
Chapter 24 - Quality Management

Lecture 1

1 Chapter 24 Quality management

Topics covered

 Software quality

 Software standards

 Reviews and inspections

 Software measurement and metrics

2 Chapter 24 Quality management

Software quality management

 Concerned with ensuring that the required level of quality

is achieved in a software product.

 Three principal concerns:

 At the organizational level, quality management is concerned

with establishing a framework of organizational processes and

standards that will lead to high-quality software.

 At the project level, quality management involves the application

of specific quality processes and checking that these planned

processes have been followed.

 At the project level, quality management is also concerned with

establishing a quality plan for a project. The quality plan should

set out the quality goals for the project and define what

processes and standards are to be used.

3 Chapter 24 Quality management

Quality management activities

 Quality management provides an independent check on

the software development process.

 The quality management process checks the project

deliverables to ensure that they are consistent with

organizational standards and goals

 The quality team should be independent from the

development team so that they can take an objective

view of the software. This allows them to report on

software quality without being influenced by software

development issues.

4 Chapter 24 Quality management

Quality management and software development

5 Chapter 24 Quality management

Quality planning

 A quality plan sets out the desired product qualities and

how these are assessed and defines the most significant

quality attributes.

 The quality plan should define the quality assessment

process.

 It should set out which organisational standards should

be applied and, where necessary, define new standards

to be used.

6 Chapter 24 Quality management

Quality plans

 Quality plan structure

 Product introduction;

 Product plans;

 Process descriptions;

 Quality goals;

 Risks and risk management.

 Quality plans should be short, succinct documents

 If they are too long, no-one will read them.

7 Chapter 24 Quality management

Scope of quality management

 Quality management is particularly important for large,

complex systems. The quality documentation is a record

of progress and supports continuity of development as

the development team changes.

 For smaller systems, quality management needs less

documentation and should focus on establishing a

quality culture.

8 Chapter 24 Quality management

Software quality

 Quality, simplistically, means that a product should meet

its specification.

 This is problematical for software systems

 There is a tension between customer quality requirements

(efficiency, reliability, etc.) and developer quality requirements

(maintainability, reusability, etc.);

 Some quality requirements are difficult to specify in an

unambiguous way;

 Software specifications are usually incomplete and often

inconsistent.

 The focus may be ‘fitness for purpose’ rather than

specification conformance.

9 Chapter 24 Quality management

Software fitness for purpose

 Have programming and documentation standards been

followed in the development process?

 Has the software been properly tested?

 Is the software sufficiently dependable to be put into

use?

 Is the performance of the software acceptable for normal

use?

 Is the software usable?

 Is the software well-structured and understandable?

10 Chapter 24 Quality management

Software quality attributes

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

11 Chapter 24 Quality management

Quality conflicts

 It is not possible for any system to be optimized for all of

these attributes – for example, improving robustness

may lead to loss of performance.

 The quality plan should therefore define the most

important quality attributes for the software that is being

developed.

 The plan should also include a definition of the quality

assessment process, an agreed way of assessing

whether some quality, such as maintainability or

robustness, is present in the product.

12 Chapter 24 Quality management

Process and product quality

 The quality of a developed product is influenced by the

quality of the production process.

 This is important in software development as some

product quality attributes are hard to assess.

 However, there is a very complex and poorly understood

relationship between software processes and product

quality.

 The application of individual skills and experience is particularly

important in software development;

 External factors such as the novelty of an application or the need

for an accelerated development schedule may impair product

quality.

13 Chapter 24 Quality management

Process-based quality

14 Chapter 24 Quality management

Software standards

 Standards define the required attributes of a product or

process. They play an important role in quality

management.

 Standards may be international, national, organizational

or project standards.

 Product standards define characteristics that all software

components should exhibit e.g. a common programming

style.

 Process standards define how the software process

should be enacted.

15 Chapter 24 Quality management

Importance of standards

 Encapsulation of best practice- avoids repetition of past

mistakes.

 They are a framework for defining what quality means in

a particular setting i.e. that organization’s view of quality.

 They provide continuity - new staff can understand the

organisation by understanding the standards that are

used.

16 Chapter 24 Quality management

Product and process standards

Product standards Process standards

Design review form Design review conduct

Requirements document

structure

Submission of new code for

system building

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

17 Chapter 24 Quality management

Problems with standards

 They may not be seen as relevant and up-to-date by

software engineers.

 They often involve too much bureaucratic form filling.

 If they are unsupported by software tools, tedious form

filling work is often involved to maintain the

documentation associated with the standards.

18 Chapter 24 Quality management

Standards development

 Involve practitioners in development. Engineers should

understand the rationale underlying a standard.

 Review standards and their usage regularly.

Standards can quickly become outdated and this

reduces their credibility amongst practitioners.

 Detailed standards should have specialized tool

support. Excessive clerical work is the most

significant complaint against standards.

 Web-based forms are not good enough.

19 Chapter 24 Quality management

ISO 9001 standards framework

 An international set of standards that can be used as a

basis for developing quality management systems.

 ISO 9001, the most general of these standards, applies

to organizations that design, develop and maintain

products, including software.

 The ISO 9001 standard is a framework for developing

software standards.

 It sets out general quality principles, describes quality processes

in general and lays out the organizational standards and

procedures that should be defined. These should be

documented in an organizational quality manual.

20 Chapter 24 Quality management

ISO 9001 core processes

21 Chapter 24 Quality management

ISO 9001 and quality management

22 Chapter 24 Quality management

ISO 9001 certification

 Quality standards and procedures should be

documented in an organisational quality manual.

 An external body may certify that an organisation’s

quality manual conforms to ISO 9000 standards.

 Some customers require suppliers to be ISO 9000

certified although the need for flexibility here is

increasingly recognised.

23 Chapter 24 Quality management

Key points

 Software quality management is concerned with ensuring that

software has a low number of defects and that it reaches the

required standards of maintainability, reliability, portability and

so on.

 SQM includes defining standards for processes and products

and establishing processes to check that these standards

have been followed.

 Software standards are important for quality assurance as

they represent an identification of ‘best practice’.

 Quality management procedures may be documented in an

organizational quality manual, based on the generic model for

a quality manual suggested in the ISO 9001 standard.

 24 Chapter 24 Quality management

Chapter 24 - Quality Management

Lecture 2

25 Chapter 24 Quality management

Reviews and inspections

 A group examines part or all of a process or system and

its documentation to find potential problems.

 Software or documents may be 'signed off' at a

review which signifies that progress to the next

development stage has been approved by

management.

 There are different types of review with different

objectives

 Inspections for defect removal (product);

 Reviews for progress assessment (product and process);

 Quality reviews (product and standards).

26 Chapter 24 Quality management

Quality reviews

 A group of people carefully examine part or all

of a software system and its associated

documentation.

 Code, designs, specifications, test plans,

standards, etc. can all be reviewed.

 Software or documents may be 'signed off' at a

review which signifies that progress to the next

development stage has been approved by

management.

27 Chapter 24 Quality management

The software review process

28 Chapter 24 Quality management

Reviews and agile methods

 The review process in agile software development is

usually informal.

 In Scrum, for example, there is a review meeting after each

iteration of the software has been completed (a sprint review),

where quality issues and problems may be discussed.

 In extreme programming, pair programming ensures that

code is constantly being examined and reviewed by

another team member.

 XP relies on individuals taking the initiative to improve

and refactor code. Agile approaches are not usually

standards-driven, so issues of standards compliance are

not usually considered.

 29 Chapter 24 Quality management

Program inspections

 These are peer reviews where engineers examine the

source of a system with the aim of discovering anomalies

and defects.

 Inspections do not require execution of a system so may

be used before implementation.

 They may be applied to any representation of the system

(requirements, design, configuration data, test data, etc.).

 They have been shown to be an effective technique for

discovering program errors.

30 Chapter 24 Quality management

Inspection checklists

 Checklist of common errors should be used to

drive the inspection.

 Error checklists are programming language

dependent and reflect the characteristic errors that are

likely to arise in the language.

 In general, the 'weaker' the type checking, the larger the

checklist.

 Examples: Initialisation, Constant naming, loop

termination, array bounds, etc.

31 Chapter 24 Quality management

An inspection checklist (a)

Fault class Inspection check

Data faults  Are all program variables initialized before their values are used?

 Have all constants been named?

 Should the upper bound of arrays be equal to the size of the

array or Size -1?

 If character strings are used, is a delimiter explicitly assigned?

 Is there any possibility of buffer overflow?

Control faults  For each conditional statement, is the condition correct?

 Is each loop certain to terminate?

 Are compound statements correctly bracketed?

 In case statements, are all possible cases accounted for?

 If a break is required after each case in case statements, has it

been included?

Input/output faults  Are all input variables used?

 Are all output variables assigned a value before they are output?

 Can unexpected inputs cause corruption?

32 Chapter 24 Quality management

An inspection checklist (b)

Fault class Inspection check

Interface faults  Do all function and method calls have the correct number

of parameters?

 Do formal and actual parameter types match?

 Are the parameters in the right order?

 If components access shared memory, do they have the

same model of the shared memory structure?

Storage management

faults

 If a linked structure is modified, have all links been

correctly reassigned?

 If dynamic storage is used, has space been allocated

correctly?

 Is space explicitly deallocated after it is no longer

required?

Exception management

faults

 Have all possible error conditions been taken into

account?

33 Chapter 24 Quality management

Agile methods and inspections

 Agile processes rarely use formal inspection or peer

review processes.

 Rather, they rely on team members cooperating to check

each other’s code, and informal guidelines, such as

‘check before check-in’, which suggest that programmers

should check their own code.

 Extreme programming practitioners argue that pair

programming is an effective substitute for inspection as

this is, in effect, a continual inspection process.

 Two people look at every line of code and check it before

it is accepted.

 34 Chapter 24 Quality management

Software measurement and metrics

 Software measurement is concerned with deriving a

numeric value for an attribute of a software product or

process.

 This allows for objective comparisons between

techniques and processes.

 Although some companies have introduced

measurement programmes, most organisations still don’t

make systematic use of software measurement.

 There are few established standards in this area.

35 Chapter 24 Quality management

Software metric

 Any type of measurement which relates to a software

system, process or related documentation

 Lines of code in a program, the Fog index, number of person-

days required to develop a component.

 Allow the software and the software process to

be quantified.

 May be used to predict product attributes or to control

the software process.

 Product metrics can be used for general predictions or to

identify anomalous components.

36 Chapter 24 Quality management

Predictor and control measurements

37 Chapter 24 Quality management

Use of measurements

 To assign a value to system quality attributes

 By measuring the characteristics of system components, such as

their cyclomatic complexity, and then aggregating these

measurements, you can assess system quality attributes, such

as maintainability.

 To identify the system components whose quality is sub-

standard

 Measurements can identify individual components with

characteristics that deviate from the norm. For example, you can

measure components to discover those with the highest

complexity. These are most likely to contain bugs because the

complexity makes them harder to understand.

38 Chapter 24 Quality management

Metrics assumptions

 A software property can be measured.

 The relationship exists between what we can

measure and what we want to know. We can only

measure internal attributes but are often more interested

in external software attributes.

 This relationship has been formalised and

validated.

 It may be difficult to relate what can be measured to

desirable external quality attributes.

39 Chapter 24 Quality management

Relationships between internal and external

software

40 Chapter 24 Quality management

Problems with measurement in industry

 It is impossible to quantify the return on investment of

introducing an organizational metrics program.

 There are no standards for software metrics or standardized

processes for measurement and analysis.

 In many companies, software processes are not standardized

and are poorly defined and controlled.

 Most work on software measurement has focused on code-

based metrics and plan-driven development processes.

However, more and more software is now developed by

configuring ERP systems or COTS.

 Introducing measurement adds additional overhead to

processes.

41 Chapter 24 Quality management

Product metrics

 A quality metric should be a predictor of product quality.

 Classes of product metric

 Dynamic metrics which are collected by measurements made of

a program in execution;

 Static metrics which are collected by measurements made of the

system representations;

 Dynamic metrics help assess efficiency and reliability

 Static metrics help assess complexity, understandability and

maintainability.

42 Chapter 24 Quality management

Dynamic and static metrics

 Dynamic metrics are closely related to software quality

attributes

 It is relatively easy to measure the response time of a system

(performance attribute) or the number of failures (reliability

attribute).

 Static metrics have an indirect relationship with quality

attributes

 You need to try and derive a relationship between these metrics

and properties such as complexity, understandability and

maintainability.

43 Chapter 24 Quality management

Static software product metrics

Software metric Description

Fan-in/Fan-out Fan-in is a measure of the number of functions or

methods that call another function or method (say X).

Fan-out is the number of functions that are called by

function X. A high value for fan-in means that X is tightly

coupled to the rest of the design and changes to X will

have extensive knock-on effects. A high value for fan-out

suggests that the overall complexity of X may be high

because of the complexity of the control logic needed to

coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the

larger the size of the code of a component, the more

complex and error-prone that component is likely to be.

Length of code has been shown to be one of the most

reliable metrics for predicting error-proneness in

components.

44 Chapter 24 Quality management

Static software product metrics

Software metric Description

Cyclomatic complexity This is a measure of the control complexity of a program.

This control complexity may be related to program

understandability. I discuss cyclomatic complexity in

Chapter 8.

Length of identifiers This is a measure of the average length of identifiers

(names for variables, classes, methods, etc.) in a

program. The longer the identifiers, the more likely they

are to be meaningful and hence the more

understandable the program.

Depth of conditional

nesting

This is a measure of the depth of nesting of if-statements

in a program. Deeply nested if-statements are hard to

understand and potentially error-prone.

Fog index This is a measure of the average length of words and

sentences in documents. The higher the value of a

document’s Fog index, the more difficult the document is

to understand.

45 Chapter 24 Quality management

The CK object-oriented metrics suite

Object-oriented

metric

Description

Weighted methods

per class (WMC)

This is the number of methods in each class, weighted by the complexity of each

method. Therefore, a simple method may have a complexity of 1, and a large

and complex method a much higher value. The larger the value for this metric,

the more complex the object class. Complex objects are more likely to be difficult

to understand. They may not be logically cohesive, so cannot be reused

effectively as superclasses in an inheritance tree.

Depth of

inheritance tree

(DIT)

This represents the number of discrete levels in the inheritance tree where

subclasses inherit attributes and operations (methods) from superclasses. The

deeper the inheritance tree, the more complex the design. Many object classes

may have to be understood to understand the object classes at the leaves of the

tree.

Number of children

(NOC)

This is a measure of the number of immediate subclasses in a class. It measures

the breadth of a class hierarchy, whereas DIT measures its depth. A high value

for NOC may indicate greater reuse. It may mean that more effort should be

made in validating base classes because of the number of subclasses that

depend on them.

46 Chapter 24 Quality management

The CK object-oriented metrics suite

Object-oriented

metric

Description

Coupling between

object classes

(CBO)

Classes are coupled when methods in one class use methods or instance

variables defined in a different class. CBO is a measure of how much coupling

exists. A high value for CBO means that classes are highly dependent, and

therefore it is more likely that changing one class will affect other classes in the

program.

Response for a

class (RFC)

RFC is a measure of the number of methods that could potentially be executed

in response to a message received by an object of that class. Again, RFC is

related to complexity. The higher the value for RFC, the more complex a class

and hence the more likely it is that it will include errors.

Lack of cohesion in

methods (LCOM)

LCOM is calculated by considering pairs of methods in a class. LCOM is the

difference between the number of method pairs without shared attributes and the

number of method pairs with shared attributes. The value of this metric has been

widely debated and it exists in several variations. It is not clear if it really adds

any additional, useful information over and above that provided by other metrics.

47 Chapter 24 Quality management

Software component analysis

 System component can be analyzed separately using a

range of metrics.

 The values of these metrics may then compared for

different components and, perhaps, with historical

measurement data collected on previous projects.

 Anomalous measurements, which deviate significantly

from the norm, may imply that there are problems with

the quality of these components.

48 Chapter 24 Quality management

The process of product measurement

49 Chapter 24 Quality management

Measurement surprises

 Reducing the number of faults in a program leads to an

increased number of help desk calls

 The program is now thought of as more reliable and so has a

wider more diverse market. The percentage of users who call the

help desk may have decreased but the total may increase;

 A more reliable system is used in a different way from a system

where users work around the faults. This leads to more help

desk calls.

50 Chapter 24 Quality management

Key points

 Reviews of the software process deliverables involve a

team of people who check that quality standards are

being followed.

 In a program inspection or peer review, a small team

systematically checks the code. They read the code in

detail and look for possible errors and omissions

 Software measurement can be used to gather data

about software and software processes.

 Product quality metrics are particularly useful for

highlighting anomalous components that may have

quality problems.

 51 Chapter 24 Quality management

