
СУ „Св. Климент Охридски“

Факултет по Математика и Информатика

Увод в Софтуерното Инженерство

НАДЕЖДНОСТ И

СИГУРНОСТ НА

СОФТУЕРНИ СИСТЕМИ

70s: Mainframes

Integration complexity

• Close systems

• Highly custom designs

• Hardware and software fully

controlled by vendors

Надеждност и сигурност на

софтуерни системи; УСИ
2

Systems/users:

~104

User
competency:

Engineers

• Hardware

80s: Workstations

Integration complexity
• Mostly close systems

• Network connectivity

• Standard interfaces exported
for users

Надеждност и сигурност на

софтуерни системи; УСИ
3

Systems/users:

~106

User
competency:

Basic knowledge

• Hardware

• Network

90s: Personal Computers

Integration complexity
• Open systems

• Wide network access

• Commercial OS

• Third party software and
hardware

Надеждност и сигурност на

софтуерни системи; УСИ
4

• Hardware, Software

• Network

• Human mistakes

Systems/users:

~107

User
competency:

Computer Literacy

2000s: Mobile Devices

Integration complexity
• Open systems

• COTS/proprietary OS

• Highly integrated computer
systems

• Wider range of networks

Надеждност и сигурност на

софтуерни системи; УСИ
5

• Hardware, Software

• Network (wired/wireless)

• Human mistakes

• Malicious faults

Systems/users:

~109 and more

User
competency:

Undefined

Industrial trends

• Newer application domains

• Increase in complexity of systems

• Increase in interactions among them

• Increase in volume of units

• Shift in error sources

• Reduced user tolerance levels

Надеждност и сигурност на софтуерни системи; УСИ 6

Underline the growing importance of
building dependable systems

Socio-technical system

Надеждност и сигурност на софтуерни системи; УСИ 7

Software Engineering by Ian Sommerville, 9th

edition (2010), Addison-Wesley Pub Co;

Layers in the STS stack

• Equipment

• Hardware devices, some of which may be computers. Most devices

will include an embedded system of some kind.

• Operating system

• Provides a set of common facilities for higher levels in the system.

• Communications and data management

• Middleware that provides access to remote systems and

databases.

• Application systems

• Specific functionality to meet some organization requirements.

Надеждност и сигурност на софтуерни системи; УСИ 8

Layers in the STS stack

• Business processes

• A set of processes involving people and computer systems that

support the activities of the business.

• Organizations

• Higher level strategic business activities that affect the operation of

the system.

• Society

• Laws, regulation and culture that affect the operation of the system.

Надеждност и сигурност на софтуерни системи; УСИ 9

Systems engineering

Надеждност и сигурност на софтуерни системи; УСИ 10

Software Engineering by Ian Sommerville, 9th

edition (2010), Addison-Wesley Pub Co;

Nonfunctional requirements

• Define HOW software should

perform its functionality

• Also known as “-ilities”

• Dependability

• Testability

• Usability

• Modifyability

• Etc.

11Надеждност и сигурност на софтуерни системи; УСИ

Dependability

• Computer systems are characterized by many

fundamental properties:

• Functionality

• Non-functional characteristics

• Performance

• Cost

• Reliability

• Integrity

• Availability

• Etc..

Надеждност и сигурност на софтуерни системи; УСИ 12

Definition of dependability

Надеждност и сигурност на софтуерни системи; УСИ 13

The service delivered by a system is its behaviour

as it is perceived by its users

A user is another system

(physical,human)

“Dependability of a computing system is the ability

to deliver service that can justifiably be trusted”

HW Reliability vs. SW Dependability

Hardware

• Deterioration over time

• Design faults removed

before manufacture

• No new faults enter during

life-cycle

• Initial use & end of life

failures common

• No need of time to correct

fault

Software

• No deterioration over time

• Faults removed after build

• Faults possibly enter

during fault correction

• Failures during Initial test

period, early use common,

then stable

• Time needed to correct

faults

Надеждност и сигурност на софтуерни системи; УСИ 14

WARRANITY DISCLAIMER

Classes of dependable systems

Надеждност и сигурност на софтуерни системи; УСИ 15

Classes of Dependable Systems

• Safety-critical
• Airplanes

• Cars

• Nuclear power stations

• Traffic control systems

• Energy supply and distribution systems

• Telecommunication systems

• Etc…

• Mission-critical
• Shuttles

• Airplanes

• Business-critical
• Industrial systems

• Information systems

• Traffic control systems

Надеждност и сигурност на софтуерни системи; УСИ 16

Importance of dependability

• System failures may have widespread effects with large

numbers of people affected by the failure.

• Systems that are not dependable and are unreliable,

unsafe or insecure may be rejected by their users.

• The costs of system failure may be very high if the failure

leads to economic losses or physical damage.

• Undependable systems may cause information loss with a

high consequent recovery cost.

Надеждност и сигурност на софтуерни системи; УСИ 17

Causes of failure

• Hardware failure

• Hardware fails because of design and manufacturing errors or

because components have reached the end of their natural life.

• Software failure

• Software fails due to errors in its specification, design or

implementation.

• Operational failure

• Human operators make mistakes. Now perhaps the largest single

cause of system failures in socio-technical systems.

Надеждност и сигурност на софтуерни системи; УСИ 18

Attributes

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Dependability Means

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Threats

Faults

Errors

Failures

ability to
deliver
service
that can
justifiably
be trusted

Надеждност и сигурност на софтуерни системи; УСИ 19

Absence
of catastrophic

consequences on
the user(s) and
the environment

Continuity
of service

Readiness
for usage

Absence of
unauthorized
disclosure of
information

Absence
of improper

system
alterations

Ability to
undergo

repairs and
evolutions

SafetyReliability ConfidentialityAvailability Integrity Maintainability

Dependability

Dependability: Ability of the system to provide service that can
justifiably trusted

Надеждност и сигурност на софтуерни системи; УСИ 20

Strict definitions

• Reliability: The probability of failure-free (as per

specification) operation over a specified time, in a given

environment, for a specific purpose.

• Depends on the environment

• Availability: The probability that a system, at a point in

time, will be operational and able to deliver the requested

services.

• Does not just depend on the number of system crashes, but also

on the time needed to repair the faults that have caused the failure.

Надеждност и сигурност на софтуерни системи; УСИ 21

Availability vs. Reliability

• Availability and reliability are not the same.

• Can a system be highly available but unreliable?

• If a system goes down for a millisecond every hour, it
has an availability of over 99.9999 percent, but it is still
highly unreliable.

• Can a system be highly reliable but not available?
• A system that never crashes but is shut down for two

weeks every August has high reliability but only ~96
percent availability.

Надеждност и сигурност на софтуерни системи; УСИ 22

Fault Error Failure

Deviation of
the delivered
service from

correct
service, i.e.,

implementing
the system

function

Part of
system state

that may
cause a

subsequent
service failure

Adjudged or
hypothesized

cause of an error

Failure… …Fault

System does not
comply with
specification

Specification does
not adequately

describe function

Надеждност и сигурност на софтуерни системи; УСИ 23

Fault, Error, Failure - Example

• A Fault:

• int increment (int x) {

x = x+11; // should be x = x +1;

}

• An Error – fault activated

• Y = increment(2);

• Can be propagated.

• A Failure – Error exposed to interface

• Print(Y);

Надеждност и сигурност на софтуерни системи; УСИ 24

Failures vs Input “space”

Надеждност и сигурност на софтуерни системи; УСИ 25

Software Engineering by Ian Sommerville, 9th

edition (2010), Addison-Wesley Pub Co;

Faults nature

• Not all code in a program is executed. The code that
includes a fault (e.g., the failure to initialize a variable)
may never be executed because of the way that the
software is used.

• Errors may be transient. A state variable may have an
incorrect value caused by the execution of faulty code.
However, before this is accessed and causes a system
failure, some other system input may be processed that
resets the state to a valid value.

• The system may include fault detection and protection
mechanisms. These ensure that the erroneous behavior is
discovered and corrected before the system services are
affected.

Надеждност и сигурност на софтуерни системи; УСИ 26

Faults and failures

• Failures are a usually a result of system errors that are

derived from faults in the system

• However, faults do not necessarily result in system errors

• The erroneous system state resulting from the fault may be

transient and ‘corrected’ before an error arises.

• The faulty code may never be executed.

• Errors do not necessarily lead to system failures

• The error can be corrected by built-in error detection and recovery

• The failure can be protected against by built-in protection facilities.

These may, for example, protect system resources from system

errors

Надеждност и сигурност на софтуерни системи; УСИ 27

Strict definitions

• Reliability: The probability of failure-free (as per

specification) operation over a specified time, in a given

environment, for a specific purpose.

• Depends on the environment

• Availability: The probability that a system, at a point in

time, will be operational and able to deliver the requested

services.

• Does not just depend on the number of system crashes, but also

on the time needed to repair the faults that have caused the failure.

Надеждност и сигурност на софтуерни системи; УСИ 28

Availability vs. Reliability

• Availability and reliability are not the same.

• Can a system be highly available but unreliable?

• If a system goes down for a millisecond every hour, it
has an availability of over 99.9999 percent, but it is still
highly unreliable.

• Can a system be highly reliable but not available?
• A system that never crashes but is shut down for two

weeks every August has high reliability but only ~96
percent availability.

Надеждност и сигурност на софтуерни системи; УСИ 29

Software reliability

• Slightly different from
traditional (hardware)
reliability theory
• Failure is deterministic,

user behaviour is not

• Probabilistic value
• Probability of failure

(success)

• Mean time to failure (μ)

• Failure rate λ
• λ = 1/μ

Надеждност и сигурност на софтуерни системи; УСИ 30

Reliability modeling data

• Reliability is a probabilistic value, which may be

calculated using statistical methods over some datasets

• Such datasets may be collected using different methods,

like:

• Testing

• Users feedback

• Experts opinion

• Simulation

Надеждност и сигурност на софтуерни системи; УСИ 31

Typical failure data set

Надеждност и сигурност на софтуерни системи; УСИ 32

Kinds of software system failure

behaviours

Надеждност и сигурност на софтуерни системи; УСИ 33

Total time

№

o
f

 f
ai

lu
re

s

Reliability estimation models

• White box models

• Build an architectural

model of the system

• Integrate failure behaviour

of individual components

with architectural model

• Black box models

• Statistic processing of data

• Software Reliability Growth

Models (SRGMs)

Надеждност и сигурност на софтуерни системи; УСИ 34

Software Reliability Models

• Failure rate

Надеждност и сигурност на софтуерни системи; УСИ 35

Reliability in use

• Removing X% of the faults in a system will not necessarily

improve the reliability by X%. A study at IBM showed that

removing 60% of product defects resulted in a 3%

improvement in reliability.

• Program defects may be in rarely executed sections of

the code so may never be encountered by users.

Removing these does not affect the perceived reliability.

• Users adapt their behaviour to avoid system features that

may fail for them.

• A program with known faults may therefore still be

perceived as reliable by its users.

Надеждност и сигурност на софтуерни системи; УСИ 36

The problem with testing

• Reliability of life-critical and real-time software is
infeasible to be quantified by testing [Butler &
Finelli 1993]

• Only small reliabilities (99,999%) are possible to
be estimated in a obtainable period of time for
testing

• For example assuring that a program has failure
rate of about 10-7 per hour may require thousands
(and even more) years of testing

• There may not exist effective oracle to carry out
statistical testing

Надеждност и сигурност на софтуерни системи; УСИ 37

Cost of dependability/reliability

Надеждност и сигурност на софтуерни системи; УСИ 38

Attainable levels of SW reliability

• FAA (Federal Aviation

Administration) &

NASA safety=critical

requirement is less

than 10-10 failures per

10 hrs of flight.

Надеждност и сигурност на софтуерни системи; УСИ 39

Availability perception

• Availability is usually expressed as a percentage of the

time that the system is available to deliver services e.g.

99.95%.

• However, this does not take into account two factors:

• The number of users affected by the service outage. Loss of

service in the middle of the night is less important for many

systems than loss of service during peak usage periods.

• The length of the outage. The longer the outage, the more the

disruption. Several short outages are less likely to be disruptive

than 1 long outage. Long repair times are a particular problem.

Надеждност и сигурност на софтуерни системи; УСИ 40

Reliability/availability terminology

Надеждност и сигурност на софтуерни системи; УСИ 41

Safety

• Safety is a property of a system that reflects the system’s

ability to operate, normally or abnormally, without danger

of causing human injury or death and without damage to

the system’s environment.

• It is important to consider software safety as most devices

whose failure is critical now incorporate software-based

control systems.

• Safety requirements are often exclusive requirements i.e.

they exclude undesirable situations rather than specify

required system services. These generate functional

safety requirements.

Надеждност и сигурност на софтуерни системи; УСИ 42

Safety and reliability

• Safety and reliability are related but distinct
• In general, reliability and availability are necessary but not sufficient

conditions for system safety

• Reliability is concerned with conformance to a given
specification and delivery of service

• Safety is concerned with ensuring system cannot cause
damage irrespective of whether
or not it conforms to its specification

Надеждност и сигурност на софтуерни системи; УСИ 43

Safety terminology

Надеждност и сигурност на софтуерни системи; УСИ 44

Absence
of catastrophic

consequences on
the user(s) and
the environment

Continuity
of service

Readiness
for usage

Absence of
unauthorized
disclosure of
information

Absence
of improper

system
alterations

Ability to
undergo

repairs and
evolutions

SafetyReliability ConfidentialityAvailability Integrity Maintainability

Dependability & Security

Security

Authorized actions

Надеждност и сигурност на софтуерни системи; УСИ 45

Security

• System attribute that reflects the ability of the system to

protect itself from external attacks, which may be

accidental or deliberate.

Надеждност и сигурност на софтуерни системи; УСИ 46

Security terminology

Надеждност и сигурност на софтуерни системи; УСИ 47

Example

Надеждност и сигурност на софтуерни системи; УСИ 48

Fault
Prevention

Preventing the
occurrence of

faults

Fault
Tolerance

Avoiding
service

failures in the
presence of

faults

Fault
Removal

Reducing the
number and
severity of

faults

Fault
Forecasting

Estimating the
present

number, the
future

incidence, and
the likely

consequences
of faults

Dependability
Provision

Dependability
Analysis

Fault
Avoidance

Fault
Acceptance

Надеждност и сигурност на софтуерни системи; УСИ 49

Means to attain dependability

Fault Prevention

• Fault avoidance
• Techniques that prevent introduction of faults during

development
• Hardware: use reliable components, packaging

• Software: formal specs, use of proven design methods.

• Fault removal
• System testing is most important

• Reviews, verifications, code inspections

• ’A test can only show presence of faults, but
never prove its absence’

[Dijkstra]

Надеждност и сигурност на софтуерни системи; УСИ 50

Fault Tolerance

• The ability of the system to continue functioning

irrespective of the presence of faults

• Levels of fault tolerance

• Fail operational (Full fault tolerance)

• Fail soft (Graceful degradation)

• Failsafe

• Redundancy is the key for fault-tolerance

• Physical (Space), Information (data), Time, Analytical...

Надеждност и сигурност на софтуерни системи; УСИ 51

Replication Diversity

• Software faults are usually caused by design error

• Multiplying a design error by redundancy is not a good

idea

• Simple replication of identical software units is not the

solution

• The key is to introduce diversity into software replicas

Надеждност и сигурност на софтуерни системи; УСИ 52

Aspects of Replication Diversity

• Design Diversity

• Data Diversity

• Temporal Diversity

Надеждност и сигурност на софтуерни системи; УСИ 53

Design diversity

• Different languages

• Different compilers

• Different algorithms

• Limited / no sharing between teams

• Voter module

Надеждност и сигурност на софтуерни системи; УСИ 54

Data Diversity

• Diversify input data for software to detect and tolerate

software faults.

• Uses Data Re-Expression

• Data Re-expression Algorithm (DRA) produces different

representations of a module’s input data.

Надеждност и сигурност на софтуерни системи; УСИ 55

Temporal Diversity

• Involves the performance or occurrence of a certain event

at different times

• Implementation of temporal diversity

• By beginning software execution at different times

• Using inputs that are produced or read at different times

Надеждност и сигурност на софтуерни системи; УСИ 56

Fault Avoidance and

Detection Techniques

• Timeouts
• Retry

• Abort

• Audits
• Overcome data inconsistency.

• Applicable in distributed systems

• Exception Handling

• Task Rollback

• Incremental Reboot

Надеждност и сигурност на софтуерни системи; УСИ 57

Fault forecasting

• Evaluation of system behavior

• How to estimate the present number, the future incidents, the

probability of different consequences

• Qualitative (identify, classify, rank the failure modes, the event

combinations, environmental conditions that would lead to system

failures

• Quantitative (probabilistic)

Надеждност и сигурност на софтуерни системи; УСИ 58

Re-thinking definitions?

• ‘Failure is defined as a ‘system not performing up to its

specification’

• Good enough for piece of hardware, software, a micro

processor…

• How about complex systems/services built using

components?

• With either no specs or vague specs

• How about socio-technical systems?

• Customer satisfaction going to decide failure or otherwise ?

Надеждност и сигурност на софтуерни системи; УСИ 59

Summary

• Mastery over control of physical faults over the years

have drastically improved the availability of computing

systems

• Presently, design and human made errors dominate as

sources of failures

• Improving the state of the art in mastering these error

sources is going to be on top of research agenda

• Appropriate end-to-end error models need to be

developed and incorporated into the analysis and

assurance

Надеждност и сигурност на софтуерни системи; УСИ 60

References

• http://www.cs.st-

andrews.ac.uk/~ifs/Books/SE9/Presentations/index.html

• A. Avizienis, J. Laprie, and B. Randell. Fundamental

concepts of dependability. In Proceedings of the 3rd

Information Survivability Workshop, 2000.

• Sasikumar Punnekkatt Dependability slides,
http://www.idt.mdh.se/kurser/computing/DVA403/DVA403-

2012/Lectures/Dependability_DVA403_talk.pdf

• Sommerville, Ian, Software Engineering, 9th edition (2010), Addison-

Wesley Pub Co;

Надеждност и сигурност на софтуерни системи; УСИ 61

