = 1, 23 = 1. Conversely, the values (z1,22,23) =
(0,0,4) correspond to the pattern

RROOOO.

Now the number of ways of choosing the positions of the markers is (“:f;‘) =

("+t'1) , as claimed.

REMARK, Using the extended definition of binomial coefficients, the nuinber of
selections with repetitions allowed and order not significant can be written

o (7)

A common puzzle is to find as many words as possible which can be formed
from the letters of a given word. Of course, the crucial feature of this problem
is that the words formed should belong to some given human language (i.e., they
should be found in a standard dictionary). There are two possible strategies for this
problem. We could either form all potential words (all permutations of whatever
length), and look each one up in the dictionary; or go through the entire dictionary,
and check whether each word uses a subset of the given letters. In order to decide
which strategy is more efficient, we need to answer a theoretical question (how many
permutations are there?) and some practical ones (how many words are there in the
dictionary, and how fast can we look them up?)

We will solve a special case of the theoretical question. Assuine that the n given
letters are all distinct. We will call any ordered selection without repetition from
these letters a word (without judging its legality — note in particular that we include
the ‘emnpty word’ with no letters, which doesn’t appear in any dictionary®).

(3.74) Proposition. The number of ordered selections without repetition from a set
of n objects is |e- n!|, where e is the base of natural logarithms.

8 If it did, how would you look it up?
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ProoF. The number f(n) in question is just

* n! L |
—=nl) —
Zu-"LuE

From the familiar Taylor series for €%, we see that
Si
= k!

So ! 1
- T— —_— e
e-nl—f(n) n+l+(n+1)(n+2)+
T -
1" (n41 77

so f(n) = e n!].

If the allowed letters contain repetitions, the problemn is harder. It is possible to
derive a general formula; but it is probably easier to argue ad Aoc in a particular
case, as the next example shows.

ExaMPLE. How many words can be made from the letters of the word FLEECE?

We count words according to the number of occurrences of the letter E. If there
is at most one E, we can invoke the previous result: there are 24 +24+12+4+1 =165
such words (including the empty word). If there are two Es, let us imagine first that
they are distinguishable; then there are 2+ 3.6+ 3-24 + 120 = 212 possibilities. (For
example, with four letters altogether, we choose two of the remaining three letters
in (;) = 3 ways, and arrange the resulting four in 4! = 24 ways.) Since the two
Es are in fact indistinguishable, we have to halve this nwmnber, giving 106 words.
Finally, with three distinguishable Es, there would be 6 + 324+ 3-1204 720 = 1158
possibilities, and so there are 1158/6 = 193 words of this form. So the total is
65 + 106 + 193 = 364 words.

3.8. Equivalence and order

A relation on a set X is normally regarded as a property which may or may not
hold between any two given elements of X. Typical examples are ‘equal’, ‘less than’,
‘divides’, etc. The definition comes as a surprise at first: a relation on X is a subset
of X? (the set of ordered pairs of elements of X). What is the connection? Of
course, a relation in the familiar sense is comnpletely determined by the set of pairs
which satisfy it; and conversely, given any set of pairs, we could imagine a property
which was true for those pairs and false for all others.

This dual interpretation causes a small problem of notation. In general, if
R C X? is a relation, we could write z R y to have the same neaning as (z,y) € R.
This is consistent with the usual notations z = y, z < y, z|y, etc. But we don’t
reverse the procedure and write (x,y) € =, (z,¥) € <, etc.!
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Here are soimne imnportant properties which a relation R may or inay not have:
o R is reflewive if, for all z € X, we have (2,z) € R.
o R is irreflexive if, for all z € X, we have (z,z2) ¢ R. (This is not the same as
saying ‘R is not reflexive’)
o R is symmetric if, for all z,y € X, (z,y) € R imnplies (y,z) € R.
o Ris antisymmetric if, whenever (z,y) € R and (y,z) € R both hold, then z = y.
e R is transitive if, for all z,y,z € X, (z,y) € R and (y,2) € R together imply

(z,2) € R.

For example, the relation of equality is reflexive, syminetric and transitive; the
relation ‘less than or equal’ is reflexive, antisymmetric and transitive; the relation
‘less than’ is irreflexive, antisymmetric and transitive; and the relation of adjacency
in a graph (as described in Section 2.5) is irreflexive and symmetric.

Note that there are two ways of modelling an order relation: as ‘less than’
(irreflexive) or as ‘less than or equal’ (reflexive).

We proceed to define some important classes of relations in terms of these
properties.

An egquivalence relation is a reflexive, symmetric and transitive relation, It
turns out that equivalence relations describe partitions of a set. Let R be an
equivalence relation on X. For z € X, the equivalence class containing z is the set
R(z) = {y ¢ X : (z,y) € R}. A partition of X is a family of pairwise disjoint,
non-empty subsets whose union is X — thus, every point of X lies in exactly one
of the sets.

(3.8.1) Theorem. Let R be an equivalence relation on X. Then the equivalence
classes of R form a partition of X. Conversely, given any partition of X, there is
a unique equivalence relation on X whose equivalence classes are the parts of the
partition.

ProoF. Let R be an equivalence relation on X.

o Each equivalence class is non-empty, and their union is X; for, by reflexivity,
each point z € X lies in the class f(z), and conversely, R(z) contains z.

e The equivalence classes are pairwise disjoint. For suppose that two classes R(z),
R(y) have a common point z. We will show that R(z) = R(y). By definition,
(z,2),(y,z) € R. By symmetry, (z,y) € R; then, by transitivity, (z,y) € R.
Now, to prove two sets equal, we have to show that each set contains the other.

So suppose that w € R(y). Then (y,w) € R. Since (z,y) € R, transitivity implies
that (z,w) € R, or w € R(z). So R(y) € R(z). The reverse implication is similar.

For the converse, suppose that the sets ¥7,Ys,... form a partition of X, Define
a relation R by the rule that (z,y) € R if there is an index ¢ such that z and y both
lie in R;. It is not difficult to prove that R is an equivalence relation, For example, to
show reflexivity, take =z € X; by assumption there is a (unique) ; such that z € Y;;
so (z,z) € R. The other two properties are an exercise.

Thus, for example, the number of partitions of a set is equal to the number of
equivalence relations on that set. We will study these numbers (the Bell numbers) in
Section 3.11.
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We turn now to order relations. As mentioned above, there are two ways to
model an order relation: we use the reflexive one (taking ‘less than or equal’) as the
prototype.

A relation R on X is a partial order if it is reflexive, antisymmetric, and transitive.

Note that there may be some pairs of elements which are not comparable at all
(ie., neither (z,y) € R nor (y,7) € R hold). A relation R is said to satisfy trichotomy
if, for any z,y € R, one of the cases (z,y) € R, ¢ = y, or (y,7) € R holds. Then
a relation R is a fotal order if it is a partial order which satisfies trichotomy. We
commonly omit the word ‘total’ here; an order is a total order.

(3.8.2) Proposition. The number of orders of an n-set is equal to n!.

ReMABK. In fact we show that, given any order on an n-set, its elements can be
numbered z,,...,7, so that (z;,2;) € R if and only if ¢ < j; and there is a unique
way of doing this, In other words, the axiomatic definition of order agrees with our
expectations!

ProOF. We show first that there is a ‘last’ element of X, an element z such that,
if (z,y) € R, then y = z. Suppose that no such z exists. Then, for any z, there
exists y # z such that (z,y) € R. Start with = = z,, and choose z3,z3,... according
to this principle (so that (z;,zi41) € R for all i ). By transitivity, (z;,z;) € R for
all ; < §, and z; # iy for all i. Now X is finite, so the sequence eventually
bites its tail; that is, there exists ¢ < j so that z; = z;. Then (z;_1,z;) € R, and
(zj,%;-1) = (2i,25-1) € R since i < j — 1. By antisymmetry, z; = z;_1, contrary to
the construction.

Now there cannot be more than one ‘last’ element, since, for any z and y, either
(z,y) € R or (y,z) € R by trichotomy.

Call the last element z,; then, by trichotomy, (z,z,) € Rfor all z € X.

Arguing by induction, there is a unique way to label the remaining elements as
Z1y+..yZn-1, i accordance with the assertion. The proposition is proved.

We see that orders on X are equinumerous with permutations of X; indeed,
our representation of an order looks like the ‘passive’ form of a permutation. But
there is no ‘canonical’ bijection between orders and permutations; we need one
distinguished order to set up this correspondence. {Then any order R corresponds
to the permutation which takes the distinguished order into R.)

In the next section, we will consider a generalisation of (partial) orders. A
relation R is a partial preorder (or pre-partial ovder) if it is reflexive and transitive —
we relax the condition of antisymmetry, Exercise 18 outlines a proof that, if R is a
partial preorder on X, then there is a natural way to define an equivalence relation
on X so that the set of equivalence classes is partially ordered. (We set z = y if
both z R y and y R = hold: think of such = and y as being indistinguishable. Now
the truth of the relation z Ry is unaffected if either z or y is replaced by a point
which is indistinguishable from it; so R induces a relation on the equivalence classes
which is still reflexive and transitive, and is also antisymmetric.)

A partial preorder satisfying trichotomy is called a preorder.
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3.9. Project: Finite topologies

Topology is the study of continuity. The term suggests doughnuts, Mobius bands,
and such like. There is, however, an abstract definition of a topology, and it apphes
to finite as well as infinite spaces. We are going to translate the meaning of ‘finite
topology’ into something simpler and more combinatorial.

A topology consists of a set X, and a set 7 of subsets of X, satisfying the following axioms:
e dcTand XeT;
o the union of any collection of sets in 7 is in 7
o the intersection of any two sets in 7 is in 7.
Sets in 7 are said to be open. The idea is that, if z is a point and U an open set containing z, the
points of U are in some sense ‘close’ to z. (Indeed, U is often called a neighbourhood of z.)

ReMARK. It follows by induction from the third axiom that the intersection of any finite number of
members of T is a member of 7. If X is finite, the second axiom need only deal with finite unions,
and so it t00 can be simplified to the statement that the union of any two sets in 7 is in T'; then the
axioms are ‘self-dual’. This is not the case in general! u

(3.9.1) Theorem. Let X be finite. Then there is a one-to-one correspondence between the topologies
on X, and the partial preorders (i.c., reflexive and iransitive relations) on X.

Thus, describing finite topologies (sets of sets) reduces to the simpler task of describing partial
preorders (sets of pairs). No such correspondence holds for infinite sets!

Proor. The correspondence is simple to describe; the verification less so.

CoNsTRUCTION 1. Let 7 be a topology on X. Define a relation R by the rule that (2, y) € R if every
open set containing z also contains y. It is trivial that R is reflexive and transitive; that is, R is a
partial preorder.

CONSTRUCTION 2. Let R be a partial preorder on X. Call a subset U/ of X open if, whenever z € U,
we have R(z) C U, where

R{z)={y: (z,y) € R}.
Let 7 be the set of all open sets, We have to verify that 7 is a topology. The first axiom requires
no comment, For the second axiom, let Uy, U, . .. be open, and z € | J; Us; then z € U; for some j,
whence

Rzyc v cJus

For the third axiom, let 7 and V be open and = € U NV. Then R(z) C U and R(z) C V, and s0
R(z) C (UNV); thus U NV is open.

All this argument is perfectly general. It is the fact that we have a bijection which depends on
the finiteness of X. We have to show that applying the two constructions in turn brings us back to
our starting point.

Suppose first that R is a partial preorder, and 7 the topology derived from it by Construction 2.
Suppose that (z,y) € R. Then y € R(z), so every open set containing z also contains y. Conversely,
suppose that every open set containing = also contains y. The set R(z) is itself open (this uses the
transitivity of R: if z € R(z), then R(z) C R{z)), and 0 y € R(z); thus (z,y) € R. Hence the partial
preorder derived from 7 by Construction 1 coincides with R. (We still haven't used finiteness!)

Conversely, let 7 be a topology, and R the partial preorder obtained by Construction 1. If
U e T and z € U, then R(z) C U; s0 U is open in the sense of Construction 2. Conversely, suppose
that U7 is open, that is, z € I/ imples R(z) € U. Now each set R(z) is the intersection of all members
of T containing 2. (This follows from the definition of R in Consiruction 1) But there are only
finitely many such open sets (here, at last, we use the fact that X is finite!); and the intersection of
finitely many open sets is open, as we remarked earlier; so R(z) is open. But, by hypothesis, U/ is
the union of the sets R(x) for all points * € U; and a union of open sets is open, so U/ is open, as
required.
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In the axiomatic development of topology, the next thing one meets after the definition is usually
the so-called ‘separation axioms'. A topology is said to satisfy the axiom Ty if, given any two distinct
points £ and y, there is an open set containing one but not the other; it satisfies axiom T, if, given
distinct x and y, there is an open set containing x but not y (and vice versa).

These two axioms for finite topologies have a natural interpretation in terms of the partial
preorder R. Axiom T, asserts that R never holds between distinct points = and y; that is, R is
the trivial relation of equality. Construction 2 in the proof of the theorem then shows thal every
subset is open. (This is called the discrete fopology.) It follows that any stronger separation axiom
(in particular, the so-called ‘Hausdorff axiom' Ty) also forces the topology to be discrete.

Axiom T, translates into the condition that the relation R is antisyminetric; thus, it is a partial
order, So there is a one-to-one correspondence between ‘T, topologies on the finite set X and partial
orders on X.

3.10. Project: Cayley's Theorem on trees

As we saw at the end of Section 3.8, the number of orderings of an n-set is equal
to the number of permutations of the same set, namely n!. This seems too trivial to
be of any use at all, but in fact it forms the basis of a conceptual proof of a very
famous theorem of Cayley:’

{3.10.1) Cayley’s Theorem on trees
The number of labelled trees on n vertices is n™~2.

The definitions will be given somewhat briefiy; graphs (and trees in particular) are discussed in
more detail in Chapter 11. A grapk consists of a set of vertices and a set of edges, each edge consisting
of a pair of vertices. The edge is regarded as joining the two vertices. Graphs were mentioned in
Chapter 2, where we also introduced the distinction between labelled and unlabelled graphs. Here,
we will he counting labelled graphs; that is, the vertex set is always {1,2,.. ., r}, and two graphs are
the same precisely when they have the same set of edges.

A path in a graph is a sequence of vertices, all distinct except perhaps the first and the last,
with the property that consecutive vertices in the sequence are adjacent (joined by an edge). A graph
is connected if any two vertices are the ends of a path. A circuit is a path (having more than two
vertices) such that the first and last vertices are equal. A f#ree is a connected graph containing no
cirenit. Cayley's Theorem asserts that there are n®~2 trees on n vertices.

We prove this theorem by counting slightly different structures called vertebrates. A vertebrate
is a tree with two distinguished vertices called the head and the tasl which may or may not be equal.
There is 2 path from the head to the tail, and it is unique (or else there would be a circuit); this path
is called the backbone. If T(n) is the number of trees on n vertices, then the number of vertebrates is
n2T(r) (each of the head and tail is chosen from a set of size 1), So it is enough to prove that there
are exactly n" verlebraies on the set N = {1,...,»}.

An endofunction on N is simply a function from N to itself. In fact, what we show is:

(3.10.2) Proposition. The numbers of vertebrates and endofunctions on N are equal.

Obviously there are " endofunctions; so this will prove Cayley’s Theorem. It would suffice to
find a bijection between vertebrates and endofunctions. But there is no ‘natural’ bijection, so we have
to do something a bit more complicated. First, one more small piece of notation. A rooied trecis a
tree with a single distinguished vertex (called, naturally, the root.)

7 The proof outlined here is adapted from an argument by André Joyal (1981).
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Fact 1. A vertebrate on & is uniquely specified by the following data:
¢ a non-empty subset K of N (say {my,ma,..., 1}, where L < my <ma < ... < my < n);
« an ordering of X;
« a partition of N \| K into |K| = k subsets S1,..., S;
« a rooted tree on S; U {m;} with root my, fori=1,... k.

How do we construct a vertebrate from these data? The set K is the backbone, and the order
describes the sequence of vertices from the head (the first vertex in K according to the chosen order)
to the tail {the last vertex in K). Now the tree on S; U {m;} is hooked on to the backbone at m;.
Any vertebrate arises in a unique way from this construction.

Fact 2. An endofunction on N is uniquely specified by the following data:
¢ a non-empty subset K of NV (say {my,ma,...,mz}, where 1 <m) <ma <...< my < n);
e a permutation of K;
« a partition of N \ X into [K| = k subsets Sy, ..., Si;
o arooted tree on S; U {m;} with root m;, for i=1,. ...

From these data, we build an endofunction as follows. The points in X are mapped according
to the given permutalion. Each vertex of S; \ {m;} is mapped ane step closer to the root m; {along
the unique path joining them).

It is not quite so clear that any endofunction arises uniquely by this construction. Let f be an
endofunction on N. A point m is periodic if f'(m) = m for some ¢ > 0. (The notation f' means
the result of applying the function ¢ times.) Let K be the set of periodic points. Then f induces a
permutation of K. Moreover, any point p of NV is ultimately periodic, in the sense that f*(p) € K for
some 3. Let S; be the set of points in N \ X for which the images under f first enter K at the point
m;. If we join y to f{y) by an edge for each y € S; U {m;}, the graph oblained contains no cycles,
and 80 is a tree with root m;.

Considering the data required to specify the two types of object, and recalling that there are
equally many orders and permutations, it is clear that there are also equally many vertebrates and
endofunctions.

3.11. Bell numbers

The Bell number B, is the number of partitions of an n-set (or the number of
equivalence relations on an n-set; this is the same thing, by Theorem 3.8.1).
For example, B; = 5; the five partitions of {1,2,3} are

{{1,2,3}}
{{1.2}, {3}
{{1,3},{2}}
{{2.3}, {11}
{1}, {2}, {3}}

Similarly, B; = 2, By = 1. What is By? Since the parts of a partition are non-empty
by definition, a partition of the empty set cannot have any patts at all, and must be
the empty set. But the empty set is indeed a partition of itself! So By = 1. (You
may regard this as a convention if you like.)

Subsets, permutations, and partitions of a set are the fundamental objects with
which combinatorics deals. Strangely, unlike the other cases, there is no convenient
short formula for the Bell numbers. They can be calculated by a ‘recurrence relation’
which expresses the value of B, in terms of smaller Bell numbers and binomial
coefficients, as follows.
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(3.11.1) Recurrence for Bell numbers

d —1
B,=Y (Z_ I)B,._k.

k=1

Forn 2 1,

|

Proor. Take X = {1,...,n}, and consider a partition of X. It has a unique part
containing n, say {n} UY, where ¥ is a subset of the (n — 1)-set {1,...,n — 1}.
The remaining parts form a partition of the set {1,...,n — 1} \ Y. These data (the
subset V', and the partition) determine the original partition uniquely. If [Y| = k—1,
then there are :::) choices of Y, and B,_; choices of a partition of the remaining
points. Multiplying, and summing over all possible values of £ (from 1 to n), gives

the result.
3 3 3 3
5= o)+ () () (5) 2

For example,
=54+(3-2)+(3-1)+1
=15,

3.12. Generating combinatorial objects

Combinatorial problems have a tendency to grow in size explosively as the size of
the set increases. It often happens that a few small values can be done by hand, and
then we have to resort to the computer to settle a few more cases.® If the problemn
involves checking all objects of some kind (subsets, permutations, etc.), then we need
an algorithm to generate all of these.

Usually the simplest algorithm (conceptually) involves recursion, based on the
way in which the objects are built up fromn smaller ones. For example, here is
a recursive algorithin for generating the power set of {1,...,n}. Note how the
algorithin resembles the proof of the recurrence relation F(r+1) = 2F(n), F(0) =1
for the counting function.

(3.12.1) Recursive algorithm: Power set of {1,...,n}
I n =0, return {0}.
Otherwise,
e generate the power set of {1,...,n—1};
e make a new copy of each subset and adjoin the element n to it;
o reiurn the set of all sets created.

8 After this, brainwork is the only way.
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In symbols: P(#) = {0};
PHL,....n) ={¥, YU {n}:Y e P{1,...,n—1})}

for n > 0.
In a similar way, the recurrence relations
ny f(n—1 n—1
()= G+ ()
o nl=n(n-1)!
o the recurrence relation for Bell numbers
suggest recursive algorithms for k-subsets, permutations, and partitions.

Howevet, there ate disadvantages to this simple approach. The main one is that,
even for moderate values of n, the set of all subsets (or all permutations) is so large
that the computer’s memory will not hold it. What we have to do is, rather than
creating all the objects in one step, generate them one at a time, process each one,
and then throw it away when the next one is generated.” The algorithm will have
the following general form. There are two parts. The first step generates the ‘first’
object. The second step takes any object and tries to calculate the ‘next’ one; if there
is no ‘next’ one (so that the current object is the last), it should report this fact.
Then the structure of a program will be like this:

Generate first object.
REPEAT

e process current object;

o generate next object
UNTIL there’s no next object.

One very important observation is that this set-up presupposes that the objects
come in some order. But the order is not specified, except in the progression from
each object to the next.’” So these algorithms implicitly define an ordering of the
relevant objects.

For subsets of a set, we use the Odometer Principle from Chapter 2. Re-writing
the algorithm given there, we get:

(3.12.2) Algorithm: Subsets of {1,...,n}
FIRST SUBSET is 0.
NEXT SUBSET after Y:
o Find the last element ¢ not in Y (working back from the end).
o If there's no such element, then Y was the last subset.
¢ Remove from Y all elements after ¢, and add ¢ to Y. Return
this set.

¥ If you are writing programs implementing the following algorithms, a good ‘minimal processing' is
to count the objects; this provides an additional check on the correctness of the program.
10 Compare the remarks about the order of the natural numbers in Chapter 2.
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This displays the principle correctly. In practice, it would be more efficient to
combine the steps. Thus, we take a pointer 4, initialised to n. While : € Y, we
remove : from Y and decrease i by 1. If we fall off the bottom (i.e., reach i = (),
then V' was the last set. Otherwise, add the final value of i to the set Y and return
the result.

Note that, if we represent a subset ¥ of X by its ‘characteristic function’, the
sequence (aj,...,q.) with

o= {1 ificy,
' 0 ifigy,
and interpret this as the base 2 representation of an integer N = ;2! +... + a,,,
then the algorithm proceeds through the integers from 0 to 2° — 1 in order. This
ordering of the subsets of a set was discovered by Shao Yung (1160), who proposed
it as an alternative to the traditional order of the sixty-four I Ching hexagrams
attributed to King Weén (ca. 1150 BC); and independently and much later by
Leibniz (1703).!! So we could simplify the algorithm, using the computer’s inbuilt
arithmetic. We define the set corresponding to a non-negative integer N by writing
N to the base 2 and interpreting the result as a characteristic function. If we denote
the set corresponding to N by Y(V), then the FIRsT sUBSET is Y(0); and the NEXT
SUBSET after Y(N) is Y(& + 1). (The ‘next subset’ procedure fails if N = 2* — 1)

This procedure has an additional advantage, in that it gives us ‘random access’
to the subsets of a set: we can easily produce the N** set Y(N) for any N with
0 < N €£2* — 1. However, for other cases considered below, it is harder to do this.

Consider the problem of generating all the k-subsets of a set. Here, there are
two essentially different ‘natural’ orders in which the subsets could be generated,
exemplified by the case n = 5, k = 3:12

123,124,125,134,135, 145, 234, 235, 245, 345;
123,124,134, 234,125, 135,235, 145, 245, 345.

The first ordering is generated by a fragment of program which (in BASIC) would
look like this (for ¥ = 3, n arbitrary):

FOR:i=]1TOn—2
FORf=:4+1TOn-—1
FORk=j5+1TOn
process {z, .k}
NEXT k
NEXT j
NEXT ¢

1 1t is said that, after Leibniz’ discovery, he was informed of the Chinese precedence by a Jesuit
missionary, Fr. Joachim Bouvet. But Leibniz went further, using the binary representation for
arithmetic where Shao Yung was concerned only with the progression, For further discussion, see S.
N. Afriat, The Ring of Linked Rings (1982).

12 In fact, reversing the order of the numbers {1,...,n} and the order of the subsets takes the first
ordering to the second. But, to a computer, this would look like time reversal: not an easy trick!
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(Hopefully this is clear even to non-programmers.) This seems a natural way to do
it. But it only works in this form if % is small and fixed. Also, the other order
has a subtle advantage. Observe that the 3-subsets of {1,...,4} occur first, in
their ‘natural’ order, followed by the subsets containing 5 (which are obtained by
adjoining 5 to the 2-subsets of {1,...,4} in their natural order). This is in accord
with the recursive version discussed earlier. Anyway, the following algorithm does
the job (producing the second order above):

(3.12.3) Algorithm: k-subsets of {1,...,n}
FIRsT SUBSET is {1,...,k}.
NEeXT sUBSET after Y = {y1,...,yz}, whereth < ... < yi:
e Find the first i such that 5, + 1 € Y;
e increase y; by 1, set y; = j for j < 1, and return the new set Y;
o this fails if i = k, y¢ = n, in which caseY = {n—k +1,...,n}
is the last set.

The two ‘natural’ orders of k-sets can be characterised as follows. The first is
the so-called lezicographic order. This means that, if we regard the symbols 1,...,n
as letters of an alphabet, and regard each £-set as a word by writing its elements in
alphabetical order, then the words occur in lexicographic order (the order in which
they would be found in a dictionary}. The second order is reverse lexicographic: we
turn k-sets into words as above, but then reverse each word before putting them in
dictionary order.

Lexicographic order or something similar is usually the most natural for prob-
lems of this kind. The next algorithm, for permutations, uses lexicographic order,
where a permutation is taken in passive form. (That is, we regard a permutation
as an n-tuple (z1,...,%,), where z;,...,z, ate 1,...,n in some order.) Here is the

algorithm.

(3.12.4) Algorithm: Permutations of {1,...,n)
FIRST PERMUTATION is given by z; =: fori=1,...,n
NEXT PERMUTATION after (z1,...,%,):
o Find the largest j for which z; < z;,, (working back from the
end).
o If no such j exists, then the current permutation is the last.
o Interchange the value of x; with the least z; greater than z;
with k > j; then reverse the sequence of values of z;41,...,Zq;
retura this permutation.

Here is an example. Suppose the current permutation is (436521). The algorithm
first locates j = 2, z; = 3. We assert that the current permutation is the last (in
lexicographic order) of the form (43...), and should be followed by the first of the
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form (45...), namely (451236). To obtain this, we find ¥ = 4, z; = 5. (Since the
values after z; are decreasing, this can be located by working back from the end
until we first find a value greater than z;) Then we interchange the entries in the
second and fourth positions, giving (456321); and reverse the entries in positions 3
to 6, giving (451236), as required.

It is much harder to give an algorithm of this kind for partitions of a set. This
is related to the non-existence of a simple formula for the Bell number.

3.13. Exercises

1. A restaurant near Vancouver offered Dutch pancakes with ‘a thousand and one
combinations’ of toppings. What do you conclude?

2. Using the numbering of subsets of {0,1,...,n — 1} defined in Section 3.1, prove
that, if X; C X, then k¥ <! (but not conversely).

3. Prove u;ce following id_er;tities:
WTO-E)
5 (76000

(recall the convention that (:) =0ifk <Oork>n)

g(n+z)=(n+:+l)'
(d) Z:‘:k( ) =n2"1,
@ S0 (5) ={Lipgr) oo

k=0
4. Following the method in the text, calculate the number of subsets of an n-set of

size congruent to m (mod 3) (m =0, 1,2) for each value of n (mod 6).

5. Let k be a given positive integer. Show that any non-negative integer N can be
written uniquely in the form

w= () (5) + (2,

where 0 < z; < ... < #4-y < . [HINT: Let z be such that (i) <N < (3:1)
Then any possible representation has z; = z. Now use induction and the fact
that NV — :) < (,:_1{ {Fact 3.2.5) to show the existence and uniqueness of the
representation.]

Show that the order of k-subsets cortesponding in this way to the usual order
of the natural nuinbers is the same as the reverse lexicographic order generated by

the algorithm in Section 3.11. [HiNT: ¥¢_, (x_';) = ("))

6. Use the fact that (1 4+t)? =1+ ¢* (mod p) to prove by induction that n* = n
(mod p) for all positive integers n.
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7. A computer is to be used to calculate values of binomial coefficients. The largest
integer which can be handled by the computet is 32767. Four possible methods are
proposed:

(1) (Z) = nl/k\(n — k)

@) (:) =n(n—1)...(n—k+1)/k!;

“ 3) N (::) =L (:) - (Z:i) + (n; l) for 0 < k <n (ie. Pascal’s Tri-

angle).
For which values of n and & can :) be calculated by each method? What can you
say about the relative speed of the different methods? °

8. Show that there are (n — 1)! cyclic permutations of a set of n points.

9. The order of a permutation 7 is the least positive integer m such that 7™ is the
identity permutation. Prove that the order of a cycle on n points is n. Prove that
the order of an arbitrary permutation is the least common multiple of the lengths
of the cycles in its cycle decomposition.

10. How many wotrds can be made from the letters of the word ESTATE?

11. Given n letters, of which m are identical and the rest are all distinct, find a
formula for the number of words which can be made.

12. Show that, for n = 2, 3,4, 5,6, the number of unlabelled trees on n vertices is 1,
1, 2, 3, 6 respectively.

13. The line segments from (3, log 1) to (i + 1, log(: + 1)) lie below the curve y = log z.
(This is because the curve is convex, ie., its second derivative —1/z” is negative.)
The area under these line segments from ¢ = 1 to i = n is logn! + Llog(n + 1), since
it consists of the rectangles of Fig. 3.1(b) together with triangles with width 1 and
heights summing to log(n + 1). Deduce that

v ()

n

[REMARK. According to Stirling’s Formula, the limiting ratio of this upper bound to
nlis e/v/2r =1.0844... ]

14, Use Stirling’s Formula to prove that

(2n) o

n

15. (a) Let n = 2k be even, and X a set of n elements. Define a factor to be
a partition of X into k sets of size 2. Show that the number of factors is equal
to1-3.5...(2k — 1). This number is sometimes called a double factorial, written
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(2k — 1)!! (with !! regarded as a smgle symbol, the two exclamation marks suggesting
the gap of two, not the factorial function iterated!)

(b) Show that a permutation of X interchanges some £-subset with its comple-
ment if and only if all its cycles have even length. Prove that the number of such
permutations is ((2k — 1)!))% [HINT: any pair of factors defines a partition of X into
a disjoint union of cycles, and conversely. The correspondence is not one-to-one,
but the non-bijectiveness exactly balances.)

(c) Deduce that the probability that a random element of S, interchanges some
1n-set with its complement is O(1/+/n). [HINT: You will probably need two analytic
facts: 1 — z < e for positive z; and Y%, (1/4) = logn + O(1).]

16. How many relations on an n-set are there? How many are (a) reflexive, (b)
symmetric, (c) reflexive and symmetric, (d) reflexive and antisymmetric?

17. Given a relation R on X, define
Rt = {(z,¥): (z,y) € Ror z = y}.

Prove that the map R — R* is a bijection between the irreflexive, antisymmetric and
transitive relations on X, and the reflexive, antisymmetric and transitive relations
on X. Show further that this bijection preserves the property of trichotomy.

REMARK. This exercise shows that it doesn’t matter whether we use the ‘less than’ or
the ‘less than or equal’ model for order relations.

18. Recall that a partial preorder is a relation R on X which is reflexive and transitive.
Let R be a partial preorder. Define a relation S by the rule that (z,y) € S if and
only if both (z,y) and (y,z) belong to R. Prove that S is an equivalence relation,
Show further that R ‘induces’ a partial order R on the set of equivalence classes
of S in a natural way: if (z,y) € R, then (7,y) € R, where T is the S-equivalence
class containing z, etc, (You should verify that this definition is independent of the
choice of representatives z and y.)

Conversely, let X be a set carrying a partition, and R’ a partial order on the
parts of the partition. Prove that there is a unique partial preorder on X giving rise
to this partition and partial order as in the first part of the question.

Show further that the results of this question temain valid if we replace partial
preorder and partial order by preorder and order respectively, where a preorder is a
partial preorder satisfying trichotomy.

19, List the (a) partial preorders, (b) preorders, (c) partial orders, (d) orders on the
set {1,2,3).

20, Prove that B, < n! for all n > 2. [HINT: associate a partition with each
permutation.]

21, Verify, theoretically or practically, the following algorithm for generating all
partial permutations of {1,...,n}:
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(3.13.1) Algorithm: Partial permutations of {1,...,n}
FIRST PARTIAL PERMUTATION is the emptly sequence,
NEXT OBJECT after (£1,...,%m):
o If the length m of the current sequence is less than n, extend it
by adjoining the least element it doesn't contain,
o Otherwise, proceed as in the algorithm for permutations, up to
the point where z; and z, are interchanged; then, instead of
reversing the terms after ;, remove them from the sequence,

22. Verify the following recursive procedure for generating the set of partitions of a
set X.

(3.13.2) Recursive algorithm: Partitions of X
If X =0, then { is the only partition.
If X #0, then
e select an element z € X;
e generate all subsets of X \ {z};
o for each subset Y, generate all partitions of X \ ({z} UY'), and
adjoin to each the additional part {z} UY.

23. Let A = (a;;) and B = (b;;) be (n+1) x(rn+ 1) matrices (with rows and columns
indexed from 0 to n) defined by q;; = (;), bi; = (~1)yt (;) (where (;) =0if ¢ < j).
Prove that B = A~!. [HINT: let V be the vector space of polynomials of degree at
most n, with basis 1,#,#2,...,t". Show that A represents the linear transformation
f(t) — f(t + 1). What transformation is represented by B?)

24. PROJECT. A couple of harder binomial identities. Prove:

" fIn+1\/m+k 2m
(2) g(2k+l)( 2n ) B (Zn)'
3
S () 2 [(-DmEm)Y () if no= 2m;
®) 3(-1) (k) {0 if n is odd.
25. PROJECT. There are many different proofs of Cayley’s Theorem. Look one up in
a graph theory textbook, and present it in your own wotds.

26. PROJECT. A forest is a graph without cycles. Prove that the number F'(n) of
forests on the set {1,...,n} satisfies the recurrence relation

Fin) = gjl (z - i) &2 F(n — k).

Calculate the ratio of F'(n) to the number n”~? of trees for small n. What can you
say about this ratio in the Hmit?



4. Recurrence relations and
generating functions

The way begels one; one begets two; two begets three; three begets the
myriad creatures.

Lao Tse, Tao Te Ching {ca. 500 BC)

Torics: Fibonacci, Catalan and Bell numbers, derangements, [finite
fields, sorting, binary trees, ‘Twenty Questions’]

TECHNIQUES: Recurrence relations, solution of linear recurrence
relations with constant coefficients, generating functions and their
manipulation, [the ring of formal power series]

ALGORITHMS: Computation of Fibonacei numbers, [QUICKSORT]

CROSS-REFERENCES: Derangements (Chapter 5), set partitions
{Chapter 3)

A recurrence relation expresses the value of a function f at the natural number n
in terms of its values at smaller natural numbers. We saw a simple example of this
already: the number F(n) of subsets of an n-set satisfies F(n 4 1) = 2F(n). This
relation, together with the initial value F'(0) = 1, determines the value of F for every
natural number. In this chapter, we examine recurrence relations in more detail.
An important technique, often associated with recurrence relations but useful in
its own right, is that of generating functions. These are power series whose coefficients
form the number sequence in question. We show how generating functions can be
used either to solve recurrence relations explicitly, or to derive some information
about the (unknown) solution. The techniques look suspiciously like analysis!®

To begin, here is an introductory example of a proof by generating function.
Let F'(n) be the number of subsets of an n-set. We saw several times already that
F(n) = 2°; now we will evaluate F(n) by yet another method, seemingly more
complicated but in fact of very general applicability. Set

B(t) = 3 P(nyt™.

n=0

! To Newton, ‘analysis' meant manipulation of power series. See V. I. Arnol'd, Huygens & Barrow,
Newton & Hooke (1990).
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(Don’t worry for the moment about whether this power series converges.) Now

2e(t) = i 2F(n)t"*

= i F(n+ 1)‘1,‘"’H
= 4(t) -1,

the last equality holding because the sum is identical with the definition of ¢(t)
(with n + 1 replacing n) except that the first term F(0)t° = 1 is missing. Thus

1
$(t) = 17—,

The right-hand side is the sum of a geometric progression:
(=]
$(t) = _(2t)"
n=0

Comparing this with the original series, we conclude that Fi(n) = 2", (If two power
series are equal, then all their coefficients coincide.)

Incidentally, we now see that the power series converges for all ¢ with |¢| < 1;
so our manipulations are justified by analysis. We will return to this question of
justification later. First, however, we do a less trivial example,

4.1. Fibonacci numbers

ProBLEM. In how many ways can the non-negative integer n be written as a sum of
ones and twos (in order}?

Let F,, be this number. Then, for example, Fy; = 5, since
4=14+14141=2414+1=14241=141+4+2=2+42,

Similarly, we find that F}, = 1, F;, = 2, F3 = 3. By convention, we take Fy = 1: the
only solution for n = 0 is the empty sequence.

Suppose that n > 2. Any expression for n as a sum of ones and twos must end
with either a 1 or a 2. If it ends with 1, then the preceding terms sum to n — 1; if it
ends with a 2, they sum to n — 2. So we have

F,=F, +F,,

The numbers Fy, Fy, F3,. .. are called the Fibonacci numbers.

This is an example of a recurrence relation, more specifically, a three-term linear
recurrence relation with constant coefficients. The meaning of these terms is, I hope,
obvious. But, in general, a (k + 1)-terin recurrence relation expresses any value F(n)
of a function in terms of the k preceding values F(n — 1), F(n —2),...,F(n — k);
it is Knear if it has the form

F(n) = a;(n)F(n — 1) + a2(n)F(n — 2) + ... + ax(r)F(n — k),
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where a,,...,a; are functions of n; and it is linear with constent coefficients if
ai1,...,ax are constants. We will see examples later of recurreace relations in which
the value of F(n) depends on all the preceding values, in a highly non-linear way;
so this one is very special.

Faor: A function satisfying a (k + 1)-term recurrence relation is
uniquely determined by its values on the first k natural numbers.

(The first £ natural numbers could be 0,...,k—1or 1,...,k, depending on context.)

For, if we know F(1),...,F(k) (say), then these values determine F'(k + 1), and
then the values F(2),...,F(k + 1) determine F(k 4 2), and so on. The words end
30 on are a signal that we are using induction. Formally, if iwo functions F and G
satisfy the same recurrence relation and agree on the first ¥ natural numbers, then
one proves by induction that they agree everywhere.

This is rather like the situation with differential equations, where we expect a
k' order d.e. and k initial conditions to determine a solution uniquely. However,
our situation is very much simpler in one way: the existence and uniqueness follows
immediately from the Principle of Induction, without the need for any hard analysis.
For any recurrence relation whatever, it is usually obvious just what sort of initial
values are required to determine the solution uniquely.

We tutn to methods for solving the recurrence relation:

(4.1.1) Fibonacci Recurrence Relation
Forn > 2,
F.=F n-1 -+ F,_,

Two methods will be given; both of them generalise.
FIRST METHOD. Since the recurrence relation is linear, if we can find any solutions,
we can take linear combinations of them to generate new solutions. (Again this is
like what happens with differential equations.) Specifically, let F' and G satisfy the
recurrence relation above, and let &, = af,, + 6G,. Then
H, = aF, +5G,

= a(Fn-l + F, —2) + b(Gn-l + Gn-—z)

= (aF_y + 5Gnr) + (aFuz + bGp3)

= n-1 + H’n-—2-
We try to fit the initial conditions by choice of a and &.

Try a solution of the form F,, = o™ (The justification for this will be that it

works!) We require
a® = an-—l + an-—2’

oo —a—1)=0.

So, if a2 — a — 1 = 0, the recurrence holds for all n.
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The roots of this equation are a = (1 + Vv5), B = 31— v3). So we have a
general solution of the form

e (59 (5

To fit the initial conditions (which are Fy = 1, Fy = 1 in our case), we require
e+bd=1,

(59 (15

whence a + b= 1,a— b= %, giving
() o= (aF)
(4.1.3) Fibonacci numbers
a= () (59) + (57) (52)

Reuarks. 1. (355) ~ 1.618..., and (1) ~ —0.618... . So the function grows

exponentially; for large n, its value is the nearest integer to (%) (Lgé)n

2. Note that we could easily find values of @ and & to fit any given initial values.

3. Welll see that, for some purposes, the explicit formula is less useful than the
recurrence relation.

and so:

SECOND METHOD. We now solve the recurrence relation using the technique of
generating functions. We let $(¢) be the power series

#(t) = 3 F(n)t,

n20

where ¢ is an indeterminate.

We have
tp(t) =Y F(n)t"* = Y F(n - 1)t",
t24(t) = Z F(n)t*+? = E F(n - 2)t".
n>0 n>2

(Be clear about what is happening here. To get from the second term to the third
in each equation, we have used the fact that n is only a ‘dummy variable’ whose
actual name is not important. So, for example, in the first equation, we substitute
m =n+1, and then replace the dummy variable m by n. If this confuses you, write
out the first few terms of both sums.)
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Now F, = F,_1 + F,_3, so it is ‘almost true’ that ¢(t) = (¢ + t?)$(2). Certainly,
the coefficients of #? and all higher powers will be the same on both sides of
this equation, but we might have to adjust the constant term and the term in ¢.
Remember that Fo = ].,Fl =1

The coefficient of ¢ is F) on the left and F; on the right, so these agree. The
constant term is Fy on the left and 0 on the right, so we have to add 1 to the
right-hand side to obtain equality. Thus,

(1) =1+ (¢t +£2)d(2),

whence
1

=1
Now the value of F), is the coeflicient of ¢ in the Taylor series for this function. This
is most easily found by a partial fraction expansion. Let 1 —¢ —t* = (1 —at)(1 — 5t).
Thus, « and 3 are roots of 22 —z — 1 = 0; so & = (%@), 8= (1—‘,3@) (The sane
as before — no coincidence!) If we let

1 a b

o) 1-Pf) 1-at T 1-pt

then
1=a(l — Bt)+ b(1 — at),
so a+b =1, af + ba = 0. These equations can be solved for a and b (with the same

solution as before!).

Now
a b
+

t) = —_
#(t) l—at 1-p5t
=a(l+at+a®+..)+b1+8t+ 84 +...)

equating coeflicients of t", we find that

Fn = aa" -+ bﬂn.

4.2. Aside on formal power series

Once we have found the power series in the above argument, we can use the theory
of power series to show that it converges for |{| < 1/a, and so the manipulations
above are justified analytically. But in fact there is a theory of formal power series,
according to which it is legitimate to do such manipulations without any regard to
questions of convergence. This is important in cases where either the series don't
converge for any non-zero value of ¢, or we are unable to find out enough about
it to resolve the question of convergence. In this section, I'll outline the algebraic
formalism for this. If you feel comfortable with the arguments of the last section,
there is no need to read what follows.
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A formal power series over a field F' should be thought of as an expression

Yeat" =agtarttant’ +...,
n20

but more formally it is an infinite sequence (gq, a;,a2,...) of elements of F. (In fact, the definition
will work over an arbitrary ring,) The set of all formal power series has operations of addition and
multiplication defined on it, under which it forms a ring. Also, we can differentiate {(and we have a
differential ring). There are additional operations defined only for certain formal power series, such
as infinite sums and products, and substitution; we will define these informally as required.

The addition and mulliplication are exactly what you would expect: you add and multiply
‘term-by-term” That is,

(Zant") + (Z b,.t") =D (an +ba)",

n>0 n>0 n>0
and
(}:ant") . (Ebﬂt") = cht“
n>0 n>0 n>0
where

n
en = E Qibn_g.
=0

It can be checked with some effort that these operations are associative and commautative, and that
the distributive law holds.
For example, we can sum geometric progressions:

w1
2" ==

n>0

This is easily verified by showing that (1 — ct) (Eﬂ>0(ct)") =1
Another very important operation on formal power series is differentiation:
Zaﬂt" = E(nan)t"'l.
n2o nz2l

‘The standard rules of elementary calculus for differentiating sums and products hold in this situation.
The standard functions of analysis are defined as formal power series by their usual Taylor series:

for example,
tﬂ
exp(t) = z m»
n>0
— n—ltn
log(1 +4)= 3" (Ln—
n>1

They satisfy the usual differential equations: § exp(t) = exp(?), & log(1 +1) = 1/(1 +¢).

We can add infinitely many formal power series as long as we are never required to add infinitely
mary field elements. So, for example, if g(¢) = 2,,)1 b,t" is a formal power series whose constant
term is zero, then (g(f))” has no term involving powers of ¢ less than ¢*. Thus it makes sense o

evaluate
>~ anla(®)™,

n30
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since a given term, say the term in {™, only contains contributions from expressions a.(g(t))"
for n < m. The resulting formal power series is obtained by substitution of g into f, where
(1) = ¥ 50 @nt™ We see thal we can substitute one formal power series into another, provided the
first has constant term gero.

Substitution behaves as one would expect: for example,

exp(log(1 +t)) = 141,
log(1 4 (exp(f)— 1)) = &.

(Note that log(1 4 ) and exp(f) — 1 do have zero consiant term.) Furthermore, if f and ¢ have
constant term 0, then exp(f) and exp(g) are defined, and

exp(f) - exp(g) = exp(f + g).

One notable example of a formal power series is provided by the Binoméal Theorem for a general
exponent. In our situation, the following statement is a definition, not a theorem:?

{4.2.1) Binomial Thearem

a+ey=% (:)t",

n>0

For any real number r,

(Here the ‘binomial coefficient’ (7) is defined by

(r)=r(r—1)...(r—'n+1);

n n!

if r is a positive integer, this agrees with the usnal definition, and it vanishes for n > r.)
Now it can be verified that the ‘law of exponents' holds:

QA+ -+ =4yt

For r = —1, this agrees with our calculation of the sum of a geometric progression above (with
¢ = 1). Moreover, we can define ((1+1)")° by substitution, since (1 +¢)" has the form 1 + f(2) where
f has constant term zero; and we find that

((1+6y) =+
Finally, we have

d r o r—1

E(I-H) =r(14+)""

(This follows from the easily-checked identity n(7) = (721).)

One more important operation on formal power series is infinite product. Let fi, fa, ... be formal
power series with constant term 0. Then the product

TIa+ f0)

n>1

2 Just as ‘Zorn's Lemma’ is an axiom of set theory, and ‘Bertrand's Postulate’ is a theorem.
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should be defined by taking, in all possible ways, either 1 or f, from the n*? factor, multiplying these
together, and adding the resulting terms. To avoid having to multiply infinitely many non-trivial
terms, we specify that we choose 1 from all but finitely many of the factors; this gives a sum over all
finite sets of natural numbers. There is still a potential problem; we have to ensure that only finitely
many terms contribute to the coefficient of any given power of ¢. This will be true, for example, if
f(2) contains no terms of degree less than n in ¢. So, for example,

[Ta+e

n>1

is defined — see Exercise 14. It can be shown that, if [T,5,(1 + fa(t)) = 1 + g(t) is defined, then

log(1+ g(1)) = Y log(1 + fu(t)).

n>l

Suppose that F is the field of real or complex numbers. Then, if the sequence (ap,a1,...)
grows no faster than exponentially, its generating function will have non-gero radius of convergence,®
and techniques of analysis can be nsed on it. However, for many interesting counting functions of
combinatorial interest, the growth is faster than exponential, and the series must be treated formally.
For example, the generating function for permutations is 3 .., nlt*. This diverges for all ¢ £ 0, and
yet the coefficients in its inverse have combinatorial significance {see Exercise 13).

4.3. Linear recurrence relations with constant coefficients

The procedure for solving a general linear recurrence relation with constant coeffi-
cients is similar to that in the Fibonacci case. Consider the recurrence

Fn)=aFn—-1)+aF(n—2)+...4+ aF(n—k).

Using the first method, we try a solution of the form F(n) = a®; we find that o
must be a root of the polynomial

= alxk—l + a;xk—z + ... 4 a.

If this characieristic equation has all its roots distinct, then we obtain k independent
solutions of the recurrence relation. Taking a linear comnbination of these, and fitting
k initial values of F, we get k linear equations in & unknowns; these equations have
a unique solution. So we have obtained the 1nost general solution of the problem.
However, if the characteristic polynomial has repeated roots, then we don’t obtain
enough solutions. In this case, suppose that « is a root of the characteristic equation
with multiplicity d. Then it can be verified that the d functions ", na™,...,n? 1a"
are all solutions of the recurrence relation. Doing this for every root, we again find
enough independent solutions that k initial values can be fitted.

3 Recall from analysis that the radius of convergence of the power series Eﬂzo a,1" is given by
R = 1/limsup(an)/™.
n—oQ

The series converges for [{| < R and diverges for |¢| > R.
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The justification of this is the fact that the solutions claimed can be substituted
in the recurrence relation and its truth verified.

EXAMPLE. Solve the recurrence relation
F{n)=3F(n—2) —2F(n -3)
with initial values F'(0) = 3, F(1) = 1, F(2) = 8.
The charactetistic equation is
=3z -2,
with solutions z = 1,1, —2. So the general solution of the recurrence relation is
Fr)y=a(-2)"+bn+c.

To fit the initial conditions, we require ¢ = b = 1,¢ = 2, so the solution is
Fn)=(-2)"+n+2

4.4. Derangements and involutions

For linear recurrences with non-constant termns, or for non-linear recurrences, there
is no general inethod which always works. Sometines it is possible to solve such
relations, either by guessing a solution (and verifying that it works), or by some other
method. We give a couple of examples. In the first case, we solve the recurrence; in
the second, we will merely derive some information about the solution.

EXAMPLE: DERANGEMENTS. A derangement of 1,2,...,n is a permutation of this set
which leaves no point fixed. In Chapter 1, you were asked to calculate the number
of derangements for n < 5. Now we will find the general formula. (This will be done
again in Chapter 5 to illustrate a different technique, the Principle of Inclusion and
Ezclusion.)

Let d(n) be the number of derangements of {1,...,n}. Any derangement moves
the point n to some point i < n. Clearly, the same number of derangements is
obtained for each value of ; from 1 to n — 1; so we will find d(n) by computing the
number of derangements that map n to i and multiplying by n — L.

Let 7 be a derangement with nr = i. (Remember that permutations act on the
right!) There are two cases:

CasE 1: im = n. In other words, = interchanges n and i. Now it operates on the
remaining n — 2 points as a derangement. Furthennore, given any derangement of
the points different from ¢ and n, we may extend it to interchange 2 and n, and
obtain a derangement of the entire set. So the number of derangements of this type
is d(n — 2).
CASE 2: im # n; say, jx = n for some j # i. Now define a permutation ' of
{1,...,n — 1} by the rule
kr, if k #5;

e = {37 7

Then #' is a derangement. Any derangement =’ of {1,...,n—1} can be ‘extended’ to

a derangement 7 of {1,...,n}, by reversing the construction. So there are d(n — 1)
derangements under this case.
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So we obtain

d(n) = (n—1)(d(n — 1) +d(n — 2)).

This is a three-term recurrence relation. The initial values are given by d(0) = 1,
d(1) =0.

(4.4.1) Theorem. The number d(n) of derangements of an n-set is given hy

d(n) = n! (z:ju (:—‘1)) :

This is the nearest integer to n!/e for n > 1, where e is the base of natural logarithms.

ReMARK. This demonstrates the claim made in Chapter 1, that if n letters are
randomly distributed among n addressed envelopes, the probability that no letter
is correctly addressed is close to 1/e. (The problem asks for the probability that a
random permutation is a derangement; this is d(n)/n!.)

To prove the theorem, we must show that the two sides of the equation satisfy
the same recurrence relation and have the same initial values. So let f(n) =
nl 35 o(—1)'/i!. Then

f0)=1=4d(0), f(1)=1=4d(1).

Also

("—1)(f(n—1)+f(n—2))=("—1)'("_1)!'§(—i_!l)i
+(n—1)-(n—2)!7§(_.—11)“
=((n-1) -1+ (n-1)( )‘)RZ-::( ‘1)
+(—1)"'1(n—1)

n=2 n!
=nl} — A "_1( 1)t+( 1)n—;

i=0

= nlg—i!
= f(n),

since n — 1 = nl/(n — 1)! — nl/nl

So the equality is established.

Now the Taylor series for e™! is 3 32,(—1)"/i!. Since this series has terms of
alternating sign and decreasing in absolute value, the difference between the nth
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term and the limit is less than the (n + 1)** term. So

nl 2 (=1 & (=1
‘d(")_? = _g(i!
(1
!
<ni (n+1)!
1
T n+1
<iforn

So n!/e differs from the integer d(n) by less than ;. It follows that d(n) is the
nearest integer to n!/e, as claimed.

ExAMPLE: INVOLUTIONS. Here is an example of a naturally occutring sequence, with a
simple recurrence relation whete we won't find a simple formula either for the terms
in the sequence itself or for a generating function for them (but see Exercise 18);
however, we can get quite precise information just using the recurrence relation.

ProBLEM. How many permutations are there of a set of n elements having the
property that all their cycles have length 1 or 27

The cycles of a permutation refer to its expression as a product of disjoint cycles,
found in the usual way. For example, 5(3) = 4, counting the permutations (1)(2)(3),
(1 2)(3), (1 3)(2) and (2 3)(1). Similarly, 5(2) = 2, and s(1) = 1. (What is 5(0)?)

Let s(n) be the number of permutations satisfying this condition. As usual, we
assume that the n-set is {1,2,...,n}, and divide the permutations into two classes:

o Those which fix the point n. These act on the set {1,...,n— 1} as permutations
with all cycles of length 1 or 2, so there are s(n — 1) of them.

e Those which don’t fix n. If such a permutation moves n to i, say, then by
assumption it contains a cycle (n ¢), and it acts on the n— 2 points other than n
and ¢ as a permutation with all cycles of length 1 or 2. There are n — 1 choices
for 7, and for each choice, s(rn — 2) choices for the permutation.

So we have the recurrence relation

s(n)=s(n—1)+ (n— )s(n — 2).

This recurrence relation makes the calculation of further values easy. For
example,

s(4)=4+3-2=10,
s(5) =10+4-4 = 26,
s(6) =26 +5-10 = 76.

We demonstrate the following properties of the numbers s(n):

(4.4.2) Proposition. (a) s(n) is even for all n > 1;
(b) s(n) > V! forall n > 1.

PRrooF. Both statements are proved by induction, being easily verified for = = 2, 3.
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(i) If s(n — 1) and s{n — 2) are even, then s{n) =s(rn— 1)+ (n—1)s(n —2) is
even. So induction applies.

{ii) Suppose that s(n. — 1) > +/(n — 1)! and s(n — 2) > ,/(n — 2)!. Then
s(n)=s(n — 1)+ (n— 1)s(n — 2)
>afln =D+ (n—1)/(n—2)!
=y/(n -1 (1+vn-1)

> fn—1)l- v (%)
= v/nl,

and the induction goes through. (In (*), we have used the fact that
1+ vn—1>n,
which is true because (1 +vn—1)? =n+2y/n—1.)

REMARKS. 1. The second inequality is actually quite a good estimate.

2. The evenness of s(n) is a special case of a general group-theoretic fact, in the
case where G is the symmetric group Sym(n) of all permutations of {1,...,n}: In
a finite group G of even order n, the number of solutions of % =1 is even. This is
because the elements y for which y? £ 1 come in pairs {y,y~'}, and so are even in
number.

4.5. Catalan and Bell numbers

In this section, we look at two important sequences of numbers. They have several,
apparently accidental, common properties: both are ‘named’; they start out similarly
(the Catalan numbers are 1, 2, 5, 14, 42, .., while the Bell numbers are 1, 2, 5, 15,
52, ...); and both are given by recurrence relations.

The Catalan numbers appear in many guises throughout combinatorics and
computer science. Here is a typical application:

In how many ways can a sum of n terms be bracketed so that it
can be calculated by adding two terms at a time?

For example, if n = 4, there are five possibilities:

(((a +b)+c)+d),
((a+(b+c))+4d),
(a+((b+c)+4d)),
(a+(b+(c+d))),
((a +5) + (c+ d)).

4 And elsewhere. Two of my colleagues, independently, asked me about the Catalan numbers which
had come up in their research. One studies non-linear dynamics; the other, Lie superalgebras,
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We have ‘normalised’ by enclosing the entire exptession in an extra pair of brackets.
(Note that, in an algebraic system where the operation is non-associative, these
expressions could all have different values.)

Let C, be the number of ways of bracketing a sum of n terms. To obtain a
recurrence relation for C,, note that any bracketed expression has the form (£, +E,),
where E, and E, are bracketed expiessions with (say)  and n — 4 terms, for some i
satisfying 1 < i < n — 1. There are C; choices for E;, and C, -, for E,_;. Summing
over %, we obtain our first example of a non-linear recurrence relation:

(4.5.1) Recurzence relation for Catalan numbers
For n > 1,

n—1

Cn = Z C{Cn—x'

i=1

Let F(t) = Y,»1 Cat" be the generating function. (By convention, we take
Cp = 0; also, C} = T, which is the start of the recurrence.) The recurrence relation
shows that the terms in ¢#? and higher powers of ¢ in F(¢)? are equal to those of
F(t). However, because the constant term is zero, F(t)* has no term in ¢. Thus, we
have
F(t)=t+ F(t)%.

Re-writing this as a quadratic equa.tion and solving, we obtain
F(t) = (1 +(1—4t)/?).

Because F'(0) = 0, we must choose the minus sign in the solution. Now, from the
Binomial Theorem, we can read off the coefficient of ¢*:

C=- (1/2)( gy

=(2n—2)}/(n - 1)in!

(In the above expression, there are n+1 twos in the denominator, and 4" /2"+! = 271,
Then the product of all odd numbers from 1 to 2n—3 is equal to (2n—2)!/2"*(n—1).
Moreover, there are altogether 2n — 2 minus signs.) Thus:

(4.5.2) Catalan numbers
C. = 1 (2n - 2).
n\in-—1

See the Exercises for other combinatorial interpretations of Catalan numbers.
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We encountered the Bell numbers briefly in Chapter 3. The Bell number B, is
the number of partitions of a set of size n. We proved there that it satisfies the

recurrence relation
*ofn—1
Bn = z 1: -1 Bn—l'y

=1
with the convention that By = 1. This recurtence is linear, but involves all the
preceding terms, rather than a fixed number.

There is no simple closed formula for B,, but there is a nice expression for iis
generating function, which we now derive. This is a type of generating function we
haven’t met before. The exponential gemerating function, or e.g.f., of the sequence
(ao, a1,...) is the formal power series

Z a,t"

|
o ™

The name comes from the fact that the e.g.f. of the all-1 sequence is just the ordinary
exponential function exp(t). We will see in Part 2 that the exponential generating
function is well suited to counting labelled objects, in the sense introduced in
Chapter 2. Note that, if F(t) = Y ,50ast"/n!, then the derivative is § F(t) =
Yous1 @at® 1 /(n — 1)!; this is the e.g.f. of the sequence with the first term deleted.

“Let F(t) = X,50 Bat"/n! be the egf of the Bell numbers. Take the recurrence
relation, multiply by ¢"~*/(n — 1)}, and sum over n, to obtain

tn—l

d .
EF(t)=§(n_1)z

-5E(5)) e

n t'i—l Bn—it"_‘l

XL o

nxl=
_ td By t*
- (55)- (57%)
= exp(t)F(t)

(In the penultimate line, we changed dummy variablesto j =i—1 and & = n—1i; as
7 runs from 1 to o0, and ¢ from 1 to n, j and % independently take all non-negative
integer values.)

Now we have

%(exp(- exp(t))F(t)) = 0,

so F(t) = cexp(exp(t)) for some constant c. Using the fact that F(0) = 1, we find
that ¢ = exp(—1); so

(4.5.3) E.g.f. for Bell numbers.

n

> B;f = exp(exp(t) — 1).

n>0
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4.6. Computing solutions to recurrence relations

In principle, nothing could be simpler than computing, say, Fibonacci numbers from
their recurrence relation. By the way it works, knowing that Fy = F; = 1, we find
F; =141 =2, then F;, and so on. For example,

Fiooo = 70,330, 367, 711,422, 815, 821, 835, 254, 877, 183,549, 770, 181,
269,836, 358, 732, 742, 604, 905, 087, 154, 537, 118,196, 933, 579,
742, 249, 494, 562, 611, 733, 487, 750, 449, 241, 765, 991, 088, 186,
363,265, 450, 223, 647, 106,012, 053, 374, 121, 273,867, 339, 111,
198,139, 373, 125,598, 767, 690, 091, 902, 245, 245, 323, 403, 501

takes just 999 additions to compute.®

However, there is an important point to consider. It is tempting to program the
calculation exactly as the sequence is defined; that is, to define a function F on the
natural numbers by the rules

s FO)=F(1)=1;

¢ F(n)=F(n—1)+ F(n—2)forn> 1.
But this is not wise. Let us trace the calculation of F(4). We find that F(4) =
F(2) + F(3). First, we evaluate F(2) = F(0) + F(1) = 1+ 1 = 2. Next, we evaluate
F(3) = F(1) 4+ F(2). Now the computer does not realise that F'(2) has already been
calculated; it throws away its rough working. So we have to repeat the computation
F(2) = F(0) + F(1) =1+ 1 = 2 before we can find F(3) = 1+ 2 = 3 and finally
F(4) = 24 3 = 5. For larger arguments, the amount of repeated labour grows
expomnentially (see Exercise 7).

So it is important to tell the computer to remember earlier results. For this,
define an array of numberts (Fy, Fy,. .., Fiooo) (if the largest Fibonacci number we'll
need is Fipgo), with the first two entries equal to 1, and each subsequent entry equal
to the sum of the two before it.

This consideration applies to any sequence of numbers defined by a recurrence
relation of any sort. In the specific case of Fibonacci numbers, if we only need one
number F, rather than the whole sequence F,. .., F, it's possible to economise on
storage space. We only need to remember two numbers, say = and y (and a counter
n). Start with z = y = 1 and n = 1. Now, in a single step,

e increase n by 1;
o calculate = + v, and replace either z or y by this number according as n is even
or odd.
The last number written (viz., * or y depending on the parity of n) is the n't
Fibonacci number.

It is possible to calculate F, faster than this, using only clogn arithmetic
operations, using the ‘Russian peasant multiplication’ trick. Exercise 8 gives details.

5 On the other hand, if we were to use the formula, we would be faced with the need to calculate

(V5 + 1)/2vB)((v/5 + 1)/2)19% 1o such high accuracy that the final answer is guaranteed to have
an error of less than 0.5 — a much more difficult task!
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4.7. Project: Finite fields and QUICKSORT

In this section, we will work through two more elaborate applications of re-
currence relations and generating functions. We prove the existence of irreducible
polynomials over finite fields; and we calculate the average number of comparisons
needed to sort a list using QUICKSORT.®

IRREDUCIBLE POLYNOMIALS AND FINITE FIBLDS.

If p is a prime, the integers modulo p form a field: addition, subtraction, multiplication and division
(except by zero) are defined, and the commutative, associative and distributive laws hold. What other
finite fields exist?

This question was answered by Galois in the nineteenth century.” He proved the following
result:

(4.7.1) Galois® Theorem
The number of elements in a finite field is a prime power; and, for any prime
power g, there is a unique field with g elements.

The field with ¢ elements is called the Galois field of order g, denoted by GF(g). Thus, if p is
prime, then GF(p) = Z/(p), the integers mod p. Suppose that ¢ = p™. Then a field of order ¢ is
constructed from a polynomial

f@)=a"+bp1z™ 4.t hiz+ by

over Z/(p), which has degree n, is monic (leading coefficient 1), and is irreducible: the elements of
the field are the p™ expressions

t+eaat...depyo?
for cg,e1,...,n-1 € Z/(p); addition and multiplication are defined in the obvious way, but setting
f(&) = 0 where necessary to reduce the degree of any expression to n — 1 or less. (Compare the
construction of the complex numbers as the set of ohjects of the form a + bi for a,b € IR, where
i2 = —1; note that the polynomial = + 1 is irreducible over R.)

The point of this brief discussion is that the existence of finite fields will follow if we can show
that there is an irreducible polynomial of any possible degree over Z/(p). We will prove this in
the most naive way possible, by counting the polynomials. We need one algebraic fact: a monic
polynomial over a fleld can be factorised into monic irreducible factors, unigquely up to the order of the
Jactors,

Fix a prime power ¢, and let F be a field of order ¢. (For Galois’ Theorem, take ¢ = p prime,
and F = Z/(p).) Let 2, be the number of monic irreducible polynomials of degree n over #. The
total number of monic polynomials of degree n is 4%, since each of the n coefficients b, _1,...,b;,bq
can be chosen arbitrarily from F.

5 1 am indebted to Collm McDiarmid for the second example.

7 Evariste Galois was killed in a duel at the age of 20. The night before the duel, he had written
all his recent mathematical discoveries in a hastily scrawled letter to a friend; this document can be
regarded as the foundation of modern algebra, though its influence was not felt until its publication
by Liouville fifteen years later. The theorem on finite fields, however, is one of the few picces of his
work published during his lifetime.
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Now an arbitrary polynomial has a unique factorisation into irreducibles. Consider those
polynomials which have m; factors of degree 1, ma of degree 2, and so on. We must have
my + 2m2 + ... = n. The my factors of degree i are chosen from the set of @; irreducibles of degree
i; repetition is allowed, and the order of the factors is not important. By (3.7.1), there are (“‘+:i‘_‘)
choices for these factors, and hence

H 6; + my —~ 1)
m;

i1

polynomials with a factorisation of this shape. So, counting all monic polynomials of degree n, we

have
II (a‘ +::.-‘ B 1) =q" ()

mit2mat=n §ipl

This is a recurrence relation (albeit a highly comphicated, non-linear one). We illustrate the case

g=2
a1=2,

1
a2+<al;- ):4,

+2
a3 + 4142 + (‘113 >=8,

1 1 3
au+alaa+("2;r >+(“"é+ )aﬁ("‘:’ ):16,

from which we obtain successively ¢) = 2, aa =1, a5 = 2, a4 = 3.

The point of this section is that, by sleight-of-hand with generating functions, we transform this
recurrence relation into a very much simpler one, from which (for example) the fact that @, > 0 can
be seen directly.

Multiply equation (*) by {* and sum over n:

-1—_1? = chni"

n>0

-y w Q)

n>0 my42mat...=n 320

X )

myMa,.. i20

(The last step needs a little explanation. If we sum over all n and then over all choices of my,ma, ...
satisfying mi + 2mz + ... = n, we have simply summed over all sequences (m;,m2,...) with only
finitely many non-zero terms; this is what is meant by the prime on the summation sign. Furthermore,

n _ im,
" = Et .
so the power of £ can be split up as claimed.)
Now the main technical step: I claim that the above expression is equal to
H z (a:' +r’:— 1>tim_
i>1m20

This is because, to evaluate an infinite product of this form, we choose one term from each factor
in all possible ways so that all but finitely many choices are equal to 1, multiply the chosen terms,
and add the resulls; say we choose the m{® term from the i*" factor, where finitely many m; are
non-gero. This gives just the sum previously described.
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()=o)

s0, by the Binomial Theorem, we have

m20

Now note that

So we have

A—gq)t =1 — &)=,

i>1
Now comes the trick. We take logarithms of both sides:

—log(l~gt) == _a;log(l — '),

i>1
whence (t
Y=Y Z—
n>1 i21 k21

Now we equate the coefficients of t” on both sides. On the right, we obtain a term for each pair
(i, k) with ik = n; in other words, for each divisor i of n.

9" _ a;
n z nfi’
iln

Multiplying by n gives

"= Zia.u (%)
iln
This is our desired recurrence relation. It is linear, and has many fewer terms than (*). To re-do the
case g = 2:

@ =2,
a1 + 22z = 4,
a1 + 3a3 = 8§,

a, + 2a; + 4a4 = 16.

In Chapter 12, we will discuss Mébius inversion, and solve this recurrence relation explicitly. But,
in the meantime, observe that ¢ is the sum of at most n terms, of which all except na,, are at most
g"/? (since they occur in eatlier recurrence relations). In general, ¢* > (n — 1)¢™/?; 50 a,, > 0. Thus,
there exists an irreducible polynomizal of any degree over any finite field.

With a little more algebra, the recurrence relation (#) can be used to show the uniqueness in
Galois' Theorem as well. (In outline: one shows that any element of a field of order g” satisfies an
irreducible polynomial over the subfield of order ¢ whose degree divides n. Now the g; irreducible
polynomials of degree : have at most ia; roots; and (#+) shows that these roots are just sufficient in
number to comprise one field of order ¢*.)

1t is instructive to compare the very different proof of Galois' Theorem normally given in algebra
text-books. It is possible {o use that proof, and the counting of roots as in the preceding paragraph,
to give another proof of (xx).

THER PERFORMANCE 0F QUICKSORT.

A great deal of computer time is spent in sorting lists — arranging the elements in order, if they
were originally arranged haphaszardly. It is important to be able to do this efﬁc:ently, and to estimate
how complex a task it is.

Mary important algorithms are recursive: they solve a given problem instance by reducing it to
smaller instances of the same problem. Thus, the average (or longest) time taken to solve a problem
of size n can be expressed in terms of the time for smaller problems, giving rise to a recurrence
relation. As an example, I will calculate the average number of comparisons taken by Hoare’s
QUICKSORT algorithm to sort a randomly ordered list of n items.
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The algorithm is defined as follows.

(4.7.2) QUICKSORT
to sort a st L
Let o be the first item of the list.
o Partition the remainder of the list inio sublisis L=, Lt consisting of the
elementis less than, greater than a respectively.
e Sort L~ and L.
o Return (L™ (sorted), ¢, LT (sorted]).

We will calculate the average number of comparisons of individual elements which have to be
made, assuming that the algorithm is presenied with a list in random order (that is, all orderings
equally likely). But first, what answer do we expect? There are n! possible orderings; since each
comparison can at best narrow down the number of possibilities to half the previous value (on
average), we would expect to need at least log, n! comparisons.® By (3.6.1),°

log, n! = nlogn/log2+ O(n) = 1.4427...nlogn + O(n).

We will show that the average number of comparisons required by QUICKSORT is only a constant
factor worse than this lower bound, namely 2n logn 4 O(n).
The crucial observation is that, if the list L is in random order, then
o the first element a is equally likely to be the first, second, ..., n'" smallest element;
o the sublists L~ and L1 are randomly ordered (i.e. all orderings equally likely).
Let ¢, be the average number of comparisons required to sort a list of length 7. Thus we have

1 n
gn=n—14 ;;(qre-l + @n—k)-

(The first step requires n — 1 comparisons; if o is the k*h smallest element, the second step requires
an average of ¢x_1 + ¢n— comparisons, and this number has to be averaged over the possible values
of k. We can simplify this to

n—1

2
qn=n—1+;§qk,

since each of gy, . - ., ¢, —1 occurs twice in the sum.
The initial value ia clearly g = 0.
To solve this recurrence relation, we find a differential equation for its generating function. Let

Q)= z gnt”
n20
be the generating function. Multiplying the recurrence relation by n¢" and summing gives
n—1
annt" = Zn(n —1i"+2 Z (Z ‘Ii) ",
n20 n>o n20 \i=0
We analyse the three terms. The second is just the Taylor series of 2¢%/(1 — t)3. (We have

S on(n— 1)t = 2/(1 = 1)%,

n20

8 This might be called the ‘Twenty Questions’ principle. For a proof, see Exercise 23.
® The notation O(f(n)) means ‘a function whose absolute value is bounded by cf(n) for some
constant ¢, as n — oo’



68 4. Recurrence relations and generating functions

most easily by differentiating twice the series for 1/(1 —1), or alternatively by the Binomial Theorem.)
The first term is ¢Q'(£), since
Q)= ngut"".

n20
The last term is the most difficult; I claim that it is 2¢Q(f) /(1 — t). This is because

E/A-tNQE) = A+ + €+ .. ) (g0 + at + 028” + 0t +..),

and the £* term is obtained by multiplying ¢*~* from the first factor and ¢;t' from the second, and
summing over i.
Thus, we have
2t% 2t
() = ——— + ——Q(4).
tQ'(t) a—zp + - t)Q( )

This is a first-order Imear differential equation, for which there is a standard method for solution.
Without going through the general case, we have

(- 0°QW) = (1~ 9°¢'0 ~20 - 080 = T2,

(1-1)%Q(t) = ~2(t + log(1 — 1))
(using the fact that Q(0) = 0). Hence

q@) = 2200,

1t still seems a tall order to find the coefficients in this power series explicitly; but it can be done.
We have

3
Q(t)=2<§+%+...> A2+ ),

8O

qn=2g(:-_)(n—i+1)
:2(ﬂ+1)i(%)—4n.

i=1
This is an exact formula, though it involves a sum of n terms. We can produce an approximation by
using the fact that!?

n

3 (%) =logn + O(1),

i=1

whence
gn = 2nlogn + O(n),

as we promised.

19 The sum is an approximation to the area under the curve y = 1/z from z =1 fo = = a.
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4.8. Exercises

FIBoNACGI NUMBERS. In these exercises, F, denotes the n'* Fibonacci number.

1. (a) There are n seating positions arranged in a line. Prove that the number of ways
of choosing a subset of these positions, with no two chosen positions consecutive, is
Fopr.

(b) If the n positions are arranged around a circle, show that the number of
choices is F,, + F,_,; for n > 2.

2. Prove the following identities:
(a) F2 = Fpp1Fuy = (—1)" forn > 1.
n

(b) ZF' = Foy2 — 1.
=0
(C) F:_l + F: = an, Fn_an + FnFn+1 = F2"+l'

(d) F, = li‘,m'(" N ')

?

=0
3. Show that F,, is composite for all odd n > 3.
4. Show that
l{n-1)/2]
Foa=Fou—-1
=0
forn > 1.

5. Prove that every non-negative integer x less than F,,, can be expressed in a
unique way in the form
Fy+Fyt...+F,, (*)

where #(,13,...,% € {1,...,n}, &1 > 2+ 1,42 > i3+ 1, ... (in other words, 7;,..., 4,
are all distinct and no two are consecutive). Deduce Exercise 1(a).

[HiNT: By Exercise 4, the largest expression of the form (x) that can be made
using Fibonacci numbers below F, is F, — 1. So, if F}, < z < F,41, then F,, must be
-included in the sum; and z — F,, < F,_4, so F,,_; cannot be included,]

6. Fibonacci numbers are traditionally associated with the breeding of rabbits.!!
Assume that a pair of rabbits does not breed in its first month, and that it produces
a pair of offspring in each subsequent month. Assume also that rabbits live forever.
Show that, starting with one newborn pair of rabbits, the number of pairs alive in
the n*® month is F,.

7. Prove that the number of additions required to compute the Fibonacci number
F,, according to the ‘inefficient’ algorithm described in the text is F, — 1.

8. (a) Prove that ¥, = F,F, + F,,_1 F_) for m,n > 0 (with the convention that
F -1 = 0)‘
(b} Use this to derive an algorithm for calculating F,, using only clogn arithmetic
operations. [HINT: see Russian peasant multiplication {Exercise 12 of Chapter 2).]
(c) Given that multiplication is slower than addition, is this algorithm really better
than one involving n — 1 additions?

!1 This example is due to Fibonacci (Leonardo of Pisa) himself.
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MISCELLANEQUS RECURRENCES AND GENERATING FUNCTIONS.

9. (a) Solve the following recurrence relations.
(i) f(n+1)=f(n)? f(O)=2.
(i) f(n+1) = f(n) j‘lf(n -1+ f(rn—2), f(0) = f(1) = f(2) =1

(i) f(n+1) =1+ f(3) f(0) = 1.

=0
(b} Show that the number of ways of writing n as a sum of positive integers,
where the order of the summands is significant, is 2"~ for n > 1.

10. The number f(n) of steps required to solve the ‘Chinese rings puzzle’ with n
rings satisfies (1) =1 and

_ {2f(n), n odd,

flnt+1)= {2f£n; +1, n even.

Prove that f(n +2) = f(n + 1) + 2f(n) + 1. Hence or otherwise find a formula for
f(n).*

11. (a) Let s(n) be the number of sequences (z,,...,z;) of integers satisfying

1< z; <nforal i and z;4y > 2z; fori=1,...,k — L. (The length of the sequence
is not specified; in particular, the empty sequence is included.) Prove the recurrence

s(n) = s(n—1) + s((n/2)

for n > 1, with s(0) = 1. Calculate a few values of s. Show that the generating
function S(¢) satisfies (1 —£)5(¢) = (14 £)S(#?).

(b) Let u(n) be the number of sequences (z1,...,zx) of integers satisfying
1<z;<nforall:andz;y, > Z;=, z; for i =1,...,k — 1. Calculate a few values
of u. Can you discover a relationship between s and «? Can you prove it?

12. Let F(t) be a formal power series with constant term 1. By finding a recurrence
relation for its coefficients, show that there is a multiplicative inverse G(¢) of F(t).
Moreover, if the coefficients of F' are integers, so are those of G.

13. A permutation 7 of the set {1,...,n} is called connected if there does not exist
a number k with 1 < &k < n such that = maps the subset {1,2,..., %} into itself. Let
¢ be the number of connected permutations. Prove that

n
Y ci(n—i) =n!
i=1
Deduce that, if F(t) = ¥, n! and G(¢) = X1 cn are the generating functions of

the sequences (n!) and (c,) respectively, then 1 — G(t) = (1 + F(t))~!. (Note that
F(t) and G(t) diverge for all ¢ #0.)

12 The formula, and an algorithm for solution, were given in 1872 in Théorie du Baguenodier, by
‘Un Clerc de Notaire Lyonnais’ (now identified as Louis Gros). See S. N. Afriat, The Ring of Linked
Rings (1982),
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14. Let

[Ha+) =3 a.t™

n>1 n>0
Prove that ¢, is the number of ways of writing n as the sum of distinct positive
integers. (For example, ag = 4, since 6 =5+1=4+4+2=3+2+1)
15. (a) In an election, thete are two candidates, A and B; the number of votes
cast is 2n. Each candidate receives exactly n votes; but, at every intermediate point
during the count, A has received more votes than B. Show that the number of ways
this can happen is the Catalan number C,. [HINT: A leads by just one vote after
the first vote is counted. Suppose that this next occurs after 2 4 1 votes have been
counted. Then there are f(i) choices for the count between these points, and f(n —1)
choices for the rest of the count, where f(n) is the required number; so we obtain
the Catalan recurrence]
HARDER PROBLEM. Can you construct a bijection between the bracketed expressions
and the voting patterns in (a)?

(b) In the above election, assume only that, at any intermediate stage, A has
received at least as many votes as B. Prove that the number of possibilities is now
Cu41- [HINT: Give A an exira vote at the beginning of the count, and B an extra
vote at the end]

16. A clown stands on the edge of a swimming pool, holding a bag containing n
red and n blue balls, He draws the balls out one at a time and discards them. If
he draws a blue ball, he takes one step back; if a red ball, one step forward. (All
steps have the same size.) Show that the probability that the clown remains dry is
1(n+1)

17. Prove that

1/n
lim (&) =0.

700 \
[HINT: See the footnote on p. 56.]
18. Prove that the exponential generating function for the numbers s(n) of Section 4.4
is exp(t + 3t%).
19. The Berrnoulli numbers b, (not to be confused with the Bell numbers!) are defined

by the recurrence &, = 1 and
i 1
()
i\ K
for n > 1. Prove that the exponential generating function
bat"

=y

n2>0

is given by f(t) = ¢/(exp(t) — 1).
Show that f(¢)+ %t is an even function of ¢, and deduce that &, = 0 for all odd
n>3.
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REMARK. The Bernoulli numbers play an important and unexpected role in topics
as diverse as numerical analysis, Fermat’s last theorem and p-adic integration.

What is the solution of the similar-looking recurrence b, = 1 and

£

k=0

forn > 17

20. For even n, let ¢, be the number of permutations of {1,...,n} with all cycles
even; o,, the number of permutations with all cycles odd; and p, = n! the total
number of permutations. Let E(#), O(¢) and P(¢) be the exponential generating
functions of these sequences. Show that

() P(t) = (1 - &)

(b) E(t) = (1 — ¢*)~/2; [HINT: Exercise 15 of Chapter 3]

() B(#$).0() = P(t);

(d) e, = o, for all even n.

[T don’t know any ‘bijective’ proof of the last equality.]

QUuEsTIONS ON QUICKSORT AND BINARY TREES.

21. Show that QUICKSORT sometimes requires all (3) comparisons to sort a list. For how many
orderings does this occur? One such ordering is the case when the list is already sorted — is this a
serious defect of QUICKSORT?

22. Let m, be the minimum number of comparisons required by QUICKSORT to sort a list of length
n. Prove that, for each integer k > 1, m, is a linear function of n on the interval from 25! — 1 to
2% — 1, with

Mok_y = (k - 2)2* +2.

If n = 2% — 1, what can you say about the number of orderings requiring m,, comparisons?

23. This exercise justifies the ‘Twenty Questions’ principle. We are given N objects and required
to distinguish them by asking questions, each of which has two possible answers. The aim if this
exercise is to show that, no matier what scheme of questioning is adopted, on average the number
of questions required is at least log; N. (For some schemes, the average may be much larger. If we
ask ‘Is it @17}, ‘Is it a;?), etc., then on average (N + 1)/2 questions are needed!)

A binary treeis a graph (see Chapter 2) with the following properties:

o there is a vertex (the rootf) lying on just two edges;

o every other vertex lies on one or three edges (and is called a leafor an infernal veriex accordingly);

o there are no circuits (closed paths of distinct vertices), and every vertex can be reached by a
path from the root.

It is convenient to arrange the vertices of the tree on successive levels, with the root on level 0.
Then any non-leaf is joined to two successors on the next level, and every vertex except the root has
one predecessor. The height of a vertex is the number of the level on which it lies.

In our situation, a vertex is any set of objects which can be distinguished by some sequence of
questions. The root corresponds to the whole set (before any questions are asked), and leaves are
singleton sets, The two successors of a vertex are the sets distinguished by the two possible answers
to the next question. The height of a leaf is the number of questions required to identify that object
uniquely.

StEP 1. Show that there are two leaves of maximal height (%, say) with the same predecessor.
Deduce that, if there is a leaf of height less than 4 — 1, we can find another binary tree with ' leaves
having smaller average height. Hence conclude that, in a tree with minimum average height, every
leaf has height m or m + 1, for some m.
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SteP 2. Since there are no leaves at height less than mn, there are altogether 2™ vertices on level
m.

StEP 3. If there are p internal vertices on level m, show that there are 2p leaves of height m + 1,
and N - 2p = 2™ — p of height m; so N = 2™ + p, where 0 < p < 2™,

STEP 4. Prove that log; (2™ + p) < m+2p/(2™ +p), and deduce that the average height of leaves
is at least log, V.

ReMARK. Sorting a list is equivalent to finding the permutation which takes the given order of the
list into the ‘correct’ order; thus it involves identifying one of n! possibilities. So any sorting method
which compares elements of the list will require, on average, at least log, n! = nlog n/log2 + O(n)
comparisons, as claimed in the text. Figure 4.1 shows the binary tree for QUICKSORT with n = 3.

Fig. 4.1. Binary tree for QUICKSORT
(Left = ves, Right = No)

24. Suppose that the two successors of each non-leaf node in a binary tree are distinguished as ‘left’
and ‘right’. Show that, with this convention, the number of binary trees with n leaves is the Catalan
number C,. [HINT: Removing the root gives two binary trees, a ‘left’ and a ‘right’ tree. Use this to
verify the recurrence relation.]



5. The Principle of Inclusion and
Exclusion

To every thing there is a season, and a time to every purpose under the
heaven:

A time to be born, and a time lo die; a time to plant, and a time to pluck up
that which is planted;

A time to kill, and a time to heal; a time to break down, and a time to build
up;

A time to weep, and a time to laugh; a time to mourn, and a time to dance;
A time to cast away stones, and a time to gather stones together; a time to
embrace, and a time to refrain from embracing;

A time to get, and a time lo lose; a time to keep, and a time to cast away;

A time to rend, and a time to sew; a time to keep silence, and a time to speak;
A time to love, and a time to hate; a time of war, and a time of peace.

Ecclesiastes, Chapter 3

ToPICs: Principle of Inclusion and Exclusion; Stirling numbers;
even and odd permutations

TECHNIQUES: Generating function tricks; matrix inverses
ALGORITHMS:

CRo3s-REFERENCES: set-partitions, cycles of permutations, inverse
of Pascal’s triangle (Chapter 3); derangements, exponential gener-
ating function, [Bernoulli numbers] (Chapter 4); Mobius inversion
(Chapter 12)

Suppose we are given a family of sets, and told the number of elements which
lie simultaneously in every set of each possible subfamily. Then we have enough
information to work out how many elements lie in none of the sets, or indeed, how
many lie in each region of the Venn diagram of the family. The Principle of Inclusion
and Exclusion, known as PIE for short, is a formula for calculating this. It gives
rise to another proof of the theorem about inverting Pascal’s triangle, as well as a
formula for the number of partitions of an n-set into & parts. This last number is a
so-called Stirling number of the second kind. We spend the second half of the chapter
investigating these numbers and their relatives, and their surprising properties.

5.1. PIE

In a class of 100 pupils, a survey establishes that 45 play cricket, 53 play tiddlywinks,
and 55 play Space Invaders. Furthermore, 28 play cricket and tiddlywinks; 32 play
cricket and Space Invaders; 35 play tiddlywinks and Space Invaders; and 20 play
all three sports. How many pupils don’t play any sport?
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This problem can be answered by drawing a Venn diagram to represent the
three sets. Then the numbers in each region can be worked out in turn, until finally
the number in none of the regions is found. For example, 8 pupils play cricket and
tiddlywinks but not Space Invaders.

Tiddlywinks
10 8
8 20\ 15
5 Space
12 Invader:
Cricket
22

Fig. 5.1, A Venn diagram

The Principle of Inclusion and Exclusion gives a formula for this calculation, not
relying on our ability to draw meaningful Venn diagrams with arbitrarily many sets.

First, some notation. Let X be our ‘universe’ (corresponding to the whole class
in the example), and let (A1, Az,...,A,) be a family of subsets of X. (It is not
forbidden that some set occurs more than once in the sequence.) If I is a subset of
the index set {1,...,n}, we set

Ar=[ A,
el

with the convention that Ag = X. (Intersecting more sets gives a smaller result; so
intersecting no sets at all should give the largest possible set.)

(5.1.1) Principle of Inclusion and Exclusion
Let (A1,...,A,) be a family of subsets of X, Then ¢the number of
elements of X which lie in none of the subsets A; is

> (1A

IC{1,...,n}

Proor. The sum on the right is a linear combination of cardinalities of sets Ay with
coefficients +1 or —1. We calculate, for each point of X, its ‘contribution’ to the
sum, that is, the sum of the coefficients of the sets A; which contain it.

Suppose first that z € X lies in none of the sets A;. Then the only term in the
sum to which z contributes is that with I = §; and its contribution is 1.

Otherwise, the set J = {i € {1,...,n} : ¢ € A;} is non-empty; and z € A,
precisely when I C J. Thus, the contribution of z is

NI CAVEY
> g()< 1
={(1-1Y=0
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by the Binomial Theorem, where j = |.J|.

Thus, points lying in no set A; contribute 1 to the sum, while points in some 4;
contribute 0; so the overall sum is the number of points lying in none of the sets, as
claimed.

PIE has a natural interpretation for small n. For n = 2, we take the number
of points in X, and subtract the sum of the numbers in A; and A,; the points in
A; N A; have been subtracted twice, and must be added in again.! For n = 3, after
the pairwise intersections have been added, we find that the points lying in all three
sets have been included once too often, and must be removed again.

We proceed to a couple of applications of PIE.

(5.1.2) Corollary. The number of surjective mappings from an n-set to a k-set is
iven b
&t Y . e
Z(—l)‘(.)(k -
=0 t
In particular, we have

n = ‘Z:(:](-l)* (':) (n— i)y

PROOF. We take X to be the set of all mappings from {1,...,n} to {1,...,k}, so
that |X|] = k*. For ¢ = 1,...,k, we let A; be the set of mappings f for which the
point i does not lie in the range of f. Then each f(z) can be any of the ¥ — 1 points
different from :, and so |A4;] = (k — 1)*. More generally, A; consists of all mappings
whose range contains no point of I, and |4;| = (k — |[I|)™

A mapping is a surjection if and only if it lies in none of the sets A;. So, by PIE,
the number of surjections is equal to

> (=) — Iy

IC{L,.. .k}

Put ¢ = |I|. There are (‘:) sets I of cardinality 7, where ¢ runs from 1 to &; this gives
the result.

If k = n, then the permutations of {1,...,n} are precisely the surjective map-
pings from this set to itself.

For a second application, we give a second proof of the formula for the number
of derangements.

(5.1.3) Theorem. The number of derangements of {1, ...,n} is equal to
n (_1):
nlg =

ProoF. This time, we take X to be the set of permutations, and A; the set of
permutations fixing the point i; so |4;| = (n — 1)}, and more generally, |4;] =

! This gives the familiar identity |A; U As| + |41 N Az| = |A1| + | A2 (see Section 2.7).
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{n — |I|}, since permutations in A; fix every point in I and permute the remaining
points arbitrarily. A permutation is a derangement if and only if it lies in none of
the sets A;; so the number of derangements is

n

S (DWn— o= 31y (n) (=0t

IC{},..n} 1=
on putting ¢+ = |I|. The result follows on noting that (’:) (n— i} =nljil

5.2. A generalisation

In the introductory example, it is clear that there is enough information to find,
not only the number of pupils who play none of the sports, but (for example) the
number who play cricket only. This can be formulated in general, as we will do in
this section. As a consequence, we give a different proof of Exercise 23 of Chapter 3,
about the inverse of the matrix of binomial coefficients.

(5.2.1) Proposition. Let (A,,..., A,) be a family of sets, and I a subset of the index
set {1,...,n}). Then the number of elements which belong to A; for all 7 € I and
for no other values is

(-4,

o1

PrRoOF. We define a new family of sets indexed by N \ I, where N = {1,...,n}, by
setting By = Ajyqy) for & € N \ I. The Proposition asks us to calculate the number
of elements of Ay lying in none of the sets B,. By PIE, this number is

> (=1)*Bgkl,
KCN\I
where By = A;. Now the correspondence K <+ J = I U K between subsets of N \ I
and subsets of N containing I is a bijection; and By = A; if K and J correspond.
So the result is true.

Next, we turn this result into more abstract form, referring to arbitrary set
functions rather than cardinalities of sets.

(5.2.2) Proposition. Let N = {1,...,n}, and let f and g be functions from P(N) to
the rational (or real) numbers, Then the following are equivalent:

(a) g(I) = ZJQI f(-]);

(b) f(I) = ZJQI(—I)lJ\”g(J)'

ProoF. We argue that it suffices to prove the result when the values of f are
non-negative integers. For either of (a) and (b) can be regarded as a system of
2" linear equations in 2" unknowns (the values of f or g); this means that the
corresponding homogeneous system has only the zero solution in integers. But any
rational solution would gjve rise to an integer solution, on multiplying the solution
by a suitable integer (the least common multiple of the denominators). So the linear
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equations have a unique rational solution. This means that the determinant of the
coeflicients is non-zero, and this fact doesn’t change on passing from the rationals
to the reals.

But now, given any non-negative integer values of the function f, we can
construct a family (A,,...,An) of sets with the property that the number of points
lying in A; for ¢ € I but for no other values of A, is exactly f(I). (Imagine a Venn
diagram for n sets; put f(I) elements in the region corresponding to this condition.)
Then g(I) = 3 ;5; f(J) is the total number of elements in Aj; and the result follows
from (5.2.1).

The same result with the set inclusions reversed is also true:

(5.2.3) Proposition. Let N = {1,...,n}, and let f and g be functions for P(N) to
the rational (or real) numbers. Then the following are equivalent:

(a) g(I) = EJgLf(J);
(b) f(I) = Tycr(—1)"g(J).

To see this, we define new set functions f’ and ¢’ by the rules that f'(I}) = f(N\I)
and ¢'(I) = g(N \ I), and apply (5.2.2) to these functions. If I' and J’ denote N \ I
and N \ J respectively, condition (a) becomes

s)=g(I)= 3 f'(I)= %f(ﬁ

Jor
Similarly, condition (b) translates correctly, because |J'\ I'| = [T\ J|.

(8.2.4) Corollary. Let f and g be real-valued functions on {0,...,n}. Then the
following are equivalent:

o 56 =3 ()10

isi

mmpzmw(

igi

;)y(j)-

PROOF. We define set functions F' and G on P(N) by letting F(I) = f(:) and
G(I) = g(i) whenever |I| = i. Now, if |I| = ¢, then I has (%) subsets of size j, and
the result follows immediately from (5.2.3).

This result gives an alternative proof of the result of Chapter 3, Exercise 23,
about inverting Pascal’s Triangle, We repeat the result for reference.

(5.2.5) Theorem. Let n be given, and let A and B be the (n + 1) x (n+ 1) matrices
(with rows and columns indexed from 0 to n} having (i,;) entries

e mecr()

Then B = A1,
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PRrOOF. Let V be the real vector space of functions from {0,...,n} to R; each vector
f is represented by the (n + 1)-tuple (f(0),..., f(n)). Then the matrices A and B
represent linear transformations of V' mapping the function f to the function g and
back again (in the notation of (5.2.4)); so one is the inverse of the other.

5.3. Stirling numbers

In this section, we look at two 2-parameter families of numbers. They are related to
the factorials and Bell numbers in much the same way that the binomial coeflicients
are related to the powers of 2. (In a sense, they complete the pattern ‘subsets,
permutations, partitions’ of Chapter 3.) The reasons for discussing them here are a
bit tenuous: their surprising relationship to each other ((5.3.4) below) parallels that
of the binomial coefficients to their signed versions, proved using PIE in the last
section; and there is a formula for the Stirling numbers of the second kind, which
is an application of PIE, from which some of their most important properties are
derived,

Let n and k be positive integers with k < n.

The Stirling number of the first kind, s(n, k), is defined by the rule that
(=1)"*s(n, k) is the number of permutations of {1,...,n} with & cycles. (Note
the sign. Sometimes a different convention is used, according to which the Stirling
numbers are the absolute values of those defined here.)

The Stirling number of the second kind, S(n,k), is the number of partitions of
{1,...,n} with k (non-empty) parts.

The definitions can be extended to all » and % by defining the Stirling numbers
tobe Qunless 1 <k <n.

(5.3.1) Proposition. () 3 (=1)"*s(n, k) = 3" |s(n, )| = nl;

k=1 k=1

(b) 3 S(n, k) = By, where B, is the n** Bell number.
k=1

This is clear from the definition.

Both arrays satisfy recurrence relations, similar to that for Pascal’s triangle.
Recall that s(n,0) = S(n,0) = 0 for all n.

(5.3.2) Proposition. (a) s(n,n) = S(n,n) =1;
(b) s(n+1,k) = —ns(n, k) + s(n, k — 1);
(c) S(n+1,k) = kS(n,k)+ S(n, &k - 1).

PROOF. (a) is clear; the proofs of (b) and (c) are similar. Consider first partitions of
{1,...,n+ 1} with k parts. Either n+ 1 is a singleton part (in which case {1,...,n}
is partitioned into £ — 1 parts), or n+ 1 is adjoined to one of the & parts into which
{1,...,n} is pastitioned.

The case of permutations requires a little more care. Given a cycle of length 1,
there are ! places at which a new point can be interpolated, giving ! different cycles.
So, given a permutation of {1,...,n} with  cycles, there are n ways of interpolating
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the point n+ 1 so as to have k cycles resulting (since the cycle lengths sum to n}. In
addition, we could add the one-point cycle (n + 1) to a permutation of {1,...,n}
with & — 1 cycles. Thus

|s(n + 1, k)| = n|s(n, k)| + |s(n, & - 1)],

and on putting the signs in correctly we obtain the result.

Using this recurrence, we prove a remarkable ‘generating function’ form. Recall
than (), =t({t—1)...(t —n+1).

n

(5.3.3) Proposition. (a) (), = > s(n, k)t*;
k=1
(6) 1" = 3 S(r, E)(th.
k=1,

PROOYF, The proofs are by induction on n. Since ¢! = (¢); =t and s(1,1) = 5(1,1) =
1, the inductions begin at n = 1.

PROOF OF (a). Assume that (t), = T7_, s(n, k)t*, Then we have

(oer = Onlt =) = (S st ) (=)
k=1
and the coefficient of t* on the right is —ns(n, k) + s(n,k — 1) = s(n + 1, k).
Proor oF {(b). Assume that t" = 3_}_; S(n, k)(¢). Then

™l ="t = 3 (1) (¢ — k) + k) S(n, k).

k=1

Since (t)x(t — k) = ()41, we have

£ = 3 5(n, )t + 3 £S(m, K)(8)e
k=1 k=1
= 37 (Sn, k= 1) + KS(n, ) (e
k=1

= g S(n+1,k)(t)s,

since S(n,0) = S(n,n+1) = 0.

There are direct combinatorial proofs of this result. Such a proof for (b) is
outlined in Exercise 4; but the argument for (a) involves the concept of group action
and the Orbit-Counting Lemma, and is deferred until Part 2.

(5.3.4) Corollary. Let A and B be the n x n matrices whose (i, j) entries are given
by the Stirling numbers s(z,j) and S(3, j) respectively, Then B = A7
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PRroOF. A and B are the transition matrices between two different bases for the
space of polynomials of degree n with constant term zero:

e First basis: ¢,¢2,...,¢";

e Second basis: ()1, (t)2,...,(t)a-

We conclude with a formula for the Stirling numbers of the second kind.

(5.3.5) Proposition. S(n, k)= il E( 1)"'3 (;C)

i=1

ProOF. We saw in the last section that this expression, without the factor ,:,, is
the number of surjections from {1,...,nr} to {1,...,k}. (I have also replaced the
dummy variable ¢ by j = & — i, and dropped the term with ;7 = 0,) So it suffices to
prove that the number of surjections is £!.5(n, k).

Each surjection f defines a partition of {1,...,n} with £ non-empty parts, viz.,
FYL), ..., (k). But every partition arises from exactly ! surjections, since we
may assign the numbers 1,..., % to the parts in any order. The result is proved.

5.4. Project: Stirling numbers and exponentials

In this section, we explore a different way of looking at the inverse relationship
between the two kinds of Stirling numbers: they correspond to substitution of
exponential or logarithmic functions into a power series.

We begin with the Stirling numbers of the second kind. First, we obtain an exponential
generating function for S(n, k) for fixed k, as n varies.

{5.4.1) Proposition. E k) - (exp(tz‘— 1)* .
n>0 :

The proof uses the formula for S(n, k) derived using PIE. We have

S(n, k)t* 1 <A 7k ot
F A - SRy (e

n20 n>0" " j=1

L (B _pyemi 5= G0

_HE(J')( D anzo n
1 Ga fk

== - ) (= 1) exp(it)
k'g(a)

_ (exp() —1)*

- k!

Note that this gives the e.gf. of the Bell numbers as a corollary, since

ZZ s(n k

n>0 a! n>0k=0
Z (exp(t -—1
= k'
k>0

= exp(exp(t) — 1),
on reversing the order of summation.
This leads to the following result:
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(5.4.2) Theorem. Let (f») and (g.) be sequences with e.g.fs F(t) and G(t) respectively. Then the
following assertions are equivalent:
n

(2) go = fo and gn = Y S(n, k)fi forn > 1;
(5) G(2) = F(exp(t) - 1.

Proor. If (2) holds, then
6O = F0)+ XY Stu e

nxlk=1
exp(t) — 1)*
3 Alexelt) =)
k>0
= F(exp(t) - 1).

Using the inverse relation between the Stirling numbers, we immediately deduce the following:

(54.3) Theorem. Let (f») and (gn) be sequences with egfs F({) and G(t) respectively, Then the
following assertions are equivalent:
n
(2) fo=go and fo =D _ s(n,k)gs forn>1;

(b) F(t) = Gllog(1+14)).

We can use this result to derive the e.gf. of the Stirling numbers of the first kind. Let g, = 1
and g, = 0 for n # k. Then, if f and g are related as in the theorem, we have f, = s(n, k), Thus,
we obtain

(5.4.4) Proposition. E s(n,ni::)t" = (105(1;- )" .

n20

5.5. Even and odd permutations

Let © be a permutation of {1,...,n}, and denote by ¢(r) the number of disjoint
cycles of 7. The sign of 7 is defined to be sign(7) = (—1)*~*("); and = is said to be
even or odd according as its sign is +1 or —1. We observe first:

(5.5.1) Proposition. For n > 2, there are equally many even and odd permutations
of an n-set.

ProOF. We use the formula

n

tt—1)...t —n+1)= 3 s(n, k)t
k=1
Putting ¢ = 1 and using the fact that n > 2, we see that 27, s(n, k) = 0. But
s(n, k) is defined to be (—1)** times the number of permutations with k cycles;
s0 Yp_, 8(n, k) is the sum of the signs of the permutations m §,, and so there are
equally many with either sign.

To analyse the sign further, we relate it to the composition of permutations.
Recall the convention that composition works from left to right.
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(5.5.2) Proposition. Let = be a permutation of {1,...,n}, and v a transposition.
Then
e(nt) = c(m) £ 1.

PrROOF. We examine the effect of composition with a transposition (¢ ;). If ¢ and j
Be in different cycles of m, then these cycles are ‘stitched together’ in «7, which has
one fewer cycle than #. (For suppose that the cycles aze (a1 ... @) and (b; ... &),
where ¢ = @y, § = b;. Check that #7 has the cycle (a; ... ax by ... &).) Conversely,
if : and 7 lie in the same cycle of «, then this cycle splits into two in 77,

We see that xr has the opposite sign to m. Hence, if a permutation = is a
product of m transpositions, then its sign is (—1)™; and, in particular, however « is
expressed as a product of transpositions, the parity of the number of transpositions
is always the same.

(5.5.3) Theorem. (a} Any permutation is a product of transpositions.
(b) the map sign is a homomorphism from the symmetric group to the multiplicative
group {£1} of order 2.

PROOF. (a) It is intuitively clear that, however the numbers 1,...,n are ordered, it is
possible to sort them into the usual order by a sequence of swaps. Formally, if two
points ¢ and j lie in the same cycle of 7, then composing = with the transposition
(1 §) increases by 1 the number of cycles; so the result follows by induction on
n —c(m).

(b) We have to show that sign(m;m,) = sign(m )sign(m;). To show this, express
7y as a product of (say n) transpositions; composing m, with each transposition
changes its sign, so the overall effect is to multiply by (—1)™.

It follows that the set of all even permutations in 5, is a normal subgroup.
This subgroup is called the alternating group A,. We now have two proofs that
JAn| = n!/2 if n > 2. First, this is immediate from (5.5.1); second, A, is the kernel
of a homomorphism onto a group of order 2.

5.6. Exercises

1. An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respectively.
Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12% would be
content with any of the three. What do you conclude?

2. Make tables of the two kinds of Stirling numbers for small values of n and k.
3. Prove directly that S(n,1) = 1, 5(n,2) = 2 — 1, and S(n,n — 1) = (}). Find a
formula for S(n,n — 2).

4, Prove that |s(n,1)| = (n — 1)! using the recurrence relation, and show directly
that the number of cyclic permutations of an n-set is (n — 1)!.

5. This exercise outlines a proof that t" = 37, S(n, k)(¢)s.
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(a) Let t be a positive integer, T' = {1,...,t}, and N = {1,...,n}. The number
of functions f : N — T is ¢". Given such a function f, define an equivalence relation
= on N by the rule

i=j ifandonlyif f{(i)= f(J)
The classes of this equivalence relation can be numbered C),. .., Cy (say), ordered
by the smallest points in the classes. (So C) contains 1; C, contains the smallest
number not in C); and so on.) Then the values f(C)),..., f(Ck) are k distinct
elements of T, and so can be chosen in (), ways; the partition can be chosen in
S(n, k) ways. Summing over k proves the identity for the particular value of t.

(b) Prove that if a polynomial equation F(t}) = G(t) is valid for all positive
integer values of the argument ¢, then it is the polynomials ¥ and G are equal.

6. For this exercise, recall the Bernoulli numbers from Exercise 19 of Chapter 4,
especially the fact that their e.g.f. is t/(exp(¢) — 1). Derive the formula

& (=1)*kIS(n, k)
b"_,g (k+1)

for the n'® Bernoulli number.

7. Let (f.) and (g,) be sequences, with e.g.fs F(t) and G(t) respectively. Show the
equivalence of the following assertions:
(@) gn = T2 (}) fi5
(b) G(t) = F(t)exp(t).
8. Show that a permutation which is a cycle of length m can be written as a product
of m — 1 transpositions. Deduce that it is an even permutation if and only if its
length is odd. Hence show that an arbitrary permutation is even if and only if it
has an even number of cycles of even length (with no restriction on cycles of odd
length).
9. This exercise outlines the way in which the sign of permutations is normally treated
by algebraists. Let z;,...,, be indeterminates, and consider the polynomial

F(z,...,20) = [[(z; — @)

i<y

Note that every pair of indeterminates occur together once in a bracket. If 7 is a
permutation, then F(Z,,,...,%.,) is also the product of all possible differences (but
some have had their signs changed). So

F(Zimy oo s Tnm) = sign(m)F(21,..., 2n),

where sign(7) = +1 is the number of pairs {7, j} whose order is reversed by . Prove
that

e sign is a homomorphism;

e if 7 is a transposition, then sign(t) = —1.
10. Recall from Section 3.8 that a preorder is a reflexive and transitive relation which
satisfies trichotomy. Prove that the exponential generating function for the number
of preorders on an n-set is 1/(2 — exp(t)). [HINT: the eg.f. for the number of orders

is 1/(1 — t).]
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11. (a) Show that the smallest number of transpositions of {1,...,n} whose product
is an n-cycleis n — 1.

(b) Prove that any n-cycle can be expressed in n~? different ways as a product
of n—1 transpositions. [HINT: The product of the transpositions (z; y:) is an n-cycle
if and only if the pairs {z;,y;} are the edges of a tree (Section 3.10). Double-count
(tree, cycle) pairs, using Cayley’s Theorem (3.10.1) and the fact that all cycles have
the same number of expressions as producis of transpositions.]
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. nets, grids, and other types of calculus ...
Alan Watts, The Book (1972).

Television? The word is half Latin and half Greek. No good can come of it.
C. P. Scott (attr.)

Torics: Latin squares, SDRs, Hall's Theorem, orthogonal Latin
squares, quasigroups, groups, permanents

TECHNIQUES:
ALGORITHMS:

CRrOSS-REFERENCES: Network flows (Chapter 11), affine planes and
nets (Chapter 8), groups (Chapter 14)

In this chapter, we examine Latin squares, showing that there are many of them
(by means of a digression through Hall's theorem on SDRs), and then consider
orthogonal Latin squares.

6.1. Latin squares

Latin squares arise in Euler’s ‘thirty-six officers’ problein, but with one level of detail
removed. The definition is as follows.

A Latin square of order n is an n X n array or matrix with entries taken from the
set {1,2,...,n}, with the property that each entry occurs exactly once in each row
or column.! So, in a solution to Euler’s problem, if the officers’ ranks are numbered
from 1 to 6, they are arranged in a Latin square; and similarly for the regiments.

REMARK. Sometimes it is convenient to regard the entries as coming not from the
set {1,...,n} but from an arbitrary given set of n elements.

! Why are they called Latin squares? Wait and see!
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The existence of Latin squares is not in doubt. The array

1 2 3 43
51 2 3 4
4 51 2 3
3 451 2
23 4 51

is a Latin square of order 5; the construction obviously generalises. So our goal is
to refine this observation, and come up with some estimate of how many different
Latin squares there are.

We can interpret a Latin square as follows.? Given a class of n boys and n girls,
arrange a sequence of n dances so that each boy and girl dance together exactly
once. {The (i, ) entry of the Latin square gives the number of the dance at which
the ** boy and the j*® girl dance together.)

Latin squares were first used in statistical design. Very roughly, suppose that n
varieties of a crop have to be tested. A field is laid out in a n x n array of plots.
We assume that there may be some unknown but systematic variation in fertility, or
susceptibility to insect attack, moving across or down the field; so we arrange that
each variety is planted in one plot in each row or column, to offset this effect.

6.2. Systems of distinct representatives

We have toc make quite a long detour to reach our goal. We prove a result known as
Hall’s Marriage Theorem; this was originally shown by Philip Hall, and a refinement
{which we need) was shown by Marshall Hall Jr.* but there are now many different
proofs. This result is closely connected with the theory of flows in networks, and
you may meet it in an Operations Research course, Qur objective here is different.
(We return to networks in Chapter 11.)

Let A;,..., Ay be sets. A system of distinct representatives (SDR) for these sets
is an n-tuple (zy,...2,) of elements with the properties
(a) z; € 4; for: =1,...,n (ie, representatives);
(b) z; £ z; for i # j (i.e., distinct).

For any set J C {1,...,n} of indices, we define

A)=UJ 4;.
ies
(Don't confuse this with the similar Ay which occurred in PIE, where we had
intersection in place of union, Here, A(#) = 0.)

If the sets A,,..., A, have a systemn of distinct representatives, then necessarily
|A(J)| = || for any set J C {1,...,n}, since A(J) contains the representative z; of
each set A; for j € J, and these representatives are all distinct. Hall's Theorem says
that this necessary condition is also sufficient:

2 This is in the spirit of Kirkman's Schoolgirls Problem (Chapters 1, 8).
3 No relation.
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(6.2.1) Hall’s Theorem. The family (A, ..., An) of finite sets has a system of distinct
representatives if and only if the following condition holds:

{(6.2.2) Hall’s Condition

(HC) |A(J)| > || for all J C {1,...,n}

PROOF. We use induction on the number n of sets. The induction obviously starts:
(HC) guarantees a representative for a single set! We call a set J of indices critical
if |A(J)| = |J|. The motivation is that, if J is critical, then every element of A(J)
must be used as a representative of one of these sets. We divide the proof into two
cases:

CASE 1. No set J is critical except for J = ) and possibly J = {1,...,n}. Let
z, be any point of A, (note A, # 0 by (HC)) and, for j = 1,...,n — 1, define
Ay = Aj\ {z.}. We claim that the family (Aj,...,A;_,;) satisfies (HC). Take
JC{1,...,n—1}, and suppose that J # §. Then

AT > 1A(T)] -1
> || =1,

the first inequality true since at worst z,, is omitted, the second since J is not critical
by assumption. So |A/(J)| > |J|, proving the claim.
By induction, (A],...,A}_;) has a SDR (z1,...,24-1). Then (z,...,2,) is a
SDR for the original family, since clearly z,, is distinct from all the other z;.
CASE 2. Some set J # @, {1,...,n} is critical. We may suppose that J is minimal
subject to this. Then the family (A; : j € J) has a SDR (z; : 7 € J), by induction.
Fori & J, set A! = A; \ A(J). We claim that the family (A7 : ¢ & J) satisfies (HC).
Take K to be a set of indices disjoint from J. Then
|A*(K)| = [A(J U K)| - |A(J)|
2 |JUK|—|J|
= ||,
the first equality since in fact A*(K) = A(J U K)\ A(J), and the inequality since
|A(J U K)| > |7 U K| by (HC) but |A(J)| = |F| since J is critical.
So there is a SDR (z; : i ¢ J) for the sets {A] : ¢ ¢ J). Combining this with the
SDR for the sets (A; : j € J) gives the required result.
This theorem is sometimes called Hall’s Marriage Theorem, because of the
following interpretation. Given a set of boys and a set of girls, each girl knowing a

specified set of boys, it is possible for all the girls to marry boys that they know if
and only if any set of k girls know altogether at least & boys.



90 6. Latin squares and SDRs

(6.2.3) Hall’s Theorem Variant. Suppose that (A1,...,An) are sets satisfying (HC),
and suppose that |A;| > r fori = 1,...,n. Then the number of different SDRs for
the family is at least

7! ifr <n,
rir—=1)...(r—n+1) fr>n.

Note. Two SDRs may use the same elements and still be different, if they assign
different elements to the sets. For example, (1, 2) and (2, 1) are different SDRs for
the sets ({1,2,3}, {1,2,4}).
PROOF. This is just a variant on the proof of Hall's Theorem. We use induction on
n; if n = 1, then a single set of size at least r has at least » SDRs! So assume true
for families with fewer than n sets.

In Case 2 of the proof above, we have r < |J| < n, and the family (A4, : 7 € J)
has at least r! SDRs, each of which can be extended to the whole family.

In Case 1, there are at least r choices for the representative z,. For each choice,
the family (A] : 1 £ 4 < n—1) consists of n — 1 sets each of size at least r — 1
satisfying (HC), so by induction it has a least (r — 1)t SDRs if r < n, or at least
(r=1)...((r =1)— (n = 1) + 1} if r > n. Multiplying gives the result.

We need the following consequence of Hall's Theorem:

(8.2.4) Theorem. Let (A,,...,A,) be a family of subsets of {1,...,n}, and let v be
a positive integer such that

(8) |A¢l =r fori=1,...,m;

(b) each element of {1,...,n} is contained in exactly r of the sets Ai,..., An.
Then the family (Ai,. .., An) satisfies (HC), and so has an SDR.

PROOF. Let J be a set of indices. We count choices of (j,z), where j € J and z € A;.
There are |J| choices for j, and for each j there are r choices for z € A;, or r|J|
altogether. On the other hand, z € A(J), so there are |A(J)| choices for ; and =
lies in r sets, not all of which might have index in J, so there are at most r choices
for j. Thus

|71 < A,

and since r > 0 we get (HC).

(8.2.5) Corollary, Under the hypotheses of the last theorem, the family of sets has
at least r! SDRs.

This just combines Theorem (6.2.4) with the Hall Variant (6.2.3).

6.3. How many Latin squares?

Now we return to Latin squares. We want to construct Latin squares ‘cow by row’,
and so we want to be sure that if we have fewer than n rows, there are many
ways to add another row. So we define a k x n Latin rectangle, for k < n, to be a
k x n arsay with entries from {1,...,n}, having the property that each entry occurs
exactly once in each row and at mnost once in each column.
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(6.3.1) Proposition. Given a k x n Latin rectangle with k < n, there are at least
(n — k) ways to add a row to form a (k + 1) X n rectangle.

PROOF. The elements of the new row must all be distmct, and each must not be
among those already used in its column. So we let A; be the set of entries not
occurring in the i*h column of the rectangle, and we have:

(z1,.-.,%q) is a possible (k + 1)** row for the rectangle if and only
if it is a SDR for the family (A,,...,A,).

Now clearly each set A; has size n — k, since k£ of the n entries have already
been used. Consider a particular entry, say z. This occurs % times in the rectangle
{one in each of the rows), in k distinct columns; so there are n — k columnns where it
does not occur. So the hypotheses of Corollary (6.2.5) are satisfied, with r =n — k.

(6.3.2) Theorem. The number of Latin squares of order n is at least

ProOF. Add rows one at a time: there are at least n! choices for the first row, at
least (n — 1)! for the second, and so on.

This problem incorporates two counting problems we met earlier. The first row
of a Latin square of order n is simply a permutation of {1,...,n}, and there are
exactly n! choices for it. Given the first row, we may (by re-labelling) assume that
itis (12 ... n); then a legitimate second row is precisely a permutation satisfying
ir # ¢ for ¢ = 1,,..,n, that is, a derangement. We know that the number of
derangements is the nearest integer to n!/e for n > 4, this is better than the lower
bound of (n — 1)! which we used, so the estimate for the number of Latin squares
can be improved a bit. However, the number of choices of the third row depends on
the way the first two rows were chosen, so we cannot get the exact answer simply
by multiplying n numbers together.

ExaMPLE. There are 2 Latin squares of order 2, and 3!-2! = 12 of order 3. However,
for order 4, there are 24 - 3 choices of the first two rows which can be extended in
4 different ways, and 24 - 6 which have just 2 extensions; so the number of Latin
squares is

24.3-4424-6-2 =576.
(See Exercise 1.)

REMARK. Let L(n) be the number of Latin squazes of order n. We have shown that
L(n) Z nl(n —1)!... 1! This bound was improved, about fifteen years ago, to

L(n) > () /0.
We explore this in Section 6.5. On the other hand, we have

L(n) < n"z,
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since there are n™ ways of filling in the n® positions of the array with entries from
{1,...,n}. We can improve this to

L(n) < (nl)"

by observing that each entire row is chosen froin the set of permutations of {1,...,n},
and there are n! permutations. A further improvement is made by noticing that all
the rows after the first are derangements of the first row, so roughly L(n) < ni*fe""L.

To compare these bounds, it is helpful to estimate log L(n) rather than L(n)
itself. The simplest possible upper bound, namely L(n) < n™, gives

log L(n) < n’logn.

On the other hand, we have

n

log L(n) > 3 log k!

k=1

> > (klogk —k)
k=1

P %nz logn + O(n?),

where we used the simple bound k! > (k/e)* from Chapter 2, Exercise 3. So roughly
the upper and lower bounds for log L(n) differ by a factor of 2. The improved lower
bound mentioned above removes this factor, giving

log L(n) = n’log n + O(n?).

6.4. Quasigroups

There is another way of looking at Latin squares. Let G = {g1,...,¢.}. If A = (ay)
is any n X n matrix with entries from the set {1,...,n}, we can define a binary
operation, or ‘multiplication’, on G by the rule

giogi=gi ifandonlyif aj;==k.

Conversely, any binary operation on G gives rise to such a matrix, once we have
numbered the elements of G as g1,...,gn%

A binary structure like G above is called a quastgroup if the following axioms
hold:

(left division) for all g;, gx € G, there is a unique g; € G with g,9; = gs;

(right division) for all g;, g € G, there is a unique g; € G with g:g; = gx.
Now the following result follows from the definitions:

(6.4.1) Proposition. A binary structure G is a quasigroup if and only if the corre-
sponding matrix A is a Latin square.

4 The matrix is the multiplication table of the binary structure.
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PrROOF. The left divisibility condition just says that each column of the matrix
contains each entry exactly once; and similarly for right division.

There are various advantages to turning Latin squares into algebraic objects
like quasigroups. For one thing, we can obtain a kind of measure of the strength of
various algebraic axioms by seeing how many Latin squares correspond to structures
satisfying these axioms. For example, there are very many quasigroups; but there
are many fewer groups (see next section), so the group axioms are very powerful!
Another is that algebraic constructions can be transferred to Latin squares. One
example of this is the direct product.

Let G and H be binary structures (the binary operation in each of them will be
denoted by o). The direct product G x H is defined, just as for groups, as follows: it
is the set of ordered pairs (g, k), for g € G, h € H, with operation

(gls hl) o (gzs hz) = (91 0 g2, hio hz)-

Now it is easily established that the direct product of quasigroups is a quasigroup.
(For left divisibility, suppose that in the above equation ¢, ha, g3, h3 are given. Then
g1 is determined by left divisibility in G, and similarly A, in H.)

The direct product can be translated into a direct product operation on Latin
squares, which we write with the same notation, i.e. the ditect product of A and B
is A x B. This is considerably more complicated to define directly, although the idea
is simple. For example, we have:

123456
21436365
1 2 y y 28 B 3456 1 2
2 1 231 = £ 365 21
56 1 2 3 4
6 52 1 4 3

6.5. Project: Quasigroups and groups

The best-known examples of quasigroups are groups: these are quasigroups with
an identity element whose composition is associative. In this section, we describe
a refinement of the estimate for the number of quasigroups, using the proof of the
van der Waerden permanent conjecture; and we show that two of the most basic
theorems about groups (Lagrange’s Theorem and Cayley’s Theorem)® can be used
to put an upper bound on the number of groups, We see that groups are very rare
among quasigroups; in other words, the associative law is a very powerful condition.

QUASIGROUPS: PERMANENTS AND SDRs.

Our lower bound for the number of quasigroups comes from the zan der Waerden permanent
conjecture, whose truth was shown by Egorychev and Falikman (independently). First we need a
couple of definitions, whose relevance will not be immediately appatent!

5 These theorems and their historical context are described in Chapter 14.
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A matrix is said to be sfochastic if its entries are non-negative real numbers and its row sums are
equal to 1. The term suggests a connection with probability. A system is initially in one of m states
S1,-..,8m, and can make a transition to one of n states T},...,T,. If the probability of jumping
from S; to T is pij, then the m x n matrix with (4, j) entry p;; is stochastic. A stochastic matrix is
called doubly stochastic if, in addition, its column sums are all equal to 1. (This implies in particular
that the matrix is square.) This condition doesn't have an obvious probabilistic interpretation.

Let A be an n x n matrix with (¢, j) entry a;;. Then there is a well-known formula for the
determimant of A: “

det(A) = E Hsign(ﬂ) i ix.
AE S, i=1
(Recall our convention that permutations act on the right, and the definition of the sign of a
permutation in Chapter 5.)
If we leave out the sign factor in this expression, we obtain the permanent of A:

per(A) = Z Ha,- i

RES, i=1

Though the formula is simpler, the permanent is much harder to manipulate or evaluate than the
determinant! It is clear that the matrix with every entry 1/n has permanent n!/n" (the sum has n!
terms, each the product of n factors 1/n.)

The van der Waerden permanent conjecture asserted:

The permanent of an r X n doubly stochastic matrix A is at least n!/n", with
equality if and only if every entry of A is equal to 1/n.

This conjecture was proved in 1979-1980, independently, by Egorychev and Falikman. Earlier, Bang
and Friedland had shown the slightly weaker result that the permanent of a doubly stochastic matrix
is at least e~". (Note that e™" < nl/n", by Exercise 3 of Chapter 2.) If you want to see how it was
done, Marshall Hall's Combinatorial Theory (1989) contains an exposition.

What ia the relevance to this chapter? Given a family (A;,..., An) of n subsets of {1,...,n},
we define the incidence mairiz A of the family by the rule that the (i, j) entry of A is given by

A= [} ifi€ 4,
=10 ifig A

Then we have:

(6.5.1) Proposition. With the above notation, per(A) is equal to the number of SDRs of the family
of sets.

PROOF. In the evaluation of the permanent, the product corresponding to a permutation # is sera
unless ix € A; for all 4, when it is one, In this case, (Im,...,n7) is a SDR for (A;,..., An).
Conversely, any SDR arises from such a permutation. Hence the permanent is equal to the number
of SDRs.

(8.5.2) Proposition. Let (A;,..., As) be a family of subsels of {1,..., n}. Suppose that
® cach set A; has cardinality r;
o each point i lies in r of the sets A, ..., An.

Then the number of SDRs of the family is at least n!(r/n)".

RemMaRK. You should stop and compare this with the lower bound r! proved in Section 6.3.

ProoF. The incidence matrix A has all row and column sums r. So (1/r)A is doubly stochastic,
whence per((1/r)A) > n!/n", from which the result follows since per((1/r)A) = (1/r)"per(4).
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(8.5.8) Proposition. The number L(r) of n x n Latin squares satisfies

I2n
L{n) > n—,

= pn

PRroor. Just as in Section 8.3, we have

L(n) > H ri(r/n)".

r=t

What about the number of quasigroups? Given a quasigroup, if we number its elements 1,...,n
in any order, its multiplication table is a Latin square. So each quasigroup gives at most n! Latin
squares; this is insignificant compared with L(r), and the estimate n?logn + O(n?) holds for the
logarithm of the number of quasigroups too.

GROUPS: LAGRANGE AND CAYLEY.

We will now show that the number of groups is very small compared with the number of quasigroups.
If G(n) is the number of groups of order n, we prove that G(n) < n™'%62". In other words,
log G(n) = O(n(log n)?), much smaller than log L(n).

The proof, not surprisingly, requires some algebra. In fact, little is needed; just two of the
basic theorems proved in the nineteenth century. (Using more powerful tools, better estimates can be
derived.) The results we need are:

o Lagrange’s Theorem: The order of a subgroup of a group & divides the order of G.
o Cayley’s Theorem: Any group of order n is isomorphic to a subgroup of the symmetric group

Sa.

We also need the concept of the subgroup H generated by a set {g,..., g} of elements of G. This
is the smallest subgroup of G containing gi,. .., g:, and consists of all elements of G which can be
written as products of these elements and their inverses. (See Chapter 14 for further discussion.)

(6.54) Lemma. A group G of order n can be generated by at most log, n elements.

Proor. We prove by induction that if gy, gs,... are chosen so that, for all &, gi4+; does not lie in
the subgroup G generated by ¢1,...,gx (and g1 # 1), then the order of Gy is at least 2*. For
the inductive step, |Gry1| > |G| (since gx € Gry1 \ Gi), and |Gy | divides |Giry1| by Lagrange's
Theorem; so we have |G 41| > 2|Gi|, and the induction goes through.

By Cayley’s Theorem, the number G(n) of groups of order n (up to isomorphism) is no greater
than the number of subgroups of order n of S,. By the Lemma, this number does not exceed the
number of choices of log, n elements of Sy} s0

G’('n) < (nl)log, n < nnlog,n'

6.6. Orthogonal Latin squares

Two Latin squares A = (a;;) and B = (b;) are said to be orthogonal if, for any
pair (k,!) of elements from {1,...,n}, there are unique values of ¢ and j such that
a; =k, b;; = I; in other words, there is a unique position where A has entry %
and B has entry I A set {A;,...,A,} of Latin squares is called a set of mutually
orthogonal Latin squares, or set of MOLS for short, if any two squares in the set are
orthogonal. (Sometimes the termns pairwise orthogonal and POLS are used instead.)

Sometimes a pair of orthogonal Latin squares is called a Graeco-Latin square.
The reason comes from a different representation sometimes used. Instead of
numbers, the entries can be taken from any set of size n; the first n letters of the
alphabet are commonly used. Now if we use letters of different alphabets, say the
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Latin alphabet for A and the Greek for B, are used, then the two squares can be
combined into one unambiguously; and A and B are orthogonal if and only if each
combination of a Latin and a Greek letter occurs exactly once in the square® For
example, here are two orthogonal Latin squares of order 3 and the corresponding
Graeco-Latin square.

1 2 3 1 2 3 ax b8 cv
2 31 , 31 2 — oy ca aff
31 2 2 31 cf ay ba

A question which has had much atfention is:
What is the maximum size of a set of MOLS of order n?

This question is closely connected with the existence question for projective and
affine planes, as we will see in Chapter 8.

Let f(n) denote the maximum number of MOLS of order n. We observe first
that f(n) < n—1 for all n. For let A,,..., A, bemutually orthogonal Latin squares;
without loss of generality, we may assumne that each square has (1,1) entry 1. Now
each square has n — 1 further entries 1, none occurring in the first row or column;
and, by orthogonality, these 1s cannot occur in the same position in two different
squares. Since there are only (n — 1)? available positions, there cannot be more than
n — 1 squares,

(8.8.1) Proposition. If n is a prime power, then f(n) =n — L

This result uses Galois’ Theorem on the existence of finite fields (see Section
4.7). We use the fact that there is a field " of any given prime power order n.
Now we take the elements of F to index the rows and columns of all the squares.
For each non-zero element m & F, we define a matrix A, whose (¢,7) entry is
(A,m);)j =1im +j.

Now each A,, is a Latin square. For, if ¢im + j; = im + J3, then 1 = j2; and, if
tym + J = iym + j, then 7ym = iym, and s0 4; = i, (since m is non-zero and so has
an inverse).

Moreover, these squares are orthogonal. For, given elements a,b € F, and
my # mg, the equations

imy + 3 =a,
img+j="b
have a unique solution (4, 7).

This doesn't appear to help evaluate f(n) in general. But it gives us a lower
bound. To show this, we use the direct product construction for Latin squares, and
make the following observation:

S The Latin letters alone form a Latin square. (Hence the name.)
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(8.6.2) Proposition. If A, and A, are orthogonal Latin squares of order n, and B,
and B, orthogonal Latin squares of order m, then the Latin squares A; x B, and
A; x By of order nm are orthogonal.

PROOF. As we saw in the last section, direct products are easier to define for
quasigroups. So we re-formulate orthogonality for quasigroups. For convenience, we
take the same set G = {g1,...,9,} of symbols for both quasigroups, but distinguish
the binary operations. Let (G, o) and (G, ) be quasigroups. These quasigroups are
said to be orthogonal if the following holds:
(orthogonality) for all g¢, g; € G, there exist unique elements ¢;, g; € G such that
9:09g; = gi and g; x g; = g;.
This is equivalent to orthogonality of the corresponding squares. Now it is a simple
exercise to prove that, if (G,0) and (G, ) are orthogonal quasigroups, and (H,¢)
and (H,*) are another pair of orthogonal quasigroups (possibly of different order},
then (G x H,o) and (G x H,*) are also orthogonal.

(6.6.3) Proposition. Let n = py’...p?, where p1,...,p: are distinct primes and
ai,...,a, >0, and let ¢ be the minimum of p3',...,p% . Then f(n) > q¢— 1.

Proor. Let ¢; = pf". Then we can find ¢; — 1 MOLS of order ¢, g2 — 1 of order
¢z, and so on. Since a subset of a set of MOLS is again a set of MOLS, if ¢ is the
minimum of ¢1,¢;3,..., we can find ¢ — | MOLS of each of these orders; taking their
products gives a set of ¢ — 1 MOLS of order n.

REMARK. More generally, we have
flnina) 2 min{f(ni1), f(n2)}.

(8.6.4) Corollary. If n £ 2 (mod 4), then there exist two orthogonal Latin squares
of order n.

Proor. If ¢ = 2 in the Proposition, then n is divisible by 2 but not by 4, so that
n=2 (mod 4).

Euler conjectured that the converse is also true; in other words, that if n = 2
{mod 4}, then orthogonal Latin squares do not exist. For n = 6, this is his ‘thirty-six
officers’ problem posed in the first chapter. It turned out that Euler was right about
the 36 officers (no solution exists), but wrong for all larger values of n. More
generally, it is known that f(n) — 0o as n — co. (This means that, for any given r,
there exist » MOLS of order n for all but finitely many values of r. For example,
two MOLS of order n exist for all n except n = 1,2 and 6.)

6.7. Exercises

1. (a) Show that the number of n x n Latn squares is 1, 2, 12, 576 for n =1,2,3,4
respectively.

(b) Prove that, up to permutations of the rows, columns, and symbols in a Latin
square, there are unique squares of orders 1, 2, 3, and two different squares of

order 4.
(c) Show that one of the two types of Latin square of order 4 has an orthogonal

‘mate’ and the other does not.
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2. Show that, for » < 4, any Latin square of order n can be obtained from the
multiplication table of a group by permuting rows, columns, and symbels; but this
is not true for n = 5.

3. A Latin square A = (a;;) of order n is said to be row-complete if every ordered
pair (z,y) of distinct symbels occurs exactly once in consecutive positions in the
same row (ie. as (ajj, @ ;41 for some 7,7). (Note that there are n(n — 1) ordered
pairs of distinct symbols, and each of the n rows contains n — 1 consecutive paits
of symbols.)

(a) Prove that there is no row-complete Latin squate of order 3 or 5, and
construct one of order 4.

(b) Define analogously a eofumn-complete Latin square.

(c) Suppose that the elements of Z/(n) are written in a sequence (z;,z3,...,%n)
with the property that every non-zero element of Z/(n) can be written uniquely in
the form z;41 — z; for some: =1,...,n — 1. Let A be the Latin square (with rows,
columns and entries indexed by 0,...,n — 1 instead of 1,...,n) whose (3, }) entry is
a;j = z; +z;. (This is the addition table of Z/(n), written in a strange order.) Prove
that A is both row-complete and column-complete.

(d) If n is even, show that the sequence

(0,1,n—1,2,n—2,...,4n —1,in 1+ 1,in)
has the property described in (c}.”

REMARK. Row- and column-complete Latin squares are useful for experimental
design where adjacent plots may interact.

4. (a) Find a family of three subsets of a 3-set having exactly three SDRs.
{b) How many SDRs does the family

{{1,2,3},{1,4,5},{1,6,7}, {2,4,6},{2,5,7}, {3,4,7},{3,5,6}}
have?®

5. Let (A1,...,A;) be a family of subsets of {1,...,n}. Suppose that the incidence
matrix of the family is invertible. Prove that the family possesses a SDR.

6. Use the truth of the van der Waerden permanent conjecture to prove that the
number d(n) of derangements of {1,...,n} satisfies

1 n
>nl{l—=) .
d) zn (1 n)
How does this estimate compare with the truth?
7. Prove the following generalisation of Hall’s Theorem:

If a family (A,,...,A,) of subsets of X satisfies |A(J)| > |J|—r
forall J C {1,...,n}, then there is a subfamily of size n — r which
has a SDR.

[HINT: add r ‘dummy’ elements which belong to all the sets.]

7 I am grateful to Rosemary Bailey for this exercise.
8 This family is the set of triples of the Steiner triple system of order 7; see Chapter 8.
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Commonest family name. The Chinese name Zhang is borne, according to
estimates, by between 9.7 and 12.1 per cent of the Chinese population, so
indicating even on the lower estimate that there are at least some 104 million

Zhangs.
Peter Matthews (ed.), The Guinness Book of Records (1993).

Torics: Intersecting families; Sperner families; de Bruijn-Erdds
Theorem; [regular families)

TECHNIQUES: LYM method
ALGORITHMS:

Cross-REFERENCES: Hall’s Theorem (Chapter 6); Steiner triple sys-
tems (Chapter 8), projective planes (Chapter 9)

Extremal set theory considers families of subsets of a set satisfying some restriction
(perhaps in terms of inclusion or intersection of its members). It then asks the
questions:

o What is the maximal size of such a family?

¢ Can one describe all families which meet this bound?
Like many topics, it is best introduced by example. In this chapter, welll consider
three example results in extremal set theory. In the first, the proof of the bound is
trivial, but there are far too many families meeting it to allow any decent description.
The second is just the opposite: the proof of the bound is quite ingenious, but not
much more work is needed to give a precise description of families meeting it. The
last case is somewhere between; it is included because it ties in with another of our
topics, finite geometry.

Let X = {1,2,...,n}. The set of all subsets of X is called the power set of X,
and denoted P(X), or sometimes 2X. (The latter notation relates to the fact that
[P(X)| = 2|, with a natural bijection between these sets, as we saw in Chapters 2
and 3.) By a family of sets is meant a subset F of P(X). The conditions we will
impose on a family all relate to pairs of sets in the family; they are as follows:

(a) any two sets have non-empty intersection;
(b) no set contains another;
(c) two sets have exactly one common point.
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7.1. Intersecting families
A family F of subsets of X is tnfersecting if A, B€ F= ANB #0.

(7.1.1) Proposition. An intersecting family of subsets of {1,...,n} satisfies [F| <
27-1, Moreover, there are intersecting families of size 2°~1.

ProoF. Let X = {l,...,n}. The 2" subsets of X can be divided into 2*~!
complementary pairs { A, X \ A}; clearly an intersecting family contains at most one
set from each pair. This proves the bound. But the family of all sets containing a
particular element (say 1) of X has cardinality 2"~ and is intersecting.

There are far too many intersecting families of size 2°~! for there to be any
hope of classifying them. Here are a couple of examples in addition to the ones in
the proof of the Proposition.

ExaMPLE L. If n is odd, the set of all subsets A containing more than half the points
of X is mtersecting, and has size 2°~! (since, as required by the proof; it does contain
one of each pair of complementary sets). If n is even, we modify the construction as
follows: take all sets with strictly more than n/2 points; then divide the sets of size
n/2 into complementary pairs, and take one of each pair in any manner whatever.
This gives lots of different examples. (Note that if |4 > n/2 and |B| > n/2, then

|AnB|=|A|+|B|- |AUB| >n/24+n/2-n=0,

so the families constructed really are intersecting.)

EXAMPLE 2. Let X = {1,...,7}, and let B consist of the seven subsets
{{1,2,3}, {1,4,5} {1,6,7} {2,4,6} {2,5,7} {3,4,7} {3,5,6}}.

(Then (X,B) is a Steiner triple system of order 7 — see the next chapter for
definitions.) Let F be the set of all those subsets of X which contain a member of
B. Then F is intersecting, and |F| = 64 = 27! (see Exercise 1).

If we further restrict the sets to all have the same size k£, what can be said? If
n < 2k, then any family of k-subsets of an n-set is intersecting, and there is no
restriction; so we should assume that n > 2k to get meaningful results. If n = 2k,
then an intersecting family contains at most one of each pair of disjoint sets, and

so contains at most %(’,:) = (';::) sets. In general, there 1s always an intersecting

family of size (’;::), consisting of all those k-sets containing some fixed point of X;
and, for large enough n, this is best possible. More generally, there is a i-intersectin
family F of k-sets (i.e., satisfying [F} N Fy| = ¢ for all F}, F; € F) of size (::ﬁ
(consisting of all k-sets containing a fixed t-set), and this is also best possible for
large enough n:?

1 Unusually for the twentieth century, this theorem was proved in 1947, but was not published until
1963.
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(7.1.2) Erdés—Ko-Rado Theorem. Given k and t, there exist n,, n; such that

(a) if n > ny, a t-intersecting family of k-subsets of an n-set has size at most (:::),
(b} if n > n,, a t-intersecting family of k-subsets of an n-set which has size ’,:::)
consists of all k-subsets containing some t-subset of the n-set.

A special case of this theorem is given as Exercises 2 and 3.

1.2. Sperner families

The family F of sets is called a Sperner family if no member of F properly contains
any other, that is,

ABEF=>A¢ Band B¢ A

For any fixed k, the set of all subsets of X of size k£ forms a Sperner family
containing (7] sets. Since the binomial coefficients increase to the midpoint and
then decrease, the largest Sperner families of this type occur when £ = n/2 (if n is
even) and when k= (n —1)/2 or (n +1)/2 (if n is odd). It turns out that these are
the largest Sperner families without restriction.

(7.2.1) Sperner’s Theorem, Let F be a Sperner family of subsets of the n-element
set X. Then |F| < (ln1;2l)' Moreover, if equality holds, then F consists either of all
subsets of X of size |n/2|, or all subsets of size [n/2] (these are the same if n is
even}.

ProoF. The ingenious proof uses the concept of a chain of subsets, a sequence
P=AoCAIC...CA=X.

How many chains are there? If 7 is any permutation, then we get a chain by setting
A;={lm,...,ir} for i = 0,...,n. Conversely, in a chain, the points are added one
at a time, so we can uniquely recover the permutation. Thus there are 25 many
chains as permutations, viz. nl.

Next we ask: How many chains contain a fixed set A? If |A| = k, then it must
occur that A = A;, and the chain is obtained by welding together a chain for 4 and
a chain for X \ A. So A lies in kl{n — k)! chains, a proportion 1/(:) of the total

We could al%o see this by observing that each of the (:) sets of size k lies in equally
many chains, by symmetry.

Now let F be a Sperner family. By assumption, any chain contains at most one
member of F. So the number of chains which do contain a member of F is

Y [4ll(n — |A}) = n! (2 (—'1‘7) ‘

AeF AeF 1Al

Since there are only n! chains altogether, we see that
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Now, as we already observed, the middle binomial coefficients are the largest;
so their reciprocals are the smallest, and if we set m = [n/2], we have

1
A%-@SI’

whence |[F| < (;), the required bound.

When is this bound met? Examining the argument, we see that attaining the
bound forces that (I;I) = (;:) for every A € F, in other words, every set in F has
size either m = [n/2|, or n —m = [n/2]. If n is even, then these two numbers are
equal, and F must consist of all the sets of size m. But if m is odd, there is further
work required. In that case n = 2m + 1 and all the sets have size m or m + 1, but
we have to show that either they all have size m, or they all have size m + 1.

Looking at the proof again we see that, if the bound is met, then every chain
contains one member of F; so, if A is an m-set and B a (m + 1)-set with A C B,
then A € F if and only if B ¢ F. Now suppose that A is a m-set in F, and A’ any
other m-set. It is possible to find a sequence of sets beginning at 4 and ending at
A’y every term being of size m or m + 1, and each two consecutive terms related by
inclusion:

ACByDAC...

We see, following this sequence, that all of its m-sets belong to F, while none of
its (m + 1)-sets do. So A’ € F. Since A’ was arbitrary, F consists of all m-sets.
Similarly, if there is a (m + 1)-set in F, then it consists of all (m + 1)-sets.

The technique used here is called the LYM technigue. Roughly speaking, it
depends on the fact that a Sperner family and a chain have at most one set in
common, and the number of chains containing a set takes only a few values. A
simpler example along the same lines is given in Exercise 2.

1.3. The de Bruijn-Erdos Theorem

The third result is a specialisation of the first. Instead of assuming that two sets
meet in at least one point, we assume that they meet in exactly one.

The proof of this theorem is a bit harder than what we've had before; if you have
trouble following it, concentrate on understanding the result. The proof uses Hall's
‘Marriage Theorem’ (6.2.1) on the existence of systems of distinct representatives.

(7.3.1) De Bruijn-Erdds Theorem, Let F be a family of subsets of the n-set X.

Suppose that any two sets of 7 have exactly one point in common. Then |F| < n.

If equality holds, then one of the following situations occurs:

(a} up to re-numbering the points and sets, we have F = {A,,...,A.}, where
A;={i,n} fori=1,...,n {so A, = {n});

(b) up to re-numbering the points and sets, we have F = {A,,...,A,}, where
A, =1{1,2,...,n—1},and A, = {i,n} for1 <i<n—1;

{c) for some positive integer g, we have n = g% + g + 1, each set in F has size ¢ + 1,

and each point lies in q + 1 members of F.
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ReMARX. Case (b) is illusirated in Fig. 7.1. The last two cases of equality overlap:
when n = 3 (and g = 1), both describe a ‘triangle’. For g > 1, the structure described
in (c} is called a projective plane of order g. These planes will be considered further
in Section 9.5. The first example (with ¢ = 2) is the Steiner triple system of order 7,
to be discussed in the next chapter.

L3

1 2 n~-1

Fig. 7.1. An extremal family

Proor. First, we can suppose that every set in F has at least two points. For if the
empty set is in F, it must be the only set. And if F contains a singleton, say {n},
then all the other sets of 7 contain n, and any two have just n in common; so there
are at most n — 1 more sets, the extreme case being as described in (a). Also, we
may assume that X ¢ F; for if it were, there could be at most one further set in F,
a singleton.

The proof requires a trick. If |F| > n, then there is a subfamily of F with n
members. We analyse this family, and show that no further set can be added without
violating the hypothesis. So, for most of the proof, we can assume what we have to
prove, viz., |[F| = n.

Let F = {A;,+..,4n}. Moreover, fori =1,...,n, let

B,‘ =X \ A{;

ki = |Ail;

r; the number of sets in F which contain z.

{ri is called the replication number of the point :.)
We claim that, if ¢ & A;, then r; > k;. This is because each member of F containing
t meets A; in a unique point, and these points are all distinct.

Next we claim that the sets By, ..., B, satisfy Hall's condition. Let J be a subset
of {1,...,n}; then B(J) is the set of points not contained in A; for any j € J. If
J = {3}, then B(J) = B; = X \ A; # 0, by assumption; so (HC) holds in this case.
If2<|J| <n-—1, then |B(J)| = n—1 (for, if i,j € J, then every point except
perhaps A; N A; lies in B(J)). If |J| = n, the conclusion is clear.

Thus there is a SDR for the family (B; : y = 1,...,n). If we choose the
numbering so that ¢ is a representative of B;, we have the conclusion that ¢ ¢ A; for
t=1,...,n. From our earlier observation, this means that

ki=r;

forz=1,...,n.
Now count pairs (¢, 4;) with i € A;. Each point 7 lies in r; sets A;, and each set
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A, contains k; points ;. So we have
L L3
Zr; = E k;.
=1 i=1

From these two equations, we conclude that r; = k; fore =1,... n.

Now, considering the proof that k; > r;, we see that equality implies that every
point on A; lies on a member of F containing the point :.

But we can say more.

Look again at the application of Hall’s Theorem, and ask: could a set J be
critical? The proof shows that this can only happen if [J| =1 or n — 1. If a set
J = {j} is critical, this means that |B;| = 1, or |[4;] = n — 1. If a set of size
n — 1 is critical, this means that n — 1 of the sets A; pass through a fixed point.
In either of these two situations, we must have conclusion (b) of the theorem. So
we may suppose that they don't occur, so that no set J is critical except J = @ or
J = {1,...,n}. Now the proof of Hall’s Theorem shows that we can take any set
B; and choose any of its points as its representative.

Now let z,y be two points of X. We aim to show that some member of F
contains z and y. Suppose not. Choose the numbering of F so that A; contains y
{(but not z). Thus B, contains z, and we may use z as its representative. Now, as
just shown, this means that every point of A, (in particular, y) lies on a set of F
containing . In other words:

any two points lie on a unique member of F.

Of course, this holds also in case (b} of the theorem.

It now follows that there cannot be a set 7 with more than n members. For
any n of them would satisfy the above. If A were an additional set, not a singleton,
and z,y € A, then one of the first n sets (say A;) also contains z and y, and then
A; and A have at least two common points.

We also have the following condition (*):

If the point i does not lie on the set A;, then r; = k;; in other
words, if r; # k;, theni € A;.

Suppose that there are points z,y with r, # r,. Then each set of F contains at
least one of z and y. If z is any further poimt, then we may suppose that r, # r,
(interchanging z and y if neccessary), and so any set contains at least one of z and
z. But only one set, say A, contains both y and z. So every set except A contains .
This forces the structure defined under {b).

Thus, we may suppse that r, is constant, say . = ¢+ 1. Now JA| = ¢+ 1 for all
A € F, since for every set A there is a point & ¢ A, and () applies. Take a point 2.
Then g + 1 sets of F contain x, and each contains g further points of X; and there
are no overlaps among these pomts. Thus n = 1 4 (¢ +1)g = ¢° + ¢ + 1, as claimed.

7.4. Project: Regular families

A family F of subsets of X is regular if every point lies in a constant number r of
elements of F. It is interesting to ask questions of extremal set theory restricted to
regular families. This section considers regular intersecting families. First, however,
we show that regular families do exist!
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(74.1) Theorem. Let b, k,n,r be positive integers satisfying

be=nr, k<n, b< (:)

Then there is a regular family F of k-subsets of an n-set with |F| =b.

Proor.? There is a simple way to make a family ‘more regular’. Let r, be the replication number of
z, the number of sets of the family which contain z. If ry > ry, then there must exist a (k — 1)-set
U, containing neither z nor g, such that {z}UU € F, {y} UU ¢ F. Now form a new family F'
by removing {2} UU from F and including {y} U U in its place. In the new family, r} = r; —1,
ry, = ry + 1, and all other replication numbers are unaltered. Starting with any family of k-sets, we
reach by this process a family in which all the replication numbers differ by at most 1 (an almost
reguler family), containing the same number of sets as the original family,

But, by double counting, the average replication number is bk/n = r; and an almost regular
family whose average replication number is an integer must be regular.

This idea can be modified to prove a theorem of Brace and Daykin:

(7.4.2) Theorem. If k is not a power of 2, and n = 2k, there exisis a regular intersecting family of
sise 3 (7) = (3Z1) of k-subsets of an n-set.

We begin with two remarks:

REMARK 1. As we already saw in Section 7.1, an intersecting family of k-subsets of a 2k-set has size
at most (“ 1) with equality if and only if it contains one of each complementary pair of k-sets.

ReMARK 2. The repllcatlon number of a regular family as in the theorem is r = —(” ). This is an
integer if and only if k is not a power of 2 (Exercise 4). So the condition on k is necessary.

We need a slightly more complicated version of the replacement procedure, in order to preserve
the intersecting property. Let z and y be points with r; > r, + 2. Then there are two disjoint
(k — 1)-subsets I/ and V of X \ {z,y} such that {z} U U, {y} UU € F. The complements of these
sets ate {y} UV, {z} UV respectively, and are not in F. If we replace both of these sets by their
complements, we obtain an intersecting family ' in which v, = r; — 2, r = 1y + 2, and the
other replication numbers are unaltered. Applying a sequence of such operatlons to an arbitrary
intersecting family, we obtain a family in which the new replication differ by at most 2, and are
congruent mod 2 to their initial valnes.

Let 7 be any intersecting family of size (2" 1) in which all the replication numbers are
congruent to 1(2" 1) mod 2. [Let Fo be the family of all sets containing the point z. Its replication
numbers are r, = ( :_ 11) = (2" 2) for y # 2, which are all even. If a family in which all
replication numbers are odd is required, replace a single set by its complement] Now apply the
above process. If a collection of numbers differ by at most 2, and all have the same parity as their
(integral) average, then all the numbers are equal.

71.5. Exercises

1. Verify the claim in Example 2 of Section 7.1.

2. If n = 2k, an intersecting family of k-subsets of an n-set has size at most
%(’;) = ( b 1), because it contains at most one of each complementary pair of k-sets.
We proceed to generalise this result and argument. What follows could be regarded

as a very simple version of the LYM technique. PROVE:

2 This argument is due to David Billington.
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Suppose that k divides n. Then an intersecting family F of k-subsets

of an n-set X has size at most (:'1)

[HINT: Let C be the set of all partitions of X into n/k subsets of size k. We don’t
need to know |C| (though this could be counted), merely the fact that each k-set lies
in |C|/ (’,::: members of C. Prove this by double-counting pairs (B, C'), where B is
a k-set and C € C with B a member of (']

Now double-count pairs (B, C'), with B € F, C € C, and B € C, to obtain

n—1
A/ (z21) <t

using the fact that, since the parts of a partition are disjoint, at most one of them
lies in any intersecting family.
3. (HARDER PROBLEM). Prove that, if k divides n and n > 3k, then any intersecting

family of size (Z:;) of k-subsets of the n-set X consists of all k-sets containing some

point of X. [HINT: it follows from the argument of Exercise 2 that, if |F| = k::),
then given ary partition of X into disjoint k-sets, exactly one of these £-sets belongs
to F. Exploit this fact]

4. Show that (”' 1) is even if and only if k is not a power of 2.

5. (a) If n is not a power of 2, construct a regular intersecting family of subsets of
an n-set, having size 2771,
(b) If n = 2,4 or 8, show that there is no such family.

6. Prove that, in any intersecting family of size (2:_'11) of k-subsets of a 2k-set, the
replication numbers all have the same parity.

7. Let F be any intersecting family of subsets of the n-set X. Show that there is an
intersecting family 7' D F with |F'| = 2", [HINT: A blocking set for F is a set
Y which meets every member of F but contains none, Adjoin to F all sets which
contain a member of F, all blocking sets of size greater than }n, and (if n is even)
one of each complementary pair of blocking sets of size in.]

By proving that the Steiner triple system of order 7 has no blocking sets, give
another proof of Exercise 1.

8. Let F be a Sperner family of subsets of the n-set X. Define b(F) to be the family
of all subsets ¥ of X such that

@ YNF#@forall FeF,

(i) Y is minimal subject to (i) (i.e., no proper subset of Y satisfies (i}).
{a) Prove that b(F) is a Sperner family.
(b) Show that, forany F' € Fandanyy € F, there exists Y € b(F) withYNF = {y}.
(¢} Deduce that b(5(F)) =
(d) Let Fi denote the Sperner family of all k-subsets of X. Prove that b(Fi) =
Frgr-k for k> 0. What is b(F)?
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... how did the Cambridge and Dublin Mathematical Journaf, Vol. Il, p. 191
[1846] manage to steal so much from ... Creffe’s Journal, Vol. LVI, p. 326
[1859], on exactly the same problem in combinations?

T. P. Kirkman (1887)

ToPICS: Steiner triple systems; packings and coverings; [tournament
schedules; finite geometries]

TECHNIQUES: Direct and recursive constructions; [use of linear
algebra and finite fields for constructions]

ALGORITHMS:

CROSS-REFERENCES: Extremal set theory (Chapter 7); [finite fields
(Chapter 4); finite geometry (Chapter 9)]

This chapter is devoted to the proof of existence of Steiner triple systems. The topic is
somewhat specialised; but the technique, involving a mixtuse of direct and recursive
constructions (the latter building up large objects of some type from smaller ones)
is of very wide applicability.

8.1. Steiner systems

In 1845, the following problem in extremal set theory was posed in an unlikely
forum, the Lady’s and Gentleman’s Diary:

Given integers I,m,n with | < m < n, what is the greatest number
of m-element subsets of an n-element set with the property that
any l-element subset lies in at most one of the chosen sefs?

The problem proved too difficult for the journal’s readership, and so it was specialised
to the case [ = 2, m = 3. This provided the incentive for a 40-year-old Lancashire
vicar, T. P. Kirkman, to take up mathematics: his first published paper, the following
year, contained a contribution to this case.!

Returning to the general problem for a moment, we observe:

! Kirkman is now remembered almost entirely for his work on this problem, but he also wrote
extensively on projective geometry, groups, polyhedra, and knots, and was regarded as one of the
leading British mathematicians of his day. An account of his life and work can be found in the
article ‘T. P. Kirkman: Matbematician’ by Norman Biggs in the Bulletin of the London Mathematical
Society 13 (1981), 97-120.
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(8.1.1) Proposition. Let B be a family of m-subsets of an n-set, such that any [-set
lies in at most one member of B. Then

181 < (’})/(’7).

Equality holds if and only if any [-subset lies in exactly one member of B.

Proor. We count pairs (L, B), where L is an I-set and B € B with L C B. Each

B ¢ B contains (’;’) subsets of size [, so there are |B|- (';‘) pairs. On the other hand,

there are altogether (’l') subsets of size [, and each lies in at most one set B, so there

o (7)<()

Equality is only possible if every I-set lies in a (unique) member of B.

A pair (X, B), where X is an n-set and B a family of m-subsets satisfying the
hypotheses of the proposition and attaining the bound is called a Steiner system
S(I,m,n).2 A very important specialisation of the above problem is the following:

are at most (’;) pairs. Thus

For which values of l,m,n does a Steiner system S(I,m,n) exist?

A Steiner system 5(2, 3, n) is called a Steiner triple system. To reiterate: a Steiner
triple system consists of a set X of points and a set B of 3-element subsets of X
{called triples or blocks), with the ptoperty that any two points of X lie in a unique
triple. The number 7 is called the order of the Steiner triple system. In this chapter,
we settle the existence question for Steiner triple systems. I will usually abbreviate
‘Steiner triple system’ to STS, and write STS(n) for a Steiner triple system of order
n.

goa
grxox«
L

First, some examples.
1 2 3

() (b)

Fig. 8.1. Two small Steiner triple systems

2 The name is a double misnomer: the question posed by Steiner was not equivalent to the existence
of Steiner systems, though they are the same in the special case { = 2, m = 3; and this special
case was settled by Kirkman seven years before the question was asked by Steiner. However, the
terminology is now standard, and the term ‘Kirkman system’' has a different meaning,
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Fig. 8.1{a) shows a STS(7). More formally, (X, B) is a STS(7), where
X ={1,2,3,4,5,6,7)
B = {123, 145,167, 246, 257, 347,356 }.
{We write 123 for the set {1,2,3}, and 50 on.)

Fig. 8.1(b) shows a STS(9). Note that it solves the ‘nine schoolgisls’ problem
posed in Chapter 1: the walking scheme is

Day 1: 123 456 789
Day 2: 147 258 369
Day 3: 159 267 348
Day 4: 357 168 249

Moreover, there are trivial Steiner triple systems of orders 3 (three points forming
a triple), 1 (a single point, no triples), and 0 (no points or triples). Before reading
further, show that there is no Steiner triple system of order 2, 4, 5 or 6.

The next theorem determines completely the possible orders of Steiner triple
systems.

(8.1.2) Theorem. These exists a Steiner iriple system of order n if and only if either
e n=_0;or
e n=10r3 (mod 6).

This theorem asserts that a numerical condition is necessary and sufficient for
the existence of something. So the proof has two parts. First, we must show that the
order of a Steiner triple system satisfies the constraint: the argument is given below.
Second, given a number n of the correct form, we have to construct a STS(n). This
is more difficult, and will take the next two sections.

PROOF OF NECESSITY. Suppose that (X,B) is a STS of order n. Clearly, we may
suppose that n > 0. We establish two important properties by ‘double counting’.
1. Any point lies in (n — 1)/2 triples.

Choose a point z, and count pairs (y, B), where y is a point different from z,
and B a triple containing 2z and y. First, there are n — 1 choices for y and, for each
choice, there is a unique triple containing z and y: altogether n — 1 pairs. Second,
if z lies in r triples, then (since each triple contains two points other than z) there
are 2r choices of the pair (y, B). Hence 2r = n — 1, and r is as claimed.

2. There are n(n — 1)/6 triples altogether.

We count pairs (z, B), where z is a point and B a triple containing 2. Each
of the n points lies in (n — 1)/2 triples, so there are n(n — 1)/2 pairs. If there are
b triples, each containing 3 points, then there are 3b choices. So 36 = n(n — 1)/2,
giving the claimed value for b.

Now the necessity of the condition follows. For, if n > 0, then both (n —1)/2
and n(n — 1)/6 must be whole numbers. The first condition asserts that » is odd,
whence n = 1,3 or 5 (mod 6). Suppose that n =5 (mod 6), say n = 6k + 5. Then
the number of triples is

n(n —1)/6 = (6k + 5)(3k + 2)/3;
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but this is not an integer, since neither 6% + 5 nor 3k 4 2 is a multiple of 3. So n
must be congruent to 1 or 3 modulo 6.

Note that,if n = 1 or 3 (mod 6), then both (n —1)/2 and n(n—1)/6 are integers;
but this in itself is no guarantee that a STS(n) exists, of course.

8.2. A direct construction

The proof of sufficiency given in the next section involves a recursive construction, in
which larger Steiner triple systems are built up from smaller ones. In this section, we
show that a direct construction can be used to prove half of the theorem. Specifically:

(8.2.1) Proposition. If n = 3 (mod 6), there exists a STS(n).

Suppose that n = 3 (mod 6); then » = 3m where m is odd. The point set is
made up of three copies of the integers mod m. Formally,

X = {ai,b,ci: i € Z/(m)}.

Blocks are of two types:
(a) all sets of the form a;a;bk, b;b;ck, 0T cicjax, where ¢,7, &k € Z/(m), i # j, and

i+ = 2k (in Z/(m));

(b) all sets of the form a;bic;, for : € Z/(m).

Before verifying that this works, observe that the equation ¢ + 7 = 2k has a
unique solution (in Z/(n)) for any one of the variables, given the other two. This
is clear for 7 and j. For k it depends on the fact that (since m is odd) any element
of Z/(m) can be uniquely divided by 2: depending on the parity of I, either I/2 or
(1 + m)/2 is the unique solution of 2z = 1.

First let us count the triples. There are (';) = m(m — 1)/2 choices of 7 and j,
and for each choice, a unique & and hence three triples of the first type. There are
clearly m triples of the second type. This makes altogether

Im(m —11/2 +m =3m(3m —1)/6

triples, as required. Now let us verify that they do form a Steiner triple system, by
showing that any two points lie in a unique triple,

There are several cases:

(i) Points a; and a;, : # 7. A triple containing them must be of type (a); by our
remark above, there is a unique such triple.

(ii) Points b; and b;, or ¢; and ¢;: these cases are similar.

(iii) Points a; and b;. These lie in a unique triple of type (b); and in no triple of
type (a), since if a;a;b; were such a triple, then i + 5 = 2{, whence 7 = 4.

(iv) Points b; and ¢, or ¢; and a;: similarly.

(v) Points a; and b, k # ¢: these lie in a unique block of type (a).

(vi) Points b; and cx, or c; and a,: similarly.

For n = 9, we get a different-looking STS of order 9. In fact it turns out to be
the same as before, just drawn differently (see Fig. 8.2, in which three triples are not
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shown).

co €1 c2

Fig. 8.2. STS(9)

8.3. A recursive construction

Before embarking on the main business, we attend to one important detail: the
construction of a STS(13).

For this, it would be sufficient to give a list of 13 points and 13.12/6 = 26 triples,
and leave the verification to the reader. However, the construction is a special case
of something more general, so we give it abstractly.

We take X to be the set Z/(13) of residue classes modulo 13. Consider first the
sets

B1={01114}1 B2={0>2,8}‘
We claim that the following holds.

For any non-zero z € X, there is a unique way to write z = 2 — y
with z,y chosen from the same set B;.

This is seen by listing all possibilities:

1=1-0 2=2-0 3=4-1 4=4-0
- 5=0-8 6=8-2 7=2-8 8=8-10
9=0~4 10=1-4 11=0-2 12=0-1

and noting that each of the 2-3 .2 = 12 expressions ¢ — v for u,v € B;, i = 1,2 has
been used once.

Now let
B={B +zB:+2:2€ X},

where B; + z = {t + z: t € B;}. (So B consists of the triples 014, 125, 236, ..., 028,
139, ... ; 26 in all)

We claim that (X, B) is a STS. Clearly X is a 13-set and B a set of 3-subsets of
X. Let z,y be distinct points of X. If z,y € B; + #, then ¢ — z,y — z € B;, and
(z — z) — (y — 2) = z — y. By the claim above, there is a unique choice of i,u,v so
that z —y =u—ov withu,v € B;jand thenz — 2 =y,s0 2=z —u=y—v is also
determined. So there is a unique triple containing z and y.

This technique works whenever we can find sets By, ... in Z/(n) such that any
non-zero element of Z/(n) can be written uniquely in the form u — v, with « and v
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chosen from the same B;. For example, with n = 7, it is possible to use a single set
By = {0,1, 3}, giving rise to the familiar STS(7) labelled in a different way (Fig. 8.3).

4 4] 5 6 0

Fig. 8.3, STS(7) in cyclic form

This construction works much more generally. We use it for all primes n (indeed,
all prime powers) which are congruent to 1 (mod 6) in a Project (Section 8.5).

Now we come to the main technical result. This is a recursive construction,
building larger systems from smaller ones. First, a definition.

A subsystem of the Steiner triple system (X,B) is a subset ¥ of X with the
property that any triple in B which contains two points of Y is contained within Y.
If C is the set of triples contained within the subsystem Y, then (¥,C) is a Steiner
triple system in its own right, and we may refer to this as a subsystem without
confusion,

(8.3.1) Proposition. Suppose that there exists a STS of order v containing a subsystem
of order u, and also there exists a STS of order w. Then there exists a STS of order
u 4+ w(v — u). If w > 0, it contains a copy of the STS(v) as 2 subsystem. Moreover,
if 0 < u < v and w > 0, then it can be assumed o have a subsystem of order 7.

EXAMPLE, Given this result, we can give two constructions of a STS of order 19 (the
smallest value for which we haven't yet constructed a STS). In the proposition, take
either
eu=1v=3,w=9(19=14+93-1)); or
eu=1lv=7w=3(19=1+3(7~1))

The idea behind the construction is described like this. Imagine that the STS(v)
is drawn on a piece of paper, with the points of the STS(u) on the left-hand side.
Make w copies of this page. Now bind them into a book by glueing them together
on the left, so that the points of the STS(u) on the different pages become identified
(and lie on the spine of the book). We have u + w(v — u) points, as required.
Moreover, we have some triples already, all those lying on a single page of the
book (possibly using points of the spine). Any further triple uses three points from
different pages. We use the STS(w) to help us choose these triples; s0 we imagine
that the pages are numbered by its points.

Formally, then, let the point set of the STS(v) be {ai,...,a.} U {b: : i € Z/(m)},
where m = v — v, and the points {a,, ..., a,} form the STS(z:). Let the points of the
STS(w) be {ci,...,¢y}. Take

t={a1,...,a}U{d,i:p=1,...,w;i € Z/(m)}.
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The blocks are of two types:

(a) the blocks of the STS(v), copied onto each ‘page’ (each set consisting of all the
a; and all the d,; with fixed p) by the mapping that fixes all a; and maps b; to
dp,i;

(b) all sets of the form d,,, ; d,, ;,4,, i, for which the ‘page numbers’ ¢;,, ¢, ¢, form
a triple of the STS(w) and i, + 13 + 43 = 0 (in Z/(m)).

Let us check that it works. Take two points. If they lie on the same page,
then they lie in a unique triple of the first type, by the defining property of the
STS(v). If they lie on different pages, then they have the form d,, ;, and d,, ;,, where
21 # p2. Then the third point on the triple must have the form d,, ;,; ps is uniquely
determined by the requirement that c,,c,,¢c,, is a triple of the STS(w), and i3 by the
requirement that i, +i; 4 i3 =0.

It remains to show the last part, about the subsystem of order 7. Suppose that
0 <u < vand w > 1. Since u > 0, we may take a point a of the subsystem. Since
v > u, we have m = v — u even; choose the numbering of the points ; so that
aboby2 1s a triple (otherwise it is arbitrary). Since w > 1, there is a triple in the
STS(w), say cicacs. Now it is easily checked that the seven points

{a}U{dpi:p=1,2,3;i =0,m/2}

form a subsystem (see Fig. 8.4).

Fig. 8.4. A STS(7) subsystem

Now let A be the set of positive integers n for which there is a Steiner triple
system of order n — we have to show that 4 contains all numbers n = | or 3 (mod
6). Also, we let B be the set of positive integers n for which there exists a Steiner
triple system of order n containing a subsystem of order 7.
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We note that B is a subset of A. Also, the following implications hold:

nEA=3Inc A
n€EB=3necB
n€cEA=3n-2¢cB
n€EA=>3n—6¢B
n€EB=>3n—14¢B

These are justified by (8.3.1), with the following values of (v, v, w):

0,n,3
(0,n,3
(1,n,3
(3,n,3
(7,n,3)
We divide the potential members of B into congruence classes modulo 18: any
admissible » is congruent to 1, 3, 7, 9, 13 or 15 (mod 18). Now we have
6k+1€cA=>18k+1=3(06k+1)—2€B
6k+3€cA=18k+3=3(6k+3)—6¢ B
6k+3€cA=18k+7=3(6k+3)—2¢ B
6k+3€B=18c+9=3(6k+3)cB
6k+9€B=18k+13=3(6k+9)— 14 € B
6k+7c A= 18k +15=3(6k+7)—6¢c B
We claim that every admissible number n > 15 lies in B. Suppose not, and take
a least counterexample. If n = 1 (mod 18), then we must have n < 55 — for if
18k + 1 > 55, then 6k + 1 > 19, so 6k 4+ 1 € B (since 6k 4 1 is at least 15 and is
smaller than the least counterexample), and 18k + 1 € B also. So n = 19 or 37.
Checking the other congruence classes this way, we find the possible values of n to
be 15, 19, 21, 25, 27, 33, 37. So the claim will be proved if we can show that each
of these numbers is in B. Suitable values of (u,v,w) in (8.3.1), with the relevant
equation, are given in the following table.
(1,3,7) 15=14+733-1)
(1,3,9) 19=14+938-1)
0,7,3) 21=0+3(7-0)
1,9,3)  25=14309-1)
(1,3,13)  27=1413(3—1)
(3,13,3) 33=343(13-3)
(1,13,3)  37=1+3(13—1)
We use the fact that 7,9,13 € A, as established earlier.
So B does contain all admissible n > 15. Since B C A, and since A contains 1,
3, 7, 9 and 13, the theorem is proved.

)
)
)
)
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The proof of the theorem is constructive: given a number n = 1 or 3 (mod 6),
if n is sufficiently large, then we can read off from the proof a number n’' such that
an STS(n') can be used to construct an STS(n). For example, how to construct a
STS(625)? Since 625 = 18- 34 + 13, and 6 - 34 + 9 = 213, we require a STS(213).
Then, since 213 = 18-11 + 15, and 6 - 11 4 7 = 73, we need a STS(73). Then, since
73=18:4+41, and 6-4 + 1 = 25, we need a STS(25). Then the recursion ‘bottoms
out’, since the proof tells us how to construct this system.

The construction given here is by no means the only one possible. Exercises 2
and 13 yield a completely different STS(625).

This is not the end of the story — one can ask how many different ways there
are of forming a Steiner triple system on a set of n points, where n = 1 or 3 (mod
6). But we now pursue a different question: if » is not of this form, how close can
we get to a STS?

8.4. Packing and covering

Steiner triple systems represent special solutions to an extremal set problem —
indeed, to two such problems, as we now discuss. This situation, where a structure
satisfying a condition containing the words ‘exactly one’ is an extreme case for both
‘at most one’ and ‘at least one’, is very common; the extremal problems are referred
to as packing and covering problems.

Let X be a set with n elements. A (2,3)-packing is a set B of triples such that any
two points of X are contained in af most one member of B; and a (2,3)-covering is
a set B of triples such that any two points are contamed in at least one member of
B. Obyiously any subset of a packing is a packing, and any superset of a covering
is a covering; so we let p(n) denote the size of the largest (2,3)-packing, and ¢(n)
the size of the smallest (2,3)-covering, of an n-set.

(8.4.1) Proposition. (a} p(n) < n(n —1)/6.
(b} c(n) = n(n—1)/6.
{c} Equality holds in either bound if and only if there exists a STS(n).

PROOF. The arguments are straight double counting. For packings, each of the
n(n — 1)/2 pairs is contained in at most one triple, and each of the p(n) triples
contains exactly three pairs. For coverings, the inequality reverses,

Thus, if n = 1 or 3 (mod 6), we have p(n) = ¢(n) = n(n —1)/6. For other values,
p(n) is smaller than this bound, and ¢(n) is larger. It is possible to prove a general
result improving the inequalities:

(8.4.2) Proposition. (a} p(n) < [325]).
(b) o(n) = [3[%5*1]-

PRoOF. We follow the argument for the necessary condition for the existence of a
STS(n) (8.1.2). Let B be a packing. Then, by double counting, any point z lies in
at most %1 triples of B. However, the number of triples containing # is an integer,

n—1

so we can round this number down to |%5t|. Then, again by double counting, the
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number of triples is at most 5| 25! |; and, again, we can round this number down.
The argument for coverings is similar, except that we round up.

These bounds are not always attained. But there is one case where they are met:
(8.4.3) Proposition. If n = 0 or 2 (mod 6), then p(n) = n(n — 2)/6.

PROOF. n is even, so |23%| = 252, Then 5("6—_21 is an integer, so this quantity is our
upper bound for p(n).

On the other hand, there exists a Steiner triple system of order n + 1, since this
number is congruent to 1 or 3 (mod 6). This STS has k‘%)ﬁ blocks, of which each
point lies in 3. So, if we remove one point and all triples containing it, we obtain a
packing of size

(n+l)n n  n(n—2)

6 2 6
8.5. Project: Some special Steiner triple systems

This section describes some constructions of Steiner triple systems by algebraic,
rather than combinatorial, methods. The resulting systems have a high degree of
symmetry.

PROJECTIVE TRIPLE SYSTEMS.

In this subsection and the next, we construct examples of highly symmetric Steiner triple systems,

using linear algebra over the fields Z/(2) and Z/(3). These systems are instances of more general
‘finite geometries’, to be treated in Chapter 9.

Let F be the field Z/(2) of order 2. Let V be a vector space of dimension d over F. Then V

can be realised concretely as the set of all d-tuples of elements of F, so that |V| = 24, We take X to
be the set of non-zero vectors in V, and

B = {{z,y,2}: z,y, z distinet, 2 + y + z = 0}.

CLAIM. (X, B) is a Steiner triple system of order 2¢ — 1.

PRrooF. It’s clear that, if z + ¥ + 2z = 0, ther any two of z, y,  determine the third. We have to show
that, if # and y are distinct and non-zero, then z is distinct from both and non-zero, So suppose that
O#c#y#0.Then z= —(2+y) =z +y(since —1=1in F ). Since y # 0, we have z # z; since
z#0,wehave 2 # y; andsince c £y, wehave z =2+ y=z—y£0.

We denote this system by P(d — 1); it is called a projective triple system or projective geometry
of dimension ¢ — 1 over F. (There are geometric reasons for letting the dimension be d — 1 rather
than d; these will appear later,) Fig. 8.5 shows the familiar STS(7) presented as P(2).

(010)  (o11)  (ooy)
Fig. 8.5. P(2)

Projective systems have an important, and characteristic, property. A triangle in a STS is a set
of three points not forming a triple.
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(8.5.1) Theorem. A STS is projective if and only if any triangle is contained in a subsystem of order 7.

Proor. Let (X, B) be a projective triple system, and {z,y, z} a triangle. Ther 2 + y + z # 0; so
the seven points z, ¥, z, 2 + ¥, ¥ + 2, z + 2, ¢ + y + 2z are all distinct and are easily seen to form a
subsystemn.

For the converse, let (X, B) be a STS in which every triangle is contained in a 7-point subsystem.
We have to construct the algebraic structure of a vector space over Z/(2). This is an example of the
procedure of ‘coordinatisation’ in geometry.

Let 0 be a symbol not in X, and let ¥ = X U {0}. We define an operation + on V by the rules

that, forallv € V,
0+v=v+0=u,

v+uv=0,

and, if #,y € X with ¢ £ v, then © + y is the third point of the triple containing = and ¥

This operation is obviously commutative; 0 is the identity, and every element is its own inverse.
We show that it is associative. There are several cases, most of which are trivial (for example,
(z+0)+y=2+y =2+ (0+y)). The only non-trivial case occurs when {z,y, 2} is a triangle, in
which case the structure of the STS(7) gives the required conclusion (see Fig. 8.6).

3

(z+y)+2=z+(y+2)
¥ vtz 2
Fig. 8.6. The associative law
We conclude that
" (V,4) is an abelian group.
Next we define a scalar multiplication on V, by elements of F, by the rules

0-v=0,
l-v=mw,

forall v € V. We have
(V, +,-) is a vector space over Z/(2).
Again, most of the axioms are trivial. The most interesting is
(e+B8)v=a-v+8-v.
In the case a = 8 = 1, we have @ + 8 = 0, and the result follows from the fact that v + v = 0.
Now X is the set of non-zero vectors, and B the set of triples with sum 0, in V; so the system

is projective.

AFFINE TRIPLE SYSTEMS,

There is a similar construction involving the field Z/(3). Let V be a d-dimensional vector space over
this field. Let X =V, and

B={{z,y,2} C X : z,y, 7 distinet, £ + y + z = 0}.

CLaM. (X, B) is a Steiner triple system of order 3¢,
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ProoF. Again, if z + y + 2 = 0, then any two of z,y, z determine the third. Suppose that 2 # y.
Then z # 2, since if 2 = z = —(2 + y) then y = —2¢ = 2; and similarly z # y, so all three points are
distinet.

This system is called an affine triple sysiem or affine geomelry of dimension d over Z/(3). (Note
the dimension!) It has a property resembling that of projective triple systems:

In an affine friple system, any triangle is contained in a subsystem of order 9.

(See Exercise 5.}

The converse, surprisingly, is false. The first counterexample has order 81, and was constructed
by Marshall Hall. As a result, the term Hall triple system is used for any Steiner triple system which
is not affine but has the property that every triangle is contained in a subsystem of order 9. It is
known that the order of a Hall triple system must be a power of 3, and that they exist for all orders
which are powers of 3 and at least 81.

Nobody knows any example of a Steiner triple system of order n in which each triangle lies in
a unique subsystem of order & < n, for any & other than 7 or 9.

NErTO SYSTEMS.
These Steiner triple systems are constructed using the method we saw already for the STS(13).

(8.5.2) Proposition. Let By, ..., B, be 3-subsets of Z/(n). Suppose that, for any non-gero element
u € Z/(n), there is a unique value of i € {1,...,¢} and unique z,y € B; such that v« = o — y. Set

B={Bi+s:1<iStzeZ/m),
where B; + 2 = {b+ z . b € B;}. Then (Z/(n), B) is a Steiner triple sysiem.

Proor. Take two distinct elements ,y € Z/(n); we have to show that a unique triple in B contains
¢ and y. When do we have =,y € B; + 2? This condition implies that z — z,¥ — z € B;; and
(z—z)—(y—2z) =2~y # 0. So, given z and y, there is a unique choice of ¢; and the elements z — z
and y — z (and hence z) are also determined.

Note that the number of triples is in = n(n — 1}/6; so n = 6! + 1, or n = 1 (mod 6). Note also
that the cyelic permutation # — 2+ 1 (mod n) preserves the Steiner triple system.

We will see that, for any prime number p = 1 (mod 6), there exist sets By, ..., B; satisfying the
hypothesis of (8.5.2). For this, we use the following fact:
Hp=1 (mod 6), then the field Z/(p) contains a primitive sixth root of unity
(an element z satisfying 2 = 1, z* £ 1 for 0 < k < 6).

The algebraic explanation of this fact is that the multiplicative group of Z/(p) is a cyelic group of
order p — 1, and so (if 6|p — 1) contains a eyclic subgroup of order 6.

Since 0=25-1=(*—1)(z+1)(z>—z+1),and 2* £1,2z# —1 we have 2> ~ 2+ 1 = 0. We
note the equations

1=1-0, z=2z-0, z2=2z-1, 2=0-1, *=0-2z, P=1-2

Now set ¢ = (p— 1)/6, and let s,,...,3, be coset representatives for the distinct cosets of
the subgroup generated by z in the multiplicative group of Z/(p). Then let B; = {0,;, 5z} for
i =1,...,L. Then every non-zero residue mod p is uniquely expressible in the form s;27, where

1< i<tand 0<j<5. According to the displayed equations, it is uniquely expressible in the form
z — y for some ¢,y € B; and some i. This proves the claim.

The STS we have constructed is called a Netto system of order p, denoted by N (p).

The construction can be generalised, using finite fields. In Section 4.7, we briefly discussed the
theorem of Galois, guaranteeing a unique field GF(¢) of any prime power order g. It is also true
that the multiplicative group of GF(g) is cy<lic. So the construction of a Netto system N (g) of prime
power order ¢ = 1 (mod 6) works exactly as for prime order p, with GF(¢) replacing Z/(p) in the
construction. See Exercise 2 for an example of this.
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8.6. Project: Tournaments and Kirkman’s schoolgirls

In this section, we construct Kirkman’s own solution to his Schoolgirls Problem.

We begin with a detour. The schoolgirls enjoy playing hockey, and the school has a team in
a league, playing matches against other school teams at weekends during term. In the course of a
seasom, every team plays against every other team once. If there are n teams in the competition, what
is the least number of rounds required to play all the matches?

The number of matches to be played is (}) = n(n— 1)/2. If n is even, then n/2 matches can be
played in every round, so we need (at least) n — 1 rounds. If n is odd, then only (n — 1)/2 matches
can be played in a round, with one team having a bye; so n rounds are required. A fournament
schedule for n teams is an arrangement of all pairs of teams into the minimum numbers of rounds
just calculated (viz. n — 1 if n is even, n if n is odd).

Of course, we cannot guarantee that tournament schedules exist on the basis of this argument;
but there is a simple construction, as follows, First, consider the case where n is odd. Draw a regular
n-gon in the plane, and number its vertices 0,...,n — 1 corresponding to the teama (these numbera
are regarded as belongong to the integers mod n). For each edge of the n-gon, there are (n — 3)/2
diagonals parallel to this edge; this parallel class determines the matches in a round, with the team
corresponding to the vertex opposite the chosen edge having a bye. Fig. 8.7 shows the case n = 5.

R 4 00000000000

Fig. 8.7. Tournament schedule: five teams

This construction can be presented algebraically: the edge and diagonals in the parallel class
not containing the vertex i have the form {j, k}, where j + k = 2i (in Z/(n)).

For n even, we temporarily remove one team from the competition, and construct a tournament
schedule with n — 1 rounds for the remaining teams as above. Then we decree that, in each round,
the extra team will play the team which would otherwise have had a bye in that round.

Now we present Kirkman's marching orders for his schoolgirls. First we construct a STS(15).
Divide the 15 schoolgirls into a group X of 7 girls and a group Y of 8. We take X = {zy,...,26} to
be the point set of a Steiner triple system STS(7). Also, we take Y to ‘be’ the teams in a tournament
with 7 rounds Ro,:.., Rs. Each R; consists of four disjoint pairs of girls; we add girl z; to each of
these pairs to form a triple. In this way we get 28 triples which, together with the 7 triples of the
STS(7), form 35 triples, the right number for a STS(15).

We check that it really is a STS(15). Any two girls in X belong to a unique triple of the
subsystem. Any two girls in Y form a pair belonging to one round R; of the tournament, and so lie
in a triple with ;. Finally, take a girl in X (say 2;) and a girl y € Y: the unique triple containing
them is {e:,y, 3}, where {y, v’} belongs to round R;.

Finally, we have to divide the triples into seven sets of five, corresponding to the walking
groups on the seven days of the week. For this, we exploit the cyclic structure of both the STS(7)
and the tournament schedule. We can take the triples of the STS(7) to be {By,..., Bs}, where
B; = {zi41,Ti42,Tiga}. Label the girls in Y as {yo,...,ys, 2}, where the i*" round R: of the
tournament consists of {w,2} and all {y;,yc} with j + k = 2i. Then {z0,%,2}, {va,¥s 25},
{y2,vs, z¢}, and {31, ys, 23} are triples (since, for example, 4 + 6 = 2 x 5). Together with {z, 22,24},
these make up the groups for day 0: every girl is in one group. Now the groups for day i are obtained
by adding i to the subscripts of the 2’s and #'s.
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In general, a Steiner triple system, whose triples can be partitioned into classes
with the property that each point lies in a unique triple of every class, is called a
Kirkman system.

8.7. Exercises

1. Kirkman's original (incomplete, but basically correct) proof of the existence of
Steiner triple systems went as follows. Kirkman defined two kinds of structure: S,
what we have called a Steiner triple system of order n; and S’, whose exact details
don’t concern us here. He claimed to show:

(a) Sl exists;

{b) if S, exists, then Sp.4; exists;

() if S. exists and n > 1, then S’ _, exists;

(d) if .S, exists, then S,,—; exists.

Prove that, from (a)~(d), it follows that S, exists for all positive integers n =1 or 3
{mod 6). For which values of n does S, exist?

2. Construct a Netto system of order 25.

[HINT: As in Section 4.7, we have to find an irreducible guadratic over Z/(5),
use it to construct GF(25), and then find a primitive sixth root of unity in this field.
But all this can be simplified. We know that z must satisfy 22 — z + 1 = 0, and this
quadratic is irreducible over Z/(5); so let

GF(25) = {a + b2 : a,b € Z/(5)},
where 2% = z— 1. All that remains is to find the coset representatives of the subgroup
generated by z.]
3. Prove that, given any STS(7), its points can be numbered 1,...,7 so that its
triples are those listed in Fig. 8.1(a). Prove a similar statement for STS(9).
[HINT: show that any two triples of 2 STS(7) must meet; while, in a STS(9), there
are just two triples disjoint from a given triple, and these are disjoint from one
another.]

Formally, an isomorphism between Steiner triple systems (X;,8,) and (X;, B)
is a bijective map f : X; — X, which carries the triples in B; to those in B;. You
are asked to prove that Steiner triple systems of orders 7 and 9 are unique up to
1somorphism.

HARDER PROBLEM. Prove that there are just two non-isomorphic Steiner triple
systems of order 13.

REMARK. After this, things get more difficult. There are exactly 80 non-isomorphic
STS of order 15, and millions of non-isomorphic STS(19) (the exact number has
never been determined).

4. An automorphism of a Steiner triple system is an isomorphism from the system to
itself. Prove that a Steiner triple system of order 7 or 9 has 168 or 432 automorphisms
respectively.

5. (a) Prove that, in an affine triple system, each triangle Lies in a subsystem of

order 9.
(b) Prove that an affine triple system is a Kirkman system.
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6. Verify the following values of the packing and covering functions for small n.

n 3 4 5 6 T 8 9
pn) 1 1 2 4 T 8 12
em) 1 3 4 6 T 11 12

EXERCISES ON STEINER QUADRUPLE SYSTEMS.

A Steiner guadruple system (SQS) is a pair (X, B), where X is a set, and B a collection
of 4-element subsets of X called quadruples, with the property that any three points
of X are contained in a unique quadruple. The number n = |X| is called the order
of the quadruple system.

7. If a SQS of order n exists, with n > 2, then n = 2 or 4 (mod 8).
[This condition is also sufficient, but the proof is more difficult.]

8. If (X, B) is a SQS of order n, then |B| = n(n — 1)(n — 2)/24.

9. Let X be a vector space over Z/(2), and let B be the set of 4-subsets {z,y, z, w}
of X for which z + y + z + w = 0. Show that (X, B) is a SQS.

10. Let (X, B) be a SQS of order n > 2. Take a disjoint copy (X', B’) of this system.
Take a tournament schedule on X with rounds 7,,...,R._;, and one on X’ with
rounds Rj,...,R!_,. (This is possible since n is even — see Section 8.6.) Now let
Y =XUX' and C = BUB'UR, where R is the set of 4-sets {z,y, ', w'} such that
e z,ye X, we X
¢ forsome i (1 <i<n—1),{z,y} € R and {2, w'} € R}
Show that (¥,C) is a SQS of order 2n.

EXERCISES ON SUBSYSTEMS.

11. Let (X, B) be a STS of order n, and Y a subsystem of order m, where m < n.
Prove that » > 2m + 1. Show further that n = 2m + 1 if and only if every triple in
B contains either 1 or 3 points of Y.

12. Let (X,B) be a STS of order n = 2m + 1, and Y a subsystem of order m; say
Y={y1,...,¢ym}. Fori = 1,...,m, let R, be the set of all pairs {2,2'} C X \Y for
which {w,2,2'} € B. Show that {R,,..., R} is a tournament schedule on X \ Y.

Show further that this construction can be reversed: a STS(m) and a tournament
schedule of order m + 1 can be used to build a STS(2m + 1).

13. Let (X, B) and (Y,C) be STS, of orders m and n respectively. Let Z = X x Y,
and let D consist of all triples of the following types:

e {(z,11),(2,92), (z,93)} for 2 € X, {1, 10,95} € C;

¢ {(21,9), (x2,9): (z3,9)} for {1, 22,23} €B,y €Y

e {(z1,0)s (22, 92), (23, y8)} for {21, 22,23} € B, {nr, 10,33} €C.
(Note that a triple in B and one in C give rise to six triples of the third type,
corresponding to the six possible bijections from one to the other.)

Show that (Z,D) is a STS of order mn. Show further that, if m > 1 and n > 1,

then (Z, D) contains a subsystem of order 9.
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14. What can you say about the set
{n : there exists a STS(n) with a subsystem of order 9}?

15. COMPUTING PROJECT. Recall the ‘nine schoolgirls problem’ posed in Chapter 1:
nine schoolgirls are to walk, each day in sets of three, for four days, so that each pair
of girls walks together once. We’ve seen that this problem has a unique solution:
there is a unique STS(9) up to isomorphism (Exercise 4), and there is a unique way
of partitioning its twelve triples into four sets of three with the required property.
Now we add a further twist to the problem:
Arrange walks for the gitls for twenty-eight days (divided into seven
groups of four) so that
e in each group of four days, any two girls walk together once;
s in the entire month, any three girls walk together once.

In other words, we are asked to partition the (g) = 84 triples of girls into seven

12-sets, each of which forms a Steiner triple system.

There are 840 different Steiner triple systems on a given 9-set,® and so potentially
(8;0) possibilities to check — rather a large number! We make one simplifying
assumption. (This means that, if we fail to find a solution, we have not demonstrated
that no solution exists.) We assume that

the required seven STS{9)s can be obtained by applying all powers
of a permutation § of order 7 to a given one.

We can assume that the starting system is the one of Fig. 8.1(b), with point set
X ={1,...,9}, and triple set

B = {123,456, 789, 147,258, 369, 159, 267, 348, 357, 168, 249}.

We can also assume, without loss, that § fixes the points 1 and 2, and acts as a
7-cycle on the others. (That no generality is lost here depends on the symmetry of
the STS(7): all pairs of points are ‘alike’) Finally, there is a unique power of 8
which maps 3 to 4; so we may assume that @ itself does so. Thus, in cycle notation,

8=(1)2)34abcde),

where a,...,e are 5,...,9 in some order; in other words, ( ? : : :’) is a permuta-
tion in two-line notation.
Thus our algorithm is as follows:
e set up the system (X, B);
s generatein turn all permutations (: : Z S 3); foreach,let8 = (1)(2)(34 cbcde),

and check whether B,59,...,B8° are pairwise disjoint. Report success if so.
Program this calculation. (You should find two permutations which give rise to
a solution.)
18. Here is a related problem. Cayley showed that it is impossible to partition the

%) = 35 triples from a 7-set into five disjoint Steiner triple systems. In fact, no more
than two disjoint STS(7)s can be found. Verify this observation.

3 For a proof of this fact, see Chapter 14.



9. Finite geometry

In Plane Geometry that afternoon, | got into an argument with My Shull, the
teacher, about parallel lines. | say they have to meet. I'm beginning to think
everything comes together somewhere.

William Wharton, Birdy (1979)

Topics: Finite fields; Gaussian coefficients; projective and affine
geometries; projective planes

TECHNIQUES: Linear algebra
ALGORITHMS:

CROS55-REFERENCES: Binomial coefficients (Chapter 3); Orthogonal
Latin squares (Chapter 6); de Bruijn-Erd6s Theorem (Chapter 7);
Steiner triple systems (Chapter 8)

Projective geometry over finite fields is a topic of great importance, for many reasons.
It provides a large collection of highly symmetric structures, with interesting groups
of collineations; it is a so-called ‘g-analog’ of the family of subsets of a set, providing
an interesting perspective; and it ties in with almost everything else we have met so

far,

9.1. Linear algebra over finite fields
We already met in Section 4.7 the basic fact about the existence of finite fields:

: (9.1.1) Finite fields
There exists a field with q elements if and only if q is a prime power.
If so, then the field is unique up to isomorphism. It is called the
Galois field of order g, and denoted by GF(q).

This fact is proved in any good algebra textbook. I have included an outline of
the proof at the end of this chapter (Section 9.9). If you haven't met it before, and
have trouble with the algebra involved, you may take it on trust, and keep in mind
the case when the order is prime. (The Galois field of prime order p is the field
Z/(p) of integers modulo p)

In traditional linear algebra, it is usually assumed that the field over which we
work is the field of real numbers (or possibly some variant, such as the rational or
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complex numbers). However, almost everything works the same over finite fields.
The definition of linearly independent set, spanning set, basis, subspace; the formula

dim(U N W) + dim(U + W) = dim(T) + dim(W),

the representation of linear maps by matrices, and the rank and nullity formula, all
work as usual.

Row operations and reduced echelon form also work in the same way; but, since
we will need these, [ will sketch them. The three types of row operation on a matrix
are:

¢ multiply a row by a non-zero scalar;

¢ add a multiple of one row to another;

e interchange two rows.
These operations do not change the linear dependence or independence of the rows
of the matrix, and also do not change the row space (the subspace spanned by the
rows).

A matrix A = (a;;) is said to be in reduced echelon form if the following three
conditions hold:

® given any row of 4, either it is zero, or the first non-zero entry is a 1 (a so-called
‘leading 1’);
e for any i > 1, if the i'* row is non-zero, then so is the (i — 1)*, and its leading 1
is to the left of the leading 1 in the :** row;
¢ if a column contains the leading 1 of some row, then all its other entries are 0.
Now the following result holds:

(9.1.2) Proposition. Any mairix can be put into reduced echelon form by applying a
series of elementary row operations; and the reduced echelon form is unigue.

If a matzix is in reduced echelon form, then its rows are linearly independent if
and only if the last row is non-zero — this is the familiar test for linear independence
of a set of vectors.

Note that, for linear algebra, the weaker notion of ‘echelon form’ (where the
third condition in the definition is deleted) suffices; but, for us, a crucial fact about
reduced echelon form is its uniqueness, and this is not true for the weaker form.

9.2. Gaussian coefficients

We are now going to do some counting in vector spaces over finite fields. Let V(n, q)
denote an n-dimensional vector space over GF(g). First, the number of vectors:
(9.2.1) Proposition. The number of vectors in V(r,q) is equal to g™,

PrROOF. As usual, by choosing a basis, we represent the vectors by all n-tuples of
elements of GF(g); and there are ¢* of these.

The Gaussian coefficient [:] is defined to be the number of k-dimensional
g

subspaces of V(n, g).
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{9.2.2) Gaussian coefficients

[n] B C il V[ C it  RER C Gl
K,  (F-D@-1)...(¢-1) °

Proor. First we show:

The number of linearly independent k-tuples in V'(n, q) is equal to

(" —1(g"—q)..- (" — ).

This is proved by examining the number of choices of each vector. A k-tuple of
vectors is linearly independent if and only if no vector lies in the subspace spanned
by the preceding vectors. Thus, the first vector can be anything except zero (¢" — 1
choices); the second must lie outside the 1-dimensional subspace spanned by the
first (¢ — ¢ choices); and, in general, the ! must lie outside the (i — 1)-dimensional
subspace spanned by its predecessors (¢" —¢*~? choices). Multiplying these numbers
gives the result.

Now a k-dimensional subspace is spanned by k linearly independent vectors,
and we have counted these, But a given subspace U will have many different bases.
How many? Just the number of linearly independent k-tuples in a k-dimensional
subspace, which is found from the same formula by putting k in place of n. We
must divide by this number to obtain the number of subspaces. Cancelling powers
of ¢ gives the quoted formula.

Now the number of k-dimensional subspaces of V(n,q) is equal to the number
of k x n matrices over GF(gq) which are in reduced echelon form and have no zero

rows. This gives another way to calculate [2] .
7
ExaMpLE. Let n = 4 and & = 2. Our formula gives
[4] (@' - (¢ - 1)
2|, (#-1)e¢-1)
=@+ +g+D)=¢"+ ¢+ 2" +g+1.

We check by counting matrices. The possible shapes are

(10** 1 * 0 = 1 % %= 0
0 1 x =}° 0 0 1 «}° 00 90 1)
01 0 = g1 = O 0 0190
00 1 %} ¢ 00 1/’ 00 0 1)

where * denotes an arbitrary element. So there are ¢* + ¢° + g% + ¢ + ¢+ 1 matrices.
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REMARK 1. If we regard the Gaussian coeflicient as a function of the real variable ¢
(where n and k are fixed integers), then we find that

im 1], = (3)

For, by 'Hopital’s rule, we have

X qu,_ . aqa.—l_
f 5= =
for a,b # 0; so
im _nn—1})...(n=k+1) (n
o1 k), T R(k—1)...1  \k)

For this reason, the Gaussian coefficients are sometimes called the ‘g-analogs’ of the
binomial coefficients.

REMARK 2. The Gaussian coefficients can be given a combinatorial interpretation
for all positive integer values of ¢ greater than 1, not just prime powers. For
let @ be any set of size g, containing two distinguished elements called 0 and 1.
Then the definition of a matrix in reduced echelon form over ¢ makes sense, even
though the algebraic interpretation is lost. The number of k£ x n matrices in reduced
echelon form with no zero rows is given by a polynomial in ¢g. But, for infinitely
many values (all the prime powers), this polynomial coincides with the Gaussian
coefficient (which is also a polynomial); so they are identically equal.

The matrix interpretation enables us to give a recurrence relation for the Gaus-

sian coeflicients:
n+ll | n K
R AR R
g q g

ProOF. Consider & X (n + 1) matrices in reduced echelon form, with no zero rows.
Divide them into two classes: those for which the leading 1 in the last row occurs
in the last column; and the others. Those of the first type correspond to (k—1) x n
matrices in reduced echelon with no zero rows, since the last row and column are
zero apart from the bottom-right entry. Those of the second type consist of a k x n
matrix in reduced echelon with no zero rows, with a column containing arbitrary
elements adjoined on the right. Since there are ¢* choices for this column, the
recurrence relation follows.

(9.2.3) Theorem.

Note that this relation reduces to the binomial recurrence when ¢ = 1. However,
unlike the binomial recurrence, it is not ‘symmetric’. (For a symmetric form, see
Exercise 3.) In fact, we have:

H
B in—k|’
¢ q

(9.2.4) Proposition
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ProoF. This follows from the bijection between k-dimensional subspaces of V =
V(n,q) and (n — k) dimensional subspaces of its dual space V* (where a subspace
of V corresponds to its annihilator in V=).

Thus, we obtain another recurrence:

" + 1] [n] n+l—k[ - J
[ kL, Lk, k-1,
(see Exercise 4).

From the formula for the Gaussian coefficients, we can deduce another result
analogous to a binomial coefficient identity:

(o - 1)[;‘]', — - 1)[:j]q.

In fact, quite a lot of the combinatorics of binomial coefficients can be extended to
their g-analogs; but we have enough for our needs now.

We can use the recurrence relation above to prove a pretty analogue of the
Binomial Theorem (3.3.1):

(9.2.5) g-binomial Theorem
Forn > 1,

n—1

IR IED I e [:] tk.
k=0 q

i=0

Proo¥F. The proof is a straightforward induction. For n = 1, both sides are 1 + ¢.
Suppose that the result is true for n. Then

[I(+¢0) = (En: g [Z} t’°) (L+qt).
i=0 k=0 q

The coefficient of t* on the right is

kk-1)72 |7 (e-Dy(k-2)/2| T n
T N

_ k=132 [ |7 k1| T
(AT

_ k(k—1)/2 [n + 1]
=q 2 )
q

as required.
Letting ¢ — 1, we obtain the usual Binomial Theorem.

It's now easy to count the non-singular matrices.
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(9.2.6) Theorem. The number of non-singular n x n matrices over GF(q) is

(- —q)..(— ).

PROOF. A square matrix is non-singular if and only if its rows are linearly indepen-
dent. We counted linearly independent k-tuples above.

Note that the non-singular n x n matrices form a group, the so-called general
linear group GL(n, ¢). The theorem above computes the order of this group.

9.3. Projective geometry

The definition of projective geometry seems strange at first meeting. We'll make a
short detour to see where it came from.

One of the goals of painting is to create a 2-dimensional picture whose effect on
a viewer approximates that of the 3-dimensional scene it depicts. In the European
renaissance, painters began to approach this problem mathematically. Let us idealise
the situation, and assume that the painter’s eye is a point, and take this point to be
the origin of a coordinate system for space. He sees an object by means of a ray of
light from the object to his eye. Another object seen by a ray in the same direction
will appear in the same place. (In practice, of course, the nearer object will hide
the further one). Thus, the points of the painter’s perceptual space can be identified
with semi-infinite rays through the origin.

Fig. 9.1. Perspective

The painter wants to represent his perceptual space in a plane. He sets up a
‘picture plane’ II, not passing through his eye. A typical ray will meet II in a single
point, which can be taken to represent that ray (and hence, to represent objects
for which that ray is the line of sight). Assuming that II is a mathematical plane,
extending infinitely in all directions, then the rays represented are all those on one
side of the plane II’ through the painter’s eye parallel to II.
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Mathematically, it is simpler to replace rays by lines through the origin, extending
in both directions. (The painter doesn’t have eyes in the back of his head, and so
he will not actually picture objects behind him.) With this convention, every line
through the origin is represented by a unique point in the picture plane II, except
for the lines in II (that is, the lines parallel to II). This led to the convention of
adjoining mathematical ‘ideal points’ to II to represent these lines, forming the real
projective plane.

Thus, the real projective plane can be regarded in either of two ways: the
picture plane IT with ‘ideal points’ added, or the set of all lines through the origin
(1-dimensional subspaces) of 3-dimensional space R® The second representation
has the disadvantage that points of the plane ‘are’ lines rather than points, but the
{more than compensating) advantage that all points are alike.

What about lines? Given a line L of R?, not containing the origin, the set of
lines joining its points to the origin sweep out a plane (minus one line, the ‘point
at infinity’), which intersects Il in a line, This is the line which the painter draws to
represent L. In other words, in the second (3-space) model, a line of the projective
plane is a 2-dimensional subspace of R3, Note that any two lines of the projective
plane meet. For example, if L, L' are lines in 3-space which are parallel but not
in II', then their representations in II meet at the point where the line through the
origin parallel to L intersects II.

This gives us the clue for the general definition. The n-dimensional projective
space over a field F, denoted PG(n, F), is defined by means of an (1 +1)-dimensional
vector space V = V(n + 1, F). The points of projective space are the 1-dimensional
subspaces of V; the lines are the 2-dimensional subspaces; planes are 3-dimensional
subspaces; and so on. Note that a line, normally regarded as 1-dimensional, is
represented by a 2-dimensional vector space. We saw the motivation for this
already; but, in an attempt to reduce confusion, we use the term k-flat for the object
in projective geometry represented by a (k + 1)-dimensional vector subspace.

Now some familiar geometric properties hold. For example:

(a) Two points lie in a unique line.
(b) Two intersecting lines lie in a unique plane.

These properties follow from elementary linear algebra. For (a), the two points are

1-dimensional subspaces, and their span is 2-dimensional. For (b), the two lines are

2-dimensional subspaces U; and U,; the fact that they intersect in a point means

that dim{U; NU;) = 1, and so dim(U, + Uz) = 3, whence the two lines span a plane.
Slightly less familiarly, the converse of (b) holds:

(c) Two coplanar lines intersect.

(This follows by reversing the argument, noting that dim(U; + U7) = 3 implies
dim(U; N U;) = 1.) In other words, there are no parallel lines!

If F is a finite field GF(g), then we denote the projective space by PG(n, ¢). Now
we can count objects in PG(n, ¢) in terms of Gaussian coefficients. For example:
(9.3.1) Proposition. PG(n, q) has hl]q = (¢"*' = 1)/(g — 1) points. It has [;;I;L
k-flats, each of which contains (¢**! — 1)/(q — 1) points.
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In particular, the projective plane PG(2,q) has ¢* + ¢ + 1 points and ¢+ ¢ + 1
lines; each line contains ¢ + 1 points and each point lies in ¢ + 1 lines; two points
lie in a unique line, and two lines intersect in a unique point. Thus, it is an example
of a family of sets satisfying the hypotheses and the final conclusion of the de
Bruijn—~Erdds Theorem (see Section 7.3).

9.4. Axioms for projective geometry

How do we recognise a projective space? Let us assume that we are given the points
and the lines only. (In fact, all the flats can be recovered from these data: a set
of points is a flat if and only if it contains the unique line through any two of its
points. See Exercise 6.) Now, as just remarked, two points lie on a unique line. But
this alone is not enough to force the structure to be a projective space. For example,
any Steiner triple system (Chapter 8) has this property, if we take the lines to be the
triples; and certainly not every Steiner triple system is a projective space PG(n, g).
(Three points per line forces ¢ = 2, so that the total number of points would be
27+1 — ], But there are Steiner triple systems where the number of points is not of
this form..)

In Section 8.5, we defined a class of Steiner systems which were referred to as projective. If you
read that section, you will be reassured to know that those systems are precisely the projective spaces
PG(n,2). As defined there, the points are the non-gero vectors of V(n + 1,2), and the lines are the
triples of vectors with sum zero. But, over GF(2), a 1-dimensional space contains the gero vector
and a unique non-gero vector, so there is a one-to-one correspondence between the non-gero vectors
and the subspaces they span. Moreover, a 2-dimensional subspace contains the zero vector and three
non-gero vectors; it is not hard to see that the sum of these three vectors is zero, and conversely that
any three vectors with sum zero, together with the zero vector, form a 2-dimensional subspace.

The correct characterisation was given by Veblen and Young, and can be stated
as follows.

(9.4.1) Veblen-Young Theorem. Let £ be a family of subsets (called lines) of the sef

X. Suppose that the following conditions hold:

(a) every Line contains at least three poinis;

(b) two poinis of X lie in a unique line;

(c) there exist two disjoint lines;

(d) if a line meets two sides of a triangle, not at their intersection, then it meets the
third side also.

Then X and L can be identified with the points and lines of the projective space

PG(n,q) for some n > 3 and some prime power q.

Fig. 9.2. Veblen—Young axiom
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This theorem will not be proved here. {But see below for the case ¢ = 2.
Nevertheless, we make some remarks. The purpose and necessity of Axioms (a)
and (b) is I hope obvious. Axiom {d), known as the Veblen-Young Aziom, is the
crucial condition. The puropse of axiom (c} is to exclude degenerate cases (where
X is the empty set or a singleton, or where there is a unique line), and also to
exclude projective planes. (In a ptojective plane, any two lines mtersect, so the
Veblen—Young Axiom certainly holds. But there are projective planes which are not
of the form PG(2,¢). We consider projective planes further in the next section.)

We conclude this section with a proof of the Veblen—Young Theorem in the case where each
line has three poinis. Axioms (a) and (b) assert that we have a Steiner iriple system. Axiom (c) is
not really needed, since the Steiner iriple systems with 0, 1, 3 and 7 points are projective spaces; so
we assume only Axioms (a), (b}, (d). The proof resembles the arguments in Section 8.5, We have
to identify the points with the non-gsero vectors of a vector space over GF(2); so let V = X U {0},
where 0 is a new symbol. Define addition by the rules

s v+ 0=0+v=2 v4+v=0 foralvelV;

sutv=w if{uy,v,w}el.
Now show that (V, +) is an abelian group. (The Veblen-Young Axiom is needed to establish the
associative law.) Then define scalar multiplication by

e 0.v=0,1v=v JorallveV;
and show that ¥ is a vector space over GF(2). The points are the non-gero vectors; check that the
lines are the triples with sum zero.

9.5. Projective planes

We first met projective planes in the section on extremal set theory; we noticed there
that the Steiner triple system of order 7 is an example. We repeat the definition.

A projective plane of order ¢ consists of a set X of ¢° + ¢ + 1 elements called
points, and a set B of (g + 1)-element subsets of B called lires, having the property
that any two points lie on a unique line.

(This is slightly different from the definition we gave before, where this property
was derived from the property that any two lines meet in a unique point; but the
two definitions are equivalent.)

The only possible projective plane of order 1 is a triangle. From now on, we
assumeé that the order is greater than 1. The geometry PG(2, ¢) is a projective plane
for any prime power g.

We list some basic properties of projective planes.

(9.5.1) Proposition. In a projective plane of order g, the following hold:
® any point lies on ¢ + 1 lines;
¢ two lines meet in a unique point;
e there are ¢> + g + | lines.

PrOOF. Take a point p. There are g(g + 1) points different from p; each line through
p contains ¢ further points, and there are no overlaps between these lines (apart
from p}. So there must be g 4 1 lines through p. Now let L, and L; be lines, and p 2
point of L;. Then the g + 1 points of L; are all joined to p by different lines; since
there are only g + 1 lines through p, they all meet L; in a point; in partficular, L,
meets L,. Finally, counting paits {p, L) with p € L, we obtain
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Bl-(g+1) =(¢"+q¢+1)-(g+1),
so |Bl=¢*+q+1.
This shows that there is a ‘duality principle’ for projective planes. Let (X, B) be
a projective plane. Let X' = B and B’ = {8; : ¢ € X}, where
Bo={LeB:zec L)
then (X', B’) is also a projective plane of order ¢. Its points and lines correspond to
the lines and points of the original plane.

For which numbers g do projective planes of order g exist? We have seen that
they exist for all prime powers. The main non-existence theorem is the celebrated
Bruck-Ryser Theorem:

(9.5.2) Bruck-Ryser Theorem
If a projective plane of order n exists, where n = 1 or 2 (mod 4),
then n is the sum of two squares of integers.

The proof is given in Section 9.8. The theorem shows, for example, that there
is no projective plane of order 6, a fact connected with Euler’s officers, as we will
see. However, since 10 = 12 4+ 3%, the question of whether or not a projective
plane of order 10 exists is not resolved by our results so far. This question was
finally settled in the negative by Lam, Swiercz and Thiel in 1989, after several large
computations taking a number of years. The existence question for a plane of order
12 is unresolved at present.

How do we recognise the special planes PG(2,¢)? It turns out that they are
precisely the {finite) projective planes in which the classical theorems of Desargues!
and Pappus? are valid.

(9.5.3) Desargues’ Theorem for II
Let a,b,¢) and azb;c; be triangles in the projective plane I such
that the lines a,az, b, b; and ¢;c; are concurrent. Let p = & ¢, Nbacy,
g = c1ay N caas, and r = a3 by N azd;. Then p, g, v are collinear.

! Desargues was a contemporary of Descartes; their advocacy of geometric and algebraic methods
respectively created a rivalry between them.

2 Pappus was one of the last of the classical Greek geometers. His work, the Collection, was important
in the preservation of their heritage.
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ay

24

Fig. 9.3. Desargues’ Theorem

(9.5.4) Pappus’ Theorem for II
Let a,b,c,d, e, f be points of the projective plane I, such that a,c, e
are collinear and b,d, f are collinear. Let p = abN de, ¢ = bcNef,
r = ¢d N fa. Then p, q,r are collinear.

Fig. 9.4. Pappus’ Theorem

(8.5.5) Theorem. The following conditions are equivalent for a finite projective plane
II:
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o 1] is isomorphic to PG(2,q) for some prime power g;
o Desargues’ Theorem holds in I1;
¢ Pappus’ Theorem holds in II.

We now develop a connection with the theory of Latin squares. First, we define
a related geometric structure. An affine plane of order ¢ consists of a set X of ¢°
points, and a set B of g-element subsets of X called lines, such that two points lie
on a unique line. The Steiner triple system on 9 points is an example of an affine
plane.

Two distinct lines of an affine plane clearly have at most one common point.
Unlike a projective plane, lines may be disjoint. We call two lines perallel if they are
either equal or disjoint.

(9.5.6) Proposition. In an affine plane of order g,
(i) any point lies on q + 1 lines;
(if) there are q(q + 1) lines altogether;
(iii) (Buclid’s parallel postulate} if p is a point and L a line, there is a unique line L'
through p parallel to L;
(iv) parallelism is an equivalence relation; each parallel class contains g lines which
partition the point set.

ProoF. We begin as before. If p is a point, the g% — 1 points different from p have the
property that each lies on a unique line through p, and each line through p contains
g — 1 further points; so there are (¢ — 1)/(¢ — 1) = ¢ + 1 lines through p. Now
double counting shows that there are g2 - (¢ + 1)/g = ¢(g + 1) lines altogether.

Let p be a point and L a line. If p € L, then clearly L is the unique line through
p parallel to itself, since any two such lines intersect in p. Suppose that p ¢ L. Then
p lies on ¢ + 1 lines, of which ¢ join it to the points of L; so exactly one is disjoint
from L.

The relation of parallelism is, by its definition, reflexive and symmetric, and we
have to show that it is transitive. In other words, two lines L, L’ parallel to the same
line I’ are parallel to one another, This is clear if two of the three lines are equal,
so suppose not. If L and L’ have a point p in common, then they both pass through
p and are disjoint from L/, which is impossible. So L and L' are disjoint.

Clearly each parallel class contains exactly one line through any point. Thus, the
g + 1 lines through a point p contain representatives of all the parallel classes. To
see the same thing another way, observe that each parallel class contains ¢*/g = ¢
lines, since these lines are pairwise disjoint and cover the point set; so there are
g(q+1)/q = ¢ + 1 parallel classes,

(9.5.7) Theorem. A projective plane of order q exists if and only if an affine plane
of order q exists.

Proor. We have to construct each type of plane from the other. Suppose that (X, B)
is a projective plane. Let L be a line, and set Xo = X \ L and

Bo={L'\L:L'€B,L' #L}.
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(In other words, we remove a line and all of its points.) There are (¢°+¢+1)—(g+1) =
¢ points in X,; each line has (¢ + 1) — 1 = ¢ points, since any line meets L in a
unique point; and two points lie in a unique line. So (X, Bo) is an afline plane.

Conversely, suppose that (X,,Bo) is an affine plane. Let Y be the set of
parallel classes of lines in this plane. We take the point set X to be X, UY; then
|X| = ¢+ g + 1. There are two types of new lines. For each line L € By, set
L* = LU{C}, where C is the parallel class containing L; also take ¥ as a new line,
Thus the new structure is (X, B), where

B={L*':LeBJU{Y}

Any line has ¢ + 1 points, since one new point is added to each old line L, and
there are g+ 1 parallel classes. We have to show that two points of X lie in a unique
line. There are several cases:

® two points z,y in X, lie in a unique old line, hence a unique new line of the
first kind;
® given a point z € X, and a parallel class C' € Y, there is a unique line containing

z in the parallel class C, hence a unique new line of the first kind containing

both;

e two parallel classes lie in a unique new line of the second type, namely Y.
So (X, B) is a projective plane,

The process used above to extend an affine plane to a projective plane is called
‘adding a line at infinity’. The line Y is the line at infinity, and its points are the points
at infinity, the points where parallel lines of the affine plane meet. This is exactly the
procedure which turns the Euclidean ‘picture plane’ into the real projective plane.

We now make the connection with orthogonal Latin squares, and exhibit affine
planes as the solution of a different kind of extremal problem. Recall the definition
of a Latin square of order n (from Chapter 6): it is an » X n matrix with entries
1,2,...,n, having the property that each entry occurs exactly once in each row or
column. Also, two Latin squares A = (q;;) and B = (b;;) are orthogonal if, for
any pair (k,7) of elements from {1,...,n}, there are unique values of { and 5 such
that a; = k, b;; = L. A set {4;,...,A,} of Latin squares is called a set of mutually
orthogonal Latin squares (MOLS) if any two squares in the set are orthogonal. We
saw that there cannot be more than » — 1 MOLS of order n.

(9.5.8) Theorem, There exist n — | MOLS of order n if and only if there is an affine
plane of order n.

Proor. Given a set {A4,,..., A} of MOLS, we build a geometry of points and lines
resembling a ‘partial affine plane’, We take the points to be the cells of an n x n
array:
X={(t75):¢i=1,...,n}

There are three types of lines:
(a) horizontal lines, of the form {{z,5): z = 1,...,n}, where jisfixed ( = 1,...,n);
(b) vertical lines, of the form {(i,y) :y =1,...,n}, where i is fixed (i = 1,...,n);
(c) for each square A, (m = 1,...,7), and for each entry k (k = 1,...,n), the set

{(G,5) : (Am)i; = R}
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Clearly there are n? points, and any line contains » points.
]

We claim that two points lie on at most one line. This is clear for horizontal or
vertical lines; and the definition of a Latin square guarantees that two points of a
type (c) line lie in different rows and columns. Furthermore, lines of type (c) coming
from the same square A, are disjoint. So consider two lines of type (c), defined by
square A,,, and entry k; and by square A, and entry k; respectively. Could they
have two points (i1, 1) and (iz, j2) in common? If so, then in both these positions
the square A, has entry k; and A,,, has entry &, contradicting orthogonality.

Now any point p lies on r + 2 lines: one horizontal, one vertical, and one for
each of the squares. These lines contain (r + 2)(n — 1) points other than p. So
14 (r+2)(n—1) €n? whence r < n — 1, giving another proof (more-or-less the
same as the earlier one) of the upper bound. Equality holds if and only if any two
points lie on a line, that is, the geometry is an affine plane.

Conversely, suppose that an affine plane of order » occurs. It has n? points
and n + 1 parallel classes of lines. We select two parallel classes {H;,...,H,} and
{",.-.,Va} of lines (to be the horizontal and vertical lines). Now any point lies on
a unique horizontal line H; and a unique vertical line V;; we can give this point the
coordinates (z, j).

Now let {L1,..., L.} be any further parallel class, and define a matrix A by the
rule that A;; = k if and only if (¢,7) € L. It is easily checked that this matrix is a
Latin square. Furthermore, the matrices obtained from different parallel classes are
orthogonal. So we obtain a set of n — 1 MOLS from our affine plane.

REMARK. Given any set of r MOLS of order n, a ‘geometry’ can be constructed
as in the above proof. It has n? points and »(r + 2) lines, with each line having n
points, two points in at most one line, and the lines falling into r + 2 parallel classes.
Such a geometry is called a net.

9.6. Other kinds of geometry

Finite geometers have produced a bewildering variety of new types of geometries,
usually defined by lists of axioms: affine spaces, polar spaces (and affine polar
spaces), partial and semi-partial geometries, generalised polygons, near-polygons,
buildings, etc. In this section, I will say a little about two of these types, which are
closely related to projective spaces.

We have already seen the relation between projective and affine planes. Not
surprisingly, the same can be done in any dimension. We define the n-dimensional
affine geometry AG(n,q) over the field GF(g) to be obtained from the projective
geometry PG(n,¢) by designating a hyperplane H (a subspace of codimension 1) as
being ‘at infinity’ and deleting it, together with all the subspaces it contains.

Just as in the plane case, there is a cartesian representation. If the underlying
vector space V(n + 1,q) consists of vectors with coordinates (z,...,z.41), we can
take the hyperplane at infinity to have equation z,,; = 0; then any non-infinite
point has a unique representative with z,+1 = 1, say (21,...,%x,1), and we can
represent it uniquely by the n-tuple (z1,...,2,). We can regard this as a vector of
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V(n,g). Now the whole geometry can be represented in V = V(n,g), as follows:
k-flats turn out to be all cosets W = v of k-dimensional vector subspaces W of
V. (This works even for points: the only 0-dimensional subspace is {0}, and its
cosets are all the singleton sets {v}, which can be identified with individual vectors
v € V.) Now it is clear that a flat of dimension & contains ¢* points. The number
of such flats is g»~* [’;]q: for there are [:]q choices of the vector subspace W, and
g" choices of the coset representative v, but ¢* of these give rise to the same coset.
Summarising:

(9.6.1) Proposition. AG(n, g) has ¢ points. It has g"~* [’,:]q flats of dimension k, each

of which contains q* points.

There are theorems about recognition of affine spaces, like the Veblen—Young
Theorem but more complicated. We won’t pursue this any further (but see the
discussion of affine Steiner triple systems in Section 8.5).

Now we examine briefly a class of geometries which axiomatise (among other
things) the nets, which arose in connection with orthogonal Latin squares and affine
planes in Section 9.5.

Let s,t,a be positive integers. A partial geometry with parameters s,2,0 is a
geometry of points and lines for which the following axioms hold:
® every line is incident with s + 1 points, and any point with ¢ + 1 lines;
® two points are incident with at most one line (and two lines with at most one
point — but this is equivalent to the preceding!);
e if the point p is not incident with the line L, then there are exactly a points of L
collinear with p (or, equivalently, exactly o lines through p concurrent with L).
The comments in parentheses demonstrate that the dual of a partial geometry with
parameters s,#,« is a partial geometry with parameters ¢, 5, a. (The dual is defined in
the same way as for projective planes in Section 9.5)) Note that 1 < a < min(s,¢)+1.
Part of the motivation for studying partial geometries is that they include many
other types of structure as special cases, Let us just notice two cases.

A partial geometry with @ = s 4 1 has the property that any two points lie on a
unique line. (For let p and ¢ be points, and L a line containing ¢. If L also contains
p, we're done; else, by the third axiom and the fact that ¢ = |L|, every point of L
(and in particular g) is collinear with p. Convetsely, a structure in which two points
lie on a unique line and every line has a constant number of points, is a partial
geometry with @ = s + 1. These include projective and affine planes, projective and
affine spaces of arbitrary dimension (where lines are 1-flats), Steiner triple systems,
and complete graphs (with two points per line).

A net (obtained from a family of r MOLS, as in Section 9.5) is a partial geometry
with s=n—1,¢=r —1, @« = r — 1. (The parameters s and ¢ are clear. Now, if p
is not on the line L, then every line through p meets L except for the unique line
parallel to L.

Conversely, let G be a partial geometry with e =¢. Let n =s+1landr =t + 1,
Calling two lines parallel if they are equal or disjoint, we see that, given any point
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p and line L, there is a unique line L’ through p parallel to L. Hence parallelism
is an equivalence relation, and each parallel class covers all the points of G once.
Now every line has n points. It follows that every parallel class has » lines (since a
line not in that parallel class meets each line in the class once), and so there are n?
points altogether. Thus G is a net.

We conclude that nets are the same as partial geometries with & = ¢. In
particular, & = ¢ = 1 defines a square grid.

A very important kind of partial geometry consists of generalised quadrangles,
defined by the condition that & = 1. We see that square grids are generalised
quadrangles; but there are many others, Exercise 12 gives a simple construction of
one.

9.7. Project: Coordinates and configurations

As you might expect, the projective planes PG(2,q) have many special properties
not shared by arbitrary planes. The proofs of these properties must involve the
algebraic structure: in other words, we work with coordinates rather than with the
geometric configurations they represent. In this section, we will see how to set up
coordinates, and then use them to prove one of the most famous theorems of finite
geometry, Segre’s Theorem,

Let FF = GF(gq). The points of PG(2,q) are 1-dimensional subspaces of the
vector space ¥V = V(3, F). Each point is spanned by a non-zero vector (z,y, z}; but,
of course, any non-zero multiple (cz, cy, cz) would span the same point. We use the
notation [z, ¥, z] for the point spanned by (z,y, z), so that [z,y,2] = [cz, cy, cz] for
any ¢ # 0. Then z,y, z are called homogeneous coordinates for the point.

(An alternative procedure would be to call two non-zero vectors egquivalent if
one is a constant multiple of the other, and then define points to be equivalence
classes of vectors.)

Any line can be represented by a linear equation ax + by + cz = 0, where a, b,¢
are not all zero. We see that multiplying ¢,b,c by a constant doesn’t change the
set of points on the line; so we can also represent lines by equivalence classes
(or 1-dimensional subspaces) [e,b,c]. (In algebraic terms, lines, or 2-dimensional
subspaces of V, are represented by 1-dimensional subspaces of the dual space V*\)

We can find unique representatives of the points and lines at the cost of
distinguishing cases. For this purpose, we take the line z = 0 (represented by
[0,0,1]) to be the line at infinity. Now any point not on this line (i.e., in the
affine plane) has z # 0, and so has a unique representative [z,y,1] (obtained by
multiplying through by the inverse of the third coordinate): this corresponds to the
usual Cartesian coordinates (z,y} in the affine plane. There are ¢ points of this
form. Similarly, points on the line z = 0 either have x # 0 (in which case thereis a
unique representative [1,m, 0]), or have 2 = 0 as well (there is a unique such point,
namely [0, 1,0]). This gives the ¢ + | points on the line at infinity, making ¢ + ¢+ 1
lines altogether,

Now we consider the lines. One of them is the line at infinity, [0,0,1]. For
most other lines, as usual in coordinate geometry, we can take the equation to be
y = mz + c: this line has slope m and y-intercept ¢ in the standard way. (Its
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affine points are those [z,y, 1] for which = and y satisfy this equation.} In terms of
homogeneous coordinates, the equation is y = mz + ¢z, or [m, —1, c]; it contains the
point [1,m,0] of the line at infinity. The remaining lines (those with ‘infinite slope’)
have equation z = ¢, which in homogeneous coordinates is z = cz or [—1,0, ]; they
pass through the point [0, 1,0].

We are going to find all the ovals in the planes PG(2,¢) with ¢ odd. First we have to define
ovals, and prove a few of their properties.

An oval in a projective plane is a set () of points with the properties that no three of its points
are collinear, and it has a unique tangent at each of its points (a line meeting it in no further
point). It's clear that this definition is abstracted from the intuitive notion of an oval in the real
plane (exemplified by any smooth convex curve); but intuition doesn’t always serve us well in finite
geometry.

Given an oval O, any line of the plane meets O in at most two points; we call a line L a secant,
tangent or passant according as |[LNO| =2, 10r 0. If pis a point of O, then p lies on g + 1 lines
(where g is the order of the plane), of which one is a tangent and the other g are secants, each
containing one further point of 05 so [0 = ¢ + 1.

In PG(2,g), there is an important special class of ovals, called conics. A conic C is the set of
points satisfying a non-singular quadratic equation: thus

¢ ={[z,y,2) : az? + by® + c2% + fyz + g2z + hay = 0},

where the quadratic form is non-singular (this means that it cannot be transformed into a form in
less than three variables by any non-singular linear substitution of the variables z,y, z). Note that,
because every term in the quadratic form has degree 2, if (%, y, z) satisfies the equation, so does
(e=, ey, c2); so our definition does make sense.

Any conic is an oval, To see this, take a line L, which (by choice of coordinates, i, a
linear substitution) we can assume is the line z = 0, The points of C N L are those [,y,0] for
which ez? + by? + hzy = 0. Now we cannot have a = b = s = 0; for then the quadratic would be
2(g2 + fy+ez) = 0, and a linear substitution would change it to 2z = 0, involving only two variables.
If a # 0, then the point [1,0,0] doesn't satisfy the equation; any other point has a representative
[#,1,0), and lies on the conic if and only if az® + hz + 6 = (0, and this quadratic equation has at
most two solutions. The argument is similar if b # 0. Finally, if @ = b = 0, the equation is hzy = 0,
and there are two points which satisfy it, namely [1,0, 6] and [0, 1, 0].

In the affine plane, there are three famihar types of conic: the ellipse, parabola, and hyperbola.
But the three are equivalent in the projective plane. If we take a conic C in PG(2, g), and choose
a line L to be the line at infinity, then the conic becomes a hyperbola, parabala or ellipse in the
usual fashion if L is a secant, tangent or passant respectively. For example, consider the conic with
equation 2y = 22, If we choose z = 0 to be the line at infinity, the affine form of the equation is
2y = 1, a hyperbola (put z = 1); if y = 0 is the line at infinity, the affine form is z = 2%, a parabola.

(9.7.1) Segre’s Theorem. If ¢ is an odd prime power, then any oval in PG(2, ¢) is a conic.

ProoF. Let O be an oval. We begin with some combinatorial analysis which applies in any plane of
odd order; then we introduce coordinates.

StEP 1. Any point not on O lies on 0 or 2 tangents.

Let p be a point not on . Since |[Q]| = ¢ + 1 is even, and an even number of points lie on
secants through p, an even number must lie on tangents also. Let z; be the number of points outside
O which lie on i tangents. Now we have

Z =4,

D iz = (g+ e,
D it~ e = (g + g
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(These are all obtained by double counting. The first holds because there are ¢* points outside O;
the second because there are ¢ 4 1 tangents (one at each point of 0), each containing ¢ points not
on O; and the third because any two tangents intersect at a unique point outside O.)

From these equations, we see that (i — 2)2; = 0. But the term 7 = | in the sum vanishes (any
point lies on an even number of tangents); the terms 7 = 0 and i = 2 clearly vanish, and i(i - 2) > 0
for any other value of i. So 2; = 0 for all { # 0 or 2, proving the assertion.

ReMaRK. Points not on O are called exterior points or interior points according as they lie on 2 or 0
tangents, by analogy with the real case, But the analogy goes no further. In the real case, every line
through an interior point is a secant; this is false for finite planes. (Can you count the number of
secants through a point of each type?)

StEP 2. The product of all the non-zero elements of GF(g) is equal to —1.

The solutions of the quadratic 22 = 1 are # = 1 and 2 = —1; these are the only elements equal
to their multiplicative inverses. So, in the product of all the non-zero elements, everything except 1
and —1 pairs off with its inverse, leaving these two elements unpaired.

For the next two steps, note that we can choose the coordinate system so that the sides of a
given triangle have equations 2 = 0, y = 0 and z = 0 (and the opposite vertices are [1,0,0), [0, 1,0],
and (0,0, 1] respectively). We'll call this the triangle of reference.

SteEP 3. Suppose that concurrent lines through the vertices of the iriangle of reference meet the
opposite sides in the points [0, 1,a], [b,0, 1], and (1, ¢,0]. Then abc = 1.

(The equations of the concurrent lines are z = ay, & = bz and y = cz respectively; the point of

concurrency must satisfy all three equations, whence abe = 1.)

ReEMarK. This result is equivalent to the classical Theorem of Menelaus,

S7TEP 4. Let the vertices of the triangle of reference be chosen to be three points of O, and let the
tangents at these points have equations z = ay, ¢ = bz and y = ex respectively. Then abc = —1.
Proof: There are ¢ — 2 further points of O, say py,...,p;—2. Consider the point {1,0,0]. It
lies on the tangent z = ay, meeting the opposite side in [0, 1, a}; two secants which are sides of
the triangle; and g — 2 further seca.nts, through p1,...,p;—2. Let the secant through p; meet the
opposnte side in [0 1 a.] Then aH -; 6i = —1, by Step 2. If b;, ¢; are similarly defined, we have also

bT1 2 b = c[]%22 ci = —1. Thus \
-
abe H(a.-b,-c.-) = -1,

i=1
But, by Step 3, aib;c; = 1fori=1,...,¢—2; s0 abc = —1.
Srep 5. Given any three points p, ¢,r of O, there is a conic C passing through p, ¢, r and having the
same tangents at these points as does O.
Proof: Choosing coordinates as in Step 4, the conic with equation

yz —ezx +caxy =0

can be checked to ha.ve the required property, (For example, {1,0,0] lies on this conic; and, putting
z = ay, we oblain ay® = 0, so [1,0, 0] is the unique point of the conic on this line.)

Srep 6. Now we are finished if we can show that the conic C of Step 5 passes through an arbitrary
further point s of 0.

Let ¢’ and C’ be the conics passing through p, ¢, s and p, r, s respectively and having the correct
tangents there. Let the conics C, ' and C' have equations f =0, f' = 0, f” = 0 respectively. (These
equations are determined up to a constant factor.) Let Ly, Ly, L, L, be the tangents to O at p,¢, 1, s
respectively. Since all three conics are tangent to L, at p, we can choose the normalisation so that
£, F!, f* agree identically on L,.

Now consider the restrictions of f* and f' to L,. Both are quadratic functions having a double
zero at s, and the values at the point L, N L, coincide; so the two functions agree identically on L,.
Similarly, f and f’ agree on L,, and f and f’ agree on L,. But then f, f' and f’ all agree at the
point L, N L, So the quadratic functions f* and f' agree on Ly, L,, and L, O L, which forces them
to be equal, So the three conies coincide, and our claim is proved (and with it Segre’s Theorem).
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9.8. Project: Proof of the Bruck—Ryser Theorem
In this section, we prove the Bruck-Ryser Theorem:

Ifn=1o0r2 (mod 4) and a projective plane of order n exists, then
n is a sum of two squares of integers.

The proof uses a fair amount of number theory. It also has a very ad hoc appearance;
you may wonder how anybody ever thought of it! In fact, there are deeper and
more general number-theoretic regions lying hidden here, for relating integer zeros
of quadratic forms to zeros modulo primes, going by the name of Hasse-Minkowski
theory, which have important applications in combinatorics. The argument here can
be regarded as the general argument translated into a simpler form in the special
case.

We need four ‘facts’ from number theory, Proofs and discussions of these will be given after the
proof of the Bruck~Ryser Theorem.

Fact 1. The “four-squares identity’:
(af + 0} +a3+ad)(ef +2f+ 25+ o) = 0] +od +1i+4d,
where
= G171 — 822 — d323 — G424,
fo = @22+ az2), + 2324 — A4%3,
¥3 = a,T3 + 43%) + 24%2 — 224,
4 = a124 + a4 + A2T3 — a3y,
Facr 2, If p is an odd prime, and there exist integers z;,%3, not both divisible by p, such that

z? + 23 =0 (mod p), then p is the sum of two integer squares. The analogous result holds for four
squares.

FacT 3. Every positive integer is the sum of four integer squares.

Facr 4. For any integer n, if the equation 2% + ¥ = n.z? has an integer solution with z, y, z not all
gero, then n is the sum of two integer squares (that is, the equation has a solution with z = 1).

Proor oF BRUCK—RYSER THEOREM. Suppose that there is a projective plane of order n, where n = 1
or 2 (mod 4). The number of points of the plane is N = n?+n+1; and we sec that N =3 (mod 4).

Let A be an incidence matriz of the plane, an N x N matrix with rows indexed by points and
columns by lines, with (i, ) entry equal to 1 if the *P point is on the j'* line, 0 otherwise. Then
AAT has (i, ) entry equal to the number of lines containing the 6*" and j*" points, which is 7 + 1
if i = j, and 1 otherwise; that is,

AAT =nl+J,
where J is the matrix with every entry 1.
Let z,...,2n be indeterminates, and let = = (z1,...,2n). Let 24 = z = (21,...,2n); then
21,...,zn are linear combinations of #;,..., ¢y with integer coefficients. We have

220 =2AA s =nzz" +2J2,
that is,
24+ .+ =n(e? +...+2}) + v?,

where w = 2; + ...+ zn. We take a new indeterminate zy4, and add nz%, to both sides of the
abave equation, Note that N + 1 is divisible by 4, Write n = a? + o} + a2 + a3 (by Fact 4), and use
the four-squares identity (Fact 1) to write

"(4‘-'24.'4.1 +...+ 1‘:21.'4.4) = y§i+l +...+ y§;+4,
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where the y's are linear combinations of the z’s. We have
z12+...+z,2\,+nx?\,+l = yf+»--+y?v+1 + w?.

In the next step, we make a number of specialisations, each expressing some &; as a rational
linear combination of other 2's. Note that the quadratic is positive definite, so, no matter how we do
this, the resulting form will involve all the variables. To begin with, 2, is involved in at least one y
and at least one z; without loss of generality, it is involved in y; and z;. If it has different coefficients
in these two expressions, we impose the condition 3 = z); otherwise, we impose 3 = —2). In either
case, we can express z) in terms of the other z’s; and also 2z} = yf, so this term can be cancelled.
Now repeat this process to cancel the terms y? and 2? for i = 2,..., N, obtaining finally

m‘?v“ = .‘IJ?V-H + wz'
where yy,, and w are rational linear combinations (that is, rational multiples) of x4 1. So we can
choose an integer value of x5, such that yn1 and w are also inlegers, and we have a non-zero
solution of the above equation in integers, By Fact 4, n is a sum of two integer squares. The theorem
1s proved.

We now return to the proofs of the four ‘facts’.

Proor oF Fact 1. Straightforward calculation. But the result has a deeper significance. The
quolernions are a number system H extending the complex numbers. They have the form
a = dy + i + daj + a4k,
where i2 = j2 = k¥ = —1, ijjk = —12 from which it follows that ij = k, ji = ~k, jk = i, kj = —i,
ki = j, ik = —j. It is easily checked that
(a1 + 621 + agj + ask)(z1 + 221 + xaj + £4k) = 31 + yoi + wai + yak,
where 3, ...,y4 are as in Fact 1. There is a ‘norm’ defined on the quaternions by
lles + a2i+ asj + aakl| = af + af + af + af;
the four-squares identity says that
flall - [l = llazl|-

If we treat the complex numbers similarly, using the norm |[|a|| = |a|? we obtain a ‘two-squares

identity’

(@} + ad)(2? + x2) = (@121 — a222)? + (a122 + a2z4)?.
There is also an ‘eight-squares identity’, related to a number system called the octontons or Cayley
numbers.

Proor of Fact 2. We are given that rp = 2? + 23, for some positive r; take an expression of this
form in which r is as small as possible. We have to prove that » = 1. So suppose not. Choose uy, u2
such that u; = 21 (mod #), us = —29 (mod r), and |u;| < #/2 for i = 1,2, Then

witulz=2l422=0 (mod#),
say u% + ¢} = s. Then s < r, because of the bounds on u; and ;. We have
r2sp= (mf + a:%)(uf + u%) = (2141 — 1:2u2)2 + (®1u2 + 2:2u1)2
by the two-squares identity. We have
2uy — 22ug = &2 4 22 =0 (mod 7)
and
T1ug 4 2ouy = 21T — 2221 =0 (mod 7),
so the equation has a factor »2, and we obtain
sp=4 +v3
for gy = (21%1 — 22u2)/r, Y2 = (2142 + 22u1)/r. But this contradicts our choice of r, since s < r.
The argument for four squares is very similar.

3 These formulae were discovered by Hamilton, while walking by a canal in Dublin. He was so
pleased with his discovery that he wrote it on a bridge he passed.
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Proor oF Fact 3. According to the four-squares identity, if two numbers are sums of four squares,
then so is their product. So it will suffice to show that every prime is the sum of four squares. Clearly
2=12 4 1% 4 02 + 0%, so we need only deal with odd primes.

We need another fact. Let p be an odd prime. A non-zero congruence class m mod p is called
a quadratic residue (QR) if the congruence m = z? is solvable, and a quedratic non-residue (QNR)
otherwise. Now, of the p — 1 congruence classes, half are QRs and half are QNRs, and the product
of two QNRs is a QR. (See Exercise 12.)

Now we sepatate two cases.
Case 1: —1 is a QR. In ather words, the congruence z?> + 1 =0 (mod p) has a solution. By Fact 2,
p is a sum of two squares.
Case 2: —1 is a QNR. Let m be the smallest positive QNR. Then —m and m — 1 are QRs, and so
the congruences x> =m — 1 (mod p), y* = —m (mod p) are solvable. But then

24+ +12=0 (mod p),
and by Fact 2, p is a sum of four squares.

Proor or Facr 4, First, we argue that it suffices to prove the result for squarefree numbers n. For
suppose it is true for squarefree n, and let n = mu? with m squarefree; let 22 + y* = n2?, where
z,y,z are not all zero. Then z? + y® = m(uz)?. By assumption, m is a sum of two squares, say
m =a® +b%; and then n = (aut)2 + (bu)2

So let n be squarefree, say n = p; ...px, where py,...,p; are distinct primes; and suppose that
22 4+ 4* = n2?, where x,y, 2 ate not all zero. We may suppose that ,y, z have no common factor.
Then z and y are not both divisible by p:; for if they were, then p? divides nz?, contradicting the
facts that p} doesn’t divide n and that p; doesnt divide z. Now by Fact 2, p; is a sum of two squares.
This holds for all <. By applying the two-squares identity £ — 1 times, we see that n is a sum of two
squares, as required.

9.9. Appendix: Finite fields

This section gives an algebraic proof of the basic existence result (due to Galois) for
finite fields, cited in the first section of this chapter. The details may be somewhat
sketchy, but a standard algebra textbook will fill them in for you.

The proof requires a technical result, the unigueness of splitting field. First, a definition. Let F
be a field. We call a field containing I an extension of F. Let E1, E be two extensions of F'. We say
that £, and E; are F-isomorphic if there is an isomorphism from E), to Ey which fixes every element
of F.

Step 1. Let F be a field, f(2) an irreducible polynomial over F. Then there exists an extension E of
F such that, f(x) hes a root in E. Any two such fields which are minimal with respect to inclusion
are F-isomorphic.

An example of such a field is the quotient ring F(z]/(f(z)), where F[z] is the polynomial ring
over F and (f(z)) the ideal generated by f(z). (Since f is irreducible, the ideal it generates is
maximal, and the quotient is a field.) Now, if E) and E; are minimal extensions of F° containing
roots oy and oy of f() respectively, then every element of E; is expressible as a polynomial g(a;) in
a; with coefficients in I, two polynomials representing the same element if and only if their difference
is divisible by f; and the map which takes g(ay) to g(a2) is an F-isomorphism from E, to E».

The unique minimal extension of F containimg o is denoted by F(a).

It follows by an easy induction that, if f(2) is any polynomial over F, then there is an extension
E of F such that f has all its roots in E; that is, f can be factorised into linear factors over £. (Just
adjoin roots of f(z) one at a time.) A minimal such extension is called a splitting field of f(z) over
F,

The degree of a field extension E of F is its dimension as a vector space over ' (when we forget

multiplication in E and remember only how to add elements of E or multiply them by elements of
),
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Step 2. Any two splitting fields of f(x) over F are F-isomorphic.

This is proved by induction on the degree of one of the splittimg fields. If the degree is 1, so
that f(z) already splits in F, the result is clear. So suppose not. Let E; and E, be splitting fields
of f(z) over F. Let a) be a root of f(2) in E, but not in F, and a2 a root of the same irreducible
factor of f(z} in E9. Then there is an F-isomorphism from F{a1) to F(as) carrying a1 to a,, by
Fact 1; so we may suppose that oy = a;. Now E, and E; are splitting fields for f(z) over F(a,),
with smaller degree than they have over F; by induction, they are F'(a))-isomorphic (and, @ fortiors,
F-isomorphic).

Now we turn our attention to finite fields.
Step 3. Let F be a finite field. There exists a prime number p such that p-a =0 for all a € F, where
pe=at+a+...4+a p terms.

The additive group of F is finite, so its elements have finite order. Suppose that the element 1
has order p; that is, p- 1 = 0. Then p is prime; for if p = mn with m,n > 1, then (m-1}(n-1) =0,
but neither m - 1 nor n- 1 is zero (since, by definition, p is the smallest integer & for which k-1 = 0).
But this contradicts the fact that F' has no divisors of zero.

The prime p is called the ckaracteristic of F.
Step 4. The number of elements in a finite field FF is a power of the characteristic of F.

This follows from (9.2.1), once we check that F is a vector space over Z/(p). (In fact, I is an
extension of Z/(p), where Z/(p) consisis of the elements 0,1,...,(p — 1) -1 of F.)

Step 8. If ' has ¢ elements, then F is a splitting field of the polynomial % — z over Z/(p), where p
is the characteristic of F.

For the multiplicative group of F has order ¢ — 1, so all non-zero elements satisfy 29-1 = 1,
whence also 2¢ = r; this polynomial is also satisfied by 0. But a polynomial of degree ¢ cannot have
more than ¢ roots; so the elements of F are all the roots, and # is a splitting field.

Now Step 2 shows the uniqueness of the field with ¢ elements, if it exists.
Step 8. If g is a power of the prime p, then the splitting field of £? — & over Z/(p) has ¢ elements.

The derivative of the polynomial ¢ — x is —1 (remember that the characteristic divides g); this
is coprime to 2? — 2, 8o all the roots of the polynomial 29 — 2 in its splitting field are distimct, so
there are ¢ of them. We have to show that these roots form a field. So let S be the set of roots, and
a,b € S; that is, a? = a and ¢ = 4. Then

(d+b)q =al+=a+b,
(ab)? = a7 = ab,

8o @ +b,ab € S; similarly 1/a € S if a # 0. (The first equation above is non-trivial. We have

r
(a+by = Z (p)a""'.bi =a® + ¥,

. i
£=0

since the characteristic is p and divides all the binomial coefficients (’:) for 1 < i< p— 1. Then, by
induction on £,
k k *
(a+ 8P =af +¥,
and the result follows since ¢ is a power of p (Fact 4).) So S is a field of order ¢, completing the
proof.
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9.10. Exercises

1. How many additions and multiplications are needed (in the worst case) to
transform an m X n matrix into reduced echelon form?

2. For fixed ¢, show that the probability that a random n x n matrix over GF(q) is
non-singular tends to a limit ¢(g¢) as n — oo, where 0 < ¢{g) < 1.

3. Let Fy(n) be the total number of subspaces of an n-dimensional vector space
over GF(q). Prove that F;(0) = 1, Fy(1) = 2, and

Fy{n+1) = 2F,(n) + (¢" ~ F(n — 1)
for n > 1. [HINT: By (9.2.3) and (9.2.4), we have

n+1 n n n n—1
T S W RRCE e B
] q q ¢
Now sum over k.J
Prove that Fy(n) > ¢l**/4,

4. Prove :
n+ _ n ntl=Fk n
PR RS N
¢ ¢ q

in two ways: by using (9.2.3) and (9.2.4), or by dividing the k x (n + 1) matrices into
two classes according to their first column.

5. Prove that the right-hand side of the g-binomial theorem (9.2.5) for # = 1 counts
the number of n X n matrices in echelon form over GF(g), that is, satisfying the first
two conditions in the definition of reduced echelon form. How many n x n matrices
in reduced echelon form are there?

6. Prove that a set of points of a projective space is a flat if and only if it contains
the line through any two of its points. [The corresponding set of vectors of the
vector space is closed under scalar multiplication, since it is a union of 1-dimensional
subspaces. So you must show that the set of vectors is closed under addition if and
only if the set of points contains the line through any two of its points.]

7. Show that any set of m — 2 MOLS of order m can be enlarged to a set of m — 1
MOLS. [HINT: Construct the net corresponding to the given MOLS. Show that its
points fall into m sets of m pairwise non-collinear points; these sets comprise the
‘missing’ parallel class.)]

REMARK. R. H. Bruck generalised this result; he showed that any set of m — f(m)
MOLS of order m can be enlarged to a set of m — 1 MOLS, where f(m) is a
function of magnitude roughly m1/4,

8. Show that there are two non-isomorphic nets of order 4 and degree 3. (The
corresponding Latin squares are the multiplication tables of the two groups of order
4.} Show that one, but not the other, can be enlarged to an affine plane.

9. (a} Prove that there is a unique projective plane of order 3.
(b) Prove that there is a unique projective plane of order 4.



146 9. Finite geometry

10. Let O be an oval in a projective plane of even order ¢. Prove that the tangents
to O all pass through a common point p, and that @ U {p} is a set of ¢ + 2 points
which meets every line in either 0 or 2 points. (Such a set is called a hyperoval Note
that, if any one of its points is omitted, the resulting set is an oval.} [HINT: Let ;
be the number of points not on @ which he on 7 tangents. Show that zo = 0, and
calculate T-(¢ — 1)(§ — (¢ + 1))=:)]
11. Prove that, if ¢ is a prime power, then any five points of PG(2, ¢}, such that
no three of them are collinear, are contained in a unique conic. Deduce that the
number of conics is

(¢ +1+1)¢* (g —1).
12. Define a geometry as follows. The points are to be all the 2-element subsets
of {1,2,3,4,5,6}; the lines are all the disjoint triples of 2-subsets. Prove that the
geometry is a generalised quadrangle with s =t =2, a = 1.
13. Let p be an odd prime. Show that half the non-zero congruence classes mod
p are quadratic residues and half are non-residues, and that the product of two
non-residues is a residue. [HINT: Any non-zero element of Z/(p) has 0 or 2 square
roots in Z/(p). Further, multiplying by a fixed non-residue is one-to-one and maps
residues to non-residues.]

14. Write a quaternion formally as ¢ + x, where a is a real number and x a
3-dimensional vector (relative to the standard basis (i, ], k)). Show that
(e+x)+(+y)=(a+b) +(x+Yy),
(e+x)-(b+y)=(ab—xy)+ (ay + bx +x x y),

where x.y and x x y are the usual scalar and vector products (‘dot product’ and
‘cross product’) of vectors.



10. Ramsey's Theorem

Complete disorder is impossible
T. S. Motzkin (attr.)
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Ramsey numbers; applications

TECHNIQUES: Double induction; probabilistic existence proof
ALGORITHMS:
CROSS-REFERENCES:

In 1930, F. P. Ramsey' proved a lemma in a paper on mathematical logic. The lemma
has proved to be of greater importance than the theorem it was used to prove,” and
has given its author's name o an area where combinatorics, logic, topology and
probability interact. Roughly speaking, a theorem of Ramsey theory says that any
structure of a certain type, no matter how ‘disordered’, contains a much more highly
ordered substructure of the same type.

Several mathematicians (notably Hilbert, Schur and van der Waerden) had
before 1930 proved theorems which are now regarded as part of Raimnsey theory. As
Kafka in Borges’ essay,® Ramsey created his own predecessors; with the hindsight of
Ramsey’s Theorem, we can see that these independent results are closely connected.

10.1. The Pigeonhole Principle

The Pigeonhole Principle is, at first sight, not the kind of thing that you would
expect to be discovered by (and named after) a mathematician. In its simplest form,
it is rather obvious:

(10.1.1) Pigeonhole Principle
If n 4+ 1 letters are placed in n pigeonholes, thenr some pigeonhole
must contain more than one letter.

! Ramsey was a brilliant economist in the circle of Keynes. Though he died at the age of 29, he had
already made notable contributions to this discipline. He was an atheist, but his younger brother

became Archbishop of Canterbury.
2 This theorem concerned what are now called ‘indiscernible sequences’.
3 Jorge Luis Borges, ‘Kafka and his precursors’, Labyrinths (1964)
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We will see, however, that it can be quantified and generalised into some highly
non-trivial mathematics. In any event, it is clear that it is a ‘combinatorial’ result.
It bears the nane of the nineteenth-century German algebraist Dirichlet. He was
surely not the first person to discover it, but the first to make effective use of it, as
we will soon see. (By the way, can you give a formal proof?)

Even in the basic form above, it has many applications. One of these (ordering
elements in a rectangular array) is given as Exercise 1. Here is the application which
Dirichlet made, and resulted in his name being attached to the principle. It concerns
the existence of good rational approximations to an irrational number. The topic
really belongs to Number Theory, but the argument is combinatorial.

(10.1.2) Proposition. Let o be an irrational number. Then there are infinitely many
different rational numbers p/q for which
1

< —.
g2

o P

q

PrOOF. For this proof, we let {z} denote the fractional part of the real number z,
that is, {z} =2z — |z].
Our strategy is to show:

For any natural number n, there is a rational number p/q with
q < n such that |a — p/q| < 1/(ng).

Of course, we then have |o — p/q| < 1/(¢*). Moreover, since « is irrational, a # p/q,
and we can find n; with Ja — p/g| > 1/n,. Then repeating the argument with
ny in place of n gives another solution p,/¢ which is different from p/g (since
la — p/@a| < 1f(maq) € 1/my < |a — p/qg|). Continuing this process, we find
infinitely many such ‘good’ rational approximations.

Consider the n + 1 numbers {ia}, fori = 1,2,...,n + 1. We put these numbers
into the n pigeonholes (j/n,(j +1)/n), for § =0,...,n — 1. (None of the numbers
coincides with an end-point of the intervals, since « is irrational.) By the Pigeonhole
Principle, some interval contains more than one of the numbers, say {¢;a} and
{#2a}, which therefore differ by less than 1/n. Putting g = |z; — 5|, we see that there
exists an integer p such that

1
n

from which the result follows on division by n. Moreover, g is the difference between
two integers in the range 1,...,n+ 1, 50 ¢ < n.

Instead of pigeonholes, we use the terminology of colouring. The Pigeonhole
Principle states that, if » + 1 objects are coloured with r different colours, then there
must be two objects with the same colour. In order to move towards Ramsey’s
Theorem, we quantify the result further as follows.

(10.1.3) Proposition. Suppose that n > 1 4 r(I{ — 1). Let n objects be coloured withr
different colours; then there exist [ objects all with the same colour. Moreover, the
inequality is best possible.
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PRroofF. If the conclusion is false, then there are at most { — 1 objects of each colour,
hence at most 7(I — 1) altogether, contrary to assumption.

When we say that the result is best possible, what we mean is this. If fewer than
1 4 r(f — 1) objects are given, then there is some way of colouring them such that no
1 have the same colour. This too is obvious: ‘fewer than 1 + (I — 1)’ means ‘at most
r(I — 1), and the objects can be divided into = groups with at most / — 1 in each
group.

Still more generally, suppose that n > k; + ...+ k, — r + 1; let the points of an
n-set be coloured with r colours ¢y,...,c,. Then, for some value of 7 in the range
1,...,r, there exist k; points all having colour #; and this is best possible.

10.2. Some special cases

We now consider the two-player game introduced in Chapter 1.

Mark six points on the paper, no three in bne (for example, the vertices of a
regular hexagon). Now the players take turns. On each player’s turn, he draws
a line in his colour between two of the points which haven’t already been joined.
{Crossings of lines other than at marked points are not significant.) The first player
to create a triangle with all sides of his colour, having three of the marked points
as vertices, loses.

The gaine is finite, since at most (g) = 15 edges can be drawn. If you play it
with a friend, you will notice that it always ends in a win for one player; a draw is
not possible. We prove that this is necessarily so.

(10.2.1) Proposition. Suppose that the 2-elemnent subsets of a 6-element set are
coloured with éwo colours. Then there is a 3-element set, all of whose 2-element sets
have the same colour. This is not true for fewer than six points.

PROOF. Let us suppose that the colours are red and blue; let 1,...,6 be the points.
Consider the five 2-subsets 16, 26, 36, 46, 56. These are coloured with two colours; so
there must be three of the five edges which have the sane colour (by the Pigeonhole
Principle with r = 2, ! = 3). Let us suppose that 16, 26, and 36 are red. Now there
are two possibilities: if any one of 12, 23, 31 is red (say 12), there is a red triangle
(126); but if none of the three is red, then 123 is a blue triangle.

To show that six is best possible, we must colour the 2-subsets of a 5-set red
and blue without creating a monocromatic (single-coloured) triangle. If the points
are 1, 2, 3, 4, 5, let 12, 23, 34, 45, 51 be red and 13, 24, 35, 41, 52 blue.

Here are some more results of the same type.

{10.2.2) Proposition. (i) If the 2-subsets of a 9-set are coloured red and blue, there is

either a red 3-set or a blue 4-set.

(ii) If the 2-subseis of a 18-set are coloured red and blue, there is a monochromatic
4-set.

(iii) If the 2-subsets of a 17-set are coloured red, blue and green, there is a monochro-
matic 3-set.

(iv) All the above are best possible.
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PRoOF. The proofs all follow the same pattern, except for one trick in the proof of
(i). We prove {i) first for 10 points. Consider the nine edges joining one point =
to the others. By the ‘more general’ form of the Pigeonhole Principle, either there
are four red edges, or six blue edges. Suppose first that there are four red edges;
let X be the set of their four endpoints other than z. If X contains a red edge yz,
then zy=> is a red triangle; else X is a blue 4-set. Now consider the other case, six
blue edges; let Y be the set of their endpoints other than z. Now we use the result
proved above, that ¥ contains a monochromatic triangle zvw. If it is red, we are
done; if blue, then zuvw is a blue 4-set.

Now suppose there are just nine points. The only way we can avoid the above
situation is that every point z lies on exactly three red and five blue edges. But this
contradicts the Handshaking Lemma of Chapter 2. {Could there be nine people at
a convention, each of whom shakes hands exactly three times?) So the result holds
for 9 points too.

{ii) Take a set of 18 points and colour the edges. Any point x lies on 17 edges;
by the Pigeonhole Principle, either 9 are red or 9 are blue. Assume the former. By
{i), the endpoints of these 9 edges either contain a red triangle (giving a red 4-set
with z), or a blue 4-set (and we are finished).

(iii) Now take 17 points and colour the edges with three colours, red, blue and
green. A point z is joined to 16 others, so by PP six of them have the same colour,
say green. If the set X of endpoints of these edges contains a green edge yz, we
have a green triangle xyz; otherwise all edges within X are red and blue, and there
is a red or blue triangle by our earlier result.

The fact that these are best possible requires construction of colourings with 8,
17 and 16 points, not having monochromatic subsets of the specified sizes. This can
be done, but I don’t give details here {but see Exercise 6).

10.3. Ramsey’s Theorem

The results above and their manner of proof suggest their generalisation, which is
known as Rainsey’s Theorem.

{10.3.1) Ramsey’s Theorem
Let r, k,1 be given positive integers. Then there is a positive integer
n with the following property. If the k-subseis of an n-set are
coloured with v colours, then there is a monochromatic I-set, ie.,
one all of whose k-sets have the same colour.

More generally, let r,k,a,,...,a, be given. Then there exists n with the property
that, if the k-subsets of an n-set are coloured with r colours ¢;,.. ., ¢, then for some
1 in the range 1,...,r, there is an g;-set, all of whose subsets have colour ¢;.

We denote by R(r, k,) the smallest n for which Ramsey’s Theorem holds, and
by R*(r,k;ay,...,a.) the smallest n for which the ‘more general’ statement holds.
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Clearly we bave R(r, k, 1) = R*(r, ki 1,1,...,1). To familiarise the notation, check that
we proved the following results: R(2,2,3) = 6; R*(2,2;3,4) = 9; R(2,2,4) = 18;
R(3,2,3) = 17; and
R(r,Liar,...,a.) =) ai—7+1.
i=1
Moreover, there are some trivial evaluations: R(r,k,k) = k, R(1,k,[) = L. {We
always assume that k& < [, or that all of a,,...,a, are at least k, otherwise the

assertions are trivial.)
It is also true that

R (r+1,ka,...,an, k)= R*(r, k;aq, ... ,a,).

For, if there is a k-set of colour ¢,41, we have won; otherwise, only the first » colours
occur.

The proof of Ramsey’s Theorem uses induction, similar to the examples. As the
arguments for (i) and (ii) suggest, we prove the ‘more general’ assertion. We already
have the result for £ = 1, so assume that & > 1. We may assume that a; > & for all
i. By induction, we may assume that the numbers

A,‘ = R‘(?", k;al,.. g Qa1 8 — l,a,'+1,...,ar)

are defined (and the statement is true for these).

Take n =14 R*(r,k — 1;A),..., A;). Let X be a set of n points, whose k-sets
are coloured with r colours ¢y,...,c,. Take a point z € X, and let ¥ = X \ {z}.
We define a colouring of the (k — 1)-subsets of ¥ with colours ¢},...,c}, by the
rule that, for any (k¥ — 1)-subset U, the colour of U is ¢! if and only if the colour
of U U {z} is c;. By definition of n, for some 3, thetre is a ¢"-monochromatic set Z;
of size A;. By definition of A;, the set Z; contains either a set of size @; with all its
k-sets of colour c; for some 7 # 7, or a set V of size ¢; — 1 with all its k-sets of
colour ¢;. In the first case, we have won. In the second case, {z} UV is a set of size
a;, and all its k-sets have colour ¢; — by assumption for subsets not containing z,
and by the definition of the c*-colouring and the fact that all (¥ — 1)-subsets have
colour ¢} in the case of subsets containing z.

10.4. Bounds for Ramsey numbers

It is extremely difficult to calculate exact values of Ramsey numbers. Apart from
the values given in the last section, only four values are known precisely. If you
think this shows a weakness on the part of combinatorialists, try deciding any of
the following questions:

¢ Is R*(2,2;3,8) equal to 28 or 297

o Is B*(2,2;4,5) equal to 25, 26, 27 or 28?

o Is R(2,3,4) = R*(2,3;4,4) equal to 13, 14 or 157

In the absence of exact values, we rely on inequalities, upper and lower bounds.

[ stress that upper bounds come from the proof of Ramsey’s Theorem or a re-
finement of it, and lower bounds from constructions of colourings without large
monochromatic sets.
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The proof of Ramsey’s Theorem in the last section gives us a ‘recurrence
inequality’ for the Ramsey numbers, viz.

Rr,ksa1,...,0,) < L+ R (r k- 15 A1, A,),

where
A= R‘(T, k;a,,. oy im1,C; — 1.,03,‘4.1,. ..,CL-;-).

In general, this is a very tangled web which is difficult to disentangle into explicit
bounds. We consider one case where this can be done.

(10.4.1) Proposition. If ¢;,a; > 2, then
R(2,2%a1,a2) < (
Proor. If ¢; = 2, then

-2
R‘(2,2;2,a2) :R"(l,?;a;):ag = (2'{'02 ),

2-1

and the result is true; similarly, if a; = 2. So we will use induction, assuming the
result is true when either @, or a; is reduced. In the notation of Ramsey’s Theorem,

+a;—3
A = R (2,201 — 1,a3) £ (al @ )a
01—2
. o +a—3
Ay = R*2,%a1,a2 — 1) < ( 1 )1
al—-l

where the inequalities are the inductive hypothesis; so

R*(2»2;alsaz) < 1+ R‘(za 1;Ala A2)
= 14 (A + Az — 1)
= A, + A

< a1+a2—3 + a1+az—3
- a, —2 a —1
_ a+a—2

- a1—1 ’

where the second line comes from the Pigeonhole Principle (the case ¥ = 1 of
Ramsey’s Theorem) and the last is the standard binomial coefficient identity (1:1) +

&) =)

(10.4.2) Corollary. R(2,2,) < (2;_— 12)'
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Proor. R(2,2,1) = R*(2,2;!,1) by definition.

The right-hand side here is less than 2%~2 = 4'~!, since the sum of all binomial
coeflicients (2!:2) is equal to 222, Moreover, it is larger than 4/~ /(2] — 1), since

there are 21— 1 of these binomial coefficients, and the middle one (21'__12) is the largest.

So the upper bound grows exponentially with constant 4. We conclude this section
by proving a lower bound for this Ramsey number, which is also exponential, but
with the smaller constant +/2. (The true order of magnitude is not known.) The
proof uses an important combinatorial technique known as the Probabilistic Method.

(10.4.3) Proposition. R(2,2,1) > 2(~2)/2,

PROOF. Let X be a set of n points; the size of n will be specified later. We consider
all possible colourings of the 2-subsets of X with two colours (red and blue, say).
Since there are (; = n(n — 1)/2 pairs, there are 2"(*~1/2 such colourings.

How many of these colourings contzin a monochromatic l-subset? There ate

?) choices of an l-set L. For each choice, L is monochromatic in a proportion

2/2/0=1/2 = 91=li=1)/2 of 4]l the colourings; for, of the 2'¢~1)/2 ways in which
the colours could fall on the 2-subsets of L, only two are monochromatic. So
the number of colourings which contain a monochromatic /-set does not exceed a
fraction (})2!~=¥/% of the total. (The number could in principle be calculated
exactly, using PIE; but this bound is good enough.)

Now suppose that n = |2(~%/2|, Then

(7;)21_:0-1)/2 < pig-iti-2)/2
<

the first inequality holding since (;2 <nland 1-I(1—1)/2 < —i(l — 2)/2, and
the second by definition of n. In other words, the proportion of colourings having
a monochromatic i-set is strictly less than 1. This means that there exists some
colouring which has no monochromatic l-set. Hence R(2,2,I) > n = [20-2/2|,
whence R(2,2,1) > 20-2/2, as required.

The argument can be re-phrased as follows. Instead of considering the set of
all colourings, and calculating the proportion that have a monochromatic n-set, we
can instead speak of the probability that a random colouring has a monochromatic
l-set. This probability p is bounded by the expected number of monochromatic I-sets
in a random colouring, which is equal to (’521_‘('_1)/ 2 (the number of I-sets times
the probability that a given [-set is monochromatic). No mention of inclusion and
exclusion is required. It is this interpretation which led to the term ‘probabilistic
method’ for this type of argument.

In more detail:

Colour at random the set of all 2-subsets of the given n-set X, where each set has probability
1/2 of being red and 1/2 of being blue, with decisions about different sets independent, Now consider
any l-set Y. It has (;) = I(! — 2)/2 subsets of size 2. The probability that all are red is 2~7(=1)/2,
with the same probability that all are blue; so the probability that ¥ is monochromatic is twice this
number, or 21-10-1)/2,
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The expected number of monachromatic !-sels is equal to this probability multiplied by the fotal
number of l-subsets, hence (7)2:—/(1-1)/2,

If n and ! are such that this expected value is leas than one, then it cannot occur that there
is at least one monochromatic set in every colouring; hence there exists a colouring containing no
monochromatic -set.

However the argument is phrased, note that it is a non-constructive existence
proof: it shows that there must be a way of doing the colouring so that no
monochromatic /-sets are created, but it gives us absolutely no indication of how to
find one (except, possibly, choosing the colouring at random and trusting to luck).
It is generally regarded as ‘better’ to have an explicit construction of an object, in
such a way that it is possible to verify directly that it has the required properties,
than to have only an existence proof.

10.5. Applications

Here are some applications of Ramsey’s Theorem. In the first case, there is a
beautiful direct argument giving the exact bound.

(10.5.1) Proposition. There is a fanction f(rm,n) with the following property:
If zy,2,,...,2n is any sequence of distinct real numbers with N > f(m,n),
then there is either a monotonic increasing sequence of length greater than m,
or a monotone decreasing sequence of length greater than n.

Here is the proof using Ramsey’s Theorem. We take f(n,m) = R*(2,2;m +
1,n +1) — 1. Suppose that N > f(m,n), and we are given a sequence of N distinct
real numbers. Take X = {I,...,N}, and colour the 2-subsets of X as follows:
given a 2-set {i,j}, with { < j, colour it red if #; < z;, blue if z; > z;. Since
|X] > R*(2,2;m + 1,n + 1), there is either a red (m + 1)-set or a blue (n + 1)-set.
But a red set indexes a monotone increasing subsequence; for if ny < ny < ... and

all edges are ted, then =z, < ., < .... Sinilarly » Do & Tdese Qﬁ\“‘a“\“%

subsequence.

N‘ow here is the elegant direct proof, due to Erdds and Szekeres. We take the
fl'ln(.‘,tlon f(m,n) to be simply mn. So suppose that we have a sequence of mn + 1
distinct real numbers, and suppose that it contains no monotone increasing sequence
of length m + 1 or greater. For i = 1,...,m, let

K; = {k: the longest monotone increasing sequence ending at z; has length 7}.

Now we have partitioned the set {1,2,...,mn + 1} into m subsets K,,...,K,,. By
the Pigeonhole Principle, some one of these sets, say K;, contains at lea.,st n+1
members,

Now we claim that X; indexes a monotone decreasing subsequence. For suppose
.tha.t k,.l € K; with k < ! and 2 < 2,. Now, by definition of K, thete is a monotone
lncreasing sequence of length ; ending at , say z; < Zj, < ...< zj. But then

Tjh <Zp <. < a3 <oy

is a monotone increasing sequence of length ¢ 4+ 1 ending at z;, contradicting the
fact that [ € K. This claim establishes the result.
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The bound f(m,n) = mn is best possible. For consider the mn numbers
n—-1,2n—-1,....mn—Ln-22n-2,... mn—2,...,0n,...,(m—1)n

It is not hard to check that the longest mcreasing subsequence has length m, and
the longest decreasing subsequence has length n.

Another application is due to Erdcs and Szekeres. A set of points in the
Euclidean plane is convez if it contains the line segment joining any two of its
points. The convex hull of a set S of points is the smallest convex set containing
S. It can also be described as the set of linear combinations of points in S, where
the coefficients in the linear combination are restricted to being non-negative and
having sum 1. A conver polygor is a finite set of points, none of which Lies in the
convex hull of the others. Another description is that each of the points lies on a
line with the property that all the other points are on the same side of the line.

(10.5.2) Proposition. There is a function f such that, given any f(n) points in the
plane with no three collinear, some set of n of the points form a convex polygon.

ProoF. We need two preliminary facts:

FacT 1. Given any five points in the plane, no three collinear, some four of the
points form a convex quadrilateral.?

This is clear if the convex hull of the points is a pentagon or quadrilateral. So
suppose that it is a triangle, with vertices A, B, C, and let D and E be the remaining
points. Then the line DE meets two sides of the triangle, say AB and AC’ and the
quadrilateral BCDE is convex.

FacT 2. Given a set of n points in the plane, if every four points form a convex
quadrilateral, then all n points form a convex polygon.

The proof is an exercise.

Now let f(n) = R*(2,4;5,n). Given f(n) points in the plane, colour a 4-set red
if it is a convex quadrilateral, blue otherwise. By Fact 1, there is no blue 5-set. So
there is a red n-set; and, by Fact 2, it is a convex polygon with n points.

The exact value of the function f(n) is unknown.

10.6. The infinite version

As our very last item, we mention without proof the infinite version of Ramsey’s
Theorem. As usual, the prototype is the Pigeonhole Principle:
If the elements of an infinite set are coloured with finitely many colours, then
there is an infinite monochromatic subset.
Ramsey’s theorem generalises to colourings of the k-subsets of an infinite set with
finitely many colours:

* This special case of (10.5.2), due to Esther Klein, was the inspiration for the general result, which
involved an independent discovery of Ramsey's Theorem by Erd&s and Szekeres. See the comments
by Szekeres in the introduction to the volume of selected papers by Paul Erdds, The Ari of Counting
(1973).
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{10.6.1) Ramsey’s Theorem (infinite form)
Let X be an infinite set, and k and r positive integers. Suppose
that the k subsets of X are coloured with r colours. Then there
is an infinite subset Y of X, all of whose k-subsets have the same
colour.

We will discuss this result, and various extensions of it, in Section 19.4.

A remarkable recent discovery im logic is that it is possible to deduce the
finite form of Ramsey’s theorem from the infinite, but not vice verso. This fact
bas important spin-offs in logic, notably a variant of the finite form (the ‘Paris-
Harrington Theorem’) which is true but not provable from the axioms for the natural
nurabers (essentially because the ‘Paris—Harrington numbers’ grow so fast that they
are not provably computable). But we cannot follow this any further.

10.7. Exercises

1. A platoon of soldiers (all of different heights) is in rectangular formation on a
parade ground. The sergeant rearranges the soldiers in each row of the rectangle
in decreasing order of height. He then rearranges the soldiers in each column in
decreasing order of height. Using the Pigeonhole Principle, prove that it is not
necessary to rearrange the rows again; that is, the rows are still in decreasing order
of height.

2. Show that any finite graph contains two vertices lying on the same number of
edges.

3. (a) Show that, given five points in the plane with no three collinear, the number
of convex quadrilaterals formed by these points is odd.
(b) Prove Fact 2 in the proof of {10.6.2).

4. Show that, if V >> mnp, then any sequence of IV real numbers must contain either
a strictly increasing subsequence with length greater than m, a strictly decreasing
subsequence with length greater than n, or a constant subsequence of length greater
than p. Show also that this result is best possible.

5. (a) Show that any infinite sequence of real numbers contains an infinite subse-
quence which is either constant or strictly monotonic,

(b) Using the Principle of the Supremum,’ prove that every increasing sequence
of real numbers which is bounded above is convergent.

(¢} Hence prove the Bolzano-Weierstrass Theorem: Every bounded sequence of
real numbers has a convergent subsequence.

5 The Principle of the Supremum is the basic principle expressing the completeness of the real
number system. It asserts that, if a non-empty set of real numbers has an upper bound, then it has
a supremum or least upper bound.
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6. Let X be the set of residues modulo 17, Colour the 2-element subsets of X by
assigning to {z,y} the colour red if

z—y=+1,42,+4 or £8 (mod 17),

blue otherwise. Show that there is no monochromatic 4-set. [HINT: By symmetry,
we may assume that the 4-set contains 0 and 1; this greatly reduces the number of
cases to be considered!]

7. (a) Prove the following theorem of Schur:

Schur’s Theorem
There is a function f on the natural numbers with the property
that, if the numbers {1,2,..., f(n)} are partitioned into n classes,
then there are two numbers r and y such that 2,y and z + y all
belong to the same class.

{In other words, the numbers {1,2,..., f(n)} cannot be partitioned into n ‘sum-free
sets’.)
[HINT: Colour the 2-subsets of {1,2,...,N + 1} with n colours, according to the
rule that {z,y} has the i*» colour if |z —y| belongs to the i class (where IV is some
suitable, sufficiently large, integer).]

(b) State and prove an infinite version of Schur’s Theorem.

8. A delta-system is a family of sets whose pairwise intersections are all equal. (So,
for example, a family of pairwise disjoint sets is a delta-system.} Prove the existence
of a function f of two variables such that any family 7 of at least f(n,k) sets of
cardinality n contains k sets forming a delta-system.
[HINT: Construct a sequence of sets A,, Az, ... in F, and a sequence Fy,75,... of
subfamilies, such that
o F; 2 Fip for all ¢;
e AAiNA=A;NAforall A, A’ € Fj;
o A; € Fiforall j > ¢
Show that
o the sequence can be continued for m terms if F is sufficiently large (in terms of
m and n);
o if the sequence continues for (k — 1)(n 4 1) 4 1 terms, then some %k of the sets
A; form a delta-system.]
State and prove an infinite version of this theorem.

Do you regard this theorem as part of ‘Ramsey theory'?

9. Why are constructive existence proofs more satisfactory than non-constructive
ones?



11. Graphs

Only connect!
E. M, Forster, Howards End (1910)

Torics: Graph properties related to paths and cycles, especially
trees, Eulerian and Hamiltonian graphs; networks, Max-Flow Min-
Cut and related theorems; [Moore graphs]

TECHNIQUES: Algorithmic proofs; approximate solutions; [Eigen-
value techniques]

ALGORITHEMS: Graph algorithms; greedy algorithm; stepwise im-
provement

CROSS-REFERENCES: Trees (Chapter 4); Hall’s Marriage Theorem
(Chapter 6); [de Bruijn—Erdds theorem {Chapter 7}]

We have met graphs several times before, in various guises. Now, we return to
them, and consider them more systematically. Graphs describe the connectedness
of systems; typically, they model transport or commumcation systems, electrical
networks, etc. In this chapter, we concentrate on issues related to this aspect. In
Part 2, we return to graphs and look at colouring problems.

Graph theory is a cuckoo in the combinatorial nest;! it has grown to the
status of an independent discipline, though still closely linked with other parts of
combinatorics.

11.1. Definitions

We have defined a graph to consist of a set V of vertices equipped with a set E of
2-subsets of V called edges. Sometimes it is necessary to broaden the definition.?
In particular, we may want to allow loops, which are edges joining vertices to
themselves; multiple edges, more than one edge between the same pair of vertices;
and directed edges, which have an orientation so that they go from one vertex to

! This comment is not a disparagement. Graph theory has been successful because it provides
mathematicians with a large supply of interesting problems, many of them related to applications.

2 Where necessary to avoid confusion, the structure just defined is called a simple graph.
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another.® The exact details of the formal mathematical machinery needed to define
all these concepts is not too important; just note that directed edges are easily
represented as ordered pairs rather than 2-subsets of vertices. A graph with some
or all of these extended features is called a general graph; in particular, if it has
directed edges, it is a directed grapk or digraph, and if it has multiple edges, it is a
multigraph.

Most of these concepts can be expressed in the language of relations introduced
in Section 3.8. Since knowing a graph involves knowing which pairs of vertices
are adjacent, we can regard a graph as a binary ‘adjacency’ relation on the vertex
set. For a simple graph, adjacency is irreflexive and symmetric; relaxing these two
conditions allows loops and directed edges respectively. However, multiple edges
cannot easily be described m this language.

For the most part, we consider only undirected graphs without loops; but we
sometimes need to allow multiple edges. The exception is Section 11.9; a network is
most naturally based on a directed graph.

In asimple graph, we say that vertices z and y are adjecent if {z,y} is an edge;
they are non-adjacent otherwise.

We write G = (V, E) for a graph G with vertex set V and edge set E.

Two simple but important kinds of graphs are complete graphs, in which every
pair of vertices is an edge; and null graphs, having no edges at all. The complete and
null graphs on n vertices are denoted by K, and NV, respectively. Other important
graphs will appear from time to time.

A subgraph of a graph G = (V, E) is a graph whose vertex and edge sets are
subsets of those of G. Note that, if @' = (V', E') is a subgraph of G, then for every
edge ¢ € E', it must hold that both the vertices of ¢ lie in V",

Two kinds of subgraphs are of particular importance. An induced subgreph of
G is a subgraph G' = (V*, E') whose edge set consists of all the edges of G which
have both ends in V'. A spanning subgreph is one whose vertex set is the same as
that of G. Thus, for example, every graph with at most n vertices is a subgraph of
K,, and every graph with exactly n vertices is a spanning subgraph; but the only
induced subgraphs of K, are complete graphs.

An induced subgraph is specified by giving its vertex set V'; we speak of the
subgraph induced on the set V'

Now we have to consider various kinds of routes in graphs. There are several
different terms to be defined here; the differences are not very important, as you will
see. My terminology is slightly different from the standard.

A walk in a graph is a sequence

(vo, €1y, €2,U2, ..., Ep, ’Un),

where ¢; is the edge {v;_y,v;} for i = 1,...,n. We say that it is a walk from v; to v,.
The length of the walk is the number n of edges in the sequence (or one less than

3 Directed edges could arise in modelling traffic fiow in a town with some one-way streets, for
example.
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the number of vertices). It is closed if n > 0 and v, = vo. Note that there are no
restrictions; when walking, we may retrace our steps arbitrarily.

In a simnple graph, the edges in a walk are uniquely determined by the vertices;
so we often speak of the walk (v, v1,...,?,), defined by the condition that v;_, and
v; are adjacent fori = 1,...,n.

We define special kinds of walks: treks, trails, and paths. A trek is a walk in
which any two consecutive edges are distinct;? if it is closed, we also require that the
first and last edge are distinct. Thus, a trek is a bit nore purposeful than a walk:
we never retrace the edge we have just used. The last condition ensures that, in a
closed trek, we can start at any point and the result is still a trek.

A trail is a walk with all its edges distinct; a path is a walk with all its vertices
distinct (except perhaps the first and the last). The idea is that a trail might be
followed by an explorer, who is not interested in revisiting an edge he has once
explored; while a path proceeds efficiently from one place to another without any
repetition. Further, we define a ¢ircuit to be a closed path.

Note that these concepts get progressively stronger; a path is a trail is a trek.’
However, from the point of view of connections, there is no essential difference:

(11.1.1) Proposition. (a) For any distinct vertices z,y of a graph G, the conditions
that there exists a walk, trek, trail or path from z to y are all equivalent.

{b) For any graph G, the conditions that G contains a closed trek, irail or path
are all equivalent.

ProoF. Given a walk from z to y, if it is not a trek, then some two consecutive
edges are repeated, so that there is a subsequence (v,e,v’,e,v). Replacing this by
the single vertex v gives a shorter walk. The process terminates in a trek from z to
Y.

Now a trek with a repeated edge must have a repeated vertex; so it suffices to
show that, if there is a trek from « to y (with possibly z = y), then there is a path. If
the vertex v is repeated (but not as the first and last vertex), there is a subsequence
{v,...,v), which can be replaced by a single v to obtain a shorter trek. Continuing
this process produces a path. Note that a closed trek cannot be reduced to the trek
of length zero by this process.

Now define a relation = on the vertex set V by the rule: z = y if there is a path
(or trail, or trek, or walk) from z to y. We have:

= is an equivalence relation on V.

This is straightforward: there is a walk of length 0 from z to z; reversing a walk
from z to y gives a walk from y to z; and following a walk from z to y with a walk
from y to z gives a walk from z to z. (Note that the proof would be untidier if we
used one of the more special types of walk.)

4 A trek with s edges is called an s-azc in the graph-theoretic literature; but this does not convey the
sense of being intermediate in purposiveness between an walk and a trail, and also could be confused
with the use of ‘arc’ for an edge of a directed graph.

5 Mnemonic: a term later in the dictionary describes a wider concept.
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This equivalence relation, of course, defines a partition of the vertex set of G.
We define the connected components (or, for short, the components) of G to be the
subgraphs induced on the equivalence classes. Note that no edge joins points in
different equivalence classes; so the edge set of G is partitioned into the edge sets
of its components.

A graph is connected if it has just one component. Note that any connected
component of G is indeed a connected graph.

The valency, or degree, of a vertex z of a graph G is the number of edges
containing z.5 In a directed graph, we have to distinguish between the out-valency
of a vertex (the number of directed edges starting at that vertex) and the in-valency
(the number of edges ending there).

If every vertex of a graph has the same valency, the graph is called regular, and
the common valency d is the valency of the graph. We call such a graph d-valent,
and use the terms divalent, trivalent, etc. when d = 2,3, etc.

Often we will modify a graph G by removing a vertex v and all edges containing
it, or by removing an edge ¢, or by adding an edge ¢ joining two vertices not
previously joined. We use the shorthand notations G — v, G —e, G+ ¢ for the results
of these operations. (The strictly correct set-theoretic notation would be much more
cumbersome, and would depend on the precise kind of graph in question.)

Sometimes our graphs will carry additional, numerical information: an edge
may represent a pipeline, for example, and be labelled with its capacity, or the cost
of building it. Formally, a weight function on a set X is a function from X to the
non-negative real numbers. A vertex-weighted, resp. edge-weighted, graph is a graph
with a weight function on the set of vertices, resp. edges. Edge-weighted graphs are
more common, but we allow either or both types of weight function.

11.2. Trees and forests

A tree is a connected graph without circuits. We have met trees before, in Section
3.10 (where we proved Cayley’s Theorem, that there are n"~2 labelled trees on n
vertices) and Section 4.7 (binary trees, in connection with searching and sorting).

We might expect that a connected graph has ‘many’ edges, and a graph without
circuits has ‘few’. The next result shows that trees are extremal for both these
properties. We need one piece of notation: a graph without circuits is called a forest
— its connected components are trees!

& Both terms are commonly used. I prefer the first. The term ‘degree’ is over-used in mathematics,
and there is no analogy between the degree of a graph and the degree of a polynomial, permutation
group, etc. On the other hand, anyone who has studied chemistry will recognise the same concept. In
the methane molecule CHy, the carbon atom has valency 4 and the hydrogen atoms have valency 1.

The standard representation
H

|
H— C —H

I

H

of the methane molecule shows the analogy clearly.
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(11.2.1) Theorem. (a) A connected graph with n vertices has at least n — 1 edges,
with equality if and only if it is a tree.

(b) A forest with n vertices and m connected components has n — m edges.
Thus, a forest has at most n — | edges, with equality if and only if it is a tree.

Proor. We show first that a tree has n — | edges. This is proved by induction; it is
clear for n = 1. The inductive step depends on the following fact:

A tree with more than one vertex has a vertex of valency 1.

Since a tree is connected, it has no isolated vertices (if » > 1); so, arguing by
contradiction, we can assume that every vertex has valency at least 2. But then there
are arbitrarily long treks in the graph, since whenever we enter a vertex along one
edge, we may leave along another. A trek of length greater than n must return to
a vertex it has visited previously; so there is a closed trek, and hence a circuit, and
we have arrived at a contradiction. So the assertion is proved.

Now let = be a vertex in the tree T which has valency 1. Let T — v denote the
graph obtained by removing v and the unique edge incident with it. Then T — v has
n— | vertices, and contains no circuits. We claim that T — v is connected. This holds
because a path in 7' between two vertices z,y # v cannot pass through ». Thus
T —v is a tree. By the induction hypothesis, it has n — 2 edges; so T has n—1 edges.

Now (b) of the theorem follows easily. For let F be a forest with n vertices and
m components Ty,..., T, with a,,...,a, vertices respectively. Then 37 a; = n.
Now T is a tree, and so has ¢; — | edges. So F has

m

Sla-1)=n-m

i=1

edges.

To prove (a), let G be any connected graph with n vertices, and suppose that
G is not a tree. Then G contains a circuit C. Let ¢ be an edge in this circuit, and
G1 = G — e the graph obtained by removing e. Then G is still connected. For, if
a path from z to y uses the edge ¢, then there is a walk from z to y not using e.
(Instead of using e, we traverse the circuit the other way.) Repeating this procedure,
we must reach a tree afier, say, r steps. Since r edges are removed, G has n — 1 +r
edges altogether.

Let G be a graph. A spanning forest is a spanning subgraph of G (consisting
of all the vertices and some of the edges of G) which happens to be a forest. A
spanning tree is similarly defined.

(11.2.2) Corollary. Any connected graph has a spanning tree.
This follows from the argument for part {(a) of the theorem above; by removing

edges from G, we can obtain a spanning tree. There is another way to proceed,
which will be useful later; this involves building up the spanning tree ‘from below’.
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(11.2.3) Spanning tree algorithm
Let G = (V, E) be a connected graph.
Set $ = 0.
WHILE the graph (V,S) is not connected, let ¢ be an edge joining
vertices in different components, and add ¢ to the set S.

ReTuRN (V,9).

To prove that this algorithm works, we have to show that the choice of e is
always possible and its addition creates no circuit. Let ¥ be a connected component
of (V,$), and Z = V \ Y; choose vertices y,z in Y, Z respectively. In G, there is
a path from y to z; some edge in this path must cross from Y to Z, and this is a
suitable choice for e. Now suppose that (V,.5) + e contains a circuit. If we start, say,
in Y, and follow this circuit, at some moment we cross into Z by using the edge e;
then there is no way to return to Y to complete the circuit without re-using e.

We see.that there is a great deal of freedom in creating spanning trees. How
many are there? Cayley’s Theorem (Section 3.10) can be stated in the form:

(11.2.4) Cayley’s Theorem. The complete graph K, has n"~? spanning irees.

For, obviously, any tree on the vertex set {1,...,n} is a spanning tree of the
complete graph.

There is a general technique for counting the spanning trees in an arbitrary
graph, using the adjacency matrix of the graph. This is described in the chapter on
graph spectra in Beineke and Wilson, Selected Topics in Graph Theory (1977).

11.3. Minimal spanning trees

Suppose that »n towns are to be linked by a telecommunication network. For each
pair of towns, the cost of installing a cable between these two towns is known. What
is the most economical way of connecting all the towns?

This is known as the minimal connector problem. The data can be regarded as an
edge-weighted graph. (As described, the graph G in question is the complete graph;
but this is not essential. We could suppose that, for various reasons, it is impossible
of uneconomic to connect certain pairs of towns directly.)

The solution to the problem will be that connected spanning subgraph H of the
graph G of minimal total weight (that is, the sum of the weights of the edges of H
is as small as possible). Clearly, H must be a tree; for, if not, then edges could be
deleted, reducing the weight, without disconnecting it. The problem is solved by a
simple-minded algorithm called the greedy algorithm, This says: at each stage, build
the cheapest link which joins two towns not already connected by a path. Formally:
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(11.3.1) Greedy algorithm for minimal connector
Let G = (V,E) be a connected graph, w a non-negative weight
function on E.
Set §=10.
WHILE (V, ) is not connecied, choose the edge e of minimal weight
subject to joining vertices in different components.

ReTURN (V, 5).

This algorithm is just a specialisation of the spanning tree algorithin in the last
section; so it does indeed produce a spanning tree. We have to show that this
spanning tree has minimuim weight.

Let e5,e2,.". ., en—; be the edgesin S, in the order in which the Greedy Algorithin
chooses themn. Note that

'l.U(e]) S e K W(cn_]),

since if w(e;) < w(e;) for j > i, then at the *" stage, e; would join points in different
components, and should have been chosen in preference to ¢;.

Suppose, for a contradiction, that there is a spanning tree of sinaller weight,
with edges fi,-.., fn—1, ordered so that

w(fl) <...%Z w(fn—l)-
Thus,

n—1 n—1

> w(f) < X wle)

i=1 =1

Choose k as small as possible so that

k k
Yow(fi) < Y wle).
=1 i=1
Note that & > 1, since the greedy algorithin chooses first an edge of sinallest weight.

Then we have .
-1

k-1
; w(fi) 2 Z_; wle);
hence

’LU(f]) <£...%5 w(fk) < w(ek).

Now, at stage k, the greedy algorithin chooses ¢;, and not any of the edges fi,..., fi
of strictly sinaller weight; so all of these edges must fail the condition that they join
points in different components of (V, ), where S = {ey,..., ex—1}. It follows that
the connected components of (V,S"), where $' = {fi,..., fi}, are subsets of those
of (V, 5); so (V,S") has at least as inany components as (V, S).

But this is a contradiction, since both (V,S) and (V, S’) are forests, and their
numbers of components are n — (k — 1) and n — k respectively; it is false that
n—k>2n—(k=1)
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In general, the greedy algorithm refers to any algorithmm for constructing an
object in stages, where at each stage we make the choice which locally optimises
some ‘objective function’, subject to the condition that we move closer to our final
goal. Obviously, this short-sighted local optimisation does not usually produce the
best overall solution. It is quite remnarkable that it does so in this case! (See
Exercise 3.)

11.4. Eulerian graphs

One’s first encounter with graph theory often takes the forn of the familiar puzzle
‘trace this figure without taking your pencil off the paper’. Euler’s’ experience was
similar, He showed that it was not possible to walk round the town of Konigsberg®
crossing each of its seven bridges just once. This demonstration is commonly taken
as the starting point of graph theory.®

In problems of this sort, we are required to traverse every edge of a graph once,
but we may revisit a vertex. So the appropriate type of route is a trail (see Section
11.1). We define an Eulerian trail in a graph to be a trail which includes every edge.
(A closed Eulerian trail is sometimes called an Eulerian circust, but this conflicts
with our definition of a circuit as a closed path.) Clearly an isolated vertex (lying
on no edges) has no effect, and may be deleted. Also, it is convenient here to work
in the more general class of multigraphs, where two vertices mnay be joined by more
than one edge. Now Euler’s result can be stated thus:

(11.4.3) Euler’s Theoremn. (2) A multigraph with no isolated vertices has a closed
Eulerian irail if and only if it is connecied and every vertex has even valency.

(b) A multigraph with no isolated vertices has a non-closed Eulerian trail if and
only if it is connected and has exactly iwo vertices of odd valency.

Proor. It’s obvious that a graph with an Eulerian trail must be connected if no
vertex is isolated. The other conditions are also necessary. For consider a graph
with a closed Eulerian trail. As we follow the circuit, each tiine we reach a vertex
by an edge, we must leave it by a different edge, using up two of the edges through
that vertex; since every edge is used, the valency must be even. The same applies at
the initial vertex of a closed Eulerian trail, since the first and last edge of the circuit
play the same role. For a non-closed Eulerian trail, however, the valencies of the
first and last vertices are odd, since the first and last edges are ‘unpaired’.

REMARK. According to the Handshaking Lemmina (Chapter 2), the nuinber of vertices
of odd valency in a graph is even. So, if there is a vertex of odd valency, then there
are at least two.

7 Euler could be claimed as the founder of combinatorics. He was not the first person to work
on a combinatorial problem; but he is undoubtedly the mathematician of greatest stature who has
made a serious contribution to the subject. We saw his encounter with orthogonal Latin squares in
Chapter 8, and we will meet him again.

8 Now Kaliningrad.

® See, for example, Biggs, Lloyd and Wilson, Graph Theory 1736-1936 (1976).
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Now we turn to the sufficiency of the conditions: we have to construct Eulerian
trails in graphs satisfying themn. The arguinent is, in some sense, algorithinic,

So let G = (V, E) be a graph satisfying the condition of either (a) or (b). In
case (a), let v be any vertex; in (b), let v be one of the vertices of odd valency. Now
follow a trail fromn v, never re-using an edge, for as long as possible. Let S be the
set of edges in this trail.

For any vertex z other than v (in case (a)) or the other vertex of odd valency (in
case (b)), whenever the trail reaches z, there are an odd number of edges through
z not yet used. This is because we reached z along an edge, and previous visits
accounted for an even number of edges (except for u, where previous visits accounted
for an odd number of edges). Thus, we don’t get stuck at z; zero is not odd, so
there is an edge by which we can leave, So the trail inust end at v {in case (a)) or
the other vertex of odd valency (in case (b)).

If S = F, we have constructed an Eulerian trail, and we are finished. So suppose
not. There mnust be a vertex u lying on both an edge in $ and an edge not in S. For
otherwise, the sets X and Y of vertices lying on edges in S, not in .S respectively,
forin a parlition of V; and no edge joins vertices in different parts, contradicting
connectedness. ‘

Moreover, in the graph (V, £\ S), every vertex has even valency. So, starting at
u and using only edges of F \ S, we can find a closed trail, by the same argument
as before. Now we can ‘splice in’ this trail to produce a longer one: start at v and
follow the old trail to u; then traverse the new trail; then continue along the old
trail.

After a finite number of applications of this construction, we must arrive at an
Eulerian trail of the type desired.

Note that, in case (b), any Eulerian trail inust start at one vertex of odd valency
and finish at the other — a fact well known to anyone who has tried a ‘trace without
lifting the pencil’ puzzle.

The map of Konigsberg is easily converted into a multigraph whose edges are
the bridges, as shown in Fig. 11.1. All four vertices have odd valency; so there is no
Eulerian trail.

,.
S
sl

=] S

Fig. 11.1. The bridges of Konigsberg

g

11.5. Hamiltonian graphs

There is a natural analogue for vertices of an Eulerian trail: a Hamiltonian path!® is
a path which passes once through each vertex (except that it inay be closed, that is,

10 Hamilton's claim to give his name to this concept is much weaker than Euler’s claim to Eulerian
trails. Hamilton demonstrated that the graph formed by the twenty vertices and thirty edges of a
dodecahedron possesses a Hamiltonian circuit, and patented a puzzle based on this; but he proved
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its start and finish may be the same). A closed Hamiltonian path is a Hamiltonicn
circust. A graph possessing such a circuit is called Hamiltonian.

Clearly multiple edges are irrelevant here; so we may assume that our graphs
are simple in this section.

For n > 2, there is a unique graph on n vertices which is connected and divalent
(regular with valency 2). This is the so-called n-eycle Cr.. It can be represented as
the vertices and edges of an n-gon. Now a graph is Hamiltonian if and only if it
has a cycle as a spanning subgraph.

Hamiltonian graphs are much harder to deal with than Eulerian ones. There is
no simple necessary and sufficient condition for a graph to be Hamiltonian, and it
is notoriously difficult to decide this question for a given graph of even mmoderate
size. A lot of effort has gone into proving sufficient conditions. As an example, we
prove one of the simplest of these conditions, Ore’s Theorem.

(11.5.1) Ore’s Theorem. Let G be a graph with n vertices, and suppose that, for any
two non-adjacent vertices z and y in G, the sum of their valencies is at least n. Then
G is Hamiltonian.

PROOF. By contrast to Euler’s Theorein, this proof is non-constructive. I'll remark
the main points where the non-constructiveness appears,

Arguing by contradiction, we suppose that G is a graph which satisfies the
hypothesis of Ore’s Theorem but is not Hamiltonian, We also may suppose that G
is maximal with these properties, so that the addition of any edge to G' produces a
Hamiltonian graph. (This curious feature of the proof is certainly non-constructive.
We achieve it by adding new edges joining previously non-adjacent vertices as long
as @ remains non-Hamiltonian. Adding an edge does not decrease the valency of
any vertex, and does not create any new non-adjacent pair of vertices, so the valency
condition remains true. But we won’t know when G is maximal unless we can test all
the graphs obtained by adding an extra edge and show that they are Hamiltonian!)

Now G is certainly not complete, so it has a non-adjacent pair of vertices z and
y. Since G is maximmal non-Hamiltonian, the graph obtained by adding the edge
¢ = {z,y} is Hamiltonian; and a Hamiltonian circuil in this graph must contain e.
So @ itself contains a Hamiltonian path

(2 = v1,€2,72, ..y 05 = Y).

(This step is also non-constructive.)
Now let A be the set of vertices adjacent to z; and let

B = {v; : v;_ is adjacent to y}.

(Since y is not adjacent to v, = y, this set is well-defined) By assumption,
|A| + |B| > n. But the vertex »; = z doesnt belong to either A or B; so

no general result, and there is some evidence that he got the idea from Kirkman, who made the same
observation at about the same time. Also, a problem involving a Hamiltonian circuit in a different
graph, the ‘knight's tour’ on the chessboard, had been solved earlier by (of all people) Euler.
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|[AUB| € n— 1. It follows that |AN B| > 1, and so there is a vertex v; lying in both
A and B.

Now we obtain a contradiction by constructing a Hamiltonian circuit in G.
Starting at z = v, we follow the path v;,v3,... as far as ;. Now u;_, is adjacent
to y (since v; € B), so we go to y = v, al the next step. Then we follow the
path backwards through v,_,, ... as far as »;, and then hone to v, (this edge exists
because v; € A).

The result is best possible in some sense. Consider the graph with 2m + 1
vertices 3,...,%ZmsY1,-- . »Ym+1, and having as edges all pairs {z,,y;}. (This is a
complete bipartite graph.) It is not Hamiltonian; for any edge crosses between the
sets A = {a;,...,a,} and B = {b,...,bn}, and so a path of odd length starting
in A must finish in B and cannot be closed. But two non-adjacent vertices are both
in A or both in B, and the sumn of their valencies is 2m +2=n+1lor2m—-n—1
respectively.

Nevertheless, there are a great many results which strengthen Ore’s Theorem by
varying the hypotheses slightly.

11.6. Project: Gray codes

An analog-to-digital converter is a device that takes a continuously-varying real number and
converts it lo an integer, ideally the integer part or the nearest integer. The result is presented in the
standard way, usually to base 10 (in an odometer or gas meter) or base 2 (in an electronic device
connected directly to a computer).

We considered the operation of an odometer in Chapters 2 and 4. There are points in its
operation where several digits must change simultancously. Owing to mechanical limitations, the
change is not quite simultaneous. Thus, a reading taken at this point may involve a considerable
error. For example, in the course of changing from 36999 to 37000, the reading could be as low as
36000 or as high as 37999; and even if we assume that the digits change sequentially from the right,
the low value 36000 is still a possible reading.

To eliminate this error, we need o arrange the numbers in order (different from the usual order)
so that only one digit changes at each step. If this can be done, the only possible error will arise
from a time delay in the mechanical operation of the device, and will be at most 1. In the case of
binary representation, such a sequence is known as a Gray code. It has a natural graph-theoretic
interpretation.

The n-cube Q,, is the graph whose vertices are all n-tuples z,,_; ...z of zeros and ones, iwo
vertices being adjacent if they agree in all but one position. (Note that there are 2” vertices, which
we write as the binary representations of the integers from 0 to 2" — 1. The n-cube consists of the
vertices and edges of the familiar regular polytope of the same name in R™.) Now a Gray code is
the same thing as a Hamiltonian path in the n-cube. For n = 1, the graph Q; is a single edge, and
trivially has a Hamiltonian path. But for n > 2, we can do better:

(11.8.1) Theorem. For n > 2, the graph Q,, is Hamiltonian.

The proof is by induction. For n = 2, Q, is the 4-cycle C4, and the assertion is true: we fix the
Hamiltonian circuit (00,01, 11,10,00). Suppose that Q, has a Hamiltonian circuit (vo,...,v3x_1).
Then

(Ovo,0v1,. .., 0van_2,0van_y, lvan_1, lvaa_s, ..., luy, lug, Ovg)

is a Hamillonian circuit in Q4.
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The case n = 3 is shown in Fig, 11.2.

000 001
Fig. 11.2. Hamiltonian circuit in the 3.cube

For practical use, it is necessary to be able to ‘encode’ and ‘decode’ this code. That is, we have
to be able to calculate the N*® term of the Gray code, and the position of (the binary representation
of) N in the code. (Note that these stalements make sense independent of the value of n as long as
27 > N; for the Gray code of length 27! begins with the Gray code of length 2" with its terms
preceded by 0, which doesn't change the integers they represent.) The key observation is that, if 2%
is the exact power of 2 dividing &, then the digit which changes at the N'® step is the k" digit
from the right. (This is easily proved by induction: in our construction, the nt® digit changes only
at the (2")th step.) At the same step in the odometer, the 0", ..., k*" digits all change. From this
observation, it is not difficult to prove the following assertions; the reader is encouraged to supply
proofs:;

Let xn—1...7o be the binary representation of N, For i = 0,...,n— 1, let
Yi = Z; + ;41 (mod 2); that is, 3 = 0 if z; = Tiy1, 3 = 1 otherwise. (By
conveation, £ny1 = 0.) Let yo-1.. .40 be the binary representation of M. Then
the number in the NP position in the Gray code is M.

Let Y., ...Yo be the binary representation of M. Fori =0,...,n—1, Jet z; be
the number of ones in the set {yi,..., yn—1}, taken mod 2, and let £, .. .2 be
the binary representation of N. Then the number M occurs in the N'*® position
in the Gray code.

11.7. The Travelling Salesman

A salesman for the Acme Widget Corporation!! has to visit all n cities in a country
on business. The distance between each pair of cities is known. She wants to
minimise the total distance travelled, and return to her starting point.

This is the notorious Travelling Salesman Problem (TSP). In graph-theoretic
terminology, it asks for the Hamiltonian circuit of smallest weight in an edge-
weighted complete graph.

In fact, there is no real loss in restricting to the complete graph. For a general
edge-weighted graph, simply add new edges with ridiculously large weights, so that
these cannot occur in any minimum-weight circuit.

Indeed, the Hamiltonian circuit problem for a given graph & is a special case of
the Travelling Salesman problem. If G has n vertices, assign the weight 1 to an edge
of the complete graph K, if it is an edge of G, and 2 otherwise. Then the minimum
weight of a Hamiltonian circuit of K, is n if and only if G has a Hamiltonian
circuit.

1 Widgets are generic industrial products in Operational Research problems
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The existence of an algorithm to solve this problem is not m doubt.

(11.7.1) (Slow) Algorithm for Travelling Salesman
o Generate all permuiations of {1,...,n} (see Chapter 3).
o For each permutation =, calculate
n—1
> w({im, (i + 1)) + w({rm, 1r}).

=1

o Return the smallest value,

The disadvantage is that there are n! permutations; for even moderate values of
n (say, n = 50), this number is so large that the method cannot be contemplated.

Some small improvements can be made. For example, we can assume that the
circuit starts at vertex 1, so that 1w = 1; this saves a factor of n. Unfortunately,
nobody knows how to do substantially better!

Because of the practical importance of the problem (not just for sales depart-
ments, but for other applications such as design of circuits), some compromises have
been reached. Methods which deliver an approximate solution have been developed.
Out of a huge literature, I have selected one example, chosen because it uses concepts
we have already developed.

(11.7.2) Twice-round-the-Tree Algorithm
(An approximate solution to the Travelling Salesman)

e Find a minimal connector S.

e In the multigraph obtained by duplicating each edge of S, find
a closed Eulerian trail.

o Follow this trail, but whenever the next step would involve
revisiting a vertex, go instead to the first unvisited veriex on the
trail. When every vertex has been visited, return to the start.

In the second step, every edge in S is duplicated, resulting in a connected graph
with all valencies even; so there does indeed exist a closed Eulerian trail, and we
have seen an algorithm for finding one.

It is clear that this algorithm produces a Hamiltonian circuit. How good is it?

We say that an edge-weighted complete graph satisfies the triangle inequality if,
for any three vertices a, b, c, we have

w({a,b}) + w({b,c}) > w({a,c}).

This condition certainly holds if the weights are distances between towns.'?

12 Or much more general distances. Under minimal assumptions, the shortest route from a to ¢
cannot be Jonger than a route via b.
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(11.7.3) Theorem. Let & be an edge-weighied complete graph, m the weight of a
minimal connector, M the smallest weight of a Hamiltonian circuit, Then

{a) m < M;

{b) if G satisfles the triangle inequality, then M < 2m.

PrOOF. (a) is clear, since a Hamiltonian circuit is certainly connected. (Indeed, it
remains connected when any edge is deleted, so its weight is at least the sum of m
and the smallest edge weight in G. This can be further improved.)

For (b), note that the weight of the closed Eulerian trail in the second stage of
the algorithm is equal to 2m. Now, in the third stage, we take various short cuts,
replacing a path v;,...,v; by a single edge from v; to v;. By the triangle inequality
(and induction), the length of the edge doesn’t exceed the length of the path. So
we end up with a Hamiltonian circuit of weight at most 2m, giving a constructive
proof of the inequality.

Another celebrated problem bears the same relation to closed Eulerian trails as
the Travelling Salesman does to Hamiltonian circuits. This is the Chinese postman
problem: Given an edge-weighted connected graph, find the closed walk of minimum
weight which uses every edge of the graph. (The postman must pass along every
street delivering letters.) If the graph G is Eulerian, then a closed Eulerian trail is
the solution. If not, then some edges must be traversed more than once. There is an
efficient algorithm for this problem.

11.8. Digraphs

The most important variant of graphs consists of directed graphs or digraphs, where
the edges are ordered pairs of vertices (rather than unordered pairs). Each edge
(z,y) has an snitial verter = and a ferminal verfex y. Note that (z,y) and (y,z) are
different edges.

With any digraph D is associated an ordinary (undirected) graph, the urnderlying
graph: it has the same vertex set as D, and its edges are those of D without the
order (that is, {z, y} for each edge (z,y) of D). The underlying graph will fail to be
simple if D contains two oppositely-directed edges (such as (z,y) and (y, z)). If the
underlying graph is simple, then D is called an oriented graph.

The definitions of the various types of route in a digraph are the same as in a
graph, with the important exception that the edges must be traversed in the correct
direction: so, if

(UOa €1,¥15. .,en,?}n)

is a trek, trail, or path, then ¢; is the edge (v;—1,%;) for ¢t = 1,...,n. In a digraph,
we cannot immediately retrace an edge, and so every walk is a trek, (11.1.1) holds
without modification for digraphs.

The situation with connected components is different, however. If, as before,
we let R be the relation defined by the rule that (x,y) € R if there is a path (or
trail, or trek) from z to y, then the relation R is refiexive and transitive, but not
necessarily symmetric; so it is a partial preorder but not necessarily an equivalence
relation. (See Sections 3.8-9 and Exercise 18 of Chapter 3 for partial preorders and
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their connection with equivalence relations.) Accordingly, we define two types of
connectedness:
o the digraph D is (weakly) connected if its underlying graph is connected;
¢ D is strongly connected if, for any two vertices z,y, there is a path from z to y.
It’s clear that a strongly connected digraph is weakly connected. The converse is
false.!3
The definitions of Eulerian trail and circuit and of Hamiltonian path and circuit
are just what you expect. A digraph possessing a Hamiltonian circuit is obviously
strongly connected; one with a Hamiltonian path is weakly {but not necessarily
strongly) connected. Similar statements hold for Eulerian trails and circuits.
The analogue of Euler’s theorem runs as follows:

{(11.8.1) Euler’s Theorem for digraphs. A digraph with no isolated vertices has a
closed Eulerian trail if and only if it is weakly connected and the in-valency and
out-valency of any vertex are equal.

You are invited to prove this, and to formulate and prove a necessary and
sufficient condition for the existence of a non-closed Eulerian trail.

11.9. Networks

A network is an edge-weighted digraph possessing two distinguished vertices, the
source s and the target ¢, with s # ¢. The weight of an edge ¢ is referred to as its
capacity, and denoted by c{e).

A good model to keep in mind is a hydraulic network consisting of pipes and
junctions. Fluid is pumped in at the source and out at the target; the capacity of
an edge reflects the maximum rate of flow possible in that pipe. Of course, much
wider interpretations are also possible, such as the movement of commercial product
through distribution systems between factories, warehouses, etc.

In accordance with this interpretation, we define a flow in a network to be a
function f from the edge set to the non-negative real numbers, satisfying the two
properties

o 0 < f(e) £ c(e) for all edges ¢;

® Y (e)=v f(€) = Tr(e)= fle) for all vertices v # s, 2.
Here c is the capacity; s and ¢ the source and target; and, for any edge ¢, :{e) and
7(e) denote the initial and terminal vertices of ¢, Thus, the first condition asserts
that the flow in any edge is non-negative and doesn’t exceed the capacity of the
edge; the second asserts that, for any vertex v other than the source and target, the
flow out of v is equal to the flow into », so there is no net accumulation at any
point.

The value of a flow f is defined to be

valffy = 3. f(e)— > fle),

e)=s T(e)=s

13 It is possible to imagine a town with one-way streels in which you can drive from x to y but not
from y to = (but very impracticable!)



174 11. Graphs

the net flow out of the source. It turns out to be equal to the net flow into the
target, as the next result shows. For any set S of vertices, we use the notation

S ={e:tfe) € S,7(e) €S},
ST ={e:ele) €S, r(e) € S}.

(11.9.1) Proposition. Let f be a flow in a network, S a set of vertices containing the
source but not the target. Then

Y. fle)— X fle) = val(f).

ecS— eES—

PROOF. To show this, we calculate

z(z - ¥ f(e))-

veS \ifej=v (e)=v

On one hand, this is equal to val( f), since the term of the outer sum with v = s
is equal to val(f), while the other terms are all zero by definition of a flow.

On the other hand, consider this as a sum over edges. Let ¢ = (v,w) be an
edge. If v € S, then f(e) occurs in the term of the outer sum corresponding to v; if
w € 5, then — f(e) occuts in the term corresponding to w. Thus, only those edges
with exactly one end in S, viz., those in §~ and S, contribute to the sum, and
their contributions are f(e) and — f(e) respectively.

Now take § = V' \ {t}, where V is the vertex set; then S~ = {¢: 7{e) = £} and
S = {e: 1(e) = t}, and so the net flow into ¢ is equal to val(f).

The main question about a network is:
What is the maximum value of a flow in the network?

A cutin a network is a set C of edges with the property that any path from the
source to the target contains an edge in C. Its capacity cap(C) is the sum of the
capacities of its edges. Intuitively, it is clear that the capacity of a cut is an upper
bound for the value of any flow. We will show this and more:

(11.9.2) Max-Flow Min-Cut Theorem
The maximum value of a flow in a network is equal to the minimum
capacity of a cut.

This important theorem has a number of consequences, including Hall's Mar-
riage Theorem and Menger's Theorem on paths in graphs. Our proof of the
Max-Flow Min-Cut Theorem is in part algorithmic, More precisely, the proof is
algorithmic in the case when all the capacities are integers, and we prove something
more:
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(11.9.3) Integrity Theorem
Suppose that the capacity of every edge in a network is an integer.
Then there is a flow of maximum value, such that the flow in every
edge is an integer.

The integral case is the important one; we'll see that the general case can be
deduced from it by quite different (and non-constructive) methods.

Our first task is to prove:
the value < the capacity
of any flow/ of any cut /°
It is enough to prove this for minimal cuts {those for which, if any edge is
removed, the result is not a cut). So let C' be a minimal cut. Define S to be the set
of vertices v for which there exists a path from s lo v using no edge of C. Then

C € 87, (If ¢ is any edge in C then, by minimality, there is a path from s to ¢ using
the edge ¢ and no other edge of C; so t(e) € S and (¢) € S.) Now, if f is any flow,

then
val(f) = Y fle)— 3 fle)
c€8— ecS~
< X cle)
e€S—
= cap(C).

Now we treat the case where all capacities are integers. We prove the following:

If all capacities of edges in a network are integers, then there is a
flow f, with integer values on all edges, and a cut C, such that

val(f) = cap(C).

By what we just proved, f is a maximal flow and C a minimal cut; so the Max-
Flow Min-Cut Theorem (m this case) and the Integrity Theorem will be proved.

The proof involves showing the following.

Let all capacities of edges in a network be integers, and let f be an
integer-valued flow, Then either

o there is an integer-valued flow f' with val(f') = val(f) + 1; or

o thereis a cut C' with cap(C) = val(f).

Now we can start with any flow, and apply this result successively. As long as
the first alternative holds, the value of the flow is increased. So eventually the second
alternative becomes true, and we have finished. In order to prove the theorem, we
can start with the zero flow (the zero function is always a flow!); but in practice it
is usually possible to spot a starting flow which is close to maximal, and shorten the
calculation. The proof of the assertion is algorithmic.
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So let f be an integer-valued flow in a network with integer capacities. Perform
the following algorithm.

Set § = {s}.
WHILE there is an edge ¢ = (v, w) with either
o fley<e(e)ve S, wgsS, or
* fle)>0,vg S we S,
add to S the vertex of ¢ it doesn’t already contain (w or v respec-
tively).
RETURN 5.

Now there are two cases, according as £ € S or not.

CASE 1. € §. By construction of §, it follows that there is a path from s to ¢ in the
underlying graph, say (vo = s, w1,...,0s = t), such that, for each ¢, either
(a) (wi~i, %) is an edge ¢ of the network with f(e) < c(e); or
(b) (vs,v:—1) is an edge e of the network with f(e) > 0.

Let A and B be the sets of edges of the digraph appearing under cases (a) and
{b) respectively. Now define a new flow f’ by the rule

fle)+1 ifec 4
fley=14 fle)—1 if e€ B;
f(e otherwise.

We have to show that this is a flow, and that its value is one more than that of f.
The first axiom for a flow, that 0 < f'(e) < c(e) for all ¢, holds hecause all capacities
and flow values are integers, so (for example) if f(e) < c{e), then f{e) +1 < ele).
The second axiom requires some case checking. Let v; be a vertex on the path (no
vertex off the path is affected); suppose that ¢ # 0,d. If (v;_,v;) and (v;, w41 are
both edges, then the net flow into v; and the net flow out of v; are both increased
by 1, and the flows still balance. The other cases are similar. Also similar is the fact
that the value of the flow is increased by 1.

CASE 2.t ¢ S. Then S~ is a cut. Also, by definition of §, if e € §7, then f(e) = c(e),
and if f € §*, then f(e) = 0 {else the algorithm would enlarge .S). So

val(f) = 3 fle)— D fle)

e€S— eeS—
= E C(e)

eES™
= cap(S"),

as required.
This completes the proof in the integral case.

The rest of the proof of the Max-Flow Min-Cut Theorem is quite different (and
of less interest). It parallels the construction of the real numbers from the itegers:
first we construct the rational numbers by division, and then we construct the reals
by an analytic process (typically Cauchy sequences or Dedekind cuts).

So suppose first that all capacities are rational. By multiplying by the highest
common factor m of the denominators of these rationals, we obtain a new network
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in which all capacities are integers. By the previous case, the Max-Flow Min-Cut
Theorem holds for the new network; hence it also holds for the old one (on dividing
the flow values by the same number m).

Finally, suppose that the capacities are real numbers. We can approximate them
arbitrarily closely from below by rational numbers, and hence find flows whose
values are arbitrarily close to the capacity of a minimal cut. Then the result follows
by a limiting process.!

This concludes the proof of the Max-Flow Min-Cut Theorem.

11.10. Menger, Konig and Hall

The Max-Flow Min-Cut Theorem, in combination with the Integrity Theorem, is
a very powerful tool in graph theory. The key to its applcation is to consider an
arbitrary directed graph with distinguished vertices s and ¢ as a network in which
each edge has capacity 1. Now, in an integer-valued flow in this network, the flow in
any edge must be 0 or 1; so the flow ‘picks out’ a subset of the edges, those carrying
a flow of 1. Now, if the value of the flow is m, then there are m edge-disjoint paths
from s to t. (This is proved by induction on m. Starting from s and using only
edges with positive flow, never re-using an edge, we eventually arrive at t, having
constructed a trek from s to ¢. Deleting circuits between repeated vertices, we obtain
a path from s to £. Now, if we reduce the flow in the edges of this path to 0, the
value of the flow is decreased by 1. By induction, we can find m — 1 edge-disjoint
paths among the remaining edges. So the claim is proved.)

This conclusion can be put in the following form, where an st-separating set of
edges is a set C such that every path from s to ¢ uses an edge of C:

(11.10.1) Menger’s Theorem. Let s and t be vertices of a digraph D. Then the
maximum number of pairwise edge-disjoint paths from s to t is equal to the
minimum number of edges in an st-separating set.

Menger's Theorem also has a version for undirected graphs, and versions which
tefer to vertices instead of edges. You can read about these in Beineke and Wilson,
Selected Topics in Graph Theory.

Further results involve more specific digraphs. A very important class of digraphs
are those derived from bipartite graphs.

A graph G = (V, E) is bipartite if there is a partition of the vertex set into two
parts A and B such that every edge has one end im A and the other end in B. The
partition {A, B} is called a bipartition of G.

14 There is an additional subtlety here. We construct a sequence of flows whose values converge to
cap(C), where C is a minimal cut. Now the flows can be regarded as points in a Euclidean space
whose dimension is equal to the number of edges. Moreover, they lie in closed and bounded region
of the space. Such a region is compact; so, by the Bolzano—Weiersirass Theorem, the sequence of
flows has a convergent subsequence. The limit of this subsequence is a flow whose value is equal to
cap(C). See Chapter 10, Exercise 5, for the 1-dimensional Bolzano—Weierstrass Theorem; the general
case is proved coordinatewise.
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Given a hipartite graph G with bipartition {4, B}, we construct a network as
follows. The vertex set is {s,t} U AU B, where the source s and target ¢ are new
vertices. The edges are

e all pairs (s, a) for a € A;

o all pairs (b,t) for b € B;

e all pairs (a, ), with a € 4, b € B, for which {a, b} is an edge of G.
I will call this network N{G).

In order to interpret flows and cuts in N(G), we need two definitions. In a graph
G, a matching is a set of pairwise disjoint edges; and an edge-cover is a set S of
vertices with the property that every edge contains a vertex of S.

Now a path from s to ¢ in N(G) has the form (s,a,b,t), where ¢ € A, b € B,
and {a,b} is an edge of G. So a set of edge-disjoint paths (s, a;, b;,t) in N(G) arises
from a matching in G consisting of the edges {a;,b;},:=1,...,m.

An edge-cover § in G gives rise to a cut in N(G), consisting of the edges (s, a)
for @ € S A, together with the edges (b,f) for b € SN B. (Any path from s
to ¢ must use an edge of G, and hence pass through a vertex of 5, since S is an
edge-cover.) Now there may be other cuts, containing some edges of the form (a, b);
but none of these can be smaller than all those of the first type. For let S be an
arbitrary cut. Replace every edge (a,b) in S (a € A, b € B) with the edge (s, a),
deleting repetitions; the result is a cut containing edges of the form (s,a) and (b,¢)
only. We conclude that

The size of the smallest cut in N{G) is equal to the size of the
smallest edge-cover in G.

Hence we conclude:

(11.10.2) Kénig’s Theorem. The maximum size of a matching in the bipartite graph
G is equal to the minimum size of an edge-cover in G.

Finally, we will show that Hall’s Marriage Theorem is a consequence of Konig's
Theorem.®

In order to do this, we have to translate a family of sets into a bipartite graph.
This is a common and important procedure.

Let F = (A,...,As) be a family of subsets of {1,...,m}. We define the
incidence graph G of F as follows. The vertex set V of (7 is the union of two parts
A=1{l,...,m} and B = {4,,...,A.}; and the vertices i € A and A; € B are
joined if and only if ¢ € A;.

The incidence graph is clearly bipartite; the sets A and B used in its definition
form a bipartition. If the dual role played by the vertices (which are also sets
or elements of sets) is confusing, you may take A to be a set in one-to-one
correspondence with {1,...,m}, and B a set in one-to-one correspondence with F.

Now a matching in the incidence graph G is a set of disjoint edges {z, 4;}; thus,
each point 7 lies in its corresponding set A;, and the points are all distinct, as are

15 In fact, Konig’s Theorem was proved before Hall’s, but this implication was not noticed until
afterwards. (Hall was a group theorist, Konig a graph theorist.)
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the sets. This is just a system of distinct representatives for a subfamily of 7. So F
has an SDR if and only if there is a matching whose edges contain all vertices of B.

Recall that, for J C {1,...,n}, we set A(J) = U;cs A;. We say that F satisfies
Hall’s Condition if |A(J)| > |J| for all J C {1,...,n}.

(11.10.3) Hall’s Marriage Theorem. The family (A,,..., A,) possesses a SDR if and
only if it satisfies Hall’s Condition.

PROOF. As in Chapter 8, the necessity of the condition is clear: if a SDR exists, then
A(J) must contain representatives of all the sets A; for j € J, and so must have
size at least as great as J. So suppose that Hall’s Condition is satisfied. Let G be the
incidence graph of the family. We have to show that there is a matching of size n in
G. By Konig’s Theorem, we must show that any edge-cover in G has size at least n,

The set of all vertices in B is an edge-cover of G of size n. Let S be any
edge-cover, and let J = B\ S. Each vertex in A(J) is joined to a vertex of J by an
edge; so the edge-cover S must contain A(J). Thus

1S 2 1Bl = 1T+ [A(J) = n,

by Hall's Condition.
REMARK. We have, in some sense, given a constructive proof of Hall's Theorem.
Given a family F of sets satisfying Hall’s Condition, construct its incidence graph
G, and the network N(G). Use the algorithm of the last section to find a maximum
flow in N(G). Then the edges from A from B carrying non-zero flow define the
required SDR.

The network algorithm can be translated into more graph-theoretic language
for this purpose. A formulation of the algorithm for Konig's Theorem is given in
Exercise 10.

11.11. Diameter and girth

We know what it means for a graph to be connected. How do we decide in practice?
Here is an algorithm which computes the connected component of a graph G
containing a vertex z (and more besides, as we will see).

(11.11.1) Algorithm: Component containing =
Mark x with the inieger 0. Set d = 0.
WHILE any vertex was marked at the preceding stage,
e look at all vertices marked d; mark all unmarked neighbouts
of such vertices with d + 1;
e replaced by d + 1.

At the termination of this algorithm, the marked vertices comprise the connected
component containing z, and the mark of each vertex is the length of the shortest
path from z to that vertex.
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In a connected graph G, the distance d(z,y) from z to y is the length of the
shortest path from 7 to y. (Sometimes, distance is defined in a general graph, so
that the distance between two vertices in different components is oo; we ignore
this complication.) The algorithm above gives a method for computing the distance
between two vertices of a graph.

The distance function satisfies

e d(z,y) >0, and d(z,y) = 0if and only if x = y;

o d(z,y) = d(y,z);

o d(z,y) + d(y, z) = d{z,2).
The first two properties are clear, For the third, note that there is a walk of length
d(z,y) + d(y,2) from z to z via y; this can be converted into a path by removing
repetitions in the usual way, so the length of the shortest path cannot be greater
than this.

The third condition is the triangle fmeguality, which we met already in Sec-
tion 11,7. If you have studied introductory topology, you will recognise the three
properties as the axioms for a metric. So, in this lJanguage, a connected graph,
equipped with its distance function, is a metric space.

The diameter of a connected graph G is the maximum value attained by the
distance function.

The number of vertices of a graph is bounded in terms of the diameter and the
maximum valency of a vertex:

(11.11.2) Theorem. In a connected graph with diameter d and maximum valency k,
the number of vertices is at most

2 d—1 (k - l)d -1
l+k+k(k—1)+klk—1Y+.. . +k(k-1) =1+k——k:—2——.
ProOF. We show by induction that there are at most k(k — 1)*~* vertices at distance
t from a given vertex z, for 7 > 1. This is clear for ¢ = 1. For the inductive step, we
double-count pairs (y, z), where y and = are adjacent and ke at distances ¢ and  + 1
from z respectively. There are at most k{(k — 1)*~! choices for y; each is joined to
one point at distance ¢ — 1 from z (lying on a shortest path from z to y), and so for
given y there are at most k£ — 1 choices for z. On the other hand, for each z, there is
at least one y (again on a shortest path to z); so there are at most k(k — 1)* such 2.

Now the result is obtained by summation.

In the next section, we examine graphs meeting this bound. First, however, we
prove a ‘dual’ result.

The girth of a graph G is the length of the shortest closed path in G. Thus, forests
don't have a girth {or we could say the girth of a forest is infinite). Alternatively, the
girth is the smallest n > 3 for which the graph contains the n-cycle C, as an induced
subgraph. (A closed path of length n is a subgraph isomorphic to C,; if it is not
an induced subgraph, then there must be an edge of G joining two non-consecutive
vertices, in which case the circuit is cut into two shorter circuits.)
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(12.12.3) Theorem. Let G be a graph of girth g, and let ¢ = |(g — 1)/2). Suppose
that the minimum valency of G is k. Then G has at least

(k—1) -1

L L T e R

vertices.

PRrOOF. The argument is similar to the previous theorem: we show that,for 1 <i <e,
the number of vertices at distance i from z is at least k(k—1)""). Again, the induction
begins trivially. Now consider the double count.

For each y with d(z,y) = i < ¢, there is one neighbour of y at distance i — 1
from z, and none at distance i from z. (Otherwise, we could start from =, trek to y,
and return a different way, to create a closed trek of length 2i or 2: + 1; so there
would be a closed path of length at most 2i + 1. Since 2i+ 1 < g, this is impossible.)
Thus, at least £ — 1 neighours of y lie at distance : + 1 from y.

In the same way, given z with d(z, 2) = ¢ + 1, there can be only one neighbour y
of z at distance i from z (since 2(¢ 4+ 1) < 2e < g by assumption). So the induction
goes through,

Close inspection of the argument shows the following:

Theorem. Of the following conditions on a graph G, any two imply the third:
e G is connected with maximum valency k and diameter d;
¢ G has minimum valency k and girth 24 + 1;
o G has 1+ k((k— 1)? — 1)/(k — 2) vertices.

A graph satisfying these three conditions is called a Moore graph of diameter d
and valency &, (The first two conditions show that a Moore graph is regular.) In the
next section, we examine Moore graphs of diameter 2,

It turns out that Moore graphs are very rare, So the next question is: how close
to these bounds can we get (for general values of k and d, or asymptotically)? A lot
of work has been done on this question, but the results will not be described here,

11.12. Project: Moore graphs

In this section, we decide (almost completely) for which values of k there exists a
Moore graph of diameter 2 and valency k.

Let G be a graph with vertex set {1,2,...,n}. The adjacency matrizx A(G) of G isthe n x n
matrix whose (i, ) entry is equal to 1 if {3, 7} is an edge of G, 0 otherwise. It is a real symmetric
matrix, and thus it can be diagonalised. The argument involves calculating the eigenvalues of A(G)
and their multiplicities.

Let G be a Moore graph of valency £ and diameter 2. From the argument in the last section,
we see that G has

n=1+k+k(k—1)=k%+1
vertices, and that G has girth 5, This means that, if z and y are adjacent, then no vertex is adjacent
to both; and, if = and y are non-adjacent, they have exactly one common neighbour.

Let A be the adjacency matrix of G, and .J the n x n matrix with every entry 1. If [ isthe n xn

identity matrix, we claim that
A=kl +(J-T-A).
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To see this, we prove:

For any graph G, the (i, j) entry of A(G)? is equal to the number of common
neighbours of i and j.

For the (4, §) entry is

S (A (A
h=1

and every entry of A is zero or 1, so the sum counts the number of vertices A for which (A);y =
(A)a; = 1, that is, the number of vertices & joined to both i and j. This proves the assertion.

Now, in the case of our Moore graph G, the number of common neighbours of i and j is & if
i = j (since the valency is k), and is 0 if {i,j} is an edge and 1 otherwise. This means that A? has
diagonal entries k, and off diagonal entries 0 or 1 according as A has entries 1 or 0 (in other words,
off the diagonal, it coincides with J — [ — A). this proves the claim.

Now we examine the spectrum of A, Let j be the vector with all its entries 1. Then the i** entry
of Aj is just the row sum of the i*® row of A, which is equal to & since G is regular with valency #.
Thus, Aj = kj, and j is an eigenvector of A with eigenvalue &,

Since A is symmetric, the subspace W of R™ consisting of vectors perpendicular to j is preserved
by A. Also, for any w € W, the sum of the entries of w is 0, and so Jw = 0. Thus, for w € W, we
have

Alw = kw+ (=1 - A)w,
whence
(A4 A~ (k- D)w=0.

Let o be any eigenvalue of A (acting on W). If w is the corresponding eigenvector, then the
above equation shows that
A ra-(k-1)=0

So « is a root of this quadratic equation, whence
a:%(—lﬂ:\/4k-—3).

Now we distinguish two cases.

CASE 1. 4k — 3 is not a perfect square. Then the eigenvalues are irrational. So the multiplicity of the
two roots of the quadratic, as eigenvalues of A, are equal, and so each is (n — 1)/2 = k2/2. Now we
use the fact that the sum of the eigenvalues of a matrix is equal to its frace (the sum of the diagonal
elements). A has the eigenvalue & with multiplicity 1, and (—1 & vk — 3)/2 each with multiphcity
(n = 1)/2; and its trace is zero, since all its diagonal elements are zero. Thus, we have

1 (3) (D) () (2

) 2 2

from which we find that & = k*/2, or k = 2.
Now there is a unique graph of valency 2, diameter 2, and girth 5: the 5-cycle or pentegon.

Casg 2. 4k — 3 is a square. Sinee it is odd, so is its square root; say 4k — 3 = (25 4 1)? for some
integer s, from which we find that & = s% + 5 + 1. The eigenvalues of 4 are k (with multiphicity
1), s, and —s — 1, The multiplicities of the last two eigenvalues are, say, f and g; we know that
f+¢=n=1=k>2 Since the trace of A is equal to 0, we also find that

k+fet+g(—s~1)=0.
From these two linear equations, it is possible to solve for f and g. We find that

_a(s®+s+1)(s"+2s+2)
- 2s+1 )

f
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Now the multiplicity of an eigenvalue of a matrix must be an integer; so we conclude that
28 + 1 divides s(s% + s + 1)(s? 4+ 25 4 2).
Multiplying this expression by 32 and doing some manipulation, we find that 2s + 1 divides
(28 + 1) = 1)((2s + 1) + 3)((25 + 1)(25 + 3) + 5).

From this, it is clear that 2s + 1 divides 15, so that 2s + 1 = 1,3,5 or 15. This gives the possible
values

s=0,1,30r7,;

k=1,37o0r57;

n = 2,10,50 or 3250.

The case n = 2 is spurious, since G would have a single edge and would not have diameter 2.
So we conclude:

{11,12.1) Theorem. I there iz a Moore graph of diameter 2 and valency k, then k = 2,3,7 or 57, and
the number of vertices is 5,10, 50 or 3250,

For k = 2, we saw that the pentagon is the only graph. In a moment, we will construct the
unique Moore graph of valency 3. There is also a unique Moore graph of valency 7, though this is
harder to consruct. Nobody knows whether one of valency 57 exists or not!

THE PETERSEN GRAPH,

Let G be a Moore graph of valency 3 and diameter 2, with 10 vertices, Let {a, b} be an edge of G.
Then each of a and b has two further neighbours, with no vertex joined to both. Let b, ¢, d be the
neighbours of a, and a, e, f the neighbours of b, There are no edges within the set {c,d, e, f}, for
any such edge would create a circuit of length 3 or 4.

Now ¢ and e have a unique common neighbour, since they are not adjacent; let ¢ be this
neighbour. Similarly, let s be the common neighbour of ¢ and f; ¢ that of d and ¢; and j that of d
and f. These vertices are all distinct and are joined to none of a, ..., f except where specified. Now
we have all vertices, The first six have three neighbours each, and the last four have two each (so
far); so we need two more edges to complete the graph, with each of ¢, 4,4, j on one edge. But g is
not joined to A or 7} so we have edges {g,7} and {, i}.

Fig. 11.3. Uniqueness of a Moore graph

This completes the unique Moore graph of diameter 2 and valency 3 (see Fig. 11.3). It can be
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drawn in other, more symmetrical ways (as in Fig, 11.4, for example).

Fig. 11.4. The Petersen graph

This graph is the notorious Petersen graph. Its fame stems from the fact that it is a counterex-
ample to a large number of conjectures in graph theory. If you discover an assertion you believe to
be true of all graphs, test it first on the Petersen graph! It is now the star of a book in its own right:
Holton and Shechan, The Petersen Graph (1993),

To complete the story of Moore graphs, here are the facts. As noted above, there is a unique
Moore graph of diameter 2 and valency 7, the Hoffman-Singleton graph; the remaining case for
diameter 2 is unknown. For larger diameter, Damerell, and Bannai and Iio, independently showed
the following result.

{11.12.2) Theorem. For d > 3, the only Moore graph of diameter d is the (2d + 1)-cyele Cyaya (with
valency 2),

11.13. Exercises

1. There are 34 non-isomorphic graphs on 5 vertices {compare Exercise 6 of
Chapter 2). How many of these are (a) connected, (b} forests, (c) trees, {d) Eulerian,
{e} Hamiltonian, {f) bipartite?

2. Show that the Petersen graph {Section 11.12) is not Hamiltonian, but does have
a Hamiltonian path.

3. Show that the greedy algorithm does not succeed in finding the path of least
weight between two given vertices in a connected edge-weighted graph.

4. Consider the modification of the greedy algorithm for minimal connector, Choose
the edge e for which w(e) is minimal subject to the conditions that 5 + e contains
no cycle and ¢ shares a vertex with some previously chosen edge (unless S = §).
Prove that the modified algorithm still correctly finds a minimal connector.

5. Let G = (V, E) be a multigraph in which every vertex has even valency. Show
that it is possible to direct the edges of G (that is, replace each unordered pair {z,y}
by the ordered pair (z,y) or (y,z)) so that the in-valency of any vertex is equal to
its out-valency.

6. Let G be a graph on n vertices. Suppose that, for all non-adjacent pairs z,y
of vertices, the sum of the valencies of z and y is at least n — 1. Prove that G is
connected.
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7. (a) Prove that a connected bipartite graph has a unique bipartition.
(b) Prove that a graph G 1s bipartite if and only if every circuit in G has even
length.

8. Choose ten towns in your country. Find from an atlas (or estimate) the distances
between all pairs of towns. Then
{a) find a minimal connector;
(b) use the ‘twice-round-the-tree’ algorithm to find a route for the Travelling
Salesman.
How does your route in (b) compare with the shortest possible route?

9. Consider the result of Chapter 6, Exercise 7, viz.

Let F = (4i,...,A,) be a family of sets having the property that
|A(N)| 2 |J| —dforall J C {1,...,n}, where d is a fixed positive
integer. Then there is a subfamily containing all but d of the sets
of F, which possesses a SDR.

Prove this by modifying the proof of Hall's Theorem from Konig’s given in the text.

REMARK. This extension of Hall’s Theorem is in fact ‘equivalent’ to K6nig’s theorem.
Can you deduce Konig’s Theorem from it?

10. Konig's Theorem is often stated as follows:

The minimum number of lines (rows or columns} which contain
all the non-zero entries of a matrix A is equal to the maximum
number of independent non-zero entries,

where a set of matrix entries is independent if no two are in the same row or column.
Show the equivalence of this form with the one given in the text. [HINT: if A is m xn,
let G be the bipartite graph with vertices a;,...,@m, b, .., b, in which {a;, 5;} is an
edge whenever (A);; # 0. Show that sets of independent non-zero entries correspond
to matchings in G, and sets of lines containing all non-zero entries correspond to
edge-covers of G|

11. In this exercise, we translate the ‘stepwise improvement’ algorithm in the proof
of the Max-Flow Min-Cut Theorem into an algorithm for Konig’s Theorem.

Let G be a bipartite graph with bipartition {4, B}. We observed in the text that
an integer-valued flow f in N{G) corresponds to a matching M in G, consisting
of those edges {a,b} for which the flow in {2,5) is equal to 1. Now consider the
algorithm in the proof of the Max-Flow Min-Cut Theorem, which either increases
the value of the flow by 1, or finds a cut. Suppose that we are in the first case, where
there is a path

(S,a1, b, a2, b2, 0,00, br:t)

in the underlying graph of N(G) along which the flow can be increased. Then
(a1,81,...,a,,5:) is a path in G, such that all the edges {b;,a:11}

but none of the edges {a;,b;} belong to M; moreover, no edge
containing a, or b, is in M.
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Such a path in G is called an alternating path with respect to M. (An alternating
path starts and ends with an edge not in M, and edges not in and in M alternate.
Moreover, since no edge of M contains @, or &, it cannot be extended to a longer
such path.)

Show that, if we delete the edges {5;,a;y,} from M (¢ =1,...,r—1), andinclude
the edges {a;,b;} (i = 1,...,7), then a new matching M’ with |[M'| = |[M| + 1 is
obtained.

So the algorithm is:

WHILE there is an alternating path, apply the above replacement to
find a larger matching.
When no alternating path exists, the matching is maximal.

12. Let G be a graph with adjacency matrix A. Prove that the (i,j) entry of A% is
equal to the number of walks of length d from ¢ to j.

13. This exercise proves the ‘friendship theorem’ in a finite society in which any two
members have a unique common friend, there is somebody who is everyone else’s
friend. In graph-theoretic terms, a graph on n vertices in which any two vertices
have exactly one common neighbour, possesses a vertex of valency n — 1, and is a
‘windmill’ (Fig. 11.5).

Fig. 11.5. A windmill

STEP 1. Let the vertices be 1,...,n, and let 4; be the set of neighbours of i. Using
the de Bruijn—Erdds Theorem (Chapter 7), or direcily, show that esther there is a
vertex of valency n — 1, or all sets A; have the same size (and the graph is regular).
In the latter case, the sets A; are the lines of a projective plane (Chapter 9).

STEP 2. Suppose that G is regular, with valency k. Use the eigenvalue technique of
Section 11.11 to prove that k = 2,

14. The ‘Trackwords’ puzzle in the Radio Times consists of nine letters arranged in
a 3 x 3 array. It is possible to form an English word from all nine letters, where
consecutive letters are adjacent horizontally, vertically or diagonally. Consider the
problem of setting the puzzle; more specifically, of deciding in how many ways a
given word (with all its letters distinct) can be written into the array.

(a) Formulate the problem in graph-theoretic terminology.

(b) (COMPUTER PROJECT.) In how many ways can it be done?



12. Posets, lattices and matroids

... good order and military discipline

Army regulations

ToPIics: Posets, lattices; distributive lattices; (propositional logic);
chains and antichains; product and dimension; Mobius inversion;
matroids; (Arrow’s Theorem)

TECHNIQUES: Mobius inversion

ArgoriTHMS: Calculating the Mobius function; minimum-weight
basis

Cross-REFERENCES: PIE (Chapter 5); Hall’s Theorem (Chapter 6);
g-binomial theorem (Chapter 9)

Order is fundamental to the process of measurement: representing objects by
numbers presupposes that we can arrange them in order. Often, however, we have
only enough information to decide the order of some pairs of elements; in this case,
partial order may be a more relevant concept. In this chapter, we introduce some
of the many themes of the theory of order.

12.1. Posetls and lattices

First, we recall the definitions, from Chapter 3. A partial order on X is a relation R
on X which is
o reflexive: (z,z) € R forall z € X;
o antisymmetric: (z,y),(y,z) € R imply z = y; and
e transitive: (z,vy),(y,2) € R imply (z,z) € R.
(Thus, order models the relation ‘less than or equal’ For the connection with ‘less
than’, see Exercise 17 of Chapter 3.) As usual, we write z < y for (z,y) € R. The
pair (X, R) is called a partially ordered set, or poset for short.
Here are some examples of posets. In each case, the pomt set is {1,...,n}, for
some n; we list some elements of R, and the rest follow by reflexivity and transitivity.
Two comparable points: n = 2,1 < 2 (so R = {(1,1),(1,2),(2,2)}).
Two incomparable points: n = 2, R = {(1,1),(2,2)}.
Theposet N:n=14,1<3,2<3,2 <4,
The pentagon: n =5,1 <2< 5,1<3 <4 <b.
The three-point line: n =5,1<2<5,1<3<5H,1<4<5.
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A convenient way of representing a poset is by its Hasse diagram. We say that y
covers x if < y but no element z satisfies z < z < y. (In the list above, we gave all
pairs ¢ < y for which y covers z.) Now the Hasse diagram of a poset P is a graph
drawn in the Euclidean plane, such that each vertex corresponds to a point of the
poset, and for each covering pair z < y, the points representing z and y are joined
by an edge and the point representing z is ‘below’ the point representing y (in the
sense that it has smaller Y-coordinate).

The figure below gives the Hasse diagrams of the five posets described above.
Note that the Hasse diagram determines the entire poset: u < v if and only if there
is a path from u to v, every edge of which goes ‘upward’.

3 1 5 5
2
1 2 4
[ J [ J 2 2 4
3
1
1 2 1 1

Fig. 12.1. Some Hasse diagrams

Two specialisations of posets are important. A total order is a partial order

satisfying
o trichotomy: for any z,y € X, (z,y) E Rorz =y or (y,z) € R.

(With the definition here, the middle alternative z = y is actually covered by the
other two; but this would not have been so if we had used the ‘strict’ definition of
partial order.) In any poset, we say that elements z and y are comparable if either
(z,y) € R ot (y,7) € R. Thus, a total order is a partial order in which any two
elements are comparable. A total order is sometimes called a linear order,' and a
totally ordered set is called a chain.

A maximal element of a poset (X,<) is an element ¢ such that, if z < y, then
z = y. (We do not require that y < z for all z, so there may be more than one
maximal element.) Minimal elements are defined dually.

(12.1.1) Lemma. Any {non-empty) finite poset contains 2 maximal element.

ProOF. Choose any =) € X. If z; is not maximal, there exists z; € X with z; < =2
(which means, of course, that z; < z; and z; # z;). Continue this process, either
until a maximal element is found, or we reach an element previously encountered.
In fact, the second alternative cannot occur; for, if ¢ < j, then

T < Tipy < ... < i < Xy,

so z; = z; is impossible. So eventually a maximal element will be found.

This argument obviously fails in infinite posets: there is no maximal integer, for
example.

! This usage comes from geometry, where the points on a line in Euclidean space are linearly ordered,
as opposed to the points of a line in projective space, which are circularly ordered.
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In a poset, we say that z is a lower boundof z and yif z <z and z < y. A
greatest lower bound (glb.) of z and y is a maximal element in the set of lower
bounds. By (12.1.1), if two elements of a finite poset have a lower bound, they have
a greatest lower bound; but it may not be unique. Upper bounds and least upper
bounds (Lu.b.s) are defined similarly.

A lattice is a poset in which each pair of elements has a unique greatest lower
bound and a unique least upper bound. (We are considering only finite lattices here.)
A lattice has a unique minimal element 0, which satisfies 0 < z for any element z.
(For let 0 be any minimal element, and z any element. If z is the glb. of 0 and z,
then z < 0, so z = 0 by minimality, whence 0 < z. If z happened to be a minimal
element also, then x < 0, whence z = 0 by antisymmetry.) Dually, a lattice has a
unique maximal element 1, satisfying = < 1 for all 2.2

We use the notation z Ay and z V y for the glb. and lub. of z and y in a
lattice. These are also called the meet and join of x and y.

Any totally ordered set is a lattice: if z < y, then z Ay = z and zVy = y. Other
examples of lattices include:

o The power-set lattice P{X), whose elements are the subsets of a set X, ordered
by inclusion. It has Ay =zNyandzVy=zUy.

o The lattice D{n) of (positive) divisors of the positive integer n, ordered by
divisibility: z < y if = divides y. The g.lb. and Lu.b. of = and y are their greatest
common divisor {z,y) and least common multiple zy/(z,y) respectively.

o The lattice of subspaces of a finite vector space V = V(n,q), ordered by
iclusion: this is the projective geometry PG(n, ¢), looked at in a different way.
We have z Ay = zNyand zVy = {z,y} = z+y (sum of subspaces!) respectively.
Following the nineteenth-century tendency towards abstraction and axiomatisa-

tion in mathematics, a lattice can be regarded as a set on which are defined two
binary operations A and V and two elements 0 and 1. The next result gives the
axiomatisation of lattices from this point of view.

(12.1.2) Proposition. Let X be a set, A and V two binary operations defined on X,
and 0 and 1 two elements of X. Then (X,A,V,0,1) is a lattice if and only if the
following axioms are satisfied:

o Associative laws: zA(yAz)=(zAy)AzandzV{yVz)=(zVy)Vz

e Commutative laws: tAy=yAzandzVy=yVz;

e Idempotent laws: xt Az =2V z=1zx;

s zA(zVy)=z=zV(zAy);

e zA0=0,zv1=1

ProoF. Verifying that the axioms hold in a lattice is not difficult — t1y it yourself.
The converse is a little harder. We have to recover the partial order from the lattice
operations. If £ < y, then the glb. of z and y is obviously z; we reverse this and
define the relation < by the rule that £ <y if £ Ay = z. We have to show that this
really is a partial order, and that z Ay and z V y are the gl.b. and Lu.b.,, and 0 and
1 the least and greatest elements, in this order.

? In an infinite lattice, the existence of 0 and 1 cannot be deduced, and must be postulated.
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First, note that Ay = z implies 2 Vy = yV (y A 2) = y, using the commutative
laws; and conversely. So the ‘dual’ definition of the order is equivalent to the one

we used.
Now we show that < is a partial order. The idempotent laws show that it is

reflexive. Suppose that r < y and y < z, Then
z=zxANy=yAz =y,

so the relation is antisymmetric. Finally, suppose that z < y and y < z. Then
rAy=rzandyAz=1y So

sAhz=(zhy)Ahz=zA(yAz)=zAy=ug,

sor <z
Now, for any z and v,

Ay Ay=sA(yAy) =z Ay,

so (z Ay) < y. By commutativity, also (z A y) < z. Thus, Ay is a lower bound for
z and y. If # 1s any lower bound, then

zA(zAy)=(zAz)Ay=2Ay =z,

so z < (z A y). It follows that 2 A y is the unique greatest lower bound. The proof
that z V v 1s the unique least upper bound is dual.

Finally, the last axiom shows that 0 is the unique minimal element and 1 the
unique maximal element.

12.2. Linear extensions of a poset

As in the introduction to this chapter, we can regard a partial order as expressing
our partial knowledge of some underlying total order. This suggests that every
partial order is a subset of a total order. This is indeed true:

(12.2.1) Theorem. Let 12 be a partial order on X. Then there is a total order R* on
X such that R C R*.

A total order containing the partial order R is called a linear extension of R (the
word ‘linear’ coming from the alternative term ‘linear order’ for a total order). If X
is finite, this result can be expressed in the form:

Let (X, <) be a poset. Then we can label the elements of X as
T1,...,T, such that, if z; < z,, then ¢ < j.

Our proof will, as usual, assume that X is finite. The idea of the proof is that, if
R is not itself a total order, then some pair of elements is incomparable; intuitively,
we don’t yet know the order of these elements. We enlarge R by specifying the order
of the two elements, and adding various consequential information. The resulting
relation R’ is still a partial order. After a finite number of steps, there are no more
incomparable elements, and we have a total order.
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So let a,b be incomparable. If we specify a < b, then everything below a must
become less than everything above b. So we put

R=RuU(lax1h),

where | @ = {z : (z,a) € R} and 1 b = {y : (b,y) € R}. We claim that R’ is a partial
order. It is clearly reflexive, since R is. Also, note that | a N1 b = @; for, if = lies
in this intersection, then (b,z), (z,a) € R, so (b,a) € R by transitivity, contradicting
the incomparability of @ and b.

Suppose that (z,¥), (y,z) € R'. If both pairs lie in R, then £ = y by antisymmetry
of R. The remark in the last paragraph shows that we cannot have (z,¥),(y,2) €
lax Th The remaining case is that (without loss of generality) (z,y) € R,
(y,2) € | a x T b. Then (b, z),(x,y), (¥, a) € R, again contradicting the choice of a
and b.

The proof of transitivity is very similar. If (z,y),(y,2) € R, then (2,2) € R;
we cannot have (z,y),(y,2) € | @ x 1 b; and, if (z,y) € R, (y,2) € L a x T b, then
t €l g 50 (z,2) € R.

The proof is complete.

12.3. Distributive lattices
A lattice L 1s distrsbutsve if it satisfies the two distributive laws

tVyAz)=(zVy)A(zVaz),
sAyvz)=(zAy)V(zAz)

Two of our examples of lattices are distributive: the lattice P(X) of subsets of
a set X, and the lattice of divisors of a positive integer n. (In the first case, the
distributive laws are familiar equations connecting unions and intersections of sets,
easily checked with a Venn diagram. The second is a little harder to see; try it for
yourself.)

In view of the first example, any sublattice of the lattice P(X) of subsets of X
(that is, any family of subsets of X which is closed under union and intersection) is
a distributive lattice. We could ask whether, conversely, any distributive lattice can
be represented in this way. This is indeed true, and we prove a stronger version.

Let P = (X, <) be a poset. A subset ¥ of X is called a down-setif y €Y,z <y
imply z € ¥; that is, anything lying below an element of ¥ is in ¥.> There are two
trivial down-sets in any poset: the empty set, and the whole of X.

(12.3.1) Proposition. The union or intersection of two down-sets is a down-set.
ProOF. Let Y; and Y; be down-sets. Suppose that y € YUY, and z < y. Then

yEYyorycYy; s02€Y, or 2z €Y, whence z € Y; UY,. The argument for
intersections is similar.

3 The term ‘ideal’ is often used. But it has another, conflicting, meaning.
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Thus, the set of all down-sets of P, with the operations of union and intersection,
is a distributive lattice (whose 0 and 1 are the trivial down-sets). We denote this
lattice by L(P). For example, if P is the poset IV of Fig. 12.1, then L(P) is shown
in Fig. 12.2. Now every finite distributive lattice has a canonical representation of
this form.

1234

123 121

Fig. 12.2. The lattice L(N)

(12.3.2) Theorem. Let L be a finite distributive laitice. Then there is a finite poset P
(uniquely determined by L) such that L is isomorphic to L(P).

ProoOF. How can we recover the elements of P from L? For any point z of P, the
set | = = {y: y < z} is a down-set, the prineipal down-set determined by z. We have
to recognise elements of L corresponding to principal down-sets.

An element a # 0 of a lattice L is called join-indecomposable, or JI for short, if
a = bV c implies ¢ = b or ¢ = ¢. Now, in L(P), any principal down-set is J1 For, if
lz=bve thenz €borz € ¢, whence | z =bor | z = c (if b and c are down-sets).
Conversely, any J1 in L(P) is a principal down-set. (In Fig. 12.2, the JI elements of
L(N) are represesnted by solid circles. Note that they form a sub-poset isomorphic
to N.)

So, in any finite distributive lattice L, we let P(L) be the set of JI elements, with
order inherited from L. Then P(L) is the only possible candidate for a poset P such
that L(P) = L; we show that, indeed, L(P(L)) = L. The proof is in a number of
steps.

StEP 1. Every non-zero element of L is a join of JI elements.

Proo¥. If a € L is JI, we are done. Otherwise, ¢ is a join of two elements strictly
below it in the lattice. By induction (for example, on the number of elements below
a}, these two elements are joins of JI elements; so the same is true of a.

STEP 2. Every non-zero element a € L is the join of all the JI elements below it.

ProoF. We know that a is the join of some of these elements. The join of all of
them s no smaller, but is still no larger than «.

These two steps apply also to 0, if we interpret the join of the empty set as 0.

Now let X be the set of all JI elements (the elements of the poset P(L)); for
any a € L, let s(a) = {z € X : z £ a}. We show that 5 is an isomorphism from L
to L(P(L)).

STEP 3. 5(a) is a down-set.
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ProoF. Clear from the definition.
STEP 4. 5 is a bijection.

PRrooF. That s is one-to-one follows from the fact that a is the join of the elements in
s(a). Now let Y be any down-set in P(L), and let a be the join of the elements in Y.
Then each y € Y satisfies y < a. Supposethat z ¢ Y and z < a. If Y = {yy,..., 3 },
then we have 2 < 41 V... Vyn, 50 2 A (y1 V... V ) = . By the distributive law,
(zAwm)V...V(2Ay,) = z. But z is JI; so, for some 7, we have z A y; = x, whence
z < yi. But this contradicts the facts that z € Y, 4 € Y, and Y is a down-set. We
conclude that ¥ = s(a). So s is onto.

STEP 5. s is an isomorphism, ie.
(a) s(aAb)=s(a)ns(b),
(b) s(aV b) = s(a)U s(b).
PRooF. (a) Forz € X, we have 2 < aAbif andonlyif 2 < gand 2 < b,
(b) Take z € s(a) U s(b). Then either z € s(a) or & € s(b); so z < aor z < b,
whence z < a V b. Conversely, suppose that z € s(a V ), 50 z < a V b. Then

z=zA(aVb=(zAa)V(zAb)

Since z is JI, 2 = z Aa or z = z A b, whence z € s(a) or z € s(b).
This completes the proof.

Among distributive lattices, a special class ate the Boolean lattices. These are the
distributive lattices L possessing a unary operation z — z’ called complementation,
satisfying

e (zVyY=2'Ay, (zAy)=2"VY,;
exzvr'=1lzAz =0

(12.3.3) Theorem. A finite Boolean lattice is isomorphic to the lattice of all subsets
of a finite set X, with z’ interpreted as X \ z.

ProOF. Let L be a finite Boolean lattice. We have an embedding of L into P(X),
where X is the set of JI elements of L. To show that L = P(X), we show that any
two J1 elements are incomparable — then any set of JI elements is a down-set.
So suppose that @ and b are distinct J1 elements with ¢ < b. Then
aV(had)=(aVvhA(avd)=bAl=hb.
Since b is J1 and a # b, we must have 6 = b A o’ < ¢'. Then
a=alNb=aA{bAd)=bA{eAd)=bA0=10,
a contradiction.

Now, if s is the lattice-isomorphism from Z to P(X) as in Theorem (12.3.2), we
have s(a) N s(a’) = B, s(a) U s(a’) = X; so s(a’) = X \ 5(a), as claimed.
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Another interesting class consists of the free distributive lattices. These are gen-
erated (in the algebraic sense) by a set X = {=zi,..., 2.}, and have the property that
two expressions in the generators are unequal unless the definition of a distributive
lattice forces them to be equal. I will identify the free distributive lattice as L(P), as
in (12.3.2), but with a bit of hand-waving; a rigorous proof has to use properly the
formal algebraic definition of freeness.

Using the distributive laws, any element other than 0 and 1 can be written as a
join of terms, each of which is a meet of some elements of X. So the only possible
join-indecomposables apart from 1 are the meets of the non-empty subsets of X.
The J1 element 1 corresponds to the empty set. The order in the lattice of these
meets is the reverse of the inclusion order of the subsets.

Moreover, a down-set in the poset of meets of subsets of X corresponds to an
up-set in P(X). Since P(X) is ‘self-dual’, we have:

(12.3.4) Proposition. The free distributive lattice generated by an n-set X is iso-
morphic to L(P(X)), in other words, to L(L(A)), where A is an antichain with n
elements.

However, nobody knows a formula for the number of elements in this lattice for
arbitrary n. This is a famous unsolved problem. The answer is known only for very
small values of n.

12.4. Aside on propositional logic

The name of Boole is familiar to every computer scientist today, as a result of his
project to turn set theory and logic into algebra. We now sketch the details.

Expressions in Boole’s system are built from variables, just as polynomials are; but a Boolean
variable can take only the two values TRUE and FiLSE. (Think of these variables as elementary
statements or propositions out of which more complicated expressions can be built.)

We start with a set P of propositional or Boolean variables. A formula is an expression
involving variables, parentheses, and the connrectives V (disjunction, ‘or’), A {conjunction, ‘and’), and
- (negation, ‘not’), defined by the rules

» any propositional variable is a formula;

» if ¢ and 1 are formulae, so are (¢ V ¢), (¢ A ), and (—4);

» any formula is obtained by these two rules.
In other words, the set of formulae is the smallest set of strings of variables, parentheses and
connectives which contains the variables and is closed under the three constructions specified in the
second rule.

A veluation is a function v from the set of variables to the set {TRUE,PALSE}. By induction, v
defines a function from the set of formulae to the set {TRUE, PaLSB}, which is also called a valuation
and denoted by v, such that the usual ‘truth table rules’ for the connectives apply:

» if 4(¢$) = TRUE then v((—¢)) = PALSE, and vice versa;
s v((¢ V) = TRUE unless v(¢) = v(3)) = PALSE, in which case v((¢ V )) = FALSE;
s v((¢ A 1)) = PALSE unless v($) = v(3)) = TRUE, in which case v((¢ A ¢)) = TRUE.

Further connectives can be defined in terms of the ones already given, For example, (¢ — 1)
is shorthand for ((-¢) V ¢), and (¢ < ¢) for (¢ — ¥) A (1 — ¢)). Truth tables for these can be
calculated. For example, v((¢ < 1)) = TRUE if and only if »($) = v(¥).

A formula ¢ is called a fautology if v(¢) = TRUE for all valuations v, a contradiction if
v($) = FaLsR for all v (that is, if (—¢) is a tautology). Two formulae ¢, are equivalent if v(¢) = v(sh)
for all valuations v; that is, if (¢ < ) is a tautology.
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Now it can be checked that the ‘equivalence’ just defined is an equivalence relation, and that the
connectives induce operations on the set of equivalence classes: if [¢] denotes the equivalence class
of ¢, then we can set

[V [#] = [(¢ V)

(B[] = [(6 A%,

(8} = [(-4)}

and the objects defined don’t depend on the choice of representatives of the equivalence classes. Now
Boole's observation can be summarised as follows:

(124.1) Proposition. The set of equivalence classes of propositional formulae, with the above opera-
tions, is a Boolean lattice.

Suppose that there are n propositional variables. The number of valuations is 2°. Any formula
¢ defines a function v — u(¢) from valuations to {TRUE,PALSE}, and two formulae are equivalent
if and only if they define the same function. Any function is represented by some formula, so the
number of eguivalence classes is 22". So the Boolean laitice has 22" elements.

By (12.3.3), any Boolean lattice is isomorphic to P(X) for some set X. Can we identify such an
X here? It must have cardinality 2”. An answer is given by the disjunctive normeal form:

(12.4.2) Disjunctive normal form. Any formula in the variables py, ..., p, which is not a contradiction
is equivalent o a unique disjunction of terms (g1 A .. . A gn), where each g; is either pi or (=p;).

There are 2" ‘terms’ of the form described in the proposition, and each equivalence class of
formulae corresponds to a subset of the set of terms. (The equivalence class of contradictions
corresponds to the empty set of terms) Moreover, the operations V,A,’ on equivalence classes
correspond to union, intersection, and complementation on sets of terms. So the set of terms is the
required X.

Another approach to the question gives an even more obvious answer: take X to be the set of
valuations, and identify an equivalence class with the subset consisting of valuations which give the
formulae in that class the value TRUE. To see the correspondence between the two approaches, note
that there is a unique valuation which gives the term g; A ... A gn the value TRUE, namely the one

defined by
y_ [TRuE if ¢; =pi,
”(P') = {pALsB if ¢ = (—pi)-

The disjunctive normal form theorem can be used to show that the lattice of equivalence classes
of propositional formulae in n variables is the free Boolean lattice on n generators (compare the
remarks at the end of the last section on free distributive lattices).

12.5. Chains and antichains

A chain C in a poset P is a subset of P such that any two of its points are
comparable. In other words, it is a sub-poset which is a total order. An antickain A
is a subset such that any two of its points are incomparable.

We have met these concepts before. Sperner’s Theorem (7.2.1} describes the
largest antichains in the lattice P(X) of subsets of X. Qur proof of this by the LYM
technique involved covering the poset by chains. A crucial point in the argument
was:

If C is a chain and A an antichain in a posei, then [CN A < 1.

For two points in this intersection would be both comparable and incomparable!
From this, we immediately see:
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(12.5.1) Proposition. (a) If a poset P has a chain of size r, then it cannot be
partitioned into fewer than r antichains.

(b) If a poset P has an antichain of size r, then it cannot be partitioned into
fewer than r chains.

The proof is trivial, since two points in the same chain must ke in different
members of a partition into antichains, and ‘dually’. The main goal of this section
is to prove a pair of results in the reverse direction. The first is straightforward:

(12.5.2) Theorem. Suppose that the largest chain in the poset P has size r. Then P
can be partitioned into r antichains.

PROOF. We define the height of an element ¢ of P to be one less than the greatest
number of elements in a chain whose greatest member is z. (The ‘one less’ is
conventional: the height of z is the greatest number of ‘steps’ up from the bottom
of the poset to z.) Let A; be the set of elements of height i. Then, by hypothesis,
Ai=0fori>r,s0 P =AgU...UA,_1; and each 4; is an antichain, since if z € A;
and z < y, then there is a chain 2 < ... < z; = £ < y, so y has height greater than
i.

The ‘dual’ result looks similar, but the proof is much more involved.*

(12.5.3) Dilworth’s Theorem. Suppose that the largest antichain in the poset P has
size r. Then P can be partitioned into r chains.

PROOF. The proof is by induction on the number of points of P. Clearly the result
holds for one-element posets. So suppose that it is true for all posets with fewer
points than P, Let z be a minimal element of P.

CASE 1, z is incomparable with everything else in P. Then the largest antichain
in P\ {2} has size r — 1, since adjoining = gives a larger antichain. By induction,
P {z} can be partitioned into r — 1 chains; we add the singleton chain {z} to
produce the required partition.

CASE 2. Some other points are comparable with z. By induction, we can partition
P {z} into r chains C},...,C,. For each i, let T; be the set of elements of C; which
are comparable with z, and B; = C;\ T}; let B = B, U...U B;. Then every element
of T is greater than z, since z is minimal; T; is above B; for each i, and B is the
set of all elements incomparable with x. We colour the points of B with r colours
¢1,...,¢r by the rule that 4 has colour ¢; if y € C.

By the argument of Case 1, B can be written as the union of r — 1 chains
Ci,...,C!_,. Each of these chains can be partitioned into ‘runs’ of elements of
the sane colour. We are about to do some rearranging of these chains, which
may have to be repeated an unspecified number of times. But each rearrangement

4 The result is uniformly known as Dilworth's Theorem. It was published by Dilworth in 1950. It
had been found a few years earlier by Gallai and Milgram, but publication was delayed because
Gallai wanted the paper iranslated into English, and Milgram, a topologist, did not fully appreciate
its importance.
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strictly decreases the total number of colour runs which occur; so we know that the
rearrangement process will terminate after a finite number of moves.

A move is as follows. Suppose that the greatest elements of two or more of
the chains CY,...,C!_, have the same colour ¢;. Take the union of all the runs of
colour ¢; which lie at the top of their chains. This union U is itself a chain, since it
is a subset of C;. If y is the smallest element of U, and y € C}, then we move all the
elements of U to C’, where they sit at the top, forming a single run. So the number
of runs has decreased, as claimed; and the new C| are still chains.

At some stage, it is no longer possible to apply a move of this type. This
must be because the greatest elements of the chains all have different colours. Re-
numbering if necessary, we may assume that the greatest element of C/ has colour
cfori=1,...,r— 1. Now C! = T: UC! is a chain for i = 1,...,r — 1, since the
greatest element of C} lies below T;. Finally, C! = T, U {2z} is a chain, since z lies
below all T;. So we have the required partition into chains Cy,...,C..

Perhaps the relative difficulty of this theorem is more understandable when you
realise that it contains Hall’s Marriage Theorem (6.2.1) as a special case!
Suppose that 4,,...,A, are subsets of X satisfying Hall's Condition (HC):

[A(D)| 2 |J| for JC{1,...,n},

where A(J) = Ujes Aj. We construct a poset P as follows. The elements of P
are the points of X and symbols yi,...,ys, with z < y; if z € A;, and no other
comparabilities. We set ¥ = {y1,...,ya}. Now X is an antichain in this poset.
We claim that there is no larger antichain. For let .5 be an antichain, and set
J ={j :y; € §}. Then S contains no element of A(J); so

15 < 7]+ 1X] - |A()] < |X],

by (HC).

Now Dilworth’s Theorem implies that P can be partitioned into |X| chains.
Each of these chains must contain a point of X. Let the chain through y; be {x;,y:}.
Then (%, ..., z,) is a system of distinct representatives for (Ay,..., As): for z; € A;
(since z; < u;), and z; # z; for i # j (since the chains are disjoint).

12.6. Products and dimension

Suppose that a number of objects are being compared on several different numeric
attributes. If z is better than y on all these attributes, we are justified in saying that
2 beats y. But if z is better on some atiributes and y on others, then, depending
how the attributes are scaled or weighted, we might come to different conclusions
about their ordering, and it seems safest to say that z and y are incomparable in
this case.

Accordingly, let (X;,<,;),...,(Xn,<n) be posets. The direct product of these
posets is the poset (X, <), where

X=Xy X...xXn={(21,.-,2n) 1 21 € X1,...,2. € X},
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and
(@15, 2n) < (thy...,¥e) ifandonlyif &z <;yifori=1,...,n.

It is a simple matter to show that (X, <) is indeed a poset. Moreover, a direct
product of lattices is a lattice, with meet and join defined by

(xly---gxn)/\(ylw'wyﬂ)=(xl /\1 Yiry-e-1Tn /\ny‘n)v
(Z1ye s Fn) VUL, ¥n) = (221 VI Y15 -+, 80 Vi Yn)s

and 0 = (01,...,0,), 1 = (1;,...,1,).

Some familiar posets are direct products. Notably:

{(12.6.1) Proposition. (a) If | X| = n, then the power-set lattice P(X) is the direct
product of n copies of the two-element lattice {0,1}.

(b) If n = p{* ... p’r, wherep,...,p, are distinct primes, then the lattice D(n) of
divisozs of n is isomorphic to the direct product of the lattices D(py'), ..., D(p?).

Proof. (a) Let X = {zy,...,2,}. We identify any subset ¥ of X with its characteristic
function (e1,...,e,), where ¢; = 1 if z; € ¥, ¢; = 0 otherwise. This is a bijection
between P(X) and {0,1}", Moreover, if ¥ and Z have characteristic functions
{e1,...,€n) and (f1,..., f.) respectively, then

YCZ&e (W) (€Y =>z€2)
S M)(ae=1=>fi=1)
& (Vi) (e < fi),

so the map is an isomorphism.

(b) is an exercise.

The concept of direct product gives us a measure of how far a poset is from
being totally ordered. Essentially, this is the smallest number of different numerical
attributes required to produce the partial order by the recipe at the start of this
section, Formally, we define the dimension of a poset P to be the smallest integer
d such that P can be embedded as a sub-poset of the direct product of d totally
ordered sets.

(12.6.2) Proposition. The poset P(X ) has dimension |X|. The dimension of the poset
D(n) is equal to the number of distinct prime divisors of n.

Proor. We found isomorphisms from these posets to products of the stated number
of totally ordered sets. It is necessary to show that they cannot be embedded in
products of fewer total orders. More generally, we claim that the product of n total
orders, each with more than one point, has dimension n. The result is clear if » < 2,
s0 we may suppose that n > 3.

We consider a special two-level poset, the standard poset, with 2n vertices

al;“'vamblv"‘:bn;

the comparabilities are a; < b; if {and only if) i # j.
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StEP 1. If P is a sub-poset of @, then dim(P) < dim{Q).

Sree 2. If P is the direct product of n total orders, each with at least two points,
then P contains the 2n-point standard poset. For suppose that u;,v; are elements
of the *® factor, with u; < v;, fori = 0,...,n— 1. Now let a; be the n-tuple with i*®
entry v; and j* entry u; for j # i; and let b; be the n-tuple with i*" entry u; and j
entry v; for j # i It is readily checked that these elements form a standard poset.

Ster 3. The dimension of a 2n-point standard poset is nn. Clearly it is not greater
than n. Suppose that the standard poset is embedded in the product of m total
orders. For each ¢, there exists a j such that the ;' coordinate of b; is strictly smaller
than that of any other point b, since otherwise a; (whose coordinates are all smaller
than the corresponding coordinates of by, for k # ¢) would lie below 5;. Clearly this
requires at least n coordinates.

Exaupri. The poset N has dimension 2: it can be represented by the four points
(2,0), (0,1), (3,2), (1,3).

It’s not obvious that a finite poset has finite dimension; but this is indeed true.

(12.6.3) Theorem. The dimension of a finite poset P is finite, and is not greater than
the number of linear extensions of P.

ProoF. Let P = (X, R), and let (X, Ry),...,(X, R:) be the linear extensions of P,
We map X to the direct product of these total orders by the diegonal embedding:
z — (2,2,...,2). Now, if (z,y) € R, then (z,y) € R; for i = 1,...,k; so
(%,...,2) < (¥,...,y) in the direct product. Suppose that = and y are incomparable.
The proof of Theorem 12.2.1 shows that there is a linear extension R; of R with
(z,¥) € R:, and another linear extension R; with (y,z) € R;; thus, {z,...,2) and
(v,...,y) are incomparable. So the diagonal embedding is an isomorphism.

12.7. The Mobius function of a poset

An n X n real matrix A = {g;;) can be regarded as a function a from ¥ x N to R,
where N = {1,2,...,n}, whose values are given by a(,j) = a;;. From this point of
view, the fact that &V is an ordered set leads us to consider the matrices or functions
‘supported’ by the order, that is, functions which satisfy @;; = 0 unless ¢ < j: these
are precisely the upper triangular matrices. They form an algebra: that is, they are
closed under matrix multiplication as well as addition and scalar multiplication. In
particular, an upper triangular matrix is invertible if and only if its diagonal entries
are all non-zero. We will extend this point of view to an arbitrary finite poset.

Let P = (X, <) be a finite poset. The incidence algebra I(P) of P is the set
of functions f : X x X — R which satisfy f{z,y) = 0 unless z < y. Addition and
scalar multiplication are defined pointwise, and two functions are multiphied by the
rule

frozy)= Y, f=z2)9(zv)

«<L2<y
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(12.7.1) Proposition. If | X| = n, the incidence algebra I(P) is isomorphic to a
subalgebra of the algebra of upper triangular matrices. A function f is invertible if
and only if f(z,z) #0 forall z € X.

Proor. We take a linear extension of P (Theorem 12.2.1); that is, we number the
elements of X as z;,...,2Z, so that, if z; < z;, then ¢ < 5. Now we map f € I(P)
to the matrix A = (a;;) where a;; = f(z;,z;). Clearly, A is upper triangular, Also,
the map is an isomorphism, since if matrices A and B correspond to f and g, then
the matrix corresponding to fg has (¢, j) entry

Y flzome)e(ziz) = Y anbi

oLy i<k<j

= 3 auby

1<ign

the last inequality holding because, unless i < k& < j, either a; or by; is zero. In
particular, fg(z,y) = 0 unless z < y (since there are no terms i the sum); so
fg € I(P).

Finally, note that the values f(z,z) are the diagonal elements of the matrix
corresponding to f. So a function satisfying the condition f(z,z) # 0 corresponds
to an invertible matrix. We need to know that the inverse function does lie in J(P).
For this purpose, we give an algorithm to compute an inverse function; the fact that
the inverse is unique then implies the result.

For z < y, we define the interval [z, y] to be the set {z: 2z < z < y}, or the poset
induced on this set. Now suppose that f(z,z) # 0 for all z € X. We calculate the
values ¢(z,y) of a function g € I(P) by induction on the cardinality of [z,y], as
follows:

If |[z,y]] = 0, then z £ y, and we set g{z,y) =0
If |[z,y]| = 1, then z =y, and we set ¢(z,z) = f(z,z)"".
If |{z,y]| > 1, we set

9lz,y) = —f(z,z)”" (Z f(z,2)g(z ,y)

zL3LY

The function g is well-defined, because the values of g on the right-hand side
of the last equation have the form ¢(z,y), where £ < z < y; so the interval [z, y]
is properly contained in [z, y], and the values are defined by induction. Clearly
g € I(P). A short calculation shows that, indeed, fg(z,z) = 1 and fg(z,y) =0 if
z # y; 50 g is the inverse of f.

Three particular elements of I{P) are specially important. The first is the
function e, the characteristic function of equality:

_J1 fz=y,
e(z,y) = {0 otherwise;
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this is the identity element of 7(P), corresponding to the identity matrix. Next is the
function ¢, the characteristic function of the partial order:

; _J1 ifz<y,
i(z,y) = {0 otherwise.

Finally, the Mébius function p of the poset is the inverse of the function i. That is,
it is characterised by the equation

_J1 ifzx=y,
Z ulz,2) = {0 otherwise.

<2y
(12.7.2) Proposition. The Mobius function is integer-valued.

ProOF. Examine the proof of (12.7.1), which gives a2 method for calculating the
inverse of a function: take f = 7 there. Since {(z, z) = 1 for all z, the factor i(z, z)!
is equal to 1. Now g(z,y) is a linear combination of values of u(z,y) with integer
coeflicients (in fact, all equal to —1), where z < z < y; by induction, p{z,y) is an
integer. (The mduction starts with u(z,z) =1.)

Note that the value of the Mobius function at (z,y) depends only on the poset
[x,¥]; points outside this interval don’t affect the value. For the record, we translate
the defining property of the Mobius function as follows. This resuit is referred to as
Mobius inversion in the poset P.

(12.7.3) Proposition. Let f,g be elements of I( P). Then the following are equivalent:
(a) f(zvy) = z g(z,z);

zLzly

(b) 9(z,y) = D flz,2)ul(zy)-

T2ty
For a simple but important example, we have

(12.7.4) Proposition. Let P be a totally ordered set. Then the Mabius function of P

18

1 ifz=y,
ulz,y) =4 —1 ify covers z,
0 otherwise.

ProoF. Indeed, in any poset, if y covers z, then p(z,y) = —1, since only the term
z = y occurs in the sum in (12.7.1). Now, if z < y and y is not the unique element
z which covers z, a simple induction shows that u(z,y) = 0. (This induction begins

with the case where y covers z; then p(z,y) = —(u(z,y) + p(y,y)) = 0)
Conveniently, the Mabius function of & direct product of posets is equal to the

product of the Mobius functions of the factors:

(12.7.5) Proposition. Let P,,..., P; be posets, and let P = Py x ... x F;. Then the
Mobius function of P is defined by

k
wl((Z1y .z (v, w)) = T plza ).
=1
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PROOF. Since the Mobius function is unique, it suffices to prove that the right-hand
side does have the property that
_J1 ifz=y
z;y”(z'y) N {0 otherwise.
Ifz=(2,...,2),thenz <z <yifand only if 2; < 2; <y; for i = 1,...,k; so the
sum on the left is over the product of the intervals [z;,3]. Then this sum factorises
as shown in the proposition.

From this, we can calculate the Mabius functions of two important posets.
{(12.7.8) Theorem. (a) The Mobius function of the Boolean lattice P(X) is given by
w(Y,Z) = {( 1)|Z| Yl ify C Z,

otbermse

{b) The Mabius function of the lattice D{n) of divisors of n is given by

(y,2) = {( 1)¢ if z/y is the product of d distinct primes,
otherwise.

This is immediate from (12.7.4), (12.7.5) and (12.6.1}.
REMARK 1. Both P(X) and D{n) have the property that any interval is isomorphic
to a lattice of the same form: [V, Z] ® P(Z \Y) in case (a), and [y, 2] = D{z/y)
in (b). Thus, in these cases, we can regard the Mobius function as having a single
argument, setting p(Y) = p.(O) Y) in P(X), and p(y) = p(l,y) in D(n). The values
of these functions are then given by

W¥) = ()" in P(X)
[ fy=p...pa D
#(y) {0 o A in D(n)
where py,...,ps denote distinct primes. The latter function is the classical Mabius
function met with in number theory.
REMARK 2. Using the form of the Mabius function for P(X), the statement of (12.6.3)
translates precisely into (5.2.2), an equivalent form of the Principle of Inclusion and
Exclusion, Thus Maobius inversion is a generalisation of PIE.
REMARK 3. The “classical’ form of Mobius inversion reads as follows.
Let f,g be functions on the positive integers. Then the following
are equivalent:

(2) f(n) =3 g(d);

din

(b) g(r) = 3_ f(d)u(n/d).

din

Here is an application. In Section 4.7, we found that the number a, of monic ir-
reducible polynomials of degree n over a field with g elements satisfies the recurrence

relation
E dad = qn.
dln
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By Mobius inversion (applied with f(r) = ¢", g(n) = na,), we find a formula for
Oyt

1
ay = ;E qdy,(n/d),
d|n

where g is here the classical Mobius function.

12.8. Matroids

The notion of independence shows up in many different places in mathematics:
some familiar, some less so. We'll see that it obeys the same laws in these different
guises, Among them are:
¢ Linear independence in vector spaces.
¢ A closely related notion occurs in projective or affine spaces. Any set of k points
in such a space lies in a flat of dimension at most k — 1; it is called independent
if it lies in no flat of dimension smaller than k — 1.
o In a graph (V, E), a set E’ of edges is acyelic if (V, E’) is a forest.’
¢ Let F be a family of subsets of X. A set {z;,...,2:} of points of X is a partial
transversal for F if there are distinct sets A,,...,A; € F such that 2; € A; for
i=1,...,k; in other words, (z,,...,2;) is 2 SDR for a subfamily of F.

The common concept here is that of a matroid® A matroid is a pair (X,7),
where 7 is a non-empty family of subsets of X having the properties:
¢ Hereditary property: if Y € T and Z C Y, then Z € T;
¢ Exchange axiom: if Y,Z € T and |Z| > |Y|, then there exists z € Z such that
Yu{z}el

The members of 7 are called independent sets. In fact, there are many other ways
to define a matroid, and the beginner is often bemused by the many axiom systems.
As a compromise, I will describe some other structures which are equivalent to the
notion of a matroid, but without giving all the axiomatisations.

It follows immediately from the second matroid axiom that any two maximal
independent sets have the same cardinality. This number is called the renk of
the matroid, and a maximal independent set is called a basis. Dually, a minimal
dependent set is called a cyele. If Y is any subset of the point set X of a matroid,
then the members of 7 contained in Y clearly satisfy the matroid axioms, so define
a matroid on Y. Let p(Y) denote its rank, so that p is & function from P(X) to the
non-negative integers. A set Y is called closed if p(Y U {z}) > p(Y) forall z ¢ Y.
The closure o(Y') of an arbitrary subset Y is the smallest closed set containing it.

(12.8.1) Proposition. A matroid on X is determined by any of the following: the
bases; the rank function; the cycles; the closed sets; the closure aperator on P(X).

5 The graph may contain loops or multiple edges. By convention, a forest has no loops, and contains
at most one edge joining any pair of vertices.

5 An alternative term is ‘combinatorial pregeometry’. To the surprise of its proponents, but perhaps
of nobody else, this term has not become standard.
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PROOF. As we have explained, each of these structures is determined by the indepen-
dent sets. We must show the converse.

The axioms imply that a set is independent if and only if it is contained in a
basis. Obviously, a set is independent if and only if it contains no cycle. Also, a set
is independent if and only if its rank is equal to its cardinality.

For the last two, we first observe that a set is closed if and only if it is equal to
its closure, so the closed sets and the closute operatar carry the same information.
Moreover, the rank of a set is equal to the rank of its closure, so it is enough to
determine the rank of the closed sets. Now the rank of a closed set Y is the length
of any maximal chain of closed sets with greatest element Y.

(12.8.2) Proposition. Each of the following examples defines a matroid;
o X is a subset of a vector space, Z the sei of linearly independent subsets of X;
e X is.a subset of a projective or affine space, Z is the set of independent subsets
of X;
» X is the edge set of a graph, T the set of acyclic subsets of X;
o T is the set of partial transversals of a family of subsets of X.

PrOOF. The proofs show various similarities and differences, so I will sketch the first,
third and fourth. (The second is almost the same as the first.)

1. Let X be a set of vectors. Clearly, any subset of a linearly independent
subset is linearly independent. Suppose that Y and Z are linearly independent, with
|Z| > |Y|. Then dim{Z) > dim{Y}, so Z Z (Y). Thus, there is a vector z € Z not
contained in (Y}, and Y U {z} is linearly independent.

3. Let X be the edge set of a graph on the vertex set V. Clearly a subset
of an acyclic subset is acyclic. If Y is acyclic, then the number of connected
components of (V,Y) is |[V| — |Y| + 1, by (11.2.1). Thus, if |Z| > |Y|, then {V, Z)
has fewer components than (V,Y), and so some edge z € Z is not contained within
a component of (V,Y); thus ¥ U {2} is acyclic.”

4. Any subset of a partial transversal is clearly a partial transversal. Suppose
that Y and Z are partial transversals, with |Y| < |Z|. Let A, be the set represented
by ¥ € Y, and B, the set represented by z € Z. We consider, for each 2 € Z, the
set X' =Y U {z}, and the subsets A, = A, N X' and B, = B, N X'. If this family
of sets has a SDR, its elements must be all the points of X', which is thus a partial
transversal, and we are done. So we can suppose that this fails for all z. But this
means that some n 4 1 of these sets contain only n elements of X'. These n + 1 sets
must include B, since any subfamily of the A, has a SDR. This means that 2 € Y
for all z € Z, a contradiction, since |Z| > |Y.

As usual with abstract concepts, the point of this result is that a single argument
suffices to prove a theorem applicable in several different fields. We should look
to these fields for results which can be formulated in terms of independent sets.
One such is the greedy algorithm for the minimal connector (Section 11.3), whick

T A cycle in this matroid is the edge set of a circuit in the graph {possibly a loop or two parallel
edges) — hence the name.
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extends to the minimum-weight basis in a matroid whose elements have weights (see
Exercise 13).

The closed sets of a matroid form a lattice, where meet is intersection, and the
join of two sets is the closure of their union. Boolean lattices and finite projective
and affine geometries form special cases of these so-called geometric lattices, which
have been axiomatised and studied in their own right. We make just one observation.

A matroid is called geometric if the empty set and all singletons are closed.
Now it is possible to pass from any matroid to a geometric matroid in a canonical
way, which parallels exactly the procedure for passing from a vector space to the
corresponding projective space (Chapter 9).

S1EP 1. By removing all points in the closure of the empty set, we produce a matroid
in which the empty set is closed.

STEP 2. Now write z ~ y if z = y or {z,y} is dependent (in other words, if {z,y}
has rank 1). It follows from the exchange axiom that this is an equivalence relation.
There is a matroid induced in a natural way on the set of equivalence classes. (Any
closed set is a union of equivalence classes.)

In the case of a vector space V, Step 1 removes the zero vector, and Step 2 calls
two vectors equivalent if one is a scalar multiple of the other; so the equivalence
¢lasses are the 1-dimensional subspaces, that is, the points of the projective geometry.
In the case of a graph, Step 1 removes loops and Step 2 removes multiple edges,
leaving a simple graph.

Now, in general, geometric matroids and geometric lattices are equivalent con-
cepts: the points of the geometric matroid are the elements of the lattice which cover
0; an arbitrary element of the lattice can be identified with the set of points lying
below it; and, as explained earlier, we can recover the rank function, and hence the
independent sets, from the closed sets.

We conclude this section with a generalisation which pulls itself up by the
bootstraps. Our third example of a matroid arose from the partial transversals of
a family {A,,..., An} of subsets of X, that is, the sets of points supporting SDRs
of subsets of the family. Now we suppose that there is already a matroid (X,I)
defined on the point set. We ask: Is there an independent transversal? The answer is
formally similar to Hall’s Theorem (of which it is a generalisation).

(12.8.4) Theorem. Let A,,..., A, be subsets of X, and let (X,T) be a matroid.
Then there is an independent transversal to the family if and only if, for every
Jc{l,...,n},

p(A(T)) 2 |J].

ReMARK, Hall’s Theorem corresponds to the case where the matroid is trivial {every
set independent), so that p(Y) = |Y| for any subset ¥ of X.

PrOOF. If there is an independent transversal, then for any J C {1,...,n}, A(J)
contains an independent set of size | J|, so its rank is at least this large. The converse
is an exercise, which can be solved by re-writing (with care) the proof of Hall’s
Theorem given in Section 6.2 (or, indeed, almost any other of the standard textbook
proofs).
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12.9. Project: Arrow’s Theorem

One of the problems of politics involves ‘averaging out’ individual preferences to
reach decisions acceptable to society as a whole. In this section, we prove Arrow's
Theorem, which shows that this is indeed a difficult task!

We suppose that [ is a society consisting of a set of » individuals. These individuals are to be
offered a choice among a set X of options, for example, by a referendum. We assume that each
membher i of the society has made up her/his mind about the relative worth of the options. We can
descrihe this by a total order <; on X, for each i € I. A social choice function is a rule which, given
the ‘individual preferences' <; for each i € [, comes up with a ‘social preference’ < on X, subject
to four conditions listed (and justified) below, In other words, it is a function from the set of all
n-tuples of X to the set of total orders, satisfying Axioms (A1)~(A4) below. Arrow’s Theorem asserts
that, if there are at least three options, then no social choice function is possible.

(A1) If £ < y (in the social preference), then the same remains lrue if the
individual preferences are changed in y’s favour.

(This means that, if <] (i € I) are another system of individual preferences satisfying
u ;v u<ivforall u,v# g and
u<; y=>u<yforally,

and <’ is the corresponding social preference, then x <’ y holds.

(A2) If Y C X and two sets {<;}, {<}} of individual preferences on X have the
property that <; and <! induce the same ordering on Y for each i € I, then the
corresponding social preferences < and <' induce the same orderingon Y.

(This is the prineiple of irrelevant options, and asserts that the working of social choice should
not be affected if some of the options are struck out.)

(A3) For any distinct 2,y € X, there is some system of individual preferences
for which the corresponding social preference has ¢ < y.

(In other words, it should be possible for society to prefer y to z if enough individuals do so. In
fact, it follows from (A1)~{A3) that, if 2 <; y for all : € I, then & < y: that is, if everybody prefers y
to z, then society does too.)

(A4) There is no individual ¢ such that <; coincides with < for all systems of
individual preferences.

This axiom requires that there should not be a dictator whose opinions prevail against all
opposition!

(12.9.1) Arxrow’s Theorem. If | X| > 3, then no social choice function exists.

Proor, Suppose that we have a social choice function, If (z, y) is an ordered pair of distinct options,
we say that a set J of individuals is (z, i) decisive if, whenever all members of J prefer y to «, then
so does the social order; formally, if # <; y for all { € J, then z < y. Further, we say that J is
decisive if it is (x, y)-decisive for some distinct z, y. We claimed after the statement of (A3) that the
whole society I is (z, y)-decisive for all z, y; let us first prove this. By (A2), we can suppose that =
and y aze the only options. Now by [A3), there is some system of individual preferences which causes
z < y to hold; and by (A1), this remains true if we alter them so that all individuals prefer y to 2.

Let J be a minimal decisive set. Then J # @, by (A3). Suppose that J is (z, y)-decisive, and let
¢ be a member of J.

CLAM. J = {i}. For let J' = J \ {i} and K = I \ J. Let z be a member of X different from 2 and y
(remember that |X| > 3). Consider the individual preferences for which
RS/ ASEN
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z<;z<;yforaljelJ,

y<pz<pcforallke K.
Then

T < Y, since all members of the (2, y)-determining set J think so;

¥ < z, since if z < y then J' is (2, y)-decisive, contradicting the minimality of J.
Hence = < z. But then {:} is (z, z}-decisive, since nobody else agrees with this order. By minimality
of J, we have J = {i}.

The proof shows, in fact, that {i} is (z, z)-decisive for all z # z.
CraIM. 1 is a dictator,

Choose w # r, and z # w,z. Consider the individual preferences in which

LA CE A <EN

z<pw<pzforallk £
Then w < = (because everybody thinks so) and 2 < = (because ¢ thinks so); so w < z, and {i} is
(w, z)-decisive, Finally, a similar argument (left to the reader) shows that {i} is (w, x)-decisive for
any w # z. The claim is proved; and so Axiom (A4) is violated, proving the Theorem.

12.10. Exercises

1. Describe the lattice L(P) for each of the posets P of Fig. 12.1 (other than N, see
Fig. 12.2).

2. Show that the pentagon and the three-point line are lattices, but are not
distributive.

ReMARK. It can be shown that a lattice is distributive if and ouly if it confains
neither the pentagon nor the three-point line as a sublattice.

3. A poset P is a two-level poset if it is the union of two antichains I/ and L with
no element of L greater than any element of U (so that the only comparabilities
which occur are of the form ! < u for ! € L, v € U). In the deduction of Hall’s
Theorem from Dilworth’s, we used a two-level poset. Show, conversely, that the truth
of Dilworth’s theorem for two-level posets can be deduced from Hall’s Theorem.
[HINT: you may find the form of Hall’s Theorem given in Exercise 7 of Chapter 6
useful)]

4. Prove Proposition 12.5.1(b).

5. (a) Find the dimension of the pentagon and the three-point line.
{b) Find all linear extensions of NV, the pentagon, and the three-point line.

6. (a) Show that any antichain (containing more than one point) has dimension 2.

{b) The incidence poset of a graph I' consists of the vertices and edges of T'
ordered by inclusion, where an edge is regarded as a set of two vertices, Calculate
the dimensions of the incidence posets of some small graphs. Show that the only
connected graphs whose incidence posets have dimension 2 are the paths.
7. Prove Theorem 12.8.4.
8. Calculate the Maobius functions of the posets whose Hasse diagrams appear in
Fig. 12.1.
9. Prove that the Mobius function of the lattice of subspaces of a vector space over
GF(g) is given by

(Y, 2) = { (—1)kg*k-12 ifY C 2,

othervnse,
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where k = dim(Z) — dim(Y"). [HINT: It suffices to consider the case when ¥ = {0}.
Now put ¢ = —1 in the g-binomial Theorem (9.2.5).]

10. Let a, b be elements of a poset P. Prove that p(a,b) = Z;Zo(—l)‘c;, where c; is
the number of chains
a=z9<...<z; =0

[HiNT: Calling the right-hand side p(a, b), it suffices to show that ¥-,<.<s p(a,z) = 0
for @ < b. Now the displayed chain contributes (—1) to p(a,}), and also (—1)* to
pla,zi1)]
11, Let (X, Z) be a matroid.
(a) Let ¥ C X. Prove that any basis for Y can be ‘extended’ to a basis for X.
(b) Let Y € X and let C be a cycle in Y. Prove that, for any z € C, we have
p(¥Y \ {z}) = oY)

(c) Show that the rank function satisfies
PYUZ)+p(Y N2Z) < p(Y)+p(2).

[HINT: Recall from linear algebra the argument which proves this (with equality)
for subspaces of a vector space.
(d) Give an example where strict inequality holds in {c).

12, Let (X, Z) be a matroid, and I € Z. Show that (X \I,{J: JUIT € Z})is a
matroid. Prove that its rank function p' is given by p'(¥) = p(¥Y UT) — p(I).

Hence show thai any interval in a geometric lattice is a geometric lattice.

13. Prove that the greedy algorithm succeeds in finding a basis of minimum weight
in a weighted matroid.

14. Show that Arrow’'s Theorem is false if there are just two options and at least
three individuals in the society. [HINT: try democracy!)
How is this result related to the contenis of Section 7.17

15. Exploit the connection between terms in the disjunctive normal form and
valuations to prove the disjunctive normal form theorem (12.4.2).

16. (a) Show that the free distributive lattice with 3 generators has cardinality 20.
(b) CoMPUTING PROJECT. Calculate the cardinality of the free distributive lattice
for larger numbers of generators.



13. More on partitions and
permutations

More and more I'm aware that the permutations are not unlimited.

Russell Hoban, Turtle Diary (1975)

ToPICS; Partition numbers; conjugacy classes of permutations;
diagrams and tableaux; symmetric polynomials

TECHNIQUES: Generating functions; proof of identities by counting
ALGORITHMS: Robinson-Schensted—Knuth correspondence

CROSS-REFERENCES: Permutations and partitions (Chapter 3); par-
tial order {Chapter 12); [Catalan numbers, mvolutions (Chapter 4),
Gaussian coefficients (Chapter 9); cycle index (Chapter 15)]

In Chapter 3, we considered partitions and permutations of a finite set. Here, we
look at the ‘unlabelled’ versions. These are partitions of an integer n, and conjugacy
classes of permutations in the symmetric group S,. It turns out that there are equal
numbers of these objects, and a rich interplay between them. The story also involves
symmetric funciions and the character theory of 5.

13.1. Partitions, diagrams, and conjugacy classes

Let n be a positive integer. A partition of n is an expression for n as a sum of
positive integers, where the order of the summands is unimportant.! We can arrange
the parts in order, with the largest first. Thus, there are five partitions of 4:

4=3+1=24+2=24+141=14+1+4+1+41.

As well as this obvious notation, a partition of n is sometimes written in the form
1%12%2 p%. where a; is the number of parts equal to ¢, that is, the number of
occurrences of i as a term in the sum. The ‘factor’ i* is not an exponential; the
integer ¢ is merely a placeholder for the term a,. If a; = 0, the ‘factor’ can be omitted.
In this notation, the five partitions of 4 are

41, 3111, 22 9')2) 14,

U If the order of the summands is significant, then the number of partitions of n is 2°~! for n > I.
See Exercise 9(b) of Chapter 4.
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We also use the notation ) I n to mean ‘) is a partition of n’.

In addition, we use a pictorial representation of partitions by means of diagrams
D(}), defined as follows. Let A be the partition n = n; ... +ng, withny > ... > n;.
The diagram of ) has k rows; the '} row (numbering from the top) contains n; cells,
aligned at the left.® Cells may be represented either by dots or by empty squares,
whichever is convenient; I will make use of both in appropriate places. Thus, the
diagram of the partition 7=3 1 2 + 2 or 3'2? is shown in Fig, 13.1.

2

Fig. 13.1. The diagram of a partition

Let A - n. The conjugate or dual partition \* of X is the partition of n whose
diagram is the transpose (in the sense of matrices, that is, interchanging rows and
columns) of that of ). For example, if A = 3'2, as above, then A* = 321", In general,
if A = 12129 non then A* = 1%12% __ nbs, where b; is the number of indices ; for
which a; > . Obviously, (A*)* = A,

Let p(n) be the number of partitions of n, the n't partition number. (Check
that, for n = 1,2,3,4,5, we have p(n) = 1,2,3,5,7 respectively.) The function
p is sometimes called the partition function. We prove first an expression for its
generating function. By convention, p(0) = 1; the unique partition of 0 has no parts.

(13.1.1) Theorem. ) p(n)t" = [J(1 — )"
n2>0 i>1

PROOF. The right-hand side is
[MO+E+t5+ . )=Q+t+2+. )1+ +t2 4. .

21
A term in " i this product is obtained by selecting, say, t*! from the first factor,
%% from the second, and so on, with ¢y +2a; +... = n (so that 1%2% _ + n). Each

partition of n gives a contribution of 1 to the coefficient of ¢", so this coefficient is
equal to p(n).

This expression for [I{) = ¥ p(n)t" is not much use as it stands. But in the next
section, we'll see that it gives a recurrence relation for the partition numbers.

2 These are also called Ferrers diagrams or Young diagrams,

2 This convention corresponds to the indexing of matrices, where rows are numbered down the page
and eolumns from left o right. An alternative convention is based on Cartesian coordinates, where
the independent variable increases from left to right, and the dependent variable from bottom to top.
According to Ian Macdonald, Symmetric Functions and Hall Polynomials, p. 2, ‘Readers who prefer
this convention should read this book upside down in a mirror’. Computer users will recognise the
difference between text and graphics output.

4 Por analysts, we note that II({) is an analytic function of the complex variable ¢ for |¢] < 1, but
has a singularity at every root of unity, so it cannot be analytically continued outside the unit dise.
(The unit circle is a netural boundery.)
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There are two convenient orderings defined on the set of all partitions of . Let
Mpbnysay, \:n=mny+...+n;and g:n=m+... + my with the convention
that undefined parts are zero.

(a) We say that ) precedes x in the reverse lexicographic order (rlo.) if, for some
i, we have n; = m; for j < ¢ and n; > m;. (If we regard a partition as a ‘word’,
whose ‘letters’ are positive integers, this is the dictionary order of words with the
convention that large integers precede small ones in the ‘alphabet’) This is a total
order.

(b) We say that ) precedes 4 in the natural partial order (np.c.) (written A < y)
if A# p and

sttt >2my 4. +my
for all z > 1.

For n < 5, these two orders coincide, They differ first for n = 6, where 3'1% and
2% are incomparable in the n.p.o. (though the first precedes the second in the r.Lo.}.
However, it is always true that rl.o. is a linear extension (see Section 12.2) of n.p.o.:

(13.1.2) Proposition. If A < p, then A precedes u in the reverse lexicographic order.

Proor. With the notation as before, choose i such that n; = m; for § < ¢ but
n; # mg Since ny + ... + 7 2 my + ... + my, we must have n; > m;,

Conjugation reverses the n.p.o.:
(13.1.3) Proposition. If A < p ther g™ < A*.

PROOF. Suppose that u* £ A*, where p* is the partition n = nj + nj +... , ete. (so
that n} is the number of j such that n; > i, by definition of conjugation). Then, for
some i, we have
mi+...+m;>n+...+n; forj<i
and my+...+mi<ni+...+n,
sot=m; <n}=s
Now n}, +nf,s+ ... is the number of cells in the diagram of ) which lie to the

right of the #!* column; so
E 3

Ry N+ = Z("i — ).

i=
Similarly,
t
mi,+mis+...= Z(m,- —i).
=
So

S (ms =) > Sms — 1) 2 (s — ),

=1 1=1 =1
the right-hand inequality holding because s > ¢ and n; > ¢ for j < 5. Hence

my+...+Fmy>ny+ . Ry,
and so A £ .
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Now we turn to permutations. We saw in Section 3.5 that any permutation of
{1,...,n} can be expressed as the product of disjoint cycles, uniquely up to the
order of the factors and the starting point of each cycle. If the cycle lengths are
Ni,..., Nk, then n = n; + ... + ng, and so we have a partition of n, which is called
the cycle structure of the permutation. Thus, cycle structure defines a map from the
symmetric gtoup S, to the set of partitions of n.

Two permutations gy, ¢; € S, are said to be conjugate if g; = h g,k for some
h € S,.. Conjugacy is an equivalence relation on S,, whose equivalence classes are
called conjugacy classes.’

(13.1.4) Proposition. Two permutations have the same cycle structure if and only if
they are conjugate.

PROOF. Suppose that g; = h~'gyh. Let (z;y z2 ... ) be a cycle of g, so that
;g0 =zZipy for i=1,,..,k -1, and r39y = 7. Let y; = z;h for i = 1, ..., k. Then,
fori=1,...,k— 1, we have

¥igz = yih 'k = zigih = zinh = yin,
and similarly yrg2 = vi. Thus, (31 %2 ... ) is a cycle of g, Thus, we obtain the
cycle decompositon of g; from that of ¢; by replacing each point by its image under
h. So the cycle structures are equal.

Conversely, let g and g, have the same cycle structure. Calculate the cycle
decomposition of each, and write that of g; under that of ¢ so that cycles of
the same length correspond vertically. Now let 2 be the permutation obtained by
mapping each point in the decomposition of ¢; to the point vertically below it. (So,
if we forget all the brackets, what is written down is the two-line form of %.) Then
h='g1h = g;, by the same calculation as before,

For example, if g3 = (1 2 3)(4 5)(6) and g, = (2 5 3)(4 6)(1), then g5 = h="g1 s,
where h = (l 2345 6) = (1256)(3)(4) (in cycle notation).

253461
It is clear that every partition of n is realised as the cycle structure of some

permutation; so
the number of conjugacy classes in S, is p(n).

But we can do better, and calculate the conjugacy class sizes:

(13.1.5) Proposition. Let ) = 1%12%,, n®" be a partition of n. Then the number of
permutations with cycle structure X is®
n!
n?:l iﬂiai! '

PRrOOF. If we write out the brackets for the cycle decomposition of such a permuta-
tion, there are n! ways of entering the numbers 1,...,n into the spaces. But we can
start each of the a; cycles of length ¢ in any position in the cycle, in {* ways, and
permute these cycles arbitrarily, in a;! ways, for each i; so we have to divide n! by
the product of all these numbers.

® Conjugacy is an equivalence relation in any group. (Prove this.)
% In this expression, £ has its usual mathematical meaning.
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13.2. Euler’s Pentagonal Numbers Theorem

A pentagonal number is a number of the form k(3% —1)/2 or k(3% + 1)/2 for some
non-negative number k. Alternatively, it is a number of the form k(3% — 1)/2 for
some (positive, negative, or zero) integer k. The second description is preferable,
since it generates zero once only, whereas the first produces zero twice. The reason
for the name is shown by the pictures of pentagonal numbers for small positive k.

Fig. 13.2. Small pentagonal numbers

The next theorem, due to Euler, is quite unexpected, as is its application: it will
enable us to derive an efficient recurrence relation for the partition numbers.

(13.2.1) Euler’s Pentagonal Numbers Theorem
(a) If nis not a pentagonal number, then the numbers of partitions
of n into an even and an odd number of distinct parts are equal.
(b) Ifn = k(3k—1)/2 for some k € Z, then the number of partitions
of n into an even number of distinct parts exceeds the number
of partitions into an odd number of distinct paris by one if &
is even, and vice versa if k is odd.

For example, if there are four partitions of n = 6 into distinct parts, viz.

=5+1=4+2=3+2+1, two of each parity; while if n = 7, there are five such

partitions, viz. T=6+1=5+2=44+3=4 42+ 1, three with an even and two
with an odd number of parts.

PrROOF. To demonstrate Euler's Theorem, we try to produce a bijection between
partitions with an even and an odd number of distinct parts; we succeed unless n is
a pentagonal number, in which case a unique partition is left out.
Let A be any partition of n into distinct parts. We define two subsets of the
diagram D()) as follows:
¢ The base is the bottom row of the diagram (the smallest part).
o The slope is the set of cells starting at the east end of the top row and proceeding
in a south-westerly direction for as long as possible.
Note that any cell in the slope is the last in its row, since the tow lengths are all
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distinct. See Fig. 13.3.

e @ o
o e o
*—O

Fig. 13.3. Base and slope

Now we divide the set of partitions of » with distinct parts into three classes, as
follows:

e Class 1 consists of the partitions for which either the base is longer than the

slope and they don’t intersect, or the base exceeds the slope by at least 2;

o Class 2 consists of the partitions for which esther the slope is at least as long as
the base and they don’t intersect, or the slope is strictly longer than the base;
o Class 3 consists of all other partitions with distinct parts.

Given a partition ) in Class 1, we create a new partition )’ by removing the
slope of ) and installing it as a new base, to the south of the existing diagram.
In other words, if the slope of A contains k cells, we remove one from each of the
largest k parts, and add a new (smallest) part of size k. This is a legal partition with
all parts distinct. Moreover, the base of )’ is the slope of ), while the slope of ) is
at least as large as the slope of ), and strictly larger if it meets the base. So ) is in
Class 2.

In the other direction, let A’ be in Class 2. We define A by removing the base of
)’ and installing it as a new slope. Again, we have a partition with all parts distinct,
and it Hes m Class 1. (If the base and slope of A\ meet, the base is one greater
than the second-last row of ), which is itself greater than the base of )’, which has
become the slope of ). If they don’ meet, the argument is similar.)

The paxtition shown in Fig. 13.3 is in Class 2; the corresponding Class 1 partition
is shown in Fig, 13.4.

Fig. 13.4. A Class 1 partition

These bijections are mutually inverse. Thus, the numbers of Class 1 and Class 2
partitions are equal. Moreover, these bijections change the number of parts by 1,
and hence change its parity. So, in the union of Classes 1 and 2, the numbers of
partitions with even and odd numbers of patts are equal.

Now we turn to Class 3. A partition in this class has the property that its
base and slope intersect, and either their lengths are equal, or the base exceeds the
slope by 1. So, if there are k parts, then n = k% + k(k — 1)/2 = k(3k — 1)/2 or
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n=k(k+1)+k(k—1)/2 = k(3k + 1)/2. Fig. 13.5 shows the two possibilities.

Fig. 13.5. Two Class 3 partitions

So, if n is not pentagonal, then Class 3 is empty; and, if » = k(3k — 1)/2, for
some k € Z, then it contains a single partition with |k| parts. Euler’s Theorem
follows.

(13.2.2) Corollary, JJ(1—t") = 3 (—1)F¢H-1/2,

! n>1 k=—c0
ProoF. By Euler’s Pentagonal Numbers Theorem, the right-hand side is the gen-
erating function for even(n) — odd(n), where even(n) and odd(n) are the numbers
of partitions having all parts distinct and having an even or odd number of parts
respectively. We must show that the same is true for the left-hand side.

The coeflicient of t* is made up of contributions from factors (1 — t™),...,(1 —
t*), where ny +... + nx = n and ny,...,n; are distinct; the contribution from this
choice of factors is (—1)*. So each term counted by even(n) contributes 1, and each
term counted by odd(n) contributes —1. So the theorem is proved.

The right-hand side can be written as

14 Z(_l)k (tk(sk—x)/z + tk(3k+l)/2) ,
k>0

using the first ‘definition’ of the pentagonal numbers. From this, we deduce the
promised recurrence for the partition numbers. This illustrates the general principle
that finding & linear recurrence relation for a sequence is equivalent to finding the
inverse of its generating function (see Chapter 4, Exercise 12).

(13.2.3) Corollary. For n > 0,
p(n) = 3 (=) (p(n — §k(3k = 1)) + p(n — 1k(3k + 1)))

k>0

=plrn—1)+p(n—2)—p(n—5)~p(n—T7) +p(n-12) +...,
with the convention that p(n) = 0 forn < 0.

ProoOF. Since

Yopn)tt =TI — ),

a0 >0
we have

(Z p(n)tn) . (1 +E(_1)k(tk(3k—1)/2 +tlc(3k+l)/2)) =1.

230 £>0
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For n > (, the coefficient of ¢” in the product is zero. Thus,
n) 4+ S (=1)F(p(n — 3k(3k — 1)) + p(n — Lk(3k +1))),
k>0
from which the result follows.
This is a hnear recurrence relation in which the number of terms grows with n,
but relatively slowly: there are about /8n/3 pentagonal numbers below n. Thus,

it permits efficient calculation: p(n) can be evaluated with O(n%?) additions or
subtractions.

13.3. Project: Jacobi’'s Identity

In this section, I give a delightful proof, due to Richard Borcherds, of an identity of
Jacobi® The proof has the appearance of physics, although it is pure combinatorics;
it involves double-counting states of Dirac electrons!

Jacobi's Identity asserts:

(18.3.1) Jacobi’s Triple Produet Identity

H(l +q2n—1z)(1 + qzn—lz—l)(l _ q2n) - ZqI’z!.

n>0 >0

It is an identity between formal power series in the indeterminates ¢ and z. By replacing ¢ by
¢'/? and moving the third term in the product to the right-hand side, the identity takes the form

[T+ 221422 = (Z q"”z') (H(l - q")-l) (*),

n>0 120 n>0

in which form we will prove it.

A level is a number of the form n + §, where n is an integer. A stafe is a set of levels
which contains all but finitely many negative levels and only finitely many positive levels. The state
consisting of all the negative levels and no positive ones is called the vacuum. Given a state S, we
define the energy of S to be

S{it>01e8) - {1:1<0,1¢S},
while the particle number of S is
[{t:t>0,1eS}—-|{i:1<0,1¢& 8}

Although it is not necessary for the proof, a word about the background is in order!

Dirac showed that relativistic electrons could have negative as well as positive energy. Since they
jump to a level of lower energy if possible, Dirac hypothesised that, in a vacuum, all the negative
energy levels are occupied, Since electrons obey the exclusion principle, this prevents further electrons
from occupying these states, Electrons in negative levels are not detectable. If an electron gains
enough energy to jump to a positive level, then it becomes ‘visible’; and the ‘hole’ it leaves behind
behaves like a particle with the same mass but opposite charge to an electron. (A few years later,
positrons were discovered filling these specifications.) If the vacuum has no net particles and zero
energy, then the energy and particle number of any state should be relative to the vacuum, giving
rise to the definitions given.

% Jacobi’s Identity implies Euler’s Pentagonal Numbers Theorem: see Exercise 10.
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We show that the coefficient of ¢™ 2! on either side of (*) is equal to the number of states with
energy m and particle number {. This will prove the identity.

For the left-hand side this is siraightforward. A term in the expansion of the product is obtained
by selecting ¢"~ %2z or ¢*~#2z™! from finitely many factors. These correspond to the presence of an
electron in positive level n — % (contributing n - % to the energy and 1 to the particle number), or
a hole in negative level —(n — §) (contributing n — § to the energy and —1 to the particle number).
So the coefficient of ™z’ is as claimed,

The right-hand side is a little harder. Consider first the states with particle number 0. Any such
state can be obtained in a unique way from the vacuum by moving the electrons in the top k negative
levels up by ny,na,...,n¢, say, where n; > n3 > ... = n. (The monotonicity is equivalent to the
requirement that no electron jumps over another,) The energy of the state isthus m=n; +...+n;.
Thus, the number of states with energy m and particle number 0 is equal to the number p(m) of
partitions of m, which is the coefficient of ¢™ in 11{¢) = [T, o(1 — ¢*)~', by (13.1.1).

Now consider states with positive particle number {. There is a unique ground staie, in which
all negative levels and the first I positive levels are filled; its energy is % + % +...+ "”T'l = %12,
and its particle number is . Any other state with particle number ! is obtained from this one by
Yumping’ electrons,up as before; so the number of such states with energy m is p(m — %12), which is
the coefficient of g™z in ¢"°722'TI(g), as required.

The argument for negative particle number is similar.

13.4. Tableaux

Our definition of a tableau is not the most general one possible; what is defined
here is usually called a standard tablegu, but I will not talk about any non-standard
tableaux!”

Let A be a partition of n, with diagram D(). A tableay, or Young tableau, with
shape 1, is an assignment of the numbers 1,2, ...,n to the cells of D(}A), in such a
way that the numbers in any row or column are strictly increasing, For example,
the three tableaux with shape 3'1' are shown in Fig. 13.6.

1(2]3 1124 1134

4 | 3] 2

Fig. 13.6. Tableaux

The number of tableaux with shape A is denoted by fi. Clearly, we have
Fx = fos, the corresponding tableaux being related by transposition.

There is a somewhat unexpected formula for fi. Given a cell (z,7) of the
diagram D(}), the hook H(:,j) associated with it is the set consisting of this cell
and all those cells to the south or east of it; that is, all cells (¢,5) in the diagram
with j* > j, and all cells (#,7) with ¢’ > i. The hook length h(%, ) is the number of
cells in the hook H(z,j).

nl

13.4.1) Theorem, fy = ———————,
( ) H(:’,j)eD(A) h(%,)

7 Plural of tableau.
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In his book Symmetric Functions and Hall Polynomials, Tan Macdonald refers
on p. 53 to ‘The fact that the number of standard tableaux of shape X\ is equal to
n!/h()), and says ‘No direct combinatorial proof seems to be known.! The note
refers to a proof of this hook length formulg at the end of a series of exercises,
quoting earlier results on symmetric functions. I do not plan to trace through the
argument here!

The numbers f, have another combinatorial interpretation. Let A be the partition
7 = ny +... + ng, where (2s usual) ny > ... > n;. Suppose that, in an election, n
voters cast their votes for k candidates, with the i candidate receiving n; votes for
it =1,...,k Then the number of ways in which the votes can be counted, so that
at no stage in the count is the j** candidate ahead of the :*, for any j > i, is f.
To see this, record the count by writing the numbers 1,...,n in the cells of D(}),
where m is put in the ¢'* row (immediately to the right of the entries already there)
if the m*™ vote goes to the i* candidate. By assumption, we have a tableau with
shape ); and every tableau corresponds to a possible count.

In particular, if X is the partition 2n = n + n, then f) is the Catalan number
Cry1 — this interpretation of f) is in exact agreement with that for the Catalan
number given in Exercise 15(b) of Chapter 4. So the numbers f, generalise the
Catalan numbers. We can check the hook length formula (13.4.1) in this case. The
hook lengths for this partition A are n+1,n,...,2 in the first row, and n,n—1,...,1

in the second; so
oo (2n) 1 (2n
"M+ ntdl\n)

in agreement with (4.5.2).

Another important property of tableaux is the Robinson-Schensted-Knuth cor-
respondence:

(13.4.2) Robinson—Schensted—Knuth correspondence. There is a bijection between the
set of permutations of {1,...,n}, and the set of ordered pairs of tableaux of the
same shape. Under this bijection, if g corresponds to the pair (S,T) of tableaux,
then g~} corresponds to (T, S). In particular, the two tableaux corresponding to 2
permutation g € S, are equal if and only if ¢% = 1.

Proor. We give a constructive proof, of course! We build a pair (S, T) of tableaux
from a permutation g, which we take in passive form (ai,...,a,). The construction
proceeds step by step. Before the first step, S and T are empty. At the start of the
t*h step, S and T are ‘partial tableaux’ with i cells, having the same shape. (This
means that their entries are distinct but not necessarily the first ¢ natural numbers,
and the rows and columns are strictly increasing. In fact, 7 is a genuine standard
tableau, but S is not in general.) In step ¢, we add a new cell to the shape, and add
entries a; to .S and ¢ to 7, in a manner to be described. The procedure is recursive;
we define a ‘subroutine’ called INSERT, which puts an integer a in the j* row of a
partial tableau 7.
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Subroutine: INSERT a into the j** row
If a is greater than the last element of the j* row, then append it
to this row. (If the j'® row is empty, put a in the first position.)
Otherwise, let = be the smallest element of the j'" row for which
a ¥ z. ‘Bump’z out of the j** row, replacing it with a; then INSERT
z into the (7 +1)* row.

Now we can give a complete specification of the RSK algorithm:

RSK algorithm
Start with S and T empty.
Fori=1,...,n, do the following:
¢ INSERT ¢, into the first row of S. This causes a cascade of
‘bumps), ending with a new cell being created and a number
(not exceeding a,) written into it.
e Now creale a new cell in the same position in T and write ¢
into it.

We have to check that, after the :'" stage, S and T are partial tableaux. The fact
that rows and columns are increasing is, for .S, a consequence of the way INSERT
works; for T, it is because ¢ is greater than any element previously in the tableau.
The point of substance is that the newly created cell doesn’t violate the condition
that the row lengths are non-increasing; that is, there should be a cell immediately
above it. This is because the element ‘bumped’ is smaller than the element to the
right of the position it is ‘bumped’ out of, and so it comes to rest to the left of this
position.

At the end of the algorithm, we have two tableaux of the same shape.

We illustrate the algorithm with the permutation (2,3, 1).

Stage 1 Stage 2 Stage 3
S 2 213 113
2
T 1 12 1]2
[3 ]

Fig. 13.7. The RSK algorithm
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At stage 3, 2 is ‘bumped’ by 1 into the second row.

The procedure can be reversed, to construct a permutation from a pair of
standard tableaux of the same shape. To see this, note that we can locate n in
the tableau 7', and then reconstruct the cascade of ‘bumps’ required to move the
corresponding element of S to that position; the insertion triggering this cascade
is a,. Working back in the same way, we recover the entire permutation. (A few
worked examples make this clearer than pages of explanation!)

Now we come to the final claim that, if (5,T) corresponds to g, then (T, 5)
corresponds to g~'. My argument here will be somewhat ‘hand-waving’. Let g and
¢~! have passive forms (ay,...,a,) and (by,...,b,) respectively. Thus, ¢; = j if and
only if b; = i. For the permutation g, stage ¢ in the construction inserts ; into .S and
7 into T'; a; goes into the first row, and ¢ into a position determined by a cascade
of ‘bumps’ in S. Subsequently, : keeps its place in T, but ¢; may be ‘bumped’ down
by subsequent insertions corresponding to values of s with s > ¢ but ¢, < q;. Each
‘bump’ moves it down one row.

Now, corresponding to ¢!, at stage j, we insert &; = 7 into the first row of S,
and 7 mto 7, in a position determined by a sequence of bumps in .S. One can check
that these are the same bumps that moved ¢; before, but all in a single cascade
rather than one at a time. Dually, the bumps which subsequently move b; down
aze those which determine the position of : in the previous case. So the resulting
tableaux S and T are precisely the T and S corresponding to ¢, and the claim is
proved.

(13.4.3) Corollary. (a) 3 .(f:)>=n!.
AFn
(b) 3_ £ = s(n), where s(n) is the number of solutions of g> = 1 in S,.
AFn
The function s(n) was considered in Section 4.4, where we proved a lower bound
for it. We can now re-do this and give an upper bound too.

(13.4.4) Corollary. V! < s(n) < /p(n)nl.

Proor. (a) (X /) 2 T f2, since the right-hand side omits all ‘product’ terms 2f, f,.
(b) The vectors (1,1,...,1) and (fays fres-+ -5 foyw) in the Euclidean space of

dimension p(n) have lengths /p(n) and V), and inner product s(n).

13.5. Symmetric polynomials

Let z1,...,zy be indeterminates. A polynomial f(zi,...,zn) is called symmetric
if it is left unchanged by any permutation of its arguments: f(z1,,...,2n,) =
f(z1,...,zn) for all ¢ € Sn. (The older term ‘symmetric functions’ is often used; I
will avoid this since it has at least two more general meanings.)

Any symmetric polynomial can be written uniquely as a sum of parts which are
homogeneous (that is, every term has the same total degree). These homogeneous
parts are themselves symmetric. So we may restrict our attention to homogeneous
symmetric polynomials, of degree n, say.
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We now define some special classes of symmetric polynomials. Let A be the
parttition n = n; + ... + ng.

(a) The basic polyromial m) is the sum of the term =" ... z;* and all the other
terms which can be obtained from this one by permuting the indeterminates. (If
some of the parts n; are equal, the same term will come up more than once; but
each term is only included once.)

(b} The elementary symmetric polynomial e, is the sum of all products of n
distinct indeterminates; the complete symmetric polynemial h, is the sum of all
products of n indeterminates (repetitions allowed); and the power sum polyrnomial p,
is 7 + ... + =¥

(c) If = is one of the symbols ¢, k or p, then we define 2, = 2y, ... zp,.

For example, if there are three indeterminates, and A is the partition 3 = 2 + 1,
then

my = a:fa:z + x§x1 + a:fza + a:ga:, + xga:;, + zga:g,
ey = (2122 + 1123 + z273) (21 + 22 + 23),

o = (22 + 22 + 22)(z) + 22 + 73),

hy =ex+ Da-

(13.5.1) Theorem. For N > n, if z is one of the symbols m,e,h or p, then any
homogeneous symmetric polynomial f of degree n in z,,...,TN can be written
uniquely as a linear combination ¥, ¢x2). Moreover, in all cases except z = p, if
f has integer coeflicients, then the numbers ¢ are integezs.

ProOF. For z = m, this is clear: if one term of m) occurs in f, then all the other
terms appear with the same coefficient.

To show the rest of the theorem, we have to demonstrate that the m) can be
expressed as linear combinations of the z, (with integer coefficients if z # p). I will
consider z = e now; the others will emerge naturally later. The key fact is:

Suppose that ey = ¥4, ¢3umy. Then ayy = 1, and ay, = 0 unless
{2 A* in the natural partial order.

For, if X is the partition n = n; +... + n, then e, contains the term

(Z1z2 .. Zny (&1 Tap) oo (2140 B0y ),

which occurs in mj+; so axxe = 1. Any other monomial in e, corresponds to a
partition greater than this one.

Thus, if the ey ate ordered according to the reverse lexicographic order, and the
m, according to the rlo. of their duals, then the matrix expressing the es in terms
of the ms is upper triangular, with diagonal entries 1 and all entries integers. (Recall
that the rl.o. is a linear extension of the n.p.o.} So it is invertible, and its inverse
has the same form. (Compare the Mdbius inversion algorithm in Section 12.7.)

(13.5.2) Corollary. Any symmetric polynomial f(zi,...,zn) can be written as a
polynomial g(z,.. ., zn), where z is one of the symbols e, h,p. In the first two cases,
if f has integer coefficients, then so does g.



222 13. More on pazrtitions and permutations

This holds because the z, are all possible monomials of degree n which can be
formed from z;,...,zn.
In the case z = ¢, this is a version of Newton's Theorem on symmetric functions.

The particular significance of this case is that, if @,,...,an are the roots of the
polynomial ¢(t) =tV + &ytN-1 ...+ any =0, then

a; = (—l)ie;(al, e ,OAN),

so any symmetric polynomial in the roots of ¢ can be written as a polynomial in
its coefficients. (Newton’s Theorem extends to larger classes of functions, such as
rational functions.)

Further results about symmetric polynomials can be expressed conveniently in
terms of their generating functions. Define

Et)=)_ ent"

n>0
Hty= Y hat",
n>0
Pty= Y put™™"
n>1
(These series of course also involve the indeterminates z,...,zy.) Now we have

E(t)= ﬁ(l + z,t),
H({t) = ﬁ(l ~z )7,

r=1

as is shown by expanding the products on the right in the usual way. In particular:

(13.5.3) Proposition. (a) H(z) = E(—t)" ",
(b} S (1) e,bn, =0 forn > 1.
r=0

Here (b) comes from expanding E(—t)H(t) = 1. It is a recursive relation
expressing e, in terms of ey,...,e,—1 and hg,...,hs. By induction, e, can be
expressed as a polynomial in hqg,..., &, with integer coeflicients. This is equivalent
to the assertion that the polynomials e, are linear combinations of the h, with
integer coeflicients. This proves the case z = & of Theorem 13.5.1.

The situation for P(?) is a little less obvious:

(13.5.4) Proposition. {a) %H(t) = P(t)H(t) and ditE(t) = P(—t)E(t).

(b) nh, = Ep,.h,,_r and ne, = Z(—l)"'p,en_r.
=1 =1
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PROOF. (a)

= E log H(t),

the argument for the other part is similar.
(b) comes from (a) by expanding and equating coefficients,

The result of (b) allows us to express e, or h, as polynomials in p, ..., pn, and
hence ¢y or k) as linear combinations of the p,. But this time the coefficients are
rational numbers, not integers, because of the terms re,, nh, in (b). For example,

e2=3pl—p),  ha=30} +p2)

There are several further reasons for combinatorialists to be interested in sym-
metric polynomials. One is the fact that we have the indeterminates z,,...,zy at
our disposal; substitutions of particular values lead to interesting specialisations.
For example (taking n = N):

(a) putting z, = ... = z, = 1, we have E(t) = (1 + )" and e, = (f) giving the

Binomial Theorem (3.3.1). Similarly, H() = (1 —¢)™® and A, = (""’:_l).

(b) Putting z; = ¢*~! for i = 1,...,n, we find that E(t) = [T, (1 + ¢ ") is the
left-hand side of the g-binomial Theorem (9.2.4); so

- TTr— n
er(lyg,... g™ ") = ¢’ ”“H ,
q

the Gaussian coefficient.

Secondly, we have now four bases for the space of symmetric polynomials of
degree n, namely (m,), (ex), (k) and (ps). A further important basis consists of
the Schur functions s5. The transition matrices between these bases define nteresting
arrays of numbers indexed by pairs of partitions. In many cases, these have
combinatorial significance, or specialise to more familiar numbers, including the
numbers f) of standard tableaux {Section 13.4), Stirling and Bell numbers (Sections
4,5, 5.3), and cycle indices of symmetric and alternating groups (see Section 15.3).
For algebraists, I mention the fact that the transition matrix from (p;) to (s,) is
the character table of the symmetric group .S,. See Macdonald, Symmetric Functions
and Hall Polynmials, for an overview of this material. Reading it, one can appreciate
the view held by some people, that if it isn't related to symmetric polynomials, then
it isn’t combinatorics!
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13.6. Exercises

1. In the spirit of Section 3.12, devise an algorithm for generating the partitions of
n, one at a time, in reverse lexicographic order.

2. Use the recurrence relation (13.2.3) to calculate p(n) for n < 20.
3. Prove that p(n) < F, for n > 5, where F, is the n'* Fibonacci number.
4, Show that conjugation of partitions does not reverse the r.lo.

5. Define two operations o, e on partitions as follows, Let A : n = ny + ... + ng,
g :m =m + ...+ m; be partitions of n and m respectively; undefined parts are
zero, Then Aoy and X e 4 are the partitions of m +n defined thus: for Ao u we add
the parts of A and 4, viz.

dop:(r+m)=(ni+m)+(na+ma)+...,

while the parts of A e u are the parts of A and y together (arranged in non-increasing
order). Prove that

(Aou) =A"eyu".
6. (a) Prove that, if ¥ > n/2, the number of permutations in S, having a cycle of
length & is nl/k.

(b) If t(n) is the proportion of permutations in S, which have a cycle of length

greater than n/2, show that

Jim t(n) = log 2.

7. Let TI{t) = Y30 p(n)t" be the generating function for the partition numbers.
Let o(n) be the sum of the divisors of n, and I(t) = Y, 0(n)t""! its generating
function. Prove that d

—I{t)=% t),

F() = S
and deduce that

n

np(n) = ) o(k)p(n — k).

k=1
8. Prove that h,(1,q,...,¢""!) = [“+:_1]q.
9. Let z; =1/N for 1 <i < N, and let N — oo. Show that the limiting values of
E(t) and H(¢) are both equal to ¢,
10. Deduce Euler’s Pentagonal Numbers Theorem from Jacobi’s Triple Product
Identity, [HINT: put ¢ = %2, z = —¢~1/2]
11. Let A be a matrix of zeros and ones, with row sums n; > ... > n, > 0 and
column sums m; > ... > my > 0; let A and p be the partitions n = ny + ... +ns
and n = my + ... + m;. Show that the polynomial €, contains a term z™...z™.
Show further that, if

ex =3 araMmy,
phn

then a;,, is equal to the number of matrices A which satisfy the above conditions.



14. Automorphism groups and
permutation groups

There is transitive motion and there is intransitive motion: the motion of a
galloping horse is transitive, it passes through our field of vision and continues
on to wherever it is going; the motion in a tile pattern is intransitive, it moves
but it stays in our field of vision.

Russell Hoban, Pilgermann (1983)

ToPics: Permutation groups, automorphism groups; orbits, transi-
tivity, primitivity, generation

TECHNIQUES: Group theory
ALGORITHMS: Schreier—Sims algorithm

CROSS-REFERENCES: Labelled and unlabelled structures (Chapter 2),
permutations (Chapter 3), STS(7), [STS(9)] (Chapter 8), Petersen
graph (Chapter 11), [Mdbius function (Chapter 12)], cycle structure
(Chapters 3, 13, 15}

Groups perform two main functions in combinatorics, paradoxically opposed. On
the one hand, they measure order. Any combinatorial object has an automorphism
group; the larger the group, the more symmetrical the object. On the other, they
measure disorder. The most familiar example of this is Rubik’s cube, whose possible
configurations {more than 10'?) are the elements of a group, only the identity of
which corresponds to the completely ordered state. We'll see in this chapter that the
same basic principles underlie the study of groups in both these roles.

14.1. Three definitions of a group

In this section, we'll re-write history a bit, tracing in idealised form the path from
the definition of a group as ‘all symmetries of an object’ to the modern axiomatic
definition. The point of this journey is to see how the various concepts are related.

By an object I will mean a pair (X, S), where X is a set, and S any structure on
X, whose exact nature needn’t be specified: it may be a set of unordered or ordered
pairs (i.e, a graph or digraph), a set of subsets or partitions of X, or something
more recondite (such as a set of paths of length 3 using vertices of X, or a set of
weight functions on the edges of the complete graph on X). The point is that, given
any permutation g on X, there should be a natural way of applying g to §. For
example, if (X, S) is a graph, we apply g to each edge in S to obtain the edge set
Sg. If S is a set of sets of ..., we apply this construction recursively.



226 14. Automorphism groups and permutation groups

The permutation g of X is an automerphism of (X,8) if Sg = 5. The automor-
phism group of (X, 8) is the set Aut(X,S) of all automorphisms of (X, S). A subset
G of Sym(X) is an automorphism group if G = Aut(X,S) for some structure § on
X, This is our first ‘definition’ of a group.

An automorphism group G has the following properties:
(P1) it contains the identity permutation;
(P2) it contains the inverse of each of its elements;
(P3) it contains the composition of each pair of its elements,
(The first condition is clear. For the second, if § = Sg, we can apply g~! to both
sides, yielding S¢~! = S. For the third, if Sg = Sk = 8, then S(gh) = (Sg)h = §.)

These facts form the basis of our second definition. A set G of permutations of
X is a permutation group on X if it satisfies (P1), (P2) and (P3). We observed that
every automorphism group is a permutation group; is the converse true, or have we
strictly enlarged the domain of groups?

It turns out that, indeed, every permutation group is the automorphism group
of some object. (See Exercise 1 for a proof.)

However, this is not the end of the story. Not every permutation group is the
automorphism group of a graph, for example. (There are just two different graphs on
the vertex set {1,2}, and both have two automorphisms. So the permutation group
on this set which contains only the identity permutation is not the automorphism
group of any graph. Note that the construction of Exercise 1 shows that it is the
automorphism group of the digraph with edge (1,2).) The problem of deciding
which permutation groups are automorphism groups of graphs is unsolved.

The next step is in the spirit of nineteenth-century axiomatic mathematics. It
was decided that the important thing about a group is the operation of composition.
In terms of this, for example, we can characterise the identity permutation e by the
fact that eg = ge = g for all permutations ¢, and the inverse g~! of a permutation
g by gg™! = g~'g = e. Let us temporarily write the composition of g and % as g o h.
Now a permutation group ( satisfies the following conditions:

(A1) Associativity: go (hok)=(goh)ok forall ¢,k k € G;

(A2) Identity: there exists e € G witheog=goeforall g € G;

(A3) Inverses: for any g € G, there exists g™ € G withgog™ ' =g log=ce
Associativity is a general property of composition of functions:

z(go(hok)) = (zg)(hok) = ((zg)h)k = (z(g o h)k = z((g o h)o k).

We observed that the identity and inverse permutations have the required properties,
and they are contained in G by (P2) and (P3).

Cayley defined an gbstract group to be a set G with a binary operation o defined
on it satisfying (A1), (A2) and (A3). Thus, every permutation group is an abstract
group. Again, we must ask whether the converse is true. The fact that it is, is the
content (and the raison d’étre) of Cayley’s Theorem:

(14.1.1) Cayley’s Theorem. Every abstract group is isomorphic to a permutation
group. .
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Proor. We are given an abstract group G, with operation o, and are required
to find a permutation group G on a set X, whose elements are in one-to-one
correspondence with those of G, such that the element of G’ corresponding to go A
is the composition of the elements corresponding to ¢ and A.
We take X = G, and let G’ = {p, : g € G}, whete p, is the right translation by
g:
zp,=z0g forallz,g €G.

It isn’t clear yet that p, is a permutation; but at least g, # p, for g # h (consider
their effect on the element ¢), so that we have a one-to-one correspondence. Now
we have

zpgpn = (zogloh=zo0(goh)=zpmon

so the group operation in G corresponds to composition. From this, conditions
(P1)—(P3) follow: closure is obvious (pgp;, = Pgor); pe is the identity permutation;
and p,-1 is the inverse mapping to p, (from which it follows that p, is indeed a
permutation).

It follows of course that every abstract group is an automorphism group, so the
three concepts are identical. More is true. Frucht showed that every abstract group
is the automorphism group of a graph. {In Section 14.7, we outline a proof of this.)
Frucht showed fusther that in fact this graph can be taken to be trivalent. A sheaf
of similar results is known.

From now on, we abbreviate ‘abstract group’ to ‘group’, and represent the group
operation by juxtaposition gh instead of ¢ o k. Most accounts now go much further,
hiding the origins of the concept by reversing the procedure. A group is defined by
axioms (A1)—{A3);! Cayley’s Theorem shows that it makes sense to represent groups
by means of permutations in order to study them (nothing is lost by this). Of course,
the definition of a permutation group then changes: it is a set of permutations
which, equipped with the operation of composition, forms a group!

We need one more concept. This is because the construction in Cayley’s Theorem
isn’t the only way in which a group can be represented by permutations. So we
define an gction of a group G on a set X to be a map & from G to the set Sym(X)
of permutations of X, satisfying

(gh)6 = (g0)(h8),
19=1,
g7l =(g8)7",
where we used the same notation for group operations and permutations (juxtaposi-

tion, 1, and ~'). In fact, the second and third conditions follow from the first, which
says that 8 is a kemomorphism from G into Sym(X).

! Often ‘closure’ is given as an axiom. Since a binary operation is defined on all pairs, this is not
necessary; it is a historical vestige, or ontogeny repeating phylogeny.
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The same group can have many different actions. We need to be able to say
when two actions are ‘the same’, Let 8, ¢ be actions of G on sets X,Y. We call these
actions egquivalent if there is a bijection f : X — Y such that

(zf)(g¢) = (=(¢8)) f

forall € X, g € G. In other words, if we use f to identify the sets X and Y, then
any element of G induces the same permutation on the two sets.

For an example, let G be the symmetric group 53, regarded as the automorphism
group of a triangle (Fig. 14.1). Then G acts on the vertices and on the edges of the

1
2 A 3
Fig. 14.1. A triangle

triangle. These actions are equivalent by means of the map f, where 1f = {2,3},
2f = {3,1}, 3f = {1,2}. (For example, if a permutation ¢ carries 1 to 2, then it
carries {2,3} to {3,1}.)

14.2. Examples of groups

Perhaps the most famous groups are the cyclic groups C,. The group C, can
be regarded as the additive group of congruence classes modulo n, or as the
multiplicative group of all n*® roots of unity in C (that is, {e*™/" . k= 0,...,n—1}),
or (for n > 2) as the automorphism group of the cyclic digrapk with vertex set
{0,1,...,n — 1} and edge set

{Zi+1):i=0,...,n=2}U {(n - 1,0)}.

Algebraically, an important fact is that it is generated by a single element g, that is,
all its elements are powers of g. Any finite group with this property is cyclic.

(We say that a group G is generated by a set S of elements if each member of ¢
can be expressed as a product of elements of S and their inverses, in any order and
allowing repetitions. This is logically equivalent to saying that S is not contained in
any proper subgroup of G, but expresses the concept in a more positive way. More
generally, if S is a subset of a group G, the subgroup H generated by S consists
of all products of elements of S and their inverses; it is also characterised as the
smallest subgroup of G containing S, that is, the intersection of all subgroups of G
containing S. Since every subset of Sym(X) generates some permutation group, we
have a potentially enormous collection of groups; but it is quite difficult to deduce
properties of the group from a generating set. We will consider this problem in
Section 14.4.)

A closely related group is the dikedrel group D;, of order 2n. For n > 3,
D, is the automorphism group of the cyclic (undirected) graph with vertex set
{0,1,...,n — 1} and edge set
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{{tys+1}:2=0,...,n -2} U {{r —1,0}},

or the group of symmetries of a regular n-gon, It contains the cyclic group C, as a
subgroup (the rotations of the n-gon), The remaining elements are reflections of the
n-gon in its n axes of symmetry, (If n is odd, all axes of symmetry are alike; but,
if n is even, there are two types, one joining opposite vertices and the other joining
midpoints of opposite edges.) The dihedral groups can be defined consistently for
smaller n: D; is the cyclic group of order 2 (generated by one reflection), and D,
is the Klein group Vy = {1,a,b,c}, wherec* =¥ =c*=1,ab=c¢, bc =, ca = b
Note that V; is the group of symmetries of a rectangle.

We have already met the symmetric group Sym(X), consisting of all permutations
of X. If |[X| = m, it is also denoted by S,, and its order is n! . We saw in Chapter 5
that, for n > 1, S, has a subgroup of order n!/2 consisting of the even permutations
of X, called the alternating group and denoted by Alt(X) or A,. We see that S is
the cyclic group C,, while A; and S are isomorphic to C3 and Dy respectively.

We met briefly the general linear group GL(n, g) consisting of all mvertible n x n
matrices over GF(g) in Chapter 9, where we calculated its order.

Groups can be built up from smaller ones. Two important constructions are the
direct product and wreath product, which we now define.

Let G and H be permutation groups on sets X and Y respectively. We assume
that X and Y are disjoint. The direct product G x H consists of all ordered pairs
(g,h) with g € G and & € H, and acts on the disjoint union X UY in the following
way:

T lzh ifzeY.
(You should check that this is an action.) The group operation is given by

(g1, 21)(g2, h2) = (9192, P h2).

The action of G x H on X UY is called its netural action. Another action is its
product action on X x Y, defined by

(z,y)(g,h) = (zg,yh).

The wreath product G wr H is more difficult to define abstractly; I will describe
it as a permutation group. Hs natural action is on the set X x ¥'; but we take
Y ={y1,. ...y}, and regard X x Y as the disjoint union of n copies X;,..., X, of
X, where X; = X x {y:}. Now we define two permutation groups:

o The botlom group B is the direct product of n copies of G, in its natural action
on X; U...UX,. In other words, B acts by the rule

(.‘2.‘, yi)(gh ey g'n) = (.‘L‘g,', yi)'

o The top group T consists of H acting on the second coordinate:

(.Z‘, yi)h = (.Z‘, yih)'
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In other words, T shifts the sets X,,...,X, around bodily.
Now the wreath product G wr H is the group generated by B and T (and consists
of all products bt forb€ B,t € T).

There is another action of the wreath product, the product action, on the set
XY of all functions from Y to X. We can regard a function f € X¥ as an n-tuple
(F(y1)s- - > F(yn)) of elements of X. Now the base group acts by

g, ... vgn) = (Fln)grs - F(yn)gn),

(in other words, the image of f under (¢1,...,9¢ys) is the function f’, where f'(y;) =
f(¥)¢:); and the top group acts by the rule that fh is the function f', where
Fly) = flyh™).

Puzzles like Rubik’s cube give rise to groups, which are most easily described by
giving sets of generators. As an example, easier than Rubik’s cube, I will describe
Rubsk’s domino. This puzzle appears from the outside as a 3 x 3 x 2 rectangular
parallelepiped, divided into 18 unit cubes. In the starting position, the nine cubes in
one 3 x 3 face are coloured white, and those in the other square face are black; each
cube carries a number of spots of the other colour between 1 and 9, so that on the
white face the arrangement is as shown in Fig. 14.2, and each black cube has the
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Fig. 14.2, Rubik’s domino

same number as the white cube with which it shares a face (giving the mirror image
of the above pattern). I will label the white cubes with capital letters from A to I,
and the black cubes with the corresponding lower-case letters « to 4.

A move consists of a rotation of a face of the parallelepiped. The square faces
can be rotated through 90°, 108° or 270°, while the rectangular faces can only be
rotated through 180°. Thus, moves correspond to powers of the six permutations

(ACIG)BFHD)
(acig)bfhd)
(40)(C a)(B Y
(C U O)F £)
(1 ¢)(GA)(H h)
(Ga)(Ag)(Dd)
The demino group is the group of all permutations of the cubes which can be

produced by applying a sequence of moves, It is the group generated by the above
permutations; but, to see this, we must resolve one difficulty.
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The permutations listed above correspond to applying basic moves to the domino
in its ordered state. However, if it is disordered, different permutations result because
the cubes which are moved have different letters! A move can be regarded as a
fixed plece-permutation, or permutation of the positions; but we have represented
states of the domino as entry-permutations, or permutations of the cubes. We must
examine the distinction.

Let ¢ be a permutation of {1,...,n}. In two-line form, it is

_ ( 1 2 ... n )
9=\1g 29 ... ng)"
If we compose ¢ with the entry-permutation A, then the entry in position 7, which is
ig, is replaced by its image under %, which is igh; the result is

1 2 ... n
lgh 29k ... ngh)’
which is our usual composition of permutations. But if we compose ¢ with the
place-permutation h, then the entry i¢g in position : is carried to position ¢h; the

result is
1A 2h ... nhY _ 1 2 n
(lg 2 ... ng) - (Ih"g 2h1g ... nh"lg)’

so the effect is to compose the inverse of 2 with g. In particular, choosing g to be the
identity, we see that the place-permutation /4 corresponds to the entry-permutation
h~1. So the rule for composing place-permutations is: compose the corresponding
entry-permutations from right to left.

In particular, the group generated by a set of permutations is the same, whether
they are place-permutations or entry-permutations. Thus, the domino group is
indeed generated by the six permutations displayed earlier.

14.3. Orbits and transitivity

If a group G acts on a set X, then as combinatorialists we are mainly interested in
X rather than G; we want to know what structures on X are left invariant by G, for
example. The action ¢ is a homomorphism from G to the symmetric group on X,
and its image is a permutation group. So we lose little by considering permutation
groups rather than abstract groups. (An algebraist, on the other hand, is more
concerned with G, and observes that the homomorphism has a kernel &, a normal
subgroup of G which measures exactly what is lost in passing to the permutation
group G#.)

In any case, from now on, G will be either a permutation group on X or a
group acting on X I will suppress the map # in the notation, and write z¢ for the
image of z under (the permutation corresponding to) g¢.

Our first target is a generalisation of the cycle decomposition of a single permu-
tation (Chapter 3). Let G act on X, Define a relation = on X by the rule

z=y ifandonlyif z¢ =y for some g €G.

(14.3.1) Proposition. = is an equivalence relation.
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ProoF. There is a kind of historical inevitability about this result; most naturally-
occurring equivalence relations in mathematics arise from group actions. The
three axioms for an equivalence relation (reflexivity, symmetry and transitivity)
are immediate consequences of the three axioms for a permutation group (identity,
inverses, and closure under composition). To take the second as an example: suppose
that z = y. Then z¢ = y for some ¢ € G; 50 y¢~! = z, and y = z.

The equivalence classes of the relation = are known as the orbits of the group
G. So we have, uniquely, a partition of X into orbits. @ is said to be trensitive if
there is only one orbit, intransitive otherwise.? Note that, for intransitive G, we have
an action of G on each orbit, and these actions are transitive. So, if we want to
describe all the ways in which a group can act on a set, it suffices to describe the
transitive actions.?

ExauMPLE. The orbits of the domino group are
{A,C,I,G,e,c,i,9} (corner cubes);
{B,F,H,D,b, f,h,d} (edge cubes);

{E} (white centre cube);
{e} (black centre cubej.

To describe all the transitive actions, we introduce first a special class of these,
the coset actions, We show that any transitive action is equivalent to a coset action,
and we decide when two coset actions are themselves equivalent.

Let H be a subgroup of the group G. A right coset of H in G is a set of the
form Hg = {hg : h € H} for some fixed ¢ € G. We need the fact that any two
cosets are equal or disjoint. (This is the core of Lagrange’s Theorem.) For this we
first show

if¢' € Hg, then H¢' = Hg.

For, if ¢’ € Hg, then ¢' = hog for some ho € H; then any element h¢’' € H¢' lies in
hg because hg’ = (hho)g and hho € H. Similarly, every element of H¢' is in Hg.

Now suppose that cosets Hg, Hg' are not disjoint; let ¢' € Hg N Hg'. Then
Hg = H¢' = H¢', as required.

Lagrange’s Theorem says that the order of a subgroup H of G divides the order
of G. This now follows from the fact that a coset of H has the same number of
elements as H itself. (The map & — kg is a bijection from H to Hg.)] We see that
the number of cosets of H is equal to |G|/|H|. (This number is called the sndex of
Hin G)

The coset space (G : H) is the set of right cosets of H in G. (It is often denoted
by H\G, but this is easily confused with the set difference H \ G.) Now the coset
action of G on (G : H) is given by the rule

(Hk)g = H(kg).

2 ‘This is not the same as the distinction between tramsitive and intransitive motion made so
eloquently by Russell Hoban in the quote at the head of this chapter. Hoban’s dichotomy is closer
to the difference between active and passive forms of a permutation,

3 The algebraist’s job is harder. An intransitive permutation group is contained in the direct product
of the transitive permutation groups induced on the orbits, but need not be the whole direct product.
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In other words, the permutation corresponding to ¢ maps Hk to Hkg for all & € G.
It is easily verified that this is indeed an action.

As promised, we have the following two results.
(14.3.2) Proposition. Any transitive action of G is equivalent to a coset action.

PROOF., Let G act transitively on the set X. Choose a point z € X, and let
H={¢gec G:z2g =z} Then H is called the stabiliser of z, and is written G, or
Stabg(z). We have, by an easy check,

s H is a subgroup of G.
Also (and this is the heart of the matter),

e there is a natural bijection between X and (G : H).
The bijection is defined as follows. To each point y € X corresponds the subset
S(y) = {9 € G : z¢ = y}. The set S(y) is non-empty, by transitivity of G. The sets
S(y) (for y € X) form a partition of G, and it is straightforward to identify it with
the partition into cosets of H. Finally,

o this bijection defines an equivalence of the actions of G.
In other words, if y¢ = z, then S(y)¢g = S(z); this follows from the definitions.

(14.3.3) Proposition. Two coset actions on (G : H) and (G : K) are equivalent if
and only if the subgroups H and K are conjugate.

PROOF. H and K are conjugate if K = g7 Hg, for some g, € G. If this holds, then
the map K¢ — Hgi g is an equivalence, Conversely, suppose that actions on the
coset spaces of subgroups H and K are equivalent. Let K correspond to the coset
Hg, under the equivalence. Then the stabilisers of K and Hg; are equal. The first
is just K'; the second is

{9€G:Hug=Ha})={9€G:q1997" € H} = g7 'H1.

So K = ¢g;'Hg, is conjugate to H.
ExampLE. How many inequivalent actions of the symmetric group S; on {1,...,n}?

We first describe the transitive actions. S; is a group of order 6, containing
an identity, three elements of order 2, and two elements of order 3. By Lagrange’s
Theorem, the possible orders of subgroups are 6, 3, 2 and 1. There is a unique
subgroup of each of the orders 6 and 1. Further, the identity and the two elements
of order 3 form the unique subgroup of order 3; and there are three subgroups
of order 2, each consisting of the identity and an element of order 2. These three
subgroups are all conjugate. So, up to equivalence, there is a unique transitive
action on a set of size 1, 2, 3 or 6, and no others.

Now an arbitrary action is made up of a disjoint union of these; so the number
fr of different actions on {1,...,n} is equal to the number of ways of expresssing

1 Their generators all have the same cycle structure; compare (13.1.2).
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n as a sum of ones, twos, threes and sixes. I claim that the generating function is
given by

o

ST fatt =1/ (1= )1 =) (1 - )1 - £°).

n=0

This is because the right-hand side is
Q4+t+82+. )A+E+ 4+ )A+3 4+ 4+ .00+ +824..),

and the coefficient of t" is the number of ways of getting a term ¢* by multiplying
%, %, %, and t* for some a,b,c,d; that is, the number of expressions n =
a+ 2b+ 3c + 6d.

It is possible to find an explicit expression for f, from this formula. One way is
to use analytic tools. Cauchy’s integral formula expresses f, as a contour integral,
which can be evaluated by calculating residues at poles, which occur at the sixth
roots of unity. But the digression would take us too far afield!

Group actions clarify the distinction between lzbelled and uniabelled structures
introduced in Section 2.5. Let C be a class of structures on a set {1,...,n}. (C
might consist of graphs, families of sets, etc.) Two labelled structures C and C’ are
counted as the same unlabelled structure if and only if they are isomorphic, that is,
there is an element of the symmetric group S, which maps C to C’. We consider the
action of S, on the class C of labelled structures. In this action, unlabelled structures
correspond to orbits; and the stabiliser of a structure C is its sufomorphism group
Aut(C), the set of all permutations fixing it.

(14.3.4) Theorem. {a) The number of different labellings of a structure C is equal to
nl/| Aut(C)|.

(b) If there are M labelled siructures and m unlabelled structures Ci,...,Cp,
then

M
E |Aut(c,)| ol

Consider, for example, Steiner triple systems on 9 points. Up to isomorphism,
there is only one (Chapter 8, Exercise 3), and its automorphism group has order 432
(Chapter 8, Exercise 4); so it can be labelled in 9!/432 = 840 ways. (This justifies
the claim made in Chapter 8, Exercise 15.)

We have more to say about counting unlabelled structures in the next chapter.

14.4. The Schreier-Sims algorithm

What is the order of the domino group?

According to Lagrange's Theorem, if a group G acts on a set X, then the size
of the orbit of X is equal to the number of cosets of the stabiliser G, in G. We
can calculate this; and G, is a smaller group than G, so we could hope to calculate
its order, perhaps by a recursive procedure, and then find |G| by multiplying these
numbers. We see that what is really needed for this is a generating set for @,. This
simple idea is formalised in the Schreier—Sims algorithm; as we'll see, it gives a lot
more information too.
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First, we review how to compute orbits. Let S be a generating set for the group
G acting on X,

{14.4.1) Algorithm: Orbit of =
Start with Y = 0. Add the point z to V.

While any point was added to Y in the previous step, apply all
elements of 5 to the recently added points; whenever a point not
in'Y is obtained, add it to Y.

At the conclusion, Y is the orbit of z.

While we do this calculation, we can record a witness for each point in the orbit,
a permutation carrying z to that point. If § = {¢,...,¢.}, this is conveniently
done by labelling a new point y with the number ; if it is the image of an earlier
point under ¢;,. Then the earlier point must be yg;;' Either it is #, or it has a label
iz, and in the latter case it is obtained by applying ¢;, to yg‘-_llg,-'zl. Eventually we
have yg,-'ll ...9;' =z, and s0 y = zi, ... ¢;,. Note that we have not only an explicit
element carrying z to y, but even an expression for this element as a product of
generators.

In fact, all the orbits can be described in this way. We give z a negative label,
say —1, to distinguish it as an orbit representative. If Y = X, there is a single orbit;
otherwise, select an unlabelled point, give it the label —2, and proceed as before.
Eventually, every point is labelled, and the labels (together with the generators) give
a complete (and compact) description of the orbits and witnesses. The n-tuple of
labels is called a Schreier vector for G.

Let Y = {z = 21, %3,...,%,} be the orbit of z, and let k; map = to z; as above,
fori=1,...,s (with k, = 1). If # = G,, then Hk,,...,Hk, are all the cosets of H
in G; in other words, ky,. .., k, ate coset representatives for H in G.

To find generators for the stabiliser, we use:
(14.4.2) Schreier’s Lemma. Let {g1,...,9.} generate a group G; let ki,...,k, be
coset representatives for a subgroup H of G. Let § denote the coset representative

of the element ¢; in other words, § = k; if Hg = Hk;. Assume that k; = 1. Then H
is generated by the set

-1 . .
S;[={k,-gj(lc,-gj) :2=1,...,$;]=1,...,m}.

ProoOF. All these elements lic in H, since each is the product of an element of G and
the inverse of its coset representative. Now suppose that h = ¢;,¢:,...¢;, € H. For
3=0,...,r,let t; = g; ... ¢, and let u; = ;. Then, with ug = 1, we have

-1 -1 -1
h=uogi vy urgi,uy .. Upn1gi ¥,

since uo = u, = 1 and all the other u; cancel with their inverses. But v; ¢;; lies in
the same coset as u;; thus u;_j¢;;u;’ € Sy, and we have expressed h as a product
of elements of Sy
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Now we can apply recursion, to get:

(14.4.3) Group order: Schreier—Sims algorithm
Let S be a set of generators for G.
IfS=0orS={1}, then |G| =L
Otherwise, let = be a point not fixed by all elements of S;
calculate the orbit Y of z and Schreier generators for G,. Apply
the algorithm recursively to find |G,|. Then |G| - Y| = |G|

But let’s see what is really produced by this algorithm. We end up with a sequence
of points 1, z2, . .. , ¥; and information about subgroups G(0), G(1),. .., G(d), where
G(0) = G, G() = G(i—1)y, fori = 1,...,d,and G(d) = {1}. In fact,fori = 1,...,d,
we calculate a set 7; of coset representatives for G(z) in G(i—1). Let T = T;U.. . UT,.
Then (zi1,...,%4) is called a base for G — a base is a sequence of points such that
the stabiliser of all these points is the identity — and T is a sirong generating set.
(We'll see soon that it really is a generating set.) Now 7} is the index of G(¢) in
G(i — 1}; the order of G is the product of these indices:

|G| =|T1]"-.. | T4

The recursive nature of the construction is reflected by the fact that (z,,...,z4) is
a base, and T; U... U Ty a strong generating set, for G(1).

We also have a membership test for G. This is a procedure which, given an
arbitrary permutation &, decides whether or not g € G, and if so, expresses g in
terms of the generators.

(14.4.4) Membership test for G
GIVEN a permutation ¢ of X.
If G = {1}, then ¢ € G if and only if ¢ = 1. Otherwise, is
719 = ot forsome t, € T)?
¢ Ifnot, then ¢ ¢ G.
o If so, then apply the membership test for G(1) = G, to gt7';
and ¢ € G if and only if gt;* € G(1).

Note that this test is also recursive. If ¢ passes the test, we will find unique
elements t),%s,...,ts, with t; € T; for ¢ = 1,...,d, such that ¢t;' ...t € G(3) for
all i. Then we have g¢;!...¢;" = 1,50 ¢ = #4...%,. In other words, if ¢ € G, then we
find a unique expression for it as a product of elements of 7y, ..., T}. This confirms
our formula for |G/|. It also shows that 7 is indeed a generating set for G, as the
name ‘strong generating set’ suggested. Finally, the Schreier—Sims algorithm enables
us to express each element of 7', and hence the arbitrary element ¢ of G, in terms of
the original set .5 of generators.
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This is just what is needed to solve a puzzle like Rubik's cube or Rubik’s domino.
We are presented with the puzzle in a disordered state, which is some well-defined
permutation ¢ of the initial state. We have to ascertain, first, if ¢ is in the group
generated by the moves (so that the given state could indeed have been obtained
legally); and, if so, how to express ¢ in terms of the generating permutations (so
that, by reversing the sequence, we can return the puzzle to its initial state).

There is one impractical feature of the algorithm as presented here. If the
original group has s generators and acts on a set of size n, Schreier’s Lemma gives
us a set of perhaps as many as sn generators for the stabiliser of a point. Then, the
group G(7) fixing i base points might have up to sn’ generators. Of course, G(d) is
the trivial group, so all its potential sn? generators collapse to the identity; and, if
we are lucky, the collapse may begin earlier. But, to make the algorithm efficient,
it is necessary to have a ‘filter’ which reduces the number of generators to within
a practical bound, without changing the group they generate. This can indeed be
done; but we won't pursue this here.

THE DOMINO GROUP. Since we know that the domino group has orbits of sizes 8,
8, 1, 1, it must be a subgroup of the direct product S3 x Ss. (We can neglect the
two fixed points; now Ss x Ss is the group of permutations which leave the other
two orbits fixed setwise.) Now it turns out that the group is in fact S5 x Ss. One
way to show this is to use the Schreier—Sims algorithm to calculate the order of the
group, which turns out to be (8!)%. But a little hand calculation can be used to make
the job easier. It we compose the first and third displayed generator, we obtain the
permutation

(AaCIGc)BFHDYV).

The sixth power of this permutation is (B F H D b), which fixes all the corner
cubes and moves only the edge cubes. Now it can be shown that this and similar
permutations generate the alternating group As of permutations of the edge cubes.
Similarly, the fifth power of the permutation above fixes all the edge cubes; it and
similar permutations generate the symmetric group Ss on the corner cubes. Thus the
group contains at least Sz x Ag. But the first generator acts as an odd permutation
of the edge-cubes. So the group is not Ss x As; and the only larger group it could
possibly be is S X S;.

14.5. Primitivity and multiple transitivity

Just as we've reduced the study of arbitrary group actions to transitive ones, it is
possible to make further reductions. We now consider this, in rather less detail

Let G act on X. Remember that a relation on X is a set of ordered pairs
of elements of X, that is, a subset of X2 = X x X. We say that the relation R
is preserved by G, or is G-invarianf, if z Ry implies z¢ Ryg and conversely. (The
converse follows, by applying the inverse of g.) Now G acts on the set X?, by the
rule

(z,y)9 = (z9,y9);

and we have the following:
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(14.5.1) Proposition. The relation R is preserved by G if and ounly if it is a union of
orbits of G on X2

ProoF. G-invariance means that (z,y) € R if and only if (z¢,yg) € R for any
¢ € G; so the whole of the G-orbit of (z,y) is contained in R. Hence R is a union
of orbits. The converse is similar.

A G-congruence on X is an equivalence relation R on X which is preserved by
G. (We don’t require that G fixes the equivalence classes of R.) There are always
two trivial G-congruences (if |X| > 1): the relation of equality, and the ‘all’ relation
R defined by the rule that = R y for all z,y € X. The group G is called imprimitive
if there is a G-congruence other than these two, and primitive otherwise,

Let G be a transitive permutation group. If R is a non-trivial G-congruence,
let X,,..., X, be the congruence classes, and ¥ = {X},..., X;»} the set of classes.
Now we define two new permutation groups:

¢ G acts on the set V'; let Gy be the permutation group on Y induced by G.
s Let H be the subgroup of G which fixes the set X, (not its pointwise stabiliser),

and H, the permutation group induced on X; by H.

(14.5.2) Theorem. G is isomorphic to a subgroup of the wreath product Ho wr Gy;
and the given action is equivalent to the restriction to G of the natural action of the
wreath product.

Thus, G can be regarded as being built out of the smaller groups H; and
Go. Both these groups are transitive. If either is imprimitive, we can continue the
reduction further. We end up with a collection of primitive groups, the primitive
components of G. (But note that G may have several different congruences, which
may give rise to different collections of primitive components.)

Let ¢ be a positive integer not exceeding |[X|. A permutation group G on X
is said to be t-tramsitive if, given any two {-tuples (x1,...,:) and (y1,...,%) of
distinct points of X, there is a permutation ¢ € G with ;¢ = y; for i = 1,... 1.
(In other words, G acts transitively on the set of ¢-tuples of distinct points.) Now
1-transitivity is the same as transitivity (as defined in Section 14.3).

(14.5.3) Proposition. Let G be t-transitive on X, with ¢ > 2. Then
(a) G is (t — 1)-transitive;
(b) G is primitive.

Proof. (a) Take two (¢ — 1)-tuples (z1,...,2i-1) and (y1,...,%-1) of distinct
elements. Extend them to #-tuples by appending elements z; and y; respectively,
which are not among the elements in the tuples already. Then choose ¢ with z:¢ = y;
fori=1,...,¢t

(b) We may assume that G is 2-transitive. Now any G-congruence R is a union
of orbits of G acting on X? (Proposition 14.5.1), necessarily containing the dizgenal
A = {(z,z) : ¢ € X}, since R is reflexive. But, if G is 2-transitive, it has just two
orbits on X%, namely A and X%\ A; so there are only two possible congruences.
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If | X| = n, then the symmetric group on X is n-transitive. Also, the alternating
group is (n—2)-transitiveif » > 2. (Given (n—2)-tuples (21,- .., Zn-2), (Y1, + s Yn-2)
of points, there are just two permutations which carry the first to the second; they
differ by a transposition of the remaining points, so they have opposite parity, and
one of them is in the alternating group.)

It is known that no other finite permutation group can be more than 5-transitive.
This remarkable fact is a consequence of the classification of the finite simple groups,
perhaps the greatest collective achievement of mathematicians; but the proofis more
than ten thousand pages long, so ] must ask you to take it on trust,

14.6. Examples

ExaMPLE: STS(7). We showed in Chapter 8 that there is a unique STS(7), up to
isomorphism (see Fig. 14.3). In fact, the argument shows the following:

Fig. 14.3. STS(7)

Let (X,B) and (Y,C) be Steier triple systems of order 7. Lei
(%1, %2, 73) be a triangle in the first system, and (11,2, Ys) a triangle
in the second. Then there is a unique isomorphism from the first
system to the second which maps z; to y; for i =1,2,3.

For the isomorphism must map the third point on the block through z, and z; to
the third point on the block through y; and y;, and similarly for the other two sides
of the triangle; then it maps the seventh point of X to the seventh point of Y. This
map really is an automorphism: three of the remaining blocks consist of a vertex,
the ‘third point’ of the opposite side, and the ‘seventh point’ of the design; the last
block consists of the ‘third points’ of the three sides.

From this, we can calculate the order of the automorphism group of the Steiner
system. By choosing the two systems to be equal (so that the isomorphisms are
automorphisms), the number of automorphisms is equal to the number of (ordered)
triangles, which is 7-6 -4 = 168. We also see that a triangle is a bage for the
automorphism group.

Now the automorphism group is 2-transitive. (The proof is a modification of
the proof of Proposition 14.5.3(a). Let (z1,2,) and (y1,%2) be two pairs of distinct
elements. Now choose 3 so that (), %;,23) is a triangle; and choose y3 similarly.
Then choose an automorphism carrying the first triangle to the second.) In particular,
it is primitive.

We can put a name to this automorphism group. In Section 8.5, we saw that
the points of the STS(7) can be labelled by the non-zero vectors of a 3-dimensional
vector space V over GF(2), so that the blocks are the triples of points with sum
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zero. Now the group GL(3,2) of invertible 3 x 3 matrices over GF(2) acts on the
non-zero vectors in V, and obviously maps any block to a block; so it is a group of
automorphisms. But

| GL(3,2)| = (2° — 1)(2° —2)(2°® — 2?) = 168,

so this is the full automorphism group.

EXAMPLE: THE PETERSEN GRAPH. Recall the Petersen graph from Chapter 11 (see
Fig. 14.4). (Ignore the labels for the moment.)

Fig. 14.4. The Petersen graph

We saw in Section 11.12 that any subgraph of shape : : can be completed
in a unique way to a graph on 10 vertices with valency 3, diameter 2 and girth 5.
This means, by the same kind of argument as we gave for the Steiner triple system,
that the number of automorphisms of the Petersen graph is equal to the number of
subgraphs of this type, which is 10-3-2-1-2-1 =120.

Now consider the labels in Fig. 14.4. We have labelled each vertex with a
2-element subset of {1,...,5}, so that all (:) = 10 2-subsets are used. A little
checking shows that two vertices are adjacent if and only if their labels are disjoint.
It follows that any permutation of {1,...,5}, in its induced action on the 2-subsets,
is an automorphism; and we find a group of automorphisms isomorphic to Ss, with
order 120. So the full automorphism group is Ss.

Now the automorphism group is clearly transitive on vertices. It is not 2-
transitive, since no automorphism can map two adjacent vertices to two non-adjacent
vertices. However, we see that the orbits of S5 on X? are three in number:

o the diagonal {(z,z):z¢€ X};

o the set {(z,y): z ~ y};

o the set {(z,y) 1z # y,z # y}.
The automorphism group is transitive on (ordered) edges and on (ordered) non-
edges.

From this information, we can show that S; is primitive on X. For a congruence
R must be a union of some of these three orbits, and must include the diagonal.
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Suppose that it contains the second orbit (the ordered edges). Since we can find
vertices z,y, 2 With z ~ y ~ 2z and z o z, we have ¢ Ry and y R z, so, by transitivity,
z Rz Thus R contains all the ordered non-edges as well, and is the universal
relation. A similar argument applies if B contains the orbit of non-edges. So either
R is the diagonal, or R = X2, This means that the group is primitive.

14.7. Project: Cayley digraphs and Frucht’s Theorem

Let S be a subset of a group G, not containing the identity. The Cayley digraph D(G; S) of G with
respect to S is defined to have vertex set G, and edges (g,sg) for each 5 € S and each ¢ € G. The
Cayley graph T'((G; S) is the underlying graph of D(G; S); that is, its vertex set is (7, and it has edges
{g,5g} for each s € S and g € G. We can regard the element s as a ‘label’ on the edges (g, s9) of
D(G; S), or the corresponding edges of I'(G; S). (Note that, if an element s and its inverse both lie
in S, they label the same edges of I'(G; S).)

Now the following holds.

{14.7.1) Proposition. (a) D(G;S) is connected if and only if S generates G.
{(b) For each g € G, the map p, : © — z¢ is an automorphism of (G S).

Proor, (a) If S generates G, then any ¢ € G can be written as a product of elements of S and their
inverses. This product tells us how to find a path from the identity to g. For example, if ¢ = s155 " 53,
then we have an edge (1, s3) labelled 33, an edge (s3 'sa,53) labelled s; (but going in the wrong
direction), and an edge (s; ‘53,5155 ls3) labelled s,.

(This argument shows that the digraph is connected {which means that the underlying graph
is connected, see Section 11.8), not that it is strongly connected. In fact, if G is finite, the strong
connectedness of D(G; S) follows from the connectedness (see Exercise 12).)

The converse is similar: any path from 1 to ¢ in the underlying graph translates into a product
of elements of S and their inverses which is equal to g.

(b) A simple check: if (x,sx) is an edge, then so is (zpy, s2p,) = (29, sz¢), by the associative
law.

Note that the permutations p, comprise the permutation group in the proof of Cayley's Theorem
(14.1,1), isomorphic to the abstract group G. So we have an action of G on the vertices of the Cayley
digraph or graph, as a group of automorphisms. Note that this action is transitive; for p,-1, maps
g to . We denote the permutation group by p(G), to distinguish it from & (the set of points being
permuted): we are thinking here of p as the action of G.

More is true:

{14.7.2) Proposition. Suppose that S generates G. Then any automorphism of D(G; S) which preserves
the labels on the edges belongs to p(G).

Praor. Let f be an auntomorphism which preserves the labels. Since all elements of p(G) also
preserve labels, we can compose f with the element p; j-+ to obtain an automorphism fixing 1; and
this automorphism lies in p(G) if and only if f does. So we may assume that f fixes 1. Now, for
each s € S, there is a unique edge with label s and initial vertex 1 (namely (1, s)), and a unique edge
with label s and terminal vertex 1 (namely (s, 1)), So f must fix all elements s or 57! for s € S.
In this way we can work out through the digraph, and find that f fixes every element which is a
product of elements of S and their inverses. But, by assumption, these elements comprise all of G;
so f=1€ p(G).

Now we can prove Frucht's Theorem:

{14.7.3) Theorem. Every finite group is the automorphism group of a finite graph.
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PRooF. Let G be a finite group. We assume that G has at least 5 elements. (For smaller groups,
it’s not difficult to write down suitable graphs.) Now take S = G\ {1}, and construct the Cayley
digraph D(G;.S). Since S generates G, we know from (14.7.2) that the group of automorphisms of
this digraph preserving the edge labels is isomorphic to G. The trick is to replace the labelled directed
edges with subgraph ‘gadgets’ to ensure that the automorphism group remains the same.

Let 4, denote the graph with n + 4 vertices a,b,¢,d,e1,. .., ¢n, having the following edges:
{a,8}, {b,¢c}, {c,d}, {b,e1}, {es, 141} (E=1,...,n — 1) (see Fig. 14.5), Now let S = {s1,...,5m-1},

Q b e1 ez en
::I & L * y
d c

Fig. 14.5. A gadget

where m = |G|. Replace each edge (u,v) of D(G;S) with label s, with a copy of the gadget v,,
where the vertices a and d of the gadget are identified with v and v. (All the added gadgets are
disjoint apart from these identifications.) Let I' be the resulting graph. Thus, some vertices of T’
are elements of G (coming from D(G; S)), while any other vertex belongs to a unique gadget. Now
observe:
» We can recognise the elements of G in T,

since they have valency m > 4 while any vertex of a gadget has valency at most 3. Moreover, edges
with the same label are replaced by isomorphic gadgets, so the label-preserving automorphisms of
D(G; S) extend to automorphisms of T'; but we can recover the label and the orientation of the
edge joining any two elements of G from the gadget in I, so any automorphism of I' induces a
label-preserving automorphism of D{G; S). Thus, Aut(I') = G, as required.

14.8. Exercises

1. Let G be a permutation group on X = {z1,...,2,}. Regarding each permutation
g in ‘passive’ form, that is, as an n-tuple (z,9,...,7,9), show that the result of
applying the permutation h to the n-tuple ¢ is the composition ¢gk. Deduce that
Aut(X,G) =G.

2. Show that the symmetry group of the regular octahedron is the wreath product
S, wr S3, having its natural action on the six vertices, and its product action on the
eight faces. Show that this group is also isomorphic to S; x Sj.

3. ‘Most naturally-occurring equivalence relations in mathematics arise from group
actions.” Discuss. [HINT: You will find some useful examples in elementary linear
algebra.]

4. Consider the STS(7) in cyclic form: the point set is Z/(7), the blocks are
{013, 124,235, 346,450,561, 602}. Clearly the permutation z — z + 1 (the permuta-
tion (01 234 5 6)) is an automorphism. Show that the permutation (2 6)(4 5) is
also an automorphism. Now show that these two automorphisms generate the full
automorphism group.

5. Show that any subgroup of the symmetric group of degree n can be generated by
at most n(n — 1)/2 elements.
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6. Let G be the symmetric group S,, acting on the set X of ordered pairs of
distinct elements from {1,...,n}. Show that, for n > 5, there are three non-trivial
G-congruences, defined as follows:

(z1,23) By(y1,y2) if and only if z; = 43

(z1,22) Ra(1n, y2) if and only if z2 = 3

(z1, z2) R3(n,y2) if and only if {122} = {11, 2}
What happens if n = 4?

7. A left coset of a subgroup H of a group G is a set gH = {gh : A € H}. Prove that

(a) the numbers of left and right cosets are equal;

(b) thereis a set of elements which are both right coset representatives and left coset
representatives.

[HINT POR (b): Let £ and R be the seis of left and right cosets. For each R € R,

let Ap = {L € £:LNR#0D}. Show that the family (Ax : R € R) satisfies Hall's

Condition (6.2.2). (This was essentially Hall’s original application of his theorem.)]
If G acts on X, and H = G,, describe the left cosets of H in terms of the action

(analogous to the proof of (14.3.2)).

8. Show that all congruence classes of a congruence for a transitive group have the
same size. Deduce that a transitive group acting on a prime number of points is
primitive.
9. (a) Prove that a graph with 2-transitive automorphism group must be complete
or null.

(b) Find all graphs whose automorphism group is transitive on vertices, ordered
edges, and ordered non-edges, but is not primitive on vertices.
10. Let G be t-transitive on X. Prove that the number of orbits of G on the
Cartesian power X' is the Bell number B(t). [HINT: For ¢t == 3, the five orbits
consist of triples (z,z,z), (z,z,y), (z,y,z), (y,z,2), and (z,y, 2), where z,y,2 are
all distinct.]
11. Show that the two graphs of Fig. 14.6 are isomorphic. Hence write down
automorphisms of order 3 and 5 of the Petersen graph. What is the group generated
by these two automorphisms?

Fig. 14.6. Two isomorphic graphs

12. Let D be a finite digraph whose automorphism group acts transitively on its
vertices. Show that, if D is connected, then it is strongly connected. (In other words,
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if you can walk from A to B, then you can drive.) Show that this conclusion is false
for infinite digraphs.

13. For each group G of order less than 7, find a graph whose automorphism group
is G.

14. (a) The centraliser of a permutation g € S, is the group of all permutations
h € S, which commute with g, that is, which satisfy gh = hg. Prove that the
centraliser of g is a subgroup of S, and is isomorphic to

(Cywr 8,,) % (Cawr Sp,) % ... X (Cpwr Sg, ),

where ¢ has cycle structure 12:2°2 .., n® (Section 13.1).

(b) Let " be a disconnected graph. Let I'1,...,T'x be representatives of the iso-
morphism types of the connected components of I', and suppose that a; components
are isomorphic to I'; for ¢ = 1,..., k. Prove that

Aut(T) = (Aut(ly) wr S,,) x (Aut(T2) wr S,,) x ... x (Aut(Dy) wr S, ).

15. (a) Prove that the cyclic group of order n contains ¢(n) elements which generate
the group, where ¢(n) is the number of residue classes mod n which are coprime to
n. (¢ is Euler’s function or the totient function.)

(b) Prove that

where £ is the classical Mobius function.

16. Let G be a permutation group on X. For each subgroup H of G, let fix(H) be
the number of points of X which are fixed by every element of H. Prove that the
number of orbits of G on which no non-identity element of G fixes a point is

1
rGI.;gGﬁX(H)#(H,G)’

where p is the Mobius function of the lattice of subgroups of G (ordered by
inclusion).



15. Enumeration under group action

‘I count a lot of things that there’'s no need to count,’ Cameron said. 'Just
because that's the way | am. But | count all the things that need to be counted.’

Richard Brautigan, The Hawkline Monster (1974)

Tor1Gs: Orbit-counting Lemma; cycle index; enumeration of func-
tions by weight

TECHNIQUES: Calculation of cycle index
ALGORITHMS:

CRroOsS-REFERENCES: Direct and wreath products (Chapter 14); Stir-
ling numbers (Chapter 5); unlabelled structures (Chapters 2, 14);
symmetric polynomials (Chapter 13)

In this chapter, we develop a theory of counting which is associated with the names
of Redfield and Pélya. Typical of these problems is that the configurations we count
‘live’ on some basic object, and two of them should not be counted as different
whenever one can be transformed into the other by a symmetry of the underlying
object. One example of this setup is the counting of unlabelled graphs — review
the remarks on this in Chapter 2 — where a graph ‘lives’ on a vertex set, and
isomorphism of graphs is defined by means of permutations of the vertex set. For
another example, we will count the number of necklaces that can be made using two
colours of beads, two necklaces being counted as the same if one can be transformed
into the other by a rotation of the necklace, or by picking it up and turning it over.

1. The Orbit-counting Lemma

I said in the last chapter that naturally occurring equivalences usually come from
group actions; that is, the equivalence classes are orbits of a group. The next result
gives a formula for the number of orbits.!

Let G be a permutation group on a set X. For each element g € G, we let fix(g)
denote the number of points z € X fized by ¢ (that is, satisfying zg = z).

! This result is commonly referred to as ‘Burnside’s Lemma’. It was given without attribution by
Burnside in his book Theory of Groups of Finite Order, which introduced the French and German
developments in the subject in the second half of the nineteenth century to English mathematicians;
but it has been traced back to earlier work of Cauchy and Frobenius, I prefer the impersonal term
given here.
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(15.1.1) Orbit-counting Lemma
The number of orbits of a permutation group G is equal to the
average number of fixed points of its elements, viz.

IGI Z ﬁx(g)

¢eG

Proor. We suppose first that G is transitive, and show that the expression in
the lemma equals 1, by double-counting pairs (z,g) with zg = z. On one hand,
the number of pairs is T ccfix(g). On the other, it is $,cx |G.|. Now, since G
is transitive, G; has n cosets, where n = |X|; so the sum is T ,cx |G|/n = |G|
Equating the two expressions and dividing by |G| gives the result.

Now let G have ¢ orbits X;,..., X;, and let fix;(¢) be the number of fixed points
of g in X;. Since G acts transitively on X, we have

IGI Z fix(g) =

g9€eG

Also, we have fix(g) = T_, fix;(¢). So

I%I-Zﬁx zt: Zﬁxz'(g)=2t:1=t,
9€G s

pide i=1

as required.

It is immaterial whether we have a permutation group or (more generally) an
action of a group in the Orbit-counting Lemma. For let # be an action of G, with
kernel N. Then each permutation in the image of @ is the image of precisely |N|
elements of G (comprising a coset of N); also the order of G is |N| times as lazge as
that of its image, so the factors |N| cancel and the average number of fixed points
is the same for G and its image.

15.2. An application

In how many ways can the faces of a cube be coloured with two
colours? Assume that two coloured cubes which differ by a rotation
are identical.

The group in question is the group of rotations of the cube, which has order 24
(and happens to be isomorphic to 5;). We can hst its elements as follows. Here, a
face-axis, edge-axis, or vertex-axis is an axis of symmetry joining centres of opposite
faces, midpoints of opposite edges, or opposite vertices, respectively.



15.3. Cycle index 247

Type Axis Order of rotation  No. of elements
1 (identity)  — — 1
2 Face 2 3
3 Face 4 6
4 Edge 2 6
5 Vertex 3 8
24

Now we let X be the set of 26 = 64 colourings of the cube. We must calculate
fix(g) for each ¢ € G. A colouring is fixed by g if and only if all faces in the same
cycle of g have the same colour, so fix(g) = 29}, where ¢(g) is the number of cycles
of ¢ on the faces of the cube.

Type c(9) fix(g) Contribution
1 6 64 64
2 4 16 48
3 3 8 48
4 3 8 48
5 2 4 32
240

So the number of different cubes is 240/24 = 10. Can you describe them?

It is clear that the same method would work for any number r of colours,
giving the answer as a polynomial in r (Exercise 1). This observation motivates the
introduction of generating functions and enumeration by cycle index, a topic we
now consider.

15.3. Cycle index

Given a permutation ¢ on X, there is a cycle decomposition of g, an expression for
g as a product of disjoint cycles, unique up to the starting points of the cycles and
the order of the factors (see Section 13.1). Let there be ¢, cycles of length 1, ¢z of
length 2, ..., ¢, of length n, where n = | X|. (In the cycle notation for permutations,
we commonly suppress cycles of length 1, but it is important to count them here.)
We define the cycle index of ¢ to be the monomial

2(g:81,...48,) = 8P, sln
in indeterminates sy,...,5,. Now, if G is a permutation group on X, the cycle index
of G is the average of the cycle indices of its elements:

Z H s?.—(s),

geGi=1

1
Z(G; 81y 980) =

(Gis1y.- 24 8n) 1G]
where ¢;(g) is the number of cycles of g of length i. Just as in Section 15.1, if a
group G acts on a set X, the cycle index of G is the same as the cycle index of the
induced permutation group.
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Before we prove the main result connecting cycle index with enumeration, we
give a couple of examples of its use. The group G has an induced action on the set
of all k-element subsets of X, and another on the set of k-tuples of distinct elements
of X, for each & with 1 < &k < n. We let f; and Fj be the numbers of orbits of G
in these actions. By convention, fo = Fy = 1. So f; = F) is the number of orbits
of G on X, and F; = 1 if and only if G is k-transitive on X (Section 14.5). We
show that the ordinary generating function for the numbers fi, and the exponential
generating function for the Fj, can be calculated from the cycle index of G by simple
substitutions.

(15.3.1) Proposition. () 3 fit* = Z(G; 1 +t,1 +t%,... 1 +t*).
k=0

(b) Y. Fith/kt = Z(G;1 4+ t,1,...,1).
£=0

Proor. We let fixi(g) and Fixi(g) denote the number of &-subsets, or k-tuples of
distinct points, respectively, fixed by g.
(a)
Z fitF = > Z fixi(g)t*.
|G| 9EG k=0
Now consider a permutatlon g, with c¢;(g) cycles of length i. For each choice of
numbers & £ ¢;(g) with =7, ib; = k, we can find k-sets fixed by g which consist of

b; cycles of length ¢ for ¢ = 1,...,n. Moreover, any fixed k-set is a union of cycles.
S )
c;lg
S at-me s (ST ()~
=0 €G k=0

where 3" is over all (by,...,b,) with 0 < b < ¢;(¢9) and T ib; = k. But since we
then sum over k, this is just

n cilg) cilg) B frea)
Gy (Ve - G o+

gEG =1 6=0 9E€G i=1

=Z(Gil+¢, 148,141,
(The manipulations here are similar to those explained in more detail in Section 4.2.)
(b) This one is easier. A k-tuple is fixed if and only if all of its points are fixed;

Fixi(9) = ci(g)(er(g) = 1)... (ca(g) — & +1).
Thus,
ZFktk/k' Fgg alg)alg )_l)k, Cl(g)—k‘+1)tk

1 = falg)
e sn ()

= 1 (1 4t
=

=Z(G;1+4¢,1,...,1).
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Now we turn to the general situation. We take a collection of ‘figures’ ¢, ¢z, . . -,
each of which has a non-negative integral ‘weight’ w(¢;). The set of figures needn’t
be finite (though it is in many applications), but we do assume that there are only
finitely many figures of any given weight, We can summarise this information in a

figure-counting serses
a(t) = z at",

n>0
where a, is the number of figures of weight n.

Now we are given a permutation group G on a set X — typically G is the
automorphism group of some object — and we want to count the number of ways
of associating a figure with each point of X, two such ‘configurations’ being regarded
as identical for the purpose of the count if some element of G takes one to the
other. (Typically the ‘figures’ are colours, and we want to count the number of
inequivalent colourings, as in the example of the coloured cubes in the last section.)
An attachment of figures to points of X is defined by a function f : X — &, where
® is the set of figures; it has a total weight

w(f) = ) w(f(z)).

zeX

Now G acts on the set of functions, by the rule

(f9)(z) = f(zg™").
(The inverse is technically required to make this a valid action; but, informally,
it arises because we are regarding the elements of G as place-permutations here
— compare the discussion in Section 14.2.) We want to count the orbits of G on
functions, which we do by means of the function-counting series

b(t) = Z b""tna
n2>0

where b, is the number of orbits of G on functions of total weight n. (The action of
G doesn’t change weights of functions.)

(15.3.2) Cycle Index Theorem

b(t) = Z(G;a(t), a(t?), . .., a(t™)).

Before proving the theorem, we show that part (a) of (15.3.1) is a consequence
of it. We take two figures, with weights 0 and 1: we might as well call the figures
themselves 0 and 1. The figure-counting series is just 1 4+ t. Now a function from X
to the set {0,1} is nothing but the characteristic function of a subset 1" of X; and
the action of G on functions is equivalent to its natural action on subsets. (If f is
the characteristic function of Y, then

(fo)z)=1 & zg'€eY & zeYy,

so fg is the characteristic function of Yg.) So fit* is the function-counting series,
and the formula for it follows from the Theorem.
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We take the proof in four steps.

StEP 1. Let ® and 9’ be sets of figures, with figure-counting series a(t) and a'(t)
respectively. Then the generating function for counting pairs (¢,4') € & x &,
enumerated by the sum of the weights, is a(t)a’(t)

Proor. If a(t) = Ta;t' and a'(t) = T dit’, then the number of pairs (¢, ¢') with
w(g) = 7, w(¢') = i — j, is a;a}_;. Summing over ; gives the total number of pairs
with w(4) + w(¢') = i, and also the coefficient of t* in a(t)a’(t).

StEP 2. Let ® have figure-counting series a(t), and let X be an n-set. Then the
generating function for counting functions from X to @, enumerated by total weight
(that is, the function-counting series for the trivial group on X) is a(¢)"

Proor. If X = {z),..., 2.}, then functions from X to & are represented by n-tuples
(f(z1),.. -, f(zn)) of elements of &. The result now follows from Step 1 by induction.
Note that this is the special case of the Cycle Index Theorem for the trivial group
on X (whose cycle index is s7).

STEP 3. The series enumerating functions from X to ¢ fixed by a permutation g of

X, by total weight, is
A(gsa(t) alt?), .., alt")).

PrROOF. A function is fixed by ¢ if and only if it is constant on the cycles of
g- So a fixed function is specified by giving, for each i, a function from a set
of representatives (ci(¢) im number) of the i-cycles of g, to ®. For fixed i, these
functions are enumerated by a(t)%i9), by Step 2. However, since such a function has
each value repeated : times on X, its contribution to the total weight is multiplied
by i, so this contribution is enumerated by a(t')(%), Now, by Step 1 and induction,
the overall generating function is obtained by multiplying these contributions for all
values of ¢; in other words, it is

a(t)*@a(t)2). . (")) = 2(g; a(t),at?), ..., a(t™)),

as required.

STEP 4: CoMPLETION OF THE PROOF. The number of orbits of G on functions of
weight £ is the average number of fixed functions of weight & of its elements. By
Step 3, this is the coefficient of t* in

Z z(g;a t):a(t )---aa(tt)) = Z(G; a(t),a(tz), .- a(t?)),
|G| pree

by definition of cycle index.
15.4. Examples

We consider some applications of the Cycle Index Theorem.

ExXaMpLE 1: COLOURED CUBES. Consider the group of rotations of the cube, acting
on its faces. From the table in Section 15.2, the cycle index of this group is

2 (8 + 3sis2 + 6525, + 635 + 8s3).
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We can refine our earlier count of ten red-and-blue cubes by enumerating them by
number of red faces. Thus, we let red have weight 1, and blue have weight 0. The
figure-counting series is 1 + ¢, so the function-counting series is

A (L4 )8 +3(1+ )21 + 32+ 6(1 + £)2(1 + t4) + 6(1 + £2)> + 8(1 + %))
=1+t 4267 4+ 265 4 2 415 448,

This should check with the listing of cubes you gave in Section 15.2.

Again, to count the number of ways of colouring with a given number r of
colours, take all colours to have weight 0. Then the figure-counting series is r, and
the number of colourings is

2:(r® + 30t +120% + 82) = ur2(r + 1)(r® — r* + 47 4 8).

For example, when r = 3, there are 57 different coloured cubes.

ExaMPLE 2: NECKLACES. To count necklaces, we need to find the cycle indices of the
cyclic group (if we allow only rotations) and the dihedral group (if inversions are
allowed).

Euler’s function $(rn) (sometimes called the totient function) is the number of
congruence classes mod n which are coprime to rn. For example, ¢(12) = 4, and
#(p) = p— 1 if p is prime. By convention, $(1) = 1.

(15.4.1) Lemma. The cyclic group of order n contains, for each divisor d of n, ¢(d)
elements of order d. Each has n/d cycles of length d.

ProoF. We can identify C, with Z/(rn). The order of a congruence class m
is the smallest positive z such that mz = ny for some y. If mz = ny, then
mz/(m,n) = ny/(m,n). Since m/(m,n) and n/(m,n) are coprime (we have divided
out the common factors of m and n), the least positive solution is z = n/(m,n),
y = m/(m,n). So the order of m is n/(m,n).

Now we teverse the argument and ask: how many classes m satisfy n/(m,n) = d
for a given divisor d of n? For such an m, we have m = (m,n)y, where (y,d) = 1;
there are ¢(d) choices of y, each giving rise to a unique m = ny/d.

Note in particular that the number of elements of C,, which generate the group
is ¢(n).

So the cycle index for C,, is

el z z,‘b(d) njd

dln

The dihedral group D5, contains the cyclic group C,, together with n reflections.
If n is odd, each reflection has one fixed point and (n — 1)/2 cycles of length 2;
while, if n is even, then half of them have no fixed points and /2 2-cycles, and the
rest have two fixed points and (n — 2)/2 2-cycles. Thus

Z(Dzn) = —(Z ) + R.),



252 15, Enumeration under group action

where
R, = {513(2n_!)/2 n odd,

?
(s3? 4 25872 p even.

For example, when n = 10, we have
Z(Dy) = ;—O(sio + 452 + 4310 + 655 + 5s2s3),

so the generating function for black and white necklaces by number of black beads

18
14t 4562 4 8% + 16¢* + 16t° + 161° + 8t7 + 565 + ¢ 4 41,

while the number of different necklaces with « colours of beads is
wot(u 4+ 1)(u® — o7 4+ b + 6u’ + 4).

EXAMPLE 3: GRAPHS. A graph on the vertex set X is determined by its set of edges,
a subset of the set of all 2-subsets of X. So, if |X| = n, the number of labelled
graphs is 9(3) = gnt-1y/ 2, of which "(n:nl)/ 2) have m edges. How many unlabelled
graphs are there? We identify two graphs if some permutation of X maps one to the
other, so the group in question is the symmetric group S,; but we have to calculate
the cycle index for its action on the 2-subsets of X.

The cycle index for the usual action of §, is implicit in (13.1.5), where we
calculated, for each partition of n, the number of permutations with that partition
as cycle structure: that is, if A = 1°12%2 .|, n®,

n!
Z(S.) = | s}, sl
( n) Azki (H:;l z"'a,-!) Sy So
For the action we require, the conjugacy class sizes are the same, but the cycle
structures are different. Rather than give an explicit formula, I will explain how the
calculation is done, and work an example.

Consider a permutaion g of X. We consider two types of 2-subsets of X; those

contained within a cycle of ¢, and those which straddle two different cycles.

(i) In a cycle C of g of length m, if m is odd, there are (m — 1)/2 cycles of length
m on 2-sets; if m is even, there is one cycle of length m /2 (consisting of pairs
of points which are opposite in C) and (m — 2)/2 cycles of length m.

(i) If two cycles have lengths m; and m,, then there are (m,,m;) cycles of length
mamg/(my,™m2) on pairs consisting of one point from each cycle.

EXAMPLE: n = 4. Using the above rule, we find:

Cycle structure Cycle structure Number of

on points on pairs permutations
14 18 1
1221 1222 6
22 1222 3
113! 32 8
4 2141 6
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So the cycle index is
(5% + 95252 + 882 + 6s25%),
and the generating function for graphs by number of edges is
14t 42624363 4+ 2% 4 5 + 15,

which is easily checked by listing the graphs.

Note that the generating function gives us confidence that we haven’t overlooked
any possibilities!

15.5. Direct and wreath products

There are simple formulae for calculating the cycle index of the direct or wreath
product of two permutation groups (in its natural action) from those of the factors.

(15.5.1) Proposition. Z(G x H) = Z(G)Z(H

Proor. We have

1
Z(Gx H)= ——+ ,h
( ) |G X Hl (g h)%éxﬂz«g ))
(9, k),
IGIgze.:nglrgn )

and so we have to show that z((g,kh)) = z(g)z(h) for any permutations g,k of
disjoint sets. But this is immediate from the fact that c;((g,k)) = ci(g) + c:(h).
(Recall that the natural action is on the disjoint union of the sets.)

(15.5.2) Proposition. Z(G wr H) = Z(H; Z(G) s1,82,.-.), Z(G; 52,515+ ), - ).

In other words, Z(GwrX) is obtained from Z (H) by substituting Z(G} s;, 52, . . -)
for s;, for each z.

Proor. Rather than direct calculation (which gives little insight), we will show that
the ‘recipe’ given by the right-hand side for calculating the function-counting series
is correct. Then we appeal to the principle that, for any permutation group K,
Z(K) is the unique polynomial in s,, s,,... such that, for any figure-counting series
a(t), the function-counting series is obtained by substituting a(t) for s, for each 7.
However, I won't give a proof of this principle.

Solet Gacton X and H on Y, where |X| =n, |Y|=m,say Y = {tn,-.., ¥m }-
Take a set & of figures with figure-counting series a(t). Recall that G wr H acts
on X xY = 2, X;, where X; = X x {y;}. Elements of the base group act as
independent m-tuples from G on the sets X),..., X, while elements of H permute
these sets.

The counting series for functions on X fixed by G is ¢(t) = Z(G; a(t),a(t?), .. .).
Now we can regard these functions as forming a new set ¥ of ‘figures’. Functions f
from X x Y to & fixed by the base group can be identified with functions f from ¥’
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to U; and f is fixed by G wr H if and only if f is fixed by the top group, tht is, by
H acting on V. So, finally, the function-counting series for G wr H is

Z(H;c(t),e(t?),...) = Z(H; Z(G;a(t),a(t?),. ..), Z(G;a(t?), alt?), .. .),-. ).

This is exactly what is obtained from the right-hand side of the proposition by
substituting a(t*) for s; for each i.

ExaumpLe. S; and S3 have cycle indices 3(s? + s5) and 3(s + 35,52 + 233). So the
cycle index for S, wr Ss is

s(3(s3 +52)" + (5T + 52)(53 + 54) + (53 + 56))
=25(s§ +8sfss + 95253 + 753 + 65754 + 65254 + 853 + 8s%).

Check this by using the fact that this group is isomorphic to the group of
symmetries of the cube acting on its faces.

15.6. Stirling numbers revisited

In the preamble to (15.3.2), we introduced the notation F,, for the number of orbits
of a permutation group G on the set of n-tuples of distinct points of X. Now let F*
be the number of orbits on all n-tuples from X (that is, on the set X™). The next
result gives the relationship between these sequences.

(15.6.1) Proposition. F; = 3" S(n, k) Fi,
k=1
where S(n, k) is the Stizling number of the second kind.

Proor. Given an n-tuple (z,,...,z,), we construct from it a partition of {1,...,n},

corresponding to the equivalence relation in which i = j if and only if z; = z;. If the

partition has k parts, then the n-tuple has & distinct entries; let these be (y1,...,%:)

(in order of appearance). Now two n-tuples lie in the same orbit of G if and only if

both

(a) the partitions of {1,...,n} they define are the same; and

(b) the corresponding tuples (y1,...,3;) and (yi,...,y,) of distinct elements lie in
the same orbit of G.

Now there are S(n, k) partitions with & parts, and for each partition there are F;

orbits of G on k-tuples of distinct elements. Multiplying, and summing over £, gives

the result.

We examine two extreme cases of this result.

1. If G is n-transitive, then fy = 1 for k < n, and so F; = Y}, S(r, k) = B(n), the
Bell number (see Exercise 10 of Chapter 14).

2. Take G to be the trivial group on a set of size t. We have F, =t(t —1)...(t —
n+ 1) = (t),, and F = t". So

£ =3 S(n, £)(t)e.
k=1

Since this is true for all positive integers ¢, it is a polynomial identity. (Compare
(5.3.3(b)).)
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Using the Orbit-counting Lemma, we can give the combinatorial proof of the
‘reverse! of this last formula, promised in Chapter 5, namely

n

B)n =) s(n, k)t

k=1

For this, we consider the set of functions from X to {1,...,t}, where |X| = r, and
count orbits of S, on this set. A function is fixed by a permutation ¢ if and only
if it is constant on the cycles of g. Since there are, by definition, (—1)"*s(n, k)
permutations in S, with £ cycles, the number of orbits is

LS 1yrsp, ket = O S s, by (-t
n: r=1 Tt =1

But the number of orbits on such functions is just the number of choices of n things
from a set of size ¢, with order unimportant and repetitions allowed. By (3.7.1), this

number is
) ()

Thus

n

(—t)n = 2 s(n, k)(=t)".
k=1
This holds for all positive integers ¢, and so it is a polynomial identity. Now
substituting —¢ for ¢ gives the required result.

15.7. Project: Cycle index and symmetric functions

Recall from Section 13.5 the notion of a symmetric polynomial in the indeterminates z,,...,2,,
and some special symmetric polynomials: the elementary symmelric function ¢, the sum of all
products of r distinct indeterminates; the complete symmetric function h,, the sum of all products
of r indeterminates (repetitions allowed); and the power sum funetion p, = z] + ... + 27, We'll see
that the cycle index of the symmetric group is a recipe for expressing h,, in terms of the power sum
functions; and the alternating group plays a similar role with respect to the function er,.

Recall also from Section 13.5
o the generating functions
E(t)=3,>0ert
H(t) = Erzo het,
Pit)=3 51t}
d
& the formula P(t) = ] log H{t).
In addition, the formula from Section 13.1 for the number ¢, of permutations with eyele structure A,
viz,
n!

) = ——————
1“'a1! 2%2a5! .. !

where A = 1412%2

(15.7.1) Proposition. h, = Z(Sn;p1,P2,...,Pn)-



256 15. Enumeration under group action

ProoF. We have

H{t) = exp/P(i) di

=expy prl"/r
r21
= H exp(p,t"/r)
r21
=1 2 %0h
rarg. !’

r2la.>0

Now the coefficient of £” in the right-hand side is made up of a sum of terms, one for each expression
n = 3 ra,; that is, one for each partition A = 1°:2% .. + n. The contribution which comes from
the partition A is

,.

55 '.ara l Hp

which is precisely the contribution to Z(Sa;p1,p2, ) from permutations with cycle structure A.
Summing over X gives the resull, since the coefficient of ¢® on the left-hand side is just 5.

Without proof, I will mention the analogous result for the alternating group.
(15.7.2) Proposition. h, + ¢, = Z(An;p1,p2,...) forn > 2.
15.8. Exercises

1. Use the Orbit-counting Lemma to find a formula for the number of ways of
colouring the faces of a cube with r colours, up to rotations. Repeat for colourings
of the edges, and of the vertices.

2. Find the cycle index of the group 5 acting on 2-subsets. Hence enumerate graphs
on 5 vertices by number of edges.

3. Prove Proposition 15.5.1 in the spirit of Proposition 15.5.2. (You will probably
find Step 1 in the proof of the Cycle Index Theorem useful.)

4. Show that the cycle index of a direct product of permutation groups, in its
product action, can in principle be calculated from the cycle indices of the factors.
Perform the calculation for S3 X S;. Hence enumerate the 3 x 3 matrices of zeros
and ones, up to row and column permutations, by number of ones.

5. Calculate the cycle index for Sy acting on (a) the ordered pairs of distinct elements
of {1,...,4}, (b) the subsets of {1, ...,4}. Hence enumerate the (a) loopless digraphs,
(b) families of sets, on four points up to isomorphism, by number of edges or sets.
6. Let the cyclic group of prime order p generated by g act on the set of all p-tuples
of elements from {1,...,n} by the rule

(T13-- 1 Tp)g = (Tpy T1,- -+, Tpr)-
By counting orbits, prove that n* =n (mod p).

7. Let F(sy,...,s,) be a polynomial in n variables si,. .., s,. For any polynomial

a(t), let Ffla] denote F(a(t),a(t?),...,a(t*)). Can you show that, if Fa} = 0 for
all polynomials a(t) with non-negatlve integer coeflicients, then F = 0? Deduce the
principle used in the proof of (15.5.2} from this assertion.



16. Designs

Though the uncarved block is small
No one in the world dare claim its allegiance.

Lao Tse, Tac Te Ching (ca. 500 BC)

TorICs: Designs

TECHNIQUES: Matrix and determinant techniques; Cauchy’s In-
equality (the ‘variance trick’)

ALGORITHMS:

CROSS-REFERENCES: Steiner triple systems (Chapter 8), finite geome-

tries (Chapter 9), regular families (Chapter 7), PIE (Chapter 5),
Latin squares, [SDRs] (Chapter 6)

Designs are a generalisation of Steiner triple systems. There is no hope of deciding
the values of the parameters for which designs exist (as we did for STSs). We will
develop just enough theory to resolve the question for small designs, and say a little
about some general classes,

16.1. Definitions and examples

Let t,k,v, A be integers with ¢t < k& < v and A > 0. A t-(v,k,A) design, or t-design
with parameters (v, k, A}, is a pair (X,B), where X is a set of v points, and B is a
collection of k-subsets of X called blocks, with the property that any ¢ points are
contained in exactly A blocks.

ExAMPLES.
1. A non-trivial Steiner triple system is a 2-(v,3,1) design, by definition.

2. A 2-(6, 3, 2) design is constructed as follows. Take the six points to consist of a
pentagon and the point at the centre; the blocks consist of all triangles formed from
these points which contain exactly one edge of the pentagon. (So, if the vertices of
the pentagon are 1, ..., 5, and 0 is the centre, the blocks are 012, 023, 034, 045, 051,
124, 235, 341, 452, 513.) The 2-design property is easily checked by inspection (Fig.
16.1(a)).
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3. Here is a 2-(7, 3, 2) design, The points are the vertices of a regular heptagon;
the blocks are all the scalene triangles that can be formed from these points (Fig.
16.1(b)). It is easily checked that any edge or diagonal lies in just two scalene
triangles, one the mirror image of the other. In fact, there are two shapes of scalene
triangles, one the mirror image of the other; if we take the triangles of one shape,
we get a 2-(7, 3, 1) design (a Steiner triple system).

(a) )
Fig. 16.1. 2-(6,3,2) and 2-(7,3,2) designs
4. Here is a 3-(8, 4, 1) design. The points are the vertices of a cube. There are three
types of blocks:
(i) a face (six of these);

(i) two opposite edges (six of these);

(il) an inscribed regular tetrahedron (two of these).
.Again, the proof is by checking (Fig. 16.2).

Fig. 16.2. A 3-(8,4,1) design
If these examples suggest to you a connection between design theory and
geometry, I have not wholly misled you! Now we develop some theory.

(18.1.1) Proposition. The number b of blocks of a ¢-(v, k,A) design is given by

s=2(3)/(0)

PRroor. A standard double count, of pairs (T, B), where T is a t-set of points, B
a block, with T' C B: there are (‘t’) choices of 7', each contained in A blocks; and
there are b blocks, each containing (f) t-subsets.

We always use b for the nunber of blocks.
(18.1.2) Proposition. Let (X,B) be a t-(v,k,A) design. Given s < t, let S be a
s-subset of X. Let X' = X \ S, and

B'={B\S5:SCB,BeB)}

(i.e, take all blocks containing S, and remove S from them). Then (X', B') is a
(t —s)-(v— s,k —s,)) design.
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Proo¥. There are v — 5 points, and each block contains k — s of them. Let ¥ be a
subset of X \ S of size t — 5. Then Y U S is a t-subset of X, so les in A blocks in
B; removing S, we get A blocks of B’ containing Y.

The design (X', B') is called the derived design of (X, B) with respect to the set
S (or, with respect to the point z, if § = {z} is a singleton).

(16.1.3) Corollary. For s < t, a t-(v,k,A) design is also a s-(v,k, A,) design, where

v—s k—s
=120/ 62
PROOF. A, is the number of blocks of a (¢ — s)-(v — s,k — 5, A) design.

ExaMpLE. Consider the 3-(8, 4, 1) design we constructed earher. If we choose one
point of this design and remove it from all blocks containing it, we get a 2-(7, 3, 1)
design, ie., a STS of order T:

Fig, 16.3. A derived design

16.2. To repeat or not to repeat?

We have defined designs in such a way that the blocks form a set of k-subsets of
the point set; that is, each k-set is either a block or not. There is, however, a more
general notion, in which a given subset is allowed to occur more than once as a
block. If the ‘multiplicity’ of B is 4, then B contributes i to the total number of
blocks containing each of its t-element subsets.!

In statistical design, where this notion first arose, nothing is lost by allowing
so-called repeated blocks. Imagine that we are testing a number v of varieties of
fertiliser. In each experimental trial, we can take k of these varieties and compare
them. In order to evaluate the results, it is desirable that each pair of varieties
should be compared in the same number (A, say) of trials. So the experimental
design should be a 2-(v, k, A) design. But the experiment will be just as effective, and
the cost will be less, if we can use the same %-set as a block more than once: the
trial need only be performed once, and the results repeated the appropriate number
of times.

1 Hughes and Piper call these ‘designs’ t-siructures.
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What we lose, in fact, is an interesting mathematical problem. Of course, if 8
consists of all the k-subsets of X, then (X, B) is a ¢-design for any ¢ < k, a so-called
trivial design. Thus, for a non-trivial design, we require that some k-subset does not
occur as a block. Now we can prove the following existence theorem with elementary
linear algebra:

(16.2.1) Proposition. Let t,k,v be given with t < k < v — ¢. If repeated blocks are
allowed, then there exists a non-trivial t-(v,k,\) design, for some \.

PROOF. We define a matrix M = (mr k) as follows. M is a ('t') X (:) matrix, whose
rows are indexed by the ¢-subsets of X = {1,...,v}, and whose columns are indexed
by the k-subsets; the (T, K) entry mr x is equal to 1 if T C K, and 0 otherwise.

Since t < k < v — t, we have (';) < (',9, so M has more columns than rows.
Thus, the columns of M are linearly dependent over Q: there are rational numbers
akg, for K a k-subset of X, such that 3" axc(K) = 0, where ¢(X) is the column
indexed by K. Multiplying up by the least common multiple of the denominators
of these rationals, we can assume that all ax are integers. Clearly some are positive
and some negative; let —d be the least. Now ag +d > 0 for all K, and ax +d =0
for some K.

Consider the ‘design’ in which the block K is repeated ax + d times. (Thus,
some k-sets do not occur; the others occur a positive integral number of times.) We
claim that this is indeed a ¢-design. Take a t-subset T'. To find the number of blocks
containing 7, we add the multiplicities of the k-subsets K for which mr x = 1. This

number is
—t
Z mT_K(aK + d) = Z mT,Kd = (Z )d,

K=k KTk -t

the first inequality because " mrxax = 0 (we chose a linear dependence relation
between columns), the second because T lies im ("_‘) subsets of size k.

k-t
So we have a ‘t-design’ with A = (;::)d

On the other hand, if we do not allow repeated blocks, the existence question
for t-designs is much more difficult. Only in the last few years has it been shown
by Luc Teirlinck that non-trivial #-designs exist for all values of ¢; his designs have
k = t+1 and v —¢ divisible by a quite rapidly growing function of £. So the existence
question is far from settled!

Note that 1-designs (without repeated blocks) exist for all “feasible’ parameters
— this was shown in Section 7.4.2 So we concentrate on the cases ¢t > 2. For t = 2,
a powerful existence theory has been developed by Richard Wilson. From (16.1.2)
we see that a necessary condition for the existence of a 2-(v, k, \) design is that the
numbers r = (v — 1)A\/(k — 1) and b = v(v — 1)A/k(k — 1) are integers; in other
words,

(mod k — 1),
(mod k(k — 1)).

2 These designs were called regular femilies in Chapter 7.
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For Steiner triple systems, these necessary conditions assert v —1 =0 (mod 3) and
o{v—1) =0 (mod 6); we saw in Chapter 8 that these conditions are also sufficient.

Wilson showed:

(16.2.2) Theorem. There is a function f(k,\) such that, if v > f(k,\) and the above
necessaty conditions aze satisfied, then a 2-(v, k, \) design (possibly having repeated
blocks) exists.

Wilson’s proof is a mix of direct and recursive constructions, like the existence
proof (8.1.2) for Steiner triple systems but rather more complicated. In the case
A = 1, of course, the resulting designs have no repeated blocks. Nobody has
succeeded in proving a similar theorem for higher values of ¢.

In the remainder of this chapter, we assume no repeated blocks.

16.3. Fisher’s Inequality

We are most interested in 2-designs. By (16.1.2), a 2-design is also a 1-design; that is,
a point lies in a constant number r of blocks. Now we have r(k — 1} = (v — 1)\ (the
formula for » = \; from (16.1.3)}, and vr = bk (applying (16.1.1) to the 1-(v,k,7)
design). From these, the result of (16.1.1), vis. b(gS = A(3), follows.

An important result about 2-designs is Fisher’s Inequality:®

(16.3.1) Fisher’s Inequality.
In a 2-(v, k, \) design, b > v (i.e. there are at least as many blocks
as poiats).

_

PROOF. Consider first the case A = 1. Take a point z and a block B with z ¢ B,
For each y € B, there is a unique block B, containing z and y; all these blocks are
different. (For if B, = B,, then B, and B are blocks containing y and z, and so are
equal; but z € B, = ¢ B, a contradiction.) So the number r of blocks through = is
at least the number % of points on B, ie., r > k. Smce br = vk, it follows that b > v.
For the general case, we offer two proofs, the first by linear algebra, the second
illustrating a very useful counting argument, variously called the variance frick or
Cauchy’s Inequality?
FirsT PROOF. Let X = {x1,...,z,}, B = {By,..., Bs}, and let M be the v x b matrix
whose (i,7) entry is 1 if z; € Bj, 0 otherwise. M is called the ircidence mairiz of
the design. The use of incidence matrices introduces algebraic methods into design
theory, to good effect.

3 R. A. Fisher was one of the most influential statisticians of the twentieth century. In accordance
with the remarks in the last section, his inequality is bad news for statisticians: it shows that, to
achieve balance between the treatments, at least as many trials are required as the number of varieties
being tested.

4 In geometric language, this inequality asserts that the inner product of two real vectors does not
exceed the product of their lengths.
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CLAIM 1. MM is the v x v matrix with diagonal entries r and off-diagonal entries
A. For

b ]
(MM )ae = 3 (M)i;(MT)ju = 3_(M)i; (M),
J=1 y=1

which is the number of blocks containing z; and ;. This number is r if i = k, and
A if ¢ # k, proving the claim.
CLaM 2. det(MM7T) = rk(r — M)~

We use the fact that adding a multiple of one row (or column) to another
doesn’t change the determinant, while multiplying a row (or column) by a constant
¢ multiplies the determinant by ¢. So we have

oA e A
det(MMT)=det| > T 2
A Aoy
r+(v—1A r4+@-1A - r4(v—1)A
r A
= det : : . :
A A r
1 1 1
=(r+(v—1)A)det '\ r '\
AA r
1 1 1
= rk det . _.A . 0
0 0 v A
=rk(r— A"\

(The second equality is obtained by adding all other rows to the first, and the fourth
by subtracting A times the first row from all other rows and using r + (v — 1)\ = rk.)
Hence MM is non-singular. Since it is v X v, its rank is v. But if b < v, then
rank(M) < b < v, and so rank(MMT) < v, a contradiction. So b > v.

SECOND PROOF. This proof just involves counting, but has the advantage that it
more easily gives us information about what happens when the bound is met.

Let B be any block. For ¢ = 0,..., k, let n; denote the number of blocks B’ # B
for which |B N B’| =i. Now we have the following equations:

k
Zn; =b-1,
;)in; =k(r — 1),
k
S (i — ng = k(k — 1)(A = 1).

=0
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{The first equation simply counts blocks different from B, The second counts pairs
(z,B') where £ € B and B’ # B with z € B’: for each of the k points of B, there
are r — 1 further blocks containing it. The third equation counts triples (z, z2, B'),
where z,, T, are two points of B and B’ is another block containing both: there are
k choices for z;, k — 1 for z;, and )\ — 1 further blocks containing both.) From these

equations, we obtain

i?n.- =k(r—1) + k(k— 1)(A — 1),

=0

and hence
&
Z(z —i)2n; = (b—1)2? — 2k(r — D)z + (k(r — 1) + k(k — 1)(A = 1)),

where « is an indeterminate. This equation defines a quadratic function of z. From
the left-hand side, we see that it is positive serni-definite, that is, its value is at least
0 for all real z. Hence the discriminant of the quadratic form on the right must be
negative or zero; that is,

F(r =1 — (b— Dk((r —1) + (k= 1)(A 1)) 0.

We simplify this by expressing it in terms of the parameters v, k,r, using the
equations bk = vr and r(k — 1) = A(v — 1). Multiply by v — 1:

K (r —1)2(v—1) = (or = k)(r — k)(v — 1) — (or — k)r(k —1)* <0.
After some manipulation, this becomes
(k—r)r(v — k)2 <0.

Since r > 0 and (v — k)? > 0, we must have ¥ < r. Using vr = bk, this is equivalent
to b > v, as required.

What happens if equality holds?

(16.3.2) Theorem. For a 2-(v,k, \) design with k < v, the following are equivalent:
(a) b=v;
(b} r = k;
(¢} any two blocks meet in A points;
(d} any two blocks meet in a constant number of points.

PROOF. Since bk = vr, (a) and (b) are equivalent. Clearly (c) implies (d). We show
that (b) implies (c), and that (d) implies (b).

(d) = (b): If any two blocks meet in y points, then n; = 0 for i # u, and so
(g — ¢)’>n; = 0. This means that x = y is a root of the quadratic form above,
whose discriminant is thus equal to zero. Thus (k — r)r(v — k)2 =0, or r = k.

(b) = (c): If r = k, then b = v, and the quadratic form becomes (v — 1)z* — 2k(k —
Dz + k(k — 1)); using k(k — 1) = (v — 1)), this becomes (v — 1)(z* — 2Az + A?).
Thus ¢ = ) is a root. Reversing the previous argument, we see that n; = 0 for ¢ # ),
and so every block meets B in exactly \ points. Since B was arbitrary, (c) holds.
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A 2-design satisfying the equivalent conditions of (16.2.2) is called a square
2-design.® Its parameters (v, &, \) satisfy the equation

k(k—1) = (v — ).

The Bruck—Ryser—Chowla Theorem gives a necessary condition for the existence
of a square design.

(16.3.3) Theorem. Suppose that a square 2-(v, k,\) design exists. Then:
(a) if v is even, k — ) is a square;
(b) if v is odd, the equation

2t = (k= Na? 4 (1))
has a solution in integers z,y, z, not all zero.

ProoF. (a) From the first proof of Fisher’s Inequality (16.3.1), we see that the
incidence matrix M of the design satisfies

det(M)? = det(MM ) = k*(k— M) ".

So |det(M)| = k(k — A)"1)/2, This is an integer; so, if v is even, then k — ) is a
square.

(b) The second part is a generalisation of the Bruck-Ryser Theorem (9.5.2).
The proof is alimost identical, and I will not give it here. Instead, I show that, for
projective planes, the conclusions of (9.5.2) and (16.3.3)(b) are identical. Let A =1,
and set £k = n + 1, v = n® 4+ n + 1. The diophantine equation is

2 =nz?+ (—1)"(““)/21/2.

If n =0 or 3 (mod 4, then n(n + 1)/2 is even, and the equation has the trivial
solution ¢ = 0, y = z; so the necessary condition is empty. If n =1 or 2 (mod 4),
then n(n + 1)/2 is odd, and the equation is y* + 22 = nz® As explained in Section
9.8, this has a solution if and only if n is the sum of two squares.

The complement of a design (X, B) is (X, B), where
B={X\B:BcB}
its blocks are the complements of all the blocks in B.

(16.3.4) Proposition. The complement of a t-(v, k, \) design is a t-(v,v — k, }) design,

where
r= (.

5 Other terms nsed are symmetric design or projective design.
& It was proved by Chowla and Ryser a year after the Bruck—Ryser Theorem; hence the name.
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ProoF. Clearly every block of the complement has v — k points. Let z,,...,z; be
points. Then the number of blocks of (X, B) containing z,...,z;, is equal to the
number of blocks of (X,B) containing none of zy,...,z,. We find this number
by using PIE (Section 5.1). Let B; be the set of blocks containing z;, and for
IC{1,...,t}, Br = Nic; B:. Then By is the set of blocks containing z; for all ¢ € I,
so that By = A, if {I| = s. By PIE, the number of blocks containing none of
Tiye-.s &y 18
: t
> - =0 (1)

Ic{1,..t} s=0 s

since there are (:) sets I C {1,...,t} with |I| = s.
Note that the complement of a square 2-design is a square 2-design.

ExaMpLE. Consider the complement of a 2-(7, 3, 1) design. This design has
/\o=b=7,/\1,=T=3,and/\2=/\=1.So

A=7-2-3+1=2,
and the complement is a 2-(7, 4, 2) design.

A design is called ¢rivial if every k-set of points is a block. (The set of all
k-subsets is the block set of a t-(v,k, (I::)) design.)

(16.3.8) Corollary. A t-(v,k,\) design with k > v —t is trivial.

PROOF. Let s = v — k. Then s < ¢, so our design is an s-design, by (16.1.3). So its
complement is also an s-design, with block size s. Now some s-set is contained in a
block of this design, and so this design is trivial, as is its complement.

16.4. Designs from finite geometry

Recall from Chapter 9 the projective geometry PG(n,g): its points are all the
1-dimensional subspaces of a vector space V of dimension n + 1 over GF(g), and
its i-flats are the (¢ + 1)-dimensional subspaces, for 0 < i < n. An i-flat can be
identified with the set of points it contains.

(16.4.1) Proposition. For 1 < i < n — 1, the points and i-flats in PG(n,q) form a

non-trivial 2-([":'1]q, ["'tllq, [?—-11],,) design, where [Z]q is the Gaussian coeflicient.
PROOF. The nummber of points, and the number of points in a block, are clear. Let
z,y be points. Then (z,y} is a 2-dimensional subspace of V. The (¢ + 1)-dimensional
subspaces containing it are in one-to-one correspondence with the (: —1)-dimensional
subspaces of the quotient space V/{z,y), by the Third Isomorphism Theorem.

Note some special cases:

(a) If i = n — 1, the design is square. Its blocks are called hyperplanes.

(b) If i = 1 (the blocks are lines), then A = 1. In particular, if i = 1 and ¢ = 2,
we have Steiner triple systems; these are the ‘projective triple systems’ of Chapter 8.

(c) The intersection of these cases, where i = 1,n = 2, consists of the projective
planes PG(2,¢). More generally, any projective plane of order ¢ (not necessarily
Desarguesian) is a 2-(¢*> + ¢ + 1,4 + 1,1) design.
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In a similar way, affine spaces give designs, but with a twist:

(16.4.2) Proposition. For 1 < ¢ < n, if either ¢ = 2 or : > 1, the points and ¢-flats in
AG(n,q) form a noa-trivial 2- (q", g, ['::11],,) design. If g =2 andi > 1, it is even a

3-(2, %, [,.:;] 2) design.

The proof is similar. The reason for the exclusion is that, if ¢ = 2 and : = 1,
then lines have just two points and the design is trivial. So any three points are
independent, and span a plane; this is why 3-designs are obtained when g = 2. (For
g > 2, some triples of points are collinear and others are not.)

Once again, if 7 = 1 and ¢ > 2, we obtain 2-designs with A = 1 (the ‘affine
triple systems’ of Chapter 8 in the case ¢ = 3); and, if : = 2 and ¢ = 2, we obtain
3-(2",4,1) designs (Steiner quadruple systems). The case i = n — 1 (blocks are
hyperplanes) is also interesting; we'll meet it again for g = 2 in Section 16.6. Also,
any affine plane of order n (Desarguesian or not) is a 2-(n*,n, 1) design. Now (9.5.7)
can be re-phrased in the terminology of design theory as follows:

(16.4.3) Proposition. For any n, there exists a 2-(n® + n + 1,n + 1,1) design if and
only if there exists a 2-(n%,n,1) design.

16.5. Small designs

If we are trying to decide for which values of the parameters a design exists, we
may clearly ignore trivial designs; so We may assume that t < k¥ < v —¢. But, if a
design exists, then so does its complement; so it is enough to resolve the question
for t < k < 1v.

Here is another construction of new designs from old, which doesn’t seem to
have an official name; it is a sott of complementation but not to be confused with
the operation defined above (before (16.3.4)). In this construction, the ‘no repeated
blocks’ condition is crucial. Let (X, B) be a non-trivial i-(v, k, A) design. Let B* be
the set of all k-subsets of X which are not in B (not blocks of the original design).
Then (X,B*) is a t-(v, k, (;}) — )) design. For any t-set lies in ({=') sets of size k
altogether; and A of these are blocks of the old design, the remainder blocks of the
new design.

In a non-trivial £-(v,k, A) design, the value of ) is at most equal to the total

number (z::) of k-subsets which contain a given ¢-subset, If A\ = (Z::), the design
is trivial. Since the existence questions for A and (Z::) — )\ are equivalent, we need
only settle the question for 0 < A < %(Z::)

We will illustrate by finding all parameters of non-trivial 2-designs with » < 8.

Since 2 =t < k < v—t, we have £ > 3 and v > 6. So we have to consider the values
v = 6,7,8.
CASEv = 6. Wehave k = 3,and 0 < A < (g;g) = 4. The equations r{k—1) = (v—1))
and vr = bk become 2r = 5) and 3b = 6r, or b = 2r = 5. The first equation shows
that ) is even. So A = 2. We have a design with these parameters (Example 2 in
Section 16.1).
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CASE v = 7. We have k = 3 or 4, and by taking complements, it is enough to
consider k = 3. Then 0 < A < (173} =5, 50 A = 1,2,3 or 4 From Example 2,
there are designs with A = 1 and A = 2. By using the complementary sets of blocks,
we obtain designs with A = 3 and A = 4. Now a short calculation shows that the

complementary designs are 2-(7, 4, A} designs with A = 2,4,6, 8
CASE v = 8. Now k = 3,4 or 5, and it is enough to consider k¥ = 3 and k = 4.

SUBCASE k = 3. We have 2r = 7), 50 )\ is even; and 34 = 8r, so 7, and hence ), is
divisible by 3. However, 0 < A < 6, so no such design exists. It follows that there is
none with k£ = § either.

SUBCASE k£ = 4. This time we have 3r = 7\, and b = 2r; so )\ is a multiple of 3. Also,
0< A< §:§ = 15, So A = 3,6,9 or 12, and the last two values can be deduced
from the first two. The 3-(8, 4, 1} design of Section 16.1, Example 4 is also a 2-(8,
4, 3) design, by (16.1.3). The existence of a 2-(8, 4, 6) design is an exercise. The

existence of the other two designs follows.

REMARK. So far, whenever a parameter set for a 2-design satisfies the divisibility
conditions and the trivial inequalities, a design happens to exist. But this pattern
does not continue. Some designs are excluded by Fisher's inequality; some by more
sophisticated theotetical results; and some by exhaustive computer search. For other
values, great ingenuity has been used to construct designs.

16.6. Project: Hadamard matrices

How large can the determinant of a matrix with entries of bounded size be? This
question was considered by Hadamard. In this section, we prove Hadamard’s
theorem and investigate its somewhat surprising connection with design theory.

(16.6.1) Hadamard’s Theorem. Let A = (a;;) be a n x n real matzrix whose entries satisfy |ag;| < 1
for all 4, j. Then |det(A)| < n"/2. Equality holds if and only if u;; = +1 for all i, j and AAT = nal.

PROOF, Our proof uses a geometric interpretation of the determinant. | det(A)| is the volume of the
parallelepiped (in n-dimensional Euclidear space) whose sides are the rows of A. Now, if |ag;| < 1
for all ¢, j, then the Euclidean length of any row is at most \/n. The volume of the parallelepiped
is at most the produet of the edge lengths, with equality if and only if the edges are mutnally
perpendicular. The inequality follows; and equality holds if and only if each row has length /n
(so all ita entries are +1 and Y_7_, af; = n for all i) and any two rows are perpendicular (so
E;=1 a;jar; = 0 for k # i). The two summations are equivalent to AAT = nl.

A matrix # which attains Hadamard's bound is called a Hadamard matriz. Thus such a matrix
has entries 1 and satisfies HH T = nI. We first derive a simple necessary condition on n for the
existence of a Hadamard matrix.

(16.8.2) Proposition. If a Hadamard matrix of order n exists, then either n = 1 or 2, orn = 0
(mod 4).

PrOOF. Observe first that, if n > 2, then any two rows of H agree in n/2 positions and disagree
in n/2 positions, since their inner product is 0. So n is even. Also, if we change the sign of any
column of a Hadamard matrix, the result is still a Hadamard matrix (most easily because | det(H)|
is unchanged). By a series of such changes, we can arrange that all entries in the first row of H are

equal to +1.
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Now suppose that n > 3, and consider the first three rows. Let a,b,c,d be the numbers of
columns in which the second and third rows have entries (+1, +1), (+1,—1), (—1,+1) and (—1,~1)
respectively.

1] d
f-—g-\,—"—qf-—':\-\,-—’\—ﬂ
+ ...+ + ...+ + ...+ 4+ ...+
+ ...+ + ...+ - =- = .=
+ ...+ - +... 4+ —-... -

.
. .

Considering inner products of the three pairs of rows, we have

e+ b=c4d=nf2,
a+c=b+d=n/2,
a+d=b+c¢=n/2,

with solution o = 6 = ¢ = d = n/4, So n is a multiple of 4.

ReMaRK, We saw that the Hadamard property is invariant under changing signs of rows or columns.
It is also invariant under permutations of rows or columns, and under transposition, Two Hadamard
matrices are called eguivalent if one can be transformed into the other by a sequence of operations
of this type.

Now we turn to constructions. There is a simple recursive construction, the so-called tensor
product or Kronecker product. If A = (ay;) and B are matrices, their tensor product is (in block form)

a11B algB e
A®B=(ang ang )

It can be checked that (A ® B)(C'® D) = AC® BD. Now, if H, and H; are Haramard matrices of
orders nj,n; respectively, then

(H1 @ Hy)(Hy ® Ha)T = (Hy ® Ho)(H] ® HY) = HiH] ® HaH] = niln, @ nala, = ninzlogn,,

so H1 ® H3 is a Hadamard matrix.
In particular, taking # = (:: fi) , we obtain by successive tensor products a Hadamard matrix
of order 2" for any n > . These matrices are said to be of Sylvester type.

Another class of examples consists of the matrices of Paley type. Let ¢ be a prime power
congruent to ~1 mad 4. Let P(g) = (pi;) be the (¢ + 1) x (¢ + 1) matrix with rows and columns
indexed by the elements of the field GF(g) and a new symbol co, with

+1 ifi=ocorj=o0;
_ )1 ifi=j# oo
P4 =13 11 ifi-— 7 is a non-zero square in GF(g);
-1 ifi-—j is a non-square in GF(g).

It can be shown that P(g) is a Hadamard matrix. (See Exercise 6.)

Of course, this construction can be used in conjunction with the tensor product, to construct
Hadamard matrices of all orders which are the product of a power of 2 and numbers of the form
¢i + 1, where ¢; are prime powers congruent to —1 (mod 4). In particular, the existence question is
settled for all multiples of 4 less than 36. But this is not the end; here is a construction for order 36.

Let L be a Latin square of order 6 (Chapter 6). First we construct a graph T, a so-called Latin
square graph. The vertices of I are the ordered pairs (i, §), for 1 < ¢, § < 6, regarded as the cells of
the Latin square. Two verlices are adjacent if the cells lie in the same row or column or contain the
same entry, Now H is the 36 x 36 matrix whose rows and columns are indexed by the vertices of [';
the (z,y) entry is +1 if z and y are adjacent in [, and —1 otherwise, Then H is a Hadamard matrix
(Exercise 7).
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1t is conjectured that, for every positive integer n divisible by 4, there exists a Hadamard matrix
of order n. The conjecture is still open, though many values have been settled by increasingly
ingenious constructions.

What has all this to do with designa?

(16.6.3) Proposition. For n > 4, the following are equivalent:
{a) there exists a Hada.mard matrix of order n;

{b} there exists a 3-(n, 1n, 1n — 1) design;

(c) there exists a 2-(n— 1,30 — 1,in — 1) design

PROOF. (a) => (b): Let # = (h;;) be a Hadamard matrix of order n. As in (16.6.2), by changing signs
of some columns, we may assume that all entries in the first row are +1. Now, for i = 2,...,n, let
B} = {j :hij = +1} and B; = {j : hyj = —1}. Each of these 2(n — 1) sets has size rn. We claim
that (X, B) is a 3-(n, n, Ln — 1) design, where X = {1,...,n} and B={B}, B[ :i=2,...,n}.

The proof of (16.6.2) shows, in effect, that, given any three rows of H, there are exactly n/4
columns where they all agree. Dually, given any three columns (numbered j), j2, j3, say), there are
n/4 rows where they all agree. One is the first row; so there are 1n—1sets Bf (i = 2,..., n; ¢ = £1)
containing ji, 2, j3.

(b) = (c): Take the derived design with respect to a point.

(c) = (a): Let D bea 2-(n—1,4n— 1, 4n — 1) design. Note that D is square. Let A be iis
incidence matrix. Now replace the entries 0 in A by —1, and border A with a row and column of
+1s (the first, say); let H be the resulting matrix.

Now any row of A has n— | entries 1, s0 any row of H agrees with the first in 1+ (—n )= —n
positions. Also, any two rows of A have entries (1 1)in En — 1 places, and (0,0) in -n places (smce,
by (1634), the complement of D is a 2-(n — 1,3n,in) design); so the conespondmg rows of H
agree in 1+ (4n — 1) + in = in places. Thus HHT = al.

The designs arising in this theorem are called Hadamard designs. The designs of poinis and
hyperplanes in projective and affine spaces over GF(2) are Hadamard 2-designs and 3-designs
respectively (check the parameters given in Section 16.4 to see this); the corresponding Hadamard
matrices are of Sylvester type.

16.7. Exercises

1. An exlension of a t-(v,k, \) design (X, B) is a (¢ +1)-(v+1,k+ 1, A) design (¥,C)
with a point y such that its derived design with respect to y is isomorphic to X.
Prove that a necessary condition for a t-(v, &, ) design with b blocks to have an
extension is that v + 1 divides b(k + 1). Hence show that, if a projective plane of
order n > 1 has an extension, then n = 2,4 or 10.7

REMARK. Each of the (unique) projective planes of orders 2 and 4 has a (unique)
extension. We saw in Chapter 9 that the non-existence of a projective plane of order
10 was established by a massive computation. In fact, a relatively small part of this
computation showed that no projective plane of order 10 could have an extension,
some years before the non-existence was proved.

2. Prove that, up to equivalence, there is a unique Hadamard matrix of each of the
orders 4, 8, 12; and prove that the corresponding Hadamard designs are unique up
to isomorphism.

7 This result is due to Dan Hughes.
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3. Let H be the (unique) Hadamard matrix of order 12. Let X be the set of
columns of H. For 1 < i < j < 12, let B} be the set of columns where the
i and j** rows agree, and Bj; the set of columns where they disagree. Let
B = {B},B;;:1<i<j<12}. Prove that (X, B) is a 5-(12, 6, 1) design.

4. Show that the construction of the preceding problem, applied to an arbitrary
Hadamard matrix, always gives a 3-design (if the order of the Hadamard matrix is
greater than 4), but is a 4-design only if n = 12,

5. A character x of an abelian group A is a homomorphism from A to the
multiplicative group of non-zero complex numbers. The character table of A is the
matrix whose (i, ;) entry is the value of the 't character on the j* element of A
(for some ordering of the group elements and the characters). Show that, it A is a
direct product of cyclic groups of order 2, then its character table is a Hadamard
matrix of Sylvester type.

6. Let P(¢) be a Hadamard matrix of Paley type. It already has a row and column
of +1s, so we can read off the corresponding Hadamard 2-design: its points are the
elements of GF(g), and its blocks are the translates of the set of non-zero squares.
Show directly that this is a Hadamard 2-design, and deduce that P(g) is a Hadamard
matrix.

7. Prove that the Latin square construction gives a Hadamard matrix.

8. Let (X, B) be a Steiner triple system of order 15. For each triple B € B, let S(B)
be the set of all triples equal to or disjoint from B. Prove that

(8,{5(B): B cB})

is a Hadamard 2-design with 35 points,

9. Let (X,B) be a square 2-(v,k, )) design, where X = {I,...,v} and B =
{Bi,..-,B.}. Prove that there is a Latin square of order v, having the property
that the set of entries occurring in the first & rows and the ¢ column is B;, for
i=1,...,v, [Such a square is called a Youden square.]

10. Let D = (X,B) be a t-(v,k,)) design, and let z,...,%.41 be points of X,
Suppose that u blocks contain all these points, Use PIE to show that the number of
blocks containing nome of z,,..., 2,41 is N + (—1)"*1, where N depends on ¢,v,k
and A only.

Deduce that, if £ is even and v = 2k + 1, then

X U{y},{BU{y},X\B:B B}

is an extension of D, where y is a point not in X.
11, Find all possible parameters of non-trivial designs with 9 points,

12, Show that the family of blocks of a square 2-(v,k,)) design has at least
E(k — \){-1/2 SDRs,
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... flame of incandescent terror
Of which the tongues declare
The one discharge from sin and error

T. S. Eliot, ‘Little Gidding’ {1942)

Torics: Error-correction, minimum distance, linearity, bounds
TECHNIQUES: Linear algebra, projective geometry, number theory
ALGORITEMS: Encoding, syndrome decoding

CROSS-REFERENCES: Packing and covering (Chapter 8); projective
geometry (Chapter 9); designs (Chapter 16)

This chapter begins with an example involving ‘guessing’ a number on the basis of
information about it, some of which is incorrect. It looks like a party trick, but
in fact the ideas have great practical importance. Information of all kinds is sent
through channels where it runs the risk of distortion: pictures of the planets in the
solar system from space probes via radio links; musical performances via tapes and
compact discs; instructions about how to build a living body via DNA molecules
in genes; and so on. We can fancifully regard errors and distortion in the message
as ‘nature lying to us’, and it is important to know how to identify and correct the
errors. This is done by means of error-correcting codes, whose study could be seen
as part of information theory but which has a high combinatorial content.

17.1. Finding out a liar

The panel game ‘Twenty Questions’, which we referred to in Chapter 4, involves one
player trying to guess something thought of by the other, being allowed to ask twenty
questions {each of which must have a yes-or-no answer) to gather information. It's
clear that 22° different objects can be distinguished. Since this number is slightly
greater than 10%, the game can be played with whole numbers, with the familiar
opening gambit, ‘Think of a numnber less than a million’,

What if the respondent lies?

There is a simple scheme for guessing correctly a nuimnber between 0 and 15 with
seven questions, where the respondent is allowed to lie once. The calculations can
be done on the back of a small envelope, or in your head with a little practice. Since
I can’t demonstrate it to you in this mediumn, I'll explain how it works, and you can
try it out on someone else.
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Give your respondent the following instructions.

Instructions
Think of a number beiween 0 and 15.
Now answer the following questions.
You are allowed to lie once.

1. Is the number 8 or greater?

2. Is it in the set {4,5,6,7,12,13,14,15}?
3. Is it in the set {2,3,6,7,10,11,14,15}?
4. Is it odd?

5. Is it in the set {1,2,4,7,9,10,12,15}?
6. Is it in the set {1,2,5,6,8,11,12,15}?
7. Is it in the set {1,3,4,6,8,10,13,15}7

The response is a sequence of seven ‘yes’ or ‘no’ answers. Writing 1 for ‘yes’ and
0 for ‘no’, record it as a binary vector v of length 7. Now multiply v by the 7 x 3
matrix

Yk et et (O O D
OO~ O
— D D = D

whose i"® row is the base 2 representation of i, for 1 < i < 7. (The calculation
of vH is done in GF(2).) The result is a binaty vector w = vH of length 3.
Alternatively, count the numnbers of 1’s of v which occur in the sets {4,5,6,7},
{2,3,6,7}, {1,3,5,7} of coordinates respectively, recording 1 for odd and 0 for even
in each case. Now either w = 0, in which case no lie was told; or w is the base 2
representation of k, where 1 < k < 7, in which case the answer to the k'* question
was a lie. Thus, the vector v of responses can be corrected. Then the first four
entries of v form the base 2 representation of the chosen number.

We note in passing that no fewer than seven questions would suffice, no matter
how they were asked. For at the end, we know not only which of the 16 numbers
was chosen, but also which question was answered incotrectly (if any). If, say, six
questions sufficed, then we'd have identified one of 16 - 7 = 112 possibilities with
only 6 questions, a contradiction since 112 > 28, (The factor 7 is for the 6 possible
positions of the lie and the possibility that no lie was told.) Note that, with 7
questions, we have distinguished 16 - 8 = 27 events; so we succeed with nothing to
spare, (no wasted information is generated).

Why does it work?

Let C = {cg,c1,...,c15} be the set of sixteen 7-tuples of zeros and ones which
would be generated by truthful responses to the questions for each of the numbers
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0, ..., 15, For example, the nummber 13 generates
as = (1,1,0,1,0,0,1).

The crucial fact, which can be verified by checking all sixteen cases — there are
simpler ways — is that, for any ¢ € C, we have ¢cH = 0, where H is the matrix
defined above. (Note that the matrix H has rank 3, so its null space has dimension
4; thus C must be precisely the null space of H.) Let ¢; be the 7-tuple with 1 in the
i* place and 0 in all other positions. Then, if the respondent chooses the number
m and lies to the k™ question, the replies will form the vector cy, + ;. (Adding ex
changes the k*" coordinate and leaves the others unaltered.) Now we compute

(cm + ek)H = Cm-H + ek-H = EkH,

which is the k** row of H and so, by definition, the base 2 representation of the
number k. So we have located the error. Once we correct it, we know the vector c,,.
On the other hand, if no lie was told, the response is just ¢,,, and we find ¢,, H = 0.
Now, the first four questions we asked about m generate its base 2 representation;
so we can read this off from the first four digits of ¢, and then calculate 7.

Another important fact is that the correct response to the questions can itself
be generated by linear algebra. Let v, be the base 2 representation of the integer
m. Then you can check that ¢,, = v,,G, where

G =

(=X =Ny o
o=
OO O
—_oo O
—— O
T 5
— =

(This follows from the form of the questions. The first four questions ask whether
the first, ..., fourth digit in v,, is equal to 1. The fifth question asks whether
positions 2, 3, 4 contain an odd number of 1’s, that is, whether their sum (mod 2)
is 1. Similarly for the sixth and seventh.)

The set C is an example of an error-correcting code. We observe that:
e Any two members of C differ in at least three positions,
For suppose, for example, that ¢,, and ¢, differ only in positions ¢ and ;. Then
€m + €; = ey + €, and we couldn’t distinguish between the possibilities ‘m chosen,
lie to i*™* question’ and ‘n chosen, lie to j** question’, Similar reasoning would apply
if two members of C' differed in only one position.
Furthermore, since C is the null space of H (or the row space of G}, we have:
o The sum of two members of C is again in C.
We say that C is lrear.

17.2. Definitions

In coding theory, it is customary to assume that information is to be sent in ‘words’
of fixed length n, each word being an n-tuple of ‘letters’ taken from an alphabet @
of size q. By far the commonest case in applications is that when ¢ = 2, and the
alphabet is taken to be GF(2) = {0,1}; but this is not essential. Throughout this
chapter, n and ¢ have these meanings.
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We define Hamming space H(n,q) to be the set of all words of length n over the
fixed alphabet @ of size ¢. The structure on H will be a metric or distance function.
The motivation is that, if a word w is transmitted through a noisy channel, some of
the letters in the word may become changed; the more letters that are changed, the
further the received word is from the transmitted word. So we define the Hamming
distance between words v, w to be the smallest number of errors which could change
v into w; that is, the number of positions in which the entries in v and w differ.

Formally,
d(v,w) = {1 : v # wi}].

(17.2.1) Proposition. (a) d(v,w) > 0, with equality if and only if v = w.

(b) d(v,w) = d(w, ).
(¢} d{u,v) + d(v,w) > d{u,w).

PROOF. The first two assertions are obvious from the definition. For the third, we
can argue informally as follows: it is possible to change u into w by changing it first
into », making altogether d(u,v) + d(v,w) coordinate alterations, so the smallest
number of changes required does not exceed this number; or else, a more formal
argument like this can be used. Observe that

{trus 2w} C{itw# 0} U{i: v #wl,

since if u; # w; then certainly either u; # v; or v; # w;. Now take the cardinality of
both sides, using the fact that

|AUB| = |A| +|B| - |AnB| < |4] + |B|

to get the desired inequality.

ReMARK. A function d from X x X to the non-negative integers is called a metric on
X if it satisfies conditions (a)—(c) of (17.2.1}. The notion of a metric is an important
unifying principle in mathematics; it is very likely that you have met it in analysis or
topology, and we saw an application in the ‘twice-round-the-tree’ algorithm for the
Travelling Salesman Problem in Section 11.7. The metric defined here on Hamming
space is called, naturally enough, the Hamming metric; we also refer to the Hamming
distance between two words,

A code of length n over the alphabet @ is just a subset C of Hamming space
H(n,q) which contains at least two words. The elements of the code are called
codewords. The rationale is that we will perform error correction by restricting
our transmissions to be members of the code C, rather than arbitrary words; if
the members of C' are sufficiently distinguishable (i.e., sufficiently far apart) then,
assuming that not too many errors occur, the received word still resembles the
transmitted word more closely than any other codeword, and so we can recover the
transmitted word. The reason for assuming that there are at least two words is that,
in a one-word code, we would know in advance which word was transmitted, and
so no information could possibly be sent! Now suppose that there are m possible
messages that we might want to send, say M,,..., M,,. We encode a message by
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associating a unique codeword with it; thus, we take a one-to-one function e from
the set of messages to C, and encode M; as the codeword e(M;), which is then
transmitted. Of course, this requires that the number of codewords is at least as
great as the number of messages; indeed, we may assume that every codeword
corresponds to a message (by ignoring those which don’t). How do we decode?

What is suggested in the preceding paragraph is the concept of nearesé-reighbour
decoding. If the word w is received, then we find the codeword ¢ € C for which
d(w, ¢) is as small as possible, and assume that the transmitted word was c, and the
message was e~!(c). In general, this requires a search through all the codewords
to find the nearest one to w, a very time-consuming procedure if the code is large!
One of the themes of algebraic coding theory is that, for codes with more algebraic
structure, the decoding procedure can be simplified a great deal.

What if there is no unique nearest codeword? We should design the code so that
this event is very unlikely, if it can occur at all. Then either choose randomly among
the nearest neighbours of w, accepting the small chance of making a mistake; or
ask for the message to be retransmitted. Which strategy we use depends on the
situation. One important use of error-correction is in obtaining data and pictures
from interplanetary space probes; here, the length of time taken by a signal means
that re-transmission is out of the question. But, for commercial transactions between
banks, the importance of correct information outweighs the cost of a small delay.

For a positive integer e, we say that the code C is e-error-correcting if, given
any word w, there is af most one codeword ¢ such that d(w, ¢) < e. This means that,
if a codeword is transmitted and at most e errors occur, then nearest-neighbour
decoding will recover the transmitted word uniquely. A related parameter is the
minimum distance d of the code: this is the smallest distance between two distinct
codewords.

(17.2.2) Proposition. A code with minimum distance d is e-error-correcting if and
only if d > 2e + 1.

PROOF. Suppose that 4 > 2e + 1. If a word w lies at distance ¢ or less from two
different codewords ¢; and ¢,, then .

d(cy,c2) € d(ey,w) + d(w,e2) < e+ e = 2,

a contradiction; so C' is e-error-correcting.

Conversely, suppose that d < 2e, and let ¢1,¢; be codewords at distance d. Set
f=1d/2]; then f < e and d — f < e. We can move from ¢, to ¢; by changing d
coordinates one at a time. If w is the word obtained after f changes, then we have
d(er,w) = f < e and d(cz,w) = d — f < e; so C is not e-error-correcting,

For example, the code which was used for the trick in the last section has
minimum distance 3 and is 1-error-correcting.

We see that, for good error-correction properties, we require large minimum
distance. Also, we want the code to have as many words as possible, since the
number of words limits the number of different messages that can be sent, and
hence the rate of transmission of information. These two requirements conflict. In
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practice, there is a third requirement as well: the processes of encoding and decoding
should not be too demanding in terms of computational power. (In the case of space
probes, the encoding has to be done in real time by a small, low-powered electronic
circuit; the incoming message can be stored and decoded by large computers, but
we still want the results within hours rather than centuries!)

The tension between the first two requirements can be formulated as a packing
problem (compare Section 8.4). The ball of radius r and centre w in the Hamming
space H(n,g) is the set

B.(w) = {v € H(n,q): dlv,w) <r}.

(17.2.3) Propositon. The code C C H(n,q) is e-error-correcting if and only if the
balls of radius e with centres at the codewords are pairwise disjoint.

PrOOF. The conclusion is just another way of saying that no word lies at distance ¢
or less from two codewords.

So we want to know the maximum number of balls of radius ¢ which can be
packed into Hamming space.

17.3. Probabilistic considerations

As we have already suggested, combinatorial coding theory starts from the assump-

tion that (with a sufficiently high degree of certainty) at most a fixed number e of
errors ate made during transmission. This is at base a probabilistic statement. In
this section, we take a superficial look at the probability theory involved, and state
Shannon's Theorem.

To simplify matters, we consider only the binary alphabet GF(2) = {0, 1}. Words
of fixed length n are transmitted through a channel. We make the following
assumptions about the channel:

o the probability that a 0 is changed to a 1 is equal to the probability that a 1 is

changed to a 0;

o this probability p is the same for each digit, and is less than ;

o the events that alterations occur to different digits are independent.
A channel satisfying these assumptions is called a birary symmeiric chanrel The
assumptions simplify the analysis, but are not very realistic. For eaxmple, interference
often comes i ‘bursts’,! so that if one digit is incorrect then its successor is more
likely to be incorrect also; and the error probability may not be constant (e.g.,
because of synchronisation problems, errors may be more likely at the start of a
word). The assumption p < } is harmless, and clearly necessary. If p > 3, then we
just reverse each digit received and the error probability becomes 1—p; if p = 1, then
the received message is completely random, and no information can be extracted
from it.

We also make the assumption that all words of length n have an equal chance of
being transmitted. Again, this is often false. Much information is sent by encoding
letters, numerals, and punctuation symbols as 7- or 8-bit binary words, using codes

! A scratch on a compact disc could destroy a run of consecutive bits, for example.
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such as ASCIL In plain text, the words representing a space or the letter ‘e’ are
disproportionately likely to occur. Nevertheless, there are encoding schemes which
achieve equiprobability and have the beneficial side-effect of data compression.

The mazimum likelihood decoding method works as follows. Given a received
word w, we decode it to that codeword ¢ such that Prob(c transmitted : w received)
is maximised. In other words, we assume that the codeword sent is the one most
likely to result in the given received word.

(17.3.1) Propaosition. Assume that all codewords are equally likely to be transmitted,
and that the channel is binary symmetric. Then maximum likelihood decoding
coincides with nearest-neighbour decoding.

PROOF. In a binary symmetric channel, if d(¢c,w) = d, then d errors (in specified
positions) change ¢ to w; so Prob(w received : ¢ transmitted) = p?(1 — p)" .
Moreover, Prob(c transmitted) = 1/|C| by assumption. So

Prob(c transmitted : w received) = p?(1 — p)*~%(1/|C|)Prob{w received),

which is a decreasing function of 4. So it is maximised when ¢ is the codeword
nearest to w.

The rate of a code C of length n over an alphabet of size ¢ is defined to
be log,(|C|)/n. (The motivation for this definition is that if, say, |C| = ¢*, then
k-tuples of information can be encoded in a one-to-one fashion by codewords
and transmitted as n-tuples; information is sent k¥ /n times as fast as it would be
without encoding, this being the price paid for error correction.) Shannon proved
the following remarkable theorem.

(17.3.2) Shannon’s Theorem

Given a binary symmetric channel with error probability p for a

single digit,

(a) if R < 1+ plog;p+ (1 —p)log,(1 —p) and € > 0, there is a
code with rate at least R such that the probability of error
in decoding a codeword by nearest-neighbour decoding is less
than ¢;

(b) this is best possible, that is, if R > 1+plog, p+(1—p) log,(1—p),
then the error probability of ary code with rate R is bounded
away from 0.

What is even more remarkable is that the code in Shannon’s Theorem is
constructed by picking the appropriate number of codewords at random! The
number 1 + plog, p + (1 — p)log,(1 — p) is called the capacity of the channel; it
represents the maximum rate for ‘error-free’ transmission. Shannon's Theorem
extends to a wider range of situations (arbitrary alphabet size and other channel
characteristics).
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It is important, however, to realise three important limitations in Shannon’s
Theorem which mean that it is not the end of coding theory!

e It is nom-constructive; the code is constructed at random. This doesn’t help an
engineer who wants an explicit example.

¢ The length n tends to infinity as € — 0 or the rate tends to the channel capacity.
Using nearest-neighbour decoding with an unstructured code, it is necessary to
remember the entire received word before decoding can begin; so, in practice, n
is bounded by the memory size of the decoder.

e even for moderate lengths, nearest-neighbour decoding involves a search through
(exponentially many) codewords, a very time-consuming process.

17.4. Some bounds

As we saw m Section 17.2, there are three desiderata for a good code:

o high rate (large number of codewords);

e good error-correction, which for us means large minimum distance;

e case of implementation.
The third of these requires concepts from the theory of computational complexity
for its proper discussion. Section 20.1 sketches the ideas, but I won’t give a full
treatment here. Already we see that the first two requirements conflict; and much of
the mathematical interest in the subject comes from this tension. It can be expressed
in the form of a question:

What is the size of the largest code of length n and minimum
distance d over an alphabet of size ¢?

This is the main problem of coding theory. Needless to say, the exact answer is
known only in special cases. In this section I will prove a simple lower bound and
several upper bounds.

(17.4.1) Varshamov—Gilbert bound. Given n, g, d, there is a g-ary code of length n
and minimum distance d or larger, having at least

o/ (5 ()e-)

ProoF. Recall from Section 17.2 the definition of a ball B.(c) of radius r in Hamming
space H(n,¢): it consists of all words w satisfying d(c,w) < r for a fixed word ¢
(the centre of the ball). Now

B.1=3 (7)a- v

=0

codewords.

For a word at distance i from c is obtained by choosing a set of ¢ coordinate
positions in which to make errors (in T.‘) ways), and changing the symbols in these
positions (each can be changed to any of the other ¢ — 1 symbols in the alphabet).
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So there are (T:)(q — 1)’ words at distance i from ¢, and the result is obtained by
SUMMINg over i.

Now suppose that C is a code with minimum distance d or larger, and suppose
that the union of all the balls By_(c), for ¢ € C, is not the whole of the Hamming
space. Then we can find a word whose distance from each codeword is at least 4.
Adding it to C, we obtain a larger code, still with minimum distance d or larger.

But the number of words lying in these balls does not exceed |C| - |By_;(c)]- So,
if this product is less than ¢*, then C may be enlarged. So we can continue this

enlargement at least until |C|- |Bs—;(¢)| > ¢", the required result.

Note that

o this is a lower bound, that is, it guarantees a code of the appropriate size;

o the proof is not constructive;

e it is unlikely to be close to best possible (we hope that clever methods will
produce much larger codes).

Now we turn to upper bounds. We prove three bounds below. In each case, we
ask the question: what does it mean if the bound is attained? The first bound bears
a striking resemblance, both in statement and proof, to (17.4.1).

(17.4.2) Hamming bound, or sphere-packing bound. Suppose that d > 2¢+ 1. A g-ary
code with length n and minimum distance at least d has at most

o/ (& ()a)

Proof. By (17.2.3), if C has minimum distance at least 2e+ 1, then the balls of radius
¢ with centres at the words of C ate pairwise disjoint, and so contain |C| - [B.(c)|
words. This number cannot exceed the total number ¢* of words. The result follows,
(It should be called the ball-packing bound, but the word ‘sphere’ is often used instead
of ‘ball’ in coding theory.)?

Note that the proof of (17.4.1) is a covering argument while that of (17.4.2) is a
packing argument.

codewords.

(17.4.2a) Equality in the Hamming bound. A code C attains the Hamming bound
if and only if every word in H(n,q) lies at distance e or smaller from exactly one
word in C.

This follows immediately from the proof. A code satisfying this condition is
called a perfect e-error-correcting code,

(17.4.3) Singleton bound. A g-ary code of length n and minimum distance d has at
most ¢"~**! codewords.

2 In mathematical usage, a sphere is the surface of a ball,
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PrRoOF. Consider the first n — d 4+ 1 coordinate positions. Two words of C' cannot
agree in all these positions, since they could then differ in at most the remaining d— 1
positions, and their distance would be at most d — 1. So the number of codewords
doesn’t exceed the number of (n — d + 1)-tuples.

(17.4.8a) Equality in the Singleton bound. A code C attains the Singleton bound if
and only if, given any n — d+ 1 coordinate positions and any n — d+ 1 symbols from
the alphabet, there is a unique codeword having those symbols in those positions.

This is almost immediate from the proof. (To see that such a code does indeed
have minimum distance (at least) d, note that, if two codewords have distance d — 1
or less, then they must agree on n — d + 1 positions, contrary to the uniqueness
requirement.) A code satisfying this condition is called mazimum distance separable,
or MDS,

(17.4.4) Plotkin bound. Let f = 1 — %, and suppose that d > fn. Then a g-ary code
with length n and minimum distance d has at most d/(d — n) codewords.

PrOOF. The argument is more elaborate than those for the earlier bounds. Let C be
our code, with M codewords, which we imagine as written out in an A x n array
whose rows are the codewords. We bound in two ways the number N of occurrences
of an ordered pair of different symbols in the same column.

First, note that any two rows have Hamming distance at least d, there are at
least d columns in which the entries in these rows are different. So

N > M{(M - 1)d. (1)

On the other hand, let z;; be the number of occurrences of the i'" symbol in
the 7*® column. For each such occurrence, thete are M — x;; rows where a different
symbol occurs. So the contribution from this column is Y27_; z;;(M — z;;). But we
have 3%, ¢;; = M. This implies that >0, «% > M?/q, with equality if and only if
each z;; is equal to M/q. So we have

oM —ag) = M~ 324
- SMZ—};Z/qzﬁMZ.
Summing the contributions of all n columns, we obtain
N < nfM>. (2)

Combining (1) and (2), we see that M(M — 1)d < nfM?, giving M(d —n) < d.
If d < On, this gives no information; but, if d > 9n, we obtain Plotkin’s bound.

(17.4.4a) Equality in the Plotkin bound. A code C attains the Plotiin bound if and
only if

(a) any two distinct codewords have distance d; and

(b) each symbol occurs in a given position in the same number M/q of codewords.
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ProOF. The result was obtained by combining two inequalities; so, to meet the
bound, we must meet it in each of these inequalities. From the proof of (1), we
see immediately that equality in (1) is equivalent to condition (a) (which defines an
equidistant code). We noted in the proof of (2) that equality holds if and only if
z;; = M/q for all i,7. Note that this condition resembles that for equality in the
Singleton bound. We now extract the common features,

An orthogonal array of strength t and index A (with length n, over an alphabet
of size ¢) is a set C' of n-tuples of elements from the alphabet of size ¢, having
the property that, given any t distinct coordinate positions (say ¢,..., i), and any
t elements a,..., e, of the alphabet (not necessarily distinct), there are precisely A
members ¢ of C with the property that they have these entries in these positions;
that is, ¢;; = a; for § = 1,...,t. Notice that this definition has a similar ‘lavour’
to the definition of a ¢-design in the last chapter; there is a body of theory which
can be developed for both orthogonal arrays and designs (including the divisibility
conditions, derived designs, Fisher’s Inequality, etc.)

In this language, we have:

¢ a code attains the Singleton bound if and only if it is an orthogonal array of
strength n — d + 1 and index 1;

¢ a code attains the Plotkin bound if and only if
(a) it is equidistant with distance d;
(b) it is an orthogonal array of strength 1.

17.5. Linear codes; Hamming codes

In this section, we see the benefits of giving codes more algebraic structure. We get
simpler encoding and decoding algorithms, as well as some easy consiructions of
good codes. We take our alphabet to be the finite field GF(g). Then the Hamming
space H(n, g) of all words of length n is an n-dimensional vector space over GF(g).
We define a linear code to be a vector subspace of H(n, g).

The weight wt(w) of & word w is the number of non-zero entries in w (this is
just its distance from the all-zero word). The minimum weight of a code C is the
smallest weight of a non-zero word in C

(17.5.1) Proposition. (2) For any v,w € H(n,q), we have d(v,w) = wi(v — w).
(b) The minimum distance and minimum weighi of a linear code C' are equal.

PROOF. (a) is clear from the definition, since v; —w; # 0 < v; # w;. For (b), observe
that any weight in C is a distance (since wt(w) = d(w,0)), and any distance is a
weight (by (a); the linearity of C implies that v — w € C for all v,w € C). Note
that, in general, finding the minimum distance of a code involves comparing all (1;"
pairs of codewords, but finding the minimum weight involves looking only at the N
codewords.

(175.2) Linear Varshamov-Gilbert bound. If ¢ is a prime power, there is a linear
code attaining the bound of (17.4.1).
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ProoF. Recall the proof of (17.4.1): as long as |C| < ¢"/|B41(c)|, we can find a
word w whose distance from any word in C is at least d, and adjoin it to C to
form a larger code. In fact, if C is linear, then the subspace spanned by C and w
still has minimum weight at least d. For a typical word in this space has the form
¢+ aw, where ¢ € C and a € GF(g). If & = 0, ¢ # 0, the weight is at least 4, by our
assumption about C. If o # 0, then

wt(c + aw) = wt(—a"'c —w) = d(—a"lc,w) > d,

by the assumption on w (and using the linearity of C).

Since the cardinality of a linear code is a power of ¢, this allows the Varshamov-
Gilbert bound to be improved. To take an example, consider the case ¢ = 2, d = 3,
n = 15. By (17.4.1), there is a code with these parameters of cardinality at least
25 /(1 + 15+ (¥¥)) = 270.8..; that is, at least 271. But (17.5.2) gives a linear code
with at least this many words, and it must have cardinality at least 512. (In fact,
we'll see soon that there is a code with cardinality 2048 but no larger.)

How do we specify a linear code? Since it is a subspace, we can describe it
by giving a basis, a set of k linearly independent words. It is convenient to take
these words as the rows of a & x n matrix G, called a generator matriz for the code.
In other words, G is a generator matrix of C if and only if its rows are linearly
independent and its row space is C.

Closely related to the row space of a matrix A is its null space, the set of words
w such that wAT = 0. A code C can also be specified by giving a matrix (with
linearly independent rows) whose null space is C. Such a matrix H is called a check
matriz for C.2

Since the rank of a matrix (the dimension of its row space) and its nullity (the
dimension of its null space) sum to n, the number of columns, we see that, if a linear
code has length n and dimension %, then a generator matrix is ¥ x » and a check
matrix 18 (n — &) x n,

(17.5.3) Proposition. Let G and H be matrices with linearly independent rows, having
size k x n and (n — k) x n respectively. Then G and H are the generator and check
matrices of a code if and only if GHT = 0.

PrOOF. Suppose that GHT = (. Then every row of G lies in the null space of H,
so the row space of G is contained in the null space of H. But both spaces have
dimension k, so they ate equal. The converse is shown by reversing the argument,

There is 8 dot product defined on H(n, ¢), by the rule

n
v = Z'u,"w,'.
i=1

2 The name comes from the case ¢ = 2, H = (1,1,...,1). For any word w, we find that wH " is
equal to the number of 1's in w (mod 2); that is, it is zero if w has even parity and 1 if w has odd
parity. This is called a parity check. The code <onsists of all wards of even weight; by evaluating the
parity check, we can detect {(but not correct) a single error. This is often used in serial communication
between computers, where error probabilities are very low and the cost of a re-transmission is small.
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(Note that, unlike the case for the Euclidean inner product, it can very well happen
that v.v = 0 for some non-zero vector v. For example, if ¢ = n = 2, consider the
vector (1,1).)

Now the dual code C* of a linear code C is defined to be

Ct={we H(n,q):vaw=0forall ve C}.

lt is a linear code, satisfying dim(C) + dim(C*) = n. Now a vector lies in the null
space of a matrix if and only if its dot product with every row of the matrix is zero.
So the null space of a matrix is just the dual of its row space. In other words:

(17.5.4) Proposition. For any linear code C, the check matrix of C* is equal to the
generator malrix of C, and vice versa.

The generator and check mairices are not just of theoretical interest, but are
crucial for the encoding and decoding of linear codes. Let C be a linear code of
dimension ¥, with generator and check matrices ¢ and H respectively,

ENCODING. Since |C| = ¢*, each &-tuple of digits can be encoded as a word of C in
a one-to-one way. The simplest way to do this is as follows. Let v be an arbitrary
k-tuple. Then vG is an n-tuple, and is a member of C, since it is a linear combination
of rows of G (with the elements of v as coeflicients). The linear independence of
the rows shows that the map v — vG is a bijection from GF(¢)* to C. Moreover,
in the case ¢ = 2, this matrix multiplication can be performed very efficiently by
small, low-power circuits (one of our requirements for efficient encoding, especially
for space probes).

DECODING. This is a little more difficult. Suppose that C is e-error-correcting (that
is, its minimum distance is at least 2¢ + 1). Let the codeword ¢ be transmitied,
and the word w = ¢ 4+ u be received, where u is the ‘error’ (and we assume that
wt(u) < e). The idea of the decoding procedure is that, rather than remove the error
u to reveal the transmitied word ¢, we remove c to reveal u; this is more reasonable,
since we know more about u, and it is equivalent since knowing u, we can find ¢ by
subtraction.

We calculate the vector wH' € GF(¢g)"* — this is called the syndrome of
w. Since ¢cHT = 0, the syndrome is equal to uH', that is, it depends only
on the error patiern. Moreover, distinct error patterns have distinct syndromes.
For, if wi(u,), wi{uz) < e, then wt{u; — up) < 2¢, by the triangle inequality.
But, if vaHT = uyH", then u; — uz is in the null space of H, which is C, so
wt(uy — u2) > 2e + 1, a contradiction.

Hence, in principle, the error pattern u can be recovered from its syndrome
uHT. In practice, this is the difficult part; linear algebra doesn’t help, and we might
use a look-up table. Once u is found then, as already described, we obtain ¢ by
subtracting « from w.

This method is known as syndrome decoding.

1 This would be a table of errors and corresponding syndromes, but ordered by syndrome, so that
we can quickly find the error producing any syndrome.
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Various information about a code can be read off from these matrices. The most
important example of this is as follows,

(17.5.5) Propusition. A linear code has minimum weight d or greater if and only if
any d — 1 columns of a check matrix for the code are linearly independent,

Proor. The vector cH is a linear combination of the columns of H, with coefficients
the elements of c. (Strictly, it is the transpose of this, since cH' is a Tow vector.) So
any word of weight m in C gives rise to a linear dependence between m columns of
H (with all coeflicients non-zero), and conversely. So the minimum weight of C is
the smallest number of columns which are linearly dependent.

We examine further a special case. A linear code is 1-error-correcting if and only
if it has minimum weight at least 3; by (17.5.5), this occurs if and only if any two
columns of H are linearly independent. In other words, we require that no column
of H is zero, and no column is a multiple of another. For fixed column length m,
let us find the largest such matrix possible.

Define an equivalence relation on the set of all.non-zero column vectors of
length d, where two columns are equivalent if and only if one is a scalar multiple
of the other. The columns of our matrix H must belong to different equivalence
classes. How many classes are there? There are ¢* — 1 non-zero vectors; each one has
g — 1 non-zero multiples, so each equivalence class has size ¢ — 1, and the number of
classes is (¢ —~ 1)/(¢ — 1). [You should recognise this from Chapter 9 as the number
of points in the projective space PG(d — 1, ¢); why are these numbers equal?)

So let H be a d x (¢¢ —1)/(g — 1) matrix whose columns are representatives of
the equivalence classes of non-zero vectors, and let C be the code with check matrix
H. Then C is the Hamming code of length n = (¢ —1)/(g — 1). [Note that ¢ and
n determine d; the matrix is not unique, but the only ambiguity is in the choice of
representatives and their order; so all codes obtained are equivalent, in a sense to be

defined.]
(17.5.6) Theorem. Hamming codes are perfect 1-error-correcting.

PROOF. This means that they attain the Hamming bound! Certainly it follows from
(17.5.5) and the subsequent discussion that a Hamming code is 1-error-correcting.
Now its length is n = (¢2 —1)/(g — 1), and its dimension is n — d, so the number of
codewords is

¢ =q¢"/¢" = ¢"/(1 +nfg-1)),
and the right-hand side is the Hamming bound for e = 1.

Syndrome decoding works especially well for Hamming codes. The syndrome is
a d-tuple. If it is zero, then no error has occurred. If it is non-zero, then there is
a unique column j and scalar o such that the syndrome is av;, where v; is the j*
column of H. Then the error occurred in position j, where & was added; and so
subtracting a from the j** coordinate of the received word corrects the error.
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If this sounds familiar, re-read the discussion in Section 17.1. The code used
there was the binary Hamming code of length 7 = (2* —~ 1)/(2 — 1).% In the binary
case, the only non-zero scalar is 1, so the equivalence relation is equality, and the
columns of the check matrix are all the non-zero binary triples, that is, the base 2
representations of the numbers 1,...,7. If we arrange them in the obvious order,
then the syndrome is the base 2 representation of the number of the position where
the error occurred! You should now be able to generalise the method, and explain
(for example) how to determine any chosen number between 0 and 2047 in 15
guesses, if one lie is allowed.

In general, how do we compute the check matrix from the generator matrix, or
vice versa? The key is the following observation. Let A be a & x (n — &) matrix.
Set G = (I A) and H = (—AT I,_;). Clearly G and H have ranks & and n — &
respectively; and GHT = 0, so if G is the generator matrix of a code then H is the
check matrix, and vice versa. Now suppose that we are given an arbitrary generator
matrix G. By applying elementary row operations to it, we can put it into reduced
echelon form (see Chapter 9). Moreover, elementary row operations don’t change
the row space (ie, the code with the given matrix as generator). If we are lucky,
the reduced echelon form will have the shape (I A) for some A — this means that
the leading 1’s occur in the first k columns. If so, we can read off the check matrix
(—AT I) directly. In general, we have to apply some permutation of the columns to
bring the leading ones into the first £ columns, write down the check matrix H, and
then apply the inverse permutation to H.

17.6. Perfect codes

Perfect codes had great importance early in the history of coding theory, when two of
the pioneers, Hamming and Golay, found some interesting examples, As time went
on and very few further examples were found, engineers lost interest and turned
to larger and more flexible classes of codes. But perfect codes are unexpectedly
important to mathematicians.

We begin with perfect 1-error-correcting codes, and consider first codes over
prime-power-size alphabets.

(17.6.1) Proposition. Let ¢ be a prime power.

(a) A perfect 1-error-correcting code over an alphabet of size q has length (¢° —
1)/(¢ — 1) for some integer d > 1.

(b} A linear perfect 1-error-correcting code is a Hamming code.

PROOF. (a) Such a code C satisfies |C| = ¢" /{1 + n(g — 1)); so 1 + n(g — 1) divides
¢". Suppose that ¢ = p® where p is prime, and write 1 + n(g — 1) = ¢%p®, for some
integers d and b with 0 < b < a. Then p? = ¢%p* =1 (mod ¢ —1). Since 1 < p* < ¢,
we must have p? = 1, whence 1+ n(g—1) = ¢% and n = (¢? —1) /(¢—1), as required.

(b) Let n = (¢® — 1)/(g — 1). Now |C| = ¢"/(1 + n(g — 1)) = ¢"~%, so a check
matrix for C is d x n. But C is 1-error-correcting, so the columns of H are pairwise

5 The matrix H used there is actually the iranspose of what we defined as the check matrix.
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inequivalent, with respect to the equivalence relation defined before (17.5.6). Since n
is equal to the number of equivalence classes, we have one column from each class,
and H determines a Hamming code, according to our definition.

Some examples of non-linear codes with the same parameters as Hamming codes
are known.

For non-prime-power alphabets, almost nothing is known. The next result is the
sum total of our knowledge.

(17.6.2) Proposition. There is no perfect 1-error-correcting code of length 7 over an
alphabet of length 6.

PrOOF. Suppose that C is such a code, over the alphabet {1,...,6}. We have
|C| =6/(1+ 7.5) = 6° = 673! Thus C, as well as being perfect, is also MDS (it
meets the Singleton bound). By (17.4.3a), we see:
(*){Given ar,...,as € {1,...,6}, there are unique
elements ag, a; such that (ai,...,a7) € C.

Now fix ay, a2, a3, and define two 6 X 6 matrices M = (my;), N = (n;;) by the
rule that m;; = &k and ny; = ! if and only if (a),as, 03,2, 4, k,1) € C. It follows easily
from (*) that M and N are two orthogonal Latin squares of order 6, contradicting
the proof of Euler’s conjecture by Tatry (see Chapters 1, 9).

Unfortunately, since the generalised form of Euler’s conjecture is false in all
other cases, this argument really is a one-off?

Now we consider e-etror-correcting codes for ¢ > 1. The first case is ¢ = 2,
= 2. Such a code C satisfies

c1=2/ (144 (3)) =2/ 442

So n? 4+ n 4+ 2 = 2° for some . Multiplying by 4 and setting z = 2n + L,y = a + 2,
we find
247 =2

This is Nagell’s equation, named after the mathematician who found all the solutions
of this equation in integers® (in 1930, some time earlier than the development
of coding theory). The solutions are (z,y) = (£1,3),(£3,4),(%5,5),(£11,7) and
(£181,15). In our situation, the code C is 2-error-correcting, and so has minimum
distance 5; so n > 5, and z > 11. Thus, only the lengths 5 and 90 are possible. We'll
see that there is a unique such code of length 5, one of an infinite (but trivial) class,
and no such code of length 90.

The repetition code of length n over the alphabet A is the simplest code imag-
inable, comsisting of all words (e,q,...a) of length n for ¢ € A. If |A| =2 and
n = 2e + 1, then C is petfect e-error-correcting: any word w of length n has either
mote zeros than ones (and is closer to (0,0,...,0)), or more ones than zeros (and is
closer to (1,1,...,1)).

6 The solution of Nagell’s equation is about at the limit of what can be covered in an undergraduate
course in algebraic number theory. See L. Stewart and D. Tall, Algebraic Number Theory (1987).
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The non-existence for length 90 will be shown later.

Now consider e = 3, ¢ = 2. The code C satisfies

e/ (ome(5)+().

This gives a Diophantine equation a bit like Nagell’s, of the form f(n) = 3. 29,
where f is a cubic polynomial. We seem to be worse off than before; but in fact this
is not so, since the polynomial f happens to factorise. Putting m = n + 1, a little
manipulation gives

m(m2—3m+8) =3-2°

where m > 8 (since n > 7 for a 3-error-correcting code).
Now there are two cases:

CASE 1. m = 2 and m2~3m +8 = 3.2° for some b,c. If m > 16, then m?>—3m+8 = 8
(mod 18), so m? — 3m + 8 = 24, which is impossible. So m = 8, n = 7, and we have
a repetition code.

CASE 2. m = 3-2° and m? — 3m + 8 = 2° for some b,c. As before, if m > 48, then
m?—3m +8 =8 (mod 16), so m? — 3m + 8 = 8, a contradiction. So m =12 or 24.
In the first case, m? — 3m + 8 = 116 is not a power of 2. So the possibility m = 24,
n = 23 remains. Golay discovered a perfect binary code with these parameters,
which was later shown to be unique (up to a suitable definition of isomorphism).
This is the so-called binary Golay code.

Golay also discovered a ternary perfect 2-error-correcting code of length 11,
which is also unique. Now, to cut a long story short, Tietavainen proved the
following result.

(17.6.3) Tietaviinen’s Theorem. For e > 1, the only perfect e-error-correcting codes
of length n over alphabets of prime-power size ¢ are the binary repetition codes (with
q = 2,n =2¢+1) and the binary and ternaty Golay codes (withq = 2,e = 3,n =23
and ¢ = 3,e = 2,n = 11 respectively).

The Golay codes, with their related designs, lattices, and groups, are of enormous
importance, which can only be hinted at here. The next result gives a connection
between codes and designs. For ease of exposition, we consider linear codes only.
The support of any word is the set of coordinate positions where its entries ate
non-zero.

(17.8.4) Proposition. Let C be a linear perfect e-error-correcting code of length n
over GF(q). Then the supports of the codewords of smallest weight 2¢ + 1 in C are
the blocks of an (e + 1)-(n,2e + 1,(g — 1)*) design, each block repeated ¢ — 1 times.

ProOF. That the minimum weight is 2e + 1 is clear, Now choose any set of e + 1
coordinates, and let w be any word whose support is this set. (There are (g — 1)°*!
such words w.) There is 2 unique codeword ¢ with d{c,w) < e. Now ¢ # 0, so
wt(c) > 2e + 1. It follows that wi{c) = 2e + 1 and the support of ¢ contains that of
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w (and c agrees with w on its support). So C contains (g — 1)°*! words of weight
2e + 1 whose support contains the given ¢ + 1-set. Now a non-zero scalar multiple of
such a codeword has the same support; so there are (¢ — 1)® supportis of size 2¢ + 1
containing the given (¢ + 1)-set, each repeated ¢ — 1 times. So we have a design with
the stated parameters.

REMARK. Linearity is only used here to show that the zero word is in C, and that
each block is repeated equally often. Now let C be a binaty perfect code, not
necessarily linear. By translation in H(n,2), we may assume that 0 € C. Then the
‘design’ has A = 1, and the question of repeated blocks doesn’t arise, Thus, the
conclusion of (17.6.4) holds for ¢ = 2 without the assumption of linearity.

This enables us to complete the discussion of binary perfect 2-error-correcting
codes. The possibility of such a code of length 90 was left open; but its existence
would imply that of a 3-(90, 5, 1) design, in which (by (16.1.3)) the number of blocks
containing two points is 88/3, a contradiction.

According to this result, the binary and ternary Golay codes (which are both
linear) give rise to 4-(23, 7, 1) and 3-(11, 5, 4) designs. The latter is actually a 4-(11,
5, 1) design. Moreover, these designs can be extended to 5-designs. This is done by
extending the codes by an overall parity ckeck (a new coordinate position such that
the entry in that position in any word is chosen so that the sum of all its entries
is zero). The supporis of words of minimum weight in the extended codes form
extensions of the designs: they are a 5-(24, 8, 1) design and a 5-(12, 6, 1) design.
These were the first 5-designs known; their automorphism groups are the ‘Mathieu
groups M,y and M, the first of the ‘sporadic’ simple groups to be discovered,
and the only 5-transitive permutation groups apart from symmetric and alternating
groups.”

17.7. Linear codes and projective spaces

The basic properties of a code can be expressed in terms of Hamming distance. So
it is reasonable to call two codes equivalent if one can be transformed into the other
by an isometry (a distance-preserving transformation) of Hamming space H(n,q). It
can be shown that any isometry can be built out of two kinds of transformation:
(a) permutation of the symbols appearing in any coordinate position, where the
permutations applied to different coordinates are independent;

(b) permutations of the coordinates.

These generate the wreath product of the symmetric groups S, (on symbols} and 5,
{on coordinates), in its product action as defined in Chapter 14 — see Exercise 4.

However, if we are interested in linear codes, then this definition of equivalence
is too wide, since the symbol permutations don't in general preserve the property
of linearity. Assuming that the alphabet is a field F, we should only allow in (a)
the multiplication of each coordinate by a non-zero scalar, the scalars applied to
different coordinates being independent; we can compose this with an arbitrary

7 The groups were constructed by means of generaling permutations by Mathien, half a century
before the designs were found by Skolem and Witt, which in turn predated the discovery of the codes
by Golay.
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coordinate permutation as in (b). Such a transformation is called moromial, and the
equivalence relation defined on linear codes is called monomial equivalence. (Thus,
a monomial transformation is one represented by a matrix which has a single non-
zero entry in each row or columnn.) For example, all Hamming codes with the same
parameters are monomially equivalent.

How many monomial equivalence classes of codes are there? We won't answer
this question with a formula, but will translate it into projective geometry, revealing
an unexpected but very immportant connection between these fields.

(17.7.1) Theorem. There is a bijection between
e monomial equivalence classes of linear 1-error-correcting codes of length n and
dimension n — d over GF(q); and
e orbits of the general linear group GL(d, ¢) or n-element spanning subsets of the
projective space PG(d — 1, ¢).

REMARK. Orbits of GL(d,q) can be regarded as ‘geometric comfigurations’. For
example, all conics in the projective plane PG(2, ¢) (see Section 9.7) form an orbit.

ProoF. We show that each set corresponds in a natural way to an equivalence
class of matrices under a relation intermediate between row-equivalence and row-
and-column-equivalence. To be precise, given a d x n matrix, we allow ourselves to
apply arbitrary row operations, but restrict the allowable columnn operations to two
types, viz., multiplication of a column by a non-zero scalar, and interchange of two
columns. (These column operations obviously generate the group of all monomial
transformations, while the row operations generate the whole general linear group
of invertible linear transformnations.) Now we consider equivalence classes (under
this equivalence relation) of d x » matrices A such that

(a) the rows of A are linearly independent;

(b} any two columns of A are linearly independent.

STEP 1. Given a linear code C of length n and dimension n — d with minimum
weight at least 3, its check matrix A satisfies the two conditions (a) and (b) above;
and C is determined as the null space of A, or equivalently as Cy, where Cj is
the row space of A. Now elementary row operations have the effect of changing
the basis of the row space, and so don’t alter C'; and monomial transformations of
the columns replace C' by a monomial equivalent code. So equivalence classes of
matrices correspond to monomial equivalence classes of codes.

STEP 2. Let $ be a spanning set of n points in PG(d—1,4), say S = {p1,...,pn}- Let
v; be a vector spanning the 1-dimensional subspace p;, and let A be the matrix with
columns v; ,...,v]. Obviously, any two columns of A are lineazly independent. Also,
since vy, ..., v, is a spanning set, some d-element subset is a basis; so the rows of A
are linearly independent. Multiplying columns by non-zero scalars doesn't change
the points of projective space they span, and permuting columns merely affects the
order in which the elements of S are written down. So monomial transformations
of columns don't affect S. On the other hand, elementary row operations generate
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the general linear group GL(d, ¢), and so S can be transformed into any other set
in the same orbit by a sequence of such operations.

These two steps establish the required bijections, and prove the theorem. But it
is much more than an enumeration result. Structural properties can be translated
back and forth between code and geometry. For example:

o Any word of weight 3 in C corresponds to a set of three dependent columns of
A, and hence to a set of three collinear points of S,

o An element of the dual code C* corresponds to a linear map from F* to F,
whose kernel defines a hyperplane of the projective space. So the supports of
non-zero elements of C* correspond to the complements of hyperplane sections
of 5.

17.8. Exercises

1. Write down a check matrix for the ternary Hamming code of length 13. Hence
(a) decode the received word (1,2,1,0,2,1,0,0,1,0,2,1,0);
(b) construct a generator matrix for the code.

2. Show that an orthogonal array of strength ¢ and index A over an alphabet of
size ¢ has cardinality A - ¢/, and is also an orthogonal array of strength 7 and index
Aogtfforalli <t

3. Show that the design whose blocks are the supports of words of minimnun weight
in the g-ary Hamming code of length (¢° — 1)/(¢ — 1) is isomorphic to the design
whose blocks are the collinear triples of points in the projective space PG(d — 1, ¢).

4. Show that the group of isometries of the Hamming space H(n, q) is the wreath
product S, wr S, in its preduct action (see Chapter 14).

5. (COMPUTER PROIECT). Investigate solutions of the sphere-packing condition for
the existence of a perfect code, viz. Y {_, (':) (g — 1)* divides ¢™.

6. (a) Prove that, if C is a linear MDS code, then C* is also MDS.

(b) Show that the code C corresponding to a set S of points in PG({d — 1,9)
(as in (17.7.1)) is MDS if and only if S has the property that no d of its points
are contained in a hyperplane. (Such a set is called an are.) Deduce that conics in
PG(2,q) give rise to MDS codes.

7. (a) Prove that the dual of a Hamming code of length (¢ —1)/(¢—1) has minimum
weight ¢?~! and attains the Plotkin bound.

{b) Let A be a Hadamard matrix of order n (see Section 16.6). Normalise the first
column to —1 and delete it; then change —1 to 0 throughout. Show that the code C
whose words are the resulting rows attains the Plotkin bound. When is it linear?

8. (a) Show that, for binary codes, the Hamming bound is always at least as strong
as the Singleton bound. Hence or otherwise show that any MDS binary code is
equivalent to a repetition code or the dual of one.

(b) Prove that a g-ary perfect l-error-correcting code has length at least ¢ + 1.



18. Graph colourings

On the bank of the river he saw a tall tree: from roots to crown one half was
aflame and the other green with leaves.

‘Peredur son of Evrawg’
from The Mabinogion (earlier than 1325)

ToP1Cs: Vertex and edge colourings; perfect graphs; graph minors;
embeddings of graphs in surfaces

TEcHNIQUES: Use of Max-Flow Min-Cut Theorem for construc-
tions; alternating chain arguments

ALGORITHMS:

CROSS-REFERENCES: Graphs, networks (Chapter 11); Hall's theorem
(Chapter 6); posets (Chapter 12); [symmetric functions (Chapter
13)]

In Chapter 11, we took the poini of view that graphs model connectivity. Here,
the viewpoint is that graphs model ‘incompatibility’. For example, suppose that
radio frequencies are being allocated to a nwmnber of transmitters. Some pairs of
transmitters are so close that their transmissions would interfere, and they must
be allocated different frequencies. How many frequencies are required? A more
classical example is the map colouring problem, where countries shating a common
frontier must be given different colours on a map; how many colours does the
cartographer need?!

We define a vertex colouring of the graph I' = (V, E) to be a function ¢ from
V to a set of colours such that, for any edge {z,y} € E, we have c(z) # c(y)-
In the frequency-assignment problem, the transmitters are the vertices, and the
incompatible pairs edges, of a graph [; a legilimate frequency assignment is a

1 The celebrated four-colour problem, asking whether four colours always suffice, was invented by
Francis Guthrie, who communicated it (via his brother Frederick) to his mathemalics professor at
University College London, Augustus De Morgan, in 1852, Two common myths about its origin are:
o It was known to carfographers for centuries. Unfortunately there is no evidence at all for this!
e It was posed by M&bius in a lecture in 1840. The problem M6bius actually asked was whether
there exists a map with five countries, any two sharing a frontier. Clearly such a map would
require five colours; but its non-existence (which we prove in (18.6.3)) doesn’t guarantee that no
other map needs five colours.
For further information, see N. L. Biggs, B. K. Lloyd and R. J. Wilson, Grapk Theory 1736-1936.
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vertex-colouring of I. Similar remarks apply to the map-colouring problem. In
each case, we are interested in the smallest number of colours for which a colouring
exists.

Note that the only graphs which have vertex colourings with a single colour are
the null graphs. More generally, a cligue in a graph I' is a set of vertices, any pair
joined by an edge (so that the induced subgraph? is complete),® and a cocligue is a
set of vertices containing no edges (so that the induced subgraph is null). So, in a
vertex colouring, each colour class is a coclique.

18.1. More on bipartite graphs
As defined in Chapter 11, a graph I' = (V, E) is bipartite if there is a partition
V = XUY, XNY = B, so that every edge has one end in X and the other in Y. The
partition of V is called a bipartition of the graph and its parts are bipartite blocks.
A connected graph has a unique bipartition.

Thus, in our new terminology, a graph has a vertex colouring with two colours
if and only if it is bipartite: the colour classes form a bipartition.

The results in this section seem somewhat unconnected with colourings. Some
connections will emerge in the rest of the chapter.

(18.1.1) Proposition. If the largest coclique in a bipartite graph I' = (V, E) has size
m, then V can be partitioned into m subsets each of which is a vertex or an edge.

PROOF. Let {X,Y} be a bipartition of I'. Let Y = {y1,...,yn} and, fori=1,...,n,
let A; be the set of neighbours of y; (so that A; C X). We use a variant of Hall’s
Martiage Theorem (see Chapter 6, Exercise 7):
If a family (A;,...,A,) of subsets of X satisfies |A(J)| > |J| —r
for all J C {1,...,n}, then there is a subfamily of size n— r which
has a SDR.
Take any J C {1,...,n}. Then {y: ::t € JYU (X \ A(J)) is a coclique; so
|+ 1X| = |A(J)} < m, or
[4(I) 2 1J] - (m — |X]).
So there is a subfamily of size d = n — (m — |X|) = [X|+ Y| —m which has a SDR;
that is, a set of this many disjoint edges of I. If we add in the remaining |X| — d
uncovered vertices in X and |Y| — d uncovered vertices in Y, we obtain altogether
4+ X|-d+|Y|-d=m
disjoint vertices and/or edges whose union is V.
A matching® is a set of pairwise disjoint edges, and an edge-cover is a set of
vertices meeting every edge.

2 Recall from Chapter 11 that an induced subgraph of I consists of a subset of its vertices, together
with all edges contained within that set.

3 Sometimes the term ‘clique’ is used in a more restrictive sense: it is required that no further vertex
is joined to every vertex in the clique, that is, it is maximal with respect to inclusion. (No outsider
can be admiited to a clique.)

* Sometimes called a ‘partial matching’ to distinguish from a ‘complete’ or ‘perfect’ matching which
covers all vertices.
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(18.1.2) Proposition. In a bipartite graph, the size of the largest matching is equal
to the size of the smallest edge-cover.

This is Konig's Theorem (11.10.2).

(18.1.3) Proposition. Let I' be 2 bipartite graph with maximum valency d. Then the
edge set of T’ can be partitioned into d partial matchings.

Proor. Before beginning, we remark that the result is true in the case when I is
regular of valency d. For (6.2.3) guarantees the existence of a perfect matching —
equivalently, a SDR for the neighbour sets of the vertices in one bipartite block —
and then an easy induction gives the result.

The general proof is by induction on the number of edges. As usual, starting the
induction is trivial. So assume that the theorem holds for graphs with fewer edges
than I'. Let (X;Y) be a bipartition of T, and ¢ = {z,y} an edge of T, with z € X
and y € Y. Then the edges of I' — e can be partitioned into d matchings. It is easier
to visualise the edges as being coloured with d colours 1,2,...,d, so that a vertex
lies on at most one edge of each colour.

Since z and y have valency less than d in I' — ¢, at least one colour does not
occur on the edges at each of them. If the same colour is missing at both z and y,
we can use it to colour the edge e. So we may suppose that colour 1 is missing at
z, and colour 2 at y.

Set x = uy, and define v;,uz, v, ... by the rule that {u;,v;} has colour 2 and
{vi,ui41} has colour 1, as long as such edges exist. Note that all vertices u; belong
to X and all »; to Y. The sequence cannot revisit any vertex, so it must terminate;
and, by assumption, it cannot terminate at either z or y (for example ¥ # v, since
y lies on no edge of colour 2). Now we can interchange the colours 1 and 2 on the
edges of this path without violating the condition that no two edges of the same
colour meet at a vertex. As a result, colour 2 is no longer used on an edge through
z, and we can give this colour to e.

REMARK. The method of proof is called the alternating chains argument.

A closely related result is the Gale~Ryser Theorem, which determines the possible
valencies of bipartite graphs.

(18.1.4) Gale-Ryser Theorem. Let z1 > ... > 2z and 4 2 ... 2 Y be positive
integers. Then the following are equivalent:
(a) there exists a bipartite graph for which the valencies in the two bipartite blocks

are T1y... Tm @Nd Y1, ..y Yn;
n

(b) 3 2:= 3 y; and

=1 i=1
k n
Ya < Y mink,y;) fork = 1,...,m.

=1 i=1

ProoF. The necessity of the conditions is straightforward. The first equation
Y. z: = Y y; counts in two ways the total number of edges in the graph. For the



294 18. Graph colourings

second, consider the k vertices of largest valency in the first block. They lie on
Y% 1 z; edges. But the 7*" vertex in the second block lies on at most min(k,y;) of
these edges,

For the sufficiency, we outline a proof using the Max-Flow Min-Cut Theorem.
This demonstrates the use of this theorem in combinatorial constructions, of which
there are many more examples. We construct a network with vertices s (source),
@1y .veyCmy b1y .., by, ¢ (taxget), and edges as follows:

o (s,a;) with capacity z;, fori =1,...,m;
o (b;,t) with capacity y; for y = 1,...,n;
o (a;,b;) with capacity 1, fori = 1,...,mand j =1,...,n

The edges out of s and the edges into t both form cuts with capacity Y72, z; =
Y5195 = M, say. Suppose that S is any cut; say that S contains (s,a;,),...,(s,a:,)
and (b;,,%),...,{b;,t). Then S must also contain (a;,b;) for ¢ # #;,...,4; and
7 # J1,-.-, 71 its capacity is

k !
280 + D Yig +(m—k)(n - 1),
=1 =]
and a little calculation (using the conditions (b) of the theorem) shows that this is
at least M,

So the minimum capacity of a cut is M. From the Max-Flow Min-Cut and
Integrity Theorems (Section 11.9), we conclude that there is an integral flow of value
M. In such a flow, all edges (s, a;) and (b;,¢) must carry their full capacity, since they
lie in minimum cuts. Edges (a;, b;) carry flow 0 or 1. Let V = {a1,.. . ,Gm,b1,..., b},
and let E be the set of pairs {a;,b;} for which (a;, ;) carries flow 1. Since the flow
out of a; is equal to z;, this vertex has valency z; in the bipartite graph (V, E).
Similarly, b; has valency y;.

This proof is, in some sense, algorithmic, since the proof of the Max-Flow
Min-Cut Theorem is constructive. Gale’s original paper gives a much more directly
constructive proof.

18.2. Vertex colourings

The chromatic number of a graph I' = (V, E), written x(I'), is the least number r
of colours such that I’ has a vertex colouring with r colours. Equivalently, it is the
least r such that ¥V can be partitioned into r cocliques. The introduction to this
chapter motivated the study of this mvariant; but its computation is difficult. We
note that, if I’ has a clique of size ¢, then all vertices of this clique must receive
different colours in any vertex colouring; so the chromatic number is at least ¢. But
this invariant is also hard to calculate! An upper bound for x(I'), easier to compute,
is the maximum valency of I'. (This is the content of Brooks’ Theorem, to be proved
in the next section.)

One formal approach to the chromatic number is via the ckromatic polynomial,
which is the function fr on the natural numbers defined by

Fo(r) = number of colourings of I’ with the set
n(r) = {1,...,r} of colours.
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Because of the name, you will not be surprised to learn that fr(r) is a polynomial
in r, though this is not obvious; it will emerge from a recursive calculation of this
number. Note that x(T') is the least » for which fr(r) > 0.

Exampik. If K, and N, are the complete and null graphs on n vertices, then the
colours used in a colouring of K,, must all be distmct, while those used for V,, are
unrestricted. By (3.7.1),

fra(r)=(ln=r(r—1)...(r —n+1),
Ira(r) ="

Let ¢ = {z,y} be an edge of I' = (V, E). We define two operations on I':

o Deletion of e yields the graph T —e = (V, E \ {e}).

o Contraction of e: replace = and y by a new vertex z, with an edge {v, z} whenever
{v,z} € E or {v,y} € F; edges not containing z or y are unaltered. Call the
resulting graph I'/e.

(18.2.1) Theorem. fr(r) = fo—e(r) — frye(r).

ProoF. We divide the set of colourings of I' — e into two disjoint classes:
o Those for which z and y receive different colours. These are the valid colourings
of I.
¢ Those for which z and y receive the same colour. Such a coluring induces a
colouring of I'/e, and conversely.
So fr-.(r) = fr(r) + frse(r), as required.

Now, if I is given and e is an edge of I, then I’ — ¢ has fewer edges, and T'/e
fewer vertices, than I'. Assuming inductively that their chromatic polynomials are
known, that of I’ can be calculated. The induction begins with graphs without edges,
for which we calculated the number of colourings already. This inductive argument
also proves that the chromatic polynomial of T is a polynomial in r of degree n,
where n is the number of vertices of T'.

18.3. Project: Brooks' Theorem

Brooks' Theorem asserts that, with known exceptions, a connected graph with
maximum valency d has a vertex colouring with d colours.

First note that a graph has a veriex colouring with a given number of colours if and only if
all its connected components do; so it is enough to consider connected graphs. Also, the fact that
a graph with maximum valency d can be coloured with d + 1 colours is straightforward to prove.
Consider the vertices one at a time. Each vertex v has at most d neighbours, to which at most d
colours have been applied; so there is an unused colour available for v.

We cannot expect to reduce d+ 1 to d here without paying a price. The complete graph on d+1
vertices has valency d but obviously requires d + 1 colours. Also, a circuit of odd length is divalent
but not bipartite (that is, not 2-colourable). Brooks’ Theorem asseris that these graphs are the only
{connected) exceptions.

The proof of Brooks' Theorem repeats the above argument with more care, in the ‘general’ case
(Case 1 in the argument below), ensuring that some colour does not appear among the neighbours
of a vertex when we come to colour it. The other two cases are more in the nature of minor irritants.
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First, a piece of terminology. Let k& be a positive integer. A graph T is said to be k-connected if,
for any k& — 1 vertices v1,...,v;-) of T, the graph T — v; — ... — vy_; obtained by deleting them is
connected.

(18.3.1) Brooks’ Theorem
A connected graph with maximum valency d, which is neither a complete graph
nor a cycle of odd length, has a vertex colouring with d colours.

Proor, The proof is by induction; we assume that the theorem is irue for all graphs with fewer
vertices than I' (and, in particular, for all proper induced subgraphs of I'). Assume that I' is neither
complete nor an odd cycle. We divide the proof into three cases.

Case 1, T is 3-connected. Since it is not complete, there are two vertices u, w of I' at distance 2. Let
v be a common neighbour of u and w. Let v} = u, v2 = w. Now [’ — « — w is connected. We define a
pattial order on its vertices by the rule that ¢ < y if y lies on a shortest path from v to z, Note that
v is the unique maximal element in this order. Take a linear extension of the partial order (12.2.1),
say v3 < vg < ... < vp. We have v, = v. Moreover, by construction, for any i with 3 < i < n, there
exists j > i such that v; is joined to v;.

Take d colours 1,2, ...,d. Now give colour 1 to v and v; (this is legitimate since they are not
joined). Colour the remaining vertices in turn. For 3 < i < n, at most d — 1 neighbours of »; are
already coloured (since it has a neighbour later in the sequence), so there is a colour available for v;.
Finally, when we reach v,, all its neighbours are already coloured, but two of them (v; and v,) have
the same colour; so there is a colour available for vy.

CasE 2. T is not 2-connected. Thus there is a vertex v whose removal disconnects T'; and the vertices
different from v can be partitioned into non-empty subsets X and Y such that no edge goes from X
to Y. By induction, one of two possibilities holds:

{a) Each of the induced subgraphs on X U {v} and Y U {v} can be coloured with d colours. We
can change the names of the colours so that v has the same colour in each colouring, and we
have a colouring of T.

(b) One of X U {v} and Y U {v}, say X U {v}, carries either a complete graph K 1, or a cycle of
odd length (with d = 2). But this is impossible, since v would have ¢ neighbours in X and at
least onein Y,

Cask 3. T is 2-connected but not 3-connected. In this case there are two vertices u, v whose removal
disconnects T, say into X and Y as above, The argument of Case 2 applies except in one situation:
(c) Each of X U{u,v} and Y U {u, v} requires d colours. Moreover, in any colouring of X U {u, v}
with d colours, u and v have the same colour; and in any colouring of Y U {u, v} with d colours,
« and v have different colours. (In particular, « and v are not joined.)
Let 2, and z, be the valencies of u and v in X U {u,v}, and g,, ¥, their valencies in ¥ U {u, v}.
Now z, + 3, < d and z, + % < d. Also, at least d — r,, colours are available for u in X U {u, v},
and similarly for » and for ¥ U {u, #}, Now the colours of u and v in X U {u,v} must be uniquely
determined, or we could change one of them and violate {¢); 80 zu = y = d — 1. Similarly, the zets
of colours available for u and v in Y U {u,v} must be disjoint; so (d — w,) + (d — z,) < &, whence
Yy + Y 2 d. Thus
2d—1)+d < 2d,

or d = 2, But then T is either an odd cycle or bipartite, and the theorem is proved.

18.4. Perfect graphs

We've seen that, for any graph T, the chromatic number x(T') (the smallest number
of cocliques into which I’ can be partitioned) is not less than the cligue number 4(T')
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(the size of the largest clique in I'). Obviously, graphs in which equality holds are
interesting. Claude Berge realised that, to obtain a manageable theory, we should
tequire this condition also for all induced subgraphs of I'. Thus, a graph T is perfect
if, for every induced subgraph A of I, the chromatic number and clique number of
A are equal.

We'll also look at complements. (The complement T of I has the same vertex set
as I'; two distinct vertices are joined in T if and only if they are not joined in I')
The cliques of T ate the cocliques of T, and vice versa. So the clique number of T is
equal to the cocligue number of T' (the size of its largest coclique}, and the chromatic
number of T is the cligue-partition number of I’ (the smallest number of cliques into
which it can be partitioned).

A number of earlier results can be phrased to say that certain graphs are perfect.
Note that, if a class of graphs is closed under taking induced subgraphs, then to
prove that every graph in the class is perfect, we have the seemingly easier task
of proving that every graph in the class has chromatic number and clique number
equal.

(18.4.1) Proposition. (a) Bipartite graphs are perfect.
(b) Complements of bipartite graphs are perfect.

ProoF. Both classes are induced-subgraph-closed, so we show that either type has
clique number and chromatic number equal. For bipartite graphs, this is trivial:
both numbers are 2 unless the graph is null (in which case they are 1}, For (b), this
is the content of (18.1.1).

The line graph of a graph I' = (V, E) is defined as follows. The vertex set of
L(T) is B, the edge set of E; two vertices ey, €, are joined in L(T) if and only if (as
edges of ') they have a common vertex. There are two kinds of cliques in L(T):

(a) a set of edges of T' through a common vertex;

(b) the edge set of a triangle (3-cycle).

Case (b) cannot occur in a bipartite graph T'. So the clique number of L(T') is the
maximum valency of I'. Similarly, the coclique number of L(T') is the size of the
largest partial matching in I'. Thus, (18.1.2) and (18.1.3) can be phrased as follows:

(18.4.2) Proposition. (a) Line graphs of bipartite graphs are perfect.
{b) Complements of line graphs of bipartite graphs are perfect.

Another two classes of perfect graphs arise from posets (Chapter 12). Let
P = (X, £) be a poset. Two distinct points z,y € X are comparadleifz < yory < z,
and incomparable otherwise. The comparability graph and incomparability graph of P
are the graphs with vertex set X whose edges ate the comparable and incomparable
pairs of vertices respectively. (Of course, these graphs are complementary.) Now
Dilworth’s Theorem (12.5.3) and its (much easier) dual (12.5.2) translate as follows.

(18.4.3) Proposition. (a) Comparability graphs of posets are perfect.
{(b) Incomparability graphs of posets are perfect.
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In view of these results (and others: see, for example, Exercise 2), the next
theorem is no surprise. It was conjectured by Berge (under the name ‘weak perfect
graph conjecture’), and proved by Lovasz. I will state it here without proof.

(18.4.4) Perfect Graph Theorem. The complement of a perfect graph is perfect.

To get some idea of the power concealed in this harmless-looking theorem, note
that using it we may deduce Dilworth’s Theorem from its ‘trivial’ dual, and similarly
Hall’s Theorem from an even more trivial result. So we can’t expect to find a
three-line proof of the Perfect Graph Theorem.

I conclude with the main open problem on perfect graphs, which was also
conjectured by Berge. It is clear that, if n is odd and n > 3, then the n-cycle C, is
not perfect: it has clique number 2 and chromatic number 3. It is also not difficult
to show that the complement of C,, fails to be perfect. Thus a graph which contains
either C,, or C,, as an induced subgraph for n odd and n > 3 also fails to be perfect.
We call such induced subgraphs odd holes and odd antiholes. Berge conjectured that
these are the only obstructions to perfection:

(18.4.5) Strong Perfect Graph Conjecture. A graph is perfect if and only if it contains
no odd hole or odd antihole.

If true, this would imply the Perfect Graph Theorem, since the class of graphs
which satisfy the conclusion of the conjecture (which are nowadays called Berge
graphs) is obviously closed under complementation. But the conjecture has so far
defeated a small army of graph theorists!

18.5. Edge colourings

An edge colouring of a graph I' = (V, F) is a map ¢ from F to a set of colours with
the property that two edges sharing a vertex have different colours.

Using the notion of line graph defined in the preceding section, we see that an
edge colouring of a graph is exactly the same thing as a vertex colouring of its line
graph. So, in a sense, the theory of edge colourings is a part of the theory of vertex
colourings; but it has its own particular style and results. The chromatic index of I’
is defined to be the least number of colours required for an edge colouring of I.

In an edge colouring, all the edges whick meet at a vertex must have different
colours, So the chromatic index of I’ cannot be smaller than its maximum valency.
The following theorem of Vizing restricts the chromatic index to two possible values:

(18.5.1) Vizing’s Theorem. If a graph has maximum valency d, then it has an edge
colouring with d + 1 colours.

So the chromatic index is either & or d + 1. Accordingly, the class of all graphs
can be divided into two parts. A graph I' belongs to Class I if its chromatic index
is equal to its maximal valency, and to Class 2 otherwise. According to (18.1.3), all
bipartite graphs belong to Class 1.
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We met edge colourings of complete graphs, in rather different language, in
Section 8.6:

An edge colouring of the complete graph K, with the smallest
possible number of colours is the same thing as a tournament
schedule for n teams.

(The teams are the vertices of the graph, the rounds of the tournament are the
colours of the edges.) In particular, the chromatic index of K, is n if nis odd, n — 1
if n is even, In other words:

(18.5.2) Proposition. The complete graph K,, belongs to Class 1 if n is even, and to
Class 2 if n is odd.

18.6. Topological graph theory

Although graphs are abstract objects, it is safe to assume that most people think of
them as ‘dots and lines’, the way we’ve drawn them many times already. In other
words, we choose some familiar geometric or topological space as a drawing board.
and represent the vertices by distinct points of the space; each edge is represented
by a line or curve whose endpoints correspond to its vertices.

The question ‘What is a curve?’ is a difficult one which took mathematicians
nearly a century to resolve. Peano, for example, constructed a continuous curve
passing through every point of the unit square. But such curves don’t aid intuition.
We assume that an edge is represented by a continuous, piecewise smooth curve (one
having 2 continuously varying tangent everywhere except perhaps a finite number
of ‘corners’).

For applications such as road layouts and map colouring, we impose a further
condition:

The curves representing two edges are disjoint except for the point
representing their common vertex {if any).

We call a drawing of I' satisfying this condition an embedding of T in the space.
It isn clear whether a given graph can be embedded in a given space. In three
dimensions, there is no restriction:

(18.8.1) Proposition. Any graph can be embedded in R®.

ProoF. Take a line L, and represent the vertices by points of L. For each edge ¢,
take a plane IL. through L (all these planes distinct), and join the vertices of € by a
semicircle m II,.

In two dimensions, the situation is very different. We call a graph planar if it
is embeddable in the Euclidean plane. Some experimentation should convince you
that the complete graph K5 and the complete bipartite graph K ; are non-planar.
We'll see that this is a consequence of a theorem of Euler.

First note that embedding in the plane and in the surface of the sphere are
‘equivalent’ concepts. This is because of stereographic projection, which establishes
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g

Fig. 18.1. Stereographic projection

a bijection, smooth in both directions, between the plane and the sphere with its
north pole removed (Fig. 18.1). Using this bijection, an embedding in the plane
is transferred to the sphere. Conversely, given an embedding in the sphere, choose
a point lying on none of the curves and use it as the north pole; then projection
transfers the embedding to the plane.

Now let I be a connected graph, Given an embedding of I' in the plane or sphere,
the removal of the image of the embedding leaves a finite number of connected
pieces called faces. In the case of the plane, just one face — the infinite fuce — is
unbounded. The boundary of a face is a closed curve made up of a finite number of
vertices and the same number of edges (possibly with repetitions), corresponding to
a closed trail in T'. (The connectedness of the face boundary depends on that of I':
can you see why?) The face itself is topologically equivalent to a disc (the interior
of a circle), except in the case of the infinite face in the plane.

(18.6.2) Euler’s Theorem. Let an embedding of the connected graph I' i the plane
have V vertices, E edges and F faces. Then

V-E+F=2

PrOOF. We use induction on E. A connected graph with one vertex and no edge has
one face, and satisfies the theorem.

Suppose that there is an edge e such that ' — e is connected. Then I' — ¢ has
V vertices, E — 1 edges and F — 1 faces, since, when e is removed, the two faces
on either side of it coalesce. (We have to show that these two faces are different.
Suppose not; let f be this face. There is a curve in f from one side of e to the other.
When e is removed, this becomes a simple closed curve in f. By the Jordan Curve
Theorem,® this curve divides the plane or sphere into two components, each of which
contains a vertex of e; 80 I' — ¢ is not connected.) So V — (E—1) +(F—1) =2,
and we are done.

5 The Jordan Curve Theorem asseris thai a simple (non-intersecting) closed plane curve has an
‘inside’ and an ‘outside’; that is, its complement has {wo connected components, just one of which is
unbounded.
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So we may assume that there is no such edge e. Then I' is a tree. (Choose a
spanning tree T of T, by (11.2.2). If T # T, then the removal of an edge outside
T leaves a connected graph.) Thus, £ = V' — 1, by (11.2.1), Moreover, F = 1. So
V ~ E + F = 2, as required.

If you find that proof a bit unsatisfactory in its (unspoken) appeals to geometrical
or physical intuition, you should read Imre Lakatos' Proofs and Refutations (19786).
Euler’s Theorem is used as a test case for an investigation of mathematical rigour, and
plausible ‘counterexamples’ are used to refine and make precise both the statement
of the theorem and the arguments used in the proof. (If you are happy with the
above proof, then there is even more reason for you to read the book!)

(18.6.3) Carollary. K; and K33 are non-planar.

PROOF. (a) K5 has 5 vertices and 10 edges, so an embedding would have 7 faces. But
each face has at least three edges (a face with 1 or 2 edges can only occur if there
ate loops or parallel edges in the graph), while each edge bounds at most two faces.
Double-counting incident edge-face pairs shows that the number of faces is at most
10-2/3 = 62, a contradiction.

(b) K33 has 6 vertices and 9 edges, so 5 faces (if embedded in the plane). Now
each face has at least four edges: for the graph is bipartite and has no closed trail
of odd length. The same argument as before then shows that there are at most 4
faces, a contradiction.

From this result, we can give further examples of non-planar graphs, A subdi-
vision of a graph T' is obtained by repeated application of the operation ‘insert a
vertex into an edge’; replace the edge {z,y} by two edges {z,v} and {v,y}, where
v is a new vertex. It’s clear that embeddability in any space is unaffected: choose
any point on the path from z to y to represent v, and let the two ‘halves’ of this
path represent {z,v} and {v,y}. So any subdivision of K; or K33 is non-planar, as
is any graph containing a subgraph of this form. A still more general construction
involves minars of a graph.

A graph T is said to be a minor of I' if it can be obtained from I' by a series of
deletions and contractions. (See Section 18.2, where it was shown that the chromatic
number of I is determined by its proper minors.) Note that a graph can be obtained
from any subdivision by contraction; so, if a subdivision of Iy is a subgraph of I,
then I'y is a minor if I,

The class of planar graphs is closed under taking minors. (It is clear that
deleting an edge from a planar graph gives a planar graph. Contraction is a little
less obvious. Imagine a continuous deformation in which the curve representing the
edge shrinks to a point.) So a planar graph has no Kj or K;; minor. Remarkably,
the converse is true:

(18.6.4) Kuratowski-Wagner Theorem. The following conditions on a graph I’ are
equivalent:

{a) T is planar;

{b) T contains no subdivision of K5 or K33;

(c) T has no minor isomorphic to K5 or Kj 3.
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On the basis of this and other evidence, it was conjectured by Wagner that any
minot-closed class of graphs is determined by a finite set of ‘forbidden minors’. This
has been proved recently in a major piece of work by Robertson and Seymour:

(18.6.5) Robertson—Seymour Theorem. Let C be a class of graphs which is closed
under taking minors. Then there is a finite set S of graphs with the property that
I’ € C if and oaly if no member of § is a minor of I',

What about other 2-dimensional surfaces? Topologists have produced a complete
classification of closed surfaces (without boundary points or infinite points), which
we now outline. First, such surfaces are divided into orientable and non-orientable
surfaces. A surface is non-orientable if it is possible to take a clock on a trip ‘round
the world’ and find, on returning, that its hands turn backwards (its orientation has
been reversed). The most famous example is the Mébius strip, obtained by taking a
strip of paper, giving one end a 180° twist, and joining the ends. It is not closed;
but by stitching up the boundary in either of two possible ways, we obtain the Klein
bottle and the real projective plane, both closed and non-orientable. A surface is
orientable if this phenomenon cannot occur. The sphere is an example. Another is
the forus, obtained by forming a cylinder (by joining the ends of a strip without
a twist) and then bending it round and sewing up the ends without a twist. The
classification asserts:

(18.6.6) Classification of closed surfaces
(2} An orientable closed surface is homeomorphic to a ‘sphere with
g handles’, for some g > 0.
(b) A non-orientable closed surface is homeomorphic to a ‘sphere
with ¢ cross-caps’, for some ¢ > 0.

A handle is just like the handle of a teacup, so that a sphere with one handle is
a torus.® Another metaphor is a bridge. (If 2 graph drawn in the plane has two
edges which cross, then the crossing can be removed by replacing the level-crossing
by a bridge. So the class of graphs embeddable on the torus is larger than for the
sphere.) A cross-cap is more mysterious; it is like a black hole such that, if you enter
the event horizon at one point, you instantly find yourself leaving at the opposite
point with your orientation reversed.” (This also gives a mechanism for resolving
crossings.)

An embedding of a graph in a surface is called simple if each face is homeo-
morphic to a disc. Not all embeddings are simple. For example, take a graph in the

8 ‘A lopologist is someone who can't distinguish his doughnut from his teacup.’

7 It is instructive at this point to compare the topologist's ‘real projective plane’ with the geometer’s
(Chapter 9). To a geometer, the points are the lines through the origin in R3. Bach affine point
{i.e., line not in the cquatorial plane) can be represenicd by the unique point where it meets the
southern hemisphere of the unit sphere; points at infinity correspond to antipodal pairs of poinis on
the equator, This can be realised by taking a cross-cap covering the entire northern hemisphere.
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plane; draw it inside a small disc, and paste the disc onto a torus. Now the ‘infinite
face’ is not a disc (in topologists’ language, it is not simply-connected). For simple
embeddings, there is a generalisation of Euler’s Theorem:

(18.6.7) Euler’s Theorem for surfaces. Suppose that a simple embedding of a graph
in a surface S has V vertices, E edges and F faces.

(a) If S is a sphere with g handles, then V — E+ F =2 —2g.

(b) If S is a sphere with ¢ cross-caps, then V —E+ F =2 —c.

The number on the right-hand side of each of these equations is called the Euler
characteristic of the relevant surface. Euler’s Theorem gives restrictions on graphs
embeddable in a surface, by the same argunent as in (18.6.3). Sometimes, exact
bounds can be obtained.

(18.6.8) Ringel-Youngs Theorem. K, can be embedded in a sphere with g handles

if and only if ~
nS§(7+\/139+I).

PrOOF. K, has n vertices, n{n—1)/2 edges, and so at most n(n —1)/3 faces (arguing
as before). So
n—n(n—1)/2+n(n—1)/3>2~2g.

Rearranging as a quadratic in n, we find the inequality of the theorem. Now it is
necessary to construct a complete graph with |3(7+ /#8g + I)| vertices, embedded
in a sphere with g handles, This is the content of a long project by Ringel and
Youngs. For g = 0, 1, the formula gives 4 and 7 respectively. Exercise 9 asks you to
show that K7 is embeddable in a torus.

In general, the class of graphs embeddable in a surface S is minor-closed.
According to the Robertson-Seymour Theorem (18.6.5), it is characterised by a
finite set of excluded minors. But this set can be quite large. For example, 35
excluded minots are required to characterise graphs embeddable in the projective
plane, and over 800 for the torus!

One of the main areas of interest in topological graph theory is the connection
with colouring problems. Any plane map <an be described by a graph whose
vertices are the countries, with edges joining countries which share a boundary. (If
two countries share several unconnected segments of boundary, use multiple edges.)
Now a colouring of the map is the same thing as a vertex colouring of the graph.
The famous four-colour problem was resolved in 1976 by Appel and Haken, with the
help of extensive computation:

(18.6.9) Appel-Haken Theorem, or Four-colour Theorem, Any planar graph has a
vertex colouring with four colours,

It is impossible to summarise here the techniques used; but Appel and Haken,
and others, have written several good accounts. On the other hand, we prove in the
next section that five colours suffice; the proof illustrates the basic ideas which grew
into the Appel-Haken proof.
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In this case, it is trivial that there are maps which require four colours, but very
difficult to show that no more than four are needed. For other orientable surfaces,
the difficulty is the other way around. It is fairly straightforward to give an upper
bound for the number of colours needed. This bound tutns out to be precisely the
number in the Ringel-Youngs Theorem! This theorem guarantees that a complete
graph of the appropriate size is embeddable in the surface, and it requires as many
colours as it has vertices, We conclude:

(18.6.10) Map Colouring Theorem. The ntinimum number of colours required for a
vertex colouring of any graph embeddable in the sphere with g handles is |3(7 +

VBg+T1)).
18.7. Project: The Five-colour Theorem

In this section, I show that a planar graph can be coloured with five colours, The
argument is due to Kempe, who thought {incorrectly) that he had proved the Four-
colour Conjecture, The mistake was pointed out by Heawood, who salvaged the
Five-colour Theorem (and more). See J. J. Watkins and R. J. Wilson, Grapks: An
Introductory Approach (1990), for further discussion,

(18.7.1) Five-Colonr Theorem. A planar graph has a vertex colouring with five colours,

Proor. The proof is by induction on the number of verlices. We assume the result for graphs with
fewer vertices than ', We also assume that I’ is drawn in the plane, and that I’ has no repeated edges
(since these don't affect the chromatic number),

Let T have V' vertices, of which n; have valency i for each #; let there be E edges and F faces.
Now, as in the proof of (18.6.3), we have 2E > 3F. Counting vertices and incident verlex-edge pairs,

Eni = V»
Zin,- =2E.

From Euler’s Theorem, we conclude that
S - i)n; > 12,

The left-hand side of this inequality must be positive; so n; > 0 for some i < 6, whence I' contains
a vertex of valency at most 5,

Let v be such a veriex. By induction, I' — v has a colouring with five colours 1, 2, 3, 4, 5. If not
all colours are used on the neighbours of v, then there is a free colour which can be applied to v,
So we may assume that v has valency 5, and that all its neighbours have different colours, Let the
neighbours be zy, ..., z5 in anticlockwise order, where we may assume that z; has colour i.

Let S be the set of all vertices which can be reached from z; by a path using vertices with
colours 1 and 3 only. Then we can legitimaiely interchange colours 1 and 3 throughout the set S,
without affecting the property that adjacent vertices have different colours. If z3 € S, then after this
interchange no neighbour of v has colour 1, and we can use this colour for v. So we may suppose
that z3 € 5. Thus, there is a path z1,z;,...,%%,23 consisting of vertices with colours 1 and 3.
Adjoining v to this path, we obtain a simple closed curve C.

By the Jordan Curve Theorem, C divides the plane into two parts, and clearly 2; and 24 lie in
different parts; suppose that z; is inside C. Let T be the sel of vertices which can be reached from
z2 by a path using vertices with colours 2 and 4 only. No such path can cross C, so T' Hes wholly
inside C, and 24 ¢ 7. Then we can inlerchange the colours 2 and 4 throughout T, freeing colour 2
for use on v.
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18.8. Exercises

1. Find the clique number and the chromatic number of (a) the complement of the
n-cycle C,; (b) the Petersen graph,

2. Find the chromatic polynomial of the path P, and of the cycle C, with n vertices.

3. (a) Let 2y > ... 2 zm and ¢ > ... > yn be positive integers. Show that the
following are equivalent:

o there is a bipartite graph with valencies z4,...,z, in one bipartite block and
Y1y -+« y Yn in the other;
o there is a matrix with entries 0 and 1 onmly, having row sums z;,...,z, and

column sums y1,..., ¥u-

(b) Recall the notion of partition of an integer, conjugate partitions, and natural
partial order of partitions from Section 13,1, Use the Gale-Ryser Theorem (18.1.4)
to show that, if A and u are partitions of the same integer, then there is a zero-one
matrix whose row sums are the parts of A and whose column sums are the parts of
w if and only if p < A*,

REMARK. In fact, with the notation of Section 13.6, if we express the elementary
symmetric polynomial ¢, in terms of the basic polynomials m,, by

ey = Z a,\um“,

pkn

then a,, is equal to the number of zero-one matrices whose row sums form the
pattition A and whose column sums form the partition p. (This is the content of
Exercise 10 of Chapter 13.) We showed in the proof of Newton'’s Theorem (13.5.1)
that ax, = 0 unless x < A*; the Gale-Ryser Theorem asserts the converse, viz., if
A € p* then ay, > 0.
4, A graph T is called an interval graph if its vertices are a collection of non-empty
intervals of the real line R, with two vertices adjacent if and only if they have
non-empty intersection. Interval graphs are useful in modelling time-dependent
phenomena. By slight perturbations of the endpoints of the intervals, we may
assume that these endpoints are all distinct, and that the intervals are closed.

(a) Prove that interval graphs are perfect. [HINT: Given a set of intervals, let
n(z) be the number of intervals containing the real number z. The clique number
is the maximum value of this function, Take the smallest = at which the maximum
is attained; then some interval in the collection starts at z. Repeat at the smallest
T not yet covered at which the maximum is attained, as long as one exists. In this
way, we construct a coclique covering every z at which n(z) is maximum. Now use
induction.]

(b) Prove that complements of interval graphs are perfect. [HINT: Let Cy,...,Cn
be the cocliques of maximum size in an interval graph. Let z; be the right-hand end
of the leftmost interval in Cj;, and let z be the minimum of z;,...,2,. Show that
the leftmost interval of each C; contains z.]

5. Let g be a permutation of {1,...,n}. The permutation graph defined by g has
vertex set {1,...,n}; its edges are all the pairs whose order is reversed by ¢ (that is,
all {z,7} withz < j and ig > jg).
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(a) Prove that the complement of a permutation graph is a permutation graph.

(b) Recall the dimension of a poset (Section 12.6). Prove that a graph is a
permutation graph if and only if it is the incomparability graph of a poset of
dimension at most 2,

(¢) Prove that a graph is a permutation graph if and only if it is both a
comparability graph and an incomparability graph.

(d) Prove that a permutation graph is perfect. Can you find a direct argument?
[HINT: Use the argument of Exd8s and Szekeres used to prove (10.5.1)]

6. A graph is called N-free if it doesn’t contain the path on 4 vertices as an induced
subgraph. (See the Hasse diagram of the poset N in Fig. 12.1.)

(a) Show that the complement of an N-free graph is N-free.

(b) Show that an N-free graph is connected if and only if its complement is
disconnected.

(¢) Prove that the class of N-free graphs is the smallest class containing the
1-vertex graph and closed under disjoint union and complementation. (In other
words, any N-free graph can be built from 1-vertex graphs by these operations.)

(d) Hence show that N-free graphs are perfect.

7. Show that an N-free graph is a comparability graph. [HINT: Exercise 6(c).] Hence
show that an N-free graph is a permutation graph,

8. Show that the Petersen graph belongs to Class 2.

9. Find an embedding of K7 in a torus, and an embedding of the Petersen graph in
the real projective plane.

10. Show that any finite graph can be embedded in R® so that edges are represented
by straight line segments. [HINT: Consider points (t,t%,¢%)]

11, Show that a plane triangulation with no vertex of valency less than 5 has at least
12 vertices of valency 5. Construct an example with exactly 12 vertices of valency 5,
and colour it with four colours.



19. The infinite

In the Middle Ages the problem of infinity was of interest mainly in connection
with arguments about whether the set of angels who could sit on the head of
a pin was infinite or not.

N. Ya. Vilenkin, Stories about Sets (1965)

. the true mathematician and physicist know very well that the realms of
the small and the great often obey quite different rules.

Kurt Singer, Mirror, Sword and Jewel (1973)

ToPICs: Set theory, cardinal and ordinal numbers; Konig’s Infinity
Lemma, Zorn’s Lemma and equivalents; infimte Ramsey Theorem;
the ‘rtandom graph’

TECHNIQUES: Transfinite induction; free constructions; back-and-
forth; probabilistic existence proofs

ALGORITHMS

CROsS-REFERENCES: SDRs (Chapter 6); projective planes (Chap-
ters 7, 9); Steiner triple systems (Chapter 8); posets (Chapter 12);
graph colourings (Chapter 18)

Counting is a less precise tool for infinite sets than for finite ones. The shepherdess
who can count her flock of a hundred sheep will know if the wolf has taken one;
but, if she has an infinite flock, she won’t notice until almost all of her sheep have
been lost,

Nevertheless, combinatorics depends on counting. So, in the first section, you
will find a quick tour through set theory and the two kinds of numbers used for
infinite counting.

The remainder of the chapter describes some topics in infinite combinatorics.
Most of these could be described as ‘climbing up from the finite’; truly infinite
reasoning is more recondite and is done mostly by set theorists.

19.1. Counting infinite sets

This section gives a very brief account of set theory and cardinal and ordinal num-
bers. It is no substitute for a textbook account (such as K. J. Devlin's Fundamentals
of Contemporary Set Theory), however.
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Before beginning infinite combinatorics, we must look at how to count infinite
sets. We will see that two kinds of counting (progressing in order from one number
to the next, and measuring the ‘size’ of a finite set), which are essentially the same
in the finite case, have to be distinguished. First, though, there are two more
fundamental difficulties: What is an infinite set? And, anyway, what is a set?

In Chapter 2, I took the point of view that we understand the natural numbers
from our early experience with counting. In much the same way, we have intuition
about sets (or ‘collections’, ‘classes’, or ‘ensembles’ of objects) against which to test our
conclusions. However, Russell’s paradox demonstrates that we cannot uncritically
allow any collection of elements to form a set, or we introduce contradictions into
the foundations of mathematics.!

The basic idea adopted to rectify this problem is that we start with some
collection of fundamental objects or ‘urelemente’ which are not themselves sets,
and then construct sets in stages: at each stage, we can gather together objects
constructed at earlier stages into sets.? Logicians prefer to build the mathematical
universe out of nothing, and traditionally start with the empty set of objects. It
is not sufficient just to go through stages 1, 2 and so on (indexed by the natural
numbers), since the sets we would obtain would all be finite. (Beginning with @, at
the first stage, we get {@}; at the second, {{0}} and {0, {0}}; etc.) We must continue
the construction into the transfinite, and need infinite sets to describe the stages
properly. To avoid circularity, mathematicians adopted an axiomatic approach.

However, logicians know well that axioms® can never entirely capture a math-
ematical structure. Kurt Godel showed that, if a structure has at least the richness
of the natural numbers (with their ordering, addition, and multiplication), then any
set of axioms which can be written down (actually or potentially) is ‘incomplete’:
some assertions about the structure can be neither proved nor disproved using these
axioms. Subsequent work showed that no infinite structure can be completely spec-
ified by axioms; there will always be other structures satisfying the same axioms.
So, if we decide to base set theory on axioms, we must be prepared for there to be
different ‘set theories’, and statements which are true in some and false in others.

It is worth sparing a moment to see why the ambiguities come in. In terms of our
intuition, the gathering of elements into sets in each stage is not precisely defined,
and there is room for manceuvre on what subsets are included. Now everything
has a set-theoretic description. An ordered pair is a set (the standard definition is
(z,y) = {{z},{z,y}}?); a function is a set of ordered pairs. In particular:

e We want to say that two sets have the same number of elements if there is

! As Bertrand Russell wrote to Gottlob Frege, ‘Consider the set of all sets which are not members
of themselves. Is it a member of itself?’

2 This procedure avoids Russell’s paradox: the clements of Russell’s ‘'set’ continue appearing at every
stage in the construction, so there is no stage at which they all exist to be gathered into a set at the
next stage.

3 The logical system used for the discussion here is ‘first-order logic', widely accepted as the best
logical basis for mathematics.

4 The important feature of this definition is that (z,y) = (u,v) if and only if * = u and y = v. Any
set-theoretic construct with this property would do.
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a bijection between them. But different set theories have different bijections;
so two sets may have the same number of elements in one theory and not in
another.

¢ The notorious Aziom of Choice asserts that given any ‘family’ (that is, set) of
non-empty sets, we can choose representatives of the sets. More formally, if A4;
is a set for each 7 in some index set I, then there exist elements ¢; for 7 € I such
that ¢; € A; for each i € I. Now these elements are described by a function
from I to the union of the sets A;; this function may be present in some models
but not others.

Godel showed that the Axiom of Choice is consistent (it cannot be disproved
from the other axioms). He did this by constructing a model or universe in which
the collections of elements which can be gathered into a set at any stage are those
satisfying some formula of logic (this is called the ‘constructible universe’), and
showing that the Axiom of Choice holds in this model. Later, Cohen showed by a
technique known as ‘forcing’ that it is independent (it cannot be disproved either).

Since there is no way of resolving questions like ‘Is the Axiom of Choice true?’
on the basis of the standard axioms, the only hope of progtess is to try to refine our
intuition about what set theory is, until perhaps there is general agreement about the
need for a new axiom which would decide some of these questions. In the meantime
we explore consequences of these statements and of their negations.” Many of these
consequences are of a combinatorial nature.

Now what about counting? Corresponding to the ‘stages’ in the construction of
sets, we define a transfinite sequence of numbers, the ordinal numbers, as follows.
The empty set is an ordinal number (the number 0); if the set n is a number then so
is nU {n} (this number, representing » + 1, will be constructed at the stage after n);
and, to enable us to leap up into the transfinite, a ‘transitive set' of ordinal numbers
(containing all members of its members) is itself an ordinal number. This condition,
for example, allows us to gather up all the natural numbers into a single ordinal
number, the first infinite ordinal, conventionally called w. (w is a transitive set,
since by construction the members of any ordinal number are the smaller ordinal
numbers.)

In the construction, we distinguish three kinds of ordinals:

e z2ero, or
o successar ardinals, of the form n +1 =nU {n};
o limit ordinals, with no immediate predecessor, obtained by the ‘gathering up’
procedure.
Now we can say that the ‘stages’ of the intuitive construction of sets are indexed by
the ordinal numbers.

Having defined the ordinal numbers, we have (almost by definition) the principle

of iransfinite induction:

5 We do mathematics with the Axiom of Choice or with its negation, in much the same way that we
do Euclidean or non-Euclidean geometry.
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(19.1,1) Transfinite induction
Suppose that P is a property of ordinal numbers. Assume
e P(0) holds;
o if P(n} holds, then P(n + 1) holds;
e if n is a limit ordinal and P(m) holds for all m < n, then P(n)
holds.
Then P(n) holds for all ordinal numbers n.

Transfinite induction can be used in constructions as well as proofs, just as the
more usual induction in Chapter 2.

Ordinal numbers capture the notion of succession. But they don’t measure
the size of a set. Hilbert’s hotel® illustrates this. Consider a hotel with w rooms
(numbered 0, 1, 2, ...). One day, when all the rooms are full, a new guest arrives.
To accommodate him, the manager simply moves each guest into the next room
along, freeing room 0 for the newcomer. Next day, infinitely many new guests arrive.
Undetered, the manager shifts the guest from room n into room 2n for each n,
freeing the odd-numbered rooms for the new arrivals.

As we saw already, two sets have the same cardinality if there is a bijection
between them.” Hilbert’s hotel shows that there is a bijection between w and w + 1,
and also between w and w +w. So the ordinal numbers are too discriminating. There
are two ways to proceed:

We may decide that, having defined what it is for sets to have the same
cardinality, we have implicitly defined the cardinality of a set. Roughly speaking,
cardinalities are equivalence classes for the relation ‘same cardinality’; but care is
required, since the equivalence classes are not sets (by the same reasoning as in
Russell’s paradox; singletons, for example, continue appearing at all stages).

An alternative approach depends on the fact:

Any non-empty set of ordinal numbers has a least element.

(This is proved by transfinite induction in the same way that the same assertion
for the natural numbers is proved by induction — see Chapter 2.) Now, given any
set X, the set of all those ordinal numbers which are bijective with X has a least
element (if there are any such numbers!), and we take this least element to be the
cardinality of X. In other words, a cardinal number is an ordinal number which
is not in one-to-one correspondence with any smaller ordinal number. With this
approach, all natural numbers, and w, are cardinal numbers, but w + 1 and w + w
are not.

§ As described in Stanislaw Lem’s story ‘The Interstellar Milkman, Jon the Quiei’. See N. Ya.
Vilenkin, Stories about Sets (1965).

7 Thus, a set is countable if and only if it is bijective with N.
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In this approach, a set is finite if and only if it is bijective with some natural
number. This is precisely how natural numbers are used in ordinary counting (as
‘standard sets’ of each possible size); our approach generalises this to the transfinite.

An alternative notation for cardinal numbers is due to Cantor, the ‘aleph
notation’. (R (aleph) is the first letter of the Hebrew alphabet.) Using transfinite
induction, we define R, for all ardinal numbers n by the rules:

* Ny =w;

e R, is the next cardinal number after R}, ;

o if a is a limit ordinal and R, is defined for all b < a, then R, is the least cardinal
number exceeding all these.

Life is simplified by the following theorem of Zermelo:

(19.1.2) Well-ordering Theorem. The Axiom of Choice is equivalent to the assertion
that every set admilts a one-to-one function onto some ordinal number.

Thus, if we assume that our set theory satisfies the Axiom of Choice (as is almost
universally done), then every set has a unique cardinal number.

Cardinal numbers, being special ordinal numbers, are totally ordered. We have
a < b if there is a one-to-one function from a set of cardinality o into one of
cardinality b. It follows from (19.1.2) that, assuming the Axiom of Choice, given any
two sets, there is a one-to-one function from one to the other (in some order!)

We can do arithmetic with cardinal numbers. If A and B are disjoint sets with
cardinalities a and b respectively, then a+ b, ¢+ b and a* are the cardinalities of AU B,
A x B (Cartesian product), and A? (the set of functions from B to A) respectively.
(Representing subsets of B by their characteristic functions, we see that 2° is the
cardinality of the power set of B.) But the rules are a bit different. The next result
assumes the Axiom of Choice.

(19.1.3) Propesition. (a) If ¢ and b are infinite, then ¢ + b = a - b = max(a, b).
(b) If a > 1, then a* > b for all b.

In particular, 2¢ > a for all a. It is known that 2 is the cardinality of the set of
real numbers. Cantor’s continuum hypothesis is the assertion that 2* is the smallest
uncountable cardinal number; in other words, no subset of R has cardinality strictly
between those of N and R. (In aleph notation, 2% = R;.) More generally, the
generalised continuum hypothesis (GCH) asserts that, for any cardinal number 3, 2°
is the next cardinal after b (or 2" = R, for all ordinals n). It is known that the
GCH is undecidable; it holds in Godel’s constructible universe, but there are models
in which it is false,

19.2. Konig's Infinity Lemma

The Axiom of Choice (which I will abbreviate to AC) is fundamental to most infinite
combinatorics, and I will assume that it holds. However, some students, learning
about it for the first time, overrate its influence, and worry that it is being invoked in
an argument along the lines, ‘The set X is non-empty, so choose an element z € X

... This does not require AC; one choice, or indeed finitely many choices, are
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permitted by the other axioms. Similarly, AC is not required if there is a rule for
making the choices.® Only when infinitely many genuine free choices must be made
is AC required.

Often, we have a situation where later choices depend on earlier ones. The
so-called ‘Principle of Dependent Choice’ allows us to make such choices; it is a
consequence of AC. {AC allows us to choose an element from any set which could
conceivably arise in the process.} In this form, it is invoked in proving a result which
is very useful in applying AC to combinatorics: Kénig’s fnfinity Lemma.

A one-way infinite path in a digraph D is a sequence vg,v1,v2,... of distinct
vertices such that {(v;,v;+1) is an edge for all { > Q.

(19.2.1) Kdnig’s Infinity Lemma. Let vy be a vertex of a digraph D. Suppose that
{a) every vertex has finite out-valency;

(b} for every positive integer n, there is a path of length n beginning at vo.

Then there is a one-way infinite path beginning at vg.

ReMARK. The result is false if condition (a) is relaxed. Take a path of length n for
every finite n, all starting at the same point, but otherwise disjoint.

PROOF. We call a vertex v of D goad if, for every n, a path of length n starts at v.
We claim:

If v is good, then there exisis v' such that (v,v') is an edge and v’

is a good vertex of D ~ v.
For let wy, be the next point after v on a path of length n starting at v. Since there
are only finitely many vertices # for which (v,z) is an edge, one of them (say v')
must occur infinitely often as w,. This means that there are arbitrarily long finite
paths starting at ¢, and hence paths of all finite lengths starting there, none of
which contain v.

Now, by assumption, vp is good. For each i > 0, choose v;1, so that (vi,viq1)
is an edge and vi4; is a good vertex of D — {vy,...,v;}. Then vy,v,vs,... is the
requited one-way infinite path.

Another infinite principle was invoked in the proof of the Claim above: an
infinite form of the Pigeonhole Principle (cf. (10.1.1)).

(19.2.2) Pigeonhole Principle (infinite form)
If infinitely many objects are divided into finitely many classes, then
some class contains infinitely many objects.

The infinite form of Ramsey’s Theorem is a generalisation of this; see Section
19.4.

Now we give an application of Konig’s Infinity Lemma, showing how it can be
used to transfer information between the finite and the (countably) infinite.

3 Bertrand Russell's example: If a drawer contains infinitely many pairs of shoes and we must choose
one shoe from each pair, we can take all the left shoes. But, for infinitely many pairs of socks, AC is
required.
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(19.2.3) Proposition. Let ' be a countably infinite graph. Suppose that any finite
induced subgraph of I' has a vertex colouring with r colours. Then I" has a vertex
colouring with r colours.

PROOF. Let vy, vs, ... be the vertices of I'. For each n, let C,, be the (non-empty) set
of all vertex colourings of the induced subgraph on {v;,...,v,} with the r colours
1,...,7r. Form a digraph D with | .5 Cr. as vertex set (we take Cj to be a singleton
whose only member ¢y is the empty set!) and with edges as follows: for ¢, € C,
and ¢n11 € Crpy, let (cq,¢u+1) be an edge if and only if ¢, is the restriction of the
colouring ¢4, to the vertices v,...,v,. Then each vertex has out-valency at most
r (since at most r colours can be apphed to vny; if vy,...,v, are already coloured).
Moreover, d(co, c) = n for all ¢, € C,,.

So the hypotheses of Konig’s Infinity Lemma are satisfied. We conclude that
there is a one-way infinite path ¢o,c1,¢2,.... This gives us a rule for colouring all
the vertices of I'; for v, is assigned a colour in ¢,, and by definition it gets the
same colour in all ¢, for m > n. Moreover, it is a legitimate vertex colouring;
for, if {v;,v;} is an edge, then v; and v; are assigned different colours in ¢, Where
n = max{z,j).

(19.2.4) Corollary. Any plane map, finite or infinite, can be coloured with four
colours,

Proofr. For finite maps, of course, this is the Four-colour Theorem (18.6.9). A plane
map has at most countably many countries, since each couniry contains a point
with rational coordinates, and there are only a countable number of such points. So
the infinite case follows from (19.2.3).

In fact, (19.2.3) holds for arbitrary infinite graphs, not just countably infinite
ones. To prove this, we need a stronger principle, Zora’s Lemma, to be described in
the next section.

19.3. Posets and Zorn’s Lemma

One of the most striking differences between finite and infinite posets is that the
latter need not have maximal elements, as shown by the natural numbers (for
example). An important theorem giving conditions under which maximal elements
exist i8 Zorn's Lemma:

(19.3.1) Zorn’s Lemma. Let P be a non-empty poset. Suppose that every chain in
P has an upper bound. Then P has a maximal element.

Proo¥. Recall how we showed that every finite poset has a maximal element: if not,
pick an element, and repeatedly pick a larger element, yielding an infinite ascending
chain. The same trick works here. Suppose that P = (X, <) has no maximal element.
By transfinite induction, define elements z,, for all ordinal numbers a, such that
o < 2 for a < b. This is done as follows:

o Let zg be any element of z.
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o If z, is defined, let z,4; be any strictly greater element (this exists since z, is
not maximal}.
o If ¢ is a limit ordinal, then the elemenis z, for b < a form a chain; let z, be an
upper bound for this chain.
Obviously, all the elements z, are distinct. But this leads to a contradiction: take a
to be a cardinal number greater than the cardinality of X, and there are not enough
elements available in X for such a chain!

Note that we used the Axiom of Choice in this proof: we have to choose each
term of the series from a set of ‘admissible’ elements. This is in fact inevitable:
Zorn’s Lemma is ‘equivalent to’ AC; the latter can be proved from the former and
the other axioms of set theory. (See Exercise 3.)

Here is a fairly typical application of Zorn’s Lemma, to an infinite version of
(12.2.1):

(19.3.2) Theorem. Any poset has a linear extension.

Proor. Let (X, R) be a poset. We let R be the set of relations R' 2 R for which
(X, R') is a poset, partially ordered by inclusion. We claim:

Every chain in (R, C) has an upper bound.

For let C be a chain, and let R’ be the union of the members of C' (each member
of C being a relation on X, that is, a set of ordered pairs). Then (X, R') is a partial
order. (This involves checking the axioms. The arguments are all similar: here is
the proof of transitivity. Suppose that (z,y),(y,2) € R". Then, say, (z,y) € R, and
(v, 2) € R, for some Ry, R; € C. Since C is a chain, one of these relations contains
the other; say Ry C R;. Then (z,¥), (y,2) € Ri; so (z,2) € Ra (because (X, R;)isa
poset), and (z,z) € R, as required.) Cleatly R’ 2 R, and R’ is thus an upper bound
for C'in R.

By Zorm’s Lemma, there is a maximal element of R, say R. We show that
(X, R') is a total order. If it were not, then there would be some pair (a,5) of points
which are incomparable in (X, R'). Now exactly the same argument as in the proof
of (12.2.1) shows that we could enlarge R’ to make a and b comparable, by setting
R' = R'U(] a x 1 b). But this would contradict the maximality of R

So (X, R') is a linear extension of (X, R), as required.

Zorn's Lemma is often conveniently applied in the form of the Propositional Compaciness
Theorem, which we now develop with an application.

An ideal in a lattice is a non-empty down-set which is closed under taking joins. Equivalently, /
is an ideal in L if
e 0€l;
ez, yel = zvyel;
erxclacel = rNha€ L
An ideal is proper if it is not the whole of L; equivalently, if it does not contain 1.

(19.3.3) Proposition. Any lattice contains a maximal proper ideal.
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Proor. Straightforward application of Zorn's Lemma to the set of proper ideals, partially ordered
by inclusion. (If no ideal in a chain contains 1, then the union doesn't contain 1 either.)

Slightly more generally, any proper ideal I in a laltice is contained in a maximal ideal. This is
proved by modifying the argument to use only the set of proper ideals containing I.

Our application depends on the following observation: in a Boolean lattice L, if I is a maximal
ideal, then for each a € L, exactly one of ¢ and o’ belongs to I. (They cannot both belong, since
their join is 1. If neither lies in I, then the set

J={y:y<aVzforsomerc [}

is an ideal containing I and a but not o/, contradicting maximality.
4

Recall the definition of propositional formulac and valuations from Section 12.4. One small
piece of terminology: A set X of propositional formulae is satisfiable if there is a valuation v such
that v(¢) = TRUB for all ¢ € Z.

(19.3.4) Propositional Compaciness Theorem. Let & be a set of propositional formulae. Suppose that
every finite subset of ¥ is satisfiable. Then ¥ is satisfiable.

Proor. We work in the Boolean lattice L of equivalence classes of formulae, and identify a formula
with its equivalence class. Let I be the ideal generated by ' = {(—¢) : ¢ € }: that is, T is the set of
elements of L which lie below some finite disjunction of elements of ‘. The hypothesis implies that
1¢ I. For, if 1 € I, then 1 would be a (finite) disjunctior: of elements of ¥’. By assumption, there is
a valuation giving all these elements the value FALSE; but then 1 would have the value raLse, which
is impossible.

By the extension of (19.3.3), there is a maximal ideal I* containing I. Now define a valuation v*
by

. TRUB if$ &I,

v($) = {PALSE if ¢ g I

Check that v really is a valuation; clearly »(X) = TrUE.

The Propositional Compactness Theorem is a more powerful tool than Konig's Infinity Lemma,
allowing arguments to be extended to arbitrary infinite cardinality, as we'll see shortly. It is in fact
less powerful than the Axiom of Choice: there are models of set theory in which AC fails but
Propositional Compactness is true.

As an application, we extend (19.2.3) to arbitrary infinite graphs.

(19.3.5) Proposition. Suppose that every finite subgraph of T' has a verlex colouring with + colours.
Then T has a vertex colouring with r colours,

Proor, We take the set
{pzi-zavertexof [, i=1,...,7}

of propositional variables. Let I be the set of formulae of the following types:
o for each vertex z of I, a formula asserting that p; ; is true for exactly one value of ¢;
« for each edge {z,y} of [, a formula asserting that p,; and py; are not true for the same value
of 4.
For example, if r = 3, these formulae would be

(pz-,l V Pz,2 VP:‘,S) A (_‘(Px,l A p::,?) A _‘(P::,l A Pz,3) A _‘(Pz',2 A p.t_B))

and
Pz Apya) A (Pr,a A Py2) A —(Ps,3 A Py )

respectively.
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This set of formulae is satisfiable if and only if a vertex colouring with r colours exists. For, if
v is a valuation making ¥ true, then give vertex x the colour 1 if v(p; ;) = TRUR; and conversely.

By assumption, any finite subset of T is satisfiable. For a finite subset involves the variables
pz ¢ for only finitely many vertices z; these form a finite subgraph which can be coloured with »
colours; use this colouring to define v(p. ;) for vertices z in the subgraph, and define the other values
arbitrarily.

So the Propositional Compactness Theorem gives the desired result.

19.4. Ramsey theory

The infinite form of Ramsey’s Theorem can be stated as follows.

(19.4.1) Ramsey’s Theorem (infinite form)
Suppose that k and r are positive integers, and let X be an infinite
set. ‘Suppose that the set of k-element subsets of X are partitioned
into r classes. Then there is an infinite subset Y of X, all of whose
k-element subsets belong to the same class.

For example, the case & = 1 is the infinite form of the Pigeonhole Principle
(19.2.2). I will give a proof for £ = 2; the general case is an exercise (with hints —
Exercise 4).

We may suppose that X is countable, say X = {z;,2,,...}. (Simply choose a
sequence of distinet elements of X and use these.) Now we define a subsequence

Y1, Y2, .. of distinct elements, and a sequence of infinite subsets Yy,%7,Y5,... such
that
@ hh2Y:2..;

(b) y: € Y;, and all pairs {y;, 2z} for z € ¥; have the same colour;

() y;eYiforall j >4

This construction is done by induction, starting with 5 = X. In the i*" step, choose
i € Yi_1; observe that the infinitely many pairs {y;,z}, for z € ¥i_; \ {1}, fall into
r disjoint ‘colour classes"; so there is an infinite subset ¥; of ¥:_; \ {y:} for which (b)
holds, by the Pigeonhole Principle.

At the conclusion of the inductive argument, we have arranged that the colour
of a pair {y;,y;} for j > i depends only on i, not on j. Let ¢; be this colour. By
the Pigeonhole Principle again, there is an infinite subset M of the natural numbers
such that ¢; is constant for ¢ € M, Then {y; : ¢ € M} is the required infinite
monochromatic set.

The finite version of Ramsey’s Theorem can be deduced from the infinite, using
Konig's Infinity Lemma. The argument is very similar to (19.2.3). We suppose that
the finite version is false, for some choice of r, k,I; that is, for every positive integer
n there is a colouring of the k-subsets of {1,...,n} with no monochromatic {-set.
Let C,, be the set of such colourings. Form a digraph with vertex set |, Cn, edges
from C,, to C,,; being defined by restriction just as before. Konig’s Infinity Lemma
gives us an infinite path, which tells us how to colour the k-subsets of the natural
numbers without creating a monochromatic [-set, contrary to the infinite Ramsey
Theorem.
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The remainder of this section concerns possible infinite extensions or quantifica-
tions of Ramsey’s Theorem. The proofs are sketched or omitted; you should regard
it as a Project.

There are three natural ways in which we could try to extend Ramsey’s Theorem:
(2) quantify the two infinities in the statement (as infinite cardinals);
(b) allow infinitely many eolours;
(c) colour subsets of infinite size,
These three will be considered in turn.

(a) QUANTIFYING THE INPINITIES. For simplicity, we assume that £ = r = 2. Here are one positive and
one negative result.

(19.4.2) Theorem. (a) Let o be an infinite cardinal. If | X| > 2%, and the 2-subsets of X are coloured
with two colours, there must exist a monochromatic set of cardinality greater than a.
(b) The 2-subsets of R can be coloured so that no uncountable set is monochromatic.

(Since |R] = 2%e, part (b) says that the result of (a) is best possible for @ = Ro. In the notation
of Chapter 10, B(2,2,8,) is the next cardinal after 2%°.)

I won't prove (a) — for the proof, which is not difficult, see for example Ramsey Theory, by R.
L. Graham et al. (1990) — but the construction for (b) is quite easy. It depends on the following
fact. Let & family (z,) of real numbers indexed by ordinal numbers be given, and suppose that, if
a < b, then z, < x5. Then the family is al most countable. For there is a ‘gap’ between z, and the
next number in the sequence, and this gap (an interval of R) contains a rational number g4. All these
rationals are distinet. The result follows since there are only countably many rationals.

Now, by the Axiom of Choice, there is a bijection between R and an ordinal number. Let z, be
the real corresponding to the ordinal a. For a < b, colour {x,, s} ted if 24 < z3, blue if z, > zs.
Now, according to the last paragraph, a monochromatic red set is at most countable; the same holds
for a monochromatic blue set, by reversing the order of R in the argument.

(b) INFINITELY MANY cOLOURS, There are two different directions possible here. The first is a simple
extension, illustrated by the following negative result:

(19.4.3) Theorem. The 2-subsets of a set of sise 2° can be coloured with a colours without creating
& monochromatic triangle.

Proor. We take our set of size 2 to be the sei of all functions from the ordinal number « to {0,1}.
Now, for each b € a, we colour the pair {f, g} with colour & if b is the smallest point at which f and
¢ disagree. Now there cannot be three functions pairwise disagreeing at the same point!

To motivate the other approach, we have to return {o the basic philosophy of Ramsey theory, as
expressed in the phrase ‘complete disorder is impossible’. We expect that, if an infinite set carries an
arbitrary colouring, there should be an infinite subset on which the colouring is particulazly simple.
With only finitely many colours, ‘simple’ has to mean ‘monochromatic’; but in general there are other
possibilities, for example, all the colours may be different! This leads to so-called ‘canonical’ forms
of the theorems, first developed by Erdds and Rado. For example:

(19.4.4) Canonieal Pigeonhole Principle. If the elements of an infinite set are coloured with arbitrarily
many colours, then there is an infinite subset in which either all the colours used are the same, or all
the colours are different.

This is clear because, if the first alternative fails, then each colour appears only finitely often, so
infinitely many colours musi be used; and using AC we can choose one point of each colour.

Erdds and Rado proved the canonical Ramsey theorem (somelimes called the Erdés-Rado
Canonisation Theorem. Here is the formulation for & = 2.
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(19.4.5) Erdds-Redo Canonisation Theorem, case k = 2. Suppose that the 2-subsets of N are coloured
with arbitrarily many colours. Then there is an infinite subset Y in which one of the following
alternatives holds (where, in each pair {z,y}, we assume that 2 < y):

o all colours are equal;

e {z,y} and {u,v} have the same colour if and only if z = u;

o {z,y} and {u,v} have the same colour if and only if y = v;

e all colours are different.

{c) CoLoURING INPINITE $BTS. The result here is wholly negative:

(19.4.8) Theorem, For any infinite set X, there is a colouring of the countable subsets of X with no
monochromatic subsets.

Proo¥. Let P,(X) denote the sei of countably infinite subsets of X. Define two equivalence relations
on P,(X) by

e A~ Bif |AAB| is finite;

o A ~ Bif |[AA D] is finite and even;
where AAB is the symmeiric difference of A and B.

Then each ~class is the union of two ~-classes, so that ¥ and Y \ {y} belong to different
~-classes for each y € Y € P,(X). Choose one ~-class in each ~-class and colour its members red;
colour the other sets blue.

Nevertheless, mathematicians are reluctant to call this the end. Two developments are possible.
Recognising that AC is used in that shori proof, they look for positive results in set theory without
AC; or they allow, not all colourings, but only those which are ‘nice’ with respect to some structure,
such as Borel sets in a topological space.

19.5. Systems of distinct representatives

Hall’s Condition is not sufficient for a SDR for a family of sets if finiteness is not
assumed. Consider the following example: X, is the set of all positive integers, and
X; = {i} for all positive integers i. Now X(J) = J if 0 ¢ J, and X(J) is infinite if
0 € J. But there is no SDR since, whichever number n we choose to represent Xp,
there will be no possible representative for X,,.

However, of the two ways we could relax finiteness (allowing infinitely may sets,
and allowing infinite sets), it is the second which is crucial to the failure of Hall’s
Theorem. This was shown by Marshall Hall, who proved the following result.

(19.5.1) Theorem. Let A = (A4; : ¢ € I) be a family of finite sets, and suppose that
|A(J)| = | 7| for all finite sets J of indices. Then the family A has a SDR.

PRrOOF. The simplest proof uses the Propositional Compaciness Theorem. Take a set
of propositional variables p, 4, for all choices of : € I and z € A;. Let ¥ consist of
all formulae of the following types:
o for each ¢ € I, a formula asserting that p; . is true for exactly one r € A;;
o for each pair ¢, of distinct indices, and each xz € A; N 4;, the formula {—(p;. A
Pia))-
A valuation v satisfying T defines a SDR (z; : ¢ € I}, by the rule that z; is the
unique element = € A; for which v( ) = TRUE: the formulae of the second kind
guarantee that the representatives are distinct.
Now, if Z is a finite subset of I, and J the set of indices ¢ for which some p; ;. is
mentioned in Ty, then the subfamily (A4; : 1 € J) satisfies (HC), and so has a SDR;
thus, there is a valuation satisfying £o. Now the result follows by compactness.
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ReMARK. Hall’s proof uses Zorn’s Lemma directly and is considerably more compli-
cated; you can read it in his book Combinatorial Theory (1989). There is a simpler
proof in the countable case, using Konig’s Infinity Lemma (see Exercise 5).

A great deal of work has been done on necessary and sufficient conditions for
arbitrary families of sets to have SDRs.

19.6. Free constructions

One striking difference between finite and infinite combinatorics is that infinite
objects of some specail kinds are much easier to construct. There is plenty of room
to manceuvre; we just go on until the construction ‘closes up’. A couple of examples
wiill illustrate this.

The first concerns projective platies (Chapters 7 and 9). A projective plane is an
incidence structure of points and lines, in which any two points are incident with a
unique line and any two lines with a unique point, and satisfying a mild condition
to exclude degenerate cases (there exist four points, no three collinear). All known
finite projective planes have a rich algebraic structure, depending ultimately on finite
fields. Infinite planes are not so restricted:

(19.6.1) Proposition. Any infinite incidence structure of points and lines, in which
two points lie on at most one line, can be embedded into a projective plane.

PROOF. We begin by adding some ‘isolated’ points if necessary, to ensure that there
are four points with no three collinear. Now perform a construction in stages as
follows:
¢ at odd-numbered stages, for each pair of points which are not collinear in the
structure so far, add a line incident with just those two points;
¢ at even-numbered stages, for each pair of lines which are not concurrent in the
structure so far, add a point incident with just those two lines.

Now, after progressing through the natural numbers, we take the structure
consisting of all points, lines, and incidences constructed. Given any two points,
there is a stage at which both have been added to the structure; not later than
the next stage, a line incident with both of them is added, and no further line
incident with both will ever appear. The dual assertions hold similarly. So we have
a projective plane.

For example, this ‘free construction’ produces planes which do not satisfy Desar-
gues’ Theorem {9.5.3). (Start with a ‘broken Desargues configuration’, the structure
shown in Fig. 9.2 with one 3-point line replaced by three 2-point lines.)

Obviously, the free construction is very flexible and can be adapted to produce
various other kinds of objects. Sometimes, however, countably many stages are
not enough, and we need the power of transfinite induction. Here is an example.
This concerns Steiner triple systems (Chapter 8). A Steiner triple system (STS) has
blocks of size 3 with any two points in a unique block; a Steirer quadruple system
(SQS) has blocks of size 4 with any three points in a unique block. Infinite Steiner
triple systems exist; for example, they can be produced by the free construction
(Exercise 7). If D = (Y,C) 1s 2 SQS and y € Y, the derived system D,, with point set
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X =Y\ {y} and as blocks all those 3-sets B for which B U {y} is a block of D, is
a STS (see Chapter 16), Conversely, which STS can be extended to SQS?

(19.8.2) Proposition. Any infinite STS can be extended to a 5QS.

PrOOF. Let (X, B) be a STS, which we propose to extend to a SQS (Y, C) by adding
a point ¥ € X. Then we must have ¥ = X U {y}, and

C2{BU{y}:Be B}

indeed, the set on the right consists of all blocks in C which contain 4.

An n-arc is a set of n points of X containing no block of B. We see that any
block not containing ¥ must be a 4-arc; indeed, the set of all such blocks is a set of
4-arcs with the property that any 3-arc is contained in exactly one of them. So the
extension problem is equivalent to the existence of such a set; and we propose now
to construct one by transfinite induction, Note first that there are plenty of 4-arcs:
given any 3-arc, all but three of the remaining points extend it to a 4-arc.

A short argument with cardinal numbers (Exercise 8) shows that the set of
3-arcs has the same cardinality as the set X of points. Let this cardinal be m (an
initial ordinal), and index the 3-arcs as (T, : n < m). Now we perform the following
construction, over stages indexed by the ordinal numbers up to m. We build a set
F, of 4-arcs for each n < m as follows:

o Stage 0: Set Fo = 0.

o Stage n+1: If T, is contained in some 4-arc in F,, then set F,,, = F,. Suppose
not. Then fewer than m 4-arcs have been put into F,,, and they contain fewer
than m points. Three more points fail to extend 7, to a 4-arc. So we can find a
point  such that T, U {z} = F is a 4-arc and z lies in no member of F,,. Thus,
no 3-subset of F is contained in a member of F,,. Set F, 4, = F, U{F}.

o Limit stage n: let Fp = Uyen Fie
At stage m, we have ensured that every 3-arc lies in a unique member of F,,,

and the theorem is proved.

RemMARK. Using techniques of logic, it can be deduced from (19.6.2) that only finitely
many finite STS fail to be extendable. No exampes of non-extendable STS are
known!

19.7. The random graph

I will end this chapter with what I confess is one of my favourite topics in combi-
natorics.

(19.7.1) Erdés—-Rényi Theorem
There is only one countably infinite random graph.

Some explanation is called for. By a random graph 1 mean one produced by
the following stochastic process. Fix a set X of vertices. For each 2-element subset
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{z,y} of X, toss a fair coin;® if it comes down heads, then join z and y by an edge,
otherwise leave them unjoined. If X is finite, this procedure gives each (labelled)
graph the same (non-zero) chance of being picked. Moreover, if we are interested in
unlabelled graphs, we can see that the more symmetric a graph is, the less its chance
of occurring. [The symmetric group Sym(X) acts on the set of labelled graphs;
its orbits are the isomorphism classes (the unlabelled graphs), and the stabiliser
of a graph I is its automorphism group Aut(l). By (14.3.4), the product of the
probability of a given unlabelled graph and the order of its automorphism group is
n!/20-1/2 where n = | X|]'° By contrast,

there is a countably infinite graph R such that, with probability 1,
a random countably infinite graph is isomorphic to R. Moreover,
R has a very large automorphism group.

It is my contention that this illustrates an important difference between mathe-
matics and virtually all other subjects. In no other field could such an apparently
outrageous claim be made completely convincing by a short argument, as I propose
to give. The claim also illustrates that our intuition about the infinite is likely to be
caught out very often.

Probability theory (or measure theory) for infinite spaces resembles the familiaz
finite theory, with a few additions. The significant one here is the concept of a null
event (or null set), one with probability zero. If an event E has the property that, for
any € > 0, there is an event E, O E with probability Prob(E,) £ ¢, then E is null
(Prob(E) = 0). It is an easy exercise to show that the union of a countable set of
null events is null. [Suppose that E, is null for all n > 1. Given ¢ > 0, choose E, .
containing E, with Prob(E, ) < ¢/2", and set E, = ), E,.. Then Prob(E) < ¢,
and Unzl En g Ee’]

Now we begin on the proof. It depends on the following property (*), which a
graph may or may not have:

Given any two finite disjoint sets U,V of vertices, there exists a
vertex z joined to every vertex in I/ and to no vertex in V.

The Erdds-Rényi Theorem follows from the following two assertions:

1. With probability 1, a random countable graph satisfies ().

2. Up to isomorphism, there is a unigue countable graph which satisfies (x).

ProoF of 1. We have to show that the event that (x) fails is null. Now there are
only countably many pairs (I, V) of disjoint finite sets of vertices; so it is enough
to prove that, for a fized choice of [/ and V, the probability that no vertex = exists
satisfying the conditions is zero. Call a vertex good if it is joined to everything in

9 In the language of probability theory, tasses of a fair coin are independent, and each outcome of a
toss has probability 1 of oceurrence.

10 Finite random graphs are not as unsiructured as this discussion might suggest; global patterns
arise from the local chaos. This will be discussed in the next chapter.
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U and nothing in V, and bad otherwise. Any vertex z is most likely to be bad;
the probability of this is 1 — 5, where n = |U U V|. But there are infinitely many
vertices, and the events that they are bad are all independent. So the probability
that vertices z,,...,zy are all bad is (1 — ;-)". Since this tends to zero as N — oo,
the assertion is proved.

Proor oF 2. This illustrates a logical technique called back-and-forth. Suppose that
I' and A are two countably infinite graphs satisfying (%), with vertex sets X =
{#1,Z2,...} and ¥ = {31, 2, ...} respectively. We build, in stages, an isomorphism
0 between them, as follows. At the beginning of any stage, the value of 6 has been
determined on finitely many points of X.

At an odd-numbered stage, let x, be the first point of X on which ¢ has not
been defined (that is, the point with lowest index). Let U’ and V' be the (finite) sets
of neighbours and non-neighbours of z, respectively on which § has been defined.
In order to extend 6 to z,, we must find a point z € ¥ which is joined to every
point of 8(U') and to no point of #(V”). Since A satisfies (), such a point # exists;
choose one (for definiteness, the one with lowest index), and set §(z,) = =.

At an odd-numbered stage, let y,,, be the first point of ¥ not in the range of 6.
Argue as above, using the fact that I satisfies (), to find a suitable pre-image of y...

After countably many stages, we have ensured that every point of X is in the
domain of 6, and every point of ¥ is in the range. (This is the point of going
back-and-forth; if we only went ‘forth’, we would define a one-to-one map but
couldnt guarantee it to be onto.) Moreover, § is clearly an isomorphism, and we
are done.

The name R stands for ‘random graph’. The proof we have given is an existence
proof; if an event (such as property (*)) occurs with probability 1, then it certainly
occurs, so there exists a graph with this property; assertion 2 shows its uniqueness.”
For Erdds and Rényi, an existence proof was enough; but an explicit construction
is more satisfactory. R can be produced by a variant of the ‘free construction’ of the
preceding section: at each stage, add vertices fulfilling all instances of () where U
and V consist of previously constructed vertices. But one can be even more definite.
A direct construction was given by Rado, whose name is also commemorated by
the letter R.

Rado took the vertex set to be the set of non-negative integers. Given z and y,
where = < y, to decide whether to join = to y, we express the larger number y to
base 2; that is, we write it as a sum 3,y 2° of distinct powers of 2. If 27 is one of
these powers (that is, if z € X}, then join z to y; otherwise, don't join. Property ()
is easy: adding an element to U if necessary, we can assume that max(U) > max(V);
then z = ¥, has the required property.

The graph R has many nice properties. I will describe two of these, known

11 This shows that, paradoxically, probability theory is an important tool in proving the existence of
objects. Exercise 12 gives another instance, and a finite example was given in Chapter 10. A related
concept in topology, Baire category, has similar uses. See J. C. Oxtoby, Measure and Category (1980),
for many entertaining illustrations.
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as universality and homogeneity. A graph is said to be universal if it satisfies the
conclusion of the next result.

(19.7.2) Proposilion. Any finite or countable graph is an induced subgraph of R.

PrOOF. We use the machinery of back-and-forth, but going forth only. In other
words, take the graph A to be R (i.e., to have property (*)), and let I be any finite
or countable graph. Proceeding only from I' to A (as in the ‘odd-numbered steps’
before), we construct a one-to-one map from I' to A whose image is an induced
subgraph of A isomorphic to I'.

A graph I is said to be Aomogeneous if the following condition holds:

Let ¢ be any isomorphism between finite induced subgraphs of I.
Then there is an automorphism 6 of I' which extends ¢.

(19.7.3) Proposition. R is homogeneous.

Proor. This is again proved by back-and-forth. We take the two graphs I’ and A
to be equal to R, but modify the start of the construction: instead of starting with
no information about 8, we take its initial value to be the given map ¢. Then the
argument produces an isomorphism from I' to A (that is, an automorphism of R)
which agrees with ¢ on its domain.

It follows that the automorphism group of R is infinite. For let the vertices
be {z1,Z2,...}. Since all 1-vertex induced subgraphs are isomorphic, there is an
automorphism 6, mapping z; to z, for each n. In fact this group has cardinality
2% the same as that of the symmetric group on a countable set; see Exercise 12,

It can be shown that any countable homogeneous graph which contains all
finite graphs as induced subgraphs is necessarily isomorphic to . A much more
difficult result is a theorem of Lachlan and Woodrow which determines all countable
homogeneous graphs.

19.8. Exercises

1. Prove that the set of finite subsets of a countable set is countable, but that the set
of all subsets is not.

2. (a) Use Konig’s Infinity Lemma to show that every countable poset has a linear
extension,

(b) Use the Propositional Compactness Theorem to show that every poset has a
linear extension.

3. Prove the Axiom of Choice, assuming Zorn’s Lemma. [HINT: consider the set of
partial choice functions for a family of sets, ordered by inclusion.]

4. Prove the infinite Ramsey Theorem for all k. [HINT: The proof is by induction

on k. Follow the argument given, but replacing condition (b) by

(b") 3 € Y, and for all (k — 1)-subsets Z of ¥;, the sets {y:} U Z have the same
colour.
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(Use Ramsey’s Theorem with & — 1 replacing % to construct ¥;.) Now, in the
constructed sequence {#,¥z,...}, the colour of a k-set depends only on its element
y; with smallest index <. The final application of the Pigeonhole Principle is essentially
the same.)

5. Use Konig’s Infinity Lemma to prove the countable version of Hall’s Theorem
for families of finite sets (19.5.1).

6. Why do Konig’s Infinity Lemma and the Propositional Compactness Theorem
allow us to prove the finite Ramsey Theorem from the infinite, but the infinite
Four-colour Theorem from the finite?

7. Modify the free construction of (19.6.1) to produce infinite Steiner triple systems.

8. Prove that the number of 3-arcs in an infinite STS is equal to the number of
points. [HINT: a® = ¢ for all infinite cardinals a.]

9. Show that, in an infinite projective plane, the (cardinal) number of points on any
line is equal to the total number of points. Hence show that any infinite projective
plane contains a set 5 of points such that |S N L} = 2 for all lines L.

10. Prove that a countably infinite graph I' is a spanning subgraph of R if and only
if T satisfies the following condition:
for any finiie set V of veriices, there is a vertex z joined to no veriexin V.

11. (a) Prove that R is isomorphic to its complement.
(b) Prove that R is isomorphic to R — v for any vertex v, and to R — e for any
edge ¢. (In other words, R is immune to any finite amount of tampering.)

12. Let § be a set of positive integers. Let I'(S) be the graph with vertex set Z, in
which z and y are joined if and only if |z —y] € S.

(a) Prove that the map z — z + 1 is an automorphism of I'(S), permuting all
the vertices in a single infinite cycle (a cyclic automorphism). (In the language of
Section 14.7, I'(5) is the Cayley graph of the additive group of Z with respect to the
set S.)

(b) Choose S at random by tossing a fair coin for each positive integer n, putting
n € S if the result is heads and not otherwise, Prove that, with probability 1, I'(.5)
is isomorphic to A.

(c) Deduce that R has a cyclic automorphism.

(d) Show that an event with probability 1 is uncountable, and deduce that the
automorphism group of R is uncountable. (Read ‘cardinality 2% for ‘uncountable’
here and try the resulting harder problem.)
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This kind of rather highflown speculation is an essential part of my job.
Without some capacity for it | could not have qualified as a Mobile, and |
received formal training in it on Hain, where they dignify it with the title of
Farfetching.

Ursula K. LeGuin, The Left Hand of Darkness (1969)

This final chapter has two purposes. A few topics not considered earlier are
discussed briefly; usually there is a central problem which has served as a focus
for research. Then there is a list of assorted problems in other areas, and some
recommended reading for further investigation of some of the main subdivisions of
combinatorics,

20.1. Computational complexity

This topic belongs to theoretical computer science; but many of the problems of
greatest importance are of a combinatorial nature. In the first half of this century,
it was realised that some well-posed problems cannot be solved by any mechanical
procedure. Subsequently, interest turned to those which may be solvable in principle,
but for which a solution may be difficult in practice, because of the length of time
or amount of resources required. To discuss this, we want a measure of how hard,
computationally, it is to solve a problem. The main difficulty here lies in defining
the terms!

PrROBLEMS.

Problems we may want to solve are of many kinds: anything from factorising a
lazge number to solving a system of differential equations to predict tomorrow’s
weather. In practice, we usually have one specific problem to solve; but, in order to
do mathematics, we must consider a class of problems,

For example, from a mathematician’s point of view, finding a2 winning strategy
for chess is trivial, since there are onmly finitely many configurations to consider.
(The laws of chess put an upper bound on the number of moves in a game, and
the number of possibilities at each move is clearly finite.) So mathematicians define
‘generalised chess’ played on an n x n board.

For illustration, we consider the following class of problems, known by the term
HAMILTONIAN CIRCUIT: given a graph I', does it have a Hamiltonian circuit? We
saw in Section 11.7 that there is a trivial algorithm which solves this problem, but
it is extremely inefficient!

Obviously the ‘complexity’ if the problem depends on the size of the input data
— bigger graphs will pose harder problems, in general — so we need first a measure
of the size of the data, We use an information-theoretic measure: the number of
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bits of information needed to present the data. For example, a graph with n vertices
can be encoded as n? bits, as follows: number the vertices as vy, v2,...,0,; then let

o = { 1 if v; is joined to v; by an edge;
1 0 otherwise.

(This is essentially the adjacency matrix.) Then represent the graph by the sequence

11312+, Q12021022 25, A2n + + . Cn1ln2 .+ . Gpp.

Note that this method is somewhat redundant: we know that a; = 0 for all :
(no vertex is joined to itself), and a;; = a;; for all i, ; (joins are not directed), so
we could encode the same information in half the space. We will not strive for the
most efficient representation! This leads to an important principle: Our complexity
measures should be such that (within reason)

different representations of the input data don’t change the com-
plexity of a2 problem.

Rather than defining ‘within reason’, I'll illustrate with a data representation which
is unreasonably wasteful. Consider the problem PRIME: given an integer IV, decide
whether it is prime. The integer N could be given as a sequence of N ones; but
this is ridiculous, since the base 2 representation of N uses only 1 + flog, N] binary
digits.

We make one further simplification: we consider only problems with a simple
yes-no answer, so-called decision problems. The HAMILTONIAN CIRCUIT problem
is of this form, as is PRIME. A more general problem can be reduced to several
decision problems using the ‘twenty questions’ principle (Chapter 4). For example,
the problem ‘What is the longest circuit in the graph G?’ can be solved by a number
of instances of ‘Does G have a circuit of length > £7’; only [log,n] questions are
required, where n is the number of vertices.

RESOURCES.
The complexity of a problem should be a measure of the computational resources
needed to solve it.

There are various resources which have been considered: time, memory space,
number of processors (in a parallel processing system), etc. In practice, time is
usually the limiting factor, and I will consider only this one.

Of course, different computers run at different speeds, and we have to allow for
this. We standardise by taking the unit of time to be that required for the processor
to carry out one operation. The effect of processor speeds is not so significant. For
example, if a computation takes 103" processor cycles to perform, it doesn’t matter
whether the computer runs at 1 or 1000 million cycles per second. (There are fewer
than 10° seconds in a year; and the universe is fewer than 10'° years old, according
to current theory.)

Different processors can carry out different amounts of work in a single cycle.
Again, this dictates that our complexity measure should not be too precise:

processor details should not change the complexity of a problem.
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The theoretical analysis is based on a Turing machine, almost the most primitive
machine imaginable. It consists of a ‘tape’ on which information can be written,
extending infinitely far in both directions (but having all but a finite amount blank),
and a ‘head’ positioned over the tape so that it can read or write to one location
on the tape. (The tape and head correspond to the memory and CPU of a real
computer.) The head can also be in one of a finite number of ‘internal states’, and
each tape location can have one of a finite number of ‘symbols’ (including ‘blanl’)
written on it. In one cycle, the machine can write a symbol on the tape, change its
internal state, and move one position left or right.
The details are not too important. What is important is that!
¢ any computation possible on any machine (theoretical or practical) can be
performed by a Turing machine; and
® any processor ever made can in a single cycle perform only the equivalent of a
bounded number of Turing machine steps.
Thus we define the complexity of a class C of problems to be the function f
defined by

the least m such that a Turing machine can solve
fe(n) = {any instance of C whose data consists of n bits in
at most m steps.

We call two classes C; and C; equivalent if there is a polynomial p(z) such
that fe,(n) £ fe,(p(n)) and f¢,(n) < fe,(p(n)). This definition encompasses our
principles that different data representations and different processor details should
not alter the complexity of a problem (that is, the resulting complexity measures
should give equivalent results). So all classes C for which fc(n) is bounded by
a polynomial in n are equivalent, but are not equivalent to problems which take
exponentially long to solve.

ALGORITHMS.

We haven't specified how the problem is to be solved. The definition of complexity
presupposes that the most efficient algorithm is used. This means that upper bounds
on complexity are much easier to prove than lower bounds. To show that the
complexity of C is af most F(n), we just have to exhibit an algorithm which solves
any instance of C of size n in at most F(n) steps. But to show that the complexity is
at least F(n) is much tougher; we have to prove that no algorithm can exist which
takes fewer than F(n) steps.

Consider the problem PRIME, for instance. Remember that an integer IV is to
be input in base 2 representation, so that if the input has size n, then N may be
as large as 2" — 1. If we use ‘trial division', checking all numbers up to VN to see
if they divide IV, we will take at least 2*/? steps: exponentially many! Using much
more elaborate number theory, it has been shown that the complexity of PRIME
doesn’t exceed nt1o81°8", Conceivably, it is polynomial in n.

! Alan Turing would have argued that these statements hold true for the human brain as well as any
artificial machine,
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THE cLass P.

We say that the class C of problems is pelyromial-time solvable, or belongs to P, if

its complexity is not greater than a polynomial function of n. As we saw earlier,

this property does not depend on details about data representation or processots.
To show that a class C belongs to P, we have to describe an algorithm which

solves problems in C in polynomial time. This has been done in a number of

instances, some of which are not at all obvious. For example:

(a) Given integers M and N, does M divide N? The primary-school long division
algorithm decides this in polynomial time.

(b) Given a graph G, is it connected? We saw an algorithm for this problem in
Section 11.11; it runs in polynomial time.

(c) The greedy algorithm for a minimal connector (Section 11.3) is polynomial.

(d) LINEAR PROGRAMMING. This is traditionally solved by the ‘simplex method’

) Though this is efficient in practice, there are some contrived problems which it
takes exponentially long to solve. In the last decade, Khachiyan found a different
algorithm (the ‘ellipsoid method’) which runs in polynomial time. Subsequently
Karmarkar found another polynomial-time algorithm.
Current ‘received wisdom’ is that the problems in C are ‘tractable’ if C belongs to

P, and are ‘intractable’ otherwise. (In fact, properties which are not quite polynomial,

such as PRIME, are regarded as ‘tractable’ as well Large numbers are routinely

tested for primality by known algorithms of complexity n¢!°81°8", For n = 1000, that

is, numbers with about 300 decimal digits, log log » is only 7.742.)

THE cLaSS NP.
There is an important type of problem for which no polynomial-time algorithms are
known; but, if a solution is proposed, then its validity can be checked quickly.

Imagine that you are a travelling salesman with a briefcase full of Hamiltonian
graphs. Your customers don’t have a quick way of deciding the HAMILTONIAN
CIRCUIT problem — if they did, they wouldn’t be your customers — but they want
to buy graphs with Hamiltonian circuits. You show them a graph, and tell them
a Hamiltonian circuit in the graph; they can easily (meaning ‘in polynomial time’)
check that your claim is correct.

A class C of decision problems is said to belong toe NP if, for any problem in the
class for which the answer is ‘yes’, there is a ‘certificate’, a piece of information using
which it is possible to verify the correctness of the answer in polynomial time. Thus,
an explicit Hamiltonian circuit is a certificate for HAMILTONIAN CIRCUIT, showing
that it belongs to NP.

The letters NP stand for ‘non-deterministic polynomial’, deriving from another
way of viewing this concept. A class C belongs to NP if a problem in C of size »
can be solved in time which is polynomial in n by a program which is allowed to
make some lucky guesses. (You can find a Hamiltonian circuit in polynomial time
by guesswork, if you are lucky!)

The class P is contained in NP: problems in P can be solved quickly without
recourse to certificates or guesswork., Many other classes of problems are in NP:
HAMILTONIAN CIRCUIT (as we've seen), GRAPH ISOMORPHISM (deciding whether
two graphs are ‘the same’), SATISFIABILITY (does a Boolean formula take the value
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TRUE for some choice of values for its variables?), DECODING A LINEAR CODE.
(Encoding a linear code is in P, since it is simple linear algebra.) It is true, though
not obvious, that PRIME belongs to NP. But the opposite problem, COMPOSITE
(i.e., is N composite?) is clearly in NP, (A certificate for the compositeness of N
is a proper factor M of N: we saw that divisibility can be checked in polynomial
time.) The main open problem is:

Is P £ NP?

NP-COMPLETENESS.
We say that a class C; is reducible to a class C; if, given a problem in C, (with data
of size n}, we can compute the data for a problem in C; with the same answer, in a
time which is polynomial in n. Thus, if C, is reducible to C;, and if C; belongs to P
(or NP, respectively), then so does C,. Intuitively, it means that problems in C; are
no harder than those in C,.

Stephen Cook proved in 1969 that NP contains a class C of problems such that
any class in NP is reducible to C. The class he gave was SATISFIABILITY of Boolean
formulae. A class with Cook’s property consists of ‘the hardest problems in NP’ in
the sense that if a polynomial-time algorithm for such a class were ever found, then
it would follow that every problem in NP would have a polynomial-time solution,
that is, that P = NP. Such a class is called NP-complete.

Since Cook’s work, hundreds of classes have been shown to be NP-complete,
including HAMILTONIAN CIRCUIT and DECODING A LINEAR CODE,

In summary, then, we regard a class of problems as ‘easy’ if it lies in P, or
nearly so; and as ‘hard’ if it is at least as hard as an NP-complete class. (There are
problems which are much harder than anything in NP; typical examples are finding
winning strategies in positional games, where we have to consider each possible
response of our opponent, each response we could make to it, each response of
our opponent to our move, and so on — the branching tree of possibilities require
exponential time to analyse.) Other problems, notably GRAPH ISOMORPHISM, ate
in NP but not known to be either in P or NP-complete; it is thought that they
may lie strictly between these two classes.

The standard reference on P and NP is Computers and Intractability: A Guide to
the Theory of NP-Completeness by M. R. Garey and D. S. Johnson (1979), which lists
hundreds of problems (many of them combinatorial) together with their classification
as in P, NP-complete, neither, or ‘don’t know’.

20.2. Some graph-theoretic topics

This section presents thumbnail sketches of three topics in graph theory (recon-
struction, higher regularity conditions, and random graphs), which haven’t been
mentioned yet.

GRAPH RECONSTRUCTION.

The reconstruction problem for graphs (in two versions, one for vertices and one for
edges) has the fascination of a long-standing open problem, and also has unexpected
Hnks with other topics. In its original, vertex form, the problem is as follows. Given
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a graph [’ with n vertices, construct a ‘deck of cards’; the i*" card carries a drawing
or specification of the subgraph of I' obtained by deleting the i** vertex of T, for
i=1,...,n. Now we ask: can I' be reconstructed, up to isomorphism, from the
information provided by the deck of cards? Graphs on two vertices cannot be
reconstructed in this way, since each of them has a deck of two cards, each with a
1-vertex graph on it. However, the vertex-reconstruction conjecture asserts that any
graph with more than two vertices is reconstructible.

More formally, call graphs I' and A hypomorphic if there is a bijection ¢ from
the vertex set of I' to that of I' such that I' — v and A — ¢(v) are isomorphic, for
each vertex v of I, The conjecture asserts that hypomorphic graphs with more than
two vertices are isomorphic.

The problem is open, but many partial results exist. On one hand, it is known
to be true for many particular classes of graphs (disconnected graphs, trees, regular
graphs, etc.). On the other, many properties are known such that, if two graphs are
hypomorphic and one has the property in question, then so does the other (number
of induced subgraphs of a particular kind, existence of a Hamiltonian circuit, etc.).

1t is known that the vertex-reconstruction conjecture fails for directed graphs;
infinitely many pairs of digraphs are known which are hypomorphic but not
isomorphic.?

There is also an edge-reconstruction conjecture, in which the information given
is the deck of edge-deleted subgraphs. It is also open. The largest known counterex-
ample is the pair of graphs I, A on four vertices, where I' consists of a triangle and
an isolated vertex, and A is the ‘star’ K 3. There are many partial results, of which
the strongest is the theorem of Lovész and Miiller, which shows that the conjecture
is true for the vast majority of graphs:

(20.2.1) Theorem. A graph with n vertices and more than nlog; n edges is edge-
reconstructible.

The edge-reconstruction conjecture can be formulated in the language of permu-
tation groups; the result of (20.2.1) extends to a general theorem about permutation
groups.

HIGHER REGULARITY CONDITIONS.
A graph I is said to be strongly regular, or SR, with parameters (n, &, A, ), if the
following conditions hold:

o I has n vertices;

o [ is regular with valency k;

® any two adjacent vertices have exactly A common neighbours;

e any two non-adjacent vertices have exactly ;& common neighbours.

We have seen some examples already. The Petersen graph is SR, with parameters
(10,3,0,1); indeed, any Moore graph of diameter 2 is SR (Section 11.12). The
complete bipartite graph K, , is SR with parameters (2k,k,0,k). Many other
examples exist. On the other hand, various necessary conditions are known for the

2 The existence of a finite number of counterexamples is not regarded as invalidating a conjecture of
this kind, merely as modifying its statement.
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quadruple (n, k, A, ) to be parameters of a SR graph. A simple counting argument
shows that k(k — A — 1) = (n — k — 1). {Double-count edges joining a neighbour
of v to a non-neighbour.) Another powerful condition comes from Hnear algebra,
by the argument we used for Moore graphs in Section 11.12. However, there is still
a wide gap between the known necessary conditions and the sufficient conditions
(arising from explicit constructions). As a sample question, it is not known whether
ot not a SR graph with parameters (99,14,1,2) exists.

Strongly regular graphs are closely connected with topics in finite geometry (nets,
partial geometries), design theory, Euclidean geometry, permutation groups, and a
number of other areas.®

The definition can be unified and strengthened. For a positive integer ¢, we say
that the graph I' is t-tuple regular if, for any set S of at most ¢ vertices, the number
of common neighbours of the vertices in ' depends only on the subgraph induced
on S. For t =1 and for ¢ = 2, this condition reduces precisely to regularity and
strong regularity, respectively; and the condition becomes stronger as ¢ increases.
For large t, we have the following;:

(20.2.2) Theorem. Let I’ be 5-tuple regular. Then I is one of the following: a disjoint
union of complete graphs of the same size; a regular complete multipartite graph
(1e., the complement of the preceding); a pentagon; or the line graph of K33. All
these graphs are t-tuple regular for all t.

Another variant is a weakening of the condition of strong regularity, to distance-
regularity, A connected graph I' is distance regular if, given integers j and k, the
number of vertices at distance j from vertex v and k from vertex w depends only
on the distance ¢ between v and w. (In fact, only a small subset of these conditions
are required to guarantee the whole set.) A connected graph is strongly regular if
and only if it is distance-regular of diameter 2. However, it seems that distance-
regular graphs of large diameter are not so common, and there is some hope of a
classification of these. See the book Distance-Regular Graphs by A. E. Brouwer et
al. (1989) for further information.

RANDOM GRAPHS.

Twice already (in Chapters 10 and 19) we've met the notion of a random graph,
whose edges are selected independently with probability 1 (so that all labelled graphs
are equally likely, if the number of vertices is finite). To develop a theory, we need
more flexibility! Two models are commonly used. Let n denote the number of
vertices.

FIRST MODEL. We choose edges independently with probability p, for some fixed p
with 0 < p < 1.

SECOND MODEL. We specify the number m of edges of the graph, and choose the set
of edges from the (“(";l)/ 2) possible m-sets (all such sets equally likely).

We examine the behaviour of a ‘typical’ graph as n — 00, where p or m is equal
to a prescribed function of n. Of course, the two models are not the same; the

3 A surprising recent connection is with the theory of knot polynomials.
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second always has exactly m edges, whereas the number of edges in the first has a
binomial distribution with mean pn(n — 1)/2. Nonetheless, it is not too surprising
that these models behave quite similarly, if m and p are related by m = pn(n—1)/2.
For the sake of exposition, I'll use the second model.

One feature of the theory is that, for various properties P of graphs, there are
sharp thresholds. In other words, there is a function f such that, if m is a bit less
than f(n), then almost no graphs have property P (that is, the proportion of graphs
on n vertices which satisfy P tends to 0 as n — o0), and if m is a little greater than
f(n), then elmost all graphs (a proportion tending to 1) satisfy P. We say that P
holds almest surely if almost all graphs have P.

Two basic results illustrate these ideas. In both results, we consider random
graphs with n vertices and m edges, according to the second model.

(20.2.3) Proposition. Suppose that m ~ en.

(a) If'0 < ¢ < 3, then almost all graphs have the properiy that almost all
components are irees or unicyclic, the largest component having approximately
logn vertices.

{b) If ¢ = }, then almost surely the largesi component has about n?/ vertices.

(c) If ¢ > 1, then almost surely the largest component has size about c'n, for
sorme constant ¢’ (depending on c).

2/3

(20.2.4) Proposition. Suppose that m ~ enlogn.
(a) If 0 < ¢ < }, then almost all graphs are disconnected.
(b} If ¢ > 1, then almosi all graphs are Hamiltonian.

Many similar results are known, and the ‘sharpness’ of the thresholds has been
greatly improved. One helpful way of describing the results is in terms of the
‘evolution’ of a random graph, as the number of edges is gradually increased. The
existence of thresholds shows that the process in some way resembles the ‘punctuated
equilibrium’ model of biological evolution,! where short periods of rapid change are
interspersed with long stretches of relative uniformity.

Bollobas’ book Rardom Graphs (1985) gives a detailed account.

20.3. Computer software

An essential part of the training of a statistician or numerical analyst involves the
use of ‘standard’ computer software packages. A few years ago, I was asked what
the equivalent packages in combinatorics were. I answered, ‘C or Pascal’.

Today I would still give that answer, though now more by taste than by necessity.
In a general-purpose programming language, you can do anything; and you do not
pay the price in overheads associated with translation from one language into
another, or with ‘user-friendliness’. .

[If you do combinatorial computing in a general-purpose language, it is very
important to remember Wirth'’s dictum, ‘Algorithms + Data Structures = Programs’.
The data structures you will use (perhaps large integers, partitions, permutations,

4 Stephen Jay Gould, Ever Since Darwin (1977).



20.4. Unsolved problems 333

trees, graphs, families of sets) are not usually well represented by the built-in data
sttuctures of the language (perhaps small integers, floating-point reals, characters,
and strings of characters). Time spent on designing well-adapted data structures will
not be wasted.]

Now it is increasingly common to find specialised systems which are useful
in combinatorics. This is particularly true for the material of Chapter 14. The
Schreier-Sims algorithm for getting information about the group generated by
a set of permutations is quite sophisticated, and can be integrated in a system
where it might use the output from an algorithm for finding generators for the
automorphism group of a graph, or from the Todd-Coxeter algorithm (which takes
as input generators and relations for a group G, and generators for a subgroup H,
and returns permutations generating the action of G on the coset space G : H).
The output from the Schreier—Sims algorithm might itself be subjected to further
group-theoretic -analysis. Two integrated systems (both of which have much wider
capabilities) are the long-established CAYLEY (and its successor MAGMA), and the
newer and smaller GAP. These algorithms are also making their way into more
conventional ‘computer algebra’ systems.

Various packages for combinatorial optimisation are available. Often, these are
centred around linear programming. However, dramatic new algorithms for finding
approximate solutions to ‘hard’ {e.g. NP-complete) optimisation problems, such as
simulated annealing and genetic algorithms, are becoming available.

Finally, I should mention the language ISETL, designed for the purpose of
teaching discrete mathematics: see Baxter, Dubinsky and Levin, Learaing Discrete
Mathematics with ISETL (1989). This language handles large integers, sets, sequences,
functions, etc., with a syntax almost identical to that used by a mathematician’® It
is very easy to learn (no type declarations are required), and is freely available on a
wide range of personal computers and operating systems.

20.4. Unsolved problems

This section presents some further problems which have guided the direction of
research in the past. Unlike earlier chapters, you are not expected to solve all of
these.

GRAPH COLOURING.
Despite the work of Appel and Haken, and of Robertson and Seymour, this area
still abounds with hard problems. Here are three:

o The Strong Perfect Graph Conjecture: a graph I and all its induced subgraphs
have clique number and chromatic number equal if and only if neither G nor
its complement contains an induced cycle of odd length greater than 3 (see
Section 18.4).

S For example, in ISETL, one can define the Cartesian product of sets A and B to be

{ [x,y] : x in &, y in B }.
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o Hadwiger’s Conjecture: a graph with chromatic number n has K, as a minor.
[This would imply the Four-Colour Theorem, since the class of planar graphs is
minor-closed and Ky is not planar.]

o The List Colouring Conjecture: Let T have edge-chromatic number n. Suppose
that S is any set of ‘colours’ and, for each edge ¢ of T, a list L(¢) of n elements
of S is given. Then T' can be edge-coloured using 5, so that the colour of any
edge ¢ belongs to L{e).

ExTREMAL SET THEORY.
Rather than mention specific problems, I will describe how a number of questions
can be put into this framework,

If we identify a binary word of length n with the subset of {1,...,n} of which
it is the characteristic function, then the ‘main problem’ of coding theory over the
binary alphabet (Section 17.4) takes the form: Given n and d, what is the largest
family F- of subsets of {1,...,n} such that |[FLAF| > d for all F1,F, € F with
F 2 # F 2?

A permutation 7 of {1,...,n} = N can be regarded as a subset S(«) of the
square array IV x IV containing exactly one element from each row or column. The
number of fixed points of m#;" is then [S(m1) N S(m2)|. So ‘metric’ questions about
permutations can be phrased in terms of families of sets of this special form.

DEsigy THEORY.
Asking for less than a complete list of parameters of ¢-designs, we could pose the
problems:

o Do Steiner systems S(2, k,v) (or ¢-(v, k, 1) designs) exist for all ¢?

¢ Is there a projective plane whose order is not a prime power?

o Is there a Hadamard matrix of every order divisible by 47

One can define g-analogues of #-(v, k, A) designs: the blocks are k-dimensional

subspaces of a v-dimensional vector space over GF(g), and any t-dimensional
subspace lies in exactly A blocks. Do non-trivial g-ary {-designs (without repeated
blocks) exist for all £? Or even for ¢ = 47

PoskErs.
A question that continues to tantalise is the 1-2 problem. If z and y are incomparable
elements of the poset P, let n(z,y) be the proportion of linear extensions of P in
which < y. Is it true that every poset which is not a chain contains elements z
and y with } < n(z,y) < 27

The problem of finding the cardinality of the free distributive lattice on n
generators was mentioned in Section 12.3.

ENUMERATION.

A glance at the Handbook of Integer Sequences, by Neil Sloane, shows a number
of combinatorial counting sequences of which only a few terms are known. Each
poses the problem of finding either a general formula or more terms. Sloane himself
mentions several, including various kinds of ‘polyominoes’, non-attacking queens,
polytopes, Latin squares, linear spaces (families of sets with any two points in a
unique set of the family), and knots.
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MISCELLANEA.
o Is there a perfect 1-error-correcting code over an alphabet not of prime-power
size (Section 17.6)7
¢ Is there a Moore graph of diameter 2 and valency 57 (Section 11.12)?
¢ A conjecture of Isbell: Let » = 2°b with & odd. If o is sufficiently large compared
to b, then an intersecting family of subsets of {1,...,n} with cardinality 2!
cannot be invariant under a transitive group of permutations of {1,...,n}.

20.5. Further reading

I expect that, if you've read this far, you are feeling that on some topics I stopped
just as things were getting interesting, while on others I said more than anyone
would reasonably want to know. But I can’t predict which topics will fall into which
class, This section should help you explore further.

The authors of a book have to make some compromise between coverage and
exposition. The result will lie at some point on the scale between light bedtime
reading and an encyclopsedia. Where I list two books, I have tried to put the
textbook before the reference book.

GENERAL.

There are a number of general combinatorics books. Those which go beyond the
introductory material tend to reflect their authors’ interests. For example, M. Hall’s
Combinatorial Theory (1986)is strong on codes and designs, as well as the asymptotics
of the partition function and the proof of the Van der Waerden Conjecture. Other
books include L. Comtet, Advanced Combinatorics {1974), J. Riordan, Az Introduction
to Combinatorial Analysis (1958), H. J. Ryser, Combinatorial Mathematics (1963), and
the recent book by J. H. van Lint and R. M. Wilson, 4 Course on Combiratorics.

The Handbook of Combinatorics, due out soon, will contain commissioned sur-
veys on all parts of combinatorics. Another good source of more specialised surveys
is the Proceedings of the biennial British Combinatorial Conference. Speakers are
invited to survey their subject areas, and the papers are published in advance of the
meetings. These have appeared in the London Mathematical Society Lecture Note
Series since 1981, and most topics have been covered.

Another very useful book is L. Lovasz's Combinatorial Problems and Exercises
(1979), a vast collection of problems ranging from rouiine exercises to major theo-
rems. The book is in three parts: Problems, Hints, and Solutions; the third part is
the longest!

ENUMERATION.

F. Harary and E. M. Palmer, Graphical Ernumeration (1973) is a good exposition; L P.
Goulden and D. M. Jackson, Combinaterial Enumeration (1983) contains everything
you need about manipulating generating functions.

One book which is indispensible to enumerators is N. Sloane’s 4 Handbook of
Integer Sequences (1973) (a new edition is under way). This is a list of over 2000
sequences in lexicographic order, with detailed bibliographic information about each
one. If the sequence you've just discovered counting ultra-hyperbolic flim-flams has
been found before, chances are you'll find it in here, with references.
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SYMMETRIC FUNCTIONS.

This subject connects with enumeration on one side and with representation on the
other. R. P. Stanely’s Ordered Siructures and Partitions (1972) is on the combina-
torial side; I. G. Macdonald's Symmeiric Functions and Hall Polynomials (1979) is
condensed but clear.

FAMILIES OF SETS.
I. Anderson, Combinatorics of Finite Sets (1987) and B. Bollobas, Combinatorics
(1986) are recommended.

TRANSVERSAL THEORY (SDRs),
L. Mirsky, Transversal Theory (1971); L. Lovasz and M. D. Plummer, Matching
Theory (1986).

R4MSEY THEORY.

R. L. Graham, B. L. Rothschild and J. Spencer, Ramsey Theory (1990), is wide-
ranging and readable. P. Erdds ef al. Combinatorial Set Theory (1977), is slanted
towards the infinite.

LATIN SQUARES.
See J. Dénes and A. D. Keedwell, Latin Squares and their Applications (1974).

DESIGN THEORY.

Two books with the title Design Theory, both appearing in 1985, are the textbook
by D. R. Hughes and F. C. Piper, and the tome by T. Beth, D. Jungnickel and H.
Lenz (which gives details of many recursive constructions).

(GEOMETRY.

The classics are E. Artin, Geometric Algebra (1957), and J. Dieudonne, Lo Géomeirie
des Groupes Classiques {1955). A more recent account is in my lecture notes,
Projective and Polar Spaces (1992), available from the School of Mathematical
Sciences, Queen Mary and Westfield College. For finite projective geometries, the
three-volume series by J. W. P. Hirschfeld, Projective Geometries over Finite Fields
(1979, 1985, 1991 ~ the last with J. A. Thas), is definitive.

PERMUTATION GROUPS.
H. Wielandt, Firite Permutation Growps (1964), and D. S. Passman, Permutation
Groups (1968). T. Tsuzuku, Finile Groups and Finite Geometries (1982) and N. L.
Biggs and A. T. White, Permutation Groups and Combinatorial Structures {(1979) deal
particularly with the relations to combinatorics. No satisfactory account of the
situation post-Classification (of finite simple groups) has appeared.

A class of infinite permutation groups with particular links with combinatorics
are discussed in my book Oligomorphic Permutation Groups (1990),

CoDEs.

Start with R. Hill, 4 First Course in Coding Theory (1986) or J. H. van Lint,
Introduction to Coding Theory (1982). The encyclopzdia is F. J. MacWilliams and
N.J. A. Sloane, The Theory of Error-Correcting Codes (1977). For the relation with
information theory, see C. M. Goldie and R. G. E. Pinch, Communication Theory
(1991); for cryptography, see D. J. A. Welsh, Codes and Cryptography (1988). The
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title of P. J. Cameron and 1. H. van Lint’s Designs, Graphs, Codes and their Links is
self-explanatory.

ORDERS.
B. A. Davey and H. A. Priestley, Introduction to Latlices and Order (1990).

MarRoIDS.
V. W. Bryant and H. Perfect, Independence Theory in Combinatorics (1980) sets the
scene for the comprehensive treatment by D. J. A. Welsh, Matroid Theory (1976).

GRAPH THEORY.
There is a wide choice of books at many levels. R. J. Wilson’s Introduction to Graph
Theory, is just that. For more specialised topics, see B. Bollobas, Exrtremal Graph
Theory (1978); B. Bollobas, Random Graphs (1985); A. E. Brouwer, A. M. Cohen,
and A. Neumaier, Distance-Regular Graphs (1989); or several of the books referred
to earlier.

Four volumes of surveys edited by L. W. Beineke and R. J. Wilson, three on
Selected Topics in Graph Theory (1974, 1977, 1988) and one on Applications of Graph
Theory (1979), give a wide coverage of the subject.

[NFINITE COMBINATORICS.

No text-book is devoted exclusively to this. Most books include it in varying
proportions. D. Konig’s early classic Theorie der endlichen und unendlichen Graphen
(1950 reprint) is not prejudiced towards the finite. A recent conference proceedings
edited by R. Diestel, Directions in Infinite Graph Theory and Combinalorics (1991),
contains a number of valuable surveys.



Answers to selected exercises

CHAPTER. 2, EXBRCISE 5. There are 80 unlabelled families.

CHAPTER 2, ExeRols® 12, (i) Let m = ap+ 2a1 + ...+ 2¢-1g,_,. Numbering the first row as gero,
the two entries in the i*® row are a; + 2a;4 +... + 2%~ 1-ig, 1 and 2'n. The first of these is odd if
and only if a; = 1; so we add the values 2'n for which ¢; = 1, that is, we calculate Ea;?"n = mn.

(ii) If » is written in base 2, then doubling has the effect of shifiing it one place to the left; so
the terms added are exactly those occurring in the standard long multiplication done in base 2.

(iii) With these modifications, we replace 2'n by n?', so that the final result is indeed n™, The
method requires 2}log, m| multiphications at most, viz., |log, m] squarings and then at most this
number of multiphications in the last step, since m has 1 + {log, m] digits in base 2.

CHAPTER 3, ExercisE 10, 523 words can be made with these letters.

CHAPTER 3, EXgRCISE 15. We get a 1-factor by writing n/2 boxes each with room for two entries,
and filling them with the elements 1, ..., n. These can be written in the boxes in n! ways. However,
permuting the boxes (in k! ways), or the elements within the boxes (in 2¢ ways) doesn't change the 1-
factor. The product of these numbers is 2.4.6 .. . (2k); dividing, we obtain 1.3.5...(2k~1) = (2k— 1)
for the number of 1-factors.

{b) Suppose that the t-set 4 is exchanged with iis complement B by a permutation. Then
elements of A and B alternate around each cycle, which thus has even length. Conversely, if all
cycles have even length, we may colour the elemenis in each cycle aliernately red and blue; the red
and blue sets are then exchanged.

From a permutation with all cycles even we obtain a pair of 1-factors as follows. A 2-cycle is
assigned to both l-factors; in a longer cycle, the consecutive pairs are assigned alternately to the
two 1-factors. The process isn't unique, since the starting point isn't specified; indeed, a permutation
gives rise to 24 ordered pairs of 1-factars, whre d is the number if cycles of length greater than 2,

Conversely, let & pair of 1-factors be given. Their union is a graph with all vertices of valency
2, thus a disjoint union of circuits, all of even length (since the I-factors alternate around a circuit).
We take these circuits to be the cycles of a permutation. In fact, for a eircuit of length greater than
2, there are two choices for the direction of traversal, So the number of permutations obtained is 24,
where d is as before,

(¢) The proportion is

13

((2k ~ 1)V)?/(28) = T (1 - 1/24)

i=l

&
< He—lj‘li
=1

=e E:::“"Q'-)
=e log k/24+0(1) O(k_1/2).

CHAPTER 3, EXERCISE 16. 27", (a) 27(2=1), (b) 2n(nH1)/2 () 270(n-1)/2 (q) gn(n-1)/2,
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CHAPTER 3, ExERcIsE 19. The numbers are (a) 29, (b) 13, (c) 19, (d) 6. (The numbers of uznlabelled
structures are 9, 4, 5, 1 respectively.)

CHAPTER 4, Exercise 10.
_ [(@* —1)/3, n even,
f(m)= { (21— 2)/3, n odd.

CHAPTER 4, ExercisE 11. (b) The relationship is u(n) — u(n ~ 1) = s(n)/2 forn > 2.

CHAPTER 4, EXERGISE 16. Imagine that the clown wears a diving suit, and continues to draw balls
even after he gets wet. There are (2:) ways in which the balls could be drawn. The clown stays dry if
and only if the number of red balls never exceeds the number of blue ones; according to the voting
interpretation, this is C,y1. The ratio is 1/(n + 1).

For a harder exercise, find a direct proof of this exercise, and reverse the above argument to
deduce the formula for the Catalan numbers.

CHAPTER 4, EXBRCISE 19. The recurrence can be written as

n+41
3 (":I)bkz boyy  forn>2.
k=1

Mulliplying by ¢"*'/(n 4+ 1)! and summing over n, the two sides are f(t)exp(¢) and f(t) with
the constant and linear terms omitted. Thus f(t)exp(t) — 1 — ¢t + 3t = f(t) — 1 + 1¢, whence
f(&) = t/(exp(t) — 1), as required.
Now f(t) + 3t = Jt(exp(4t) +exp(— L))/ (exp(4t) — exp(—11)) = Lt coth 12, an even function.
The last recurrence obviously has the solution b, = (—1)*.
CHAPTER 5, EXERCISE 1. The pollster is either dishonest or incompetent,

CHAPTER 5, EXERCISE 11, (a) The identity has n cycles, a single cycle just one, and multiplying by
a transposition changes the number by 1. So at least # — 1 transpositions are required. The proof
of (5.5.2) shows that this number is achieved if and only if each transposition involves points lying
in different cycles of the product so far. This is equivalent to saying that the transpositions are
edges of & connected graph without cycles, a tree (compare the discussion in Section 11.3). There are
n"~2 trees on {1,...,n}, and (n — 1)! orders to choose the n — 1 edges of such a tree. So there are
n"~%(n — 1)! tree-cycle pairs. Each of the (n — 1)! cycles accurs equally often (they are all conjugate),
necessarily n*~2 times,

CHAPTER 6, ExERCISE 2. We look for properties of the group multiplication tables unaltered by row
and column permutations, There are two groups of order 4, the cyclic group and the Klein group.
The second, but not the first, has the property that given any two rows and any column, there is a
(unique) second column so that the entries in these rows and columns form a Latin subsquare of
order 2. This property is preserved by row and column permutations. So the two multiplication tables
are inequivalent. Since there are only two inequivalent Latin sqnares, both are group multiplication
tables.

There is only one group of order 5, the cyclic group; its multiplication table has the property
that any two rows ‘differ’ by a cyclic permutation. It is not hard to construct a Latin square of order
5 which does not have this property.

CuapTER 6, ExerCIsk 4. (a) {{1,2,3}, (1,2}, {1,3}}.
(b) 24.

CHAPTER 7, ExercisE 4. HINT: Use Lucas’ Theorem (Section 3.4).

CHAPTER 7, EXERCISE 8. (a) The minimal sets of any family form a Sperner family.

(b} If Z is minimal with respect to meeting every set F'\ F,for ' € F, F' £ F,then Y = {y}UZ
has this property. [Why does such a Z exist?)

(¢) If F € ¥, then F meels every set of B(F); by (b), if we omit a point of F, this is no longer
true, so F is minimal. Thus F C b(b(F)). To prove the reverse inclusion, it suffices to show that a
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set meeting every member of b(F) contains a member of ¥, or equivalently, a set Z containing no
member of F is disjoint from some member of 4(F). But if Z is such a set, then X \ Z meets every
member of F, so X \ Z contains a member of 5(F), as required.

(d) The first part is clear, since an (n + 1 — k)-set meets every k-set but an (n— k)-set is disjoint
from some k-set.

Fo = {0}, and no set meets 6, so b(Fp) = 0, the empty family. {Note that any set has the
property that it meets every set in ¥, and the unique minimal set is @; so () = {8}, in accordance
with (c}.]

CHAPTER 8, EXBRCISE 2. 1+ 2 is a primitive element; its fourth power is 1 — z. So coset representatives
are ], 14z (142 =3z,and (14+2)°=2+2.

CHAPTER 8, Exercise 11, Let z be a point outside Y. Then 2 lies in (n ~ 1}/2 triples. But a triple
containing z and a point of ¥ contains only one point of ¥ (since a triple with two points in Y is
contained in Y'); there are m triples of this form. Thus, (» —1)/2 > m.

Equality holds if and only if every triple through any point outside Y meets Y, ie., no triple is
disjoint from Y.

CHAPTER 9, Exercisp 2. There are ¢ matrices; of these, ﬂ:'_ol(q" — ¢') are non-singular; so the

probability is B
- 1
—
IT ( 4")

k=1

(putting ¥ = n — 1 —£). This is a decreasing function of r, so tends to a limit ¢(g), which is cleatly
less than 1, Now

1 k= -1 -1
logc(q) = Zlog (1 - g_k) ZZq (k=1 og (q_g__) = q%l-log (E-T) \

since the curve y = log(1 — z) lies above the line segment from (0,0) to (1/¢,log({(g — 1)/¢)). So
c(9) 2 (9 — 1)/g)*= 1 > 0,

CHAPTER 9, EXBRCISE 11. Let py,...,ps be five points, no three collinear. Then non-gero vectors
spanning the first three points form a basis, and the other two points have all their coordinates non-
gero relative to this basis. (If p; had its third coordinate zero, then p1, p2, ps would be dependent.)
Multiplying the basis vectors by suitable scalars, we can assume that ps = [1, 1,1]. Then ps = [1, a, 8],
where 1 # a # 8 # 1 (to ensure the independence of p;, ps,ps for i = 1,2, 3).

Now the general second degree equation is

az? + by +c2® + fyz + g2z + hzy =0,
If p1, pa, pa lie on this curve, then @ = b = ¢ = 0. Substituting the coordinates of p, and ps gives

f+g+h=0,
fH+glath/B=0
These equations are independent, so the solution is unique up to scalar multiple (and so defines a
unique coric).

Counting arguments show that the number of choices of five points in PG(2,¢) with no three
collinear is

(¢® +g+1).0¢" + g).8>.(g — 1)°.(e— 2)(g - 3).

A conie has g + 1 points with no three collinear; five points can be chosen in
(g+1)q(g-1).(2-2)(¢-3)

ways. Division gives the result.
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CHAPTER 10, ExBRCISE 1. Let ¢;; and b;; be the heights of the soldiers in row ¢ and column j after
the first and second rearrangements. Then a;; > agy15. Also, ag; = b; if and only if ay; is the £
largest number in column j. Suppose that &;; < b;y1;, and let z be & number lying between these
two values. Then fewer than ¢ soldiers in column j have heights exceeding x, but ¢ or more soldiers
in column j + 1 have heights exceeding . But this is a contradiction, since each soldier in column j
{before the second rearrangement) is taller than his neighbour in column j + 1.

CHAPTER 10, EXEreIsE 6. It is important to justify the ‘by symmetry ..." in the Hint. The colouring is
unchanged if we add a fixed residue mod 17 to everything, or if we multiply everything by +1, 42, +4
or £8 (these are all the quadratic residues mod 17). Suppose that there is a red 4-set {,b,¢,d}. By
adding —a, we can assume that ¢ = 0; by multiplying by 1/b, we can assume that b = 1. Now the
red neighbours of 0 are 1, 2, 4, 8, 9, 13, 15, 16; the red neighbours of 1 are 0, 2, 3, 5, 9, 10, 14, 16. So
¢ and d are chosen from 2, 9 and 16. But all edges between these three points are blue.

Furthermore, multiplication by any fixed quadratic non-residue maps red edges to blue ones and
vice versa. So, if there were a blue 4-set, there would be a red one as well.

CuAPTER 11, EXERCISE 1. (a) 13; (b) 10; (c} 3; (d) 4; (e) 8; (£} 13.

CEAPTER 11, Exercise 13. Let A; be the set of neighbours of i. By assumption, |4; N A4;| = 1 for
i # j. If [A1] = n — 1, then 1 is joined to all other vertices. Now the remaining vertices are paired
up, since any friend of i (other than 1) is a common friend of 1 and i; the graph is a windmill.

If this doesn't happen, then |A:| = k for all i, by the De Bruijn—-Erd8s theorem. Now the
adjaceney matrix A satisfies A2 = (k — 1)I + J, where J is the all-one matrix. It has the eigenvalue
& with multiplicity 1, corresponding to the all-1 eigenvecior; any other eigenvalue o satisfies

a? =k —1,s0 the elgenvalues are vk — 1, with muitiplicities f and g, say. The trace of A is zero,
so f—g=—-k/VE

Prom the last equahon‘ it is impossible that f = g. So k = u? 4 1 for some integer u, and
f—g = —(u® + 1)/u. Since this is an integer, we have u = 1, whence & = 2 and the graph is a
triangle (which is a special case of a windmill).
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Veblen~Young Theorem, 130

Venn diagram, 76

vertebrate, 38

vertex, 159
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Combinatorics is a subject of increasing importance, owing
to its links with computer science, statistics and algebra. This
is a textbook aimed at second-year undergraduates to
beginning graduates. It siresses common techniques (such as
generating functions and recursive construction) which
underlie the great variety of subject matter and also stresses
the fact that a constructive or algorithmic proof is more
valuable than an existence proof.

The book is divided into two parts, the second at a higher
level and with a wider range than the first. Historical notes
are included which give a wider perspective on the subject.
More advanced topics are given as projects and there are a
number of exercises, some with solutions given.
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