
Service-oriented
Architecture

Topics covered
Services as reusable components

REST services

Software development with services

Service engineering

Cloud computing

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 2

Web services
A web service is an instance of a more general notion
of a service:

“an act or performance offered by one party to another.
Although the process may be tied to a physical product, the
performance is essentially intangible and does not normally
result in ownership of any of the factors of production”.

The essence of a service, therefore, is that the
provision of the service is independent of the
application using the service.

Service providers can develop specialized services and
offer these to a range of service users from different
organizations.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 3

Service-oriented architectures
A means of developing distributed systems where
the components are stand-alone services

Services may execute on different computers from
different service providers

Standard protocols have been developed to
support service communication and information
exchange

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 4

Service-oriented architecture

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 5

Benefits of SOA
Services can be provided locally or outsourced to
external providers

Services are language-independent

Investment in legacy systems can be preserved

Inter-organisational computing is facilitated
through simplified information exchange

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 6

Key standards
SOAP
◦ A message exchange standard that supports service communication

WSDL (Web Service Definition Language)
◦ This standard allows a service interface and its bindings to be defined

WS-BPEL
◦ A standard for workflow languages used to define service

composition

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 7

Services scenario
An in-car information system provides drivers with
information on weather, road traffic conditions, local
information etc. This is linked to car radio so that
information is delivered as a signal on a specific radio
channel.

The car is equipped with GPS receiver to discover its
position and, based on that position, the system accesses a
range of information services. Information may be delivered
in the driver’s specified language.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 8

A service-based, in-car
information system

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 9

Advantage of SOA for this
application
It is not necessary to decide when the system is
programmed or deployed what service provider
should be used or what specific services should be
accessed.
◦ As the car moves around, the in-car software uses the

service discovery service to find the most appropriate
information service and binds to that.

◦ Because of the use of a translation service, it can move
across borders and therefore make local information
available to people who don’t speak the local language.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 10

Web service description
language
The service interface is defined in a service
description expressed in WSDL (Web Service
Description Language).

The WSDL specification defines
◦ What operations the service supports and the format of

the messages that are sent and received by the service

◦ How the service is accessed - that is, the binding maps
the abstract interface onto a concrete set of protocols

◦ Where the service is located. This is usually expressed as
a URI (Universal Resource Identifier)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 11

XML (eXtensible Markup
Language)
<note>

<to>Toni</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this

weekend!</body>

</note>

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 12

XML (eXtensible Markup
Language)
<breakfast_menu>

<food>

<name>Belgian Waffles</name>

<price>$5.95</price>

<description>

two of our famous Belgian Waffles with

plenty of real maple syrup

</description>

<calories>650</calories>

</food>

<food>

…..

</food>

</breakfast_menu>

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 13

XML
Using XML formats as your machine-processable
representations for resources allows applying new
tools to old data

It also simplifies interconnection with remote
systems

XML has plenty of tools, as we all know

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 14

Какво не е XML?
Заместител на HTML
(Може да се каже, че HTML е частен случай на XML)

Ориентиран към визуализацията
(По-скоро е ориентиран към съдържанието)

Език за програмиране
(може да се използва в комбинация с почти всеки друг език)

Протокол за комуникация
(XML се предава по мрежата и може да се използва
за дефиниция на протокол)

База данни
(XML може да се съхранява в база-данни)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 15

Какво е XML?
XML е мета-език за текстови документи/данни

XML позволява да се дефинира конкретния език
за представяне на текстови документи/данни

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 16

Why not just use plain HTML?
Web pages are designed to be understood by people,
who care about layout and styling, not just raw data

Every URI could have a human-readable and a
machine-processable representation:
◦ Web Services clients ask for the machine-readable one

◦ Browsers ask for the human-readable one

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 17

Ползи от употребата на XML
Най-вече зависят от програмиста

Преносимост на данните

Оперативна съвместимост

Лесно се използва от програми (machine readble)

(В повечето случаи) Лесно се чете или е разбираем от хора

Гъвкав и лесно се променя

Голямо количество стандарти го използват и е широко
разпространен
◦ Какво е “docx”, “pptx”, “xslx”?

Много инструменти го поддържат

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 18

Service-oriented architecture

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 19

Key standards
SOAP
◦ A message exchange standard that supports service communication

WSDL (Web Service Definition Language)
◦ This standard allows a service interface and its bindings to be defined

WS-BPEL
◦ A standard for workflow languages used to define service

composition

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 20

Web service standards

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 21

SOAP request
Which professional snowboarder endorses the K2
FatBob?

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-info.com">

<manufacturer>K2</manufacturer>
<model>Fatbob</model>

</m:GetEndorsingBoarder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

22

SOAP response
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetEndorsingBoarderResponse

xmlns:m="http://namespaces.snowboard-

info.com">

<endorsingBoarder>Chris Englesmann</endorsingBoarder>

</m:GetEndorsingBoarderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 23

Organization of a WSDL
specification

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 24

WSDL specification
components
The ‘what’ part of a WSDL document, called an
interface, specifies what operations the service
supports, and defines the format of the messages that
are sent and received by the service.

The ‘how’ part of a WSDL document, called a binding,
maps the abstract interface to a concrete set of
protocols. The binding specifies the technical details of
how to communicate with a Web service.

The ‘where’ part of a WSDL document describes the
location of a specific Web service implementation (its
endpoint).

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 25

RESTful web services
Current web services standards have been criticized as
‘heavyweight’ standards that are over-general and inefficient.

REST (REpresentational State Transfer) is an architectural style
based on transferring representations of resources from a server
to a client.

This style underlies the web as a whole and is simpler than
SOAP/WSDL for implementing web services.

RESTFul services involve a lower overhead than so-called ‘big web
services’ and are used by many organizations implementing
service-based systems that do not rely on externally-provided
services.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 26

REST services

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 27

REST
REpresentational State Transfer

Олекотен вариант на стандартните уеб-услуги

На мястото на сравнително тежкия класически
SOAP се използват HTTP заявки

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 28

REST fundamentals
The basic API is C.R.U.D
◦ Create (HTTP POST)

◦ Retrieve (HTTP GET) [no side effects]

◦ Update (HTTP PUT)

◦ Delete (HTTP DELETE)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 29

HTTP-REST Request Basics
The HTTP request is sent from the client.
◦ Identifies the location of a resource.

◦ Specifies the verb, or HTTP method to use when
accessing the resource.

◦ Supplies optional request headers (name-value pairs) that
provide additional information the server may need when
processing the request.

◦ Supplies an optional request body that identifies
additional data to be uploaded to the server (e.g. form
parameters, attachments, etc.)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 30

HTTP-REST Response Basics
The HTTP response is sent from the server.
◦ Gives the status of the processed request.

◦ Supplies response headers (name-value pairs) that
provide additional information about the response.

◦ Supplies an optional response body that identifies
additional data to be downloaded to the client (html, xml,
binary data, etc.)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 31

HTTP-REST Vocabulary
A typical HTTP REST URL:

The protocol identifies the transport scheme that will be used to
process and respond to the request.

The host name identifies the server address of the resource.

The path and query string can be used to identify and customize the
accessed resource.

http://my.store.com/fruits/list?category=fruit&limit=20

protocol host name path to a resource query string

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 32

Request
(XML doc)

Response
(XML doc)

W
eb

 S
er

ve
r

SOAP envelope

HTTP POST
URL 1

HTTP Response

getPartsList()

Request
(XML doc)

Response
(XML doc)

HTTP POST
URL 1

HTTP Response

getPart(id)SOAP Server

PO
(XML doc)

HTTP POST
URL 1

submit(PO)

Response
(XML doc)

HTTP Response

Уеб услуги със SOAP

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 33

Уеб услуги със REST

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ

Response
(HTML/XML doc)

W
eb

 S
er

ve
r

HTTP GET request URL 1

HTTP response

Response
(HTML/XML doc)

HTTP GET request URL 2

HTTP response

HTTP POST URL 3

HTTP responseURL to submitted order

PO
(HTML/XML)

Parts
List

Part

PO

34

Пример
Съвсем базов

Липсват try/catch клаузи

Не може да се използва в реални програми,
целта е да се разбере идеята

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 35

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ

public static String httpGet(String urlStr) throws IOException {

URL url = new URL(urlStr);

HttpURLConnection conn =

(HttpURLConnection) url.openConnection();

if (conn.getResponseCode() != 200) {

throw new IOException(conn.getResponseMessage());

}

// Buffer the result into a string

BufferedReader rd = new BufferedReader(

new InputStreamReader(conn.getInputStream()));

StringBuilder sb = new StringBuilder();

String line;

while ((line = rd.readLine()) != null) {

sb.append(line); }

rd.close();

conn.disconnect();

return sb.toString();

}

36

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ

public static String httpPost(String urlStr, String[] paramName,

String[] paramVal) throws Exception {

URL url = new URL(urlStr);

HttpURLConnection conn =

(HttpURLConnection) url.openConnection();

conn.setRequestMethod("POST");

conn.setDoOutput(true);

conn.setDoInput(true);

conn.setUseCaches(false);

conn.setAllowUserInteraction(false);

conn.setRequestProperty("Content-Type",

"application/x-www-form-urlencoded");

// Create the form content

OutputStream out = conn.getOutputStream();

Writer writer = new OutputStreamWriter(out, "UTF-8");

for (int i = 0; i < paramName.length; i++) {

writer.write(paramName[i]);

writer.write("=");

writer.write(URLEncoder.encode(paramVal[i], "UTF-8"));

writer.write("&"); }

writer.close();

out.close();

if (conn.getResponseCode() != 200) {

throw new IOException(conn.getResponseMessage()); }

// Buffer the result into a string

BufferedReader rd = new BufferedReader(

new InputStreamReader(conn.getInputStream()));

StringBuilder sb = new StringBuilder();

String line;

while ((line = rd.readLine()) != null) {

sb.append(line); }

rd.close();

conn.disconnect();

return sb.toString();}

37

Software
development with
services

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 38

Software development with
services
Existing services are composed and configured to
create new composite services and applications

The basis for service composition is often a
workflow
◦ Workflows are logical sequences of activities that,

together, model a coherent business process

◦ For example, provide a travel reservation services which
allows flights, car hire and hotel bookings to be
coordinated

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 39

Vacation package workflow

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 40

Service construction by
composition

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 41

Construction by composition
Formulate outline workflow
◦ In this initial stage of service design, you use the requirements

for the composite service as a basis for creating an ‘ideal’
service design.

Discover services
◦ During this stage of the process, you search service registries

or catalogs to discover what services exist, who provides these
services and the details of the service provision.

Select possible services
◦ Your selection criteria will obviously include the functionality

of the services offered. They may also include the cost of the
services and the quality of service (responsiveness, availability,
etc.) offered.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 42

Construction by composition
Refine workflow.
◦ This involves adding detail to the abstract description and

perhaps adding or removing workflow activities.

Create workflow program
◦ During this stage, the abstract workflow design is transformed

to an executable program and the service interface is defined.
You can use a conventional programming language, such as
Java or a workflow language, such as WS-BPEL.

Test completed service or application
◦ The process of testing the completed, composite service is

more complex than component testing in situations where
external services are used.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 43

Workflow design and
implementation
WS-BPEL is an XML-standard for workflow
specification. However, WS-BPEL descriptions are
long and unreadable

Graphical workflow notations, such as BPMN, are
more readable and WS-BPEL can be generated
from them

In inter-organisational systems, separate workflows
are created for each organisation and linked
through message exchange

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 44

Hello world BPEL example
http://www.eclipse.org/tptp/platform/documents/
design/choreography_html/tutorials/wsbpel_tut.ht
ml

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 45

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ

<?xml version="1.0" encoding="UTF-8"?>
<process

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:print="http://www.eclipse.org/tptp/choreography/2004/engine/Print">

<!--Hello World - my first ever BPEL program -->
<import importType="http://schemas.xmlsoap.org/wsdl/"

location="../../test_bucket/service_libraries/tptp_EnginePrinterPort.wsdl"
namespace="http://www.eclipse.org/tptp/choreography/2004/engine/Print" />

<partnerLinks>
<partnerLink name="printService"

partnerLinkType="print:printLink"
partnerRole="printService"/>

</partnerLinks>

<variables>
<variable name="hello_world"

messageType="print:PrintMessage" />
</variables>

<assign>
<copy>

<from><literal>Hello World</literal></from>
<to>$hello_world.value</to>

</copy>
</assign>

<invoke partnerLink="printService" operation="print" inputVariable="hello_world" /> </process>

46

BPMN examples

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 47

A fragment of a hotel booking
workflow

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 48

Interacting workflows

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 49

Service testing
Testing is intended to find defects and demonstrate
that a system meets its functional and non-
functional requirements.

Service testing is difficult as (external) services are
‘black-boxes’. Testing techniques that rely on the
program source code cannot be used.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 50

Service testing problems
External services may be modified by the service provider thus
invalidating tests which have been completed.

Dynamic binding means that the service used in an application
may vary - the application tests are not, therefore, reliable.

The non-functional behaviour of the service is unpredictable
because it depends on load.

If services have to be paid for as used, testing a service may be
expensive.

It may be difficult to invoke compensating actions in external
services as these may rely on the failure of other services which
cannot be simulated.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 51

Service
development

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 52

Service engineering
The process of developing services for reuse in
service-oriented applications

The service has to be designed as a reusable
abstraction that can be used in different systems.

Generally useful functionality associated with that
abstraction must be designed and the service must
be robust and reliable.

The service must be documented so that it can be
discovered and understood by potential users.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 53

The service engineering
process

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 54

Stages of service engineering
Service candidate identification, where you identify
possible services that might be implemented and
define the service requirements.

Service design, where you design the logical and
WSDL service interfaces.

Service implementation and deployment, where
you implement and test the service and make it
available for use.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 55

Service candidate
identification
Services should support business processes.

Service candidate identification involves understanding
an organization’s business processes to decide which
reusable services could support these processes.

Three fundamental types of service
◦ Utility services that implement general functionality used by

different business processes.
◦ Business services that are associated with a specific business

function e.g., in a university, student registration.
◦ Coordination services that support composite processes such

as ordering.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 56

Task and entity-oriented
services
Task-oriented services are those associated with
some activity.

Entity-oriented services are like objects. They are
associated with a business entity such as a job
application form.

Utility or business services may be entity- or task-
oriented, coordination services are always task-
oriented.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 57

Service classification

Utility Business Coordination

Task Currency converter

Employee locator

Validate claim form

Check credit rating

Process expense

claim

Pay external supplier

Entity Document style

checker

Web form to XML

converter

Expenses form

Student application

form

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 58

Key points
Service-oriented software engineering is based on the notion that
programs can be constructed by composing independent services which
encapsulate reusable functionality.

Service interfaces are defined in WSDL. A WSDL specification includes a
definition of the interface types and operations, the binding protocol
used by the service and the service location.

Services may be classified as utility services, business services or
coordination services.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 59

Service identification
Is the service associated with a single logical entity used in
different business processes?

Is the task one that is carried out by different people in the
organisation?

Is the service independent?

Does the service have to maintain state? Is a database required?

Could the service be used by clients outside the organisation?

Are different users of the service likely to have different non-
functional requirements?

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 60

Service interface design
Involves thinking about the operations associated
with the service and the messages exchanged

The number of messages exchanged to complete a
service request should normally be minimised.

Service state information may have to be included
in messages

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 61

Interface design stages
Logical interface design
◦ Starts with the service requirements and defines the operation

names and parameters associated with the service. Exceptions
should also be defined

Message design
◦ Design the structure and organisation of the input and output

messages. Notations such as the UML are a more abstract
representation than XML

WSDL description
◦ The logical specification is converted to a WSDL description

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 62

Service implementation and
deployment
Programming services using a standard
programming language or a workflow language

Services then have to be tested by creating input
messages and checking that the output messages
produced are as expected

Deployment involves publicising the service and
installing it on a web server. Current servers
provide support for service installation

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 63

Service descriptions
Information about your business, contact details, etc.
This is important for trust reasons. Users of a service
have to be confident that it will not behave maliciously.

An informal description of the functionality provided by
the service. This helps potential users to decide if the
service is what they want.

A detailed description of the interface types and
semantics.

Subscription information that allows users to register
for information about updates to the service.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 64

Legacy system services
An important application of services is to provide
access to functionality embedded in legacy systems

Legacy systems offer extensive functionality and
this can reduce the cost of service implementation

External applications can access this functionality
through the service interfaces

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 65

Cloud computing

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 66

What is Cloud Computing?
Cloud Computing is a general term used to describe a
new class of network based computing that takes place
over the Internet,
◦ a collection/group of integrated and networked hardware,

software and Internet infrastructure (called a platform).
◦ Using the Internet for communication and transport provides

hardware, software and networking services to clients

These platforms hide the complexity and details of the
underlying infrastructure from users and applications
by providing very simple graphical interface or API
(Applications Programming Interface).

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 67

What is Cloud Computing?
In addition, the platform provides on demand
services, that are always on, anywhere, anytime
and any place.

Pay for use and as needed, elastic
◦ scale up and down in capacity and functionalities

The hardware and software services are available
to
◦ general public, enterprises, corporations and businesses

markets

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 68

Cloud Computing – Simple Definition

Cloud Computing = Software as a Service
+ Platform as a Service
+ Infrastructure as a Service
+ Data as a Service

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 69

Cloud Computing – Simple Definition

Cloud Computing = Software as a Service
+ Platform as a Service
+ Infrastructure as a Service
+ Data as a Service

Software as a Service (SaaS)
◦ From end user’s point of view

◦ Apps are located in the cloud

◦ Software experiences are delivered through the Internet

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 70

Cloud Computing – Simple Definition

Cloud Computing = Software as a Service
+ Platform as a Service
+ Infrastructure as a Service
+ Data as a Service

Platform as a Service (PaaS)
◦ From developer’s point of view (i.e. cloud users)

◦ Cloud providers offer an Internet-based platform to developers who want to create
services but don't want to build their own cloud

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 71

Cloud Computing – Simple Definition

Cloud Computing = Software as a Service
+ Platform as a Service
+ Infrastructure as a Service
+ Data as a Service

Infrastructure as a Service (IaaS)
◦ Cloud providers build datacenters

◦ Power, scale, hardware, networking, storage, distributed systems, etc

◦ Datacenter as a service

◦ Cloud users rent storage, computation, and maintenance from cloud providers (pay-as-
you-go; like utility)

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 72

Cloud Summary
Cloud computing is an umbrella term used to refer to
Internet based development and services

A number of characteristics define cloud data,
applications services and infrastructure:
◦ Remotely hosted: Services or data are hosted on remote

infrastructure.
◦ Ubiquitous: Services or data are available from anywhere.
◦ Commodified: The result is a utility computing model similar to

traditional that of traditional utilities, like gas and electricity -
you pay for what you would want!

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 73

Cloud Architecture

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 74

Cloud Computing Characteristics
Common Characteristics:

Low Cost Software

Virtualization Service Orientation

Advanced Security

Homogeneity

Massive Scale Resilient Computing

Geographic Distribution

Essential Characteristics:

Resource Pooling

Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim
GranceАРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 75

Basic Cloud Characteristics

The “no-need-to-know” in terms of the underlying
details of infrastructure, applications interface with the
infrastructure via the APIs.

The “flexibility and elasticity” allows these systems to
scale up and down at will
◦ utilising the resources of all kinds

◦ CPU, storage, server capacity, load balancing, and databases

The “pay as much as used and needed” type of utility
computing and the “always on!, anywhere and any
place” type of network-based computing.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 76

Basic Cloud Characteristics

Cloud are transparent to users and applications, they can
be built in multiple ways
◦ branded products, proprietary open source, hardware or

software, or just off-the-shelf PCs.

In general, they are built on clusters of PC servers and
off-the-shelf components plus Open Source software
combined with in-house applications and/or system
software.

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 77

Virtual Machines
VM technology allows multiple virtual machines to run
on a single physical machine.

Hardware

Virtual Machine Monitor (VMM) / Hypervisor

Guest OS
(Linux)

Guest OS
(NetBSD)

Guest OS
(Windows)

VM VM VM

AppApp AppAppApp

Performance: Para-virtualization (e.g. Xen) is very close to raw physical
performance!

АРХИТЕКТУРА ОРИЕНТИРАНА КЪМ УСЛУГИ, УСИ 78

