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Preface

SPSS, standing for Statistical Package for the Social Sciences, is a powerful,
user-friendly software package for the manipulation and statistical analysis
of data. The package is particularly useful for students and researchers in
psychology, sociology, psychiatry, and other behavioral sciences, contain-
ing as it does an extensive range of both univariate and multivariate
procedures much used in these disciplines. Our aim in this handbook is
to give brief and straightforward descriptions of how to conduct a range
of statistical analyses using the latest version of SPSS, SPSS 11. Each chapter
deals with a different type of analytical procedure applied to one or more
data sets primarily (although not exclusively) from the social and behav-
ioral areas. Although we concentrate largely on how to use SPSS to get
results and on how to correctly interpret these results, the basic theoretical
background of many of the techniques used is also described in separate
boxes. When more advanced procedures are used, readers are referred
to other sources for details. Many of the boxes contain a few mathematical
formulae, but by separating this material from the body of the text, we
hope that even readers who have limited mathematical background will
still be able to undertake appropriate analyses of their data.

The text is not intended in any way to be an introduction to statistics
and, indeed, we assume that most readers will have attended at least one
statistics course and will be relatively familiar with concepts such as linear
regression, correlation, significance tests, and simple analysis of variance.
Our hope is that researchers and students with such a background will
find this book a relatively self-contained means of using SPSS to analyze
their data correctly. 

Each chapter ends with a number of exercises, some relating to the
data sets introduced in the chapter and others introducing further data
sets. Working through these exercises will develop both SPSS and statistical
skills. Answers to most of the exercises in the text are provided at

© 2004 by Chapman & Hall/CRC Press LLC



http://www.iop.kcl.ac.uk/iop/departments/BioComp/SPSSBook.shtml.
The majority of data sets used in the book can be found at the same site.

We are grateful to Ms. Harriet Meteyard for her usual excellent word
processing and overall support during the writing of this book.

Sabine Landau and Brian Everitt
London, July 2003
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Chapter 1

A Brief Introduction 
to SPSS

1.1 Introduction
The “Statistical Package for the Social Sciences” (SPSS) is a package of
programs for manipulating, analyzing, and presenting data; the package
is widely used in the social and behavioral sciences. There are several
forms of SPSS. The core program is called SPSS Base and there are a
number of add-on modules that extend the range of data entry, statistical,
or reporting capabilities. In our experience, the most important of these
for statistical analysis are the SPSS Advanced Models and SPSS Regression
Models add-on modules. SPSS Inc. also distributes stand-alone programs
that work with SPSS.

There are versions of SPSS for Windows (98, 2000, ME, NT, XP), major
UNIX platforms (Solaris, Linux, AIX), and Macintosh. In this book, we
describe the most popular, SPSS for Windows, although most features are
shared by the other versions. The analyses reported in this book are based
on SPSS version 11.0.1 running under Windows 2000. By the time this
book is published, there will almost certainly be later versions of SPSS
available, but we are confident that the SPSS instructions given in each
of the chapters will remain appropriate for the analyses described.

While writing this book we have used the SPSS Base, Advanced Models,
Regression Models, and the SPSS Exact Tests add-on modules. Other avail-
able add-on modules (SPSS Tables, SPSS Categories, SPSS Trends, SPSS
Missing Value Analysis) were not used.
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1. SPSS Base (Manual: SPSS Base 11.0 for Windows User’s Guide): This
provides methods for data description, simple inference for con-
tinuous and categorical data and linear regression and is, therefore,
sufficient to carry out the analyses in Chapters 2, 3, and 4. It also
provides techniques for the analysis of multivariate data, specifically
for factor analysis, cluster analysis, and discriminant analysis (see
Chapters 11 and 12).

2. Advanced Models module (Manual: SPSS 11.0 Advanced Models):
This includes methods for fitting general linear models and linear
mixed models and for assessing survival data, and is needed to
carry out the analyses in Chapters 5 through 8 and in Chapter 10.

3. Regression Models module (Manual: SPSS 11.0 Regression Models):
This is applicable when fitting nonlinear regression models. We have
used it to carry out a logistic regression analysis (see Chapter 9).

(The Exact Tests module has also been employed on occasion, specifically
in the Exercises for Chapters 2 and 3, to generate exact p-values.)

The SPSS 11.0 Syntax Reference Guide (SPSS, Inc., 2001c) is a reference
for the command syntax for the SPSS Base system and the Regression
Models and Advanced Models options.

The SPSS Web site (http://www.spss.com/) provides information on
add-on modules and stand-alone packages working with SPSS, events and
SPSS user groups. It also supplies technical reports and maintains a
frequently asked questions (FAQs) list.

SPSS for Windows offers a spreadsheet facility for entering and brows-
ing the working data file — the Data Editor. Output from statistical proce-
dures is displayed in a separate window — the Output Viewer. It takes the
form of tables and graphics that can be manipulated interactively and can
be copied directly into other applications.

It is its graphical user interface (GUI) that makes SPSS so easy by
simply selecting procedures from the many menus available. It is the GUI
that is used in this book to carry out all the statistical analysis presented.
We also show how to produce command syntax for record keeping.

We assume that the reader is already familiar with the Windows GUI
and we do not spend much time discussing the data manipulation and
result presentation facilities of SPSS for Windows. These features are
described in detail in the Base User’s Guide (SPSS, Inc., 2001d). Rather
we focus on the statistical features of SPSS — showing how it can be
used to carry out statistical analyses of a variety of data sets and on how
to interpret the resulting output. To aid in reading this text, we have
adopted the Helvetica Narrow font to indicate spreadsheet column names,
menu commands, and text in dialogue boxes as seen on the SPSS GUI.
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1.2 Getting Help
Online help is provided from the Help menu or via context menus or Help
buttons on dialogue boxes. We will mention the latter features when
discussing the dialogue boxes and output tables. Here, we concentrate
on the general help facility. The required menu is available from any
window and provides three major help facilities:

Help — Statistics Coach helps users unfamiliar with SPSS or the statistical
procedures available in SPSS to get started. This facility prompts
the user with simple questions in nontechnical language about
the purpose of the statistical analysis and provides visual examples
of basic statistical and charting features in SPSS. The facility covers
only a selected subset of procedures.

Help — Tutorial provides access to an introductory SPSS tutorial, includ-
ing a comprehensive overview of SPSS basics. It is designed to
provide a step-by-step guide for carrying out a statistical analysis
in SPSS. All files shown in the examples are installed with the
tutorial so the user can repeat the analysis steps.

Help — Topics opens the Help Topics: SPSS for Windows box, which pro-
vides access to Contents, Index, and Find tabs. Under the Contents
tab, double-clicking items with a book symbol expands or col-
lapses their contents (the Open and Close buttons do the same).
The Index tab provides an alphabetical list of topics. Once a topic
is selected (by double-clicking), or the first few letters of the word
are typed in, the Display button provides a description. The Find
tab allows for searching the help files for specific words and
phrases.

1.3 Data Entry
When SPSS 11.0 for Windows is first opened, a default dialogue box
appears that gives the user a number of options. The Tutorial can be
accessed at this stage. Most likely users will want to enter data or open
an existing data file; we demonstrate the former (Display 1.1). Further
options will be discussed later in this chapter. This dialogue box can be
prevented from opening in the future by checking this option at the
bottom of the box.

When Type in data is selected, the SPSS Data Editor appears as an empty
spreadsheet. At the top of the screen is a menu bar and at the bottom a
status bar. The status bar informs the user about facilities currently active;
at the beginning of a session it simply reads, “SPSS Processor is ready.”
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The facilities provided by the menus will be explained later in this chapter.
SPSS also provides a toolbar for quick and easy access to common tasks.
A brief description of each tool can be obtained by placing the cursor
over the tool symbol and the display of the toolbar can be controlled
using the command Toolbars… from the View drop-down menu (for more
details, see the Base User’s Guide, SPSS Inc., 2001d).

1.3.1 The Data View Spreadsheet

The Data Editor consists of two windows. By default the Data View, which
allows the data to be entered and viewed, is shown (Display 1.2). The
other window is the Variable View, which allows the types of variables to
be specified and viewed. The user can toggle between the windows by
clicking on the appropriate tabs on the bottom left of the screen.

Data values can be entered in the Data View spreadsheet. For most
analysis SPSS assumes that rows represent cases and columns variables.
For example, in Display 1.2 some of five available variable values have
been entered for twenty subjects. By default SPSS aligns numerical data
entries to the right-hand side of the cells and text (string) entries to the
left-hand side. Here variables sex, age, extrover, and car take numerical

Display 1.1 Initial SPSS for Windows dialogue box.

© 2004 by Chapman & Hall/CRC Press LLC



values while the variable make takes string values. By default SPSS uses
a period/full stop to indicate missing numerical values. String variable
cells are simply left empty. Here, for example, the data for variables
extrover, car, and make have not yet been typed in for the 20 subjects so
the respective values appear as missing.

The appearance of the Data View spreadsheet is controlled by the View
drop-down menu. This can be used to change the font in the cells, remove
lines, and make value labels visible. When labels have been assigned to
the category codes of a categorical variable, these can be displayed by
checking Value Labels (or by selecting  on the toolbar).Once the category
labels are visible, highlighting a cell produces a button with a downward
arrow on the right-hand side of the cell. Clicking on this arrow produces
a drop-down list with all the available category labels for the variable.
Clicking on any of these labels results in the respective category and label
being inserted in the cell. This feature is useful for editing the data.

1.3.2 The Variable View Spreadsheet

The Variable View spreadsheet serves to define the variables (Display 1.3).
Each variable definition occupies a row of this spreadsheet. As soon as
data is entered under a column in the Data View, the default name of the
column occupies a row in the Variable View.

Display 1.2 Data View window of the Data Editor.
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There are 10 characteristics to be specified under the columns of the
Variable View (Display 1.3):

1. Name — the chosen variable name. This can be up to eight
alphanumeric characters but must begin with a letter. While the
underscore (_) is allowed, hyphens (-), ampersands (&), and spaces
cannot be used. Variable names are not case sensitive.

2. Type — the type of data. SPSS provides a default variable type once
variable values have been entered in a column of the Data View.
The type can be changed by highlighting the respective entry in
the second column of the Variable View and clicking the three-periods
symbol (…) appearing on the right-hand side of the cell. This results
in the Variable Type box being opened, which offers a number of
types of data including various formats for numerical data, dates,
or currencies. (Note that a common mistake made by first-time users
is to enter categorical variables as type “string” by typing text into
the Data View. To enable later analyses, categories should be given
artificial number codes and defined to be of type “numeric.”)

3. Width — the width of the actual data entries. The default width of
numerical variable entries is eight. The width can be increased or
decreased by highlighting the respective cell in the third column
and employing the upward or downward arrows appearing on the

Display 1.3 Variable View window of the Data Editor.
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right-hand side of the cell or by simply typing a new number in
the cell.

4. Decimals — the number of digits to the right of the decimal place
to be displayed for data entries. This is not relevant for string data
and for such variables the entry under the fourth column is given
as a greyed-out zero. The value can be altered in the same way
as the value of Width.

5. Label — a label attached to the variable name. In contrast to the
variable name, this is not confined to eight characters and spaces
can be used. It is generally a good idea to assign variable labels.
They are helpful for reminding users of the meaning of variables
(placing the cursor over the variable name in the Data View will
make the variable label appear) and can be displayed in the output
from statistical analyses.

6. Values — labels attached to category codes. For categorical variables,
an integer code should be assigned to each category and the
variable defined to be of type “numeric.” When this has been done,
clicking on the respective cell under the sixth column of the Variable
View makes the three-periods symbol appear, and clicking this
opens the Value Labels dialogue box, which in turn allows assign-
ment of labels to category codes. For example, our data set included
a categorical variable sex indicating the gender of the subject.
Clicking the three-periods symbol opens the dialogue box shown
in Display 1.4 where numerical code “0” was declared to represent
females and code “1” males.

7. Missing — missing value codes. SPSS recognizes the period symbol
as indicating a missing value. If other codes have been used (e.g.,
99, 999) these have to be declared to represent missing values by
highlighting the respective cell in the seventh column, clicking the

Display 1.4 Declaring category code labels.
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three-periods symbol and filling in the resulting Missing Values dia-
logue box accordingly.

8. Columns — width of the variable column in the Data View. The default
cell width for numerical variables is eight. Note that when the Width
value is larger than the Columns value, only part of the data entry
might be seen in the Data View. The cell width can be changed in
the same way as the width of the data entries or simply by dragging
the relevant column boundary. (Place cursor on right-hand bound-
ary of the title of the column to be resized. When the cursor changes
into a vertical line with a right and left arrow, drag the cursor to
the right or left to increase or decrease the column width.)

9. Align — alignment of variable entries. The SPSS default is to align
numerical variables to the right-hand side of a cell and string
variables to the left. It is generally helpful to adhere to this default;
but if necessary, alignment can be changed by highlighting the
relevant cell in the ninth column and choosing an option from the
drop-down list.

10.  Measure — measurement scale of the variable. The default chosen
by SPSS depends on the data type. For example, for variables of
type “numeric,” the default measurement scale is a continuous or
interval scale (referred to by SPSS as “scale”). For variables of type
“string,” the default is a nominal scale. The third option, “ordinal,”
is for categorical variables with ordered categories but is not used
by default. It is good practice to assign each variable the highest
appropriate measurement scale (“scale” > “ordinal” > “nominal”)
since this has implications for the statistical methods that are
applicable. The default setting can be changed by highlighting the
respective cell in the tenth column and choosing an appropriate
option from the drop-down list.

A summary of variable characteristics can be obtained from the Utilities
drop-down menu. The Variables… command opens a dialogue box where
information can be requested for a selected variable, while choosing File
Info from the drop-down menu generates this information for every variable
in the Data View.

1.4 Storing and Retrieving Data Files
Storing and retrieving data files are carried out via the drop-down menu
available after selecting File on the menu bar (Display 1.5).

© 2004 by Chapman & Hall/CRC Press LLC



A data file shown in the Data Editor can be saved by using the commands
Save or Save As…. In the usual Windows fashion Save (or  from the
toolbar) will save the data file under its current name, overwriting an
existing file or prompting for a name otherwise. By contrast, Save As always
opens the Save Data As dialogue where the directory, file name, and type
have to be specified. SPSS supports a number of data formats. SPSS data
files are given the extension *.sav. Other formats, such as ASCII text (*.dat),
Excel (*.xls), or dBASE (*.dbf), are also available.

To open existing SPSS data files we use the commands File – Open – Data…
from the menu bar (or  from the toolbar). This opens the Open File
dialogue box from which the appropriate file can be chosen in the usual
way (Display 1.6). Recently used files are also accessible by placing the
cursor over Recently Used Data on the File drop-down menu and double-
clicking on the required file. In addition, files can be opened when first
starting SPSS by checking Open an existing data source on the initial dialogue
box (see Display 1.1).

SPSS can import data files in other than SPSS format. A list of data
formats is provided by selecting the down arrow next to the Files of type
field (Display 1.6). There are a number of formats including spreadsheet
(e.g., Excel, *.xls), database (e.g., dBase, *.dbf), and ACSII text (e.g., *.txt,

Display 1.5 File drop-down menu.
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*.dat). Selecting a particular file extension will cause a dialogue box to
appear that asks for information relevant to the format. Here we briefly
discuss importing Excel files and ASCII text files.

Selecting to import an Excel spreadsheet in the Open File box will bring
up the Opening File Options box. If the spreadsheet contains a row with
variable names, Read Variable Names has to be checked in this box in order
that the first row of the spreadsheet is read into variable names. In addition,
if there are initial empty rows or columns in the spreadsheet, SPSS needs
to be informed about it by defining the cells to be read in the Range field
of the Opening File Options box (using the standard spreadsheet format, e.g.,
B4:H10 for the cells in the rectangle with corners B4 and H10 inclusive).

Selecting to open an ASCII text file in the Open File dialogue box (or
selecting Read Text Data from the File drop-down directly, see Display 1.5)
causes the Text Import Wizard to start. The initial dialogue box is shown
in Display 1.7. The Wizard proceeds in six steps asking questions related
to the import format (e.g., how the variables are arranged, whether variable
names are included in the text file), while at the same time making
suggestions and displaying how the text file would be transformed into
an SPSS spreadsheet. The Text Import Wizard is a convenient and self-
explanatory ASCII text import tool.

(Choosing New from the File drop-down menu will clear the Data Editor
spreadsheet for entry of new data.)

Display 1.6 Opening an existing SPSS data file.
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1.5 The Statistics Menus
The drop-down menus available after selecting Data, Transform, Analyze, or
Graphs from the menu bar provide procedures concerned with different
aspects of a statistical analysis. They allow manipulation of the format of
the data spreadsheet to be used for analysis (Data), generation of new
variables (Transform), running of statistical procedures (Analyze), and con-
struction of graphical displays (Graphs).

Most statistics menu selections open dialogue boxes; a typical example
is shown in Display 1.8. The dialogue boxes are used to select variables
and options for analysis. A main dialogue for a statistical procedure has
several components:

� A source variables list is a list of variables from the Data View
spreadsheet that can be used in the requested analysis. Only
variable types that are allowed by the procedure are displayed in
the source list. Variables of type “string” are often not allowed. A

Display 1.7 Text Import Wizard dialogue box.
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sign icon next to the variable name indicates the variable type. A
hash sign (#) is used for numeric variables and “A” indicates that
the variable is a string variable.

� Target variable(s) lists are lists indicating the variables to be
included in the analysis (e.g., lists of dependent and independent
variables).

� Command buttons are buttons that can be pressed to instruct
the program to perform an action. For example, run the procedure
(click OK), reset all specifications to the default setting (click Reset),
display context sensitive help (click Help), or open a sub-dialogue
box for specifying additional procedure options.

Information about variables shown in a dialogue box can be obtained
by simply highlighting the variable by left-clicking and then right-clicking
and choosing Variable Information in the pop-up context menu. This results
in a display of the variable label, name, measurement scale, and value
labels if applicable (Display 1.8).

It is also possible to right-click on any of the controls or variables in
a dialogue box to obtain a short description. For controls, a description
is provided automatically after right-clicking. For variables, What’s this? must
be chosen from the pop-up context menu.

SPSS provides a choice between displaying variable names or variable
labels in the dialogue boxes. While variable labels can provide more
accurate descriptions of the variables, they are often not fully displayed

Display 1.8 Typical dialogue box.
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in a box due to their length (positioning the cursor over the variable label
will show the whole text). We, therefore, prefer to display variable names
and have adhered to this setting in all the dialogue boxes shown later in
this book. Displays are controlled via the Options dialogue box opened
by using the commands, Edit – Option… from the menu bar. To display
variable names, check Display names under Variable Lists on the General tab.

1.5.1 Data File Handling

The data file as displayed in the Data View spreadsheet is not always
organized in the appropriate format for a particular use. The Data drop-
down menu provides procedures for reorganizing the structure of a data
file (Display 1.9).

The first four command options from the Data drop-down menu are
concerned with editing or moving within the Data View spreadsheet. Date
formats can be defined or variables or cases inserted.

The following set of procedures allows the format of a data file to be
changed:

� Sort Cases… opens a dialogue box that allows sorting of cases
(rows) in the spreadsheet according to the values of one or more
variables. Cases can be arranged in ascending or descending order.
When several sorting variables are employed, cases will be sorted
by each variable within categories of the prior variable on the Sort
by list. Sorting can be useful for generating graphics (see an
example of this in Chapter 10).

Display 1.9 Data drop-down menu.
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� Transpose… opens a dialogue for swapping the rows and columns
of the data spreadsheet. The Variable(s) list contains the columns to
be transposed into rows and an ID variable can be supplied as
the Name Variable to name the columns of the new transposed
spreadsheet. The command can be useful when procedures nor-
mally used on the columns of the spreadsheet are to be applied
to the rows, for example, to generate summary measures of case-
wise repeated measures.

� Restructure… calls the Restructure Data Wizard, a series of dia-
logue boxes for converting data spreadsheets between what are
known as “long” and “wide” formats. These formats are relevant
in the analysis of repeated measures and we will discuss the formats
and the use of the Wizard in Chapter 8.

� Merge files allows either Add Cases… or Add Variables… to an existing
data file. A dialogue box appears that allows opening a second
data file. This file can either contain the same variables but different
cases (to add cases) or different variables but the same cases (to
add variables). The specific requirements of these procedures are
described in detail in the Base User’s Guide (SPSS Inc., 2001d). The
commands are useful at the database construction stage of a project
and offer wide-ranging options for combining data files.

� Aggregate… combines groups of rows (cases) into single summary
rows and creates a new aggregated data file. The grouping variables
are supplied under the Break Variable(s) list of the Aggregate Data
dialogue box and the variables to be aggregated under the Aggregate
Variable(s) list. The Function… sub-dialogue box allows for the aggre-
gation function of each variable to be chosen from a number of
possibilities (mean, median, value of first case, number of cases,
etc.). This command is useful when the data are of a hierarchical
structure, for example, patients within wards within hospitals. The
data file might be aggregated when the analysis of characteristics
of higher level units (e.g., wards, hospitals) is of interest.

Finally, the Split File…, Select Cases…, and Weight Cases… procedures
allow using the data file in a particular format without changing its
appearance in the Data View spreadsheet. These commands are frequently
used in practical data analysis and we provide several examples in later
chapters. Here we will describe the Select Cases… and Split File… commands.
The Weight Cases… command (or  from the toolbar) is typically used
in connection with categorical data — it internally replicates rows accord-
ing to the values of a Frequency Variable. It is useful when data is provided
in the form of a cross-tabulation; see Chapter 3 for details.
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The Split File… command splits rows into several groups with the effect
that subsequent analyses will be carried out for each group separately.
Using this command from the drop-down menu (or selecting  from the
toolbar) results in the dialogue box shown in Display 1.10. By default
Analyze all cases, do not create groups is checked. A grouping of rows can be
introduced by checking either Compare groups or Organize output by groups
(Display 1.10). The variable (or variables) that defines the groups is
specified under the Groups Based on list. For example, here we request that
all analyses of the data shown in Display 1.2 will be carried out within
gender groups of subjects. The rows of the Data View spreadsheet need to
be sorted by the values of the grouping variable(s) for the Split File routine
to work. It is, therefore, best to always check Sort the file by grouping variables
on the Split File dialogue. Once Split File is activated, the status bar displays
“Split File On” on the right-hand side to inform the user about this.

The Select Cases… command (or selecting  from the toolbar) opens
the dialogue shown in Display 1.11. By default All Cases are selected,
which means that all cases in the data file are included in subsequent
analyses. Checking If condition is satisfied allows for a subset of the cases
(rows) to be selected. The condition for selection is specified using the
If… button. This opens the Select Cases: If sub-dialogue box where a logical
expression for evaluation can be supplied. For example, we chose to
select subjects older than 40 from the gender group coded “1” (males)
from the data shown in Display 1.2 which translates into using the logical
expression age > 40 & sex = 1 (Display 1.11). Once Continue and OK are
pressed, the selection is activated; SPSS then “crosses out” unselected rows

Display 1.10 Selecting groups of cases for later analyses.
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in the Data View spreadsheet and ignores these rows in subsequent anal-
yses. It also automatically includes a filter variable, labeled filter_$ in the
spreadsheet which takes the value “1” for selected rows and “0” for
unselected rows. Filter variables are kept to enable replication of the case
selection at a later stage by simply selecting cases for which filter_$ takes
the value “1.” Once the selection is active, the status bar displays “Filter
On” for information. (It is also possible to remove unselected cases
permanently by checking Unselected Cases Are Deleted in the Select Cases
dialogue box, Display 1.11.)

1.5.2 Generating New Variables

The Transform drop-down menu provides procedures for generating new
variables or changing the values of existing ones (Display 1.12).

The Compute… command is frequently used to generate variables suit-
able for statistical analyses or the creation of graphics. The resulting
Compute dialogue can be used to create new variables or replace the values
of existing ones (Display 1.13). The name of the variable to be created
or for which values are to be changed is typed in the Target Variable list.
For new variables, the Type&Label sub-dialogue box enables specification
of variable type and label. The expression used to generate new values
can be typed directly in the Expression field or constructed automatically
by pasting in functions from the Functions list or selecting arithmetic
operators and numbers from the “calculator list” seen in Display 1.13.
When pasting in functions, the arguments indicated by question marks
must be completed. Here, for example, we request a new variable, the
age of a person in months (variable month), to be generated by multiplying
the existing age variable in years (age) by the factor 12 (Display 1.13).

Display 1.11 Selecting subsets of cases for later analyses.
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The following applies to expressions:

� The meaning of most arithmetic operators is obvious (+, –, *, /).
Perhaps less intuitive is double star (**) for “by the power of.”

� Most of the logical operators use well-known symbols (>, = , etc.).
In addition:
� Ampersand (&) is used to indicate “and” 
� Vertical bar (|) to indicate “or” 
� ~= stands for “not equal”
� ~ means “not” and is used in conjunction with a logical expression

Display 1.12 Transform drop-down menu.

Display 1.13 Generating new variables or changing the values of existing variables.
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� A large number of functions are supported, including 
� Arithmetic functions, such as LN(numexpr), ABS(numexpr)
� Statistical functions, such as MEAN (numexpr, numexp,…),

including distribution functions, such as CDF.NORMAL
(q,mean,stddev), IDF.NORMAL (p,mean, stddev), PDF.NORMAL
(q,mean,stddev); and random numbers, for example, RV.NOR-
MAL (mean,stddev) 

� Date and time functions, for example, XDATE.JDAY(datevalue)
� A full list of functions and explanations can be obtained by search-

ing for “functions” in the online Help system index. Explanations
of individual functions are also provided after positioning the cursor
over the function in question on the Compute dialogue box and
right-clicking.

The Compute Variables: If Cases sub-dialogue box is accessed by pressing
the If… button and works in the same way as the Select Cases: If sub-dialogue
(see Display 1.11). It allows data transformations to be applied to selected
subsets of rows. A logical expression can be provided in the field of this
sub-dialogue box so that the transformation specified in the Compute Variable
main dialogue will only be applied to rows that fulfill this condition. Rows
for which the logical expression is not true are not updated.

In addition to Compute…, the Recode… command can be used to generate
variables for analysis. As with the Compute… command, values of an existing
variable can be changed (choose to recode Into Same Variables) or a new
variable generated (choose Into Different Variables…). In practice, the Recode…
command is often used to categorize continuous outcome variables and
we will delay our description of this command until Chapter 3 on cate-
gorical data analysis.

The remaining commands from the Transform drop-down menu are used
less often. We provide only a brief summary of these and exclude time
series commands:

� Random Number Seed… allows setting the seed used by the pseudo-
random number generator to a specific value so that a sequence
of random numbers — for example, from a normal distribution
using the function RV.NORMAL(mean,stddev) — can be replicated.

� Count… counts the occurrences of the same value(s) in a list of variables
for each row and stores them in a new variable. This can be useful
for generating summaries, for example, of repeated measures.

� Categorize Variables… automatically converts continuous variables
into a given number of categories. Data values are categorized
according to percentile groups with each group containing approx-
imately the same number of cases.
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� Rank Cases… assigns ranks to variable values. Ranks can be assigned
in ascending or descending order and ranking can be carried out
within groups defined By a categorical variable.

� Automatic Recode… coverts string and numeric variables into con-
secutive integers.

1.5.3 Running Statistical Procedures

Performing a variety of statistical analyses using SPSS is the focus of this
handbook and we will make extensive use of the statistical procedures
offered under the Analyze drop-down menu in later chapters. Display 1.14
provides an overview. (There are many other statistical procedures avail-
able in SPSS that we do not cover in this book — interested readers are
referred to the relevant manuals.)

1.5.4 Constructing Graphical Displays

Many (perhaps most) statistical analyses will begin by the construction of
one or more graphical display(s) and so many of the commands available
under the Graphs drop-down menu will also be used in later chapters.
Display 1.15 provides an overview.

Display 1.14 Statistical procedures covered in this book.
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The Gallery command provides a list of available charts with example
displays. The Interactive command provides a new interactive graphing
facility that we have not used in this book primarily because of space
limitations. Interested readers should refer to the appropriate SPSS manuals.

1.6 The Output Viewer
Once a statistical procedure is run, an Output Viewer window is created that
holds the results. For example, requesting simple descriptive summaries
for the age and gender variables results in the output window shown in
Display 1.16. Like the Data Editor, this window also has a menu bar and a
toolbar and displays a status bar. The File, Edit, View and Utilities drop-down
menus fulfill similar functions as under the Data Editor window, albeit with
some extended features for table and chart output. The Analyze, Graphs,
Window and Help drop-down menus are virtually identical. (The Window
drop-down menu allows moving between different windows, for example
between the Output Viewer and the Data Editor window in the usual way.)
The Insert and Format menus provide new commands for output editing.
A toolbar is provided for quick access.

Display 1.15 Graph procedures demonstrated in this book.
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The Output Viewer is divided into two panes. The right-hand pane
contains statistical tables, charts, and text output. The left-hand pane
contains a tree structure similar to those used in Windows Explorer, which
provides an outline view of the contents. Here, for example, we have
carried out two SPSS commands, the Descriptives command, and the
Frequencies command, and these define the level-1 nodes of the tree
structure that then “branch out” into several output tables/titles/notes each
at level 2. Level-2 displays can be hidden in the tree by clicking on the
minus symbol (–) of the relevant level-1 node. Once hidden, they can be
expanded again by clicking the now plus symbol (+). Clicking on an item
on the tree in the left-hand pane automatically highlights the relevant part
in the right-hand pane and provides a means of navigating through output.

The contents of the right-hand pane or parts of it can also be cop-
ied/pasted into other Windows applications via the Edit drop-down menu
or the whole output saved as a file by employing the Save or Save As
commands from the File drop-down menu. The extension used by SPSS
to indicate viewer output is *.spo. (An output file can then be opened
again by using File – Open – Output… from the menu bar.)

Display 1.16 Output Viewer window.
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More than one Output Viewer can be open at one time. In that case SPSS
directs the output into the designated Output Viewer window. By default
this is the window opened last, rather than the active (currently selected)
window. The designated window is indicated by an exclamation point (!)
being shown on the status bar at the bottom of the window. A window
can be made the designated window by clicking anywhere in the window
and choosing Utilities – Designate window from the menu bar or by selecting
the exclamation point symbol  on the toolbar.

The Output Viewer provides extensive facilities for editing contents. Tables
can be moved around, new contents added, fonts or sizes changed, etc.
Details of facilities are provided in the Base User’s Guide (SPSS Inc., 2001).
The default table display is controlled by the Options dialogue available from
the Edit drop-down menu, specifically by the Viewer, Output Labels, and Pivot
Tables tabs. The output tables shown in this book have been constructed by
keeping the initial default settings, for example, variable labels and variable
category labels are always displayed in output tables when available.

Information about an output table can be obtained by positioning the
cursor over the table, right-clicking to access a pop-up context menu and
choosing Results Coach. This opens the SPSS Results Coach, which
explains the purpose of the table and the contents of its cells, and offers
information on related issues.

Whenever an analysis command is executed, SPSS produces a “Notes”
table in the Output Viewer. By default this table is hidden in the right-hand
pane display, but any part of the output can be switched between back-
ground (hidden) and foreground (visible) by double-clicking on its book
icon in the tree structure in the left-hand pane. The “Notes” table provides
information on the analysis carried out — data file used, analysis command
syntax, time of execution, etc. are all recorded.

Most output displayed in tables (in so-called pivot tables) can be
modified by double-clicking on the table. This opens the Pivot Table Editor,
which provides an advanced facility for table editing (for more details see
the Base User’s Guide, SPSS Inc., 2001d). For example, table cell entries
can be edited by double-clicking onto the respective cell or columns
collapsed by dragging their borders. Display options can be accessed from
the editor’s own menu bar or from a context menu activated by right-
clicking anywhere within the Pivot Table Editor. One option in the context
menu automatically creates a chart. While this might appear convenient
at first, it rarely produces an appropriate graph. A more useful option is
to select What’s this from the pop-up context menu for cells with table
headings that will provide an explanation of the relevant table entries.

Text output not displayed in pivot tables can also be edited to some
extent. Double-clicking on the output opens the Text Output Editor, which
allows for editing the text and changing the font characteristics.
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1.7 The Chart Editor
The use of procedures from the Graphs drop-down menu and some
procedures from the Analyze menu generate chart output in the Output
Viewer. After creating a chart, it is often necessary to modify it, for example,
to enhance it for presentation or to obtain additional information. In SPSS
this can be done by activating the Chart Editor by double-clicking on the
initial graph in the Output Viewer. As an example, a bar chart of mean ages
within gender has been created for the data in Display 1.2 and is displayed
in the Chart Editor (Display 1.17).

The Chart Editor has its own menu bar and toolbar. (However, the Analyze,
Graphs, and Help drop-down menus remain unchanged.) Once a graph is
opened in the Chart Editor, it can be edited simply by double-clicking on
the part that is to be changed, for example, an axis label. Double-clicking
opens dialogue boxes that can alternatively be accessed via the menus.
Specifically, the Gallery drop-down menu provides a facility for converting
between different types of graphs; the Chart drop-down menu deals mainly
with axes, chart and text displays; and the Format drop-down with colors,
symbols, line styles, patterns, text fonts, and sizes.

Display 1.17 Chart Editor window.
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The Chart Editor facilities are described in detail in the Base User’s Guide
(SPSS Inc., 2001). Here we provide only an introductory editing example.
In later chapters we will explain more facilities as the need arises.

As an example we attempt to enhance the bar chart in Display 1.17.
In particular, this graphical display:

1. Should not be in a box
2. Should have a title
3. Should have different axes titles
4. Should be converted into black and white
5. Should have a y-axis that starts at the origin

Making these changes requires the following steps:

1. Uncheck Inner Frame on the Chart drop-down menu.
2. Use the command Title… from the Chart drop-down menu. This

opens the Titles dialogue box where we type in our chosen title
“Bar chart” and set Title Justification to Center.

3. Double-click on the y-axis title, change the Axis Title in the resulting
Scale Axis dialogue box, and also set Title Justification to Center in that
box. We then double-click on the x-axis label and again change
the Axis Title in the resulting Category Axis dialogue box and also set
Title Justification to Center in that box.

4. Select the bars (by single left-click), choose Color… from the Format
drop-down menu and select white fill in the resulting Colors palette.
We also choose Fill Pattern… from the Format drop-down menu and
apply a striped pattern from the resulting Fill Patterns palette.

5. Double-click on the y-axis and change the Minimum Range to “0”
and the Maximum Range to “60” in the resulting Scale Axis dialogue
box. With this increased range, we also opt to display Major Divisions
at an increment of “10.” Finally, we employ the Labels sub-dialogue
box to change the Decimal Places to “0.”

The final bar chart is shown in Display 1.18.
Graphs can be copied and pasted into other applications via the Edit

drop-down menu from the Chart Editor (this is what we have done in this
book) or from the Data Viewer. Graphs can also be saved in a number of
formats by using File – Export Chart from the Chart Editor menu bar. The
possible formats are listed under the Save as type list of the Export Chart
dialogue box. In SPSS version 11.0.1 they include JPEG (*.jpg), PostScript
(*.eps), Tagged Image File (*.tif), and Windows Metafile (*.wmf).
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1.8 Programming in SPSS
Most commands are accessible from the menus and dialogue boxes.
However, some commands and options are available only by using SPSS’s
command language. It is beyond the scope of this book to cover the
command syntax; we refer the reader to the Syntax Reference Guide (SPSS,
Inc., 2001c) for this purpose.

It is useful, however, to show how to generate, save, and run command
syntax. From an organizational point of view, it is a good idea to keep a
record of commands carried out during the analysis process. Such a record
(“SPSS program”) allows for quick and error-free repetition of the analysis
at a later stage, for example, to check analysis results or update them in line
with changes to the data file. This also allows for editing the command
syntax to utilize special features of SPSS not available through dialogue boxes.

Without knowing the SPSS command syntax, a syntax file can be
generated by employing the Paste facility provided by all dialogue boxes
used for aspects of statistical analysis. For example, the main dialogue
boxes shown in Displays 1.8, 1.10, 1.11, and 1.13 all have a Paste command
button. Selecting this button translates the contents of a dialogue box and
related sub-dialogue boxes into command syntax. The command with

Display 1.18 Bar chart.
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options is pasted into a Syntax Editor window. Should such a window not
exist at the time, SPSS will automatically create one. For example, selecting
Paste on the dialogue box shown in Display 1.8 produces the Syntax Editor
window given in Display 1.19. If a Syntax Editor window already exists,
then SPSS will append the latest command to the contents of the window.

The commands contained in a Syntax Editor window can be executed
by selecting the command All… from the Run drop-down menu on the
editor’s menu bar or by selecting  from the toolbar. This generates
output in the Output Viewer in the usual way. It is also possible to execute
only selected commands in the syntax window by highlighting the relevant
commands and then using the command Selection from the Run drop-down
menu or by clicking the run symbol on the toolbar.

The contents of the Syntax Editor window can be saved as a syntax file
by using the Save or Save As command from the File drop-down menu of
the Syntax Editor. The extension used by SPSS to indicate syntax is *.sps.
A syntax file can be opened again by using the commands File – Open –
Syntax… from the Data Editor, Output Viewer, or Syntax Editor menu bar.

More than one Syntax Editor can be open at one time. In that case, SPSS
executes the commands of the designated Syntax Editor window. By default,
the window opened last is the designated window. The designation is
indicated and can be changed in the same way as that of the Output Viewer
windows (see Section 1.6).

Display 1.19 Syntax Editor showing command syntax for the dialogue box in 
Display 1.8.
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Chapter 2

Data Description and 
Simple Inference for 
Continuous Data: The 
Lifespans of Rats and Ages 
at Marriage in the U.S.

2.1 Description of Data
In this chapter, we consider two data sets. The first, shown in Table 2.1,
involves the lifespan of two groups of rats, one group given a restricted
diet and the other an ad libitum diet (that is, “free eating”). Interest lies
in assessing whether lifespan is affected by diet.

The second data set, shown in Table 2.2, gives the ages at marriage
for a sample of 100 couples that applied for marriage licences in Cum-
berland County, PA, in 1993. Some of the questions of interest about these
data are as follows:

� How is age at marriage distributed?
� Is there a difference in average age at marriage of men and women?
� How are the ages at marriage of husband and wife related?
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2.2 Methods of Analysis
Data analysis generally begins with the calculation of a number of summary
statistics such as the mean, median, standard deviation, etc., and by
creating informative graphical displays of the data such as histograms, box
plots, and stem-and-leaf plots. The aim at this stage is to describe the
general distributional properties of the data, to identify any unusual
observations (outliers) or any unusual patterns of observations that may
cause problems for later analyses to be carried out on the data. (Descrip-
tions of all the terms in italics can be found in Altman, 1991.)

Following the initial exploration of the data, statistical tests may be
applied to answer specific questions or to test particular hypotheses about
the data. For the rat data, for example, we will use an independent samples
t-test and its nonparametric alternative, the Mann-Whitney U-test to assess
whether the average lifetimes for the rats on the two diets differ. For the
second data set we shall apply a paired samples t-test (and the Wilcoxon
signed ranks test) to address the question of whether men and women
have different average ages at marriage. (See Boxes 2.1 and 2.2 for a brief
account of the methods mentioned.)

Finally, we shall examine the relationship between the ages of husbands
and their wives by constructing a scatterplot, calculating a number of corre-
lation coefficients, and fitting a simple linear regression model (see Box 2.3).

Table 2.1 Lifespans of Rats (in Days) Given Two Diets

a) Restricted diet (n = 105)
105 193 211 236 302 363 389 390 391 403 530 604 60.5 630 716
718 727 731 749 769 770 789 804 810 811 833 868 871 848 893
897 901 906 907 919 923 931 940 957 958 961 962 974 979 982

1101 1008 1010 1011 1012 1014 1017 1032 1039 1045 1046 1047 1057 1063 1070
1073 1076 1085 1090 1094 1099 1107 1119 1120 1128 1129 1131 1133 1136 1138
1144 1149 1160 1166 1170 1173 1181 1183 1188 1190 1203 1206 1209 1218 1220
1221 1228 1230 1231 1233 1239 1244 1258 1268 1294 1316 1327 1328 1369 1393
1435

b) Ad libitum diet (n = 89)
89 104 387 465 479 494 496 514 532 536 545 547 548 582 606

609 619 620 621 630 635 639 648 652 653 654 660 665 667 668
670 675 677 678 678 681 684 688 694 695 697 698 702 704 710
711 712 715 716 717 720 721 730 731 732 733 735 736 738 739
741 743 746 749 751 753 764 765 768 770 773 777 779 780 788
791 794 796 799 801 806 807 815 836 838 850 859 894 963

Source: Berger, Boss, and Guess, 1988. With permission of the Biometrics Society.
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Box 2.1 Student ’s t-Tests

Table 2.2 Ages (in years) of Husbands and Wives at Marriage

Husband Wife Husband Wife Husband Wife Husband Wife Husband Wife

22 21 40 46 23 22 31 33 24 25
38 42 26 25 51 47 23 21 25 24
31 35 29 27 38 33 25 25 46 37
42 24 32 39 30 27 27 25 24 23
23 21 36 35 36 27 24 24 18 20
55 53 68 52 50 55 62 60 26 27
24 23 19 16 24 21 35 22 25 22
41 40 52 39 27 34 26 27 29 24
26 24 24 22 22 20 24 23 34 39
24 23 22 23 29 28 37 36 26 18
19 19 29 30 36 34 22 20 51 50
42 38 54 44 22 26 24 27 21 20
34 32 35 36 32 32 27 21 23 23
31 36 22 21 51 39 23 22 26 24
45 38 44 44 28 24 31 30 20 22
33 27 33 37 66 53 32 37 25 32
54 47 21 20 20 21 23 21 32 31
20 18 31 23 29 26 41 34 48 43
43 39 21 22 25 20 71 73 54 47
24 23 35 42 54 51 26 33 60 45

Source: Rossman, 1996. With permission of Springer-Verlag.

(1) Independent samples t-test

� The independent samples t-test is used to test the null hypoth-
esis that the means of two populations are the same, H0: 1 =

2, when a sample of observations from each population is
available. The observations made on the sample members must
all be independent of each other. So, for example, individuals
from one population must not be individually matched with
those from the other population, nor should the individuals
within each group be related to each other.

� The variable to be compared is assumed to have a normal
distribution with the same standard deviation in both populations.
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� The test-statistic is 

where –y1 and –y2 are the means in groups 1 and 2, n1 and n2

are the sample sizes, and s is the pooled standard deviation
calculated as

where s1 and s2 are the standard deviations in the two groups.
� Under the null hypothesis, the t-statistic has a student’s

t-distribution with n1 + n2 – 2 degrees of freedom.
� The confidence interval corresponding to testing at the 

significance level, for example, if = 0.05, a 95% confidence
interval is constructed as

when t is the critical value for a two-sided test, with n1 + n2 –
2 degrees of freedom.

(2) Paired samples t-test

� A paired t-test is used to compare the means of two populations
when samples from the populations are available, in which
each individual in one sample is paired with an individual in
the other sample. Possible examples are anorexic girls and
their healthy sisters, or the same patients before and after
treatment.

� If the values of the variables of interest y for the members of
the ith pair in groups 1 and 2 are denoted as y1i and y2i, then
the differences di = y1i – y2i are assumed to have a normal
distribution.
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Box 2.2 Nonparametric Tests

� The null hypothesis here is that the mean difference is zero,
i.e., H0: d = 0. 

� The paired t-statistic is

where
–
d is the mean difference between the paired groups

and sd is the standard deviation of the differences di and n the
number of pairs. Under the null hypothesis, the test-statistic
has a t-distribution with n – 1 degrees of freedom.

� A 100(1 – )% confidence interval can be constructed as
follows:

where t is the critical value for a two-sided test with n – 1
degrees of freedom.

(1) Mann-Whitney U-test

� The null hypothesis to be tested is that the two populations
being compared have identical distributions. (For two normally
distributed populations with common variance, this would be
equivalent to the hypothesis that the means of the two popu-
lations are the same.)

� The alternative hypothesis is that the population distributions
differ in location (the median).

� Samples of observations are available from each of the two
populations being compared.

� The test is based on the joint ranking of the observations from
the two samples (as if they were from a single sample). If
there are ties, the tied observations are given the average of
the ranks for which the observations are competing.

� The test statistic is the sum of the ranks of one sample (the
lower of the two rank sums is generally used).

t
d

s nd

d t s nd
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� For small samples, p-values for the test-statistic can be found
from suitable tables (see Hollander and Wolfe, 1999).

� A large sample approximation is available that is suitable when
the two sample sizes n1 and n2 are both greater than 15, and
there are no ties. The test-statistic z is given by

where S is the test-statistic based on the sample with n1

observations. Under the null hypothesis, z has approximately
a standard normal distribution.

� A modified z-statistic is available when there are ties (see
Hollander and Wolfe, 1999).

(2) Wilcoxon signed ranks test

� Assume, we have two observations, yi1 and yi2 on each of n
subjects in our sample, e.g., before and after treatment. We
first calculate the differences zi = yi1 – yi2, between each pair
of observations.

� To compute the Wilcoxon signed-rank statistic T +, form the
absolute values of the differences zi and then order them from
least to greatest.

� If there are ties among the calculated differences, assign each
of the observations in a tied group the average of the integer
ranks that are associated with the tied group.

� Now assign a positive or negative sign to the ranks of the
differences according to whether the corresponding difference
was positive or negative. (Zero values are discarded, and the
sample size n altered accordingly.)

� The statistic T + is the sum of the positive ranks. Tables are
available for assigning p-values (see Table A.4 in Hollander
and Wolfe, 1999).

� A large sample approximation involves testing the statistic z
as a standard normal:

z
S n n n

n n n n

1 1 2

1 2 1 2

1 2

1 12

/

/

z
T n n

n n n

1 4

1 2 1 24

/

/
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Box 2.3 Simple Linear Regression

2.3 Analysis Using SPSS

2.3.1 Lifespans of Rats

The lifespan data from Table 2.1 can be typed directly into the SPSS Data
View as shown in Display 2.1. SPSS assumes that the rows of the spread-
sheet define the units on which measurements are taken. Thus the rats
have to correspond to rows and the lifespan values have to be included
in one long column. For later identification, a number is also assigned to
each rat. 

The type of diet given to each rat has to be designated as a factor,
i.e., a categorical variable with, in this case, two levels, “Restricted diet”
and “Ad libitum diet.” As mentioned before (cf. Chapter 1), factor levels
need to be assigned artificial codes and labels attached to level codes
rather than text typed directly into the Data View spreadsheet. We therefore
use the codes “1” and “2” in the Data View spreadsheet (Display 2.1) and
employ the Values column of the Variable View spreadsheet to attach labels
“Restricted diet” and “Ad libitum diet” to the codes (see Display 1.4).

� Simple linear regression is used to model the relationship
between a single response variable, y, and a single explanatory
variable, x; the model is

where (xi, yi), i = 1, …, n are the sample values of the response
and exploratory variables and i are random disturbance terms
assumed to be normally distributed with mean zero and vari-
ance 2.

� The intercept parameter, o, is the value predicted for the
response variable when the explanatory variable takes the
value zero.

� The slope parameter, 1, is the change in the response variable
predicted when the explanatory variable is increased by one
unit.

� The parameters, also known as regression coefficients, can be
estimated by least squares (see Rawlings, Pantula, and Dickey,
1998).

y xi i i0 1
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The analysis of almost every data set should begin by examination of
relevant summary statistics, and a variety of graphical displays. SPSS sup-
plies standard summary measures of location and spread of the distribution
of a continuous variable together with a variety of useful graphical displays.
The easiest way to obtain the data summaries is to select the commands

Analyze – Descriptive statistics – Explore

from the menu bar and to fill in resulting dialogue boxes as indicated in
Display 2.2. In this box, the Dependent List declares the continuous variables

Display 2.1 Data View spreadsheet for rat data from Table 2.1.
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requiring descriptive statistics, and in the Factor List we specify the categories
within which separate summaries are to be calculated — in this example,
each dietary group. Labeling the observations by the rat’s ID number will
enable possible outlying observations to be identified. 

For graphical displays of the data we again need the Explore dialogue
box; in fact, by checking Both in this box, we can get our descriptive
statistics and the plots we require. Here we select Boxplots and Histogram
to display the distributions of the lifespans of the rats, and probability
plots (see Everitt and Wykes, 1999) to assess more directly the assumption
of normality within each dietary group. 

Display 2.3 shows the descriptive statistics supplied by default (further
statistics can be requested from Explore via the Statistics sub-dialogue box).
We see, for example, that the median lifespan is shorter for rats on the
ad libitum diet (710 days compared with 1035.5 days for rats on the
restricted diet). A similar conclusion is reached when either the mean or
the 5% trimmed mean (see Everitt and Wykes, 1999) is used as the measure
of location. The “spread” of the lifespans as measured by the interquartile
range (IQR) (see Everitt and Wykes, 1999) appears to vary with diet, with
lifespans in the restricted diet group being more variable (IQR in the
restricted diet group is 311.5 days, but only 121 days in the comparison

Display 2.2 Generating descriptive statistics within groups.
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group). Other measures of spread, such as the standard deviation and the
range of the sample, confirm the increased variability in the restricted diet
group.

Finally, SPSS provides measures of two aspects of the “shape” of the
lifespan distributions in each dietary group, namely, skewness and kurtosis
(see Everitt and Wykes, 1999). The index of skewness takes the value
zero for a symmetrical distribution. A negative value indicates a negatively
skewed distribution, a positive value a positively skewed distribution —
Figure 2.1 shows an example of each type. The kurtosis index measures
the extent to which the peak of a unimodal frequency distribution departs
from the shape of normal distribution. A value of zero corresponds to a
normal distribution; positive values indicate a distribution that is more
pointed than a normal distribution and a negative value a flatter distribu-
tion — Figure 2.2 shows examples of each type. For our data we find
that the two shape indices indicate some degree of negative skewness

Display 2.3 Descriptives output for rat data.

Descriptives

968.75 27.641
913.94
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988.31
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80985.696

284.580
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-1.161 .235

1.021 .465
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lifespan in days
Statistic Std. Error

© 2004 by Chapman & Hall/CRC Press LLC



and distributions that are more pointed than a normal distribution. Such
findings have possible implications for later analyses that may be carried
out on the data.

We can now move on to examine the graphical displays we have
selected. The box plots are shown in Display 2.4. (We have edited the

Figure 2.1 Examples of skewed distributions.

Figure 2.2 Curves with different degrees of kurtosis.
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original graph somewhat using the Chart Editor to improve its appearance.)
This type of plot (also known as box-and-whisker plot) provides a “picture”
of a five-point summary of the sample observations in each group. The
lower end of the box represents the lower quartile and the upper end the
upper quartile; thus the box width is the IQR and covers the middle 50%
of the data. The horizontal line within the box is placed at the median of
the sample. The bottom “whisker” extends to the minimum data point in
the sample, except if this point is deemed an outlier by SPSS. (SPSS calls
a point an “outlier” if the point is more than 1.5 IQR away from the box
and considers it an “extreme value” when it is more than 3 IQR away.)
In the latter case, the whisker extends to the second lowest case, except
if this is found to be an outlier and so on. The top whisker extends to the
maximum value in the sample, again provided this value is not an outlier. 

The box plots in Display 2.4 lead to the same conclusions as the
descriptive summaries. Lifespans in the restricted diet group appear to be
longer “on average” but also more variable. A number of rats have been
indicated as possible outliers and for the ad libitum diet; some are even
marked as extreme observations. Since we have employed case labels,
we can identify the rats with very short lifespans. Here the rat with the
shortest lifespan (89 days) is rat number 107. (Lifespans that are short
relative to the bulk of the data can arise as a result of negative skewness
of the distributions — observations labeled “outliers” by SPSS do not

Display 2.4 Box plots for rat lifespans generated by commands in Display 2.2.
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necessarily have to be removed before further analyses, although they do
merit careful consideration. Here we shall not remove any of the suspect
observations before further analyses.) 

The evidence from both the summary statistics for the observations in
each dietary group and the box plot is that the distributions of the lifespans
in the underlying population are nonsymmetric and that the variances of
the lifespans vary between the diet groups. Such information is important
in deciding which statistical tests are most appropriate for testing hypoth-
eses of interest about the data, as we shall see later.

An alternative to the box plot for displaying sample distributions is
the histogram. Display 2.5 shows the histograms for the lifespans under
each diet. Each histogram displays the frequencies with which certain
ranges (or “bins”) of lifespans occur within the sample. SPSS chooses the
bin width automatically, but here we chose both our own bin width
(100 days) and the range of the x-axis (100 days to 1500 days) so that
the histograms in the two groups were comparable. To change the default
settings to reflect our choices, we go through the following steps:

� Open the Chart Editor by double clicking on the graph in the Output
Viewer.

� Double click on the x-axis labels.
� Check Custom and select Define… in the resulting Interval Axis box

(Display 2.6). 
� Alter the Interval Axis: Define Custom In… sub-dialogue box as shown

in Display 2.6 and click Continue.
� Select Labels… in the Interval Axis box.
� Change the settings of the Interval Axis: Labels sub-dialogue box as

shown in Display 2.6 and finally click Continue followed by OK.

Display 2.5 Histograms for rat lifespans generated by commands in Display 2.2.
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As we might expect the histograms indicate negatively skewed fre-
quency distributions with the left-hand tail being more pronounced in the
restricted diet group. 

Finally, normality can be assessed more formally with the help of a
quantile-quantile probability plot (Q-Q plot); this involves a plot of the
quantiles expected from a standard normal distribution against the
observed quantiles (for more details see Everitt, 2001b). Such a plot for
the observations in each group is shown in Display 2.7. A graph in which
the points lie approximately on the reference line indicates normality.
Points above the line indicate that the observed quantiles are lower than
expected and vice versa. For the rats lifespan data we find that the very
small and very large quantiles are smaller than would be expected —
with this being most pronounced for the lowest three quantiles in the
ad libitum group. Such a picture is characteristic of distributions with a
heavy left tail; thus again we detect some degree of negative skewness.

Having completed an initial examination of the lifespan data, we now
proceed to assess more formally whether the average lifespan is the same
under each dietary regime. We can do this using an appropriate significance

Display 2.6 Settings for controlling the bin width in the histograms shown in 
Display 2.5.
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test and by constructing the relevant confidence interval. To begin, we
shall apply an independent samples Student’s t-test (see Box 2.1), conve-
niently ignoring for the moment the indication given by our preliminary
examination of the data that two of the assumptions of the test, normality
and homogeneity of variance, might not be strictly valid. 

The independent samples t-test assesses the null hypothesis that the
population means of lifespan in each of the two diet groups are equal
(see Box 2.1). The test can be accessed in SPSS by selecting the commands

Analyze – Compare Means – Independent-Samples T Test

from the menu bar to give the dialogue box shown in Display 2.8. The
Test Variable(s) list contains the variables that are to be compared between
two levels of the Grouping Variable. Here the variable lifespan is to be
compared between level “1” and “2” of the grouping variable diet. The
Define Groups… sub-dialogue box is used to define the levels of interest.
In this example, the grouping variable has only two levels, but pair-wise
group comparisons are also possible for variables with more than two
group levels.

Display 2.9 shows the resulting SPSS output. This begins with a number
of descriptive statistics for each group. (Note that in contrast to the output
in Display 2.3 the standard errors of the means are given, i.e., the standard
deviation of lifespan divided by the square root of the group sample size.)
The next part of the display gives the results of applying two versions of
the independent samples t-test; the first is the usual form, based on
assuming equal variances in the two groups (i.e., homogeneity of variance),

Display 2.7 Q-Q plots for rat lifespans generated by commands in Display 2.2.
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the second allows the variances to be different (this version of the test is
described in detail in Everitt and Rabe-Hesketh, 2001).

The results given in the first row (t = 8.7, df = 193, p < 0.001), under
the column heading “t-test for Equality of Means” are those for the standard
t-test and assume homogeneity of variance. The conclusion from the test
is that there is strong evidence of a difference in the mean lifespan under
the two dietary regimes. Further output gives an estimate for the mean
difference in lifespans between the two diets (284.7 days), and uses the

Display 2.8 Generating an independent samples t-test.

Display 2.9 Independent samples t-test output.
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standard error of this estimator (32.9 days) to construct a 95% CI for the
mean difference (from 219.9 to 349.6 days). The mean lifespan in the
restricted diet group is between about 220 and 350 days longer than the
corresponding value in the ad libitum diet.

The “Independent Samples Test” table also includes a statistical signif-
icance test proposed by Levene (1960) for testing the null hypothesis that
the variances in the two groups are equal. In this instance, the test suggests
that there is a significant difference in the size of the within diet variances
(p < 0.001). Consequently, it may be more appropriate here to use the
alternative version of the t-test given in the second row of the table. This
version of the t-test uses separate variances instead of a pooled variance
to construct the standard error and reduces the degrees of freedom to
account for the extra variance estimated (for full details, see Everitt and
Rabe-Hesketh, 2001). The conclusion from using the second type of t-test
is almost identical in this case. 

Since earlier analyses showed there was some evidence of abnormality
in the lifespans data, it may be useful to look at the results of an appropriate
nonparametric test that does not rely on this assumption. SPSS supplies
the Mann-Whitney U-test (also known as the Wilcoxon rank sum test), a
test for comparing the locations of the distributions of two groups based
on the ranks of the observations (see Box 2.2 for details). Such nonpara-
metric tests can be accessed in SPSS using

Analyze – Nonparametric Tests

from the menu bar. Choosing Two Independent Samples then supplies the
Dialogue box shown in Display 2.10. The settings are analoguous to those
for the independent samples t-test.

The resulting output is shown in Display 2.11. All observations are
ranked as if they were from a single sample and the Wilcoxon W test
statistic is the sum of the ranks in the smaller group. SPSS displays the
sum of the ranks together with the mean rank so that the values can be
compared between groups. By default, the software uses the normal
approximation (but see also Exercise 2.4.5). The Mann-Whitney test
(z = 8.3, p < 0.001) also indicates a significant group difference consistent
with the earlier results from the t-test.

2.3.2 Husbands and Wives

The data in Table 2.2 can be typed directly into a Data View spreadsheet
as shown in Display 2.12. In this data set, it is essential to appreciate the
“paired” nature of the ages arising from each couple. In order for SPSS
to deal with this paired structure appropriately, the ages at marriage of a
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husband and his wife must appear in the same row. For identification
purposes, it is useful to include a couple number.

As in the previous example, the first step in the analysis of these data
will be to calculate summary statistics for each of the two variables, age
at marriage of husbands and age at marriage of wives. This example
differs from the previous one in that the observational units, i.e., the
married couples, do not fall into two groups. Rather, we have two age
outcomes. Therefore, this time we select the commands

Display 2.10 Generating a Mann-Whitney U-test.

Display 2.11 Output generated by commands in Display 2.10.
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Analyze – Descriptive Statistics – Frequencies…

from the menu bar to allow us to calculate some summary measures for
both age variables (Display 2.13).

Display 2.14 shows the resulting output. The median age at marriage
of husbands is 29 years, that of wives somewhat lower at 27 years. There
is considerable variability in both the ages of husbands and wives, ranging
as they do from late teens to early 70s. 

The first question we want to address about these data is whether
there is any evidence of a systematic difference in the ages of husbands
and wives. Overall, wives are younger at marriage in our sample. Could
this observed difference have occurred by chance when the typical age
difference between husbands and wives in Cumberland County is zero? 

Display 2.12 Data View spreadsheet for ages at marriage data from Table 2.2.
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Display 2.13 Generating descriptive statistics for several variables.

Display 2.14 Descriptive output for ages at marriage.
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A possibility for answering these questions is the paired samples t-test
(see Box 2.1). This is essentially a test of whether, in the population, the
differences in age of the husbands and wives in married couples have a
zero mean. The test assumes that the population differences have a normal
distribution. To assess this assumption, we first need to calculate the age
difference of each couple in our sample. We include a new variable,
differen, in our Data View spreadsheet by using the Compute command with
the formula differen = husband-wife (see Chapter 1, Display 1.13).

The observed differences can now be examined in a number of ways,
including using the box plot or histogram as described earlier. But to avoid
repetition here, we shall use a stem-and-leaf plot. SPSS supplies the plot
from the Explore box as shown in Display 2.2. In this case, the Dependent List
simply contains the variable difference, the Factor List is left empty and the
Stem-and-leaf option is chosen in the Plots sub-dialogue box. The resulting
plot is given in Display 2.15.

The stem-and-leaf plot is similar to a histogram rotated by 90 . However,
in addition to the shape of the distribution, it also lists the actual values
taken by each observation, by separating each number into a suitable
“stem” and “leaf.” In the example presented here, all the leaves are zero

Display 2.15 Stem-and-leaf plot for age differences.
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simply because ages were measured only to the nearest year. We see that
the age difference ranges from –7 years (i.e., the wife is 7 years younger
than the husband since we calculated the difference as husband’s age
minus wife’s age) to 10 years with 12 age differences being “extreme”
(i.e., >12 years). Leaving aside the extreme observations, the distribution
looks normal, but inclusion of these values makes its appearance positively
skewed.

If we are satisfied that the age differences have at least an approximate
normal distribution, we can proceed to apply the paired samples t-test
using the

Analyze – Compare Means – Paired-Samples T Test…

commands from the menu bar as shown in Display 2.16. The Paired Variables
list requires the pairs of variables that are to be compared. Selecting Options
allows for setting the significance level of the test.

Display 2.17 shows the resulting output. As for the independent sam-
ples t-test, SPSS displays relevant descriptive statistics, the p-value asso-
ciated with the test statistic, and a confidence interval for the mean
difference. The results suggest that there is a significant difference in the
mean ages at marriage of men and women in married couples (t(99) =
3.8, p < 0.001). The confidence interval indicates the age difference is
somewhere between one and three years. 

Display 2.16 Generating a paired samples t-test.
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If we are not willing to assume normality for the age differences, we
can employ a nonparametric procedure such as Wilcoxon’s signed ranks
test (see Box 2.2) rather than the paired samples t-test. The test can be
employed by first choosing 

Analyze – Nonparametric Tests – Two Related Samples…

from the menu bar and then completing the resulting dialogue box as
shown in Display 2.18. 

Display 2.19 shows the resulting SPSS output. Wilcoxon’s signed ranks
test ranks the absolute value of the differences and then calculates the
sum of the ranks within the group of pairs that originally showed positive
or negative differences. Here, 67 couples showed negative differences
(which according to the legend of the first table means that wives’ ages
were younger than husbands’ ages, since SPSS calculated the differences
as wife’s age minus husband’s age), 27 positive differences and six couples
had no age difference. The negative differences have larger mean ranks
than the positive differences. Consistent with the paired-samples t-test, the
test shows that the mean age difference of men and women in married
couples is not zero (z = 3.6, p < 0.001). 

The normal approximation for the Wilcoxon test is appropriate when
the number of pairs is large and the difference values can be ranked
uniquely. In our example, the ages were recorded in full years and there
are many ties in the difference variable — for example, in 20 couples, the

Display 2.17 Paired samples t-test output for ages at marriage.
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Display 2.18 Generating a Wilcoxon signed ranks test.

Display 2.19 Wilcoxon’s signed ranks test output for ages at marriage.
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husband is one year older than his wife. Consequently, the approximation
may not be strictly valid — for a possible alternative see Exercise 2.4.5. 

Last, we will exam the relationship between the ages of husbands and
wives of the couples in our data and quantify the strength of this rela-
tionship. A scatterplot (an xy plot of the two variables) often provides a
useful graphical display of the relationship between two variables. The
plot is obtained from the menu bar by choosing

Graphs – Scatter… – Scatterplot Simple

and defining variable lists as shown in Display 2.20.
Not surprisingly, the resulting scatterplot (shown in Display 2.21)

illustrates a tendency (at least in our sample) for younger women to marry
younger men and vice versa. Often it is useful to enhance scatterplots by
showing a simple linear regression fit for the two variables (see later).
Even more useful in many cases is to add what is known as a locally
weighted regression fit (or Lowess curve) to the plot. The latter allows the
data to reveal the shape of the relationship between the two ages rather
than to assume that this is linear; the technique is described in detail in
Cleveland (1979). Here, the Lowess curve can be added to the graph by
editing the initial graph and choosing

Chart – Options

Display 2.20 Generating a scatter graph.
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Display 2.21 Scatter graph of husbands’ and wives’ age at marriage.

Display 2.22 Adding a Lowess curve to a scatterplot.
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from the Chart Editor menu bar. This creates another dialogue box which
needs to be filled in as shown in Display 2.22. The resulting enhanced
plot is shown in Display 2.23. We shall return to this plot below.

We can quantify the relationship between ages at marriage of the
husbands and wives in each couple by calculating some type of correlation
coefficient. SPSS offers several under

Analyze – Correlate – Bivariate… 

Here, for illustrative purposes only, we select all the coefficients available
(Display 2.24). The Variables list contains the names of the variables that
are to be correlated — where more than two variables were listed, a matrix
of pairwise correlation coefficients would be generated (see Chapter 4).
In this example, the resulting output, though rather lengthy, is fairly simple
(Display 2.25), essentially giving the values of three correlation coefficients —
the Pearson correlation (r = 0.91), Spearman’s rho ( = 0.90), and a version
of Kendall’s tau ( = 0.76). (All these correlation coefficients are described
and defined in Everitt, 2001.) 

These estimates are accompanied by p-values from statistical signifi-
cance tests that test the null hypothesis that the correlation in the underlying
population is zero — i.e., that there is no directional relationship. Here

Display 2.23 Enhanced scatter graph resulting from commands in Display 2.22.
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we chose to consider the two-sided alternative hypothesis that there is
correlation, positive or negative. For the “parametric” Pearson correlation
coefficient, this test relies on the assumption of bivariate normality for the
two variables. No distributional assumption is required to test Spearman’s
rho or Kendall’s tau. But, as we would expect, the tests on each of the
three coefficients indicate that the correlation between ages of husbands
and wives at marriage is highly significant (the p-values of all three tests
are less than 0.001). 

The fitted smooth curve shown in Display 2.23 suggests that a linear
relationship between husbands’ age and wives’ age is a reasonable assump-
tion. We can find details of this fit by using the commands

Analyze – Regression – Linear…

This opens the Linear Regression dialogue box that is then completed
as shown in Display 2.26. (Here husband’s age is used as the dependent
variable to assess whether it can be predicted from wife’s age.) SPSS
generates a number of tables in the output window that we will discuss
in detail in Chapter 4. For now we concentrate on the table of estimated
regression coefficients shown in Display 2.27.

This output table presents estimates of regression coefficients and their
standard errors in the columns labeled “B” and “Std. Error,” respectively.

Display 2.24 Generating correlations.
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The table also gives another t-test for testing the null hypothesis that the
regression coefficient is zero. In this example, as is the case in most
applications, we are not interested in the intercept. In contrast, the slope
parameter allows us to assess whether husbands’ age at marriage is
predictable from wives’ age at marriage. The very small p-value associated
with the test gives clear evidence that the regression coefficient differs
from zero. The size of the estimated regression coefficient suggests that
for every additional year of age of the wife at marriage, the husband’s age
also increases by one year (for more comments on interpreting regression
coefficients see Chapter 4). 

Display 2.25 Correlations between husbands’ and wives’ ages at marriage.

a) “Parametric” correlation coefficients

Correlations

1 .912**

. .000

100 100

.912** 1

.000 .

100 100

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

husbands' ages at
marriage

wives' ages at marriage

husbands'
ages at

marriage
wives' ages
at marriage

Correlation is significant at the 0.01 level (2-tailed).**.

b) “Non-parametric” correlation coefficients

Correlations

1.000 .761**

. .000

100 100

.761** 1.000

.000 .

100 100

1.000 .899**

. .000

100 100
.899** 1.000

.000 .
100 100

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient

Sig. (2-tailed)

N

Correlation Coefficient
Sig. (2-tailed)

N

husbands' ages at
marriage

wives' ages at marriage

husbands' ages at
marriage

wives' ages at marriage

Kendall's tau_b

Spearman's rho

husbands'
ages at

marriage
wives' ages
at marriage

Correlation is significant at the .01 level (2-tailed).**.
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2.4 Exercises 

2.4.1 Guessing the Width of a Lecture Hall

Shortly after metric units of length were officially introduced in Australia,
a group of 44 students was asked to guess, to the nearest metre, the width
of the lecture hall in which they were sitting. Another group of 69 students
in the same room was asked to guess the width in feet, to the nearest
foot (Table 2.3). (The true width of the hall was 13.1 metres or 43 feet.)
Investigate by using simple graphical displays or other means which group
estimated the width of the lecture hall more accurately.

Display 2.26 Fitting a simple linear regression.

Display 2.27 Regression coefficient estimates for ages at marriage.

Coefficientsa

1.280 1.528 .837 .404
1.021 .046 .912 22.053 .000

(Constant)
wives' ages at marriage

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: husbands' ages at marriagea.
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2.4.2 More on Lifespans of Rats: Significance Tests 
for Model Assumptions

In Section 2.3.1, we used several summary statistics and graphical proce-
dures to assess the assumptions of

� Normal distributions in each group
� Homogeneity of variance

for the rats’ lifespans given in Table 2.1. Use formal significance test to
assess these model assumptions; specifically:

� Use Kolmogorov-Smirnov tests (for details, see Conover, 1998) to test
the null hypotheses that the lifespans in each group follow a normal
distribution.

� Use a Levene test (Levene, 1960) to test the null hypothesis that
the variance of the lifespans is the same in both groups. 

(Hint: Use the commands Analyze – Descriptive statistics – Explore and the Plots…
sub-dialogue box to generate Kolmogorov-Smirnov tests and a Levene test.)

2.4.3 Motor Vehicle Theft in the U.S. 

The data in Table 2.4 show rates of motor vehicle thefts in states in the
U.S. (in thefts per 100,000 residents), divided into two groups depending
on whether the states are located to the east or the west of the Mississippi

Table 2.3 Guesses of the Width of a Lecture Hall

a) in meters (n = 44)
8 9 10 10 10 10 10 10 11 11 11 11 12 12 13

13 13 14 14 14 15 15 15 15 15 15 15 15 16 16
16 17 17 17 17 18 18 20 22 25 27 35 38 40

b) in feet (n = 69)
24 25 27 30 30 30 30 30 30 32 32 33 34 34 34
35 35 36 36 36 37 37 40 40 40 40 40 40 40 40
40 41 41 42 42 42 42 43 43 44 44 44 45 45 45
45 45 45 46 46 47 48 48 50 50 50 51 54 54 54
55 55 60 60 63 70 75 80 94

Source: Hand et al., 1994.
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River. Create a box plot of theft rates for Eastern and Western states, and
apply an appropriate significance test to determine whether the average
rate differs in the two locations.

2.4.4 Anorexia Nervosa Therapy

Table 2.5 contains weight measurements on a group of anorexic girls who
received cognitive-behavioral therapy (CBT). The weight was measured
in pounds before the treatment and after 12 weeks of treatment.

Table 2.4 Motor Vehicle Theft in the U.S.

Eastern State 
(n = 26) Theft Rate

Western State 
(n = 24) Theft Rate

Alabama 348 Alaska 565
Connecticut 731 Arizona 863
Delaware 444 Arkansas 289
Florida 826 California 1016
Georgia 674 Colorado 428
Illinois 643 Hawaii 381
Indiana 439 Idaho 165
Kentucky 199 Iowa 170
Maine 177 Kansas 335
Maryland 709 Louisiana 602
Massachusetts 924 Minnesota 366
Michigan 714 Missouri 539
Mississippi 208 Montana 243
New Hampshire 244 Nebraska 178
New Jersey 940 Nevada 593
New York 1043 New Mexico 337
North Carolina 284 North Dakota 133
Ohio 491 Oklahoma 602
Pennsylvania 506 Oregon 459
Rhode Island 954 South Dakota 110
South Carolina 386 Texas 909
Tennessee 572 Utah 238
Vermont 208 Washington 447
Virginia 327 Wyoming 149
West Virginia 154
Wisconsin 416

Source: Rossman, 1996. With permission of Springer-Verlag.
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� Assuming normality of the weight changes, use the paired samples
t-test box to generate a 95% CI for the mean weight change over
time.

� Generate the same results via a one-sample t-test for testing the
null hypothesis that the group’s mean weight change is zero.

� Assess whether there is tracking in the data, i.e., do those girls
who start on a low weight also tend to have a relatively low weight
after therapy? 

Table 2.5 Weights (Pounds) 
of Anorexic Girls 

Before Therapy After 12 Weeks

80.5 82.2
84.9 85.6
81.5 81.4
82.6 81.9
79.9 76.4
88.7 103.6
94.9 98.4
76.3 93.4
81 73.4
80.5 82.1
85 96.7
89.2 95.3
81.3 82.4
76.5 72.5
70 90.9
80.4 71.3
83.3 85.4
83 81.6
87.7 89.1
84.2 83.9
86.4 82.7
76.5 75.7
80.2 82.6
87.8 100.4
83.3 85.2
79.7 83.6
84.5 84.6
80.8 96.2
87.4 86.7
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2.4.5 More on Husbands and Wives: Exact 
Nonparametric Tests

Nonparametric tests for comparing groups that operate on ranks use
normal approximations to generate a p-value. The approximation
employed by SPSS is appropriate when the sample size is large (say
n > 25) and there are no ties. For the Mann-Whitney U-test, the second
assumption means that each observation only occurs once in the data set
so that the whole sample can be ranked uniquely. For the Wilcoxon
signed ranks test, this assumption implies that the absolute differences
between the paired observations can be ranked uniquely. When there are
only a few ties in a large sample, the normal approximation might still
be used. However, when the sample is small or there are many ties, an
exact test — a test that does not rely on approximations — is more
appropriate (Conover, 1998). 

SPSS provides exact Mann-Whitney U-tests and exact Wilcoxon signed
ranks tests from the Exact sub-dialogue box of the Two-Independent-Samples
Tests (see Display 2.10) or the Two-Related-Samples Tests dialogue boxes (see
Display 2.18). These exact tests operate by constructing the distribution
of the test statistic under the null hypothesis by permutation of the cases
or pairs. The procedure is computationally intensive since it evaluates all
possible permutations. SPSS sets a time limit and offers to sample a set
of permutations. In the latter case, SPSS evaluates the precision of the
p-value by a confidence interval. 

In the ages at marriage data set (Table 2.2), the ages of husbands and
wives were recorded in full years and there are many ties in the difference
variable — for example, a difference value of one (the man being one
year older than his wife) has been observed for 20 couples. It would,
therefore, be better not to use the normal approximation previously
employed in Display 2.20. Re-generate a Wilcoxon signed ranks test for
the ages at marriage data — this time using an exact version of the test.
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Chapter 3

Simple Inference for 
Categorical Data:
From Belief in the 
Afterlife to the Death 
Penalty and Race

3.1 Description of Data
In this chapter, we shall consider some relatively simple aspects of the
analysis of categorical data. We will begin by describing how to construct
cross-classifications of raw data using the lifespan of rats and age at
marriage data used in the previous chapter. Then we shall move on to
examine a number of data sets in which the observations are already
tabulated in this way. Details of these are as follows:

� Belief in the afterlife by gender — data from the 1991 General
Social Survey classifying a sample of Americans according to their
gender and their opinion about an afterlife (taken from Agresti, 1996,
with permission of the publisher). The data appear in Table 3.1.

� Incidence of suicidal feelings in a sample of psychotic and
neurotic patients — given in Table 3.2 (taken from Everitt, 1992).
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Psychiatrists studying neurotic and psychotic patients, asked each
of a sample of 20 from each category about whether they suffered
from suicidal feelings.

� Oral contraceptive use and blood clots — data given in Table
3.3. These data arise from a study reported by Sartwell et al. (1969).
The study was conducted in a number of hospitals in several large
American cities. In those hospitals, all the married women identified
as suffering from idiopathic thromboembolism (blood clots) over
a three-year period were individually matched with a suitable
control, these being female patients discharged alive from the same
hospital in the same six-month time interval as the case. In addition,
they were individually matched to cases by age, marital status,
race, etc. Patients and controls were then asked about their use
of oral contraceptives.

� Alcohol and infant malformation — data from a prospective
study of maternal drinking and congenital malformations (taken
from Agresti, 1996, with permission of the publisher). After the first

Table 3.1 Belief in the Afterlife

Belief in Afterlife?

Yes No

Gender Female 435 147
Male 375 134

Table 3.2 The Incidence of Suicidal Feelings 
in Samples of Psychotic and Neurotic Patients 

Type of Patient

Psychotic Neurotic

Suicidal feelings? Yes 1 4
No 19 16

Table 3.3 Oral Contraceptives

Controls

Oral Contraceptive 
Used

Oral Contraceptive 
Not Used

Cases Used 10 57
Not used 13 95
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three months of pregnancy, the women in the sample completed
a questionnaire about alcohol consumption. Following childbirth,
observations were recorded on the presence or absence of congen-
ital sex organ malformations. The data are shown in Table 3.4.

� Death penalty verdict by defendant’s race and victim’s race —
data in Table 3.5 (taken from Everitt, 1999). The data were collected
to try to throw light on whether there is racial equality in the
application of the death penalty in the U.S.

3.2 Methods of Analysis
Contingency tables are one of the most common ways to summarize
observations on two categorical variables. Tables 3.1, 3.2, and 3.3 are all
examples of 2  2 contingency tables (although Table 3.3 arises in quite
a different way as we shall discuss later). Table 3.4 is an example of a 5  2
contingency table in which the row classification is ordered. Table 3.5
consists essentially of two, 2 2 contingency tables. For all such tables,
interest generally lies in assessing whether or not there is any relationship
or association between the row variable and the column variable that

Table 3.4 Alcohol Consumption and Infant Malformation 

Malformation

Present Absent

Average number of drinks per day 0 48 17066
<1 38 14464

1–2 5 788
3–5 1 126

6 1 37

Table 3.5 Race and the Death Penalty in the U.S.

Death Penalty
Not

Death Penalty

White victim
White defendant found guilty of murder 192 1320
Black defendant found guilty of murder 110 520

Black victim
White defendant found guilty of murder 0 90
Black defendant found guilty of murder 60 970
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make up the table. Most commonly, a chi-squared test of independence
is used to answer this question, although alternatives such as Fisher’s
exact test or McNemar’s test may be needed when the sample size is small
(Fisher’s test) or the data consist of matched samples (McNemar’s test).
In addition, in 2 2 tables, it may be required to calculate a confidence
interval for the ratio of population proportions. For a series of 2 2 tables,
the Mantel-Haenszel test may be appropriate (see later). (Brief accounts
of each of the tests mentioned are given in Box 3.1. A number of other
topics to be considered later in the chapter are described in Box 3.2.) 

Box 3.1 Tests for Two-Way Tables

A general 2 2 contingency table can be written as

(1) Chi-squared test for a 2 2 contingency table 

� To test the null hypothesis that the two variables are indepen-
dent, the relevant test statistic is

� Under the null hypothesis of independence, the statistic has
an asymptotic chi-squared distribution with a single degree of
freedom.

� An assumption made when using the chi-square distribution
as an approximation to the distribution of X 2, is that the
frequencies expected under independence should not be “too
small.” This rather vague term has historically been interpreted
as meaning not less than five, although there is considerable
evidence that this rule is very conservative.

Variable 2 Category

1 2 Total

Variable 1 
category

1 a b a + b
2 c d c + d

Total a + c b + d a + b + c + d = N

X
N ad bc

a b c d a c b d
2

2
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(2) Chi-squared test for an r  c category table 

� An r c contingency table can be written as

� Under the null hypothesis that the row and column classifica-
tions are independent, estimated expected values, Eij , for the
ijth cell can be found as

� The test statistic for assessing independence is

� Under the null hypothesis of independence, X2 has an asymptotic
chi-squared distribution with (r – 1) (c – 1) degrees of freedom.

(3) Fisher’s exact test for a 2 2 table

� The probability, P, of any particular arrangement of the fre-
quencies a, b, c, and d in a 2 2 contingency table, when
the marginal totals are fixed and the two variables are inde-
pendent, is

Column Variable

1 L c Total

Row
variable

1 n11 L n1c n1•

2 n21 L n2c n2•

M M M M M

r nr1 L nrc nr •

Total n•1 L n•c N

E
n n

Nij
i j. .

X
n E

E

ij ij

ijj

c

i

r
2

2

11

P
a b a c c d b d

a b c d N

! ! ! !

! ! ! ! !
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� This is known as a hypergeometric distribution (see Everitt,
2002a).

� Fisher’s exact test employs this distribution to find the proba-
bility of the observed arrangement of frequencies and of every
arrangement giving as much or more evidence of a departure
from independence, when the marginal totals are fixed.

(4) McNemar’s test

� The frequencies in a matched samples data set can be written as

where N, in this case, is the total number of pairs.
� Under the hypothesis that the two populations do not differ

in their probability of having the characteristic present, the test-
statistic

has an asymptotic chi-squared distribution with a single degree
of freedom.

� An exact test can be derived by employing the Binomial dis-
tribution (see Hollander and Wolfe, 1999).

(5) Mantel-Haenszel test

� For a series of k 2  2 contingency tables, the Mantel-Haenszel
statistic for testing the hypothesis of no association is

Sample 1

Present Absent Total

Sample 2 Present a b a + b
Absent c d c + d

Total a + c b + d a + b + c + d = N

X
b c

b c
2

2

X

a
a b a c

N

a b c d a c b d

N N

i
i i i i

i
i

k

i

k

i i i i i i i i

i i
i

k

2
11

2

21 1
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Box 3.2 Risk Estimates from a 2 2 Table

where ai, bi, ci, di represent the counts in the four cells of the
ith table and Ni is the total number of observations in the ith
table.

� Under the null hypothesis, this statistic has a chi-squared dis-
tribution with a single degree of freedom.

� The test is only appropriate if the degree and direction of the
association between the two variables is the same in each
stratum. A possible test of this assumption is that due to Breslow
and Day (see Agresti, 1996). 

(Full details of all these tests are given in Everitt, 1992.)

2 2 contingency tables often arise in medical studies investigating
the relationship between possible “risk factors” and the occurrence of
a particular medical condition; a number of terms arise from their use
in this context that we will define here so that they can be used in
the text.

(1) Relative risk

� The risk of Variable 2 falling into category “1” when Variable

1 takes category “1” is estimated by r1 =

� Similarly, the risk of Variable 2 falling into category “1” when

Variable 1 takes category “2” is estimated by r2 =

� The relative risk (RR) of Variable 2 falling into category “1”
comparing Variable 1 category “1” with category “2” is estimated

by RR =  

� The relative risk of getting a disease comparing individuals
exposed to a risk factor with nonexposed individuals can only
be estimated from a prospective study (see Dunn and Everitt,
1993).

a

a b

c

c d

a a b

c c d
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3.3 Analysis Using SPSS
It is common in many areas of research for continuous variables to be
converted to categorical variables by grouping them, prior to analysis,
into two or more categories, although it is well known that this is not
always a wise procedure (see Altman, 1998). In the next two sections we
use continuous variables from the data sets introduced in the previous
chapter to illustrate how continuous variables can be categorized in SPSS
and how, once categorical outcomes are available, these can be easily
summarized using cross-tabulations. 

3.3.1 Husbands and Wives Revisited

A fairly broad categorization of the ages at marriage (Table 2.2) is given
by the three categories “Early marriage” (before the age of 30 years),
“Marriage in middle age” (at an age between 30 and 49 years inclusive),
and “Late marriage” (at the age of 50 or later). The Recode command in
SPSS is useful for creating such a grouping. To categorize both age
variables, we can use the following steps:

(2) Odds ratio

� The odds of Variable 2 falling into category “1” when Variable

1 takes category “1” is estimated by o1 =

� Similarly, the odds of Variable 2 falling into category “1” when

Variable 1 takes category “2” is estimated by o2 =

� The odds ratio (OR) of Variable 2 falling into category “1”
comparing Variable 1 category “1” with category “2” is estimated

by OR =  

� The odds ratio of a disease comparing individuals exposed to
a risk factor with nonexposed individuals can be estimated
from both prospective and retrospective studies. (Again, see
Dunn and Everitt, 1993.)

� When the disease is rare (say, less than 5% of the population
are affected), the population RR can be approximated by the
OR (Dunn and Everitt, 1993).

a

b

c

d

a b

c d
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� Access the commands Transform – Recode – Into Different Variables….
� Fill in the resulting dialogue box as indicated in Display 3.1 (we

have labeled the new categorical variables).
� Click the button Old and New Values… to open a sub-dialogue box.
� Use this box to map ranges of the original variables onto integer

numbers as indicated in Display 3.1.
� Click Continue and OK to execute the recoding.

This procedure results in two new variables, husCAT and wifCAT, being
added to the Data View spreadsheet. For each couple, the spreadsheet now
shows the husband’s and the wife’s age at marriage, as well as the
corresponding categories. (To ensure that later analyses will contain expla-
nations of the categories rather than simply print category codes, it is a
good idea to always label the category codes using the Variable View.)

Display 3.1 Recoding variables.
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Cross-tabulation serves to summarize the marriage age bands for both
husbands and wives as well as their relationship. A cross-tabulation of
the categorized age data can be constructed by using the commands

Analyze – Descriptive Statistics – Crosstabs…

This opens the dialogue box shown in Display 3.2. We need to specify
which variable is to define the rows and which the columns of the cross-
tabulation. Here we choose the age bands for husbands to define the
rows of the table and those of the wives the columns. Clicking the Cells…
button opens the Cell Display sub-dialogue box; this controls what figures
will be shown for each cell of the constructed cross-classification. Selecting
the observed absolute frequencies of each cell as well as the frequencies
as a percentage of the total number of couples in the study leads to the
output table shown in Display 3.3.

The cross-tabulation displays the frequency distribution of the age
bands for husbands and wives in the last column and row, respectively.
As seen previously (e.g., Chapter 2, Display 2.14), the majority of the
married people married before the age of 30. The association between
husbands’ and wives’ ages at marriage is also apparent. Since 48% + 27% +
8% = 83% of couples, husband and wife were in the same age band at
the time of marriage. The empty cells in the table show that “older” wives
did not get married to “younger” men and that men older than 50 years

Display 3.2 Cross-classifying two categorical variables. 
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did not get married to wives more than 20 years their juniors (at least in
Cumberland County).

3.3.2 Lifespans of Rats Revisited

The lifespans of rats data set (Table 2.1) already contains one categorical
outcome — diet. We will now also recode the continuous lifespan variable
into a further categorical variable labeled “Lifespan less than 2 years?”
with two categories (1 = “Yes” and 2 = “No”), again by using the recode
command. Diet and the categorized lifespan variable can then be cross-
classified as in the previous example. 

Since the size of the diet groups was under the control of the inves-
tigator in this example, it made sense to express the cell counts as
percentages within diet groups. So we assign diet categories to the rows
of our cross-classification and check Row in the Cell Display sub-dialogue
box (see Display 3.2). The resulting cross-tabulation is shown in
Display 3.4. We see that 84% of the rats within the restricted diet group
lived for at least two years, while a lower percentage (41.6%) reached

Display 3.3 Cross-classification of age bands for wives and husbands.

Display 3.4 Cross-tabulation of lifespan by diet.

age bands for husbands * age bands for wives Crosstabulation

48 4 52

48.0% 4.0% 52.0%

6 27 33

6.0% 27.0% 33.0%

7 8 15
7.0% 8.0% 15.0%

54 38 8 100

54.0% 38.0% 8.0% 100.0%

Count

% of Total

Count

% of Total

Count

% of Total

Count
% of Total

younger than 30 years

30 to 49 years

50 years or older

age bands
for husbands

Total

younger than
30 years 30 to 49 years

50 years
or older

age bands for wives

Total

diet * Lifespan less than 2 years? Crosstabulation

17 89 106

16.0% 84.0% 100.0%

52 37 89

58.4% 41.6% 100.0%

69 126 195

35.4% 64.6% 100.0%

Count

% within diet

Count

% within diet

Count

% within diet

Restricted diet

Ad libitum diet

diet

Total

Yes No

Lifespan less than 2
years?

Total
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this age in the ad libitum group. Expressed as a risk ratio, this amounts
to a relative risk of dying before 2 years of age comparing the restricted
diet with the ad libitum diet of (17/106) : (52/89) = 0.274. In other words,
for rats on a restricted diet, the risk of dying early is about a quarter that
of rats on an ad libitum diet.

For 2 2 tables, such as the one in Display 3.4, relative risk (RR) and
odds ratio (OR) estimates (for definitions see Box 3.2), together with
corresponding confidence intervals (CIs) can be obtained in SPSS using
the steps:

� Click the Statistics button on the Crosstabs dialogue box (see Display
3.2).

� Check Risk on the resulting sub-dialogue box.

Executing these commands adds a further table to the output. This “Risk
Estimate” table for the lifespan by diet cross-tabulation is shown in Display
3.5.

To understand the OR and RRs presented in this table, one needs to
be aware of the comparisons used by SPSS. By default (and we are not
aware of a way of changing this), SPSS presents one OR followed by two
RRs. The OR compares the odds of the category corresponding to the
first column of the cross-tabulation, between the categories represented
by the first and second row. So, for the cross-tabulation shown in Display
3.4, the odds of living less than two years are being compared between
the restricted diet group and the ad libitum group (estimated OR = 0.14,
95% CI from 0.07 to 0.265). The first RR value is the same comparison
but this time comparing risks rather than odds (estimated RR = 0.274, 95%
CI from 0.172 to 0.439). The last RR compares the risk of the category

Display 3.5 Risk output for lifespan by diet cross-tabulation in Display 3.4.

Risk Estimate

.136 .070 .265

.274 .172 .439

2.020 1.557 2.619

195

Odds Ratio for diet
(Restricted diet / Ad
libitum diet)

For cohort Lifespan less
than 2 years? = 1.00

For cohort Lifespan less
than 2 years? = 2.00

N of Valid Cases

Value Lower Upper

95% Confidence
Interval
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represented by the second column between the first and the second row
of the table. For the cross-tabulation in Display 3.4, this means that the
“risk” of living at least 2 years is being compared (estimated RR = 2.02,
95% CI from 1.557 to 2.619). 

In practice these SPSS default settings mean that the groups that are
to be compared should define the rows of the table. Since the first row
is always compared with the second and SPSS automatically puts the
category with the smallest code into the first row, the categorical variable
codes will have to be chosen accordingly. In this application, for example,
we are limited to comparing the restricted diet group (which was coded 1)
with the ad libitum group (coded 2) and not vice versa. The first column
(lowest category code) defines the category for which the risk or odds
are of interest. Again, at least for ORs, it is advisable to code the data so
that the category of interest receives the lowest code.

It is sometimes helpful to display frequency tables graphically. One
possibility is to check Display clustered bar charts in the Crosstabs dialogue box
(see Display 3.2). This generates a clustered bar chart with the rows of the
cross-classification defining the clusters and the columns defining the pat-
terns. Display 3.6 shows this type of plot for the cross-tabulation in Display
3.4 (after editing the appearance a little for presentation).

Now, we move on to consider the data sets introduced earlier that
actually arise in the form of contingency tables.

Display 3.6 Clustered bar chart for lifespan by diet cross-tabulation.
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3.3.3 Belief in the Afterlife

We start by importing the cross-classification in Table 3.1 into SPSS. To
reproduce the table in SPSS, we need to define three variables, two relating
to the two categorical outcomes of interest, gender and belief, and a further
variable, here called count, which holds the cell counts. The table translates
into a Data View spreadsheet as shown in Display 3.7. Each cell of the table
occupies a row in the spreadsheet and the cell count is accompanied by
category codes for its corresponding row and column. (The categorical
variables are each labeled with their category codes as in Table 3.1 to
facilitate interpretation of later results.) 

We now need to specify the true structure of the data specified in
Display 3.7; otherwise, it will be interpreted by SPSS as a data set containing
only four observations. For this, we need the commands

Data – Weight Cases …

This opens the dialogue box shown in Display 3.8. Checking Weight cases
by allows the user to replicate each cell k times where k is determined
by the Frequency Variable, here the variable count. Note that using the Weight
Cases command does not alter the appearance of the spreadsheet.

Display 3.7 Data View spreadsheet for data in Table 3.1.

Display 3.8 Replicating cases according to a frequency variable in SPSS.
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We can now use the Crosstabs command as before to generate a cross-
tabulation of the categorical outcomes belief and gender. Using gender to
define the rows and choosing to express counts as row percentages results
in the table shown in Display 3.9.

The row percentages show that 74.7% of the females and 73.7% of
the males in the study believe in an afterlife. Does this observed gender
difference in our sample indicate a population association between gender
and beliefs about an afterlife? We can address this question by the chi-
squared test for independence, i.e., no association (for details see Box 3.1).
To apply this test, we need to check Chi-square in the Statistics sub-dialogue
box (Display 3.10). This adds another table to the output — see Display 3.11.

The first line of the “Chi-Square Tests” table gives the results from the
chi-squared test of independence. Also supplied is a continuity corrected
version of this test (for details, see Everitt, 1992) and a likelihood ratio test
of independence derived from a particular statistical model (for details,
see again Everitt, 1992). The remaining tests will be discussed in subse-
quent sections. 

The standard chi-squared test of independence gives no evidence of
an association between gender and beliefs about the afterlife (X 2(1) = 0.16,
p = 0.69); use of the continuity corrected version or the likelihood ratio
test does not change this conclusion. Consequently, to summarize beliefs
about the afterlife we might simply use the marginal distribution in Display
3.9, the sex of respondents can be ignored; 74.2% of the respondents
believed in an afterlife, while the remainder did not. 

3.3.4 Incidence of Suicidal Feelings

The cross-tabulation of suicidal feelings by patient group shown in Table
3.2 can be converted into a Data View spreadsheet by following the same
coding and weighting steps as in the previous example. And a cross-

Display 3.9 Cross-tabulation of categorical variables in Display 3.7.

Gender * Belief in afterlife? Crosstabulation

435 147 582

74.7% 25.3% 100.0%

375 134 509

73.7% 26.3% 100.0%

810 281 1091

74.2% 25.8% 100.0%

Count

% within Gender

Count

% within Gender

Count

% within Gender

Female

Male

Gender

Total

Yes No

Belief in afterlife?

Total
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classification can again be created using the Crosstabs box. For these data,
we will transpose the original table, since we want to display the table as
a stacked bar chart with stacks representing the equal-sized groups, and
define row categories by patient type. The SPSS steps necessary are:

Display 3.10 Generating a chi-squared test for a cross-tabulation.

Display 3.11 Chi-squared test for the cross-tabulation in Display 3.9.

Chi-Square Tests

.162b 1 .687

.111 1 .739

.162 1 .687

.729 .369

.162 1 .687

1091

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test

Linear-by-Linear
Association

N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea.

0 cells (.0%) have expected count less than 5. The minimum expected count is
131.10.

b.
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� Check Display Clustered bar chart in the Crosstabs dialogue box.
� Check Chisquare in the Statistics sub-dialogue box (see Display 3.10). 
� Check Observed Counts, Expected Counts, Unstandardized Residuals, Stan-

dardized Residuals, and Row Percentages in the Cell Display sub-dialogue
box (see Display 3.2). 

The resulting 2 2 table is shown in Display 3.12. In response to the
chart command, SPSS initially produces a clustered bar chart; this can
easily be turned into a stacked bar chart by using the commands

Gallery – Bar… – Stacked – Replace 

in the Chart Editor. The final bar chart is shown in Display 3.13.
The table and chart show that the observed percentage of patients

with suicidal feelings in the sample of neurotic patients (20%) is far higher
than in the sample of psychotic patients (5%). An alternative way of
inspecting the departures from independence is to compare the counts
observed in the cells of the table with those expected under independence
of the row and column variables (for details on the calculation of expected
counts, see Box 3.1). The difference is called the residual, with positive
values indicating a higher cell frequency than expected. Here we again
see that suicidal feelings are over-represented in the neurotic patients.
More useful than the raw residuals are standardized residuals (see Everitt,
1992) that are scaled so that they reflect the contribution of each cell to
the test statistic of the chi-squared test; consequently, they are useful for

Display 3.12 Cross-tabulation of suicidal feelings by patient group.

Patient type * Suicidal feelings? Crosstabulation

1 19 20

2.5 17.5 20.0

5.0% 95.0% 100.0%

-1.5 1.5

-.9 .4

4 16 20

2.5 17.5 20.0

20.0% 80.0% 100.0%

1.5 -1.5

.9 -.4

5 35 40

5.0 35.0 40.0

12.5% 87.5% 100.0%

Count

Expected Count

% within Patient type

Residual

Std. Residual

Count

Expected Count

% within Patient type

Residual

Std. Residual

Count

Expected Count

% within Patient type

Psychotic

Neurotic

Patient
type

Total

Yes No

Suicidal feelings?

Total
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evaluating the relative contribution of cells to an observed association
between row and column variables. 

As in the previous example, we are interested in testing whether this
observed association between row and column variables represents evi-
dence for an association in the underlying population. But, in contrast to
the previous data set, the standard chi-squared test is perhaps not entirely
appropriate since the cell counts expected under independence of suicidal
feelings and patient group may be too small to justify the chi-squared
approximation (see Box 3.1). Display 3.12 shows that only 5 people
reported suicidal feelings in this study and, as a result, the expected counts
in the cells of the first column are rather small. In fact, SPSS warns about
this in the chi-squared test output (Display 3.14).

A suitable alternative test of independence in this situation is Fisher’s
exact test. This test does not use an approximation to derive the distri-
bution of a test statistic under the null hypothesis; rather the exact
distribution of the cell frequencies given the marginal totals is employed
(for details, see Box 3.1). For 2 2 tables, SPSS automatically supplies
Fisher’s exact test when Chisquare is checked in the Statistics sub-dialogue
box. (Exact tests for larger tables are also possible; see Exercise 3.4.2.) 

The test output simply consists of the exact p-values for a two-sided
and a one-sided test, since the test statistic is the observed cell arrangement

Display 3.13 Stacked bar chart of suicidal feelings within patient types.
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(Display 3.14). Here we carry out a two-sided test, since we have no prior
opinion regarding the direction of a possible group difference in the
proportion of having suicidal feelings. At the 5% significance level, Fisher’s
exact test finds no evidence of an association between patient type and
suicidal feelings (p = 0.34).

3.3.5 Oral Contraceptive Use and Blood Clots

The cross-tabulation of contraceptive use in women with idiopathic throm-
boembolism and their matched controls shown in Table 3.3, is first entered
into SPSS using the same steps as in the previous two examples. The
resulting output table, this time showing percentages of the total number
of matched pairs, is shown in Display 3.15.

Display 3.14 Fisher’s exact test for the cross-tabulation in Display 3.12.

Display 3.15 Cross-tabulation of contraceptive use in cases and their matched 
controls.

Chi-Square Tests

2.057b 1 .151
.914 1 .339

2.185 1 .139

.342 .171

2.006 1 .157

40

Pearson Chi-Square
Continuity Correction a

Likelihood Ratio
Fisher's Exact Test

Linear-by-Linear
Association

N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea.

2 cells (50.0%) have expected count less than 5. The minimum expected count is
2.50.

b.

Cases: Contraceptives used? * Matched controls: Contraceptives used?
Crosstabulation

10 57 67

5.7% 32.6% 38.3%

13 95 108

7.4% 54.3% 61.7%

23 152 175

13.1% 86.9% 100.0%

Count

% of Total

Count

% of Total

Count

% of Total

Yes

No

Cases: Contraceptives
used?

Total

Yes No

Matched controls:
Contraceptives used?

Total
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At first sight, this table appears similar to those analyzed in the previous
two sections. However, this cross-tabulation differs from the previous ones
in some important aspects. Previously, we tabulated two different categor-
ical variables that were measured on the same set of subjects. Now, we
are considering a cross-tabulation of the same outcome (contraceptive use)
but measured twice (once on patients and once on their matched controls).
As a result, the total cell count (N = 175) represents the number of matched
pairs rather than the number of individuals taking part in the study.

The different nature of this cross-tabulation has implications for the
questions that might be of interest. In the previous cross-tabulations, we
tested for an association between the row and the column variables. In a
2 2 table, this simply amounts to testing the experimental hypothesis that
the percentage of one category of the first variable differs between the
categories of the second variable. Such questions are not of interest for the
current cross-tabulation. (We would be testing whether the percentage of
matched controls using contraceptives is the same in the patients who use
contraceptives and those who do not!) Instead, we are interested in assessing
whether the probability of the potential risk factor, contraceptive use, differs
between patients and their matched controls. In terms of the table in Display
3.15, it is the marginal totals (38.3% and 13.1% contraceptive use, respec-
tively, for our samples of patients and controls) that are to be compared. 

The McNemar test assesses the null hypothesis that the population
marginal distributions do not differ and can be generated for a cross-
tabulation by checking McNemar in the Statistics sub-dialogue box (see
Display 3.10). The resulting output table is shown in Display 3.16. SPSS
provides a p-value for an exact test (see Box 3.1). The two-sided test
suggests that women suffering from blood clots reported a significantly
higher rate of contraceptive use than controls (p < 0.001).

Alternatively, a McNemar test can be generated in SPSS by using the
commands:

� Analyze – Nonparametric Tests – 2 Related Samples …
� Defining the variable pair to be tested in the resulting dialogue box.
� And checking McNemar (see Chapter 2, Display 2.18). 

Display 3.16 McNemar test for the cross-tabulation in Display 3.15.

Chi-Square Tests

.000a

175
McNemar Test
N of Valid Cases

Value
Exact Sig.
(2-sided)

Binomial distribution used.a.
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This automatically provides the 2 2 cross-tabulation, the test statistic
from a continuity corrected chi-squared test, and the resulting approximate
p-value (see Box 3.1).

3.3.6 Alcohol and Infant Malformation

We now move on to the data on maternal drinking and congenital
malformations in Table 3.4. Again, interest centers on the possible asso-
ciation between alcohol consumption and presence of infant malformation.
But in this case, a more powerful test than the standard chi-squared test
is available because of the ordered nature of the row variable. Here, the
null hypothesis of independence can be tested against a more restricted
alternative, namely, that the proportion of malformations changes gradually
with increasing consumption. The linear trend test for a cross-tabulation
assesses independence against this alternative hypothesis (for details, see
Everitt, 1992).

The data in Table 3.4 can be imported into SPSS as described for the
previous three examples. However, since here we want to make use of
the ordering of the alcohol categories, we need to ensure that the coding
of these categories reflects their order. Consequently, we assign the
smallest code to the smallest consumption level, etc. Display 3.17 shows
the cross-tabulation created via the Crosstabs dialogue box. We display
row percentages because we are looking for a gradual change in these
percentages over consumption levels.

The table shows that in our sample, the proportion of malformations
increases with each increase in consumption level. However, the formal
trend test, which is automatically generated when Chi-square is checked

Display 3.17 Cross-tabulation of infant malformation by alcohol consumption.

CONSUMPT * MALFORMA Crosstabulation

17066 48 17114

99.7% .3% 100.0%

14464 38 14502

99.7% .3% 100.0%

788 5 793

99.4% .6% 100.0%

126 1 127

99.2% .8% 100.0%

37 1 38

97.4% 2.6% 100.0%

32481 93 32574

99.7% .3% 100.0%

Count

% within CONSUMPT

Count

% within CONSUMPT

Count

% within CONSUMPT

Count

% within CONSUMPT

Count

% within CONSUMPT

Count

% within CONSUMPT

0

less than 1

1 to 2

3 to 5

6 or more

CONSUMPT

Total
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in the Statistics sub-dialogue box and shown under the “Linear-by-Linear
Association” heading in the “Chi-Square Tests” output table (Display 3.18),
suggests that this is unlikely to reflect a linear trend in the population
(X 2(1) = 1.83, p = 0.18). 

3.3.7 Death Penalty Verdicts

The data shown in Table 3.5 on race and the death penalty in the U.S.
are a three-way classification of the original observations. For each trial
with a positive murder verdict, three categorical outcomes are recorded:
the race of the defendant, the race of the victim, and use of the death
penalty. The question of most interest here is: “Is there an association
between the race of the defendant found guilty of murder and the use
of the death penalty?” (This three-way classification and higher order
examples can be imported into SPSS by using the coding and weighting
steps employed in the previous examples. The only difference is that
further categorical variables need to be coded.)

For illustrative purposes, we start by ignoring the race of the victim
and construct a two-way classification using the Crosstabs dialogue box.
The result is shown in Display 3.19. The table shows that a somewhat
higher percentage of white defendants found guilty of murder (12%) were
sentenced with the death penalty compared with black defendants (10.2%).
Testing for an association in this table in the usual way results in a chi-
squared value of 2.51 with an associated p-value of 0.11, a value that
provides no evidence of an association between the race of the defendant
and the use of the death penalty. 

We now repeat the analysis, this time taking account of the three-way
classification by introducing the race of the victim. A cross-classification of
the use of the death penalty by defendant’s race within subgroups of victim’s
race is generated in SPSS by defining victim race layers in the Crosstabs
dialogue box (Display 3.20). The new cross-tabulation (Display 3.21), which

Display 3.18 Linear trend test for cross-tabulation in Display 3.17.

Chi-Square Tests

12.082a 4 .017 .034

6.202 4 .185 .133

10.458 .033

1.828
b

1 .176 .179 .105 .028

32574

Pearson Chi-Square

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear
Association

N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Point
Probability

3 cells (30.0%) have expected count less than 5. The minimum expected count is .11.a.

The standardized statistic is 1.352.b.
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replicates Table 3.5, shows higher death penalty rates for the murder of
white victims than of black victims (14.1% compared with 5.4%) and within
victim’s race subgroups lower death penalty rates for white defendants
compared with black defendants (white victims: 12.7% compared with
17.5%, black victims: 0% compared with 5.8%). These figures appear to
contradict the figures obtained from Display 3.19. 

The phenomenon that a measure of the association between two
categorical variables (here defendant’s race and death penalty) may be
identical within the levels of a third variable (here victim’s race), but takes

Display 3.19 Cross-tabulation of death penalty use by race of defendant.

Display 3.20 Constructing a three-way classification.

Race of defendant found guilty of murder * Death penalty given? Crosstabulation

192 1410 1602

12.0% 88.0% 100.0%

170 1490 1660

10.2% 89.8% 100.0%

362 2900 3262

11.1% 88.9% 100.0%

Count

% within Race of
defendant found
guilty of murder

Count

% within Race of
defendant found
guilty of murder

Count

% within Race of
defendant found
guilty of murder

White

Black

Race of defendant found
guilty of murder

Total

Yes No

Death penalty given?

Total
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entirely different values when the third variable is disregarded and the
measure calculated from the pooled table, is known as Simpson’s paradox
in the statistical literature (see Agresti, 1996). Such a situation can occur
if the third variable is associated with both of the other two variables. To
check that this is indeed the case here, we need to cross-tabulate victim’s
race with defendant’s race. (We have already seen that victim’s race is
associated with death penalty use in Display 3.21.) The new cross-
tabulation (Display 3.22) confirms that victim’s race is also associated with
the second variable, defendant’s race, with the majority of murders being
committed by a perpetrator of the same race as the victim. Therefore, the
initial comparison of death penalty rates between race groups (see Display
3.19) is unable to distinguish between the effects of the defendant’s race
and the victim’s race, and simply estimates the combined effect. 

Returning now to our correct three-way classification in Display 3.21,
we wish to carry out a formal test of independence between defendant’s
race and the use of the death penalty. Checking Chisquare in the Statistics
sub-dialogue box will supply separate chi-squared tests for white and
black victims, but we prefer to carry out an overall test. The Mantel-
Haenszel test (for details, see Box 3.1) is the appropriate test in this situation
as long as we are willing to assume that the degree and direction of a
potential association between defendant’s race and death penalty is the
same for black and white victims. 

Display 3.21 Cross-tabulation generated by commands in Display 3.20.

Race of defendant found guilty of murder * Death penalty given? * Race of victim Crosstabulation

192 1320 1512

12.7% 87.3% 100.0%

110 520 630

17.5% 82.5% 100.0%

302 1840 2142

14.1% 85.9% 100.0%

90 90

100.0% 100.0%

60 970 1030

5.8% 94.2% 100.0%

60 1060 1120

5.4% 94.6% 100.0%

Count
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defendant found
guilty of murder

Count
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guilty of murder
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guilty of murder

Count

% within Race of
defendant found
guilty of murder

Count

% within Race of
defendant found
guilty of murder
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defendant found
guilty of murder

White
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Total
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Black
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SPSS supplies the Mantel-Haenszel test for a series of 2 2 tables after
checking Cochran’s and Mantel-Haenszel statistics in the Statistics sub-dialogue
box (see Display 3.10). For the death penalty data, this generates the
output shown in Displays 3.23 and 3.24. The second line in Display 3.23
gives the result of the Mantel-Haenszel test; with a X 2(1) = 11.19 and an
associated p-value of 0.001, this provides strong evidence of an association
between the use of the death penalty and the race of the defendant

Display 3.22 Clustered bar chart for cross-tabulation of defendant’s race by 
victim’s race.

Display 3.23 Mantel-Haenszel test for cross-tabulation in Display 3.21.

Race of victim

BlackWhite

O
bs

er
ve

d 
nu

m
be

r

2000

1000

0

Race of defendant 

White

Black

Tests for Homogeneity of the Odds Ratio

11.642 1 .001

11.193 1 .001

3.844 1 .050

3.833 1 .050

Statistics
Cochran's

Mantel-Haenszel

Conditional

Independence

Breslow-Day

Tarone's

Homogeneity

Chi-Squared df
Asymp. Sig.

(2-sided)

Under the conditional independence assumption, Cochran's statistic is
asymptotically distributed as a 1 df chi-squared distribution, only if the number of
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically
distributed as a 1 df chi-squared distribution. Note that the continuity correction is
removed from the Mantel-Haenszel statistic when the sum of the differences
between the observed and the expected is 0.
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although the result of the Breslow-Day test for homogeneity of odds ratios
in the two tables throws some doubt on the assumption of the homoge-
neity of odds ratios. 

If, however, we decide not to reject the homogeneity assumption, we
can find an estimate of the assumed common odds ratio. SPSS estimates
the common odds ratio of the first column in the cross-tabulation (death
penalty given) comparing the first row (white defendant) with the second
row (black defendant). The estimates and 95% confidence intervals are
shown in Display 3.24. The Mantel-Haenszel estimator of the common
odds ratio is presented in the first line (OR = 0.642), showing that the
chance of death penalty sentences was reduced by 35.8% for white
defendants compared with black defendants. A confidence interval for the
OR is constructed on the log-scale employing asymptotic normality and
hence SPSS supplies the log-OR and its standard error. The final 95%
confidence interval for the OR (0.499 to 0.825) shows that a reduction in
death penalty odds in whites relative to blacks between 17.5% and 50.1%
is consistent with the data.

3.4 Exercises

3.4.1 Depersonalization and Recovery from Depression

A psychiatrist wishes to assess the effect of the symptom “depersonalization”
on the prognosis of depressed patients. For this purpose, 23 endogenous
depressed patients who were diagnosed as being “depersonalized” were
matched one-to-one for age, sex, duration of illness, and certain personality
variables, with 23 patients who were diagnosed as being “not deperson-
alized.” On discharge after a course of treatment, patients were assessed

Display 3.24 Mantel-Haenszel common odds ratio estimator for cross-tabula-
tion in Display 3.21.

Mantel-Haenszel Common Odds Ratio Estimate

.642

-.443

.128

.001

.499

.825

-.695
-.192

Estimate

ln(Estimate)

Std. Error of ln(Estimate)

Asymp. Sig. (2-sided)
Lower Bound

Upper Bound

Common Odds
Ratio

Lower Bound
Upper Bound

ln(Common
Odds Ratio)

Asymp. 95% Confidence
Interval

The Mantel-Haenszel common odds ratio estimate is asymptotically normally
distributed under the common odds ratio of 1.000 assumption. So is the natural log of
the estimate.
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as “recovered” or “not recovered” with the results shown in Table 3.6. Is
depersonalization associated with recovery? 

3.4.2 Drug Treatment of Psychiatric Patients: Exact Tests 
for Two-Way Classifications

The chi-squared test for independence between two categorical variables
uses a normal approximation to generate a p-value. The approximation
is appropriate when the expected value under independence is large
enough in each cell (say at least 5). For 2 2 tables, this assumption can
be avoided by using Fisher’s exact test. However, for r c tables, SPSS
does not supply an exact test by default. Exact tests can be generated for
any size cross-tabulation by permutation (e.g., for details, see Manly, 1999).
SPSS provides permutation tests for all test statistics used for two-way
classifications after clicking the Exact… button in the Crosstabs dialogue
box and checking Exact or Monte Carlo in the resulting sub-dialogue box.
The procedure is computationally intensive. SPSS sets a time limit and
offers to sample a set of permutations (Monte Carlo option). In the latter
case, the precision of the p-value is evaluated by a confidence interval. 

Table 3.7 gives a cross-classification of a sample of psychiatric patients
by their diagnosis and whether they were prescribed drugs for their
treatment (data taken from Agresti, 1996). Display the cross-tabulation
graphically. Use an exact test to assess whether diagnosis and drug

Table 3.6 Recovery from Depression after Treatment

Depersonalized Patients

Recovered Not Recovered

Not depersonalized 
patients

Recovered 14 5
Not recovered 2 2

Source: Everitt, 1992.

Table 3.7 Drug Treatment by Psychiatric Patient Type

Drug Treatment

Drugs No Drugs

Patient type Schizophrenia 105 8
Affective disorder 12 2
Neurosis 18 19
Personality disorder 47 52
Special symptoms 0 13
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treatment are independent. Estimate the odds ratio of receiving drug
treatment comparing schizophrenic patients, affective disorder patients
and neurosis patients with personality disorder patients each. 

3.4.3 Tics and Gender

The data in Table 3.8 give the incidence of tics in three age group samples
of children with learning difficulties (data taken from Everitt, 1992). Is
there any evidence of an association between the incidence of tics and
gender after adjusting for age? Estimate the odds ratio of experiencing tics
between boys and girls. 

3.4.4 Hair Color and Eye Color

The data in Table 3.9 show the hair color and eye color of a large number
of people. The overall chi-squared statistic for independence is very large
and the two variables are clearly not independent. Examine the possible
reasons for departure from independence by looking at the differences
between the observed and expected values under independence for each
cell of the table. 

Table 3.8 Tics in Children with Learning Disabilities

Child Experiences Tics?

Age Range Gender Yes No

5 to 9 years Boys
Girls

13
3

57
23

10 to 12 years Boys
Girls

26
11

56
29

13 to 15 years Boys
Girls

15
2

56
27

Table 3.9 Hair Color and Eye Color

Hair Color

Fair Red Medium Dark Black

Eye color Light 688 116 584 188 4
Blue 326 38 241 110 3
Medium 343 84 909 412 26
Dark 98 48 403 681 81

Source: Everitt, 1992.
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Chapter 4

Multiple Linear 
Regression:
Temperatures in America 
and Cleaning Cars

4.1 Description of Data
In this chapter, we shall deal with two sets of data where interest lies in
either examining how one variable relates to a number of others or in
predicting one variable from others. The first data set is shown in Table
4.1 and includes four variables, sex, age, extroversion, and car, the latter
being the average number of minutes per week a person spends looking
after his or her car. According to a particular theory, people who score
higher on a measure of extroversion are expected to spend more time
looking after their cars since a person may project their self-image through
themselves or through objects of their own. At the same time, car-cleaning
behavior might be related to demographic variables such as age and sex.
Therefore, one question here is how the variables sex, age, and extrover-
sion affect the time that a person spends cleaning his or her car. 

The second data set, reported by Peixoto (1990) is given in Table 4.2,
and shows the normal average January minimum temperature (in F) along
with the longitude and latitude for 56 cities in the U.S. (Average minimum
temperature for January is found by adding together the daily minimum
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Table 4.1 Cleaning Cars

Sex
(1 = male, 0 = female)

Age
(years)

Extroversion 
Score

Car
(min)

1 55 40 46
1 43 45 79
0 57 52 33
1 26 62 63
0 22 31 20
0 32 28 18
0 26 2 11
1 29 83 97
1 40 55 63
0 30 32 46
0 34 47 21
1 44 45 71
1 49 60 59
1 22 13 44
0 34 7 30
1 47 85 80
0 48 38 45
0 48 61 26
1 22 26 33
0 24 3 7
0 50 29 50
0 49 60 54
1 49 47 73
0 48 18 19
0 29 16 36
0 58 36 31
1 24 24 71
0 21 12 15
1 29 32 40
1 45 46 61
1 28 26 45
0 37 40 42
1 44 46 57
0 22 44 34
0 38 3 26
0 24 25 47
1 34 43 42
1 26 41 44
1 26 42 59
1 25 36 27

Source: Miles and Shevlin, 2001. With permission of the publisher.
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Table 4.2 Minimum Temperatures in America

City Temperature Latitude Longitude

Mobile, AL 44 31.2 88.5
Montgomery, AL 38 32.9 86.8
Phoenix, AZ 35 33.6 112.5
Little Rock, AR 31 35.4 92.8
Los Angeles, CA 47 34.3 118.7
San Francisco, CA 42 38.4 123.0
Denver, CO 15 40.7 105.3
New Haven, CT 22 41.7 73.4
Wilmington, DE 26 40.5 76.3
Washington, DC 30 39.7 77.5
Jacksonville, FL 45 31.0 82.3
Key West, FL 65 25.0 82.0
Miami, FL 58 26.3 80.7
Atlanta, GA 37 33.9 85.0
Boise, ID 22 43.7 117.1
Chicago, IL 19 42.3 88.0
Indianapolis, IN 21 39.8 86.9
Des Moines, IA 11 41.8 93.6
Wichita, KS 22 38.1 97.6
Louisville, KY 27 39.0 86.5
New Orleans, LA 45 30.8 90.2
Portland, ME 12 44.2 70.5
Baltimore, MD 25 39.7 77.3
Boston, MA 23 42.7 71.4
Detroit, MI 21 43.1 83.9
Minneapolis, MN 2 45.9 93.9
St Louis, MO 24 39.3 90.5
Helena, MT 8 47.1 112.4
Omaha, NE 13 41.9 96.1
Concord, NH 11 43.5 71.9
Atlantic City, NJ 27 39.8 75.3
Albuquerque, NM 24 35.1 106.7
Albany, NY 14 42.6 73.7
New York, NY 27 40.8 74.6
Charlotte, NC 34 35.9 81.5
Raleigh, NC 31 36.4 78.9
Bismarck, ND 0 47.1 101.0
Cincinnati, OH 26 39.2 85.0
Cleveland, OH 21 42.3 82.5
Oklahoma City, OK 28 35.9 97.5
Portland, OR 33 45.6 123.2
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temperatures and dividing by 31; then the January average minima for
the years 1931 to 1960 are averaged over the 30 years.) Interest lies in
developing an equation relating temperature to position as given by the
latitude and longitude.

We shall use multiple linear regression to analyze each data set.

4.2 Multiple Linear Regression
Multiple linear regression is a method of analysis for assessing the strength
of the relationship between each of a set of explanatory variables (some-
times known as independent variables, although this is not recommended
since the variables are often correlated), and a single response (or depen-
dent) variable. When only a single explanatory variable is involved, we
have what is generally referred to as simple linear regression, an example
of which was given in Chapter 2. 

Applying multiple regression analysis to a set of data results in what
are known as regression coefficients, one for each explanatory variable.
These coefficients give the estimated change in the response variable
associated with a unit change in the corresponding explanatory variable,
conditional on the other explanatory variables remaining constant. The
fit of a multiple regression model can be judged in various ways, for

Table 4.2 (continued) Minimum Temperatures 
in America

City Temperature Latitude Longitude

Harrisburg, PA 24 40.9 77.8
Philadelphia, PA 24 40.9 75.5
Charleston, SC 38 33.3 80.8
Nashville, TN 31 36.7 87.6
Amarillo, TX 24 35.6 101.9
Galveston, TX 49 29.4 95.5
Houston, TX 44 30.1 95.9
Salt Lake City, UT 18 41.1 112.3
Burlington, VT 7 45.0 73.9
Norfolk, VA 32 37.0 76.6
Seattle, WA 33 48.1 122.5
Spokane, WA 19 48.1 117.9
Madison, WI 9 43.4 90.2
Milwaukee, WI 13 43.3 88.1
Cheyenne, WY 14 41.2 104.9

Source: Hand et al., 1994.
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example, calculation of the multiple correlation coefficient or by the
examination of residuals, each of which will be illustrated later. (Further
details of multiple regression are given in Box 4.1.)

Box 4.1 Multiple Linear Regression 

� The multiple regression model for a response variable, y, with
observed values, y1, y2, …, yn (where n is the sample size)
and q explanatory variables, x1, x2, …, xq with observed values,
x1i, x2i, …, xqi for i = 1, …, n, is:

� The term i is the residual or error for individual i and
represents the deviation of the observed value of the response
for this individual from that expected by the model. These
error terms are assumed to have a normal distribution with
variance 2.

� The latter assumption implies that, conditional on the explan-
atory variables, the response variable is normally distributed
with a mean that is a linear function of the explanatory vari-
ables, and a variance that does not depend on these variables.

� The explanatory variables are, strictly, assumed to be fixed;
that is, they are not considered random variables. In practice,
where this is unlikely, the results from a regression are inter-
preted as being conditional on the observed values of the
explanatory variables.

� Explanatory variables can include continuous, binary, and cat-
egorical variables, although care is needed in how the latter
are coded before analysis as we shall describe in the body of
the chapter.

� The regression coefficients, 0, 1, L, q, are generally estimated
by least squares; details are given in Draper and Smith (1998). 

� The variation in the response variable can be partitioned into
a part due to regression on the explanatory variables and a
residual term. The latter divided by its degrees of freedom (the
residual mean square) gives an estimate of 2, and the ratio
of the regression mean square to the residual mean square
provides an F-test of the hypothesis that each of 0, 1, L, q

takes the value zero. 

y x x xi i i q qi i0 1 1 2 2 ...
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4.3 Analysis Using SPSS

4.3.1 Cleaning Cars

In the car cleaning data set in Table 4.1, each of the variables — extro-
version (extrover in the Data View spreadsheet), sex (sex), and age (age) —
might be correlated with the response variable, amount of time spent car
cleaning (car). In addition, the explanatory variables might be correlated
among themselves. All these correlations can be found from the correlation
matrix of the variables, obtained by using the commands

Analyze – Correlate – Bivariate…

and including all four variables under the Variables list in the resulting
dialogue box (see Chapter 2, Display 2.24). This generates the output
shown in Display 4.1. 

The output table provides Pearson correlations between each pair of
variables and associated significance tests. We find that car cleaning is
positively correlated with extroversion (r = 0.67, p < 0.001) and being
male (r = 0.661, p < 0.001). The positive relationship with age (r = 0.234)
does not reach statistical significance ( p = 0.15). The correlations between
the explanatory variables imply that both older people and men are more
extroverted (r = 0.397, r = 0.403).

� A measure of the fit of the model is provided by the multiple
correlation coefficient, R, defined as the correlation between
the observed values of the response variable and the values
predicted by the model; that is,

� The value of R2 gives the proportion of the variability of the
response variable accounted for by the explanatory variables.

� Individual regression coefficients can be assessed using the
ratio ˆ

j /SE(ˆ j), judged as a Student’s t-statistic, although the
results of such tests should only be used as rough guides to
the ‘significance’ or otherwise of the coefficients for reasons
discussed in the text.

� For complete details of multiple regression, see, for example,
Rawlings, Pantula and Dickey (1998).

ˆ ˆ ˆ ˆy x xi i q iq0 1 1 L
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Since all the variables are correlated to some extent, it is difficult to
give a clear answer to whether, for example, extroversion is really related
to car cleaning time, or whether the observed correlation between the
two variables arises from the relationship of extroversion to both age and
sex, combined with the relationships of each of the latter two variables
to car cleaning time. (A technical term for such an effect would be
confounding.) Similarly the observed relationship between car cleaning
time and gender could be partly attributable to extroversion.

In trying to disentangle the relationships involved in a set of variables,
it is often helpful to calculate partial correlation coefficients. Such coefficients
measure the strength of the linear relationship between two continuous
variables that cannot be attributed to one or more confounding variables
(for more details, see Rawlings, Pantula, and Dickey, 1998). For example,
the partial correlation between car cleaning time and extroversion rating
“partialling out” or “controlling for” the effects of age and gender measures
the strength of relationship between car cleaning times and extroversion
that cannot be attributed to relationships with the other explanatory
variables. We can generate this correlation coefficient in SPSS by choosing 

Analyze – Correlate – Partial…

from the menu and filling in the resulting dialogue box as shown in
Display 4.2. The resulting output shows the partial correlation coefficient
together with a significance test (Display 4.3). The estimated partial
correlation between car cleaning and extroversion, 0.51, is smaller than
the previous unadjusted correlation coefficient, 0.67, due to part of the

Display 4.1 Correlation matrix for variables in the car cleaning data set.

Correlations

1 -.053 .403** .661**
. .744 .010 .000

40 40 40 40

-.053 1 .397* .234
.744 . .011 .147

40 40 40 40

.403** .397* 1 .670**

.010 .011 . .000

40 40 40 40

.661** .234 .670** 1

.000 .147 .000 .
40 40 40 40

Pearson Correlation
Sig. (2-tailed)

N

Pearson Correlation
Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation
Sig. (2-tailed)

N

gender

age in years

extroversion

minutes per week

gender age in years extroversion
minutes
per week

Correlation is significant at the 0.01 level (2-tailed).**.

Correlation is significant at the 0.05 level (2-tailed).*.
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relationship being attributed to gender and/or age. We leave it as an
exercise to the reader to generate the reduced partial correlation, 0.584,
between car cleaning time and gender after controlling for extroversion
and age.

Thus far, we have quantified the strength of relationships between our
response variable, car cleaning time, and each explanatory variable after
adjusting for the effects of the other explanatory variables. We now
proceed to use the multiple linear regression approach with dependent
variable, car, and explanatory variables, extrover, sex, and age, to quantify
the nature of relationships between the response and explanatory vari-
ables after adjusting for the effects of other variables. (This is a convenient

Display 4.2 Generating the partial correlation between car cleaning time and 
extroversion rating controlling for age and gender.

Display 4.3 Partial correlation output.

- - -  P A R T I A L   C O R R E L A T I O N   C O E F F I C I E N T S  - - - 

Controlling for..    SEX       AGE 

                 CAR   EXTROVER 

CAR           1.0000      .5107 
             (    0)    (   36) 
             P= .       P= .001 

EXTROVER       .5107     1.0000 
             (   36)    (    0) 
             P= .001    P= . 

(Coefficient / (D.F.) / 2-tailed Significance) 

" . " is printed if a coefficient cannot be computed 
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point to note that categorical explanatory variables, such as gender, can
be used in multiple linear regression modeling as long they are represented
by dummy variables. To “dummy-code” a categorical variable with k
categories, k-1 binary dummy variables are created. Each of the dummy
variables relates to a single category of the original variable and takes the
value “1” when the subject falls into the category and “0” otherwise. The
category that is ignored in the dummy-coding represents the reference
category. Here sex is the dummy variable for category “male,” hence
category “female” represents the reference category.)

A multiple regression model can be set up in SPSS by using the
commands

Analyze – Regression – Linear…

This results in the Linear Regression dialogue box shown in Display 4.4:

Display 4.4 Specifying a multiple linear regression model.
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� We specify the dependent variable and the set of explanatory vari-
ables under the headings Dependent and Independent(s), respectively. 

� The regression output is controlled via the Statistics… button. By
default, SPSS only prints estimates of regression coefficients and
some model fit tables. Here we also ask for confidence intervals
to be included in the output (Display 4.4).

The resulting SPSS output tables are shown in Display 4.5 and Display
4.6. The model fit output consists of a “Model Summary” table and an
“ANOVA” table (Display 4.5). The former includes the multiple correlation
coefficient, R, its square, R2, and an adjusted version of this coefficient as
summary measures of model fit (see Box 4.1). The multiple correlation
coefficient R = 0.799 indicates that there is a strong correlation between
the observed car cleaning times and those predicted by the regression
model. In terms of variability in observed car cleaning times accounted
for by our fitted model, this amounts to a proportion of R2 = 0.634, or
63.4%. Since by definition R2 will increase when further terms are added

Display 4.5 Multiple regression model fit output.

Display 4.6 Multiple regression coefficients output.

Model Summary

.799a .638 .608 13.021
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), age in years, gender,
extroversion

a.

ANOVAb

10746.290 3 3582.097 21.126 .000a

6104.085 36 169.558

16850.375 39

Regression

Residual

Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), age in years, gender, extroversiona.

Dependent Variable: minutes per weekb.

Coefficientsa

11.306 7.315 1.546 .131 -3.530 26.142

.464 .130 .439 3.564 .001 .200 .728

.156 .206 .085 .754 .455 -.263 .574

20.071 4.651 .489 4.315 .000 10.638 29.505

(Constant)

extroversion

age in years

gender

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: minutes per weeka.
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to the model even if these do not explain variability in the population,
the adjusted R2 is an attempt at improved estimation of R2 in the popu-
lation. The index is adjusted down to compensate for chance increases
in R2, with bigger adjustments for larger sets of explanatory variables (see
Der and Everitt, 2001). Use of this adjusted measure leads to a revised
estimate that 60.8% of the variability in car cleaning times in the population
can be explained by the three explanatory variables. 

The error terms in multiple regression measure the difference between
an individual’s car cleaning time and the mean car cleaning time of subjects
of the same age, sex, and extroversion rating in the underlying population.
According to the regression model, the mean deviation is zero (positive
and negative deviations cancel each other out). But the more variable the
error, the larger the absolute differences between observed cleaning times
and those expected. The “Model Summary” table provides an estimate of
the standard deviation of the error term (under “Std. Error of the Estimate”).
Here we estimate the mean absolute deviation as 13.02 min, which is
small considering that the observed car cleaning times range from 7 to
97 min per week. 

Finally, the “ANOVA” table provides an F-test for the null hypothesis
that none of the explanatory variables are related to car cleaning time, or
in other words, that R2 is zero (see Box 4.1). Here we can clearly reject
this null hypothesis (F (3,36) = 21.1, p < 0.001), and so conclude that at
least one of age, sex, and extroversion is related to car cleaning time. 

The output shown in Display 4.6 provides estimates of the regression
coefficients, standard errors of the estimates, t-tests that a coefficient takes
the value zero, and confidence intervals (see Box 4.1). The estimated
regression coefficients are given under the heading “Unstandardized Coef-
ficients B”; these give, for each of the explanatory variables, the predicted
change in the dependent variable when the explanatory variable is
increased by one unit conditional on all the other variables in the model
remaining constant. For example, here we estimate that the weekly car
cleaning time is increased by 0.464 min for every additional score on the
extroversion scale (or by 4.64 min per week for an increase of 10 units
on the extroversion scale) provided that the individuals are of the same
age and sex. Similarly, the estimated effect for a ten-year increase in age
is 1.56 min per week. The interpretation of regression coefficients asso-
ciated with dummy variables is also straightforward; they give the predicted
difference in the dependent variable between the category that has been
dummy-coded and the reference category. For example, here we estimate
that males spend 20.07 min more per week car washing than females
after adjusting for age and extroversion rating. 

The regression coefficient estimate of extroversion has a standard error
(heading “Std. Error”) of 0.13 min per week and a 95% confidence interval
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for the coefficient is given by [0.200, 0.728], or in other words, the increase
in car cleaning time per increase of ten in extroversion rating is estimated
to be in the range 2.00 to 7.28 min per week. (Those interested in p-
values can use the associated t-test to test the null hypothesis that extro-
version has no effect on car cleaning times.) 

Finally, the Coefficients table provides standardized regression coeffi-
cients under the heading “Standardized Coefficients Beta”. These coeffi-
cients are standardized so that they measure the change in the dependent
variable in units of its standard deviation when the explanatory variable
increases by one standard deviation. The standardization enables the
comparison of effects across explanatory variables (more details can be
found in Everitt, 2001b). For example, here increasing extroversion by
one standard deviation (SD = 19.7) is estimated to increase car cleaning
time by 0.439 standard deviations (SD = 20.8 min per week). The set of
beta-coefficients suggests that, after adjusting for the effects of other explan-
atory variables, gender has the strongest effect on car cleaning behavior.

(Note that checking Descriptives and Part and partial correlations in the
Statistics sub-dialogue box in Display 4.4 provides summary statistics of
the variables involved in the multiple regression model, including the
Pearson correlation and partial correlation coefficients shown in Displays
4.1 and 4.3.)

For the car cleaning data, where there are only three explanatory
variables, using the ratio of an estimated regression coefficient to its
standard error in order to identify those variables that are predictive of
the response and those that are not, is a reasonable approach to devel-
oping a possible simpler model for the data (that is, a model that contains
fewer explanatory variables). But, in general, where a larger number of
explanatory variables are involved, this approach will not be satisfactory.
The reason is that the regression coefficients and their associated standard
errors are estimated conditional on the other explanatory variables in the
current model. Consequently, if a variable is removed from the model,
the regression coefficients of the remaining variables (and their standard
errors) will change when estimated from the data excluding this variable.
As a result of this complication, other procedures have been developed
for selecting a subset of explanatory variables, most associated with the
response. The most commonly used of these methods are: 

� Forward selection. This method starts with a model containing
none of the explanatory variables. In the first step, the procedure
considers variables one by one for inclusion and selects the variable
that results in the largest increase in R2. In the second step, the
procedures considers variables for inclusion in a model that only
contains the variable selected in the first step. In each step, the
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variable with the largest increase in R2 is selected until, according
to an F-test, further additions are judged to not improve the model.

� Backward selection. This method starts with a model containing
all the variables and eliminates variables one by one, at each step
choosing the variable for exclusion as that leading to the smallest
decrease in R2. Again, the procedure is repeated until, according
to an F-test, further exclusions would represent a deterioration of
the model.

� Stepwise selection. This method is, essentially, a combination of the
previous two approaches. Starting with no variables in the model,
variables are added as with the forward selection method. In
addition, after each inclusion step, a backward elimination process
is carried out to remove variables that are no longer judged to
improve the model.

Automatic variable selection procedures are exploratory tools and the
results from a multiple regression model selected by a stepwise procedure
should be interpreted with caution. Different automatic variable selection
procedures can lead to different variable subsets since the importance of
variables is evaluated relative to the variables included in the model in
the previous step of the procedure. A further criticism relates to the fact
that a number of tests are employed during the course of the automatic
procedure, increasing the chance of false positive findings in the final
model. Certainly none of the automatic procedures for selecting subsets
of variables are foolproof; they must be used with care and warnings
such as the following given in Agresti (1996) should be noted:

Computerized variable selection procedures should be used
with caution. When one considers a large number of terms for
potential inclusion in a model, one or two of them that are not
really important may look impressive simply due to chance.
For instance, when all the true effects are weak, the largest
sample effect may substantially overestimate its true effect. In
addition, it often makes sense to include certain variables of
special interest in a model and report their estimated effects
even if they are not statistically significant at some level. 

In addition, the comments given in McKay and Campbell (1982a, b)
concerning the validity of the F-tests used to judge whether variables
should be included in or eliminated from a model need to be considered.

Here, primarily for illustrative purposes, we carry out an automatic
forward selection procedure to identify the most important predictors of
car cleaning times out of age, sex, and extroversion, although previous
results give, in this case, a very good idea of what we will find. An
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automatic forward variable selection procedure is requested from SPSS by
setting the Method option in the Linear Regression dialogue box to Forward
(see Display 4.4). When evaluating consecutive models, it is helpful to
measure the change in R2 and to consider collinearity diagnostics (see
later), both of which can be requested in the Statistics sub-dialogue box
(see Display 4.4). The Options sub-dialogue box defines the criterion used
for variable inclusion and exclusion. The default settings are shown in
Display 4.7. The inclusion (and exclusion) criteria can either be specified
in terms of the significance level of an F-test (check Use probability of F) or
in terms of a threshold value of the F-statistic (check Use F-value). By default,
SPSS chooses a less stringent criteria for removal than for entry; although
here for the automatic forward selection only, the entry criterion (significant
increase in R2 according to an F-test at the 5% test level) is relevant. 

Display 4.8 shows the results from the automatic forward variable
selection. SPSS repeats the entry criterion used and lists the variables
selected in each step. With three potential predictor variables, the proce-
dure iterated through three steps. In the first step, the variable extroversion
was included. In the second step, gender was added to the model. No
variable was added in the third step since the remaining potential predictor
variable, age, did not improve the model according to our chosen inclusion
criterion. The F-tests employed in each step are shown in the “Model
Summary” table. Here the model selected after the first step (extroversion

Display 4.7 Setting inclusion and exclusion criteria for automatic variable 
selection.
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only) explained 44.9% of the variance in car cleaning times and the test
for the single regression coefficient is highly significant (F (1,38) = 31, p <
0.001). Adding gender to the model increases the percentage variance
explained by 18.3% (F (1,37) = 18.4, p < 0.001). (We leave as an exercise
to check that backward and stepwise variable selection leads to the same
subset of variables for this data example. But remember, this may not
always be the case.)

For stepwise procedures, the “Coefficients” table shows the regression
coefficients estimated for the model at each step. Here we note that the
unadjusted effect of extroversion on car cleaning time was estimated to be
an increase in car cleaning time of 7.08 min per week per 10 point increase
on the extroversion scale. When adjusting for gender (model 2), this effect
reduces to 5.09 min per week per 10 points (95% CI from 2.76 to 7.43 min
per week per 10 points). SPSS also provides information about the variables
not included in the regression model at each step. The “Excluded Variables”
table provides standardized regression coefficients (under “Beta in”) and
t-tests for significance. For example, under Model 1, we see that gender,
which had not been included in the model at this stage, might be an important
variable since its standardized effect after adjusting for extroversion is of
moderate size (0.467), there also remains moderate size partial correlation
between gender and car cleaning after controlling for extroversion (0.576). 

Approximate linear relationships between the explanatory variables,
multicollinearity, can cause a number of problems in multiple regression,
including:

� It severely limits the size of the multiple correlation coefficient
because the explanatory variables are primarily attempting to
explain much of the same variability in the response variable (see
Dizney and Gromen, 1967, for an example).

� It makes determining the importance of a given explanatory vari-
able difficult because the effects of explanatory variables are con-
founded due to their intercorrelations.

� It increases the variances of the regression coefficients, making use
of the estimated model for prediction less stable. The parameter
estimates become unreliable (for more details, see Belsley, Kuh,
and Welsh, 1980).

Spotting multicollinearity among a set of explanatory variables might
not be easy. The obvious course of action is to simply examine the
correlations between these variables, but while this is a good initial step
that is often helpful, more subtle forms of multicollinearity involving more
than two variables might exist. A useful approach is the examination of
the variance inflation factors (VIFs) or the tolerances of the explanatory
variables. The tolerance of an explanatory variable is defined as the
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Display 4.8 Automatic forward variable selection output.

Variables Entered/Removed a

extroversion
.

Forward
(Criterion:
Probabilit
y-of-F-to-e
nter <=
.050)

gender .

Forward
(Criterion:
Probabilit
y-of-F-to-e
nter <=
.050)

Model
1

2

Variables
Entered

Variables
Removed Method

Dependent Variable: minutes per weeka.

Model Summary

.449a 30.982 1 38 .000

.183b 18.389 1 37 .000

Model
1

2

R Square
Change F Change df1 df2 Sig. F Change

Change Statistics

Predictors: (Constant), extroversiona.

Predictors: (Constant), extroversion, genderb.
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Display 4.8 (continued).

Coefficientsa

17.905 5.319 3.366 .002 7.137 28.674

.708 .127 .670 5.566 .000 .451 .966 1.000 1.000

15.680 4.436 3.534 .001 6.691 24.669

.509 .115 .482 4.423 .000 .276 .743 .838 1.194

19.180 4.473 .467 4.288 .000 10.118 28.243 .838 1.194

(Constant)

extroversion

(Constant)

extroversion

gender

Model
1

2

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Tolerance VIF

Collinearity Statistics

Dependent Variable: minutes per weeka.

Excluded Variablesc

-.039a -.290 .773 -.048 .842 1.187 .842

.467a 4.288 .000 .576 .838 1.194 .838

.085b .754 .455 .125 .788 1.269 .662

age in years

gender

age in years

Model
1

2

Beta In t Sig.
Partial

Correlation Tolerance VIF
Minimum
Tolerance

Collinearity Statistics

Predictors in the Model: (Constant), extroversiona.

Predictors in the Model: (Constant), extroversion, genderb.

Dependent Variable: minutes per weekc.
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proportion of variance of the variable in question not explained by a
regression on the remaining explanatory variables with smaller values
indicating stronger relationships. The VIF of an explanatory variable mea-
sures the inflation of the variance of the variable’s regression coefficient
relative to a regression where all the explanatory variables are independent.
The VIFs are inversely related to the tolerances with larger values indicating
involvement in more severe relationships (according to a rule of thumb,
VIFs above 10 or tolerances below 0.1 are seen as a cause of concern). 

Since we asked for Collinearity diagnostics in the Statistics sub-dialogue
box, the “Coefficients” table and the “Excluded Variables” table in Display
4.8 include columns labeled “Collinearity Statistics.” In the “Coefficients”
table, the multicollinearities involving the explanatory variables of the
respective model are assessed. For example, the model selected in the
second step of the procedure included extroversion and gender as explan-
atory variables. So a multicollinearity involving these two variables (or more
simply, their correlation) has been assessed. In the “Excluded Variables”
table, multicollinearities involving the excluded variable and those included
in the model are assessed. For example, under “Model 2,” multicollinearities
involving age (which was excluded) and extroversion and gender (which
were included) are measured. Here none of the VIFs give reason for
concern. (SPSS provides several other collinearity diagnostics, but we shall
not discuss these because they are less useful in practice than the VIFs.)

It might be helpful to visualize our regression of car cleaning times
on gender and extroversion rating by constructing a suitable graphical
display of the fitted model. Here, with only one continuous explanatory
variable and one categorical explanatory variable, this is relatively simple
since a scatterplot of the predicted values against extroversion rating can
be used. First, the predicted (or fitted) values for the subjects in our sample
need to be saved via the Save… button on the Linear Regression dialogue
box (see Display 4.4). This opens the Save sub-dialogue box shown in
Display 4.9 where Unstandardized Predicted Values can be requested. Execut-
ing the command includes a new variable pre_1 on the right-hand side of
the Data View spreadsheet.

This variable can then be plotted against the extroversion variable
using the following instructions:

� The predicted value variable, pre_1, is declared as the Y Axis and
the extroversion variable, extrover as the X Axis in the Simple Scatterplot
dialogue box (see Chapter 2, Display 2.20).

� The gender variable, sex, is included under the Set Markers by list
to enable later identification of gender groups.

� The resulting graph is then opened in the Chart Editor and the
commands Format – Interpolation… – Straight used to connect the points.
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Display 4.9 Generating predicted values.

Display 4.10 Car cleaning times predicted by the multiple linear regression on 
gender and extroversion rating.
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The final graph shown in Display 4.10 immediately conveys that the
amount of time spent car cleaning is predicted to increase with extrover-
sion rating, with the strength of the effect determined by the slope of two
parallel lines (5.1 min per week per 10 points on the extroversion scale).
It also shows that males are estimated to spend more time cleaning their
cars with the increase in time given by the vertical distance between the
two parallel lines (19.18 min per week).

4.3.2 Temperatures in America

For the temperature data in Table 4.2, we would like to develop an equation
that allows January average temperature in a city to be predicted from
spatial position as specified by its longitude and latitude. So here the
dependent variable is the temperature (temp in our Data View spreadsheet)
and we have two explanatory variables, latitude (lati) and longitude (longi).

To get an impression of the spatial locations of the 56 cities, we can
create a scatterplot of our two explanatory variables. We plot latitude on the
y-axis since larger values indicate more northern locations. Longitude essen-
tially measures the distance from the Greenwich meridian, with larger values
for American cities indicating more westerly locations. We therefore create
a new variable using the Compute command (Longitude multiplied by the
factor –1, called newlongi, see Chapter 1, Display 1.13) so that larger values
indicate more easterly positions and plot this new variable on the x-axis.

To include city names on the scatterplot (included in the Data View
spreadsheet as a string variable city), we set Label Cases by in the Simple
Scatterplot dialogue box to city. This initially generates a scatterplot without
showing the labels. But these can then be made visible as follows:

� Open the Chart Editor and use the commands Chart – Options… from
the menu bar.

� Set Case Labels to On in the resulting Scatterplot Options box while
keeping Source of Labels as ID variable.

� To improve the appearance, we can select the city labels by
highlighting them on the graph. 

� Use the Format – Text… commands to change the font size to 5. 

The resulting scatterplot is given in Display 4.11. This demonstrates that
the 56 cities in this study provide reasonable representation of the whole
of the U.S. 

Another graphical display that is often useful at this initial stage of
analysis is the scatterplot matrix (see Cleveland, 1993). This is a rectangular
grid arrangement of the pairwise scatterplots of the variables. In SPSS,
such a plot can be produced as follows:
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� Use commands Graph – Scatter… from the menu bar.
� Choose Matrix from the resulting Scatterplot dialogue box. 
� Select the dependent variable as well as all the explanatory vari-

ables as Matrix Variables in the next Scatterplot Matrix dialogue box as
shown in Display 4.12.

Inclusion of regression lines from simple linear regressions of the data in
each panel of the scatterplot matrix requires the following steps:

� Select the commands Chart – Options… from the Chart editor menu bar. 
� Check Total on the resulting Scatterplot Options dialogue box.
� Click the Fit Options… button.
� Choose Linear regression as the Fit Method on the resulting Fit Line sub-

dialogue box.

This produces the scatterplot matrix shown in Display 4.13. The vari-
able plotted on the y-axis in a given cell of the matrix is identified by
reading along the corresponding row; the variable on the x-axis by reading
along the corresponding column. The two scattergraphs in the first row of
the scatter matrix display the dependent variable (minimum temperature)

Display 4.11 Spatial locations of American cities.
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Display 4.12 Generating a scatterplot matrix.

Display 4.13 Scatterplot matrix of temperature, latitude, and longitude.
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on the y-axis and the explanatory variables latitude and longitude and
the respective x-axes. The simple linear regressions lines show that the
relationship between temperature and latitude is approximately linear,
while the relationship between temperature and longitude appears to be
more complex; perhaps taking an “S” shaped form that might need to be
represented by a cubic term for longitude in the regression model.
Consequently, we will consider the following model for the temperature
data:

(4.1)

where x1i and x2i are the latitude and longitude coordinates of the ith
city, yi the observed minimum January temperature, and i an error term.
Provided that longitude is constant, this equation models a linear relation-
ship between temperature and latitude. When latitude is held constant, a
cubic relationship between temperature and longitude is modeled. The
multiple regression model now contains four explanatory variables x1, x2,
x2

2, and x2
3. The linear regression coefficients 0, 1, 2, 3, and 4 are, of

course, unknown and, as always, will need to be estimated from the
observed data.

To fit this regression model to the data, we first need to create each
of the explanatory variables to be used in the model. To do this, we need
the Compute command (see Chapter 1, Display 1.13) to create new variables
c_lati, c_longi, c_longi2, and c_longi3. The variables c_lati and c_longi measure
latitudes and longitudes as deviations from their sample means (38.97 and
90.964, respectively). c_longi2 and c_longi3 were then constructed by squaring
or cubing new variable c_longi, respectively. Such mean centering (or
subtraction of the sample mean) avoids computational problems (or ill-
conditioning), a problem that can arise as a result of correlations between
a positive predictor variable and its square or cube (see Rawlings, Patula,
and Dickey, 1998). The regression model is then fitted by specifying temp
as the dependent variable and c_lati, c_longi, c_longi2, and c_longi3 as the
independent variables in the Linear Regression dialogue box (see Display 4.4).

The resulting SPSS output tables are shown in Display 4.14. The value
of the multiple correlation coefficient, 0.973, indicates that the observed
temperatures are fitted very well by those predicted by the estimated
model. In terms of variability in minimum temperature accounted for by
our fitted model, this amounts to a proportion of R2 = 0.964, or 94.6%.
The regression is clearly statistically significant (F (4,51) = 223.9, p < 0.001). 

The “Coefficients” table provides the estimates of the regression coef-
ficients. Here we estimate that minimum temperature reduces by 2.36ºF
for every unit increase in latitude when longitude remains unchanged. (In

y x x x xi i i i i i0 1 1 2 2 3 2

2

3 2

3
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this example, it does not make sense to consider the other regression
coefficients singly, since the effect of longitude is modeled jointly by the
variables c_longi, c_longi2, and c_longi3.)

Having established that our model is highly predictive in terms of R2,
it is of interest to see how much of this predictive power is due to latitude
and how much is due to longitude. As a result of some correlation between
the latitude and longitude of American cities (Display 4.11), we cannot
uniquely attribute part of the explained variability in temperatures to
latitude or longitude. However, we can measure how much variability is
explained by a model that contains latitude alone, and by how much this
is increased after adding the effects of longitude to the model and vice
versa. This requires us to fit a series of models as shown in Table 4.3. 

In SPSS, “blocking” of the explanatory variables can be used to fit a
series of models for a dependent variable derived by consecutively adding
further terms. The first block contains the explanatory variables of the
first model. The second block contains the explanatory variables that are
to be added to the model in the second step of the model-fitting procedure.
The third block contains the variables to be added in the third step and
so on. When the explanatory variables are blocked, all regression output
is generated repeatedly for each step of the modeling procedure. 

Display 4.14 Output from multiple linear regression of minimum temperatures.

Model Summary

.973a .946 .942 3.225

Model

1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), C_LONGI3, C_LATI,
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a.

ANOVAb

9315.528 4 2328.882 223.908 .000a

530.455 51 10.401

9845.982 55

Regression

Residual

Total

Model

1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), C_LONGI3, C_LATI, C_LONGI2, C_LONGIa.

Dependent Variable: Average January minimum temperatureb.

Coefficientsa

23.130 .672 34.410 .000 21.780 24.479

-2.358 .090 -.948 -26.204 .000 -2.538 -2.177

-.580 .068 -.649 -8.473 .000 -.717 -.442

2.011E-03 .003 .040 .600 .551 -.005 .009

1.296E-03 .000 .898 8.353 .000 .001 .002

(Constant)

C_LATI

C_LONGI
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C_LONGI3

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: Average January minimum temperaturea.
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We proceed to use the blocking facility to carry out the step-wise
modeling of temperature as described in Table 4.3. Our first series of two
models translates into block 1 containing only the latitude variable c_lati
and block 2 containing the longitude variables c_longi, c_longi2, and c_longi3.
The Linear Regression dialogue box informs SPSS about a blocking of the
explanatory variables. When variables are to be added in blocks, only the
variables of the first block are included under the Independent(s) list initially.
Then, clicking the Next button causes SPSS to empty the Independent(s) list
and to ask for the variables of the next block (“Block 2 of 2” is now
displayed). The explanatory variables of the second block are then entered
(Display 4.15). The Next button is repeatedly clicked until the last block
has been defined. Setting Method to Enter ensures that variables are added
in each step. (It is also possible to Remove the variables of a block from
the model.) Here we are only interested in how R2 changes in each step
and hence selected R squared change in the Statistics sub-dialogue box (see
Display 4.4). 

The SPSS output generated by fitting our first series of models is shown
in Display 4.16. Repeating the whole procedure, this time defining c_longi,
c_longi2, and c_longi3 as block 1 and c_lati as block 2 leads to the output
in Display 4.17. The output provides information on which variables are
added in each step. It then produces a “Model Summary” table that
contains the changes in R2 and F-tests for the null hypotheses of no effects
of the added variables. Display 4.16 shows that latitude alone explains
71.9% of the variance in temperatures and this contribution is statistically
significant (F (1,54) = 138.3, p < 0.001). Adding the longitude terms to the
model increases this further by 22.7%. The respective test shows that
longitude significantly affects temperature after adjusting for latitude
(F (3,51) = 71.6, p < 0.001). Reversing the order of model fitting makes

Table 4.3 Stepwise Model Fitting for Temperature Data 

Order of 
Model Terms Step

Model Terms 
Added

Explanatory Variables in 
Model

Effect of Change in 
Model Fit Measures

Latitude
first

1 Latitude term c_lati Latitude
2 Longitude

terms
c_lati, c_longi, c_longi2, 

c_longi3
Longitude not 

accounted for by 
latitude

Longitude
first

1 Longitude
terms

c_longi, c_longi2, c_longi3 Longitude

2 Latitude term c_longi, c_longi2, c_longi3, 
c_lati

Latitude not 
accounted
for by longitude 
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little difference. Longitude alone explains 22.1% of the variance in tem-
peratures (F (3,52) = 4.9, p = 0.004). Adding the latitude term accounts
for a further 72.5%. The F-test for the latter (F (1,51) = 686.6, p < 0.001)
again shows that latitude significantly affects temperatures after adjusting
for longitude. We can, therefore, be confident that both the linear effect
of latitude and the third order polynomial of longitude are needed to
model minimum January temperatures in the U.S.

Having arrived at a final multiple regression model for a data set, it is
important to carry on and check the assumptions made in the modeling
process. Only when the model appears adequate in light of the data
should the fitted regression equation be interpreted. Three assumptions
are made in a multiple regression modeling:

1. The errors have the same variance (homogeneity).
2. The errors arise from a normal distribution.
3. The relationship between each explanatory variable and the depen-

dent variable is linear and the effects of several explanatory vari-
ables are additive.

The most useful approach for assessing these assumptions is to examine
some form of residual from the fitted model along with some of the many
other regression diagnostics now available (see Exercise 4.4.3). Residuals at
their simplest are the difference between the observed and fitted values of
the response variable. The following residual diagnostics are commonly used:

Display 4.15 Blocking explanatory variables of a regression model.
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Display 4.16 Change in model fit when latitude term is fitted first.

Display 4.17 Change in model fit when longitude terms are fitted first.
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1. Residual plot: This is a scatterplot of residuals against predicted
values. The residuals should lie around zero with the degree of
scatter not varying systematically with the size of predicted values.
(More details can be found in Cook and Weisberg, 1982.) 

2. Any diagnostic plot for normality: For example, box plot, QQ-plot,
histogram (see Chapter 2). 

3. Partial plots: A partial plot of an explanatory variable plots the raw
residuals from a regression of the dependent variable on all other
explanatory variables against the raw residuals from a regression
of the explanatory variable in question on all other explanatory
variables. The relationship between the variables should be approx-
imately linear. (More details can again be found in Cook and
Weisberg, 1982.)

The quickest way to produce a set of residual diagnostics is to check
the Plots… button on the Linear Regression dialogue box (see Display 4.4) and
fill in the fields of the Plots sub-dialogue box as illustrated in Display 4.18.
SPSS provides a number of types of residuals and predicted values. (These
are also listed under the Save sub-dialogue box, see Display 4.9.) Unstand-
ardized or raw residuals are simply calculated as the difference between
the observed values and those predicted by the model. By definition these
have sample mean zero and are measured in units of the dependent
variable, making them somewhat inconvenient to use in practice. To make
them scale invariant, they are often standardized to units of estimated
error standard deviation. SPSS refers to such scaled residuals as standard-
ized residuals (*ZRESID). However, the variances of both, the raw residuals
and the standardized residuals, vary with the values of the explanatory
variables, and in that sense these residuals are not optimal for examining

Display 4.18 Generating residual diagnostics.
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the error distribution (which has constant variance). Studentized residuals
(*SRESID) are corrected for this effect of the explanatory variables and
should, if the model is correct, arise from a standard normal distribution;
it is these residuals that we shall use here. 

We generate a residual plot by plotting *SRESID on the y-axis and
*ZPRED (predicted values standardized to sample mean zero and standard
deviation one) on the x-axis. This results in the scattergraph shown in
Display 4.19. We further choose to examine the distributional shape of
the residuals by means of a histogram and checked Histogram. (Unfortu-
nately, SPSS only allows for plotting a histogram of the standardized
residuals, Display 4.20.) Finally, we request partial plots by checking
Produce all partial plots. This generates the four graphs shown in Display 4.21.

The residual plot was edited somewhat for appearance (Display 4.19).
In particular, three horizontal reference lines were included to examine
outliers. SPSS enables inclusion of horizontal lines by using the commands 

Chart – Reference Line… – Y Scale

in the Chart Editor. This opens the Scale Axis Reference Line dialogue box where
the values at which the reference lines are to cross the y-axis can be
specified. Here we chose to insert three horizontal reference lines at y-levels
of 2, 0, and –2, respectively. Under the model assumptions, 95% of the
Studentized residuals are expected to be within the range from –2 to 2. We
find that 4 out of 56 cities (7.1%) receive a residual with absolute value
more than 2, which is perfectly reasonable under the model assumptions. 

Display 4.19 Residual plot generated by commands in Display 4.18.
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Examining the residual plot, it appears that the homogeneity of variance
assumption is not violated since the residuals scatter randomly around
the zero line and the degree of scatter appears constant across the range
of predicted values. The histogram of the residuals is also consistent with
the assumption of normality (Display 4.20.)

The partial plots in Display 4.21 can be made more useful by including
the regression line from a simple linear regression of the variable on the
y-axis (the temperature residual) and on the variable on the x-axis (the
explanatory variable residual). This helps to assess whether there is linear
relationship between the two variables. The partial plot for latitude shows
a clear linear relationship (Display 4.21a). As a result of modeling the
effect of longitude by three explanatory variables, three partial plots have
been produced for longitude (Display 4.21b–d). All three plots show
approximately linear relationships. We, therefore, conclude that the rela-
tionship between temperature and latitude and longitude has been mod-
eled reasonably well by our multiple regression equation. 

Having confirmed that all our model assumptions seem reasonable in
the light of the data, we finally return to our objective for developing the
multiple regression model, namely, using it to predict January minimum
temperatures of U.S. locations not in the original sample. The “Coefficients”
table in Display 4.14 provided the estimates of our regression parameters,
giving ˆ

0 = 23.31, ˆ
1 = –2.358, ˆ

2 = –0.58, ˆ
3 = 0.002011, and ˆ

4 =
0.001296. (Note that SPSS displayed the last two coefficients in scientific
notation to save space.) Our fitted regression equation is therefore 

Display 4.20 Histogram of standardized residuals generated by commands in 
Display 4.18.
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(4.2)

where y is the January minimum temperature and x1 and x2 are the latitude
and longitude of the location, respectively. Provided we know the latitude
(x1) and longitude (x2) coordinates of a place, we can use this equation
to predict its January minimum temperature (y). We can get SPSS to do
the necessary calculation and also provide a measure of the precision of
the prediction. 

For illustrative purposes, we shall predict long-term January minimum
temperatures at an average U.S. latitude (the sample mean = 38.97) and
across a range of longitudes (125, 120, 115, …, 80). To obtain predictions
at these values of the explanatory variables, we need to extend the Data
View spreadsheet so that it includes the new values of the explanatory
variables as shown in Display 4.22. We have labeled the new locations
“new location 1” to “…10” and inserted the latitude and longitude values
for which we want to predict. However, since our regression operates on
the centered variables c_lati, c_longi, c_longi2, and c_longi3, these also have
to be filled in. The inverse longitude variable newlongi is also specified
since we later want to use it for plotting. Obviously, the temperature
variable temp remains blank since it is to be predicted.

Once the spreadsheet has been extended, we can run the regression
fitting as before, except that this time we check Unstandardized Predicted Values
and Mean Prediction Intervals in the Save sub-dialogue box (see Display 4.9).
This provides three new variables on the right-hand side of the original
spreadsheet: the predicted value at each location including the ten new
locations (pre_1), and the lower (lmci_1) and upper limit (umci_1) of a 95%
confidence interval for the long-term January minimum temperature. (Note
that we could have also chosen a confidence interval for the January
minimum temperature over a single 30-year period by checking Individual
Prediction Intervals in the Save sub-dialogue box.)

Finally, we need to display the obtained predictions and confidence
intervals. To do this, we first restrict the spreadsheet to the new locations
by using the following steps: 

� Use the Select Cases… command from the Data drop-down menu
(see Chapter 1, Display 1.11).

� Check If condition is satisfied in the resulting dialog and click the
button labeled If….

� Insert the condition “$casenum>56” in the resulting Select Cases: If
sub-dialogue box. ($casenum is a system variable and allows us
to access the row numbers.)

y x x

x x

23 13 2 358 38 97 0 58 90 964

0 002011 90 964 0 001296 90 964

1 2

2

2

2

3

. . . . .

  . . . .
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Display 4.21 Partial plots generated by commands in Display 4.18.

a) Latitude

C_LATI
100-10-20

Ja
nu

ar
y 

m
in

im
um

 te
m

pe
ra

tu
re

40

30

20

10

0

-10

-20

-30

b) Longitude

C_LONGI

20100-10-20

Ja
nu

ar
y 

m
in

im
um

 te
m

pe
ra

tu
re

20

10

0

-10

-20

© 2004 by Chapman & Hall/CRC Press LLC



Display 4.21 (continued)

c) Longitude squared
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Executing these commands results in rows 1 to 56 of the Data View
spreadsheet being crossed out and ignored in all further SPSS procedures.
We then proceed to construct a graph that displays the predicted temper-
atures and CIs for each longitude as follows: 

� Choose the commands Graphs – Line….
� Check Drop-line and Values of individual cases in the resulting Line Charts

dialogue box.
� Fill the next dialogue box in as indicated in Display 4.23.

This results in the graph shown in Display 4.24 (again after some
editing for better presentation). The predicted temperature values and CIs

Display 4.22 Extending a spreadsheet to make predictions at new values of 
explanatory variables.

Display 4.23 Graphing a series of precalculated confidence intervals.
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are plotted against (inverse) longitude. For a latitude of 38.97, we can see
that long-term January minimum temperatures are predicted to be higher
on the west coast than on the east coast and that the lowest temperatures
are predicted for inland U.S. The widths of the confidence intervals show
that temperatures at Eastern locations can be predicted more precisely
than at Western locations, reflecting the denser city coverage in the east
of the U.S. (see Display 4.11). 

Finally, having developed a prediction equation, we would like to
conclude with a warning. Regression should not be used to carry out
predictions outside the range of the explanatory variables; for example,
here outside the area of the U.S. In addition, predictions carried out at
levels of unobserved variables not comparable to the observed data can
result in very misleading predictions. Here, for example, predictions at
high altitudes are bound to be too high, given that temperature is known
to decease with increasing altitude. (For more details on the pitfall of
regression predictions, see Harrell, 2000). 

4.4 Exercises

4.4.1 Air Pollution in the U.S.

The data in Table 4.4 relate to air pollution in 41 U.S. cities. Use multiple
linear regression to investigate determinants of pollution. Air pollution

Display 4.24 Predicted long-term January minimum temperatures across the U.S.
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Table 4.4 Sulfur Dioxide and Indicators of Climatic Conditions 
and Human Ecology

City SO2 Temp. Manuf. Pop Wind Precip. Days

Phoenix 10 70.3 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 51.9 454 515 9.0 12.95 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 57.3 434 757 9.3 38.89 111
Jacksonville 14 68.4 136 529 8.8 54.47 116
Miami 10 75.5 207 335 9.0 59.80 128
Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Indianapolis 28 52.3 361 746 9.7 38.74 121
Des Moines 17 49.0 104 201 11.2 30.85 103
Wichita 8 56.6 125 277 12.7 30.58 82
Louisville 30 55.6 291 593 8.3 43.11 123
New Orleans 9 68.3 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 41.31 111
Detroit 35 49.9 1064 1513 10.1 30.96 129
Minneapolis 29 43.5 699 744 10.6 25.94 137
Kansas 14 54.5 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 51.5 181 347 10.9 30.18 98
Albuquerque 11 56.8 46 244 8.9 7.77 58
Albany 46 47.6 44 116 8.8 33.36 135
Buffalo 11 47.1 391 463 12.4 36.11 166
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbus 26 51.5 266 540 8.6 37.01 134
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 61.6 337 624 9.2 49.10 105
Nashville 18 59.4 275 448 7.9 46.00 119
Dallas 9 66.2 641 844 10.9 35.94 78
Houston 10 68.9 721 1233 10.8 48.19 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 59.3 96 308 10.6 44.68 116
Richmond 26 57.8 197 299 7.6 42.59 115
Seattle 29 51.1 379 531 9.4 38.79 164
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(SO2) is measured by the annual mean concentration of sulfur dioxide,
in micrograms per cubic meter. The other six variables are indicators of
climate conditions and human ecology.

4.4.2 Body Fat

The data in Table 4.5 come from a study investigating a new method of
measuring body composition and gives the body fat percentage (% fat),
age, and sex for 25 normal adults between 23 and 61 years. 

1. Construct a scatterplot of % fat and age within subgroups defined
by gender. Does it appear as if the relationship is different for
males and females? (Hint: Use the commands Graphs – Scatter… –
Simple – Set Markers by: sex)

2. Model the relationship between % fat and age and gender.

4.4.3 More on Cleaning Cars: Influence Diagnostics

A variety of diagnostic measures for identifying cases with great influence
on the results of a regression have been developed in the past decade
or so. Three that are commonly used are:

� DfBeta residual: Measures the difference in the regression coeffi-
cient estimate of an explanatory variable when a particular obser-
vation is included and when it is excluded in the calculation.

� Standardized DfBeta residual: As above but now scaled to have
unit variance, a value exceeding  is often viewed as indicating

Table 4.4 (continued) Sulfur Dioxide and Indicators of Climatic 
Conditions and Human Ecology

City SO2 Temp. Manuf. Pop Wind Precip. Days

Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16 45.7 569 717 11.8 29.07 123

SO2: Sulfur dioxide content of air in micrograms per cubic meter
TEMP: Average annual temperature F
MANUF: Number of manufacturing enterprises employing 20 or more 

workers
POP: Population size (1970 census) in thousands
WIND: Average wind speed in miles per hour
PRECIP: Average annual precipitation in inches
DAYS: Average number of days with precipitation per year

Source: Hand et al., 1994.

2 n

© 2004 by Chapman & Hall/CRC Press LLC



that the associated observation has undue influence of the estimate
of the particular regression coefficient (Miles and Shevlin, 2001).

� Cook’s distance statistic: calculated for each observation, this gives
a measure of the combined change in the estimates of the regres-
sion coefficients that would result from excluding the observation
(Cook, 1977). 

Investigate the use of these diagnostics on the car cleaning data by
looking under the “Distances” and “Influence Statistics” sections of the
Linear Regression: Save sub-dialogue box.

Table 4.5 Body Fat Content and Age 
of Adults

Age
(years)

%
Fat

Sex
(0 = male, 1 = female)

23 9.5 0
23 27.9 1
27 7.8 0
27 17.8 0
39 31.4 1
41 25.9 1
45 27.4 0
49 25.2 1
50 31.1 1
53 34.7 1
53 42.0 1
54 42.0 1
54 29.1 1
56 32.5 1
57 30.3 1
57 21.0 0
58 33.0 1
58 33.8 1
60 41.1 1
61 34.5 1

Source: Hand et al., 1994.
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Chapter 5

Analysis of Variance I: 
One-Way Designs; 
Fecundity of Fruit Flies, 
Finger Tapping, and 
Female Social Skills

5.1 Description of Data
Three data sets will be analyzed in this chapter; each of them arises from
what is generally known as a one-way design in which one (or more than
one) continuous outcome variable(s) is observed on a sample of individ-
uals grouped according to a single categorical variable or factor. The
question addressed in a one-way design is: Do the populations that give
rise to the different levels of the factor variable have different mean values
on the outcome variable?

The first data set, shown in Table 5.1, arises from a study of the
fecundity of the fruit fly Drosophila melanogaster. For 25 female flies from
each of three strains, per diem fecundity (number of eggs laid per female
per day for the first 14 days of life) was recorded. The genetic lines labeled
RS and SS were selectively bred for resistance and for susceptibility to the
pesticide, DDT, and the NS line is a nonselected control strain. In this
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experiment, the effect of the factor “Genetic strain” on fecundity is of
interest.

The second data set, shown in Table 5.2, comes from an investigation
into the effect of the stimulant caffeine on the performance of a simple
task. Forty male students were trained in finger tapping. They were then
divided at random into 4 groups of 10, and the groups received different
doses of caffeine (0, 100, 200, and 300 ml). Two hours after treatment,
each student was required to carry out finger tapping and the number of
taps per minute was recorded. In this dose–response experiment, the main
question of interest is how the amount of finger tapping changes with
the increasing amount of caffeine given.

Table 5.1 Fecundity of Fruit Flies

Resistant (RS) Susceptible (SS) Nonselected (NS)

12.8 38.4 35.4
21.6 32.9 27.4
14.8 48.5 19.3
23.1 20.9 41.8
34.6 11.6 20.3
19.7 22.3 37.6
22.6 30.2 36.9
29.6 33.4 37.3
16.4 26.7 28.2
20.3 39.0 23.4
29.3 12.8 33.7
14.9 14.6 29.2
27.3 12.2 41.7
22.4 23.1 22.6
27.5 29.4 40.4
20.3 16.0 34.4
38.7 20.1 30.4
26.4 23.3 14.9
23.7 22.9 51.8
26.1 22.5 33.8
29.5 15.1 37.9
38.6 31.0 29.5
44.4 16.9 42.4
23.2 16.1 36.6
23.6 10.8 47.4

Source: Hand et al., 1994.
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The third data set we shall deal with in this chapter is shown in Table
5.3. These data come from a study concerned with improving the social
skills of college females and reducing their anxiety in heterosexual encounters
(see Novince, 1977). Women who agreed to take part in the investigation
were randomly allocated to one of three training regimes: a control group,
a behavioral rehearsal group, and a behavioral rehearsal and plus cognitive
restructuring group. The values on the following four dependent variables
were recorded for each subject in the study:

� Anxiety — physiological anxiey in a series of heterosexual encounters
� Measure of social skills in social interactions
� Appropriateness
� Assertiveness

These four variables share a common conceptual meaning; they might all
be regarded as measures of the underlying concept “social confidence.”
Consequently, here the question of primary interest is: Do the four
dependent variables as a whole suggest any dif ference between the
training regimes?

5.2 Analysis of Variance
The phrase “analysis of variance” was coined by arguably the most famous
statistician of the twentieth century, Sir Ronald Aylmer Fisher, who defined
it as “the separation of variance ascribable to one group of causes from

Table 5.2 Finger Tapping and 
Caffeine Consumption

0 ml 100 ml 200 ml 300 ml

242 248 246 248
245 246 248 250
244 245 250 251
248 247 252 251
247 248 248 248
248 250 250 251
242 247 252 252
244 246 248 249
246 243 245 253
242 244 250 251

Source:  Draper, N.R. and Smith, H., 1981 *
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the variance ascribable to the other groups”. Stated another way, the
analysis of variance (ANOVA) is a partitioning of the total variance in a
set of data into a number of component parts, so that the relative
contributions of identifiable sources of variation to the total variation in

Table 5.3 Female Social Skills

Anxiety Social Skills Appropriateness Assertiveness Groupa

5 3 3 3 1
5 4 4 3 1
4 5 4 4 1
4 5 5 4 1
3 5 5 5 1
4 5 4 4 1
4 5 5 5 1
4 4 4 4 1
5 4 4 3 1
5 4 4 3 1
4 4 4 4 1
6 2 1 1 2
6 2 2 2 2
5 2 3 3 2
6 2 2 2 2
4 4 4 4 2
7 1 1 1 2
5 4 3 3 2
5 2 3 3 2
5 3 3 3 2
5 4 3 3 2
6 2 3 3 2
4 4 4 4 3
4 3 4 3 3
4 4 4 4 3
4 5 5 5 3
4 5 5 5 3
4 4 4 4 3
4 5 4 4 3
4 6 6 5 3
4 4 4 4 3
5 3 3 3 3
4 4 4 4 3

a Group codes: 1 = behavioral rehearsal, 2 = control, 3 = behavioral
rehearsal and cognitive restructuring.
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measured responses can be determined. From this partition, suitable F-tests
can be derived that allow differences between sets of means to be assessed.
Details of the analysis of variance for a one-way design with a single
response variable are given in Box 5.1

When a set of dependent variables is to be compared in a one-way
design, the multivariate analogue of the one-way analysis of variance
described in Box 5.1 is used. The hypothesis tested is that the set of
variable means (the mean vector) is the same across groups. Details are
given in Everitt (2001b). Unfortunately, in the multivariate situation (unless
there are only two groups to be compared), there is no single test statistic
that can be derived for detecting all types of possible departures from the
null hypothesis of the equality of the group mean vectors. A number of
different test statistics have been proposed, as we shall see when we
come to analyze the data in Table 5.3. All such test statistics can be
transformed into F-statistics to enable p-values to be calculated. (All the
test statistics are equivalent in the two-group situation.) 

Multivariate analysis of variance (MANOVA) assumes multivariate nor-
mality of the variables in each factor level and a common covariance
matrix (see Everitt, 2001b, for further details).

Box 5.1 One-Way Analysis of Variance

� The model assumed for the observations from a one-way
design is

where yij represents the jth observation in the ith group, and
the ij represent random error terms, assumed to be from a
normal distribution with mean zero and variance 2.

� The null hypothesis of the equality of population means can
now be written as

leading to a new model for the observations, namely

yij i ij

H k0 1 2: L

yij ij
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� There are some advantages (and, unfortunately, some disad-
vantages) in reformulating the model slightly, by modeling the
mean value for a particular population as the sum of the overall
mean value of the response plus a specific population or group
effect. This leads to a linear model of the form

where represents the overall mean of the response variable,

i is the effect on an observation of being in the ith group
(i = 1, 2, …, k), and again ij is a random error term, assumed
to be from a normal distribution with mean zero and variance

2.
� When written in this way, the model uses k + 1 parameters

( , 1, 2, …, k) to describe only k group means. In technical
terms, the model is said to be overparameterized, which causes
problems because it is impossible to find unique estimates for
each parameter — it is a bit like trying to solve simultaneous
equations when there are fewer equations than unknowns. The
following constraint is generally applied to the parameters to
overcome the problem (see Maxwell and Delaney, 1990, for
details):

� If this model is assumed, the hypothesis of the equality of
population means can be rewritten in terms of the parameters

i as

H0: 1 = 2 = L = k = 0,

so that under H0 the model assumed for the observations is

as before.

yij i ij

i

i

k

1

0

yij ij
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5.3 Analysis Using SPSS

5.3.1 Fecundity of Fruit Flies

Conceptually, the data in Table 5.1 represent a one-way design, with
factor “strain” (three levels: “RS,” ”SS,” and “NS”) and 25 replicate measures
of per diem fecundity. To convey the one-way structure of the experiment,
a Data View spreadsheet has to be set up as shown in Display 5.1. The
rows of the spreadsheet correspond to fruit flies, and for each fly we have
recorded its fecundity (variable fecundit) and its genetic line (variable strain).

Box plots provide a useful tool for an initial examination of grouped
continuous data, and here we produce box plots of the fecundities of
each strain of fruit fly. We have already seen in Chapter 2 how to generate
box plots within groups using 

Analyze – Descriptive statistics – Explore

� The necessary terms for the F-test are usually arranged in an
analysis of variance table as follows (N is the total number of
observations).

Here, DF is degrees of freedom, SS is sum of squares, MS is
mean square, BGSS is between groups sum of squares, and
WGSS is within group sum of squares.

� If H0 is true and the assumptions listed below are valid, the
mean square ratio (MSR) has an F-distribution with k – 1 and
N – k degrees of freedom.

� The data collected from a one-way design have to satisfy the
following assumptions to make the F-test involved strictly valid:
1. The observations in each group come from a normal dis-

tribution.
2. The population variances of each group are the same.
3. The observations are independent of one another.

Source of Variation DF SS MS MSR (F)

Between groups k – 1 BGSS BGSS/(k – 1) MSBG/MSWG
Within groups 

(error)
N – k WGSS WGSS/(N – k)

Total N – 1
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To illustrate a further feature of SPSS we will, in this case, create a set
of box plots from the graph menu by using the following steps:

� Graphs – Boxplot…
� Keep the default settings of the resulting Boxplot dialogue box

(Simple box plot and display of Summaries for groups of cases).
� Define Variable to be fecundit and Category Axis to be strain in the

next Define Simple Boxplot: Summaries for Groups of Cases dialogue box. 

The resulting set of box plots is shown in Display 5.2. This plot is
useful in an informal assessment of both the homogeneity and normality
assumptions of ANOVA. Here, the heights of the boxes, which measure

Display 5.1 SPSS spreadsheet containing data from Table 5.1.
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the inter-quartile ranges, appear approximately constant across strain.
Consequently, the homogeneity of variance assumption seems reasonable.
And, except perhaps for the susceptible strain, the distribution within the
fruit fly groups appears reasonably symmetric, suggesting that the nor-
mality assumption is also acceptable. (A better way of assessing the
normality assumption is by using residuals, an issue we shall return to in
the next chapter.) 

To employ the one-way ANOVA routine in SPSS and also derive some
useful summary statistics for each group of observations, we need to choose

Analyze – Compare Means – One-Way ANOVA… 

from the menu bar and then fill in the One-Way ANOVA dialogue box as
shown in Display 5.3. Within-group summary statistics are requested by
checking Descriptive in the Options… sub-dialogue box. A more formal test
of the homogeneity assumption can be obtained by checking Homogeneity
of variance test. The resulting output is shown in Display 5.4. 

The “Descriptives” table shows that the nonselected strain has the
highest mean fecundity (33.4 eggs per female per day for the first 14 days
of life), followed by the resistant strain (25.3 eggs), and the susceptible
strain (23.6 eggs). The table also includes 95% confidence intervals for
the mean fecundity in each group. (Note that these confidence intervals
are calculated using only the fecundity observations of the relevant group
and so do not depend upon the homogeneity of variance assumption.)

Display 5.2 Box plots of per diem fecundities for three strains of fruit fly.
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The “Test of Homogeneity of Variances” table provides Levene’s test for
testing the null hypothesis that the within-group variances are constant
across groups (Levene, 1960; see also the independent samples t-test in
Chapter 2). In this instance, consistent with our examination of the box
plots, the formal test does not find any evidence for a departure from the
homogeneity assumption (p = 0.48). 

We can now move on to formally assess the effect of strain on per
diem fecundity. The one-way ANOVA table, including the required F-test
(see Box 5.1), is automatically produced by the commands in Display 5.3
and is shown in Display 5.5. Here we find a significant effect of strain
on fecundity (F(2,72) = 8.7, p < 0.001). 

When a significant result has been obtained from an overall F-test,
investigators often wish to undertake further tests to determine which

Display 5.3 Defining a one-way design.

Display 5.4 Descriptive statistics and Levene’s test for the one-way design.

Descriptives

FECUNDIT

25 25.256 7.7724 1.5545 22.048 28.464 12.8 44.4

25 23.628 9.7685 1.9537 19.596 27.660 10.8 48.5

25 33.372 8.9420 1.7884 29.681 37.063 14.9 51.8

75 27.419 9.7407 1.1248 25.178 29.660 10.8 51.8

Resistant

Susceptible

Nonselected

Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Test of Homogeneity of Variances

FECUNDIT

.748 2 72 .477

Levene
Statistic df1 df2 Sig.
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particular group means differ. A number of procedures generically known
as multiple comparison techniques can be employed for this purpose (for
more details, see Everitt, 2001b). Such procedures aim to retain the nominal
significance level at the required value when undertaking multiple tests
In other words, such tests protect against claiming too many significant
results (too many false positives). SPSS refers to these procedures as “post
hoc multiple comparisons” since they should only be carried out once an
overall effect of the grouping factor has been established. They can be
requested via the Post Hoc… button on the One-Way ANOVA dialogue box
(see Display 5.3). This opens the Post Hoc Multiple Comparisons sub-dialogue
box shown in Display 5.6, where, for illustrative purposes, we have
requested Fisher’s least significant differences (LSD), Bonferroni adjusted
comparisons, Scheffe’s multiple comparisons, and Tukey’s honestly significant

Display 5.5 ANOVA table for fecundity data.

Display 5.6 Generating multiple comparisons.

ANOVA

FECUNDIT

1362.211 2 681.106 8.666 .000

5659.022 72 78.598

7021.234 74

Between Groups

Within Groups

Total

Sum of
Squares df Mean Square F Sig.
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differences (HSD). (For details of these and the remaining multiple com-
parison techniques, see Everitt, 2001b, and Howell, 2002.)

The resulting multiple comparison output for the fruit fly data is shown
in Display 5.7. For each comparison type and pair of groups, the “Multiple
Comparisons” table provides an estimate of the difference in means, the
standard error of that estimator, the p-value from a statistical test of zero
group difference (under heading “Sig”), and a confidence interval for the
mean difference. Each pair of groups appears twice in the table, once as
a positive and once as a negative difference. 

Display 5.7 Multiple comparisons output for fecundity data.

Multiple Comparisons

Dependent Variable: FECUNDIT

1.628 2.5075 .793 -4.373 7.629

-8.116* 2.5075 .005 -14.117 -2.115

-1.628 2.5075 .793 -7.629 4.373

-9.744* 2.5075 .001 -15.745 -3.743

8.116* 2.5075 .005 2.115 14.117

9.744* 2.5075 .001 3.743 15.745

1.628 2.5075 .810 -4.640 7.896

-8.116* 2.5075 .008 -14.384 -1.848

-1.628 2.5075 .810 -7.896 4.640

-9.744* 2.5075 .001 -16.012 -3.476

8.116* 2.5075 .008 1.848 14.384

9.744* 2.5075 .001 3.476 16.012

1.628 2.5075 .518 -3.371 6.627

-8.116* 2.5075 .002 -13.115 -3.117

-1.628 2.5075 .518 -6.627 3.371

-9.744* 2.5075 .000 -14.743 -4.745

8.116* 2.5075 .002 3.117 13.115

9.744* 2.5075 .000 4.745 14.743

1.628 2.5075 1.000 -4.519 7.775

-8.116* 2.5075 .005 -14.263 -1.969

-1.628 2.5075 1.000 -7.775 4.519

-9.744* 2.5075 .001 -15.891 -3.597

8.116* 2.5075 .005 1.969 14.263

9.744* 2.5075 .001 3.597 15.891

(J) STRAIN
Susceptible
Nonselected

Resistant

Nonselected

Resistant

Susceptible

Susceptible

Nonselected

Resistant

Nonselected

Resistant

Susceptible

Susceptible

Nonselected

Resistant

Nonselected

Resistant

Susceptible

Susceptible

Nonselected

Resistant

Nonselected

Resistant

Susceptible

(I) STRAIN
Resistant

Susceptible

Nonselected

Resistant

Susceptible

Nonselected

Resistant

Susceptible

Nonselected

Resistant

Susceptible

Nonselected

Tukey HSD

Scheffe

LSD

Bonferroni

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound

95% Confidence Interval

The mean difference is significant at the .05 level.*.

FECUNDIT

Tukey HSD
a

25 23.628

25 25.256

25 33.372

.793 1.000

STRAIN
Susceptible

Resistant

Nonselected

Sig.

N 1 2

Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.

Uses Harmonic Mean Sample Size = 25.000.a.
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The LSD comparisons appear to achieve the lowest p-values. The
reason for this is that the LSD method does not adjust for multiple
comparisons. It is simply a series of t-tests using the common within-
group standard deviation (and should, in our view, not appear under the
multiple comparison heading). Thus, if the LSD method is to be used, we
still need to adjust both the test and the confidence interval to correct for
multiple testing. We can achieve this by employing the Bonferroni cor-
rection, which maintains the nominal significance level, , by judging a
group difference statistically significant when its p-value is below /k,
where k is the number of post hoc tests to be carried out (here three
tests). According to the Bonferroni corrected LSD comparisons, both the
SS and the RS strain differ significantly from the nonselected (NS) strain
since the respective p-values are below 0.017 0.05/3.

In fact, SPSS tries to carry out the Bonferroni correction automatically
when Bonferroni is ticked in the Post Hoc Multiple Comparisons sub-dialogue
box. To allow comparison against the nominal significance level, SPSS
simply inflates the p-values of the t-tests by the factor k. For our data
example, this means that the LSD p-values have been multiplied by the
factor 3 (and set to 1 should the inflated value exceed 1) to derive
“Bonferroni p-values”. Bonferroni corrected confidence intervals are con-
structed by generating single confidence intervals at the (1 – /k) 100%
confidence level, here the 98.3% confidence level.

The results from the Scheffe and Tukey procedures are, for this
example, the same as given by the LSD and Bonferroni approach. 

For some multiple comparison procedures, including Tukey’s and
Scheffe’s, SPSS identifies subsets of groups whose means do not differ
from one another. The second table in Display 5.7 shows these “homo-
geneous subsets” according to Tukey’s comparisons. The RS and SS strain
are allocated to the same subset of strains while the NS strain defines its
own strain subset.

5.3.2 Finger Tapping and Caffeine Consumption

The one-way design of the finger tapping study was translated into a Data
View spreadsheet as described for the fruit fly example. The spreadsheet
contains a finger tapping variable (tap) and a caffeine dose factor (dose).
In this case, we will use an error bar graph to get a first impression of
the data. This requires the instruction 

Graph – Error Bar…

and then the following steps:
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� Click Simple in the resulting Error Bar dialogue box.
� Select Summaries of groups of cases.
� In the next Define Simple Error Bar: Summaries for Groups of Cases dia-

logue box, set Variable to taps.
� Set Category Axis to dose.
� Set Bars Represent to Standard deviation.
� Set Multiplier to 2.

The resulting graph is shown in Display 5.8. Since we have selected
bars to be plotted at two standard deviations, approximately 95% of the
finger tapping observations would be expected to lie between the upper
and lower bars if the normality assumption is reasonable. There is a strong
suggestion in Display 5.8 that the average finger tapping frequency
increases with increasing amount of caffeine given.

Conceptually, the caffeine study is different from the fruit fly study in
that a specific experimental hypothesis about the caffeine groups is of
interest a priori, namely, that mean finger tapping frequency in the under-
lying population changes gradually with increasing level of the dose factor.
In other words, we want to assess whether there is a trend in mean finger
tapping frequency over dose. Such trends can be assessed relatively simply
by using what are known as orthogonal polynomials (see Everitt, 2001b).
Essentially, each such polynomial is a linear combination of the means in
each factor level; different coefficients define combinations of means that
measure the size of trends of different types (linear, quadratic, etc.). How
the coefficients are chosen is not of great importance here, but we should

Display 5.8 Error bar graph for the finger tapping data from Table 5.2.
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note that the coefficients defining each trend type sum to zero and so define
what is generally referred to as a contrast among the factor level means.

SPSS provides trend tests for the one-way design when Polynomial is
checked on the One-Way ANOVA: Contrasts sub-dialogue box (Display 5.9).
The types of trend to be evaluated are determined by the Degree setting
of the box. For our four dose levels, we opted for the largest degree of
trend possible, i.e., we asked for trends up to third order (setting Cubic).
(Note that the more general Univariate ANOVA procedure to be discussed
in the next Chapter offers more specific factor level comparisons. In
addition to Polynomial Contrasts, for example, Simple Contrasts that compare
each group with a reference group, or Helmert Contrasts that compare each
level with the mean of subsequent factor levels, can be obtained.) 

Display 5.10 shows the generated ANOVA table. The rows labeled
“Between Groups,” “Within Groups,” and “Total” simply make up the one-
way ANOVA table as discussed in the previous example. More interesting
here is the partition of the between-group sum of squares into three
single-degree-of-freedom terms corresponding to a linear, a quadratic, and
a cubic trend in mean finger tapping frequency over dose. We see that
almost all of the between-group sum of squares (186.25 out of 188.08) is
accounted for by a linear trend over dose and this trend is statistically
significant (F(1,36) = 41.1, p < 0.001). The unaccounted part of the between-
group sum of squares (1.83) is listed as a deviation from linear trend and
allows the construction of a test for trend other than linear. Here we
conclude that there is no evidence for a departure from linear trend over
dose (F(2,36) = 0.2, p = 0.82). So a linear trend suffices to describe the
relationship between finger tapping frequency and caffeine dose. 

Display 5.9 Generating orthogonal polynomial contrasts in the one-way design.
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The Contrasts… sub-dialogue box also lets users define their own
contrasts. If, for example, we had simply been interested in a comparison
between the no caffeine (factor level 1) and the highest caffeine (factor
level 4) groups, we would be testing the null hypothesis

(5.1)

where i is the mean finger tapping frequency for factor level i. The
corresponding contrast is c = (1, 0, 0, –1) and can be conveyed to SPSS
as shown in Display 5.11. 

Display 5.12 gives the resulting output. The “Contrast Coefficients”
table reiterates the contrast coefficients and the “Contrasts Tests” table
provides an estimate of the contrast, the standard error of that estimator,
and a t-test for the null hypothesis that the contrast is zero. Our chosen

Display 5.10 ANOVA table for the finger tapping data.

Display 5.11 Generating a user-defined contrast in the one-way design.

ANOVA

finger taps per minute

188.075 3 62.692 13.821 .000

186.245 1 186.245 41.058 .000

1.830 2 .915 .202 .818

.025 1 .025 .006 .941

1.805 1 1.805 .398 .532

1.805 1 1.805 .398 .532

163.300 36 4.536

351.375 39

(Combined)

Contrast

Deviation

Linear Term

Contrast

Deviation

Quadratic
Term

ContrastCubic Term

Between
Groups

Within Groups

Total

Sum of
Squares df Mean Square F Sig.

1 0 0 1 01 2 3 4( )
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contrast represents the difference in mean finger tapping between the no
caffeine (0 ml) and the high caffeine consumption (300 ml) groups. This
difference is statistically significant (t(36) = 5.9, p < 0.001) and we estimate
that high caffeine consumption increases tapping by 5.6 finger taps per
minute relative to no caffeine consumption (standard error = 0.95).

5.3.3 Social Skills of Females

The female social skills data in Table 5.3 is already in the format of a
Data View spreadsheet. Like the previous two data sets, this data set arises
from a one-way design; a single group factor is of interest. But in contrast
to the previous examples, four (dependent) social skills variables have
been measured on each woman taking part in the study. If the separate
variables were of interest, we could apply a univariate one-way ANOVA
of each, as described previously. Here, however, it is group differences
on the underlying concept “social confidence” that are of concern, and
therefore we need to carry out a multivariate one-way ANOVA.

A one-way design with several dependent variables can be set up in
SPSS by using the commands

Analyze – General Linear Model – Multivariate… 

The resulting dialogue box is filled in as shown in Display 5.13. This
produces the output shown in Display 5.14.

The “Between-Subjects Factors” table in Display 5.14 provides a short
design summary. Here we are only investigating a single factor “group,”
with 11 females observed for each factor level. The “GROUP” part of the
“Multivariate Tests” table contains tests for testing the null hypothesis that
the concept underlying the multiple dependent variables is not affected
by group membership. SPSS automatically lists four commonly used mul-
tivariate tests: Pillai’s trace test, Wilks’ lambda test, Hotelling’s trace test, and

Display 5.12 Contrast output generated by commands in Display 5.11.

Contrast Coefficients

1 0 0 -1
Contrast
1

0ml 100ml 200ml 300ml

DOSE

Contrast Tests

-5.60 .952 -5.879 36 .000

-5.60 .919 -6.094 15.956 .000

Contrast
1

1

Assume equal variances

Does not assume equal

finger taps per minute

Value of
Contrast Std. Error t df Sig. (2-tailed)
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Display 5.13 Defining a one-way design for multiple dependent variables.

Display 5.14 MANOVA output for social skills data.

Between-Subjects Factors

Behavioural
rehearsal

11

Control 11

Behavioural
rehearsal +
Cognitive
restructuring

11

1

2

3

GROUP
Value Label N

Multivariate Testsc

.998 2838.632a 4.000 27.000 .000

.002 2838.632a 4.000 27.000 .000

420.538 2838.632a 4.000 27.000 .000

420.538 2838.632a 4.000 27.000 .000

.680 3.604 8.000 56.000 .002

.369 4.361a 8.000 54.000 .000

1.577 5.126 8.000 52.000 .000

1.488 10.418b 4.000 28.000 .000

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Effect
Intercept

GROUP

Value F Hypothesis df Error df Sig.

Exact statistica.

The statistic is an upper bound on F that yields a lower bound on the significance level.b.

Design: Intercept+GROUPc.
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Roy’s largest root test (details of all these multivariate tests can be found
in Stevens, 1992). The different test statistic may give different results
when used on the same set of data, although the resulting conclusion
from each is often the same. In practice, one would decide in advance
for a particular multivariate test. For each multivariate procedure, the initial
test statistic (given under “Value”) is transformed into a test statistic (given
under “F”), which can be compared with an F-distribution with “Hypothesis
df” and “Error df” to derive the p-value of the test (given under “Sig.”).
In our data example, all four multivariate tests lead to the same conclusion;
the set of four social skills variables is affected by group membership
(Wilks’ lambda test: F(8, 54) = 4.4, p < 0.001). 

(Also automatically provided is a table labeled “Tests of Between-
Subjects Effects.” This is a compilation of univariate one-way ANOVAs,
one for each dependent variable and should be ignored when one has
opted for simultaneous testing of the set of dependent variables.) 

In order to interpret these results, it will be helpful to look at the mean
value of each of the four variables for each group by employing the Profile
Plots sub-dialogue box to create a means plot (Display 5.15). The resulting
output shows that the overall group difference is due to the control group
deviating from the two experimental groups, with the experimental groups
showing improvements on all four scales (Display 5.16).

The buttons on the Multivariate dialogue box shown in Display 5.13
offer similar options to those of the Univariate dialogue box, the most
important of which will be discussed in the next chapter. However, it is
important to note that all pairwise group comparisons offered by the

Display 5.15 Generating means plots for multiple dependent variables.
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MANOVA routine (planned or otherwise) are based on separate univariate
one-way ANOVAs of the dependent variables and should not be used
when one has opted for simultaneous testing.

(SPSS provides a formal test of the common covariance matrix assump-
tion of multivariate analysis of variance, but the test is of little practical
value and we suggest that it is not used in practice. Informal assessment
of the assumption is preferred, see Exercise 5.4.3.)

5.4 Exercises

5.4.1 Cortisol Levels in Psychotics: Kruskal-Wallis Test

Rothschild et al. (1982) report a study of the dexamethasone suppression
test as a possible discriminator among subtypes of psychotic patients.
Postdexamethasone cortisol levels (in micrograms/dl) in 31 control subjects
and four groups of psychotics were collected and are given in Table 5.4.

Display 5.16 Means plots for each of the social skills variables.
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Use one-way analysis of variance to assess whether there is any difference
between the five groups in average cortisol level. 

A nonparametric alternative to one-way ANOVA is given by the Kruskal-
Wallis test. This extends the Mann-Whitney U-test described in Chapter 2,
Box 2.2, to more than two groups. Use some initial graphical analyses of

Table 5.4 Postdexamethasone Cortisol Levels

Control
Major

Depression
Bipolar

Depression Schizophrenia Atypical

1.0 1.0 1.0 0.5 0.9
1.0 3.0 1.0 0.5 1.3
1.0 3.5 1.0 1.0 1.5
1.5 4.0 1.5 1.0 4.8
1.5 10.0 2.0 1.0
1.5 12.5 2.5 1.0
1.5 14.0 2.5 1.5
1.5 15.0 5.5 1.5
1.5 17.5 1.5
1.5 18.0 2.0
1.5 20.0 2.5
1.5 21.0 2.5
1.5 24.5 2.5
2.0 25.0 11.2
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.5
2.5
3.0
3.0
3.0
3.5
3.5
4.0
4.5

10.0

Source: Hand et al., 1994.
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the data to assess whether the assumptions of the one-way ANOVA are
justified for these data. If in doubt, carry out a nonparametric test.

(Hint: In SPSS, the Kruskal-Wallis test can be generated using the
commands Analyze – Nonparametric Tests – K Independent Samples…)

5.4.2 Cycling and Knee-Joint Angles 

The data given in Table 5.5 were collected in an investigation described
by Kapor (1981) in which the effect of knee-joint angle on the efficiency
of cycling was studied. Efficiency was measured in terms of distance
pedaled on an ergocycle until exhaustion. The experimenter selected three
knee-joint angles of particular interest: 50, 70, and 90. Thirty subjects were
available for the experiment and ten subjects were randomly allocated to
each angle. The drag of the ergocycle was kept constant and subjects
were instructed to pedal at a constant speed of 20 km/h.

1. Carry out an initial graphical inspection of the data to assess
whether there are any aspects of the observations that might be a
cause for concern in later analyses.

2. Derive the appropriate analysis of variance table for the data.
3. Investigate the mean differences between knee-joint angles in more

detail using suitable multiple comparison tests.

Table 5.5 The Effect of 
Knee-Joint Angle on the 
Efficiency of Cycling: Total 
Distance Covered (km)

Knee-Joint Angle

50 70 90

8.4 10.6 3.2
7.0 7.5 4.2
3.0 5.1 3.1
8.0 5.6 6.9
7.8 10.2 7.2
3.3 11.0 3.5
4.3 6.8 3.1
3.6 9.4 4.5
8.0 10.4 3.8
6.8 8.8 3.6
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5.4.3 More on Female Social Skills: Informal Assessment 
of MANOVA Assumptions

The assumptions underlying the MANOVA of the female social skills data
from Table 5.3 were not assessed in the main body of the text. Use
informal methods to assess:

1. Approximate normality (note that the data cannot, strictly speaking,
arise from a normal distribution, since we can only observe integer
scores)

2. Homogeneity of covariance matrices

Hints:

1. Use commands Analyze – General Linear Model – Multivariate… – Save…
to generate studentized residuals for each dependent variable and
assess their distributional shape by a set of appropriate diagnostic
plots.

2. Use commands Data – Split File… to Organize output by groups with
Groups Based on: group so that all further commands are carried out
within subject groups. Then, for each group, generate standard
deviations for each dependent variable and a correlation matrix,
and compare values across the three groups.
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Chapter 6

Analysis of Variance II: 
Factorial Designs; Does 
Marijuana Slow You 
Down? and Do Slimming 
Clinics Work?

6.1 Description of Data
Two data sets will be of concern in this chapter. The first, shown in Table 6.1,
arises from a study investigating whether the effects of marijuana vary
with prior usage of the drug. To address this question, an experiment
involving 12 moderate users of the drug, 12 light users, and 12 students
who had had no prior use of marijuana was carried out. All participants
were randomly sampled from a college population. Within each usage
level, half of the students were randomly assigned to a placebo condition
and the other half to an experimental condition. In the placebo condition,
each subject smoked two regular cigarettes that tasted and smelled like
marijuana cigarettes. In the experimental condition, each subject smoked
two marijuana cigarettes. Immediately after smoking, each subject was
given a reaction time test.
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The second data set for this chapter is shown in Table 6.2. These data
arise from an investigation into the effectiveness of slimming clinics. Such
clinics aim to help people lose weight by offering encouragement and
support about dieting through regular meetings. Two factors were exam-
ined in the study:

� Technical manual: This contained slimming advice based on psy-
chological behavior theory. Some slimmers were given the manual
and others were not.

� Previous slimmer: Had the slimmer already been trying to slim or not?

The response variable in the study was

(6.1)

Both data sets come from studies employing a two-way design; they
differ in that in Table 6.1 there are an equal number of observations in
each cell of the table, whereas in Table 6.2, this is not the case. This
difference has implications for the analysis of each data set as we shall
see later in the chapter.

6.2 Analysis of Variance
To investigate each of the two data sets described in the previous section,
we shall use a two-way analysis of variance. The model on which such

Table 6.1 Reaction Times (Milliseconds) from 
Study Investigating the Effects of Marijuana

Previous
Marijuana Usage Placebo Experimental

None 795 605 965 878
700 752 865 916
648 710 811 840

Light 800 610 843 665
705 757 765 810
645 712 713 776

Moderate 790 600 815 635
695 752 735 782
634 705 983 744

Source: Pagano, 1998, with permission of the
publisher.

response
weight at three months ideal weight

initial weight ideal weight

© 2004 by Chapman & Hall/CRC Press LLC
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an analysis is based and some other aspects of analysis of variance are
described briefly in Box 6.1. (Full details are given in Everitt, 2001b.)
Essentially, application of analysis of variance to these two data sets will
enable us to answer questions about mean differences between popula-
tions defined by either factor and, in addition, to assess whether there is
any interaction between the two factors, i.e., whether or not the separate
effects of each factor on the response are additive. 

Box 6.1 Two-Way Analysis of Variance

Table 6.2 Data from Slimming Clinics

Manual Experience Response Manual Experience Response

1 1 –14.67 1 1 –1.85
1 1 –8.55 1 1 –23.03
1 1 11.61 1 2 0.81
1 2 2.38 1 2 2.74
1 2 3.36 1 2 2.10
1 2 –0.83 1 2 –3.05
1 2 –5.98 1 2 –3.64
1 2 –7.38 1 2 –3.60
1 2 –0.94 2 1 –3.39
2 1 –4.00 2 1 –2.31
2 1 –3.60 2 1 –7.69
2 1 –13.92 2 1 –7.64
2 1 –7.59 2 1 –1.62
2 1 –12.21 2 1 –8.85
2 2 5.84 2 2 1.71
2 2 –4.10 2 2 –5.19
2 2 0.00 2 2 –2.80

Source: Hand et al., 1994.

� A suitable model for a general two-way design is the following:

where yijk represents the value of the response variable for the
kth subject in the ith level of say factor A (with, say, a levels)
and the jth level of factor B (with, say, b levels).

yijk i j ij ijk
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� In this model, represents the overall mean, i the effect of
level i of factor A, j the effect of level j of factor B, and ij

the interaction effect. The residual or error terms, ijk, are
assumed normally distributed with mean zero, and variance 2.

� The model as written is overparameterized, so the following
constraints are generally applied to the parameters to overcome
the problem (see Maxwell and Delaney, 1990, for details):

� The null hypotheses of interest can be written in terms of the
parameters in the model as 

� The total variation in the observations is partitioned into that
due to differences between the means of the levels of factor
A, that due to differences between the means of the levels of
factor B, that due to the interaction of A and B, and that due
to differences among observations in the same factor level
combination (cell). A two-way analysis of variance table can
be constructed as follows:

� Under each of the null hypotheses above, the respective mean
square ratio (MSR) has an F distribution with model term and
error degrees of freedom.

i j ij ij

jiji

0 0 0; ;         

H

H

H

a

b

ab

0
1

1 2

0
2

1 2

0
3

11 12

0

0

0

:

:

:

K

K

K

      (no main effect of factor A)

        (no main effect of factor B)

     (no interaction effect)

Source DF SS MS MSR (F)

Between cells
Between factor A levels a – 1 SSA SSA/(a – 1) MSA/MSE
Between factor B levels b – 1 SSB SSB/(b – 1) MSB/MSE

Factor A factor B (a – 1)(b – 1) SSAB SSAB/[(a – 1)(b – 1)] MSAB/MSE
Within cells N – ab SSE SSE/(N – ab)
Total N – 1
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6.3 Analysis Using SPSS

6.3.1 Effects of Marijuana Use

The data in Table 6.1 arise from a two-way design, with factors “past
marijuana use” (three levels: “no use,” “light use,” “moderate use”) and
“current marijuana use” (two levels: “placebo group,” “experimental
group”) and six replicate measures of reaction time per factor level
combination. To convey the factorial structure of the experiment to SPSS,
a Data View spreadsheet needs to be set up as shown in Display 6.1. The
rows of the spreadsheet correspond to subjects, and for each subject we
have recorded the level of past (past_use) and current marijuana use (group)
and the observed reaction time (time).

Informative summary statistics and the required analysis of variance
table for the data can be obtained by using the general ANOVA routine
in SPSS

Analyze – General Linear Model – Univariate… 

The Univariate dialogue box is filled in as shown in Display 6.2 to define
the correct structure for the marijuana data. (Both factors in this experiment
are regarded as fixed; for a discussion of both fixed and random factors,
see Everitt, 2001b.) Within-group summary, statistics can then be requested
by checking Descriptive statistics in the Options sub-dialogue box. 

The resulting descriptive output is shown in Display 6.3. For each of
the six factor level combinations, SPSS displays the mean, standard devi-
ation, and number of replicates. It is apparent from these figures that
within each category of previous marijuana usage, the students who just
smoked two marijuana cigarettes have slower reaction times than those
who used the regular cigarettes. Across previous marijuana use levels,
however, the situation is not as clear.

� When the cells of the design have different numbers of obser-
vation, it is not possible to partition the between cell variation
into nonoverlapping parts corresponding to factor main effects
and an interaction. We shall say more about this when analyzing
the slimming clinic data.

� The F-tests are valid under the following assumptions: 
1. The observations in each cell come from a normal distri-

bution.
2. The population variances of each cell are the same.
3. The observations are independent of one another.
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Display 6.1 SPSS spreadsheet containing data from Table 6.1.

Display 6.2 Defining a two-way design.
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A design summary table and the analysis of variance table resulting
from the previous commands are shown in Display 6.4. The rows of the
“Tests of Between-Subjects Effects” table labeled “PAST_USE,” “GROUP,”
“PAST_USE*GROUP,” “Error,” and “Corrected Total” make up the two-way
ANOVA table as described in Box 6.1. (The remaining rows of the table
are not generally of interest in a factorial design.) SPSS output commonly
employs the “*” notation to denote an interaction effect between two
variables. We find no statistical evidence of an interaction between current
and previous marijuana use on reaction times (F(2,30) = 2, p = 0.15); thus,
the effect of smoking marijuana on reaction time does not vary significantly
with prior usage. Also there is no significant main effect of previous
marijuana use (F(2,30) = 2, p = 0.15), so that the mean reaction times of
the previous marijuana use groups do not differ significantly. There is,
however, a significant main effect of factor group (F(1,30) = 17.6, p < 0.001),
implying that mean reaction times differ between the placebo and the
experimental group. Finally, the table provides R2 and its adjusted version
as a measure of model fit. Our fitted ANOVA model is able to explain
46.1% of the variance in reaction times.

This is a convenient point at which to introduce a graphical display
that is often useful in understanding interactions (or the lack of them) in
two-way and other factorial designs. The display is essentially a plot of
estimated cell means. SPSS refers to such plots as “profile plots” and
provides them via the Plots… button on the Univariate dialogue box (see

Display 6.3 Descriptive statistics for reaction times.

Descriptive Statistics

Dependent Variable: reaction time

701.67 68.617 6

879.17 54.967 6

790.42 110.028 12

704.83 69.861 6

762.00 64.622 6

733.42 70.767 12

696.00 70.872 6

782.33 115.543 6

739.17 101.903 12

700.83 65.663 18

807.83 93.863 18

754.33 96.527 36

current marijuana use
Smoked two placebo
cigarettes

Smoked two
Marijuana cigarettes

Total

Smoked two placebo
cigarettes

Smoked two
Marijuana cigarettes

Total

Smoked two placebo
cigarettes

Smoked two
Marijuana cigarettes

Total

Smoked two placebo
cigarettes

Smoked two
Marijuana cigarettes

Total

past marijuana use
none

light

moderate

Total

Mean Std. Deviation N
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Display 6.2). The resulting Profile Plots sub-dialogue box is shown in
Display 6.5. The user defines the factor levels to be displayed on the
x-axis or as separate lines and then presses Add to store the graph
instruction. Several different displays can be requested. Here we opt for
displaying the previous marijuana use categories on the x-axis and the
current use groups as separate lines (Display 6.5). The resulting graph is
shown in Display 6.6. An interaction between the two factors would be
suggested by nonparallel lines in this diagram. Here we can see that there
is some departure from parallel lines; the reaction times of those students
who never used marijuana in the past appear to increase more under the
effect of smoking marijuana than those who were previous users. However,
as the ANOVA table shows, this degree of observed interaction is consistent
with the absence on an interaction in the population (p = 0.15). 

Rather than relying on p-values to identify important effects, it is
generally advisable to quantify these effects by constructing appropriate
confidence intervals. Here, with a significant main effect of group and a
nonsignificant interaction effect, it is sensible to estimate the difference

Display 6.4 ANOVA table for reaction times.

Between-Subjects Factors

none 12

light 12

moderate 12

Smoked
two placebo
cigarettes

18

Smoked
two
Marijuana
cigarettes

18

1

2

3

past marijuana
use

1

2

current marijuana
use

Value Label N

Tests of Between-Subjects Effects

Dependent Variable: reaction time

150317.667a 5 30063.533 5.130 .002
20484676.0 1 20484676.00 3495.751 .000

23634.500 2 11817.250 2.017 .151

103041.000 1 103041.000 17.584 .000

23642.167 2 11821.083 2.017 .151

175796.333 30 5859.878
20810790.0 36

326114.000 35

Source
Corrected Model
Intercept

PAST_USE

GROUP

PAST_USE * GROUP
Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .461 (Adjusted R Squared = .371)a.
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in mean reaction times between the experimental and control group. We
can request this confidence interval by using the Options sub-dialogue box
as shown in Display 6.7. This generates two further output tables shown
in Display 6.8.

The “Estimates” table provides estimates, standard errors of estimators,
and 95% confidence intervals for the mean reaction times in the placebo
and the experimental group. Here the estimated means are the same as

Display 6.5 Requesting a line chart of estimated mean responses.

Display 6.6 Line chart of estimated means for reaction times.

Previous marijuana use

moderatelightnone

E
st

im
at

ed
 m

ea
n 

re
ac

tio
n 

tim
e 

(m
ill

is
ec

) 900

800

700

600

Group

Smoked two placebo
cigarettes

Smoked two Marijuana
cigarettes

© 2004 by Chapman & Hall/CRC Press LLC



those shown in the “Descriptive Statistics” table (Display 6.3), but this is
not necessarily always the case, as we will see in the analysis of the
second example. (Note also that the confidence intervals given in Display
6.8 are based on estimating the assumed common within-group variance.) 

The “Pairwise Comparisons” table provides estimates of differences
between group means, their standard errors, a test of zero difference, and,
finally, a confidence intervals for the difference. SPSS repeats each group
comparison twice depending on the direction of the difference. Here we
simply consider the first row of the table. The difference in mean reaction
times between the placebo group (I) and the experimental group (J) is
estimated as –107 milliseconds; after smoking two marijuana cigarettes
subjects are estimated to be 107 milliseconds slower on a reaction time task
irrespective of previous marijuana use (95% CI from 55 to 159 milliseconds). 

Like the One-way ANOVA dialogue box, the Univariate dialogue box con-
tains buttons labeled Post Hoc… and Contrasts… for requesting post hoc and
planned contrast comparisons, respectively (see Display 6.2). However, it
is important to note that SPSS only of fers comparisons (planned or
otherwise) between the levels of a single factor. In a factorial design, the
comparison procedures should, therefore, only be used when the factors
do not interact with each other so that interpreting main effects of factors
is appropriate. 

Display 6.7 Requesting comparisons between the levels of a factor.
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Finally, as in linear regression, it is important to check the assumptions
of the underlying linear model. Normality of the error term is best assessed
by saving the studentized residual using the Save sub-dialogue box and
then employing a suitable diagnostic on the generated residual variable
(see Chapter 4). A box plot of the studentized residual is shown in Display
6.9. There appears to be no departure from normality, although subject 27
(the subject with the longest reaction time) is labeled an “outlier” by SPSS. 

Homogeneity of variance can be assessed by any measure of variability
within the factor level combinations. We employ the within-group standard
deviations shown in Display 6.3. Except, perhaps, for the group of students
who previously made moderate use of marijuana and smoked two mari-
juana cigarettes before the task, the variances appear fairly similar. 

6.3.2 Slimming Clinics

The slimming data in Table 6.2 are already in the appropriate format for
applying analysis of variance in SPSS. The corresponding Data View spread-
sheet contains participants’ weight change indices (column labeled
response) together with categories indicating the use of a manual (manual)
and previous experience (experien). As in the previous example, interest
centers on investigating main effects of the factors “manual use” and

Display 6.8 Confidence intervals for group differences in reaction times.

Estimates

Dependent Variable: reaction time

700.833 18.043 663.985 737.682

807.833 18.043 770.985 844.682

current marijuana use
Smoked two placebo
cigarettes
Smoked two
Marijuana cigarettes

Mean Std. Error Lower Bound Upper Bound

95% Confidence Interval

Pairwise Comparisons

Dependent Variable: reaction time

-107.000* 25.517 .000 -159.112 -54.888

107.000* 25.517 .000 54.888 159.112

(J) current marijuana use
Smoked two Marijuana
cigarettes

Smoked two placebo
cigarettes

(I) current marijuana use
Smoked two placebo
cigarettes

Smoked two Marijuana
cigarettes

Mean
Difference

(I-J) Std. Error Sig.
a

Lower Bound Upper Bound

95% Confidence Interval for
Difference

a

Based on estimated marginal means

The mean difference is significant at the .05 level.*.

Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).a.
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“slimming experience” on weight loss and assessing whether there is any
evidence of an interaction between the two factors. 

However, in contrast to the previous data set, this two-way design is
not balanced. Rather, the number of subjects varies between the factor
level combinations. We can see this easily by constructing a cross-tabu-
lation of the factors (Display 6.10). Clearly, in our sample an association
existed between the two factors with the majority of the subjects with
previous slimming experience (69%) not using a manual and the majority
of the slimming novices (67%) using a manual. 

Similar to the lack of independence of explanatory variables in the
regression setting (see Chapter 4), lack of balance between the factors of
a multi-way ANOVA has the effect that the amount of variability that is
explained by a model term depends on the terms already included in the
model. For the slimming data, this means that the amount of variability
in the weight index that can be explained by the factor experien depends
on whether or not the factor manual is already included in the model and
vice versa. 

We can see this by asking SPSS to fit the model terms in different
orders. SPSS recognizes the order of the factors when the Sum of squares
option on the in the Univariate: Model sub-dialogue box is set to Type I
(Display 6.11). The factor order chosen in Display 6.11 produces the
ANOVA table shown in Display 6.12. We then switched the order of the
factors in the Fixed factor(s) list of the Univariate dialogue box so that experien
was considered before manual. This produced the ANOVA table shown in
Display 6.13. We find that when factor manual is fitted first, it accounts for

Display 6.9 Box plot of studentized residuals from two-way ANOVA of reaction 
times.
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a sum of squares of 21.2 (Display 6.12). By contrast, when manual is fitted
after experience, so that only the sum of squares that cannot be attributed
to experien is attributed to manual, then the sum of squares is reduced to
2.1 (Display 6.13). A similar effect is observed for factor experien. When
it is fitted first, it is attributed a larger sum of squares (285, Display 6.13)
than when it is fitted after manual is already included in the model (265.9,
Display 6.12). 

So, how should we analyze unbalanced factorial designs? There has
been considerable discussion on this topic centering on how the sum of
squares should be attributed to a factor. There are three basic approaches
to attributing the sum of squares (SS), called types I, II, and III in SPSS
(there is also a type IV which need not concern us here):

Display 6.10 Cross-tabulation of manual use by slimming experience.

Display 6.11 Setting the type of sum of squares.

MANUAL * EXPERIEN Crosstabulation

5 12 17

31.3% 66.7% 50.0%

11 6 17

68.8% 33.3% 50.0%

16 18 34

100.0% 100.0% 100.0%

Count

% within EXPERIEN

Count

% within EXPERIEN

Count

% within EXPERIEN

manual

no manual

MANUAL

Total

experienced novice

EXPERIEN

Total
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� Type I SS (also known as “Hierarchical method”) fits the factors in
the order that they are supplied. Interaction terms are always
considered last. As a result, the SS of the model terms and the
error SS add up to the (corrected) total SS.

� Type II SS (also known as “Experimental method”) is similar to
type III except that it adjusts the main effects only for other main
effects and not for interaction terms. 

� Type III SS (also known as “Unique method”) adjusts each model
term for all the other model terms. The term SS and the error SS
do not add up. 

Display 6.12 Two-way ANOVA using type I sum of squares, factor manual fitted
before factor experien.

Display 6.13 Two-way ANOVA using type I sum of squares, factor experien fitted
before factor manual.

Tests of Between-Subjects Effects

Dependent Variable: RESPONSE

287.232 a 3 95.744 2.662 .066
480.979 1 480.979 13.375 .001

21.188 1 21.188 .589 .449

265.914 1 265.914 7.394 .011

.130 1 .130 .004 .952

1078.848 30 35.962
1847.059 34

1366.080 33

Source
Corrected Model
Intercept

MANUAL

EXPERIEN

MANUAL * EXPERIEN
Error

Total

Corrected Total

Type I Sum
of Squares df Mean Square F Sig.

R Squared = .210 (Adjusted R Squared = .131)a.

Tests of Between-Subjects Effects

Dependent Variable: RESPONSE

287.232a 3 95.744 2.662 .066
480.979 1 480.979 13.375 .001

284.971 1 284.971 7.924 .009

2.130 1 2.130 .059 .809

.130 1 .130 .004 .952
1078.848 30 35.962

1847.059 34

1366.080 33

Source
Corrected Model
Intercept

EXPERIEN

MANUAL
EXPERIEN * MANUAL

Error

Total
Corrected Total

Type I Sum
of Squares df Mean Square F Sig.

R Squared = .210 (Adjusted R Squared = .131)a.
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In a balanced design, the type I, II, or III SS for corresponding terms
are identical and the issue of choosing the type of SS does not arise. For
the unbalanced design, authors such as Maxwell and Delaney (1990) and
Howell (2002) recommend the use of type III SS, and these are the default
setting in SPSS. Nelder (1977) and Aitkin (1978), however, are strongly
critical of “correcting” main effect SS for an interaction term involving the
corresponding main effects. The arguments are relatively subtle, but for
a two-factor design (factors A and B) they go something like this:

1. When models are fitted to data, the principle of parsimony is of
critical importance. In choosing among possible models, we do not
adopt complex models for which there is no empirical evidence.

2. So, if there is no convincing evidence of an AB interaction, we do
not retain the term in the model. Thus, additivity of A and B is
assumed unless there is convincing evidence to the contrary.

3. The issue does not arise as clearly in the balanced case, for there
the sum of squares for A, for example, is independent of whether
interaction is assumed or not. Thus, in deciding on possible models
for the data, we do not include the interaction term unless it has
been shown to be necessary, in which case tests on main effects
involved in the interaction are not carried out (or if carried out,
not interpreted).

4. Thus, the argument proceeds that type III sum of squares for A,
in which it is adjusted for AB as well as B, makes no sense.

5. First, if the interaction term is necessary in the model, then the
experimenter will usually wish to consider simple effects of A at
each level of B separately. A test of the hypothesis of no A main
effect would not usually be carried out if the AB interaction is
significant.

6. If the AB interaction is not significant, then adjusting for it is of
no interest and causes a substantial loss of power in testing the A
and B main effects.

Display 6.14 shows the ANOVA table generated by choosing type II
sum of squares. Basically, the table is a compilation of the ANOVA tables
in Displays 6.12 and 6.13. The row for factor experien is taken from the
table in Display 6.12 and that for factor manual from the table in Display 6.13.
We finally conclude that there is no statistical evidence for an interaction
effect of experience and manual use on weight loss (F(1,30) = 0.004, p =
0.95). The response variable is also not significantly affected by manual
use (F(1,30) = 0.06, p = 0.81), but there is evidence of an effect of previous
slimming experience (F(1,30) = 7.4, p = 0.011).
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The line chart of estimated mean responses generated using the Profile
Plots sub-dialogue box (see Display 6.5) is shown in Display 6.15 and
immediately explains the finding. In our sample, using a manual reduced
the weight only minimally and the reduction did not vary with previous
experience. Previous experience, on the other hand, reduced the index
considerably. A reduction estimate of 6, with a 95% CI from 1.5 to 10.5,
was obtained using the Options sub-dialogue box (see Display 6.7). Note
that in the unbalanced case, this mean difference estimate is no longer
simply the difference in observed group means (which would be 5.8). 

(We leave it as an exercise for the reader, see exercise 6.4.4, to check
whether or not the assumptions of the ANOVA model for these data are
reasonable.)

Display 6.14 Two-way ANOVA of weight losses using type II sum of squares.

Display 6.15 Line chart of estimated mean weight loss indices.

Tests of Between-Subjects Effects

Dependent Variable: RESPONSE

287.232a 3 95.744 2.662 .066
480.979 1 480.979 13.375 .001

265.914 1 265.914 7.394 .011

2.130 1 2.130 .059 .809

.130 1 .130 .004 .952

1078.848 30 35.962
1847.059 34

1366.080 33

Source
Corrected Model
Intercept

EXPERIEN

MANUAL

EXPERIEN * MANUAL
Error

Total

Corrected Total

Type II Sum
of Squares df Mean Square F Sig.

R Squared = .210 (Adjusted R Squared = .131)a.
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6.4 Exercises

6.4.1 Headache Treatments

The data shown below come from an investigation into the effectiveness
of different kinds of psychological treatment on the sensitivity of headache
sufferers to noise. There are two groups of 22 subjects each: those suffering
from a migraine headache (coded 1 in the table) and those suffering from
a tension headache (coded 2). Half of each of the two headache groups
were randomly selected to receive a placebo treatment (coded 1), and
the other half an active treatment (coded 2). Each subject rated his or her
own noise sensitivity on a visual analogue scale ranging from low to high
sensitivity. Investigate whether the treatment is effective and whether there
is any evidence of a treatment type of headache interaction.

Table 6.3 Psychological Treatments for Headaches

Headache
Type

Treatment
Group Score

Headache
Type

Treatment
Group Score

1 1 5.70 2 1 2.70
1 1 5.63 2 1 4.65
1 1 4.83 2 1 5.25
1 1 3.40 2 1 8.78
1 1 15.20 2 1 3.13
1 1 1.40 2 1 3.27
1 1 4.03 2 1 7.54
1 1 6.94 2 1 5.12
1 1 0.88 2 1 2.31
1 1 2.00 2 1 1.36
1 1 1.56 2 1 1.11
1 2 2.80 2 2 2.10
1 2 2.20 2 2 1.42
1 2 1.20 2 2 4.98
1 2 1.20 2 2 3.36
1 2 0.43 2 2 2.44
1 2 1.78 2 2 3.20
1 2 11.50 2 2 1.71
1 2 0.64 2 2 1.24
1 2 0.95 2 2 1.24
1 2 0.58 2 2 2.00
1 2 0.83 2 2 4.01
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6.4.2 Biofeedback and Hypertension

Maxwell and Delaney (1990) describe a study in which the effects of three
possible treatments for hypertension were investigated. The details of the
treatments are as follows:

All 12 combinations of the three treatments were included in a 3 2  2
design. Seventy-two subjects suffering from hypertension were recruited
to the study, with six being randomly allocated to each of the 12 treatment
combinations. Blood pressure measurements were made on each subject
after treatments, leading to the data in Table 6.5. Apply analysis of variance
to these data and interpret your results using any graphical displays that
you think might be helpful.

6.4.3 Cleaning Cars Revisited: Analysis of Covariance

Analysis of covariance (ANCOVA) is typically concerned with comparing
a continuous outcome between the levels of a factor while adjusting for
the effect of one or more continuous explanatory variables. 

Both, ANOVA as well as regression, are special cases of linear models,
and hence ANCOVA can be viewed as an extension of ANOVA to include
continuous explanatory variables (often called “covariates”) or an exten-
sion of regression to include categorical variables. Note that standard

Table 6.4 Three-Way Design

Treatment Description Levels

Drug Medication Drug X, Drug Y, Drug Z
Biofeed Psychological feedback Present, absent
Diet Special diet Given, not given

Table 6.5 Blood Pressure Data

Treatment Special Diet

Biofeedback Drug No Yes

Present X 170 175 165 180 160 158 161 173 157 152 181 190
Y 186 194 201 215 219 209 164 166 159 182 187 174
Z 180 187 199 170 204 194 162 184 183 156 180 173

Absent X 173 194 197 190 176 198 164 190 169 164 176 175
Y 189 194 217 206 199 195 171 173 196 199 180 203
Z 202 228 190 206 224 204 205 199 170 160 179 179
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ANCOVA assumes that there is no interaction between the continuous and
categorical explanatory variables; i.e., the effect of the continuous variables
is assumed constant across the groups defined by the categorical explan-
atory variables. More details on the use of ANCOVA can be found in
Everitt (2001b). 

The data on car cleaning in Table 4.1 were previously analyzed by a
multiple linear regression of the dependent variable, car cleaning time,
on the two explanatory variables, extroversion rating and gender (see
Chapter 4). We showed that categorical variables, such as gender, could
be accommodated within the regression framework by representing them
by dummy variables. This regression analysis was, in fact, an ANCOVA of
the car cleaning times. 

The Univariate dialogue box can accommodate continuous explanatory
variables, such as extroversion rating, in an ANOVA model by including
them in the Covariate(s) list. Provided the type of sums of squares is left
as its default setting (Type III), every term in the resulting “Tests of
Between-Subjects Effects” table is then adjusted for other terms in the
model.

Regression coefficients can also be requested by checking Parameter
estimates in the Options sub-dialogue box. This results in a further output
table titled “Parameter Estimates” which resembles the “Coefficients” table
created by the regression routine. (Note that when categorical variables
are specified as fixed factors in the Univariate dialogue box, they are
automatically dummy-coded so that the category with the highest code
represents the reference category. This affects the interpretation of the
level difference parameters and of the intercept parameter.)

Use the Univariate dialogue box to carry out an ANCOVA of car cleaning
times and regenerate the results obtained via regression modeling (cf.
Model 2 in the “Model Summary” and “Coefficients” tables in Chapter 4,
Display 4.8). 

6.4.4 More on Slimming Clinics

Assess the assumptions underlying the two-way ANOVA of the slimming
data in Table 6.2 informally using appropriate diagnostic plots. 
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Chapter 7

Analysis of Repeated 
Measures I: Analysis of 
Variance Type Models; 
Field Dependence and a 
Reverse Stroop Task

7.1 Description of Data
The data of concern in this chapter are shown in Table 7.1. Subjects
selected at random from a large group of potential subjects identified as
having field-independent or field-dependent cognitive style were required
to read two types of words (color and form names) under three cue
conditions — normal, congruent, and incongruent. The order in which
the six reading tasks were carried out was randomized. The dependent
variable was the time in milliseconds taken to read the stimulus words. 

7.2 Repeated Measures Analysis of Variance
The observations in Table 7.1 involve repeated measures of the response
variable on each subject. Here six repeated measurements have been
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made, each measurement corresponding to a particular combination of
type of word and cue condition. Researchers typically adopt the repeated
measures paradigm as a means of reducing error variability and as the
natural way of measuring certain phenomena (for example, developmental
changes over time, and learning and memory tasks). In this type of design,
effects of experimental factors giving rise to the repeated measures are
assessed relative to the average response made by the subject on all
conditions or occasions. In essence, each subject serves as his or her own
control, and, accordingly, variability caused by differences in average

Table 7.1 Field Independence and a Reverse Stroop Task

Subject

Form Names Color Names

Normal
Condition

Congruent
Condition

Incongruent
Condition

Normal
Condition

Congruent
Condition

Incongruent
Condition

Field-independent
1 191 206 219 176 182 196
2 175 183 186 148 156 161
3 166 165 161 138 146 150
4 206 190 212 174 178 184
5 179 187 171 182 185 210
6 183 175 171 182 185 210
7 174 168 187 167 160 178
8 185 186 185 153 159 169
9 182 189 201 173 177 183

10 191 192 208 168 169 187
11 162 163 168 135 141 145
12 162 162 170 142 147 151

Field-dependent
13 277 267 322 205 231 255
14 235 216 271 161 183 187
15 150 150 165 140 140 156
16 400 404 379 214 223 216
17 183 165 187 140 146 163
18 162 215 184 144 156 165
19 163 179 172 170 189 192
20 163 159 159 143 150 148
21 237 233 238 207 225 228
22 205 177 217 205 208 230
23 178 190 211 144 155 177
24 164 186 187 139 151 163

Note: Response variable is time in milliseconds.
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responsiveness of the subjects is eliminated from the extraneous error
variance. A consequence of this is that the power to detect the effects of
within-subjects experimental factors (type of word and cue condition in
Table 7.1) is increased compared with testing in a between-subjects design.

Unfortunately, the advantages of a repeated measures design come at
a cost, namely, the probable lack of independence of the repeated mea-
surements. Observations involving the same subject made under different
conditions are very likely to be correlated to some degree. It is the
presence of this correlation that makes the analysis of repeated measure
data more complex than when each subject has only a single value of
the response variable recorded.

There are a number of approaches to the analysis of repeated measures
data. In this chapter, we consider an analysis of variance type model
similar to those encountered in Chapters 5 and 6 that give valid results
under a particular assumption about the pattern of correlations between
the repeated measures, along with two possible procedures that can be
applied when this assumption is thought to be invalid. In the next chapter,
we look at some more general models for the analysis of repeated
measures data, particularly useful when time is the only within-subject
factor. Such data are then often labeled longitudinal.

A brief outline of the analysis of variance model appropriate for the
repeated measures data in Table 7.1 is given in Box 7.1.

Box 7.1 ANOVA Approach to the Analysis 
of Repeated Measures

� A suitable model for the observations in the reverse Stroop
experiment is 

where yijkl represent the observation for the ith subject in the
lth group (l = 1, 2), under the jth type condition (j = 1, 2),
and the kth cue condition (k = 1, 2, 3), j, k l represent the
main effects of type, cue, and group, ( )jk, ( )jl, ( )kl the
first order interactions between these factors and ( )jkl the
second order interaction. These effects are known as fixed
effects. The ui represents the effect of subject i and ijkl the residual

y

u

ijkl j k l jk jl kl

jkl i ijkl
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or error term. The ui are assumed to have a normal distribution
with mean zero and variance u

2 and are termed random effects.
The ijkl are also assumed normally distributed with zero mean
and variance 2.

� The model is a simple example of what are known as linear
mixed effects model (cf. Chapter 8).

� This model leads to a partition of the total variation in the
observations into parts due to between- and within-subject
variation; each of these can then be further partitioned to
generate F-tests for both within- and between-subject factors
and their interactions. Details are given in Everitt (2001b). 

� For repeated measures data, the F-tests are valid under three
assumptions about the data:
1. Normality: the data arise from populations with normal

distribution.
2. Homogeneity of variance: the variances of the assumed

normal distributions are equal.
3. Sphericity: the variances of the differences between all pairs

of the repeated measurements are equal. This requirement
implies that the covariances between pairs of repeated
measures are equal and that the variances of each repeated
measurement are also equal, i.e., the covariance matrix of
the repeated measures must have the so-called compound
symmetry pattern. 

� It is the last assumption that is most critical for assessing the
within-subject factors in repeated measures data because if it
does not hold, the F-tests used are positively biased leading
to an increase in the Type I error. (Sphericity, of course, is not
an issue when testing between-subject factors.)

� When the assumption is not thought to be valid, then either
the models to be described in the next chapter can be used
(the preferred option), or one of the following two procedures
associated with the analysis of variance approach applied.

a) Correction factors

Box (1954) and Greenhouse and Geisser (1959) considered the
effects of departures from the sphericity assumption in the
repeated measures analysis of variance. They demonstrated that
the extent to which a set of repeated measures departs from the
sphericity assumption can be summarized in terms of a param-
eter , which is a function of the variances and covariances of
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7.3 Analysis Using SPSS
In this experiment, it is of interest to assess whether performance on the
Reverse Stroop Task varies with cognitive style. Cognitive style (with levels
“field independent” and “field dependent”) is a between-subject factor.
Performance on the Stroop is measured by six repeated measures corre-
sponding to the combinations of the levels of the two within-subject
factors word type (two levels “color names” and “form names”) and cue
condition (three levels “normal,” “congruent,” and “incongruent”). Since
it is possible that only specific aspects of the performance on the Stroop
depend on cognitive style, we are interested in testing both, a main effect
of cognitive style as well as interactions between cognitive style and factors
word type and cue condition. 

the repeated measures (see Everitt, 2001b, for an explicit defi-
nition). An estimate of this parameter based on the sample
covariances and variances can be used to decrease the degrees
of freedom of F-tests for the within-subjects effect to account
for deviations from sphericity (in fact, two different estimates
have been suggested; see text for details). In this way, larger
mean square ratios will be needed to claim statistical signifi-
cance than when the correction is not used, and thus the
increased risk of falsely rejecting the null hypothesis is
removed. The minimum (lower bound) value of the correction
factor is 1/(p – 1) where p is the number of repeated measures. 

b) Multivariate analysis of variance 

An alternative to the use of correction factors in the analysis
of repeated measures data when the sphericity assumption is
judged to be inappropriate is to use multivariate analysis of
variance for constructed contrasts of the repeated measures
that characterize each main effect and interaction (for details,
see Everitt, 2001b). The advantage is that no assumptions are
now made about the pattern of correlations between the
repeated measurements. The variances are also allowed to vary
between the repeated measures. A disadvantage of using
MANOVA for repeated measures is often stated to be the
technique’s relatively low power when the assumption of com-
pound symmetry is actually valid. However, Davidson (1972)
shows that this is really only a problem with small sample sizes.
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To convey this design to SPSS, the Data View spreadsheet has to be of
the format indicated in Table 7.1. SPSS assumes that the rows of the data
file correspond to independent measurement units (here the 24 subjects).
Repeated outcome measures per such unit have to be represented by
multiple columns. Here the spreadsheet includes six columns labeled fn,
fc, fi, cn, cc, and ci containing response times, one for each combination
of word type and cue condition. The between-subject factor, labeled group,
is also included in the file as a further column. The within-subject factors
will later be defined explicitly. 

As always, it is good practice to “look” at the data before undertaking
a formal analysis. Here, in order to get a first impression of the data, we
generate box plots for each group and repeated measure using the
instructions:

� Graphs – Boxplot…
� Check Clustered and Summaries of separate variables on the resulting

Boxplot dialogue box.
� Move all six response variables into the Boxes Represent list of the

next Define Clustered Boxplots: Summaries of Separate Variables dialogue
box.

� Move the group variable (group) into the Category Axis list.
� Open the Chart Editor for the resulting graph.
� Insert a vertical line by double-clicking on the x-axis labels and

checking Grid lines on the resulting Category Axis dialogue box. 
� Edit the patterns by highlighting the respective box plots and using

the Format – Color… and Format – Fill Pattern commands from the Chart
Editor menu.

Display 7.1 shows the resulting box plots. As is often the case for
reaction time data, we find that the distributions are positively skewed,
particularly in the group with a field dependent cognitive style. The group
also has greater variability than the others. We will, therefore, transform
the data in order to achieve approximately symmetric distributions rather
than relying on the robustness of ANOVA F-tests. Log-transformations are
usually helpful for mapping positively skewed distributions with minimum
value near one into symmetric ones and for stabilizing variances. The
minimum observed response time was 134 milliseconds. We, therefore,
use the Compute command (see Chapter 1, Display 1.13) to generate new
transformed response times labeled ln_fn, ln_fc, ln_fi, ln_cn, ln_cc, and ln_ci
according to the function y = ln(x – 134). A clustered box plot of the
transformed response times is shown in Display 7.2 indicating that the
transformation has been successful to some extent. 
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Display 7.1 Clustered box plot for Stroop response times.

Display 7.2 Clustered box plot for log-transformed response times.
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A draughtman’s plot provides another helpful look at the (transformed)
data. This is a scatterplot matrix of the variables and enables us to assess
the correlation structure between the repeated measures. We construct the
scatterplot matrix as shown before (see Chapter 4, Display 4.12) and addi-
tionally include group under the Set Markers by list on the Scatterplot Matrix
dialogue box. Display 7.3 shows the resulting scatterplot matrix. All pairs of
repeated measures are positively correlated with the strength of the corre-
lation appearing to be fairly constant and also similar across. The sample
size is, however, rather small to judge the covariance structure accurately. 

We now proceed to the repeated measures ANOVA using the commands

Analyze – General Linear Model – Repeated Measures…

This opens a dialogue box for declaring the within-subject factor(s)
(Display 7.4). SPSS works on the assumption that each within-subject
factor level (or factor level combination) corresponds to a single column
in the Data View spreadsheet. This is the case for our data example; the
six word type condition combinations correspond to the columns labeled
ln_fn, ln_fc, ln_fi, ln_cn, ln_cc, and ln_ci. We, therefore:

� Declare the within-subject factors wtype and cond as shown in
Display 7.4. 

� Select Add and Define to open the Repeated Measures dialogue box
shown in Display 7.5.

Display 7.3 Draughtman’s plot of response times (log-scale).
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� Insert the variables relating to each of the factor level combinations
of the within-subject factors under the heading Within-Subjects Vari-
ables (wtype,cond).

� Insert the variable group under the Between-Subjects Factor(s) list.
� Check OK.

The resulting output is shown in Displays 7.6 to 7.10. SPSS automatically
produces the results from both the ANOVA and MANOVA approaches to
analyzing repeating measures. We will discuss each of these approaches
in what follows. 

Display 7.4 Declaring the within-subject factors of a repeated measures design.

Display 7.5 Defining the levels of the within-subject factors and the between-
subject factor(s).
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SPSS supplies a design summary (Display 7.6). The “Within-Subjects
Factors” table and the “Between-Subjects Factors” table repeat the defini-
tions of the within-subject factors, wtype and cond, and the between-subject
factor, group. (It should perhaps be noted that the ANOVA and MANOVA
approaches to analyzing repeated measures will, in the presence of missing
data, be based on the complete cases only.) 

A single analysis is provided for testing the main effect(s) of and
interactions between the between-subject factor(s). For each subject, SPSS
simply calculates the average outcome over the repeated measures and
then carries out an ANOVA of this new variable to test the effects of the
between-subject factors (see previous two chapters). The one-way ANOVA

Display 7.6 Design summary output for Stroop response times.

Display 7.7 ANOVA table for testing the main effect of the between-subject 
factor on the Stroop response times.

Within-Subjects Factors

Measure: MEASURE_1

LN_FN
LN_FC

LN_FI

LN_CN

LN_CC
LN_CI

COND
1
2

3

1

2

3

WTYPE
1

2

Dependent
Variable

Between-Subjects Factors

field-indepe
ndent

12

field-depen
dent

12

1

2

GROUP
Value Label N

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

1929.810 1 1929.810 728.527 .000
1.927 1 1.927 .728 .403

58.276 22 2.649

Source
Intercept
GROUP
Error

Type III Sum
of Squares df Mean Square F Sig.
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table for testing our single between-subject factor group is shown in Display
7.7. We do not find a significant main effect of the group factor (F(1,22) =
0.73, p = 0.4); averaged over the six Stroop tasks, response times do not
differ between the two cognitive styles. (Note that such a test would not
be of great interest if there were any interactions of group with the within-
subject factors.) This ANOVA model assumes that the average (log trans-
formed) response times have normal distributions with constant variances
in each group; for our transformed data, these assumptions appear realistic.

Since the order of the Stroop reading tasks was randomized, it seems
reasonable to assume sphericity on the grounds that any more complex
covariance structure reflecting temporal similarities should have been

Display 7.8 Univariate ANOVA tables for testing the main effects of and inter-
actions involving the within-subject factors on the Stroop response times.

Tests of Within-Subjects Effects

Measure: MEASURE_1

13.694 1 13.694 27.507 .000
13.694 1.000 13.694 27.507 .000

13.694 1.000 13.694 27.507 .000

13.694 1.000 13.694 27.507 .000

.107 1 .107 .216 .647

.107 1.000 .107 .216 .647

.107 1.000 .107 .216 .647

.107 1.000 .107 .216 .647

10.952 22 .498
10.952 22.000 .498

10.952 22.000 .498

10.952 22.000 .498

5.439 2 2.720 26.280 .000
5.439 1.763 3.086 26.280 .000

5.439 1.992 2.731 26.280 .000

5.439 1.000 5.439 26.280 .000

.126 2 6.307E-02 .609 .548

.126 1.763 7.156E-02 .609 .529

.126 1.992 6.333E-02 .609 .548

.126 1.000 .126 .609 .443

4.553 44 .103
4.553 38.779 .117

4.553 43.815 .104

4.553 22.000 .207

2.005 2 1.003 16.954 .000
2.005 1.555 1.290 16.954 .000

2.005 1.728 1.161 16.954 .000

2.005 1.000 2.005 16.954 .000

5.673E-03 2 2.836E-03 .048 .953
5.673E-03 1.555 3.648E-03 .048 .918

5.673E-03 1.728 3.283E-03 .048 .934

5.673E-03 1.000 5.673E-03 .048 .829

2.602 44 5.914E-02
2.602 34.214 7.606E-02

2.602 38.012 6.846E-02

2.602 22.000 .118

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed
Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source
WTYPE

WTYPE * GROUP

Error(WTYPE)

COND

COND * GROUP

Error(COND)

WTYPE * COND

WTYPE * COND *
GROUP

Error(WTYPE*COND)

Type III Sum
of Squares df Mean Square F Sig.

© 2004 by Chapman & Hall/CRC Press LLC



Display 7.9 Mauchly’s test for testing the sphericity assumption and correction 
factors.

Display 7.10 Multivariate ANOVA output for testing the main effect and inter-
actions involving the within-subject factors on the Stroop response times.

Mauchly's Test of Sphericityb

Measure: MEASURE_1

1.000 .000 0 . 1.000 1.000 1.000
.865 3.036 2 .219 .881 .996 .500

.714 7.075 2 .029 .778 .864 .500

Within Subjects Effect
WTYPE
COND

WTYPE * COND

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon
a

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a.

Design: Intercept+GROUP 
Within Subjects Design: WTYPE+COND+WTYPE*COND

b.

Multivariate Tests b

.556 27.507a 1.000 22.000 .000

.444 27.507a 1.000 22.000 .000

1.250 27.507a 1.000 22.000 .000

1.250 27.507a 1.000 22.000 .000

.010 .216a 1.000 22.000 .647

.990 .216a 1.000 22.000 .647

.010 .216a 1.000 22.000 .647

.010 .216a 1.000 22.000 .647

.668 21.141a 2.000 21.000 .000

.332 21.141a 2.000 21.000 .000

2.013 21.141a 2.000 21.000 .000

2.013 21.141a 2.000 21.000 .000

.043 .466a 2.000 21.000 .634

.957 .466a 2.000 21.000 .634

.044 .466a 2.000 21.000 .634

.044 .466a 2.000 21.000 .634

.516 11.217a 2.000 21.000 .000

.484 11.217a 2.000 21.000 .000

1.068 11.217a 2.000 21.000 .000

1.068 11.217a 2.000 21.000 .000

.009 .098a 2.000 21.000 .907

.991 .098a 2.000 21.000 .907

.009 .098a 2.000 21.000 .907

.009 .098a 2.000 21.000 .907

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace
Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Effect
WTYPE

WTYPE * GROUP

COND

COND * GROUP

WTYPE * COND

WTYPE * COND *
GROUP

Value F Hypothesis df Error df Sig.

Exact statistica.

Design: Intercept+GROUP 
Within Subjects Design: WTYPE+COND+WTYPE*COND

b.
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destroyed. The within-subjects parts of the linear mixed effects model
ANOVA tables (for details, see Box 7.1) are included in the “Tests of
Within-Subjects Effects” table under the rows labeled “Sphericity assumed”
(Display 7.8). 

For the construction of the relevant F-tests, repeated measures are
aggregated in different ways before fitting ANOVA models. The first three
rows of cells of the table relate to a model for the average (log-) response
times for the two word types (that is averaged over the thr ee cue
conditions). Variability in these times can be due to a main effect of wtype
or an interaction between wtype and the between-subject factor group. As
a result, F-tests are constructed that compare variability due to these sources
against within-subjects error variability in this model. We find a main effect
of word type (F(1,22) = 27.4, p < 0.001) but no evidence of an interaction
(F(1,22) = 0.2, p = 0.65). The next three rows of cells in the table relate
to a model for the average response times for the three cue conditions.
We again find a main effect of cond (F(2,44) = 26.3, p < 0.001) but no
evidence for the two-way interaction involving group and cond (F(2,44) =
0.6, p = 0.55). Finally, the last three rows of cells relate to a model for
the (log-) response time differences between color and form names for
each cue condition. Since an interaction effect of the two within-subject
factors implies that the differences between the levels of one factor depend
on the level of the second factor, the last model allows assessing the
interaction between wtype and cond and the three-way interaction involving
all factors. There is evidence of an interaction effect of word type by cue
condition (F(2,44) = 17, p < 0.001) but no evidence of a three-way inter-
action (F(2,44) = 0.05, p = 0.95). 

The results involving the two within-subject factors discussed earlier
rely on the assumption of sphericity. For these data, given that the order
of presentation was randomized, such an assumption seems reasonable.
In other situations, sphericity may be less easy to justify a priori (for
example, if the within-subject order had not been randomized in this
experiment), and investigators may then wish to test the condition formally
for their data. This may be done using Mauchly’s test (Krzanowski and
Marriot, 1995). The test is automatically supplied by SPSS for each part
of the within-subject factor analysis, except when a factor contains only
two levels, in which case there is no correlation structure to consider
(Display 7.9). Here the Mauchly test for average response times for cue
conditions (X 2(2) = 3, p = 0.22) suggests that sphericity is an acceptable
assumption. For differences in response times, however, the corresponding
test (X 2(2) = 7.1, p = 0.03) sheds some doubt on the assumption. 

When sphericity is in doubt, the part of the “Within-Subjects Effects”
table in Display 7.8 corresponding to either of the correction terms might
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be used, or for a conservative approach, the lower bound rows could be
employed. SPSS supplies estimates of the correction factors (one due to
Greenhouse and Geisser, 1959, and one due to Huynh and Feldt, 1976)
and the lower bounds together with Mauchly’s tests (Display 7.9) and
uses them to correct the degrees of freedom of the F-tests in the “Tests
of Within-Subjects Effects” table (for details see Box 7.1). Here, the within-
subject effects that tested significant under the assumption of sphericity
remain highly significant even after correction (e.g., using Huynh Feldt
correction factors, main effect cond: F(1.99,43.82) = 26.3, p < 0.001, inter-
action effect wtype cond: F(1.73,38.01) = 17, p < 0.001). However, on the
whole, the correction factor approach is not recommended since other
more acceptable approaches are now available (see Chapter 8). 

Like the ANOVA approach, the MANOVA approach to repeated mea-
sures also reduces the number of repeated measures before modeling
contrasts of them by a multivariate ANOVA model (for details, see Everitt,
2001b). The results from fitting respective MANOVA models to test within-
subject effects are shown in the “Multivariate Tests” table (Display 7.10).
For each effect, SPSS displays the four commonly used multivariate tests
(see Chapter 5). We again note that the test results for testing the main
effect of wtype and the interaction wtype group are identical to those
obtained from the univariate ANOVA model in Display 7.8 since the tests
are based on only two repeated measures (word type averages). The
MANOVA approach does not alter the conclusions drawn about the
remaining within-subject effects. As before, we find a significant main
effect of cond (Wilk’s lambda: F(2,21) = 21.1, p < 0.001) and evidence for
an interaction between factors wtype and cond (Wilk’s lambda: F(2,21) =
11.2, p < 0.001).

All the analyses reported above have established that the response
times are affected by the two factors defining the Reverse Stroop test but
not by cognitive style. It remains to interpret this interaction. As mentioned
in Chapter 6 in the context of standard ANOVA, a line chart of estimated
means is useful for this purpose. A line chart of predicted mean log-
response times or “profile plot” can be generated via the Plots… button
on the Repeated Measures dialogue box (see Display 7.5). Since the factor
group is not involved in any significant main or interaction effects, we
choose to display mean response times for each of the six repeated
measures across groups. We display the levels of factor cond on the
horizontal axis and use those of wtype to define separate lines. The resulting
line chart is shown in Display 7.11, showing immediately the nature of
our detected interaction. Participants were generally slower in reading
form names than color names with the delay time greatest under normal
cue conditions. 
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7.4 Exercises

7.4.1 More on the Reverse Stroop Task

In the analysis of the Stroop data carried out in this chapter, a log
transformation was used to overcome the data’s apparent skewness. But
interpreting results for log-reaction times may not be straightforward. A
more appealing transformation may be to take the reciprocal of reaction
time, making the dependent variable “speed.” Reanalyze the data using
this transformation and compare your results with those in the text. 

7.4.2 Visual Acuity Data

The data in Table 7.2 arise from an experiment in which 20 subjects had
their response times measured when a light was flashed into each of their
eyes through lenses of powers 6/6, 6/18, 6/36, and 6/60. (A lens of power
a/b means that the eye will perceive as being at a feet an object that is
actually positioned at b feet). Measurements are in milliseconds. Here
there are two within-subject factors. 

Carry out an appropriate analysis to test whether the response times
differ between the left and the right eye and whether such a difference
depends on length strength. 

Display 7.11 Line chart of estimated mean (log-) response times.
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7.4.3 Blood Glucose Levels

The data in Table 7.3 arise from a study in which blood glucose levels
(mmol/liter) were recorded for six volunteers before and after they had
eaten a test meal. Recordings were made at times –15, 0, 30, 60, 90, 120,
180, 240, 300, and 360 minutes after feeding time. The whole process was
repeated four times, with the meals taken at various times of the day and
night. Primary interest lies in assessing the time-of-day effect. Analyze the
data using an appropriate repeated measures analysis of variance.

Table 7.2 Visual Acuity and Lens Strength

Left Eye Right Eye

Subject 6/6 6/18 6/36 6/60 6/6 6/18 6/36 6/60

1 116 119 116 124 120 117 114 122
2 110 110 114 115 106 112 110 110
3 117 118 120 120 120 120 120 124
4 112 116 115 113 115 116 116 119
5 113 114 114 118 114 117 116 112
6 119 115 94 116 100 99 94 97
7 110 110 105 118 105 105 115 115
8 117 119 119 123 110 110 115 111
9 116 120 123 124 115 115 120 114

10 118 118 119 120 112 120 120 119
11 120 119 118 121 110 119 118 122
12 110 112 115 118 120 123 123 124
13 118 120 122 124 120 118 116 122
14 118 120 120 122 112 120 122 124
15 110 110 110 120 120 119 118 124
16 112 112 114 118 110 110 108 120
17 112 112 120 122 105 110 115 105
18 105 105 110 110 118 120 118 120
19 110 120 122 123 117 118 118 122
20 105 120 122 124 100 105 106 110
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Table 7.3 Blood Glucose Levels

Subject

Minutes after Meal

–15 0 30 60 90 120 180 240 300 360

10 am meal
1 4.90 4.50 7.84 5.46 5.08 4.32 3.91 3.99 4.15 4.41
2 4.61 4.65 7.9 6.13 4.45 4.17 4.96 4.36 4.26 4.13
3 5.37 5.35 7.94 5.64 5.06 5.49 4.77 4.48 4.39 4.45
4 5.10 5.22 7.2 4.95 4.45 3.88 3.65 4.21 4.30 4.44
5 5.34 4.91 5.69 8.21 2.97 4.3 4.18 4.93 5.16 5.54
6 6.24 5.04 8.72 4.85 5.57 6.33 4.81 4.55 4.48 5.15

2 pm meal
1 4.91 4.18 9.00 9.74 6.95 6.92 4.66 3.45 4.20 4.63
2 4.16 3.42 7.09 6.98 6.13 5.36 6.13 3.67 4.37 4.31
3 4.95 4.40 7.00 7.8 7.78 7.3 5.82 5.14 3.59 4.00
4 3.82 4.00 6.56 6.48 5.66 7.74 4.45 4.07 3.73 3.58
5 3.76 4.70 6.76 4.98 5.02 5.95 4.9 4.79 5.25 5.42
6 4.13 3.95 5.53 8.55 7.09 5.34 5.56 4.23 3.95 4.29

6 pm meal
1 4.22 4.92 8.09 6.74 4.30 4.28 4.59 4.49 5.29 4.95
2 4.52 4.22 8.46 9.12 7.50 6.02 4.66 4.69 4.26 4.29
3 4.47 4.47 7.95 7.21 6.35 5.58 4.57 3.90 3.44 4.18
4 4.27 4.33 6.61 6.89 5.64 4.85 4.82 3.82 4.31 3.81
5 4.81 4.85 6.08 8.28 5.73 5.68 4.66 4.62 4.85 4.69
6 4.61 4.68 6.01 7.35 6.38 6.16 4.41 4.96 4.33 4.54

2 am meal
1 4.05 3.78 8.71 7.12 6.17 4.22 4.31 3.15 3.64 3.88
2 3.94 4.14 7.82 8.68 6.22 5.1 5.16 4.38 4.22 4.27
3 4.19 4.22 7.45 8.07 6.84 6.86 4.79 3.87 3.6 4.92
4 4.31 4.45 7.34 6.75 7.55 6.42 5.75 4.56 4.30 3.92
5 4.3 4.71 7.44 7.08 6.3 6.5 4.5 4.36 4.83 4.5
6 4.45 4.12 7.14 5.68 6.07 5.96 5.20 4.83 4.50 4.71
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Chapter 8

Analysis of Repeated 
Measures II: Linear Mixed 
Effects Models; Computer 
Delivery of Cognitive 
Behavioral Therapy

8.1 Description of Data
The data to be used in this chapter arise from a clinical trial that is
described in detail in Proudfoot et al. (2003). The trial was designed to
assess the effectiveness of an interactive program using multi-media tech-
niques for the delivery of cognitive behavioral therapy for depressed
patients and known as Beating the Blues (BtB). In a randomized controlled
trial of the program, patients with depression recruited in primary care
were randomized to either the BtB program, or to Treatment as Usual
(TAU). The outcome measure used in the trial was the Beck Depression
Inventory II (Beck et al., 1996) with higher values indicating more depres-
sion. Measurements of this variable were made on five occasions:
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� Prior to treatment
� Two months after treatment began
� At 1, 3, and 6 months follow-up, i.e., at 3, 5, and 8 months after

treatment

The data for 100 patients, 48 in the TAU group and 52 in the BtB
group, are shown in Table 8.1. These data are a subset of the original and
are used with the kind permission of the organizers of the study, in
particular Dr. Judy Proudfoot. 

The data in Table 8.1 are repeated measures data with time as the
single within-subject factor, i.e., they are longitudinal data. They have the
following features that are fairly typical of those collected in many clinical
trials in psychology and psychiatry:

� There are a considerable number of missing values caused by
patients dropping out of the study (coded 999 in Table 8.1).

� There are repeated measurements of the outcome taken on each
patient post treatment, along with a baseline pre-treatment mea-
surement.

� There is interest in the effect of more than treatment group on the
response; in this case, the effect of duration of illness categorized
as whether a patient had been ill for longer than six months
(duration = 1) or for less than six months (duration = 0).

The question of most interest about these data is whether the BtB
program does better than TAU in treating depression. 

8.2 Linear Mixed Effects Models
Longitudinal data were introduced as a special case of repeated measures
in Chapter 7. Such data arise when subjects are measured on the same
response variable on several different occasions. Because the repeated
measures now arise solely from the passing of time, there is no possibility
of randomizing the occasions, and it is this that essentially differentiates
longitudinal data from other repeated measure situations arising in psy-
chology and elsewhere. The special structure of longitudinal data make
the sphericity condition described in Chapter 7 very difficult to justify.
With longitudinal data, it is very unlikely that the measurements taken
close to one another in time will have the same degree of correlation as
measurements made at more widely spaced time intervals.

An analysis of longitudinal data requires application of a model that
can represent adequately the average value of the response at any time
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Table 8.1 A Subset of the Data from the Original BtB Trial

Subject Durationa Treatmentb

Depression Score

Baseline 2 Months 3 Months 5 Months 8 Months

1 1 0 29 2 2 999c 999
2 1 1 32 16 24 17 20
3 0 0 25 20 999 999 999
4 1 1 21 17 16 10 9
5 1 1 26 23 999 999 999
6 0 1 7 0 0 0 0
7 0 0 17 7 7 3 7
8 1 0 20 20 21 19 13
9 0 1 18 13 14 20 11

10 1 1 20 5 5 8 12
11 1 0 30 32 24 12 2
12 0 1 49 35 999 999 999
13 1 0 26 27 23 999 999
14 1 0 30 26 36 27 22
15 1 1 23 13 13 12 23
16 0 0 16 13 3 2 0
17 1 1 30 30 29 999 999
18 0 1 13 8 8 7 6
19 1 0 37 30 33 31 22
20 0 1 35 12 10 8 10
21 1 1 21 6 999 999 999
22 0 0 26 17 17 20 12
23 1 0 29 22 10 999 999
24 1 0 20 21 999 999 999
25 1 0 33 23 999 999 999
26 1 1 19 12 13 999 999
27 0 0 12 15 999 999 999
28 1 0 47 36 49 34 999
29 1 1 36 6 0 0 2
30 0 1 10 8 6 3 3
31 0 0 27 7 15 16 0
32 0 1 18 10 10 6 8
33 0 1 11 8 3 2 15
34 0 1 6 7 999 999 999
35 1 1 44 24 20 29 14
36 0 0 38 38 999 999 999
37 0 0 21 14 20 1 8
38 1 0 34 17 8 9 13
39 0 1 9 7 1 999 999

© 2004 by Chapman & Hall/CRC Press LLC



Table 8.1 (continued) A Subset of the Data from the Original BtB Trial

Subject Duration Treatment

Depression Score

Baseline 2 Months 3 Months 5 Months 8 Months

40 1 0 38 27 19 20 30
41 0 1 46 40 999 999 999
42 0 0 20 19 18 19 18
43 1 0 17 29 2 0 0
44 1 1 18 20 999 999 999
45 1 1 42 1 8 10 6
46 0 1 30 30 999 999 999
47 0 1 33 27 16 30 15
48 0 1 12 1 0 0 999
49 0 1 2 5 999 999 999
50 1 0 36 42 49 47 40
51 0 0 35 30 999 999 999
52 0 1 23 20 999 999 999
53 1 0 31 48 38 38 37
54 0 1 8 5 7 999 999
55 0 0 23 21 26 999 999
56 0 1 7 7 5 4 0
57 0 0 14 13 14 999 999
58 0 0 40 36 33 999 999
59 0 1 23 30 999 999 999
60 1 1 14 3 999 999 999
61 1 0 22 20 16 24 16
62 1 0 23 23 15 25 17
63 0 0 15 7 13 13 999
64 1 0 8 12 11 26 999
65 1 1 12 18 999 999 999
66 1 0 7 6 2 1 999
67 0 0 17 9 3 1 0
68 0 1 33 18 16 999 999
69 0 0 27 20 999 999 999
70 0 1 27 30 999 999 999
71 0 1 9 6 10 1 0
72 1 1 40 30 12 999 999
73 1 0 11 8 7 999 999
74 0 0 9 8 999 999 999
75 1 0 14 22 21 24 19
76 1 1 28 9 20 18 13
77 1 1 15 9 13 14 10
78 1 1 22 10 5 5 12
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point in terms of covariates such as treatment group, time, baseline value,
etc., and also account successfully for the observed pattern of dependences
in those measurements. There are a number of powerful methods for
analyzing longitudinal data that largely meet the requirements listed above.
They are all essentially made up of two components. The first component
consists of a regression model for the average response over time and
the effects of covariates on this average response. The second component
provides a model for the pattern of covariances or correlations between
the repeated measures. Each component of the model involves a set of
parameters that have to be estimated from the data. In most applications,

Table 8.1 (continued) A Subset of the Data from the Original BtB Trial

Subject Duration Treatment

Depression Score

Baseline 2 Months 3 Months 5 Months 8 Months

79 0 0 23 9 999 999 999
80 1 0 21 22 24 23 22
81 1 0 27 31 28 22 14
82 1 1 14 15 999 999 999
83 1 0 10 13 12 8 20
84 0 0 21 9 6 7 1
85 1 1 46 36 53 999 999
86 1 1 36 14 7 15 15
87 1 1 23 17 999 999 999
88 1 0 35 0 6 0 1
89 0 1 33 13 13 10 8
90 0 1 19 4 27 1 2
91 0 0 16 999 999 999 999
92 0 1 30 26 28 999 999
93 0 1 17 8 7 12 999
94 1 1 19 4 3 3 3
95 1 1 16 11 4 2 3
96 1 1 16 16 10 10 8
97 0 0 28 999 999 999 999
98 1 1 11 22 9 11 11
99 0 0 13 5 5 0 6

100 0 0 43 999 999 999 999

a Illness duration codes: “6 months or less” = 0, ”more than 6 months” = 1
b Treatment codes: TAU = 0, BtB = 1
c 999 denotes a missing value

© 2004 by Chapman & Hall/CRC Press LLC



it is the parameters reflecting the effects of covariates on the average
response that will be of most interest. Although the parameters modeling
the covariance structure of the observations will not, in general, be of
prime interest (they are often regarded as so-called nuisance parameters),
specifying the wrong model for the covariance structure can affect the
results that are of concern. Diggle (1988), for example, suggests that
overparameterization of the covariance model component (i.e., using too
many parameters for this part of the model) and too restrictive a specifi-
cation (too few parameters to do justice to the actual covariance structure
in the data) may both invalidate inferences about the mean response
profiles when the assumed covariance structure does not hold. Conse-
quently, an investigator has to take seriously the need to investigate each
of the two components of the chosen model. (The univariate analysis of
variance approach to the analysis of repeated measures data described in
Chapter 7 suffers from being too restrictive about the likely structure of
the correlations in a longitudinal data set, and the multivariate option from
overparameterization.)

Everitt and Pickles (2000) give full technical details of a variety of the
models now available for the analysis of longitudinal data. Here we
concentrate on one of these, the linear mixed effects model or random
effects model. Parameters in these models are estimated by maximum
likelihood or by a technique know as restricted maximum likelihood.
Details of the latter and of how the two estimation procedures differ are
given in Everitt and Pickles (2000).

Random effects models formalize the sensible idea that an individual’s
pattern of responses in a study is likely to depend on many characteristics
of that individual, including some that are unobserved. These unobserved
or unmeasured characteristics of the individuals in the study put them at
varying predispositions for a positive or negative treatment response. The
unobserved characteristics are then included in the model as random
variables, i.e., random effects. The essential feature of a random effects
model for longitudinal data is that there is natural heterogeneity across
individuals in their responses over time and that this heterogeneity can
be represented by an appropriate probability distribution. Correlation
among observations from the same individual arises from sharing unob-
served variables, for example, an increased propensity to the condition
under investigation, or perhaps a predisposition to exaggerate symptoms.
Conditional on the values of these random effects, the repeated measure-
ments of the response variable are assumed to be independent, the so-called
local independence assumption.

A number of simple random effects models are described briefly in
Box 8.1.

© 2004 by Chapman & Hall/CRC Press LLC



Box 8.1 Random Effects Models

� Suppose we have observations made in a longitudinal study
at time points, t1, t2, …, tT .

� Assume we have a single covariate, treatment group coded as
a zero/one dummy variable.

� We want to model the response at time tj in terms of treatment
group and time (we will assume there is no treatment time
interaction).

� Two possibilities are the random intercept and random inter-
cept/random slope models.

� Random intercept model
• Here the model for the response given by individual i at

time tj, yij, is modeled as

where Groupi is the dummy variable indicating the group
to which individual i belongs, 0, 1, and 2 are the usual
regression coefficients for the model; 0 is the intercept, 1

represents the treatment effect, and 2 the slope of the linear
regression of outcome on time. 

• The ijs are the usual residual or “error” terms, assumed to
be normally distributed with mean zero and variance 2.

• The ui terms are, in this case, random effects that model
possible heterogeneity in the intercepts of the individuals,
and are assumed normally distributed with zero mean and
variance u

2. (The ij and ui terms are assumed independent
of one another.)

• The random intercept model is illustrated graphically in
Figure 8.1. Each individual’s trend over time is parallel to
the treatment group’s average trend, but the intercepts differ.
The repeated measurements of the outcome for an individ-
ual will vary about the individual’s own regression line,
rather than about the regression line for all individuals.

• The presence of the ui terms implies that the repeated
measurements of the response have a particular pattern for
their covariance matrix; specifically, the diagonal elements
are each given by 2 + u

2, and the off-diagonal elements
are each equal to u

2 — this is essentially the same as the
analysis of variance model described in Chapter 7.

y t uij i j i ij0 1 2Group
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• As noted elsewhere in the chapter, the implication that each
pair of repeated measurements has the same correlation is
not a realistic one for most longitudinal data sets. In practice,
it is more likely that observations made closer together in
time will be more highly correlated than those taken further
apart. Consequently, for many such data sets, the random
intercept model will not do justice to the observed pattern
of covariances between the repeated observations. A model
that allows a more realistic structure for the covariances is
one that allows heterogeneity in both slopes and intercepts.

� Random intercept and slope model
• In this case the model is given by

• Here the ui1 terms model heterogeneity in intercepts and
the ui2 terms, heterogeneity in slopes. The two random
effects are generally assumed to have a bivariate normal
distribution with zero means for both variables, variances,

u1 u2
and covariance u1u2

. This model is illustrated in
Figure 8.2; individuals are allowed to deviate in terms of
both slope and intercept from the average trend in their
group. (In this chapter, when fitting the random intercept
and slope model we will assume that the covariance term
is zero.)

• This model allows a more complex pattern for the covari-
ance matrix of the repeated measurements. In particular, it
allows variances and covariances to change over time, a
pattern that occurs in many longitudinal data sets. (An
explicit formula for the covariance matrix implied by this
model is given in Everitt, 2002b.)

• Tests of fit of competing models are available that allow
the most appropriate random effects model for the data to
be selected — again, see Everitt (2002b) for details of such
tests. In practice, however, changing the random effects to
be included in a model often does not alter greatly the
estimates of the regression coefficient (or coefficients) asso-
ciated with the fixed effect(s) ( 1 and 2 in the two equations
above) or their estimated standard errors. 

y t u u tij i j i i j ij0 1 2 1 2Group
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Figure 8.1 Graphical illustration of random intercept model.

Figure 8.2 Graphical illustration of random intercept and slope model.
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(The BtB data set contains a number of subjects who fail to attend all
the scheduled post treatment visits — they drop out of the study. This
can be a source of problems in the analysis of longitudinal data as
described in Everitt and Pickles, 2000, who show that commonly used
approaches such as complete-case analysis are flawed and can often lead
to biased results. The random effects models to be used in this chapter,
which, as we shall see, use all the available data on each subject, are
valid under weaker assumptions than complete-case analysis although
there are circumstances where they also may give results that are suspect.
The whole issue of dealing with longitudinal data containing dropouts is
complex and readers are referred to Everitt, 2002b, and Rabe-Hesketh and
Skrondal, 2003, for full details.)

8.3 Analysis Using SPSS
Initially, the BtB trial data were organized in what is known as the standard
or wide repeated measures format, i.e., as shown in Table 8.1. A row in
the corresponding Data View spreadsheet contains both the repeated post
treatment depression scores (at 2 months after start of treatment: bdi2m,
3 months: bdi3m, 5 months: bdi5m, and 8 months: bdi8m) for a trial participant
and the values of other covariates for that individual, namely, baseline
depression score (variable labeled bdipre), the treatment (treat), and illness
duration factor (duration). A subject identifier (subject) is also included. For
generating descriptive summaries or plots, it is useful to have the data set
in this format, but as we will see later, for formal inferences using linear
mixed effects models, we will need to convert the data set into what is
often referred to as long format.

In order to get a first impression of the data, we generate a clustered
error bar graph (corresponding to the treatment groups) for separate
variables (i.e., the repeated measures). We choose error bars to represent
confidence intervals. In addition, we open the Options sub-dialogue box
from the Define Clustered Error Bar… dialogue box and check Exclude cases
variable by variable so that summary statistics are based on the available data
values for the variable in question (for more details on error bar charts,
see Chapter 5, Display 5.8). Display 8.1 shows the error bar graph after
some editing; indicating that the number of available cases with depression
ratings decreases over time. The mean depression rating appears to
decrease over time in both groups, with an apparent larger decrease in
the BtB group during the initial two months post treatment period.

A plot of group means over time does not give any “feel” for the
variability in individual response profiles and should be supplemented
with a plot of individual temporal curves generated by using the commands
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Graphs – Line…

and then the following series of steps:

� Select Multiple and Values of individual cases in the resulting dialogue
box.

� Fill in the next dialogue box as shown Display 8.2.
� Open the Chart Editor and used the commands Series – Transpose Data

from the menu bar to swap the variables defining the lines and
the x-axis categories.

� Edit further to improve appearance.

Since it is quite impossible to distinguish 100 separate lines on a single
graph, we display subsets of cases at a time (by using Data – Select Cases…
beforehand, see Chapter 1, Display 1.11). The line graph for the first ten
cases is shown in Display 8.3. The graph illustrates the presence of tracking
in the repeated measures data, i.e., subjects who start with high (low)
tend to remain relatively high (low). Also apparent is the missing value
pattern typical of dropout in longitudinal studies — once a subject withdraws
from the study observations are missing for all subsequent time points.

Display 8.1 Clustered error bar chart for BtB trial depression ratings.
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Before proceeding to fit either of the random effects models described
in Box 8.1 to the BtB data, it is important to examine the correlational
structure of the depression values within each treatment group. This we
can do by examining the appropriate correlation matrices. This will involve

Display 8.2 Defining a line chart of multiple lines vs. a single variable.

Display 8.3 Temporal depression ratings curves for the first ten subjects from 
Table 8.1.
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use of the Data – Split file… commands (see Chapter 1, Display 1.10) followed
by the steps outlined for Display 4.1 in Chapter 4. Here, we need to select
Exclude cases pairwise in the Bivariate correlations: Options sub-dialogue box so
all the available data for each participant in the trial will be used in the
calculation of the required correlation coefficients. The resulting correla-
tion matrices are shown in Display 8.4. The correlations of the repeated
measures of depression are moderate to large and all positive. In the TAU
group, there is an apparent decrease in the strength of the correlations
with increasing length of time between the repeated measures, but this
does not seem to be the case in the BtB group. 

We are now nearly ready to fit our random effects models, but first
the data need to be rearranged into long format in which each repeated

Display 8.4 Within-group correlations between repeated measures.

a) TAU group
Correlations a

1 .613 .631 .502 .407

. .000 .000 .006 .044

48 45 36 29 25

.613 1 .818 .757 .716

.000 . .000 .000 .000

45 45 36 29 25

.631 .818 1 .863 .795

.000 .000 . .000 .000

36 36 36 29 25

.502 .757 .863 1 .850

.006 .000 .000 . .000

29 29 29 29 25

.407 .716 .795 .850 1

.044 .000 .000 .000 .

25 25 25 25 25

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N
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Treatment = TAUa.

b) BtB group
Correlations a

1 .631 .538 .557 .414

. .000 .001 .002 .032

52 52 37 29 27

.631 1 .711 .763 .576

.000 . .000 .000 .002
52 52 37 29 27

.538 .711 1 .592 .402

.001 .000 . .001 .038

37 37 37 29 27

.557 .763 .592 1 .656

.002 .000 .001 . .000

29 29 29 29 27

.414 .576 .402 .656 1

.032 .002 .038 .000 .
27 27 27 27 27

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation
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Treatment = BtBa.
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measurement and associated covariate value appears as a separate row in
the data file. Repeated measures data can easily be converted from wide
format into long format (or vice versa) by using SPSS’s Restructure Data
Wizard. The Wizard is called by the commands

Data – Restructure…

This starts up a set of dialogue boxes. For converting from wide into
long format, the Wizard proceeds in seven steps:

1. The initial dialogue box contains Restructure selected variables into
cases as the default option. We select Next to proceed to the next
step.

2. The second dialogue box asks about the number of variable groups
for restructuring. Here we need to rearrange one variable group,
the post-treatment BDI variables, into one long combined variable.
We therefore choose the default option One (for example, w1, w2, and
w3) and click Next.

3. The dialogue box of step 3 is shown in Display 8.5. We choose
our subject variable to identify cases in long format. We label the
new variable to be constructed bdipost and indicate that the new
variable is to be made up of the initial variables bdi2m, bdi3m, bdi5m,

Display 8.5 Step 3 of the Restructure Data Wizard.
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and bdi8m. The remaining variables duration, treat, and bdipre simply
will have to be repeated four times to convert them into long format
and this is requested by including them in the Fixed Variable(s) list.

4. On the next box where asked How many index variables do you want to
create, we check the default option One since in a longitudinal study
there is only one within subject factor (time) to be investigated.

5. In step 5, we choose the default option of giving sequential numbers
to the index variable and relabel the index variable time.

6. When asked about the handling of the variables not selected, we
keep the default option Drop variable(s) from the new data file since all
our variables have previously been selected. When asked what to
do with missing values in the transposed variables, we also choose
the default option Create a case in the new file.

7. Finally, when asked What do you want to do?, we choose the default
option Restructure the data now and click Finish.

This results in a rearrangement of our data file. The new long format
data is illustrated in Display 8.6. The new Data View spreadsheet contains
400 rows for post-treatment depression scores of 100 cases at 4 time
points. The new bdipost variable contains missing values (coded 999) with
97 out of the 100 cases contributing at least one post-treatment value. 

Display 8.6 Part of Data View spreadsheet after restructuring into long format.
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We can now (finally) move on to fit a number of models to the BtB
data beginning with one that makes the highly unrealistic assumption that
the repeated measures of depression in the data are independent of one
another. Our reason for starting with such an unpromising model is that
it will provide a useful comparison with the two random effects models
to be fitted later that both allow for nonindependence of these measures.

The independence model could be fitted using the SPSS multiple
regression dialogue as described in Chapter 4, with post-treatment score
as the dependent variable and time, treatment, baseline, and duration as
explanatory variables (with the data in long form, this analysis will simply
ignore that sets of four observations come from the same subject). But it
is also possible to use the mixed models routine in SPSS to fit this
independence model and this provides a convenient introduction to the
procedure. Note that the categorical explanatory variables treatment (treat)
and illness duration (duration) are represented by 0/1 variables in our Data
View spreadsheet and so no further dummy-coding is necessary before
regression modeling. The effect of time will be modeled by a linear effect
of post-treatment month and, for this purpose, we generate a continuous
variable month (with values 2, 3, 5, and 8) by recoding the time factor levels.
For convenience, we further center this variable (new variable c_month)
and the baseline BDI scores (new variable c_pre) by subtracting the
respective sample means. 

The mixed models routine is accessed by the commands

Analyze – Mixed Models – Linear…

The initial dialogue box titled Linear Mixed Models: Specify Subjects and
Repeated is concerned with modeling the covariance structure of the data.
Since for the moment we are assuming independence, we can simply
proceed to the next dialogue box shown in Display 8.7. This Linear Mixed
Models dialogue box serves to define the variables that we wish to include
in the linear mixed effects model, and here we specify our dependent
variable, bdipost, and our explanatory variables, c_pre, duration, treat, and
c_month. Since our explanatory variables are either continuous or already
dummy-coded, they can all be included under the Covariate(s) list.

Next, we need to specify which of the explanatory variables have fixed
effects and which have random effects using the Fixed… and Random…
buttons. Since, at the moment, we are dealing with a multiple regression
model in which there are no random effects, we need only to employ
the Fixed…. button. Display 8.8 shows the resulting Fixed Effects sub-dialogue
box where we specify fixed main effects for each of the four explanatory
variables. The Parameter estimates and Tests for Covariance parameters options
on the Statistics sub-dialogue box have also been checked to generate
some further useful output.
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Display 8.9 shows the resulting output:

� The “Model dimension” table simply summarizes the basics of the
fitted model. In this case, the model includes an intercept param-
eter; four regression coefficients, one for each of the explanatory

Display 8.7 Defining the variables to be used in a linear mixed effects model.

Display 8.8 Defining the fixed effects of a linear mixed effects model.
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Display 8.9 Regression model output for BtB data.

Model Dimension a

1 1

1 1

1 1

1 1

1 1

1

5 6

Intercept

DURATION

TREAT

C_MONTH

C_PRE

Fixed
Effects

Residual

Total

Number
of Levels

Number of
Parameters

Dependent Variable: Post-treatment depression score .a. 

Information Criteriaa

2008.634

2010.634

2010.649

2015.251

2014.251

-2 Restricted Log
Likelihood

Akaike's Information
Criterion (AIC)

Hurvich and Tsai's
Criterion (AICC)

Bozdogan's Criterion
(CAIC)

Schwarz's Bayesian
Criterion (BIC)

The information criteria are displayed in smaller-is-better
forms.

Dependent Variable: Post-treatment depression score .a. 

Type III Tests of Fixed Effects a

1 275 217.151 .000

1 275 3.983 .047

1 275 17.321 .000

1 275 16.188 .000
1 275 96.289 .000

Source
Intercept

DURATION

TREAT

C_MONTH

C_PRE

Numerator df
Denominator

df F Sig.

Dependent Variable: Post-treatment depression score .a. 

Estimates of Fixed Effectsa

15. 15442 1.0283921 275 14. 736 .000 13.1299012 17.1789439

2.2257989 1.1153411 275 1.996 .047 3.010731E-02 4.4214904

-4. 41121 1.0599089 275 -4. 162 .000 -6.4977746 -2.3246421

-.9657631 .2400315 275 -4. 023 .000 -1.4382958 -.4932304

.5234639 5.33E-02 275 9.813 .000 .4184464 .6284814

Parameter
Intercept

DURATION

TREAT

C_MONTH

C_PRE

Estimate Std.  Error df t Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score .a. 

Estimates of Covariance Parametersa

77.60373 6.6180686 11.726 .000 65.6586425 91.7219591

Parameter
Residual

Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score .a.
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variables; and the variance parameter of the residual terms in the
model.

� The “Information Criteria” table is helpful for comparing different
random effects models, as we will see later. 

� The “Type III Tests of Fixed Effects” and the “Estimates of Fixed
Effects” tables give the F-tests and associated p-values for assessing
the regression coefficients. For a model including only fixed effects
as here, these tests (and the parameter estimates and standard
errors that follow) are the same as those generated by the regres-
sion or ANCOVA routines in Chapters 4, 5, and 6. The results
suggest that each of the four explanatory variables is predictive of
post-treatment BDI. However, we shall not spend time interpreting
these results in any detail since they have been derived under the
unrealistic assumption that the repeated measurements of the BDI
variable are independent.

� The “Estimates of Covariance parameters” table gives details of the
single covariance parameter in our multiple regression model,
namely, the variance of the error term. The table provides an
estimate, confidence interval, and test for zero variance. 

(Note that in this analysis, all the observations that a patient actually
has are retained, unlike what would have happened if we had carried
out a repeated measures (M)ANOVA on the basis of complete cases only
as described in Chapter 7.)

Now we shall fit some random effects models proper to the BtB data,
beginning with the random intercept model described in Box 8.1. This
model allows a particular correlation structure for the repeated measures
(see Box 8.1). To specify this model in SPSS, we need to go through the
following steps:

� Add the subject identifier (subject) under the Subjects list of the
initial Linear Mixed Models: Specify Subjects and Repeated dialogue box
(Display 8.10).

� Include the variable subject under the Factor(s) list of the subsequent
Linear Mixed Models dialogue box (see Display 8.7).

� Define the fixed effects as before using the Fixed… button (see
Display 8.8), but this time, in addition, employ the Random… button
to define the random effects part of the model. 

� The random intercepts for subjects are specified in the Random
Effects sub-dialogue box as illustrated in Display 8.11; the subject
identifier is included under the Combinations list and Include Intercept
is checked.
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Display 8.10 Defining sets of correlated observations for subjects.

Display 8.11 Defining random intercepts for subjects.
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The results from fitting the random intercepts model are shown in
Display 8.12. The “Model Dimension” table indicates that subject random
effects for the intercept have been added to the model. This results in fitting
one extra model parameter, the variance of the subject random effects. We
can use the first term given in the “Information Criteria” table to compare
the random intercept model with the previously fitted independence model
(see Display 8.9). The difference in –2 Restricted Log Likelihood for the
two models can be tested as a chi-square with degrees of freedom given
by the difference in the number of parameters in the two models (this is
known formally as a likelihood ratio test). Here the difference in the two
likelihoods is 2008.634 – 1872.39 = 136.244, which tested as a chi-square

Display 8.12 Random intercept model output for BtB data.

Model Dimensiona

1 1

1 1

1 1

1 1

1 1

1 Identity 1 SUBJECT

1

6 7

Intercept

DURATION

TREAT

C_MONTH

C_PRE

Fixed Effects

InterceptRandom Effects

Residual

Total

Number
of Levels

Covariance
Structure

Number of
Parameters

Subject
Variables

Dependent Variable: Post-treatment depression score.a.

Information Criteriaa

1872.390

1876.390

1876.434

1885.624

1883.624

-2 Restricted Log
Likelihood

Akaike's Information
Criterion (AIC)

Hurvich and Tsai's
Criterion (AICC)

Bozdogan's Criterion
(CAIC)

Schwarz's Bayesian
Criterion (BIC)

The information criteria are displayed in smaller-is-better
forms.

Dependent Variable: Post-treatment depression scorea.

Type III Tests of Fixed Effectsa

1 93.623 114.393 .000

1 91.880 .124 .725

1 89.637 3.784 .055

1 193.921 23.065 .000

1 93.232 60.695 .000

Source
Intercept

DURATION

TREAT

C_MONTH

C_PRE

Numerator df
Denominator

df F Sig.

Dependent Variable: Post-treatment depression score.a.
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with one degree of freedom, has an associated p-value less than 0.001.
The random intercept model clearly provides a better fit for the BtB data
than the independence model. The variance of the subject intercept effect
is clearly not zero as confirmed by the confidence interval for the param-
eter, [37.7, 75], given later in Display 8.12 (see table “Estimates of Covariance
Parameters”), which also gives an alternate test, the Wald test, for the null
hypothesis that the variance parameter is zero (see Everitt and Pickles,
2000, for details). (Note that the p-value of the likelihood ratio test can
be calculated easily within SPSS by using the SIG.CHISQ(q,df) function
which returns the p-value of a test when the test statistic q has a chi-
squared distribution with df degrees of freedom under the null hypothesis.) 

The other terms given in the “Information Criteria” part of the output
can also be used to compare models, see Everitt (2002b) for details.

The two output tables dealing with the fixed effects of the model show
that the standard errors of the effects of the explanatory variables that
explain between subject variability, namely duration, treat, and c_pre, have
been increased by about 50% compared to the regression model. In
contrast, the standard error of the effect of variable c_month, which explains
within-subject variability, has been reduced by about 40%. This is intui-
tively what might be expected since for between-subject ef fects the
correlations between repeated measures will lower the effective sample
size compared to the same number of independent observations, and
calculation of variability ignoring that measurements are made within
subjects will lead to values that are too high. The result of these changes
is that both duration and treat are not now significant at the 5% level. 

The random intercept model implies a particular structure for the
covariance matrix of the repeated measures, namely, that variances at the

Display 8.12 (continued)

Estimates of Fixed Effects a

16.36947 .5305030 93.623 10.695 .000 13.3304605 19.4084784

.5910694 .6766526 91.880 .353 .725 -2.7389655 3.9211043

-3.18832 .6389947 89.637 -1.945 .055 -6.4446523 .800538E-02

.7052452 .1468458 193.921 -4.803 .000 -.9948652 -.4156253

.6107708 7.84E-02 93.232 7.791 .000 .4550940 .7664476

Parameter
Intercept

DURATION

TREAT

C_MONTH

C_PRE

Estimate Std. Error df t Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score.a.

Estimates of Covariance Parameters a

25.24724 .6240408 9.62 2 .000 20.5942157 30.9515532

53.17547 .3406957 5.69 3 .000 37.6869546 75.0294403

Parameter
Residual

Intercept [subject ID diagonal SC]

Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score.a.
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different post-treatment time points are equal, and covariances between
each pair of time points are equal. In general, these are rather restrictive
and unrealistic assumptions; for example, covariances between observa-
tions made closer together in time are likely to be higher than those made
at greater time intervals and there was a suggestion that this might be the
case for our data (Display 8.4). Consequently, a random intercept and
slope model (as described in Box 8.1) that allows a less restrictive
covariance structure for the repeated measures (the explicit structure is
given in Everitt and Dunn, 2001) might provide an improvement in fit
over the random intercept model. 

In a random intercept and slope model, both the intercept term and
the regression coefficient of BDI on month are allowed to vary between
subjects. To introduce the random slope term, we again employ the
Random… button. Random coefficients of the time variable c_month are
specified in the Random Effects sub-dialogue box by adding a main effect
of c_month to the Model list (see Display 8.11). SPSS understands this as
an instruction to fit a slope for each subject, or in other words, a subject
by c_month interaction, since the identifier subject is listed under the
Combinations list. In fact, an alternative way of specifying the random slope
and intercept model would be not to use the Combinations and Include
Intercept facilities, but instead include a main effect of subject and a subject
c_month interaction under the Model list. (Note that at this stage we also
removed the fixed main effect of duration from the model by excluding
this variable from the Model list of the Fixed Effects sub-dialogue box, see
Display 8.8).

Fitting the random intercept and slope model initially results in SPSS
displaying a warning about a “nonpositive definite Hessian matrix”
(Display 8.13). This indicates that the fitting algorithm has not been able
to produce an acceptable solution. When such a warning, or one relating
to convergence problems, appears, subsequent output is invalid and
should not be interpreted. The solution is generally to alter the default
settings of the algorithm used to find the maximum likelihood solution.
These settings can be accessed via the Estimation… button on the Linear
Mixed Models dialogue box (see Display 8.7). Warnings about the Hessian
matrix can often be dealt with by increasing the scoring option, so we

Display 8.13 SPSS warning indicating an unsuccessful optimization.

Warnings

The final Hessian matrix is not positive definite although all convergence criteria are
satisfied. The MIXED procedure continues despite this warning. Validity of
subsequent results cannot be ascertained.
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change the Maximum scoring steps to 5 (Display 8.14). When nonconvergence
occurs and the Hessian matrix is not nonpositive definite, increasing the
number of iterations or reducing the accuracy of the solution by increasing
the parameter convergence value might resolve the problem. In any case,
whenever a warning is displayed, it is useful to have a look at the iteration
history and this can be requested by checking Print iteration history on the
Estimation sub-dialogue box (Display 8.14). 

Changing the scoring option successfully resolves the problem on this
occasion and Display 8.15 shows part of the output from fitting a random
intercept and slope model. (Note that if increasing the scoring steps does
not help to overcome a nonpositive definite Hessian matrix, it will probably
be because of negative variance estimates or redundant effects.) The
“Iteration History” table shows that all the parameter estimates of the
random intercept and slope model have converged.

Display 8.14 Controlling the settings of the maximum likelihood algorithm.
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The Wald test (Wald z = 0.68, p = 0.5) demonstrates that the variance
of the random slope effects is not significantly different from zero and
here the simpler random intercept model provides an adequate description
of the data. This might be because there is little departure of the observed
correlation matrices in each treatment group from the compound symmetry
structure allowed by the random intercept model, but it could also be a
result of the random slope model we used being too restrictive since it
did not allow for a possible correlation between the random intercept
and random slope terms. SPSS version 11.0.1 (the one used in this text)
does not allow for such a correlation, although version 11.5 and higher
will allow this correlation to be a parameter in the model.

The final model chosen to describe the average profiles of BDI scores
in the two groups over the four post-treatment visits is one that includes

Display 8.15 Part of random intercept and slope model output for BtB data.

Model Dimensiona

1 1

1 1

1 1

1 1

1 Identity 1 SUBJECT

1 Identity 1 SUBJECT

1

6 7

Intercept

TREAT

C_MONTH

C_PRE

Fixed
Effects

Intercept

C_MONTH

Random
Effects

Residual

Total

Number
of Levels

Covariance
Structure

Number of
Parameters

Subject
Variables

Dependent Variable: Post-treatment depression score.a.

Iteration History b

Initial 0 2021.046 26.14744 26.1474442 26.1474442 16.67599 -5.27073 1.1903886 .5125490

Scoring 1 1964.729 25.43479 41.2184411 2.8328789 16.63831 -4.50924 1.0287282 .5522275

Scoring 1 1926.724 24.90006 49.2784441 6.1882973 16.65211 -3.94426 -.8923691 .5796988

Scoring 1 1900.683 24.52781 52.9800480 3.0078202 16.67899 -3.59681 -.8017594 .5966415

Scoring 0 1875.382 24.04293 55.3249894 3.865E-02 16.71171 -3.20019 -.7000578 .6172862

Scoring 0 1874.882 23.96467 52.7822184 .2091313 16.70738 -3.23882 -.7087159 .6153676

Newton 0 1874.880 23.96393 53.0260027 .2012500 16.70778 -3.23618 -.7081400 .6154884

Newton 0 1874.880 23.96392 53.0277710 .2013409 16.70778 -3.23619 -.7081412 .6154881

Newton 4 1874.880 a 23.96392 53.0277710 .2013409 16.70778 -3.23619 -.7081412 .6154881

Iteration

0

1

2

3

4

5

6

7

8

Update Type
Number of

Step-halvings

-2 Restricted
Log

Likelihood Residual ID diagonal

Intercept
[subject =
SUBJECT]

ID diagonal

C_MONTH
[subject =
SUBJECT]

Covariance Parameters

Intercept TREAT C_MONTH C_PRE

Fixed Effect Parameters

All convergence criteria are satisfied.a.

Dependent Variable: Post-treatment depression score .b.

Estimates of Covariance Parameters a

23.96392 .9905226 8.013 .000 18.7643740 30.6042397

53.02777 .2225126 5.750 .000 37.7106173 74.5663874

.2013409 .2975969 .677 .499 .111200E-02 3.6481403

Parameter

Residual

Intercept [subject  = ID diagonal SC]

C_MONTH [subject ID diagonal SC]

Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score .a.
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random intercepts for subjects and fixed effects of month, baseline BDI
score and treatment (although this had a p-value slightly above the 5%
level). The parameter estimates for this model are shown in Display 8.16.
Subject heterogeneity accounts for the majority of the residual variability
(estimated intra-class correlation 52.72/(52.72 + 25.22) 100 = 67.6%).
Conditional on treatment and visit mean post-treatment, BDI is estimated
to increase by 0.62 points for each additional baseline BDI score (95% CI
from 0.46 to 0.77 points) and conditional on pre-treatment score and
treatment group to decrease 0.7 points each month (CI from 0.41 to
0.99 points). Finally, for a given visit and baseline BDI score the BtB
treatment is estimated to decrease the mean BDI score by 3.22 points (CI
from 0.015 points increase to 6.5 points decrease). 

There are a number of residual diagnostics that can be used to check
the assumptions of a linear mixed effects model. Here we demonstrate
how to assess normality of the random effect terms. Checking out the
conditional independence and homogeneity of variance is left as an
exercise for the reader (Exercise 8.4.3). 

The Save… button on the Linear Mixed Effects dialogue box allows the
user to save predicted values and residuals (see Display 8.7). We check
all three available options in the Save sub-dialogue box. This results in
three new variables being added to the Data View spreadsheet after model
fitting: participants’ BDI scores predicted on the basis of fixed effects only
(fxpred_1), values predicted after including the participants’ estimated ran-
dom effects (pred_1), and estimates of the errors (resid_1). From these we
can calculate estimates of the subject random effects using the formula

Display 8.16 Parameter estimates of the final model for post-treatment BDI.

Estimates of Fixed Effectsa

16.70543 1.1920177 90.623 14.014 .000 14.3375015 19.0733606

-3.22321 1.6303743 90.835 -1.977 .051 -6.4618315 1.540319E-02

-.7039984 .1466745 194.693 -4.800 .000 -.9932734 -.4147235

.6165315 7.63E-02 93.058 8.076 .000 .4649276 .7681355

Parameter
Intercept

TREAT

C_MONTH

C_PRE

Estimate Std. Error df t Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score .a.

Estimates of Covariance Parametersa

25.22031 2.6180353 9.633 .000 20.5773777 30.9108366
52.72001 9.2000578 5.730 .000 37.4484759 74.2193070

Parameter
Residual

Intercept [subject ID diagonal
SUBJECT]

Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

95% Confidence Interval

Dependent Variable: Post-treatment depression score .a.
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u_resid = pred_1 – fxpred_1. We then construct histograms of the variables
resid_1 and u_resid to check normality. (Before constructing the graph for
the u_resid variable, we restrict the data set to time = 1 using the Select
Cases… command to ensure that only one random effect per subject was
used.) The resulting histograms do not indicate any departure from the
normality assumption (Display 8.17). 

Display 8.17 Histograms for estimates of random effects.

a) Estimates of error term (residuals) 
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b) Estimates of random effects for subjects 
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8.4 Exercises

8.4.1 Salsolinol Levels and Alcohol Dependency

Two groups of subjects, one with moderate and the other with severe
dependence on alcohol, had their salsolinol secretion levels measured
(in mmol) on four consecutive days. The data are given in Table 8.2.
Primary interest is in whether the groups evolved differently over time.
Investigate this question using linear mixed effects models. (The raw data
are clearly skewed, so some kind of transformation will be needed).

8.4.2 Estrogen Treatment for Post-Natal Depression

The data in Table 8.3 arise from a double-blind, placebo controlled clinical
trial of a treatment for post-natal depression. The main outcome variable
was a composite measure of depression recorded on two occasions before
randomization to treatment and on six two-monthly visits after random-
ization. Not all the women in the trial had the depression variable recorded
on all eight scheduled visits. Use appropriate random effects models to
investigate these data, in particular to determine whether the active treat-
ment helps reduce post-natal depression.

Table 8.2 Salsolinol Secretion Levels of Alcohol- 
Dependent Subjects

Day 

1 2 3 4

Group 1 (Moderate) 0.33 0.70 2.33 3.20
5.30 0.90 1.80 0.70
2.50 2.10 1.12 1.01
0.98 0.32 3.91 0.66
0.39 0.69 0.73 2.45
0.31 6.34 0.63 3.86

Group 2 (Severe) 0.64 0.70 1.00 1.40
0.73 1.85 3.60 2.60
0.70 4.20 7.30 5.40
0.40 1.60 1.40 7.10

2.60 1.30 0.70 0.70
7.80 1.20 2.60 1.80
1.90 1.30 4.40 2.80
0.50 0.40 1.10 8.10
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Table 8.3 Depression Ratings for Sufferers of Post-Natal Depression

Before
Randomization

After
Randomization

Subject Groupa Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

1 0 18.00 18.00 17.00 18.00 15.00 17.00 14.00 15.00
2 0 25.11 27.00 26.00 23.00 18.00 17.00 12.00 10.00
3 0 19.00 16.00 17.00 14.00 n.a. n.a. n.a. n.a.
4 0 24.00 17.00 14.00 23.00 17.00 13.00 12.00 12.00
5 0 19.08 15.00 12.00 10.00 8.00 4.00 5.00 5.00
6 0 22.00 20.00 19.00 11.54 9.00 8.00 6.82 5.05
7 0 28.00 16.00 13.00 13.00 9.00 7.00 8.00 7.00
8 0 24.00 28.00 26.00 27.00 n.a. n.a. n.a. n.a.
9 0 27.00 28.00 26.00 24.00 19.00 13.94 11.00 9.00

10 0 18.00 25.00 9.00 12.00 15.00 12.00 13.00 20.00
11 0 23.00 24.00 14.00 n.a. n.a. n.a. n.a. n.a.
12 0 21.00 16.00 19.00 13.00 14.00 23.00 15.00 11.00
13 0 23.00 26.00 13.00 22.00 n.a. n.a. n.a. n.a.
14 0 21.00 21.00 7.00 13.00 n.a. n.a. n.a. n.a.
15 0 22.00 21.00 18.00 n.a. n.a. n.a. n.a. n.a.
16 0 23.00 22.00 18.00 n.a. n.a. n.a. n.a. n.a.
17 0 26.00 26.00 19.00 13.00 22.00 12.00 18.00 13.00
18 0 20.00 19.00 19.00 7.00 8.00 2.00 5.00 6.00
19 0 20.00 22.00 20.00 15.00 20.00 17.00 15.00 13.73
20 0 15.00 16.00 7.00 8.00 12.00 10.00 10.00 12.00
21 0 22.00 21.00 19.00 18.00 16.00 13.00 16.00 15.00
22 0 24.00 20.00 16.00 21.00 17.00 21.00 16.00 18.00
23 0 n.a. 17.00 15.00 n.a. n.a. n.a. n.a. n.a.
24 0 24.00 22.00 20.00 21.00 17.00 14.00 14.00 10.00
25 0 24.00 19.00 16.00 19.00 n.a. n.a. n.a. n.a.
26 0 22.00 21.00 7.00 4.00 4.19 4.73 3.03 3.45
27 0 16.00 18.00 19.00 n.a. n.a. n.a. n.a. n.a.
28 1 21.00 21.00 13.00 12.00 9.00 9.00 13.00 6.00
29 1 27.00 27.00 8.00 17.00 15.00 7.00 5.00 7.00
30 1 24.00 15.00 8.00 12.27 10.00 10.00 6.00 5.96
31 1 28.00 24.00 14.00 14.00 13.00 12.00 18.00 15.00
32 1 19.00 15.00 15.00 16.00 11.00 14.00 12.00 8.00
33 1 17.00 17.00 9.00 5.00 3.00 6.00 .00 2.00
34 1 21.00 20.00 7.00 7.00 7.00 12.00 9.00 6.00
35 1 18.00 18.00 8.00 1.00 1.00 2.00 .00 1.00
36 1 24.00 28.00 11.00 7.00 3.00 2.00 2.00 2.00
37 1 21.00 21.00 7.00 8.00 6.00 6.50 4.64 4.97
38 1 19.00 18.00 8.00 6.00 4.00 11.00 7.00 6.00
39 1 28.00 27.46 22.00 27.00 24.00 22.00 24.00 23.00
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8.4.3 More on “Beating the Blues”: Checking the Model 
for the Correlation Structure

The model building carried out in the main text led us to fit a random
intercept model to the BtB data. Histograms of the residuals suggested
that the assumptions of normally distributed random terms were reason-
able. Carry out further residual diagnostics to assess the linear mixed
model assumptions of:

Table 8.3 (continued) Depression Ratings for Sufferers 
of Post-Natal Depression

Before
Randomization

After
Randomization

Subject Groupa Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

40 1 23.00 19.00 14.00 12.00 15.00 12.00 9.00 6.00
41 1 21.00 20.00 13.00 10.00 7.00 9.00 11.00 11.00
42 1 18.00 16.00 17.00 26.00 n.a. n.a. n.a. n.a.
43 1 22.61 21.00 19.00 9.00 9.00 12.00 5.00 7.00
44 1 24.24 23.00 11.00 7.00 5.00 8.00 2.00 3.00
45 1 23.00 23.00 16.00 13.00 n.a. n.a. n.a. n.a.
46 1 24.84 24.00 16.00 15.00 11.00 11.00 11.00 11.00
47 1 25.00 25.00 20.00 18.00 16.00 9.00 10.00 6.00
48 1 n.a. 28.00 n.a. n.a. n.a. n.a. n.a. n.a.
49 1 15.00 22.00 15.00 17.57 12.00 9.00 8.00 6.50
50 1 26.00 20.00 7.00 2.00 1.00 .00 .00 2.00
51 1 22.00 20.00 12.13 8.00 6.00 3.00 2.00 3.00
52 1 24.00 25.00 15.00 24.00 18.00 15.19 13.00 12.32
53 1 22.00 18.00 17.00 6.00 2.00 2.00 .00 1.00
54 1 27.00 26.00 1.00 18.00 10.00 13.00 12.00 10.00
55 1 22.00 20.00 27.00 13.00 9.00 8.00 4.00 5.00
56 1 24.00 21.00 n.a. n.a. n.a. n.a. n.a. n.a.
57 1 20.00 17.00 20.00 10.00 8.89 8.49 7.02 6.79
58 1 22.00 22.00 12.00 n.a. n.a. n.a. n.a. n.a.
59 1 20.00 22.00 15.38 2.00 4.00 6.00 3.00 3.00
60 1 21.00 23.00 11.00 9.00 10.00 8.00 7.00 4.00
61 1 17.00 17.00 15.00 n.a. n.a. n.a. n.a. n.a.
62 1 18.00 22.00 7.00 12.00 15.00 n.a. n.a. n.a.
63 1 23.00 26.00 24.00 n.a. n.a. n.a. n.a. n.a.

a Group codes: 0 = Placebo treatment, 1 = estrogen treatment

n.a. not available
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� Constant error variance across repeated measures
� Local independence

(Hint: Use the Restructure Data Wizard to convert the error residuals
from long format into wide format and then assess the variances of and
correlations between the residuals at the four time points. Note that under
a model with effects for subjects, pairs of residuals from different time
points are negatively correlated by definition and it is changes in the
degree of these correlations that indicate a remaining correlation structure.)
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Chapter 9

Logistic Regression: 
Who Survived the 
Sinking of the Titanic?

9.1 Description of Data
On April 14th, 1912, at 11.40 p.m., the Titanic, sailing from Southampton
to New York, struck an iceberg and started to take on water. At 2.20 a.m.
she sank; of the 2228 passengers and crew on board, only 705 survived.
Data on Titanic passengers have been collected by many researchers, but
here we shall examine part of a data set compiled by Thomas Carson. It
is available on the Internet (http://hesweb1.med.virginia.edu/bio-
stat/s/data/index.html). For 1309 passengers, these data record whether
or not a particular passenger survived, along with the age, gender, ticket
class, and the number of family members accompanying each passenger.
Part of the SPSS Data View spreadsheet is shown in Display 9.1.

We shall investigate the data to try to determine which, if any, of the
explanatory variables are predictive of survival. (The analysis presented
in this chapter will be relatively straightforward; a far more comprehensive
analysis of the Titanic survivor data is given in Harrell, 2001.)

9.2 Logistic Regression
The main question of interest about the Titanic survival data is: Which of
the explanatory variables are predictive of the response, survived or died?
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In essence, this is the same question that is addressed by the multiple
regression model described in Chapter 4. Consequently, readers might
ask: What is different here? Why not simply apply multiple regression to
the Titanic data directly? There are two main reasons why this would not
be appropriate:

� The response variable in this case is binary rather than continuous.
Assuming the usual multiple regression model for the probability
of surviving could lead to predicted values of the probability
outside the interval (0, 1).

� The multiple regression model assumes that, given the values of
the explanatory variables, the response variable has a normal
distribution with constant variance. Clearly this assumption is not
acceptable for a binary response.

Consequently, an alternative approach is needed and is provided by
logistic regression, a brief account of the main points of which is given
in Box 9.1.

Box 9.1 Logistic Regression

Display 9.1 Characteristics of 21 Titanic passengers.

� In multiple linear regression (see Chapter 4), the expected
value of a response variable, y, is modeled as a linear function
of the explanatory variables:

E y x xq q0 1 1 ...
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� For a binary response taking the values 0 and 1 (died and
survived), the expected value is simply the probability, p, that
the variable takes the value one, i.e., the probability of survival.

� We could model p directly as a linear function of the explan-
atory variables and estimate the regression coefficients by least
squares, but there are two problems with this direct approach:
1. The predicted value of p, p̂, given by the fitted model

should satisfy 0 p̂ 1; unfortunately using a linear pre-
dictor does not ensure that this is so (see Exercise 9.4.2 for
an illustration of this problem).

2. The observed values do not follow a normal distribution
with mean p, but rather what is know as a Bernoulli
distribution (see Everitt, 2002b).

� A more suitable approach is to model p indirectly via what is
known as the logit transformation of p, i.e., ln[p/(1 – p)].

� This leads to the logistic regression model given by

(The betas here are not, of course, the same as the betas in
the first bulleted point in this box.)

� In other words, the log-odds of survival is modeled as a linear
function of the explanatory variables.

� The parameters in the logistic regression model can be esti-
mated by maximum likelihood (see Collett, 2003) for details.

� The estimated regression coefficients in a logistic regression
model give the estimated change in the log-odds corresponding
to a unit change in the corresponding explanatory variable
conditional on the other explanatory variables remaining con-
stant. The parameters are usually exponentiated to give results
in terms of odds.

� In terms of p, the logistic regression model can be written as

This function of the linear predictor is known as the logistic
function.

ln ...
p

p
x xq q1 0 1 1

p
x x

x x

q q

q q

exp ...

exp ...

0 1 1

0 1 11
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This is a convenient point to mention that logistic regression and the
other modeling procedures used in earlier chapters, analysis of variance and
multiple regression, can all be shown to be special cases of the generalized
linear model formulation described in detail in McCullagh and Nelder (1989).
This approach postulates a linear model for a suitable transformation of the
expected value of a response variable and allows for a variety of different
error distributions. The possible transformations are known as link functions.
For multiple regression and analysis of variance, for example, the link
function is simply the identity function, so the expected value is modeled
directly, and the corresponding error distribution is normal. For logistic
regression, the link is the logistic function and the appropriate error distri-
bution is the binomial. Many other possibilities are opened up by the
generalized linear model formulation — see McCullagh and Nelder (1989)
for full details and Everitt (2002b) for a less technical account.

9.3 Analysis Using SPSS
Our analyses of the Titanic data in Table 9.1 will focus on establishing
relationships between the binary passenger outcome survival (measured
by the variable survived with “1” indicating survival and “0” death) and
five passenger characteristics that might have affected the chances of
survival, namely:

� Passenger class (variable pclass, with “1” indicating a first class
ticket holder, “2” second class, and “3” third class)

� Passenger age (age recorded in years)
� Passenger gender (sex, with females coded “1” and males coded “2”)
� Number of accompanying parents/children (parch)
� Number of accompanying siblings/spouses (sibsp)

Our investigation of the determinants of passenger survival will proceed
in three steps. First, we assess (unadjusted) relationships between survival

� Competing models in a logistic regression can be formally
compared by a likelihood ratio (LR) test, a score test or by
Wald’s test. Details of these tests are given in Hosmer and
Lemeshow (2000).

� The three tests are asymptotically equivalent but differ in finite
samples. The likelihood ratio test is generally considered the
most reliable, and the Wald test the least (see Therneau and
Grambsch, 2000, for reasons), although in many practical appli-
cations the tests will all lead to the same conclusion.
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and each potential predictor variable singly. Then, we adjust these relation-
ships for potential confounding effects. Finally, we consider the possibility
of interaction effects between some of the variables. 

As always, it is sensible to begin by using simple descriptive tools to
provide initial insights into the structure of the data. We can, for example,
use the Crosstabs… command to look at associations between categorical
explanatory variables and passenger survival (for more details on cross-
tabulation, see Chapter 3). Cross-tabulations of survival by each of the
categorical predictor variables are shown in Display 9.2. The results show
that in our sample of 1309 passengers the survival proportions were: 

� Clearly decreasing for lower ticket classes 
� Considerably higher for females than males 
� Highest for passengers with one sibling/spouse or three par-

ents/children accompanying them 

To examine the association between age and survival, we can look at
a scatterplot of the two variables, although given the nature of the survival
variable, the plot needs to be enhanced by including a Lowess curve (for
details of Lowess curve construction see Chapter 2, Display 2.22). The
Lowess fit will provide an informal representation of the change in
proportion of “1s” (= survival proportion) with age. Without the Lowess
curve, it is not easy to evaluate changes in density along the two horizontal
lines corresponding to survival (code = 1) and nonsurvival (code = 0).
The resulting graph is shown in Display 9.3. Survival chances in our
sample are highest for infants and generally decrease with age although
the decrease is not monotonic, rather there appears to be a local minimum
at 20 years of age and a local maximum at 50 years. 

Although the simple cross-tabulations and scatterplot are useful first
steps, they may not tell the whole story about the data when confounding
or interaction effects are present among the explanatory variables. Con-
sequently, we now move on (again using simple descriptive tools) to
assess the associations between pairs of predictor variables. Cross-tabula-
tions and grouped box plots (not presented) show that in our passenger
sample:

� Males were more likely to be holding a third-class ticket than females.
� Males had fewer parents/children or siblings/spouses with them

than did females.
� The median age was decreasing with lower passenger classes.
� The median number of accompanying siblings/spouses generally

decreased with age. 
� The median number of accompanying children/parents generally

increased with age. 
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As a result of these passenger demographics, confounding of variable
effects is a very real possibility. To get a better picture of our data, a multi-
way classification of passenger survival within strata defined by explanatory

Display 9.2 Cross-tabulation of passenger survival by (a) passenger class, (b) 
gender, (c) number of parents/children aboard, and (d) number of siblings/spouses 
aboard.

a)

Survived?* Passenger class Crosstabulation

123 158 528 809

38.1% 57.0% 74.5% 61.8%

200 119 181 500

61.9% 43.0% 25.5% 38.2%

323 277 709 1309

100.0% 100.0% 100.0% 100.0%

Count

% within
Passenger class

Count

% within
Passenger class

Count

% within
Passenger class

no

yes

Survived?

Total

first class second class third class

Passenger class

Total

b)

Survived?* Gender Crosstabulation

682 127 809

80.9% 27.3% 61.8%

161 339 500

19.1% 72.7% 38.2%

843 466 1309

100.0% 100.0% 100.0%

Count

% within Gender

Count

% within Gender

Count

% within Gender

no

yes

Survived?

Total

male female

Gender

Total

c)

Survived?* Number of parents/children aboard Crosstabulation

666 70 56 3 5 5 2 2 809

66.5% 41.2% 49.6% 37.5% 83.3% 83.3% 100.0% 100.0% 61.8%

336 100 57 5 1 1 500

33.5% 58.8% 50.4% 62.5% 16.7% 16.7% 38.2%

1002 170 113 8 6 6 2 2 1309

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Number of
parents/children aboard

Count

% within Number of
parents/children aboard

Count

% within Number of
parents/children aboard

no

yes

Survived?

Total

0 1 2 3 4 5 6 9

Number of parents/children aboard

Total

d)

Survived?* Number of siblings/spouses aboard Crosstabulation

582 156 23 14 19 6 9 809
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variable-level combinations might be helpful. Before such a table can be
constructed, the variables age, parch, and sibsp need to be categorized in
some sensible way. Here we create two new variables, age_cat and marital,
which categorize passengers into children (age <21 years) and adults (age
21 years) and into four marital status groups (1 = no siblings/spouses and

no parents/children, 2 = siblings/spouses but no parents/children, 3 = no
siblings/spouses but parents/children, and 4 = siblings/spouses and par-
ents/children). The Recode command (see Chapter 3, Display 3.1) and the
Compute command, in conjunction with the If Cases sub-dialogue box (see
Chapter 1, Display 1.13) that allows sequential assignment of codes according
to conditions, can be used to generate the new variables. The Crosstabs
dialogue box is then employed to generate the required five-way table. (Note
that the sequential Layer setting has to be used to instruct SPSS to construct
cells for each level combination of the five variables, see Display 9.4.) 

The resulting five-way tabulation is shown in Display 9.5. (We have
edited the table somewhat to reduce its size. In SPSS, table editing is
possible after double-clicking in the output table. Cells are missing in the
table where no passenger survived for a particular combination of variables.)
The stratified survival percentages are effectively a presentation of the
adjusted associations between survival and potential predictors, adjusting

Display 9.3 Scattergraph of binary survival against age enhanced by inclusion 
of a Lowess curve.
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each predictor for the effects of the other predictors included in the table.
The stratified percentages also allow the informal assessment of interaction
effects. Concentrating for the moment on the no siblings/spouses and no
parents/children marital category to which most passengers (60%) belong,
we find that in our sample: 

� Females with first-class tickets were most likely to survive.
� Males and lower-class ticket holders were less likely to survive,

although for females the survival chances gradually increased for
higher-class tickets while for males only first-class tickets were
associated with an increase.

� Children were somewhat more likely to survive than adults.

We can now proceed to investigate the associations between survival
and the five potential predictors using logistic regression. The SPSS logistic
regression dialogue box is obtained by using the commands

Analyze – Regression – Binary Logistic…

We begin by looking at the unadjusted effects of each explanatory variable
and so include a single explanatory variable in the model at a time. We
start with the categorical explanatory variable pclass (Display 9.6): 

Display 9.4 Defining a five-way table.
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Display 9.5 Tabulation of survival by passenger class, gender, age, and marital 
status.
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� The binary dependent variable is declared under the Dependent list
and the single explanatory variable under the Covariates list.

� By default, SPSS assumes explanatory variables are measured on
an interval scale. To inform SPSS about the categorical nature of
variable pclass, the Categorical… button is checked and pclass
included in the Categorical Covariates list on the resulting Define
Categorical Variables sub-dialogue box (Display 9.6). This will result
in the generation of appropriate dummy variables. By default k – 1
indicator variables are generated for k categories with the largest
category code representing the reference category (for more on
dummy variable coding, see Chapter 4). It is possible to change
the reference category or the contrast definition.

� We also check CI for exp(B) on the Options sub-dialogue box so as
to include confidence intervals for the odds ratios in the output.

The resulting output is shown in Display 9.7 through Display 9.9. There
are basically three parts to the output and we will discuss them in turn.
The first three tables shown in Display 9.7 inform the user about the
sample size, the coding of the dependent variable (SPSS will code the
dependent variable 0-1 and model the probabilities of “1s” if the variable
has different category codes), and the dummy variable coding of the
categorical predictor variables. Here with only one categorical explanatory
variable, we see that dummy variable (1) corresponds to first class, variable
(2) to second class, and third class represents the reference category. 

SPSS automatically begins by fitting a null model, i.e., one containing
only an intercept parameter. Respective tables, shown in Display 9.8, are
provided in the Output Viewer under the heading “Block 0: beginning block.”

Display 9.6 Defining a logistic regression on one categorical explanatory variable.
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Display 9.7 Variable coding summary output from logistic regression of survival 
on passenger class.

Display 9.8 Null model output from logistic regression of survival.
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The first two tables give details of the fit of this null model. In general
these tables are of little interest, but it is helpful at this stage to describe
just what they contain. 

The first part of Display 9.8 is a “Classification Table” for the null
model that compares survival predictions made on the basis of the fitted
model with the true survival status of the passengers. On the basis of the
fitted model, passengers are predicted to be in the survived category if
their predicted survival probabilities are above 0.5 (different classification
cut-off values can be specified in the Options sub-dialogue box). Here the
overall survival proportion (0.382) is below the threshold and all passen-
gers are classified as nonsurvivors by the null model leading to 61.8%
(the nonsurvivors) being correctly classified. 

Next, the “Variables in the Equation” table provides the Wald test for
the null hypothesis of zero intercept (or equal survival and nonsurvival
proportions); this test is rarely of any interest. Finally, the ”Variables not
in the Equation” table lists score tests for the variables not yet included
in the model, here pclass. It is clear that survival is significantly related to
passenger class (Score test: X 2(2) = 127.9, p < 0.001). Also shown are
score tests for specifically comparing passenger classes with the reference
category (third class). 

The final parts of the SPSS output, presented in the Output Viewer under
the heading “Block 1: Method = Enter” and given in Display 9.9 provide

Display 9.9 Output from logistic regression of survival on passenger class.
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details of the requested logistic regression model. The latest “Classification
Table” in Display 9.9 shows that inclusion of the pclass factor increases
the percentage of correct classification by about 6 to 67.7%.

In addition to the tables of the previous output block, SPSS now
displays a table labeled “Omnibus Tests of Model Coefficients.” Under
row heading “Block,” this table contains the likelihood ratio (LR) test for
comparing the model in the previous output block with the latest one,
in other words, it is a test for assessing the effect of pclass. (Also given
are an LR test for the whole model and an LR test for each term added
in each step within block 1. Since our model consists of only one factor
and the only step carried out is adding this factor, the three tests are
identical.) We again detect a significant effect of passenger class (LR test:
X 2(2) = 127.8, p < 0.001). 

Finally, the latest “Variables in the Equation” table provides Wald’s tests
for all the variables included in the model. Consistent with the LR and
score tests, the effect of pclass tests significant (X 2(2) = 120.5, p < 0.001).
The parameter estimates (log-odds) are also given in the column labeled
“B,” with the column “S.E.” providing the standard errors of these estimates.
Since effects in terms of log-odds are hard to interpret, they are generally
exponentiated to give odds-ratios (see columns headed “Exp(B)”). On our
request 95% confidence intervals for the odds-ratios were added to the
table. Comparing each ticket class with the third class, we estimate that
the odds of survival were 4.7 times higher for first class passengers (CI
form 3.6 to 6.3) and 2.2 times higher for second class passengers (1.6 to
2.9). Clearly, the chances of survival are significantly increased in the two
higher ticket classes.

The results for the remaining categorical explanatory variables consid-
ered individually are summarized in Table 9.1. Since the observed survival
frequencies of passengers accompanied by many family members were
zero (see Display 9.2c and d), variables sibsp and parch were recoded
before applying logistic regression. Categories 3 and higher were merged
into single categories and survival percentages increased (new variables
sibsp1 and parch1). Table 9.1 shows that the largest increase in odds is
found when comparing the two gender groups — the chance of survival
among female passengers is estimated to be 8.4 times that of males.

It remains to look at the (unadjusted) effect of age. The shape of the
Lowess curve plotted in Display 9.2 suggests that the survival probabilities
might not be monotonically decreasing with age. Such a possibility can
be modeled by using a third order polynomial for the age effect. To avoid
multicollinearities, we center age by its mean (30 years) before calculating
the linear (c_age), quadratic (c_age2), and cubic (c_age3) age terms (a similar
approach was taken in the regression analysis of temperatures in Chapter
4). The three new age variables are then divided by their respective
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standard deviations (14.41, 302.87, and 11565.19) simply to avoid very
small regression coefficients due to very large variable values. Inclusion
of all three age terms under the Covariates list in the Logistic Regression
dialogue box gives the results shown in Display 9.10. We find that the
combined age terms have a significant effect on survival (LR: X 2(3) = 16.2,
p = 0.001). The single parameter Wald tests show that the quadratic and
cubic age terms contribute significantly to explaining variability in survival
probabilities. These results confirm that a linear effect of age on the log-
odds scale would have been too simplistic a model for these data. 

Having found that all our potential predictors are associated with
survival when considered singly, the next step is to model their effects
simultaneously. In this way, we will be able to estimate the effect of each
adjusted for the remainder. A logistic regression model that accounts for
the effects of all five explanatory variables can be fitted by including the
four categorical variables and the three age terms under the Covariates list
of the Logistic Regression dialogue box (see Display 9.6). (The Categorical…
button was again employed to define categorical variables.) Part of the
resulting output is shown in Display 9.11. We note from the “Case
Processing Summary” table that the number of cases included in the
analysis is reduced to 1046 because information on at least one explanatory
variable (age) is missing for 263 passengers. 

The SPSS output does not supply an LR test for the effect of each
variable when added to a model containing all the other explanatory
variables, rather the table of Omnibus Tests provides a test for the effect

Table 9.1 Unadjusted Effects of Categorical Predictor Variables on Survival 
Obtained from Logistic Regressions

Categorical Predictor LR Test OR for Survival 95% CI for OR

Passenger class (pclass)
First vs. third class
Second vs. third class

X 2(2) = 127.8, 
p < 0.001 4.743

2.197
3.581–6.282
1.641–2.941

Gender (sex)
Female vs. male

X 2(1) = 231.2, 
p < 0.001 8.396 6.278–11.229

Number of siblings/spouses 
aboard (sibsp1)
0 vs. 3 or more
1 vs. 3 or more
2 vs. 3 or more

X 2(3) = 14.2, 
p < 0.001

2.831
5.571
4.405

1.371–5.846
2.645–11.735
1.728–11.23

Number of parents/children 
aboard (parch1)
0 vs. 3 or more
1 vs. 3 or more
2 vs. 3 or more

X 2(3) = 46.7, 
p < 0.001

1.225
3.467
2.471

0.503–2.982
1.366–8.802
0.951–6.415
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Display 9.10 LR test and odds ratios for logistic regression of survival on three 
age terms.

Display 9.11 Selected output from logistic regression of survival on all potential 
explanatory variables.
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of all explanatory variables simultaneously. The relevant LR tests can be
generated by careful stepwise model building using the blocking facility
(see later), but here we resort to Wald tests that are generated by default
(Display 9.11). The final “Variables in the Equation” table shows that the
variable parch1 does not contribute significantly to explaining survival
probabilities once the other variables are accounted for (Wald: X2(3) = 5.5,
p = 0.14) and so we refit the model excluding this variable. The new model
output (not shown) indicates that the third order age term is no longer
necessary (Wald: X2(1) = 2.6, p = 0.11) and so this term is also dropped. 

The final main effects model (not shown) contains terms for age,
passenger class, gender, and number of siblings/spouses, each of which
contributes significantly at the 5% level after adjusting for other model
terms. We will leave interpretation of the model until we have investigated
the possibility of interaction effects, but it is worth noting the changes in
odds ratios compared with the unadjusted estimates in Table 9.1 and
Display 9.10 as a result of adjusting for potential confounding effects. 

There are a number of modeling strategies that might be applied to
selecting a final model for our data (see, for example, Kleinbaum and
Klein, 2002). We opt for the simple approach of only considering two-
way interactions of model terms that had each been demonstrated to have
a significant main effect on survival. A potential pitfall of this approach
is that higher order interaction effects that do not coincide with lower
order effects might be missed (a more comprehensive model building
approach can be found in Harrell, 2001). 

We will test the two-way interaction terms one-by-one using the
blocking facility to add the interaction term of interest to the main effects
model identified previously. Display 9.12 illustrates this for the age by sex

Display 9.12 Adding interaction effects to a logistic regression model.
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interaction (for more on blocking see Chapter 4, Display 4.15). An inter-
action effect can be defined in the Logistic Regression dialogue box by
highlighting the variables involved and clicking the >a*b> symbol. This
automatically creates the relevant interaction terms treating contributing
variables as continuous or categorical depending on how the main effects
(which have to be in the model) are defined.

As a consequence of the blocking, the “Omnibus Tests of Model
Coefficients” table shown in the Output Viewer under the heading “Block 2:
Method = Enter” now contains an LR test that compares the model
including the interaction effect in question with a model containing only
main effects. The LR test for assessing the gender by age interaction terms
is shown in Display 9.13 under the row titled “Block.” The table indicates
that two parameters have been added. The first allows the effect of the linear
age term to vary with gender, the second does the same for the quadratic
age term. It appears that an age by gender interaction is helpful in explaining
survival probabilities. We proceed to test the remaining two-way interactions
in the same way, each time including only the interaction term in question
in the second block. 

During this process, we came across an apparent problem when
including the sibsp1 pclass interaction, namely, odds ratio estimates of less
than 0.01 with accompanying confidence intervals ranging from zero to
infinity. This is not an uncommon problem in logistic regression when
observed proportions in factor level combinations are extreme (near zero
or one). In such circumstances, the algorithm for finding the maximum
likelihood solution often suffers convergence problems. A cross-tabulation
of survived and sibsp1 categories within layers defined by pclass (not shown)
confirms that this is indeed the case here. In the second passenger class,
every passenger with three or more spouses/siblings survived. Out of
necessity, we therefore further merge the sibsp1 variable into three cate-
gories, combining the two higher categories into “2 or more” (new variable
sibsp2) and then use this variable in the logistic modeling.

The results of the interaction testing are summarized in Table 9.2,
indicating that interactions between gender and passenger class, gender
and age, passenger class and number of siblings/spouses, and age and

Display 9.13 LR test output for age by gender interaction effect on survival 
probabilities.
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number of siblings/spouses should be considered for inclusion in our
logistic regression model. Fitting such a model followed by an examination
of the relevant Wald tests demonstrates that all interaction terms except
the age by number of siblings/spouses were significant at the 10% level
after adjusting for other interaction terms. So in our chosen final model
shown in Display 9.14, this particular interaction term is excluded. 

It is quite an elaborate process to construct odds ratios for the effect
of predictor variables when the variables are involved in interactions. For
example, the “Exp(B)” value for PCLASS(1) in Display 9.14, 53.2 represents
the odds ratio of survival comparing first-class with third-class ticket

Table 9.2 LR Test Results for Assessing Two-Way 
Interaction Effects on Survival Probabilities

Interaction Involving LR Test 

Variable 1 Variable 2 Deviance Change DF p-Value

pclass sex 52.8 2 <0.001
c_age, c_age2 sex 23.9 2 <0.001
sibsp2 sex 0.84 2 0.66
c_age, c_age2 pclass 7.4 4 0.12
sibsp2 pclass 16.6 4 0.002
c_age, c_age2 sibsp2 9.7 4 0.045

Display 9.14 Parameter estimates from final model for survival probabilities.
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holders for passengers falling into the reference categories of all the factors
interacting with pclass (i.e., for passengers of the second sex category
“male” and the third sibsp2 category “2 or more siblings/spouses”). Careful
recoding and changing of the reference categories is necessary to generate
a complete list of comparisons (for more details on parameterizations in
the presence of interactions, see Kleinbaum and Klein, 2002). 

As an alternative means for interpreting our fitted logistic model, we
construct a graphical display of the log-odds of survival. We opt for
displaying predicted survival probabilities on the log-odds scale since the
logistic model assumes additive effects of the explanatory variables on
this scale. The scatterplots shown in Display 9.15 can be generated using
the following instructions:

� Save passengers’ predicted survival probabilities as a new variable,
pre_1, in the Data View spreadsheet by ticking Predicted Values: Prob-
abilities in the Save New Variables sub-dialogue box when fitting the
final logistic regression model.

� Transform these values into odds using the formula odds = pre_1/(1 –
pre_1) and calculate a log-odds variable, ln_odds by using the
formula ln_odds = ln(odds).

� Generate a passenger class and gender combination factor (class.se)
by using the Compute command with the Numeric Expression 100
pclass + 1 sex (see Chapter 1, Display 1.13). This results in a factor
with six levels. Each level code is a three-digit number; with the
first digit indicating the passenger class, the last the gender, and
middle digit zero.

� Use the Split File command to organize output by groups defined
by sibsp2 (see Chapter 1, Display 1.10).

� Use the Simple Scatterplot dialogue box to produce a scatterplot of
ln_odds against age with markers defined by class.se (see Chapter 2,
Display 2.20).

� Open the Chart Editor and employ the commands Chart – Options –
Fit Line: Subgroups – Quadratic regression from the menu bar to fit
quadratic polynomials to the predicted values within each factor
level combination.

� Carry out further editing of the chart to improve its appearance. 

Display 9.15 illustrates the detected relationships between passenger
characteristics and survival of the sinking of the Titanic:

� Identified predictors: Each of the variables, passenger age, gender,
class of ticket, and number of accompanying siblings/spouses,
make an independent contribution to predicting the chance of
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Display 9.15 Log-odds of survival predicted by the final logistic model by 
passenger age, gender, ticket class, and number of accompanying siblings/spouses. 
The symbols indicate predictions for passenger characteristics observed in the 
sample, the curves extrapolated values.
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survival. Young (<20 years), female, first-class ticket holders are
predicted to have the highest chance of survival and male third-
class ticket holders in their twenties and thirties accompanied by
two or more siblings/spouses the lowest. 

� Age by gender interaction: Survival chances are predicted to gen-
erally decrease with increasing passenger age and to be lower for
males. However, the rate of decrease depends on gender with the
survival chances of male children decreasing more rapidly with
every additional year of age. Thus, the survival advantage of
females over males appears to widen with increasing age.

� Gender by ticket class interaction: Survival chances of females are
predicted to be increasing gradually with higher passenger class,
while for the majority of males (those accompanied by none or
one sibling/spouse), only those carrying first-class tickets are pre-
dicted to have an increased chance of survival. 

� Tentative ticket class by number of siblings/spouses interaction: The
predicted difference in chance of survival between holders of dif-
ferent classes of tickets is largest for passengers accompanied by
two or more siblings/spouses with third-class ticket holders, with
larger families predicted to have particularly low chances of survival.

Display 9.15 (continued).
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9.4 Exercises

9.4.1 More on the Titanic Survivor Data

The presentation of the analyses of the Titanic data in the main text
summarized the results from a number of methods. Generate the full SPSS
output underlying these summaries; specifically: 

� Use simple descriptive tools to assess the possibility of confounding
between the potential predictor variables.

� Use Lowess curves to visualize the potential effect of age on
survival and interactions involving age, gender, and passenger class
for each of the marital status groups.

� Fit logistic regression models of survival with single explanatory
variables to confirm the unadjusted effects shown in Table 9.1.

� Fit logistic regression models including main effects and single
interaction terms to confirm the test results shown in Table 9.2.

9.4.2 GHQ Scores and Psychiatric Diagnosis

The data shown below were collected during a study of a psychiatric
screening questionnaire, the GHQ (Goldberg, 1972), designed to help
identify possible psychiatric cases. Use these data to illustrate why logistic
regression is superior to linear regression for a binary response variable.

(Hint: Use the Weight Cases command to inform SPSS about the cross-
classified format of the data.)

9.4.3 Death Penalty Verdicts Revisited

The data shown in Table 3.5 on race and the death penalty in the U.S.
were analyzed in Chapter 3, Section 3.3.7 by means of the Mantel-Haenszel
test. This test procedure allowed us to assess the association between the
use of the death penalty in a murder verdict and the race of the defendant
within strata defined by the victim’s race. Use logistic regression of the
binary outcome “death penalty” to estimate the (unadjusted) ORs for
defendant’s race and victim’s race and the ORs of each of the factors after
adjusting for the other. Compare OR estimates and confidence intervals
with those constructed in Section 3.3.7. 
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Table 9.3 Caseness by GHQ Score and Gender (n = 278)

Caseness Distribution

GHQ Score
Sex

(0 = Female, 1 = Male) Number of Cases Number of Non Cases

0 0 4 80
1 0 4 29
2 0 8 15
3 0 6 3
4 0 4 2
5 0 6 1
6 0 3 1
7 0 2 0
8 0 3 0
9 0 2 0

10 0 1 0
0 1 1 36
1 1 2 25
2 1 2 8
3 1 1 4
4 1 3 1
5 1 3 1
6 1 2 1
7 1 4 2
8 1 3 1
9 1 2 0
10 1 2 0
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Chapter 10

Survival Analysis: Sexual 
Milestones in Women 
and Field Dependency 
of Children

10.1 Description of Data
A subset of data recorded in a study of the relationship between pubertal
development, sexual milestones, and childhood sexual abuse in women
with eating disorders (Schmidt et al., 1995) is shown in Table 10.1. The
data that will be considered in this chapter are times to first sexual
intercourse for two groups of women: female out-patients (Cases) of an
Eating Disorder Unit who fulfilled the criteria for Restricting Anorexia
Nervosa (RAN), and female polytechnic students (Controls). Some women
had not experienced sex by the time they filled in the study questionnaire,
so their event times are censored at their age at the time of the study (see
Box 10.1). Such observations are marked by a “+” in Table 10.1. For these
data the main interest is in testing whether the time to first sexual
intercourse is the same in both groups.

The second set of data shown in Table 10.2 was collected from a
sample of primary school children. Each child completed the Embedded
Figures Test (EFT; Witkin, Oltman, Raskin, and Karp, 1971), which measures
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Table 10.1 Times to First Sexual Intercourse

Subject

Group
(0 = control, 

1 = case)
Time

(years)
Age at the Time of 
the Study (years) Status

1 1 30+ 30 Censored
2 1 24+ 24 Censored
3 1 12 18 Event
4 1 21 42 Event
5 1 19+ 19 Censored
6 1 18 39 Event
7 1 24 30 Event
8 1 20 30 Event
9 1 24 33 Event

10 1 28 38 Event
11 1 17+ 17 Censored
12 1 18+ 18 Censored
13 1 18+ 18 Censored
14 1 27+ 27 Censored
15 1 31+ 31 Censored
16 1 17+ 17 Censored
17 1 28+ 28 Censored
18 1 29+ 29 Censored
19 1 23 23 Event
20 1 19 35 Event
21 1 19 28 Event
22 1 18+ 18 Censored
23 1 26+ 26 Censored
24 1 22+ 22 Censored
25 1 20+ 20 Censored
26 1 28+ 28 Censored
27 1 20 26 Event
28 1 21+ 21 Censored
29 1 18 22 Event
30 1 18+ 18 Censored
31 1 20 25 Event
32 1 21+ 21 Censored
33 1 17+ 17 Censored
34 1 21+ 21 Censored
35 1 16 22 Event
36 1 16 20 Event
37 1 18 21 Event
38 1 21 29 Event
39 1 17 20 Event
40 1 17 20 Event
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Table 10.1 (continued) Times to First Sexual Intercourse

Subject

Group
(0 = control, 

1 = case)
Time

(years)
Age at the Time of 
the Study (years) Status

41 0 15 20 Event
42 0 13 20 Event
43 0 15 20 Event
44 0 18 20 Event
45 0 16 19 Event
46 0 19 20 Event
47 0 14 20 Event
48 0 16 20 Event
49 0 17 20 Event
50 0 16 21 Event
51 0 17 20 Event
52 0 18 22 Event
53 0 16 22 Event
54 0 16 20 Event
55 0 16 38 Event
56 0 17 21 Event
57 0 16 21 Event
58 0 19 22 Event
59 0 19 36 Event
60 0 17 24 Event
61 0 18 30 Event
62 0 20 39 Event
63 0 16 20 Event
64 0 16 19 Event
65 0 17 22 Event
66 0 17 22 Event
67 0 17 23 Event
68 0 18+ 18 Censored
69 0 16 29 Event
70 0 16 19 Event
71 0 19 22 Event
72 0 19 22 Event
73 0 18 21 Event
74 0 17 19 Event
75 0 19 21 Event
76 0 16 20 Event
77 0 16 22 Event
78 0 15 18 Event
79 0 19 26 Event
80 0 20 23 Event
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field dependence, i.e., the extent to which a person can abstract the logical
structure of a problem from its context (higher scores indicate less abstrac-
tion). Then, the children were randomly allocated to one of two experi-
mental groups and timed as they constructed a 3 3 pattern from nine
colored blocks, taken from the Wechsler Intelligence Scale for Children
(WISC, Wechsler, 1974). The two groups differed in the instructions they
were given for the task. The row group was told to start with a row of
three blocks and the corner group was told to start with a corner of three
blocks. The age of each child in months was also recorded. Children were
allowed up to ten minutes to complete the task, after which time the
experimenter intervened to show children who had not finished the correct
solution. Such censored observations are shown as 600+ in the table. For
this study, it is the effects of the covariates, EFT, age, and experimental
group on time to completion of the task that are of interest. 

10.2 Survival Analysis and Cox’s Regression
Data sets containing censored observations such as those described in the
previous section are generally referred to by the generic term survival
data even when the endpoint of interest is not death but something else
(as it is in both Tables 10.1 and 10.2). Such data require special techniques
for analysis for two main reasons:

� Survival data are usually not symmetrically distributed. They will
often be positively skewed, with a few people surviving a very
long time compared with the majority, so assuming a normal
distribution will not be reasonable.

� Censoring: At the completion of the study; some patients may not
have reached the endpoint of interest. Consequently, the exact sur-
vival times are not known. All that is known is that the survival times
are greater than some value and the observations are said to be
censored (such censoring is more properly known as right censoring).

Table 10.1 (continued) Times to First Sexual Intercourse

Subject

Group
(0 = control, 

1 = case)
Time

(years)
Age at the Time of 
the Study (years) Status

81 0 16 20 Event
82 0 15 21 Event
83 0 17 21 Event
84 0 18 21 Event
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Table 10.2 Times to Completion of the WISC Task

Subject
Time
(sec)

EFT
Score

Age
(months)

Group
(0 = “row group”, 

1 = “corner group”) Status

1 600+ 47.91 103.9  0 Censored
2 600+ 54.45 77.3  0 Censored
3 600+ 47.04 110.6  0 Censored
4 600+ 50.07 106.9  0 Censored
5 600+ 43.65 95.4  0 Censored
6 389.33 31.91 110.6  0 Completed
7 600+ 55.18 101.1  0 Censored
8 290.08 29.33 81.7  0 Completed
9 462.14 23.15 110.3  0 Completed

10 403.61 43.85 86.9  0 Completed
11 258.7 26.52 97.5  0 Completed
12 600+ 46.97 104.3  0 Censored
13 559.25 35.2 88.8  0 Completed
14 600+ 45.86 96.9  0 Censored
15 600+ 36.8 105.7  0 Censored
16 600+ 58.32 97.4  0 Censored
17 600+ 45.4 102.4  0 Censored
18 385.31 37.08 100.3  0 Completed
19 530.18 38.79 107.1  0 Completed
20 600+ 63.2 91.1  0 Censored
21 490.61 38.18 79.6  0 Completed
22 473.15 29.78 101.7  0 Completed
23 545.72 39.21 106.3  0 Completed
24 600+ 42.56 92.3  0 Censored
25 600+ 55.53 112.6  0 Censored
26 121.75 22.08 90.3  1 Completed
27 589.25 50.16 115.5  1 Completed
28 472.21 56.93 117.3  1 Completed
29 600+ 36.09 97  1 Censored
30 359.79 49.65 98.3  1 Completed
31 371.95 34.49 109.3  1 Completed
32 214.88 14.67 96.7  1 Completed
33 272.82 39.24 93.7  1 Completed
34 600+ 32.19 122.9  1 Censored
35 563.55 34.16 98.1  1 Completed
36 600+ 49.12 121.2  1 Censored
37 461.61 41.23 111.4  1 Completed
38 600+ 57.49 101.3  1 Censored
39 600+ 47.86 103.4  1 Censored
40 147.43 34.24 94  1 Completed
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Of central importance in the analysis of survival time data are two
functions used to describe their distribution, namely, the survival function
(survivor function) and the hazard function. Both are described in Box
10.1. To assess the effects of explanatory variables on survival times, a
method known as Cox’s regression is generally employed. This technique
is described briefly in Box 10.2. 

Box 10.1 Survival Function and Hazard Function

Table 10.2 (continued) Times to Completion of the WISC Task

Subject
Time
(sec)

EFT
Score

Age
(months)

Group
(0 = “row group”, 

1 = “corner group”) Status

41 600+ 47.36 93.1  1 Censored
42 600+ 39.06 96  1 Censored
43 600+ 55.12 109.7  1 Censored
44 429.58 47.26 96.5  1 Completed
45 223.78 34.05 97.5  1 Completed
46 339.61 29.06 99.6  1 Completed
47 389.14 24.78 120.9  1 Completed
48 600+ 49.79 95.6  1 Censored
49 600+ 43.32 81.5  1 Censored
50 396.13 56.72 114.4  1 Completed

� The survivor function, S(t) is defined as the probability that
the survival time T is greater than t, i.e.,

� When there is no censoring, the survivor function can be
estimated as

� When there is censoring, the Kaplan-Meier estimate is generally
used; this is based on the use of a series of conditional
probabilities (see Everitt, 2002b) for details and a numerical
example).

S t T tPr

Ŝ t
tNumber of individuals with survival times >  

Number of individuals in the dataset
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Box 10.2 Cox ’s Regression

� To compare the survivor functions between groups, the log-
rank test can be used. This test involves the calculation of the
expected number of “deaths” for each failure time in the data
set, assuming that the chances of dying, given that the subjects
are at risk, are the same for all groups. The total number of
expected deaths is then computed for each group by adding
the expected number of deaths for each failure time. The log-
rank test then compares the observed number of deaths in
each group with the expected number of deaths using a chi-
square test (see Hosmer and Lemeshow, 1999, for further details).

� In the analysis of survival data, it is often of interest to assess
which periods have high or low classes of death (or whatever
the event of interest might be) among those still at risk at the time.

� A suitable approach to characterize this is the hazard function,
h(t), defined as the probability that an individual experiences
the event of interest in a small time interval s, given that the
individuals have survived up to the beginning of the interval.

� The conditioning feature of this definition is very important.
For example, the probability of dying at age 100 is very small
because most people die before that age; in contrast, the
probability of a person dying at age 100 who has reached that
age is much greater.

� The hazard function is a measure of how likely an individual is
to experience an event as a function of the age of the individual;
it is often also known as the instantaneous death rate.

� Although it is easy to calculate the hazard function from sample
data (see Everitt and Rabe-Hesketh, 2001). it is rarely done
since the estimate is generally too noisy. The cumulative hazard
function defined as the integral of the hazard function up to
some time t is generally a more useful characterization of the
instantaneous death rate aspect of survival time data. 

� Of most interest in many studies in which survival times are
collected is to assess the effects of explanatory variables on
these times.

� The main vehicle for modeling in this case is the hazard
function.
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� But modeling the hazard function directly as a linear function
of explanatory variables is not appropriate since h(t) is
restricted to being positive.

� A more suitable model might be 

� The problem with this is that it is only suitable for a hazard
function that is constant over time — such a model is very
restrictive since hazards that increase or decrease with time,
or have some more complex form, are far more likely to occur
in practice. In general, it may be difficult to find the appropriate
explicit function of time to include.

� The problem is overcome in the proportional hazards model
proposed by Cox (1972), namely,

where h0(t) is known as the baseline hazard function, being
the hazard function for individuals with all explanatory vari-
ables equal to zero. This function is left unspecified. (The
estimated cumulative baseline hazard can be estimated from
sample data and is often useful — see the text for more details.) 

� This model forces the hazard ratio between two individuals to
be constant over time (see Everitt, 2002b). In other words, if
an individual has a risk of death at some initial time point that
is twice as high as another individual, then at all later times
the risk of death remains twice as high.

� Proportionality of hazards is an assumption that may not nec-
essarily hold (see text for possible ways to detect departures
from the assumption and alternatives when it is not thought
to hold).

� The model also assumes that the explanatory variables affect
the hazard rate multiplicatively, i.e., the log hazard additively
(see text for how the assumption can be assessed).

� Parameters in Cox’s regression are estimated by a form of
maximum likelihood (for details, see Collett, 2003).

� The interpretation of the parameter j is that exp( j) gives the
hazard ratio, the factor change associated with an increase of
one unit in xj, all other explanatory variables remaining constant.

ln h t x xq q0 1 1 K

ln lnh t h t x xq q0 1 1 K
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10.3 Analysis Using SPSS

10.3.1 Sexual Milestone Times

In the sexual milestone times study, the event of interest is the time of
first sexual intercourse and so the survival times are the ages at first sex.
For some women these times are censored since, at the time of the study,
they had not experienced intercourse; all that is then known is that the
time of first sex is greater than their age at the time of the study. 

The format of the Data View spreadsheet for the times to first sexual
intercourse is very similar to that of Table 10.1. The rows of the spreadsheet
refer to women and the columns provide information on diagnostic group
(factor diagnos), the women’s age at first sex (agesex) (possibly censored),
the women’s age at the time of the study (age), and an event identifier
(sexstat). The latter takes the value “1” when the event of interest, here
first sex, has occurred by the time of the study (survival time not censored).
Otherwise the value is “0,” indicating censoring so that age and agesex
will have the same value and we know only that age at first sex is greater
than this value. 

For this study, the main interest lies in comparing ages at first sex
between the cases and the controls. Before undertaking a formal test, it
might be useful to display the survival times graphically. One possibility
is to display individual survival times and indicate the censoring in the
plot in some way. Such a plot can be created in SPSS by constructing a
drop line chart. The necessary instructions are as follows:

� Rearrange the spreadsheet rows in ascending order of sexstat and
agesex by using the commands Data – Sort Cases – Sort by: sexstat (A)
agesex (A) – Sort Order Ascending – OK.

� Use the Compute command (see Chapter 1, Display 1.13) to generate
a new variable (labeled start) that contains zero values.

� Employ the Split File command to organize all further output by
diagnostic groups (see Chapter 1, Display 1.10).

� The commands Graphs – Line… – Drop-line – Values of individual cases –
Define open the Define Drop-line: Values of Individual Cases dialogue box
where the variables agesex, and start need to be listed under the
Points Represent list and the variable sexstat as the Category Labels
Variable.

The resulting charts are shown in Display 10.1. It is apparent that
almost all censoring occurs among the cases. Although ages at first sex
appear younger in the control group based on the uncensored data, such
comparisons can be misleading when differential censoring is present. It
would help if we could display the distributions of the survival times in
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the two groups satisfactorily, but standard summary displays for continuous
data, such as box plots or histograms (see Chapter 2), are not suitable
for this purpose since they do not take account of the censoring in the
survival times. We need to describe the distributions in a way that allows
for this censoring and this is just what the Kaplan-Meier estimate of the
survival function allows. 

Kaplan-Meier estimates of the survivor functions can be generated
using the commands

Analyze – Survival – Kaplan-Meier… 

This opens the Kaplan-Meier dialogue box where the (potentially right
censored) survival time variable (agesex) is specified under the Time list

Display 10.1 Drop line charts of times to first sex.
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and the censoring variable (sexstat) under the Status list (Display 10.2).
SPSS allows for any variable to supply the censoring information and,
therefore, requires use of the Define Event… button to specify which values
of the censoring variable (here the value “1”) indicate that the event has
occurred. Kaplan-Meier curves can be constructed within categories of a
variable listed under the Factor list. Here we request separate curves to
be constructed for each group (factor diagnos).

The resulting Kaplan-Meier estimates are shown in Display 10.3. For
each group, the observed times (values of agesex) are listed in ascending
order under the column “Time” with the “Status” column noting whether
or not the time value indicates the event of interest (first sex). For each
observed event time, the Kaplan-Meier estimate of the probability of
surviving longer than this time, or of first experiencing sex at a later age
than that observed, is displayed (column “Cumulative Survival”). The
standard errors of the Kaplan-Meier estimates are also provided (column
“Standard Error”). Additional information given is the number of events
that have occurred up to and including the current time (column “Cumu-
lative events”) and the remaining number of subjects in the group with
time observations (column “Number Remaining”). The latter two quantities
are needed for the calculation of the Kaplan-Meier estimates. Here, for
example, we estimate that 79.3% of cases do not experience sex by age
18 years (standard error 6.54%). 

Display 10.3 further provides summary information about group sizes
and censoring, and estimates of group-wise median latencies together with
95% confidence intervals. The latter estimates (24 years in the cases and
17 years in the controls) take account of the censoring in the data and

Display 10.2 Generating Kaplan-Meier estimates of group-wise survival functions.
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differ from naïve group-wise median values of agesex which would not
acknowledge the censoring (especially in the cases where most censoring
occurred). Notably, the two 95% confidence intervals for the median
latencies are not overlapping, suggesting group differences in the distri-
butions of age of first sex. 

The Kaplan-Meier estimates of the survivor functions of cases and
controls become easier to compare if they are both displayed on a single
graph. Such a survival plot can be requested using the Options sub-dialogue
box. (Display 10.4, the Survival table(s) and the Mean and median survival have
previously been supplied by default.) The resulting graph is shown in
Display 10.5 (after some editing and using the commands Chart – Reference

Display 10.3 Kaplan-Meier output for survivor function for times to first sex.

Survival Analysis for AGESEX Age of first sex (years)

Factor DIAGNOS = RAN

Time Status Cumulative Standard Cumulative Number
Survival Error Events Remaining

12 Yes .9750 .0247 1 39
16 Yes 2 38
16 Yes .9250 .0416 3 37
17 Yes 4 36
17 Yes .8750 .0523 5 35
17 No 5 34
17 No 5 33
17 No 5 32
18 Yes 6 31
18 Yes 7 30
18 Yes .7930 .0654 8 29
18 No 8 28
18 No 8 27
18 No 8 26
18 No 8 25
19 Yes 9 24
19 Yes .7295 .0740 10 23
19 No 10 22
20 Yes 11 21
20 Yes 12 20
20 Yes .6300 .0833 13 19
20 No 13 18
21 Yes 14 17
21 Yes .5600 .0875 15 16
21 No 15 15
21 No 15 14
21 No 15 13
22 No 15 12
23 Yes .5134 .0918 16 11
24 Yes 17 10
24 Yes .4200 .0959 18 9
24 No 18 8
26 No 18 7
27 No 18 6
28 Yes .3500 .1024 19 5
28 No 19 4
28 No 19 3
29 No 19 2
30 No 19 1
31 No 19 0

Number of Cases: 40 Censored: 21 ( 52.50%) Events: 19

Survival Time Standard Error 95% Confidence Interval

Mean: 24 1 ( 22, 26 )
(Limited to 31 )
Median: 24 2 ( 20, 28 )
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Line… – Y Scale – Position of Line(s): = 0.5 from the Chart Editor menu to insert
a horizontal line at y = 0.5). 

By definition, both estimated curves start at 1 (100% survival before the
first event) and decrease with time. The estimated curves are step functions
with downward steps occurring at the observed event times. The symbols
indicate times when right censoring occurs. The estimated survival curve

Display 10.3 (continued)

Survival Analysis for AGESEX Age of first sex (years)

Factor DIAGNOS = Control

Time Status Cumulative Standard Cumulative Number
Survival Error Events Remaining

13 Yes .9773 .0225 1 43
14 Yes .9545 .0314 2 42
15 Yes 3 41
15 Yes 4 40
15 Yes 5 39
15 Yes .8636 .0517 6 38
16 Yes 7 37
16 Yes 8 36
16 Yes 9 35
16 Yes 10 34
16 Yes 11 33
16 Yes 12 32
16 Yes 13 31
16 Yes 14 30
16 Yes 15 29
16 Yes 16 28
16 Yes 17 27
16 Yes 18 26
16 Yes 19 25
16 Yes .5455 .0751 20 24
17 Yes 21 23
17 Yes 22 22
17 Yes 23 21
17 Yes 24 20
17 Yes 25 19
17 Yes 26 18
17 Yes 27 17
17 Yes 28 16
17 Yes .3409 .0715 29 15
18 Yes 30 14
18 Yes 31 13
18 Yes 32 12
18 Yes 33 11
18 Yes .2273 .0632 34 10
18 No 34 9
19 Yes 35 8
19 Yes 36 7
19 Yes 37 6
19 Yes 38 5
19 Yes 39 4
19 Yes 40 3
19 Yes .0505 .0345 41 2
20 Yes 42 1
20 Yes .0000 .0000 43 0

Number of Cases: 44 Censored: 1 ( 2.27%) Events: 43

Survival Time Standard Error 95% Confidence Interval

Mean: 17 0 ( 16, 17 )
Median: 17 0 ( 16, 18 )

Survival Analysis for AGESEX Age of first sex (years)

Total Number Number Percent
Events Censored Censored

DIAGNOS RAN 40 19 21 52.50
DIAGNOS Control 44 43 1 2.27

Overall 84 62 22 26.19
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for the control group reaches zero (0% survival) at age 20 years, since by
this time all subjects remaining at risk for the event of interest (first sex)
had experienced the event. By contrast, the estimated survival curve for
the eating disorder group does not reach zero since subjects remain at risk
after the largest observed event time (age at first sex 28 years). 

The estimated survival curves shown in Display 10.5 demonstrate
clearly the older ages at first sex among the cases. At all ages, estimated
proportions of survival (i.e., not having had sex) are higher for the cases

Display 10.4 Requesting a plot of estimated survival curves.

Display 10.5 Estimated survivor functions for times to first sex.
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than for the controls. The median age in each group is estimated as the
time at which the respective survival curve crosses the reference line.
Here the controls cross the line later (at 24 years) than the control group
(at 17 years). 

Although the difference in the survival curves of cases and controls is
very clear from Display 10.5, a more formal assessment of this difference
is often needed. Survivor functions for different groups of subjects can
be compared formally without assuming a particular distribution for the
survival times by means of a log-rank test. SPSS supplies the log-rank test
and its modified versions, the generalized Wilcoxon test (referred to in
SPSS as the Breslow test, Breslow, 1970) and the Tarone-Ware test (Tarone
and Ware, 1977). All three tests assess the null hypothesis that the group-
wise survival functions do not differ by comparing the observed number
of events at each event time with the number expected if the survival
experience of the groups were the same. The various versions of the test
differ in the differential weights they assign to the event times when
constructing the test statistic. The generalized Wilcoxon test uses weights
equal to the number at risk and, therefore, puts relatively more weight
on differences between the survivor functions at smaller values of time.
The log-rank test, which uses weights equal to one at all time points,
places more emphasis on larger values of time and the Tarone-Ware test
uses a weight function intermediate between those (for more details, see
Hosmer and Lemeshow, 1999).

All versions of the log-rank test can be requested via the Compare Factor
Levels sub-dialogue box (Display 10.6). Here, for illustrative purposes, we
request all three. The resulting output is shown in Display 10.7. The value
of the test statistic is largest for the log-rank test, followed by the Tarone-
Ware test, and, finally, the generalized Wilcoxon test. Here, this ranking
reflects larger differences between the survivor functions at older ages,
although the conclusion from each test is the same, namely, that there is
very strong evidence for a difference in the survivor functions of the cases
and the controls (X2(1) = 46.4, p < 0.0001).

Display 10.6 Requesting tests for comparing survival functions between groups.
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In the sexual milestones data, only two groups — cases and controls —
have to be compared. When a factor of interest has more than two levels,
SPSS provides a choice between an overall group test, possibly followed
by pairwise group comparisons, and a linear trend test. The default setting
in the Compare Factor Levels sub-dialogue box provides the overall group test
(see Display 10.6). Pairwise group comparisons can be requested by check-
ing Pairwise over strata. This provides tests for comparing the survivor functions
between any pair of groups. Such comparisons are usually requested post-
hoc, i.e., after a significant overall test result has been obtained, and results
should be corrected for multiple comparisons. Alternatively, a planned test
for trend in survivor functions over the ordered levels of a group factor is
available. This test uses a linear polynomial contrast to compare the groups
and can be requested by checking Linear trend for factor levels and Pooled over
strata (cf Chapter 5 for more on planned vs. post-hoc comparisons).

Finally, further factors affecting survival but not of direct interest
themselves can be adjusted for by carrying out tests for the factor of
interest within strata defined by various combinations of the levels of the
other factors. Such a stratified analysis can be requested by including the
stratification variable under the Strata list of the Kaplan-Meier Dialogue box
(see Display 10.2). For any factor level comparison (trend, overall, or all
pairwise), the Compare Factor Levels sub-dialogue box then provides a choice
between carrying out the requested test(s) for each stratum separately
(check For each stratum or Pairwise for each stratum in Display 10.6) or pooling
the test(s) over strata (check Pooled over strata or Pairwise over strata).

10.3.2 WISC Task Completion Times 

In the context of the WISC task completion times study, the event of
interest is WISC task completion and the survival times are the times taken

Display 10.7 Log-rank tests output for comparing survival functions for times 
to first sex between groups.

 Survival Analysis for AGESEX   Age of first sex (years)

                              Total      Number       Number        Percent
                                         Events      Censored      Censored

  DIAGNOS       RAN              40          19           21          52.50
  DIAGNOS       Control          44          43            1           2.27

Overall                          84          62           22          26.19

 Test Statistics for Equality of Survival Distributions for DIAGNOS

               Statistic        df       Significance

 Log Rank          46.37        1           .0000
 Breslow           36.12        1           .0000
 Tarone-Ware       41.16        1           .0000
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to complete the task. Children remain at risk until they have completed
the task or until the ten minutes allowed has elapsed. 

The Data View spreadsheet for the WISC task completion times in
Table 10.2 contains six variables: a child identifier (subject), the time to
task completion or time out (time), the score on the Embedded Figures
Test (eft), the age of the child in months (age), the experimental group
the child was allocated to (group), and an event identifier (status). The
event identifier takes the value “1” when the event of interest, here
completion of the WISC task, occurs before the end of the ten-minute
test period. If the child ran out of time, its value is “0”, indicating time is
censored. The type of right censoring observed here differs from that in
the sexual milestones study in that censoring can only occur at a single
time point, namely, the end of the test period (600 sec).

For this study, the main interest is in assessing how the WISC task
completion times are affected by the three explanatory variables, eft, age,
and group. We will use Cox’s regression to investigate this question. As
described in Box 10.2, Cox’s regression models the hazard function; in
this study, this amounts to modeling the rate of immediate task completion
at times between 0 and 600 sec. 

A Cox regression model can be requested in SPSS using the commands

Analyze – Survival – Cox Regression… 

This opens the Cox Regression dialogue box shown in Display 10.8. The
box is similar to the Kaplan-Meier dialogue box (see Display 10.2) and a
survival time (time) and censoring variable (status) need to be declared.
In contrast to the latter, the Cox Regression dialogue box allows for several
explanatory variables to be included under the Covariates list. By default,
these variables are considered continuous variables. But they can be
declared to be factors (and appropriately dummy coded) by using the
Categorical… button. All our explanatory variables except group are contin-
uous. But since this two-level factor has already been coded as a binary
dummy variable we were able to include it simply as a covariate. (We
also check CI for exp(B) and Display baseline function in the Options sub-dialogue
box to generate some additional output.)

(Note the similarity between the Cox and logistic regression dialogue
boxes, cf. Display 9.6. In both routines, the Categorical… button is used to
declare categorical explanatory variables and contrasts of interest and the
>a*b> button to declare interactions between variables. The Cox regression
dialogue also provides a blocking facility and the same options for auto-
matic variable selection procedure as the logistic regression routine. We,
therefore, refer the reader to the regression and logistic regression chapters
for more details on general model-building strategies, see Chapters 4 and 9.)
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The output generated by our Cox regression commands is shown in
Display 10.9. The output starts with a “Case Processing Summary” table
providing summary information about the censoring in the data set. For
example, out of 50 observed times, 26 represented successful task com-
pletions. Then, as in logistic regression, SPSS automatically begins by
fitting a null model, i.e., a model containing only an intercept parameter.
A single table relating to this model, namely the “Omnibus Tests for Model
Coefficients” table is provided in the Output Viewer under the heading “Block
0: beginning block”. The table gives the value of –2 Log Likelihood for
the null model, which is needed to construct Likelihood ratio (LR) tests
for effects of the explanatory variables.

The remainder of the output shown in Display 10.9 is provided in the
Output Viewer under the heading “Block 1: Method = Enter” and provides
details of the requested Cox regression model, here a model containing
the covariates eft, age, and group. The second column of the “Omnibus
Tests of Model Coefficients” table (labeled “Overall (score)”) provides a
score test for simultaneously assessing the effects of the parameters in the
model. We find that our three covariates contribute significantly to explain-
ing variability in the WISC task completion hazards (Score test: X2(3) =
26.3, p < 0.0001). The remaining columns of the table provide an LR test
for comparing the model in the previous output block with this latest
one. The change in –2 Log Likelihood relative to the null model also
indicates a significant improvement in model fit after adding the covariates
(LR test: X2(3) = 27, p < 0.001). (As in the logistic regression output, an

Display 10.8 Declaring a Cox regression model.
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LR test for the whole block 1 and one for each model building step within
the block is given. Since all our three terms were added in a single step
within block 1, the two tests are identical.)

The “Variables in the Equation” table provides Wald’s tests for assessing
the effect of each of the variables in the model after adjusting for the
effects of the remaining ones. At the 5% test level, only eft is shown to
significantly affect the hazard function after adjusting for the effects of
group and age (Wald test: X2(1) = 21.3, p < 0.001). The parameter estimates
(log-hazard functions) are also given in the column labeled “B”, with the
column “SE” providing their standard errors. Since effects in terms of log-
hazards are hard to interpret, they are generally exponentiated to give
hazard ratios (see column headed “Exp(B)”); 95% confidence intervals for
the hazard-ratios have been added to the table as requested. The results
show that increasing the EFT score by one point decreases the hazard
function by 10.8% (95% CI from 6.4 to 15.1%). Or, if it is thought more
appropriate to express the effect of EFT as that of a 10 point increase
since the scores in our sample varied between 15 and 63, then the hazard

Display 10.9 Cox regression output for WISC task completion times.

Case Processing Summary

26 52.0%

24 48.0%

50 100.0%

0 .0%

0 .0%

0 .0%

0 .0%

50 100.0%

Eventa

Censored

Total

Cases available
in analysis

Cases with
missing values

Cases with
non-positive time

Censored cases
before the earliest
event in astratum

Total

Cases dropped

Total

N Percent

Dependent Variable: Time to WISC task completiona.

Omnibus Tests of Model Coefficients

187.38 6

-2 Log
Likelihood

Omnibus Tests of Model Coefficients a,b

160.357 26.304 3 .000 27.029 3 .000 27.029 3 .000

-2 Log
Likelihood Chi-square df Sig.

Overall (score)

Chi-square df Sig.

Change From Previous Step

Chi-square df Sig.

Change From Previous Block

Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 187.386a.

Beginning Block Number 1. Method = Enterb.

Variables in the Equation

-.115 .025 21.255 1 .000 .892 .849 .936

-.022 .018 1.450 1 .229 .978 .944 1.014

.634 .409 2.403 1 .121 1.885 .846 4.200

EFT

AGE

GROUP

B SE Wald df Sig. Exp (B) Lower Upper

95.0% CI for Exp (B)
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of task completion decreases by 68.3% (95% CI from 48.3 to 80.5%).
Clearly, children with a greater field-dependent cognitive style take longer
to complete the WISC task.

The “Survival Table” provides the estimated baseline cumulative hazard
function for WISC task completion. Also given are the resulting predicted
survivor function and predicted cumulative hazard function at the mean
values of the covariates. The fitted baseline hazard of the Cox model is
not usually of interest. However, the gradient of the cumulative hazard
curve informs us about the hazard at a given time point. Here we notice
that the hazard of immediate task completion increases somewhat in the
second half of the test period. 

Display 10.9 (continued)

Survival Table

6.980 .992 .008 .008

14.612 .982 .013 .018

23.977 .971 .018 .029

35.700 .958 .023 .043

48.148 .943 .028 .058
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269.192 .722 .069 .326

294.233 .700 .071 .356

321.370 .677 .073 .389

349.949 .654 .075 .424

381.003 .630 .076 .462

413.692 .606 .078 .501

447.572 .581 .079 .542

483.626 .557 .080 .586

524.743 .530 .080 .636

570.167 .501 .081 .691

Time
121.750

147.430

214.880

223.780

258.700

272.820

290.080

339.610

359.790

371.950

385.310

389.140

389.330

396.130

403.610

429.580

461.610

462.140

472.210

473.150

490.610

530.180

545.720

559.250

563.550

589.250

Baseline
Cum Hazard Survival SE Cum Hazard

At mean of covariates

Covariate Means

41.841

100.865
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Mean

© 2004 by Chapman & Hall/CRC Press LLC



It is often helpful to graph the fitted Cox model in some way. Here,
we will try to illustrate the effect of EFT on the predicted survivor function.
To do this, we display the predicted survival curves for fixed values of
the covariates group (value 0 = row group) and age (value 100 months)
but varying values of the covariate eft (EFT scores of 30, 40, and 50). The
predicted survival curve for a set of covariate values can be plotted in
SPSS by using the Plots sub-dialogue box (Display 10.10). By default, the
predicted survival curve is plotted at the mean values of the covariates,
but the values can be changed as indicated in Display 10.10. (SPSS can
display survivor curves for each level of a factor in the same plot using
the Separate Lines for facility. However, this facility is limited to categorical
explanatory variables, so here we have to repeat the procedure three
times, each time generating a survival curve at a single value of EFT.)

The resulting plots are shown in Display 10.11. We have enhanced
the plots by including grid lines for easier comparison across plots (by
double-clicking on the axes in the Chart Editor and requesting Grid for Minor
Divisions). Comparing curves a) to c), the marked increase in survival
probabilities (task noncompletion probabilities) at all times for an extra
10 points EFT is apparent. 

Cox’s regression is a semi-parametric procedure and as such does not
assume that the functional form of the survival time distribution is known.
However, the procedure relies on the proportional hazards assumption
and an assumption of linearity (see Box 10.2). The proportional hazards

Display 10.10 Plotting the predicted survival curve for a set of covariate values.
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Display 10.11 Predicted survival curves for WISC task completion times at 
different values of the EFT covariate. The covariates group and age have been held 
constant at values 0 (row group) and 100 (months age), respectively.
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assumption is expected to hold for each of the covariates included in the
model. For example, for the binary covariate group, the assumption states
that the hazard ratio of completing the task between a child in the row
group and one in the corner group is constant over time. For continuous
covariates such as EFT, the assumption states that proportionality of hazard
functions holds for any two levels of the covariate. In addition, accom-
modating continuous covariates requires the linearity assumption. This
states that their effect is linear on the log-hazard scale. 

Schoenfeld residuals (Schoenfeld, 1982) can be employed to check for
proportional hazards. The residuals can be constructed for each covariate
and contain values for subjects with uncensored survival times. Under the
proportional hazard assumption for the respective covariate, a scatterplot
of Schoenfeld residuals against event times (or log-times) is expected to
scatter in a nonsystematic way about the zero line, and the polygon
connecting the values of the smoothed residuals should have approxi-
mately a zero slope and cross the zero line several times (for more on
residual diagnostics, see Hosmer and Lemeshow, 1999). 

SPSS refers to the Schoenfeld residuals as “partial residuals” and supplies
them via the Save… button on the Cox Regression dialogue box. The resulting
sub-dialogue box is shown in Display 10.12. It allows saving information
regarding the predicted survival probability at the covariate values of each
case and three types of residual diagnostics. We opt for the Schoenfeld
residuals. This results in the inclusion of three new variables, labeled pr1_1
(“partial” residual for eft), pr2_1 (residual for age), and pr3_1 (residual for
group) in our Data View spreadsheet. We then proceed to plot these residuals
against task completion times (time). The resulting scatterplots become
more useful if we include a Lowess curve of the residuals and a horizontal
reference line that crosses the y-axis at its origin.

The resulting residual plots are shown in Display 10.13. The residual
plot for EFT indicates no evidence of a departure from the proportional
hazards assumption for this covariate. As expected, the Lowess curve
varies around the zero reference line in a nonsystematic way
(Display 10.13a). For covariates age and group, the situation is less clear.

Display 10.12 Saving results from a Cox regression.
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Display 10.13 Schoenfeld residual plots for the covariates in the Cox regression 
model for WISC task completion times.
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The smooth lines in the respective residual plots appear to demonstrate
a systematic trend over time (Displays 10.13b and c). For example, for
group the polygon appears to have a negative slope, suggesting that the
hazard ratio of the covariate decreases over time and thus that it has a
nonproportional hazard. However, the plots are only based on 26 events
and, at least for age, the trend is largely influenced by the residuals at
the first two time points. (Note also the two bands of residuals for the
binary covariate. The upper band corresponds to children with group = 1,
i.e., the corner group, and the lower band to those with group = 0.)

Another type of residual used in Cox models is the Martingale residual
(Therneau et al., 1990). These residuals cannot be saved directly by the
Save New variables sub-dialogue box, but they can easily be generated from
Cox-Snell residuals (Cox and Snell, 1968), which are just the estimated
cumulative hazards, and then saved. For a censored case, the Martingale
residual is the negative of the Cox-Snell residual. For an uncensored case,
it is one minus the Cox-Snell residual. 

Covariate-specific Martingale residuals can be used to assess the lin-
earity assumption. They are constructed by generating residuals from Cox
models that set the effect of the covariate in question to zero. These
Martingale residuals can then be plotted against the respective covariate
to indicate the functional form of the relationship between the log-hazard
function and the covariate. 

We can generate Martingale residuals for the continuous covariates EFT
and age using the following series of steps:

� Exclude the covariate in question from the Covariates list on the
Cox Regression dialogue box (see Display 10.8).

� Check Hazard function on the Save New Variables sub-dialogue box
(see Display 10.12).

� Run the Cox regressions to add Cox-Snell residuals to the Data View
spreadsheet (labeled haz_1 and haz_2).

� Use the Compute command to calculate Martingale residuals, mar_1
and mar_2 from the formulae mar_1 = status-haz_1 and mar_2 = status-
haz_2.

We can now plot the Martingale residuals against the respective cova-
riates and enhance the plots by including Lowess curves. The resulting
plots are shown in Display 10.14. For age, assuming a linear relationship
seems reasonable. In fact, the line is almost constant over the levels of
the covariate, indicating that the hazard of task completion is little affected
by age. A linear function also seems a reasonable approximation of the
relationships between the log-hazards and EFT, although, perhaps, the
chance of task completion reaches a minimum value at EFT scores around 50.
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Since some doubt has been shed on the proportional hazards assump-
tion for the covariate group and also because our primary aim was to
predict WISC task completion times rather than formally compare groups,
we now show how to fit a Cox’s regression stratified by our experimental
groups. This approach allows for the possibility of there being different
baseline hazards in the two experimental groups and so avoids the
proportional hazards assumption.

This stratified Cox model can be declared in SPSS by removing the
stratification variable, group, from the Covariates list and instead including
it under the Strata list of the Cox Regression dialogue box (see Display 10.8). 

The SPSS output from a stratified Cox regression looks similar to that
of an unstratified analysis, except that separate baseline hazard functions
are estimated for each level of the stratifying variable. Comparison of the

Display 10.14 Martingale residual plots for the continuous covariates in the 
Cox regression model for WISC task completion times.
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regression parameter output from the stratified model (Display 10.15) with
that from the unstratified model (see Display 10.9) shows that the effects
of EFT and age are almost unchanged. We can, therefore, be relatively
confident that the immediate WISC task completion rates are predicted by
the EFT variable with the rate of completion at any time point decreasing
by 10.8% for every additional point on the EFT (95% CI from 6.3 to 15.1%).

10.4 Exercises

10.4.1 Gastric Cancer

The data below show the survival times in days of two groups of 45 patients
suffering from gastric cancer (data given in Gamerman, 1991). Group 1
received chemotherapy and radiation; group 2 received only chemother-
apy. An asterisk indicates censoring. Plot the Kaplan-Meier survival curves
of each group and test for a difference using the log-rank test. 

Group 1

17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167, 170, 183, 185, 193,
195, 197, 208, 234, 235, 254, 307, 315, 401, 445, 464, 484, 528, 542, 567,
577, 580, 795, 855, 1174*, 1214, 1232*, 1366, 1455*, 1585*, 1622*, 1626*, 1936*

Group2

1, 63, 105, 125, 182, 216, 250, 262, 301, 342, 354, 356, 358, 380, 383, 383,
388, 394, 408, 460, 489, 523, 524, 535, 562, 569, 675, 676, 748, 778, 786,
797, 955, 968, 977, 1245, 1271, 1420, 1460*, 1516*, 1551, 1690*, 1694

Display 10.15 Selected output from a stratified Cox regression of the WISC 
task completion times.

Stratum Statusa

Row group 11 14 56.0%
Corner
group

15 10 40.0%

26 24 48.0%

Stratum

       0
       1

Total

Strata label Event Censored
Censored
Percent

The strata variable is:  GROUPa.

Variables in the Equation

-.115 .025 20.932 1 .000 .892 .849 .937
-.022 .019 1.386 1 .239 .978 .943 1.015

EFT
AGE

B SE Wald df Sig. Exp(B) Lower Upper

95.0% CI for Exp(B)
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10.4.2 Heroin Addicts

The data shown in Table 10.3 give the times that heroin addicts remained
in a clinic for methadone maintenance treatment. Here the endpoint of
interest is not death, but termination of treatment. Some subjects were
still in the clinic at the time these data were recorded or failed to complete
their treatment program (status variable: “1” for subjects who had departed
the clinic on completion of treatment and “0” otherwise). Possible explan-
atory variables for predicting time to complete treatment are maximum
methadone dose, whether or not the addict had a criminal record, and
the clinic in which the addict was treated. Fit a Cox’s regression model
to these data and consider the possibility of stratifying on clinic.

10.4.3 More on Sexual Milestones of Females

The times to first sexual intercourse shown in Table 10.1 were analyzed
using a nonparametric survival analysis in the main body of the text. If
appropriate, reanalyze this data set using a semi-parametric survival anal-
ysis. Specifically:

� Assess the proportional hazards assumption. (Hint: Under the pro-
portional hazards assumption, Kaplan-Meier estimates of the cumu-
lative hazard function in the two groups are expected to be
proportional.)

� Fit a Cox regression and interpret your findings.
� Plot the survivor functions and cumulative hazard functions pre-

dicted by the fitted Cox model and compare these plots with
Kaplan-Meier estimates of the curves.
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Table 10.3 Heroin Addicts Data

Subject Clinic Status Time Prison? Dose Subject Clinic Status Time Prison? Dose

1 1 1 428 0 50 132 2 0 633 0 70
2 1 1 275 1 55 133 2 1 661 0 40
3 1 1 262 0 55 134 2 1 232 1 70
4 1 1 183 0 30 135 2 1 13 1 60
5 1 1 259 1 65 137 2 0 563 0 70
6 1 1 714 0 55 138 2 0 969 0 80
7 1 1 438 1 65 143 2 0 1052 0 80
8 1 0 796 1 60 144 2 0 944 1 80
9 1 1 892 0 50 145 2 0 881 0 80

10 1 1 393 1 65 146 2 1 190 1 50
11 1 0 161 1 80 148 2 1 79 0 40
12 1 1 836 1 60 149 2 0 884 1 50
13 1 1 523 0 55 150 2 1 170 0 40
14 1 1 612 0 70 153 2 1 286 0 45
15 1 1 212 1 60 156 2 0 358 0 60
16 1 1 399 1 60 158 2 0 326 1 60
17 1 1 771 1 75 159 2 0 769 1 40
18 1 1 514 1 80 160 2 1 161 0 40
19 1 1 512 0 80 161 2 0 564 1 80
21 1 1 624 1 80 162 2 1 268 1 70
22 1 1 209 1 60 163 2 0 611 1 40
23 1 1 341 1 60 164 2 1 322 0 55
24 1 1 299 0 55 165 2 0 1076 1 80
25 1 0 826 0 80 166 2 0 2 1 40
26 1 1 262 1 65 168 2 0 788 0 70
27 1 0 566 1 45 169 2 0 575 0 80
28 1 1 368 1 55 170 2 1 109 1 70
30 1 1 302 1 50 171 2 0 730 1 80
31 1 0 602 0 60 172 2 0 790 0 90
32 1 1 652 0 80 173 2 0 456 1 70
33 1 1 293 0 65 175 2 1 231 1 60
34 1 0 564 0 60 176 2 1 143 1 70
36 1 1 394 1 55 177 2 0 86 1 40
37 1 1 755 1 65 178 2 0 1021 0 80
38 1 1 591 0 55 179 2 0 684 1 80
39 1 0 787 0 80 180 2 1 878 1 60
40 1 1 739 0 60 181 2 1 216 0 100
41 1 1 550 1 60 182 2 0 808 0 60
42 1 1 837 0 60 183 2 1 268 1 40
43 1 1 612 0 65 184 2 0 222 0 40
44 1 0 581 0 70 186 2 0 683 0 100
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Table 10.3 (continued) Heroin Addicts Data

Subject Clinic Status Time Prison? Dose Subject Clinic Status Time Prison? Dose

45 1 1 523 0 60 187 2 0 496 0 40
46 1 1 504 1 60 188 2 1 389 0 55
48 1 1 785 1 80 189 1 1 126 1 75
49 1 1 774 1 65 190 1 1 17 1 40
50 1 1 560 0 65 192 1 1 350 0 60
51 1 1 160 0 35 193 2 0 531 1 65
52 1 1 482 0 30 194 1 0 317 1 50
53 1 1 518 0 65 195 1 0 461 1 75
54 1 1 683 0 50 196 1 1 37 0 60
55 1 1 147 0 65 197 1 1 167 1 55
57 1 1 563 1 70 198 1 1 358 0 45
58 1 1 646 1 60 199 1 1 49 0 60
59 1 1 899 0 60 200 1 1 457 1 40
60 1 1 857 0 60 201 1 1 127 0 20
61 1 1 180 1 70 202 1 1 7 1 40
62 1 1 452 0 60 203 1 1 29 1 60
63 1 1 760 0 60 204 1 1 62 0 40
64 1 1 496 0 65 205 1 0 150 1 60
65 1 1 258 1 40 206 1 1 223 1 40
66 1 1 181 1 60 207 1 0 129 1 40
67 1 1 386 0 60 208 1 0 204 1 65
68 1 0 439 0 80 209 1 1 129 1 50
69 1 0 563 0 75 210 1 1 581 0 65
70 1 1 337 0 65 211 1 1 176 0 55
71 1 0 613 1 60 212 1 1 30 0 60
72 1 1 192 1 80 213 1 1 41 0 60
73 1 0 405 0 80 214 1 0 543 0 40
74 1 1 667 0 50 215 1 0 210 1 50
75 1 0 905 0 80 216 1 1 193 1 70
76 1 1 247 0 70 217 1 1 434 0 55
77 1 1 821 0 80 218 1 1 367 0 45
78 1 1 821 1 75 219 1 1 348 1 60
79 1 0 517 0 45 220 1 0 28 0 50
80 1 0 346 1 60 221 1 0 337 0 40
81 1 1 294 0 65 222 1 0 175 1 60
82 1 1 244 1 60 223 2 1 149 1 80
83 1 1 95 1 60 224 1 1 546 1 50
84 1 1 376 1 55 225 1 1 84 0 45
85 1 1 212 0 40 226 1 0 283 1 80
86 1 1 96 0 70 227 1 1 533 0 55
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Table 10.3 (continued) Heroin Addicts Data

Subject Clinic Status Time Prison? Dose Subject Clinic Status Time Prison? Dose

87 1 1 532 0 80 228 1 1 207 1 50
88 1 1 522 1 70 229 1 1 216 0 50
89 1 1 679 0 35 230 1 0 28 0 50
90 1 0 408 0 50 231 1 1 67 1 50
91 1 0 840 0 80 232 1 0 62 1 60
92 1 0 148 1 65 233 1 0 111 0 55
93 1 1 168 0 65 234 1 1 257 1 60
94 1 1 489 0 80 235 1 1 136 1 55
95 1 0 541 0 80 236 1 0 342 0 60
96 1 1 205 0 50 237 2 1 41 0 40
97 1 0 475 1 75 238 2 0 531 1 45
98 1 1 237 0 45 239 1 0 98 0 40
99 1 1 517 0 70 240 1 1 145 1 55

100 1 1 749 0 70 241 1 1 50 0 50
101 1 1 150 1 80 242 1 0 53 0 50
102 1 1 465 0 65 243 1 0 103 1 50
103 2 1 708 1 60 244 1 0 2 1 60
104 2 0 713 0 50 245 1 1 157 1 60
105 2 0 146 0 50 246 1 1 75 1 55
106 2 1 450 0 55 247 1 1 19 1 40
109 2 0 555 0 80 248 1 1 35 0 60
110 2 1 460 0 50 249 2 0 394 1 80
111 2 0 53 1 60 250 1 1 117 0 40
113 2 1 122 1 60 251 1 1 175 1 60
114 2 1 35 1 40 252 1 1 180 1 60
118 2 0 532 0 70 253 1 1 314 0 70
119 2 0 684 0 65 254 1 0 480 0 50
120 2 0 769 1 70 255 1 0 325 1 60
121 2 0 591 0 70 256 2 1 280 0 90
122 2 0 769 1 40 257 1 1 204 0 50
123 2 0 609 1 100 258 2 1 366 0 55
124 2 0 932 1 80 259 2 0 531 1 50
125 2 0 932 1 80 260 1 1 59 1 45
126 2 0 587 0 110 261 1 1 33 1 60
127 2 1 26 0 40 262 2 1 540 0 80
128 2 0 72 1 40 263 2 0 551 0 65
129 2 0 641 0 70 264 1 1 90 0 40
131 2 0 367 0 70 266 1 1 47 0 45

Source: Hand et al., 1994.
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Chapter 11

Principal Component 
Analysis and Factor 
Analysis: Crime in 
the U.S. and AIDS 
Patients’ Evaluations 
of Their Clinicians

11.1 Description of Data
In this chapter, we are concerned with two data sets; the first shown in
Table 11.1 gives rates of various types of crime in the states of the U.S.
The second data set, shown in Table 11.2, arises from a survey of AIDS
patients’ evaluations of their physicians. The 14 items in the survey
questionnaire measure patients’ attitudes toward a clinician’s personality,
demeanour, competence, and prescribed treatment; each item is measured
using a Likert-type scale ranging from one to five. Since seven of the
items are stated negatively, they have been recoded (reflected) so that
one always represents the most positive attitude and five the least positive.
The 14 items are described in Table 11.2.
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Table 11.1 Crime Rates in the U.S.a

State Murder Rape Robbery
Aggravated

Assault Burglary Larceny/Theft

Motor
Vehicle
Theft

ME 2 14.8 28 102 803 2347 164
NH 2.2 21.5 24 92 755 2208 228
VT 2 21.8 22 103 949 2697 181
MA 3.6 29.7 193 331 1071 2189 906
RI 3.5 21.4 119 192 1294 2568 705
CT 4.6 23.8 192 205 1198 2758 447
NY 10.7 30.5 514 431 1221 2924 637
NJ 5.2 33.2 269 265 1071 2822 776
PA 5.5 25.1 152 176 735 1654 354
OH 5.5 38.6 142 235 988 2574 376
IN 6 25.9 90 186 887 2333 328
IL 8.9 32.4 325 434 1180 2938 628
MI 11.3 67.4 301 424 1509 3378 800
WI 3.1 20.1 73 162 783 2802 254
MN 2.5 31.8 102 148 1004 2785 288
IA 1.8 12.5 42 179 956 2801 158
MO 9.2 29.2 170 370 1136 2500 439
ND 1 11.6 7 32 385 2049 120
SD 4 17.7 16 87 554 1939 99
NE 3.1 24.6 51 184 784 2677 168
KS 4.4 32.9 80 252 1188 3008 258
DE 4.9 56.9 124 241 1042 3090 272
MD 9 43.6 304 476 1296 2978 545
DC 31 52.4 754 668 1728 4131 975
VA 7.1 26.5 106 167 813 2522 219
WV 5.9 18.9 41 99 625 1358 169
NC 8.1 26.4 88 354 1225 2423 208
SC 8.6 41.3 99 525 1340 2846 277
GA 11.2 43.9 214 319 1453 2984 430
FL 11.7 52.7 367 605 2221 4372 598
KY 6.7 23.1 83 222 824 1740 193
TN 10.4 47. 208 274 1325 2126 544
AL 10.1 28.4 112 408 1159 2304 267
MS 11.2 25.8 65 172 1076 1845 150
AR 8.1 28.9 80 278 1030 2305 195
LA 12.8 40.1 224 482 1461 3417 442
OK 8.1 36.4 107 285 1787 3142 649
TX 13.5 51.6 240 354 2049 3987 714
MT 2.9 17.3 20 118 783 3314 215
ID 3.2 20 21 178 1003 2800 181
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For the crime data, the main aim of our analysis is to try to uncover
any interesting patterns of crime among the different states. For the AIDS
data, we explore whether there is a relatively simple underlying structure
that produces the observed associations among the 14 questionnaire items.

11.2 Principal Component and Factor Analysis
Two methods of analysis are the subject of this chapter, principal com-
ponent analysis and factor analysis. In very general terms, both can be
seen as approaches to summarizing and uncovering any patterns in a set
of multivariate data, essentially by reducing the complexity of the data.
The details behind each method are quite different.

11.2.1 Principal Component Analysis

Principal component analysis is a multivariate technique for transforming
a set of related (correlated) variables into a set of unrelated (uncorrelated)
variables that account for decreasing proportions of the variation of the
original observations. The rationale behind the method is an attempt to
reduce the complexity of the data by decreasing the number of variables

Table 11.1 (continued) Crime Rates in the U.S.a

State Murder Rape Robbery
Aggravated

Assault Burglary Larceny/Theft

Motor
Vehicle
Theft

WY 5.3 21.9 22 243 817 3078 169
CO 7 42.3 145 329 1792 4231 486
NM 11.5 46.9 130 538 1846 3712 343
AZ 9.3 43 169 437 1908 4337 419
UT 3.2 25.3 59 180 915 4074 223
NV 12.6 64.9 287 354 1604 3489 478
WA 5 53.4 135 244 1861 4267 315
OR 6.6 51.1 206 286 1967 4163 402
CA 11.3 44.9 343 521 1696 3384 762
AK 8.6 72.7 88 401 1162 3910 604
HI 4.8 31 106 103 1339 3759 328

a Data are the number of offenses known to police per 100,000 residents of 50 
states plus the District of Columbia for the year 1986.

Source: Statistical Abstract of the USA, 1988, Table 265.
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Table 11.2 AIDS Patient’s Evaluation of Clinician 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

1 2 2 3 2 2 4 1 1 2 2 1 2 2
2 3 2 3 2 2 3 2 2 3 3 2 1 2
2 2 3 3 4 4 2 2 4 2 2 4 4 2
2 4 2 2 2 4 4 4 2 4 4 4 4 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 4 2 2 2 2 2 1 2 2 2 2 2 1
2 2 1 5 2 1 1 1 1 2 4 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 5
1 1 2 2 2 1 2 1 1 2 2 2 2 1
2 3 2 3 2 2 3 3 3 4 4 3 2 2
2 2 2 2 2 2 4 2 2 2 2 2 2 2
2 1 4 1 2 1 1 1 3 1 1 1 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 2 2 5 4 5 4 3 5 5 2 3 4 4
2 2 2 4 2 3 4 2 2 4 2 2 2 2
1 1 1 1 1 1 2 2 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 2 3 1 1 1
1 1 2 1 1 2 1 1 1 1 4 1 2 1
1 1 1 1 1 1 3 1 1 1 2 1 1 1
1 1 1 1 1 2 3 1 1 1 1 1 1 1
2 3 1 3 1 2 3 2 3 4 2 2 2 3
1 2 1 1 3 1 3 1 1 3 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 4 5 3 4 3 4 5 4 4 2 2
1 1 2 1 1 1 1 1 2 1 5 1 1 1

y y
Q1 My doctor treats me in a friendly manner.
Q2 I have some doubts about the ability of my doctor.
Q3 My doctor seems cold and impersonal.
Q4 My doctor does his/her best to keep me from worrying.
Q5 My doctor examines me as carefully as necessary.
Q6 My doctor should treat me with more respect.
Q7 I have some doubts about the treatment suggested by my doctor.
Q8 My doctor seems very competent and well trained.
Q9 My doctor seems to have a genuine interest in me as a person.
Q10 My doctor leaves me with many unanswered questions about my condition 

and its treatment.
Q11 My doctor uses words that I do not understand.
Q12 I have a great deal of confidence in my doctor.
Q13 I feel I can tell my doctor about very personal problems.

© 2004 by Chapman & Hall/CRC Press LLC



Table 11.2 (continued) AIDS Patient’s Evaluation of Clinician 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

2 3 2 2 2 2 4 2 2 4 4 3 2 3
1 2 1 1 1 2 3 1 1 2 2 2 2 2
1 1 1 1 1 2 2 1 1 2 2 2 1 1
1 1 2 2 1 2 1 1 2 4 1 1 2 1
2 1 1 2 2 1 2 1 2 2 4 2 2 2
1 1 1 2 2 2 2 2 2 2 2 2 2 2
1 1 1 3 3 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1 3 1 1 1
2 1 2 2 2 2 2 1 3 2 2 2 3 2
1 1 1 2 2 2 3 2 1 1 4 2 2 1
2 2 2 2 2 2 2 2 2 2 2 3 2 2
4 4 4 4 2 4 2 3 4 2 4 2 3 2
1 1 1 2 2 2 1 1 1 1 4 1 1 1
2 1 1 2 1 3 4 1 1 3 4 2 2 2
2 3 4 2 2 2 2 1 2 2 5 3 2 2
1 1 1 1 1 1 2 1 2 2 2 1 2 2
2 4 3 2 2 2 4 2 2 4 3 2 2 1
1 2 2 1 3 2 2 2 2 2 1 2 2 1
1 3 2 2 2 2 2 2 2 2 2 2 1 2
1 1 1 4 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1
2 2 2 2 3 4 4 2 2 4 4 2 2 5
1 2 1 2 3 2 2 2 2 2 2 2 2 1
4 4 5 4 4 4 4 3 4 5 4 4 5 4
2 1 1 2 2 2 2 2 2 1 2 1 1 2
2 2 2 2 2 2 2 2 2 2 4 2 2 2
2 2 2 2 2 4 4 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 4 2 2 2
2 2 2 2 2 2 2 2 2 3 4 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 2 2 1 1 1 2 1 1 1
2 4 2 2 3 2 2 4 4 4 2 5 1 2
2 3 2 2 2 2 2 2 2 2 2 2 2 2
2 4 2 4 2 3 3 2 3 4 2 4 4 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 2 2 1 1 1
1 2 1 2 2 2 1 1 1 1 1 2 2 1
1 1 1 1 2 1 1 1 1 2 2 1 1 1
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that need to be considered. If the first few of the derived variables (the
principal components) among them account for a large proportion of the
total variance of the observed variables, they can be used both to provide
a convenient summary of the data and to simplify subsequent analyses.

The coefficients defining the principal components are found by solving
a series of equations involving the elements of the observed covariance
matrix, although when the original variables are on very different scales,
it is wiser to extract them from the observed correlation matrix instead.
(An outline of principal component analysis is given in Box 11.1.) 

Choosing the number of components to adequately summarize a set
of multivariate data is generally based on one of a number of relative ad
hoc procedures:

� Retain just enough components to explain some specified large
percentages of the total variation of the original variables. Values
between 70 and 90% are usually suggested, although smaller values
might be appropriate as the number of variables, q, or number of
subjects, n, increases. 

� Exclude those principal components with variances less than the
average. When the components are extracted from the observed
correlation matrix, this implies excluding components with vari-
ances less than one. (This is a very popular approach but has its
critics; see, for example, Preacher and MacCallam, 2003.)

� Plot the component variances as a scree diagram and look for a clear
“elbow” in the curve (an example will be given later in the chapter).

Often, one of the most useful features of the results of a principal
components analysis is that it can be used to construct an informative
graphical display of multivariate data that may assist in understanding the
structure of the data. For example, the first two principal component
scores for each sample member can be plotted to produce a scatterplot
of the data. If more than two components are thought necessary to
adequately represent the data, other component scores can be used in
three-dimensional plots or in scatterplot matrices. 

Box 11.1 Principal Component Analysis

� Principal components is essentially a method of data reduction
that aims to produce a small number of derived variables that
can be used in place of the larger number of original variables
to simplify subsequent analysis of the data.
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� The principal component variables y1, y2, …, yq are defined to
be linear combinations of the original variables x1, x2, …, xq

that are uncorrelated and account for maximal proportions of
the variation in the original data, i.e., y1 accounts for the
maximum amount of the variance among all possible linear
combinations of x1, …, xq, y2 accounts for the maximum
variance subject to being uncorrelated with y1 and so on. 

� Explicitly, the principal component variables are obtained from
x1, …, xq as follows:

where the coefficients aij (i = 1, …, q, j = 1, …, q) are chosen
so that the required maximal variance and uncorrelated con-
ditions hold.

� Since the variances of the principal components variables could
be increased without limit, simply by increasing the coefficients
that define them, a restriction must be placed on these coef-
ficients.

� The constraint usually applied is that the sum of squares of the
coefficients is one so that the total variance of all the compo-
nents is equal to the total variance of all the observed variables.

� It is often convenient to rescale the coefficients so that their
sum of squares are equal to the variance of that component
they define. In the case of components derived from the
correlation matrix of the data, these rescaled coefficients give
the correlations between the components and the original
variables. It is these values that are often presented as the
result of a principal components analysis. 

� The coefficients defining the principal components are given
by what are known as the eigenvectors of the sample covariance
matrix, S, or the correlation matrix, R. Components derived
from S may differ considerably from those derived from R,
and there is not necessarily any simple relationship between
them. In most practical applications of principal components,

y a x a x a x

y a x a x a x

y a x a x a x

q q

q q

q q q qq q

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2
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(Full details of principal components analysis are given in Everitt and
Dunn, 2001, and Jolliffe, 2002.)

11.2.2 Factor Analysis

Factor analysis (more properly exploratory factor analysis) is concerned with
whether the covariances or correlations between a set of observed variables
can be explained in terms of a smaller number of unobservable constructs
known either as latent variables or common factors. Explanation here means
that the correlation between each pair of measured (manifest) variables
arises because of their mutual association with the common factors. Conse-
quently, the partial correlations between any pair of observed variables,
given the values of the common factors, should be approximately zero. 

Application of factor analysis involves the following two stages:

� Determining the number of common factors needed to adequately
describe the correlations between the observed variables, and
estimating how each factor is related to each observed variable
(i.e., estimating the factor loadings);

� Trying to simplify the initial solution by the process known as
factor rotation.

(Exploratory factor analysis is outlined in Box 11.2.)

the analysis is based on the correlation matrix, i.e., on the
standardized variables, since the original variables are likely to
be on very different scales so that linear combinations of them
will make little sense.

� Principal component scores for an individual i with vector of
variable values xT

i can be obtained by simply applying the
derived coefficients to the observed variables, generally after
subtracting the mean of the variable, i.e., from the equations

where aT
i = [ai1, ai2, L, aiq ], and –x is the mean vector of the

observations.

y

y

i i

iq q i

1 1a x x

a x x

T
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Box 11.2 Exploratory Factor Analysis

� In general terms, exploratory factor analysis is concerned with
whether the covariances or correlations between a set of
observed variables x1, x2, …, xq can be ‘explained’ in terms of
a smaller number of unobservable latent variables or common
factors, f1, f2, …, fk, where k < q and hopefully much less.

� The formal model linking manifest and latent variables is simply
that of multiple regression (see Chapter 4), with each observed
variable being regressed on the common factors. The regression
coefficients in the model are known in this context as the
factor loadings and the random error terms as specific variates
since they now represent that part of an observed variable not
accounted for by the common factors.

� In mathematical terms, the factor analysis model can be written
as follows:

� The equations above can be written more concisely as

where

� Since the factors are unobserved, we can fix their location and
scale arbitrarily, so we assume they are in standardized form
with mean zero and standard deviation one. (We will also
assume they are uncorrelated although this is not an essential
requirement.)

x f f f u

x f f f u

x f f f u

k k

k k

q q q qk k q
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� We assume that the residual terms are uncorrelated with each
other and with the common factors. This implies that, given
the values of the factors, the manifest variables are independent
so that the correlations of the observed variables arise from
their relationships with the factors.

� Since the factors are unobserved, the factor loadings cannot
be estimated in the same way as are regression coefficients in
multiple regression. 

� But with the assumptions above, the factor model implies that
the population covariance matrix of the observed variables, �,
has the form

where � is a diagonal matrix containing the variances of the
disturbance terms on its main diagonal (the specific variances)
and this relationship can be used as the basis for estimating
both the factor loadings and the specific variances.

� There are several approaches to estimation, of which the most
popular are principal factor analysis and maximum likelihood
factor analysis. Details of both are given in Everitt and Dunn
(2001), but in essence the first operates much like principal
component analysis but only tries to account for the common
factor variance, and the second relies on assuming that the
observed variables have a multivariate normal distribution.
Maximum likelihood factor analysis includes a formal testing
procedure for the number of common factors.

� The initial factor solution obtained from either method may
often be simplified as an aid to interpretation by the process
known as factor rotation. Rotation does not alter the overall
structure of a solution, but only how the solution is described;
rotation of factors is a process by which a solution is made
more interpretable without changing its underlying mathemat-
ical properties. Rotated factors may be constrained to be inde-
pendent (orthogonal) or allowed to correlate (oblique) although
in practice both will often lead to the same conclusions. For
a discussion of rotation, see Preacher and MacCallum (2003).

� In most applications, factor analysis stops after the estimation
of the parameters in the model, the rotation of the factors, and
the attempted interpretation of the fitted model. In some appli-
cations, however, the researcher might be interested in finding

� �� �T
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11.2.3 Factor Analysis and Principal Component Compared

Factor analysis, like principal component analysis, is an attempt to explain
a set of data in terms of a smaller number of dimensions than one begins
with, but the procedures used to achieve this goal are essentially quite
different in the two methods. Factor analysis, unlike principal component
analysis, begins with a hypothesis about the covariance (or correlational)
structure of the variables. The hypothesis is that a set of k latent variables
exists (k < q), and these are adequate to account for the interrelationships
of the variables although not for their full variances. Principal component
analysis, however, is merely a transformation of the data, and no assump-
tions are made about the form of the covariance matrix from which the
data arise. This type of analysis has no part corresponding to the specific
variates of factor analysis. Consequently, if the factor model holds but the
variances of the specific variables are small, we would expect both forms
of analysis to give similar results. If, however, the specific variances are
large, they will be absorbed into all the principal components, both retained
and rejected, whereas factor analysis makes special provision for them. 

It should be remembered that both forms of analysis are similar in
one important respect, namely, that they are both pointless if the observed
variables are almost uncorrelated — factor analysis because it has nothing
to explain and principal components analysis because it would simply
lead to components that are similar to the original variables. 

11.3 Analysis Using SPSS

11.3.1 Crime in the U.S.

The Data View spreadsheet for the crime data in Table 11.1 contains seven
variables relating to crime rates for different crime categories (murder, rape,
robbery, assault, burglary, larceny, m theft) and a string state identifier (state).

The main aim of our analysis will be to identify patterns of crime in
different states, but we start by generating simple descriptive summaries
for each of the crime variables (shown in Display 11.1). These statistics

the “scores” of each sample member on the common factors.
But calculation of factor scores is far more problematical than
that for principal component scores and will not be considered
in this chapter. Some discussion of the possibilities can be
found in Everitt and Dunn (2001).
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summarize the univariate distributions of the rates for each of the crime
categories. A correlation matrix of the data (also included in Display 11.1)
shows that the correlations between the crime rates for different types of
crime are substantial suggesting that some simplification of the data using
a principal component analysis will be possible. 

In SPSS principal component analysis is classed as a form of factor
analysis and is requested by using the commands

Analyze – Data Reduction – Factor…

The resulting dialogue box is shown in Display 11.2. This is used to
declare the variables to be factor-analyzed (or to declare the variables that

Display 11.1 Descriptive statistics for the crime rate variables.

Display 11.2 Declaring the manifest variables of a factor model.

Descriptive Statistics

51 1.0 31.0 7.251 4.8169

51 11.6 72.7 34.218 14.5709

51 7 754 154.10 137.816

51 32 668 283.35 148.339

51 385 2221 1207.80 421.073

51 1358 4372 2941.94 763.384

51 99 975 393.84 223.623
51

Murder

Rape

Robbery

Aggrevated assault

Burglary

Larceny or theft

Motor vehicle theft

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Correlation Matrix

1.000 .578 .804 .781 .580 .361 .573

.578 1.000 .530 .659 .721 .635 .569

.804 .530 1.000 .740 .551 .399 .786

.781 .659 .740 1.000 .711 .512 .638

.580 .721 .551 .711 1.000 .765 .578

.361 .635 .399 .512 .765 1.000 .386

.573 .569 .786 .638 .578 .386 1.000

Murder

Rape

Robbery

Aggrevated assault

Burglary

Larceny or theft

Motor vehicle theft

Correlation
Murder Rape Robbery

Aggrevated
assault Burglary

Larceny
or theft

Motor
vehicle theft
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are to be transformed into principal components). A principal component
analysis can then be specified by checking the Extraction… button and
opting for Principal components in the Method list of the Extraction sub-dialogue
box (Display 11.3). 

Here we opt to analyze the Correlation matrix since the variances of rates
for different types of crime differ considerably (e.g., murders are relatively
rare and show small variability, while larceny/theft rates are relatively high
and variable, see Display 11.1). Working with the correlation matrix
amounts to using the crime rates after standardizing each to have unit
standard deviation (Display 11.3). This seems sensible since without
standardization the derived components are likely to be dominated by
single variables with large variances.

To begin, we ask for all (seven) components to be extracted (set Number
of factors to 7), but we also check Screen plot to use as a guide as to whether
fewer than seven components might give an adequate representation of the
data. (Note that SPSS also provides the opportunity for choosing the number
of principal components according to the number of eigenvalues above a
threshold, e.g., above one, which in the case of the correlation matrix
amounts to identifying components with variances more than the average.) 

Finally, we request the Unrotated factor solution since this provides the
numerical values of the coefficients that define the components and so
may help us to interpret them in some way. The resulting output is shown
in Displays 11.4 and 11.5.

The principal components output in Display 11.4 starts with a “Com-
ponent Matrix” table. The coefficients in this table specify the linear function
of the observed variables that define each component. SPSS presents the
coefficients scaled so that when the principal component analysis is based
on the correlation matrix, they give the correlations between the observed
variables and the principal components (see Box 11.1). These coefficients

Display 11.3 Declaring a principal component analysis and deciding the num-
ber of components.
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are often used to interpret the principal components and possibly give
them names, although such reification is not recommended and the fol-
lowing quotation from Marriott (1974) should act as a salutary warning
about the dangers of over-interpretation of principal components:

It must be emphasised that no mathematical method is, or could
be, designed to give physically meaningful results. If a mathe-
matical expression of this sort has an obvious physical meaning,
it must be attributed to a lucky chance, or to the fact that the
data have a strongly marked structure that shows up in analysis.
Even in the latter case, quite small sampling fluctuations can
upset the interpretation, for example, the first two principal
components may appear in reverse order, or may become
confused altogether. Reification then requires considerable skill

Display 11.4 Principal component analysis output for crime rate variables.

Component Matrixa

.825 -.347 -.367 1.867E-02 .135 -.156 .147

.817 .276 -1.18E-02 -.487 .122 2.960E-02 -4.63E-02

.846 -.417 8.929E-02 .161 .189 3.248E-02 -.200

.887 -.123 -.228 1.857E-02 -.277 .261 2.483E-03

.854 .365 -8.62E-03 9.512E-02 -.226 -.263 -8.68E-02

.695 .623 5.302E-02 .263 .189 .120 7.865E-02

.793 -.281 .516 -4.29E-02 -7.98E-02 -1.68E-02 .130

Murder

Rape

Robbery

Aggravated assault

Burglary

Larceny or theft

Motor vehicle theft

1 2 3 4 5 6 7

Component

Extraction Method: Principal Component Analysis.

7 components extracted.a.

Communalities

1.000

1.000

1.000

1.000

1.000

1.000

1.000

Murder

Rape

Robbery

Aggravated assault

Burglary

Larceny or theft

Motor vehicle theft

Initial
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and experience if it is to give a true picture of the physical
meaning of the data.

The table labeled “Communalities” is of more interest when using
exploratory factor analysis and so will be explained later in the chapter.

The final table in Display 11.4, labeled “Total Variance Explained,” shows
how much of the total variance of the observed variables is explained by
each of the principal components. The first principal component (scaled
eigenvector), by definition the one that explains the largest part of the total
variance, has a variance (eigenvalue) of 4.7; this amounts to 67% of the total
variance. The second principal component has a variance of about one and
accounts for a further 14% of the variance and so on. The “Cumulative %”
column of the table tells us how much of the total variance can be accounted
for by the first k components together. For example, the first two (three)
principal components account for 81% (88%) of the total variance.

The scree plot (Display 11.5) demonstrates this distribution of variance
among the components graphically. For each principal component, the
corresponding eigenvalue is plotted on the y-axis. By definition the
variance of each component is less than the preceeding one, but what
we are interested in is the “shape” of the decrease. If the curve shows
an “elbow” at a given value on the x-axis, this is often taken as indicating
that higher order principal components contribute a decreasing amount
of additional variance and so might not be needed. Here there appears
to be a marked decrease in downward slope after the second or third
principal component implying that we can summarize our seven crime
variables by the first two or three principal components. To simplify
matters we shall assume that the two-component solution is adequate. 

Display 11.5 Scree plot for crime rate variables.
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Having decided on the two-component solution, we can return to the
“Component Matrix” table to try to interpret both components. The first
has a high positive correlation with each of the crime variables and is
simply a weighted average of the crime rates and so provides a measure
of a state’s overall level of crime. Such a size component always occurs
when the elements of the correlation matrix are all positive as here (see
Display 11.1). The second principal component is positively correlated
with rape, burglary, and larceny/theft rates and negatively correlated with
murder, robbery, aggravated assault, and motor vehicle theft rates. It is
tempting to conclude that it reflects a differential between petty and capital
crimes; sadly, the loadings on rape and car theft show that things are not
so simple and the example illustrates the potential difficulties of trying to
label components.

To use the first two principal component scores to display the crime
rate data in a scatterplot, we first have to include them in the Data View
spreadsheet by clicking the Scores… button on the Factor Analysis dialogue
box and checking Save as variables in the resulting Factor Scores sub-dialogue
box (Display 11.6). (For computing component scores, we can use the
default settings; the options available apply only to the computation of
factor scores.) The new spreadsheet variables are labelled fac1_1 to fac7_1
and are automatically scaled to unit standard deviation. 

We can now plot the data in the space of the first two components
using the following steps:

� In the Simple Scatterplot dialogue box set Y Axis to fac1_1, X Axis to
fac2_1 and Label Cases by to state (see Chapter 2, Display 2.20). This
generates an initial scattergraph.

� Open the Chart Editor, use the commands Chart – Options… from the
menu bar, and set Case Labels to On and Source of Labels to ID variable
in the resulting dialogue box to turn the markers on.

Display 11.6 Saving factor scores.
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� Use the Chart Editor to insert some reference lines that cross the x-
and y-axes at their origins (using the commands Chart – Reference
Line… – Y Scale (or X Scale) – Position of Line(s): = 0).

� The graph is then edited a little to improve its appearance. 

The principal components plot given in Display 11.7 serves to help
visualize the crime patterns of the fifty states. Scores on the y-axis indicate
the overall level of crime, while scores on the x-axis indicate (perhaps) the
differential between petty and capital crime rates. The District of Columbia
(DC) clearly stands out from the other U.S. states with the highest overall
crime rates and a large differential between petty and capital crimes in favor
of capital crimes (highest rates of murder, robbery, aggravated assault, and
motor vehicle theft). Also notable are New York (NY) and Washington (WA).
New York has an above average overall rate of crime together with a large
differential in rates between crime categories in favor of capital crimes
(robbery, aggravated assault, and motor vehicle theft). By contrast, Wash-
ington has a similar overall level of crime together with a large differential
in rates in favor of petty crimes (burglary, larceny, or theft). 

11.3.2 AIDS Patients’ Evaluations of Their Clinicians

The Data View spreadsheet for the survey data in Table 11.2 contains 14
variables (q1 to q14) as described in the introduction to this chapter. For

Display 11.7 Scatterplot of the first two principal components.
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these data, we shall use exploratory factor analysis to investigate the
underlying structure of the associations between the 14 questionnaire
items. Largely as an exercise in illustrating more of the factor analysis
options in SPSS, we shall use the formal test for the number of factors
provided by the maximum likelihood approach (see Box 11.2) to estimate
the number of factors, but then use principal factor analysis to estimate
the loadings and specific variances corresponding to this number of factors. 

As for principal component analysis, the 14 manifest variables to be
factor-analyzed can be declared in the Factor Analysis box (see Display
11.2). Simple descriptive summaries for each of the items can be requested
via the Factor Analysis box by using the Descriptives… button (Display 11.8).
Here we request univariate descriptive summaries and the observed cor-
relation matrix. (Checking Initial solution affects the factor analysis output;
we will discuss this later.)

The resulting descriptive output is shown in Display 11.9. Each item
has been rated on the same Likert scale (1 to 5) and the standard deviations
of the item ratings did not vary a lot. It seems therefore reasonable, on
this occasion, to model the covariance matrix. We also note that the
correlations between the item ratings are all positive. 

First, we will consider maximum likelihood (ML) factor analysis. This
is a method that assumes multivariate normality and then estimates the
factor model parameters by maximizing the likelihood function. We leave
it as an exercise for the reader to undertake the full factor analysis with
this method (see Exercise 11.4.2) and here concentrate only on its good-
ness-of-fit test, which assesses the null hypothesis that a model with a
given number of factors explains the covariance or correlation structure
of the manifest variables. The test is generally applied by successively

Display 11.8 Requesting descriptive statistics via the Factor Analysis dialogue box.
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increasing the number of factors by one until the test yields an insignificant
result. However, like all tests for model assumptions, the procedure is not
without difficulties. For small samples, too few factors might be indicated
and for large samples, too many. In addition, it is not clear what single
test level should be chosen and the test has been shown very sensitive
to departures from normality. Here we demonstrate the test procedure in
the spirit of an explorative tool rather than a formal test. 

Parameter estimation via maximum likelihood is specified via the
Extraction sub-dialogue box (see Display 11.3). As soon as ML is selected
from the Method list, it is no longer possible to choose the covariance
matrix since SPSS automatically models the correlation matrix. Although
our later analysis will concentrate on the former, given the small differences
in standard deviations for the questionnaire variables, this should not
present a real problem. By fixing the Number of factors, we can fit a series
of factor model with one, two, and three factors. 

The resulting series of tests for model fit is shown in Display 11.10.
We detect significant lack of model fit for the one- and two-factor solutions
with the three-factor model failing to detect departure from the model at
the 5% level (X 2(1) = 69, p = 0.058). So, according to the ML test criterion,
a three-factor model seems reasonable for these data.

Display 11.9 Descriptive statistics for questionnaire variables.
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We now employ principal factor analysis as our method for factor
extraction, i.e., fitting the factor analysis model by estimating factor
loadings and specific variances. Principal factor analysis is similar in many
respects to principal component analysis but uses what is sometimes
known as the reduced covariance or correlation matrix as the basis of the
calculations involved, i.e., the sample covariance or correlation matrix
with estimates of communalities on the main diagonal, where the com-
munality of a variable is the variance accountable for by the common
factors. One frequently used estimate of a variable’s communality is the
square of the multiple correlation of the variable with the other observed
variables. This is the method used in SPSS. From an initial version of the
reduced correlation or covariance matrix, factor loadings can be found
and these can then be used to update the communalities and so on until
some convergence criterion is satisfied (full details are given in Everitt
and Dunn, 2001).

The extraction method can be specified by the Method setting of the
Extraction sub-dialogue box (see Display 11.3); SPSS refers to principal
factor analysis as principal axis factoring. For principal factor analysis,
there is a choice between basing the analysis on the correlation or the
covariance matrix and we choose Covariance matrix. We also set the Number
of factors to 3 to fit a three-factor model and, finally, check Unrotated factor
solution so that the unrotated factor solution output will be given. 

The resulting principal factor analysis output is shown in Display 11.11.
The “Communalities” table shows the communality estimates before and

Display 11.10 ML-based tests of model fit obtained for a series of factor models 
for questionnaire variables.

a) One-factor model

Goodness-of-fit Test

139.683 77 .000
Chi-Square df Sig.

b) Two-factor model

Goodness-of-fit Test

101.589 64 .002
Chi-Square df Sig.

a) Three-factor model

Goodness-of-fit Test

68.960 52 .058
Chi-Square df Sig.
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after factor extraction and on the original (“Raw”) variance scale and after
standardization to unit standard deviation (“Rescaled”). From this table,
we see, for example, that little of the variance of the item “jargon” (only
10.7%) can be attributed to the three common factors. (This is a convenient
point to note that the “Communalities” table given when using principal
components: Display 11.4 simply contains all ones since we requested all
seven components and these will explain the total variance of the observed
variables.)

The “Total Variance Explained” table lists the variances of the principal
components and those of the extracted factors. The percentages of total
variance accounted for by the principal components are included since
they provide an easy-to-compute criteria for choosing the number of factors
(and not because the principal components themselves are of interest).
According to the principal component analysis part of the table our choice
of three factors seems reasonable — the first three eigenvalues are each
greater than the average variance (0.9). Note that the percentage of total
variance accounted for by the extracted factors tends to be lower than that
of the same number of principal components since factor analysis deals
with common factor variance rather than total variance. 

Finally, the “Factor Matrix” table gives the estimated factor loadings of
our three-factor model for the covariance matrix of the questionnaire
variables. When the covariance matrix is modeled, the factor loadings
correspond to the (estimated) covariances between the observed variables

Display 11.11 Principal factor analysis output for questionnaire variables.
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and the factors, and these are given in the “Raw” part of the table. To be
able to compare factor loadings across variables, we need to standardize
the effects to unit standard deviations of the observed variables. In other
words, we need to transform the raw factor loadings into correlations.
These are given in the “Rescaled” part of the table. The solution of a factor

Display 11.11 (continued)
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analysis is not unique and we delay naming the factors until after factor
rotation.

When applying exploratory factor analysis, an attempt is always made
to describe the solution as simply as possible by applying some method
of factor rotation (see Box 11.2). Interpretation is more straightforward if
each variable is highly loaded on at most one factor, and if all factor
loadings are either large and positive or near zero, with few intermediate
values (see Everitt and Dunn, 2001). SPSS provides several methods of
rotation that try to achieve these goals, some of which produce orthogonal
factors (varimax, quartimax, and equamax) and others that lead to an
oblique solution (direct oblimin and promax). Here we shall employ the
varimax procedure. (For technical details of how varimax rotation sets out
to achieve its aim of simplifying the initial factor solution, see Mardia,
Kent, and Bibby, 1979; for details of other rotation techniques, see Preacher
and MacCullum, 2003.)

The Rotation… button on the Factor Analysis dialogue box opens the Rotation
sub-dialogue box which allows specification of the rotation method (see
Display 11.12). (We choose not to use a loadings plot; this is a graphical
display of the rotated solution, although, in our view not particularly helpful
for interpretation, especially for more than two dimensions.)

The “Rotated Factor” matrix is shown in Display 11.13. It is this matrix
that is examined with a view to interpreting the factor analysis. Such
interpretation may be further aided picking out “high” loadings. In practice,
a largely arbitrary threshold value of 0.4 is often equated to “high” in this
context. In SPSS “unimportant” loadings can be suppressed and factor
loadings reordered according to size, as shown in Display 11.14. 

Display 11.12 Requesting a varimax rotation of the initial factor solution.
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The “edited” rotated solution is shown in Display 11.15. We use the
rescaled factor loadings (correlations) to evaluate which variables load on
each factor and so to interpret the meaning of the factor. The rotated
factors might perhaps be labeled “evaluation of doctor’s interpersonal
skills,” “confidence in doctor’s ability” and “confidence in recommended
treatment.” We note that, even after suppressing low loadings, some

Display 11.13 Rotated factor analysis solution for questionnaire variables.

Display 11.14 Suppressing unimportant factor loadings.
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variables load on several factors. For example, careful examination appears
to be affected by factors 1 and 2. We also find that question 11, the use
of jargon by the clinician, does not seem to probe any of these concepts
and should, perhaps, be excluded from the questionnaire. 

The goodness of fit of a factor analysis model can (and should be)
examined by comparing the observed correlation or covariance matrix
with that predicted by the model, i.e., the reproduced correlation or
covariance matrix. The latter can be requested in SPSS by checking
Reproduced in the Descriptives sub-dialogue box (see Display 11.8). The
covariance matrix predicted by our fitted factor analysis model is shown
in Display 11.16. Also included is the residual covariance matrix, the
entries of which are simply the differences between the observed and
predicted covariances. If the factor analysis model fits well, the elements
of the residual correlation matrix will be small. Here, careful examination
of the residual matrix shows that all deviations are less than 0.08 except
for the covariance between use of jargon and being cold and impersonal,
which is underestimated by 0.12. Given our previous comments on the
jargon variable and an average variance of 0.9, these values are probably
sufficiently small to claim that the three-factor model gives an adequate
description of the data. 

Display 11.15 Edited rotated factor analysis solution for questionnaire vari-
ables.
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11.4 Exercises

11.4.1 Air Pollution in the U.S.

The data below relate to air pollution in 41 U.S. cities. Run a principal
component analysis on variables X1, …, X6 and save the first two principal
component scores for each city. Find the correlation between each prin-
cipal component and the level of air pollution (Y). Use the scores to
produce a scatterplot of the cities and interpret your results particularly
in terms of the air pollution level in the cities.

The variables are as follows:

Y: SO2 content of air in micrograms per cubic meter
X1: Average annual temperature in degrees F
X2: Number of manufacturing enterprises employing 20 or more workers
X3: Population size in thousands
X4: Average annual wind speed in miles per hour
X5: Average annual precipitation in inches
X6: Average number of days with precipitation per year

Display 11.16 Reproduced covariance matrix and residual covariance matrix 
for questionnaire variables.
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58E-02 111E-03 533E-02 167E-04 112E-02 317E-02 4.420E-04 016E-02 .745E-02 .889E-02 09E-03 36E-02 .258E-03

22E-02 085E-02 180E-02 467E-02 776E-02 959E-02 .993E-02 974E-03 .033E-02 .430E-02 93E-02 36E-02 58E-03
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Residuals are computed between observed and reproduced covariances.a.
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Table 11.3 Air Pollution Data

Y X1 X2 X3 X4 X5 X6

Phoenix 10 70.3 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 51.9 454 515 9.0 12.95 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 57.3 434 757 9.3 38.89 111
Jacksonville 14 68.4 136 529 8.8 54.47 116
Miami 10 75.5 207 335 9.0 59.80 128
Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Indianapolis 28 52.3 361 746 9.7 38.74 121
Des Moines 17 49.0 104 201 11.2 30.85 103
Wichita 8 56.6 125 277 12.7 30.58 82
Louisville 30 55.6 291 593 8.3 43.11 123
New Orleans 9 68.3 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 41.31 111
Detroit 35 49.9 1064 1513 10.1 30.96 129
Minneapolis 29 43.5 699 744 10.6 25.94 137
Kansas City 14 54.5 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 51.5 181 347 10.9 30.18 98
Albuquerque 11 56.8 46 244 8.9 7.77 58
Albany 46 47.6 44 116 8.8 33.36 135
Buffalo 11 47.1 391 463 12.4 36.11 166
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbus 26 51.5 266 540 8.6 37.01 134
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 61.6 337 624 9.2 49.10 105
Nashville 18 59.4 275 448 7.9 46.00 119
Dallas 9 66.2 641 844 10.9 35.94 78
Houston 10 68.9 721 1233 10.8 48.19 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 59.3 96 308 10.6 44.68 116
Richmond 26 57.8 197 299 7.6 42.59 115
Seattle 29 51.1 379 531 9.4 38.79 164
Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16 45.7 569 717 11.8 29.07 123

Source: Hand et al., 1994.
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11.4.2 More on AIDS Patients’Evaluations of Their Clinicians: 
Maximum Likelihood Factor Analysis

Use maximum likelihood factor analysis to model the correlations between
the AIDS patients’ ratings of their clinicians (Table 11.2). After a varimax
rotation, compare your findings with those from the principal factor
analysis described in the main body of the chapter.

Investigate the use of other rotation procedures (both orthogonal and
oblique) on both the maximum likelihood solution and the principal factor
analysis solution.
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Chapter 12

Classification: Cluster 
Analysis and 
Discriminant Function 
Analysis; Tibetan Skulls

12.1 Description of Data
The data to be used in this chapter are shown in Table 12.1. These data,
collected by Colonel L.A. Waddell, were first reported in Morant (1923)
and are also given in Hand et al. (1994). The data consist of five mea-
surements on each of 32 skulls found in the southwestern and eastern
districts of Tibet. The five measurements (all in millimeters) are as follows:

� Greatest length of skull (measure 1)
� Greatest horizontal breadth of skull (measure 2)
� Height of skull (measure 3)
� Upper face length (measure 4)
� Face breadth between outermost points of cheek bones (measure 5)

According to Morant (1923), the data can be divided into two groups.
The first comprises skulls 1 to 17 found in graves in Sikkim and the
neighboring area of Tibet (Type A skulls). The remaining 15 skulls (Type B
skulls) were picked up on a battlefield in the Lhasa district and are believed
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to be those of native soldiers from the eastern province of Khams. These
skulls were of particular interest since it was thought at the time that
Tibetans from Khams might be survivors of a particular human type,
unrelated to the Mongolian and Indian types that surrounded them.

Table 12.1 Tibetan Skulls Data

Skull Type Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

A 190.5 152.5 145 73.5 136.5
A 172.5 132 125.5 63 121
A 167 130 125.5 69.5 119.5
A 169.5 150.5 133.5 64.5 128
A 175 138.5 126 77.5 135.5
A 177.5 142.5 142.5 71.5 131
A 179.5 142.5 127.5 70.5 134.5
A 179.5 138 133.5 73.5 132.5
A 173.5 135.5 130.5 70 133.5
A 162.5 139 131 62 126
A 178.5 135 136 71 124
A 171.5 148.5 132.5 65 146.5
A 180.5 139 132 74.5 134.5
A 183 149 121.5 76.5 142
A 169.5 130 131 68 119
A 172 140 136 70.5 133.5
A 170 126.5 134.5 66 118.5
B 182.5 136 138.5 76 134
B 179.5 135 128.5 74 132
B 191 140.5 140.5 72.5 131.5
B 184.5 141.5 134.5 76.5 141.5
B 181 142 132.5 79 136.5
B 173.5 136.5 126 71.5 136.5
B 188.5 130 143 79.5 136
B 175 153 130 76.5 142
B 196 142.5 123.5 76 134
B 200 139.5 143.5 82.5 146
B 185 134.5 140 81.5 137
B 174.5 143.5 132.5 74 136.5
B 195.5 144 138.5 78.5 144
B 197 131.5 135 80.5 139
B 182.5 131 135 68.5 136
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There are two questions that might be of interest for these data:

� Do the five measurements discriminate between the two assumed
groups of skulls and can they be used to produce a useful rule
for classifying other skulls that might become available?

� Taking the 32 skulls together, are there any natural groupings in
the data and, if so, do they correspond to the groups assumed by
Morant (1923)?

12.2 Classification: Discrimination and Clustering
Classification is an important component of virtually all scientific research.
Statistical techniques concerned with classification are essentially of two
types. The first (cluster analysis; see Everitt, Landau, and Leese, 2001)
aim to uncover groups of observations from initially unclassified data.
There are many such techniques and a brief description of those to be
used in this chapter is given in Box 12.1. The second (discriminant
function analysis; see Everitt and Dunn, 2001) works with data that is
already classified into groups to derive rules for classifying new (and as
yet unclassified) individuals on the basis of their observed variable values.
The most well-known technique here is Fisher’s linear discriminant func-
tion analysis and this is described in Box 12.2.

Box 12.1 Cluster Analysis

(1) Distance and similarity measures

� Many clustering techniques begin not with the raw data but
with a matrix of inter-individual measures of distance or sim-
ilarity calculated from the raw data.

� Here we shall concentrate on distance measures, of which the
most common is the Euclidean distance given by

where dij is the Euclidean distance for two individuals i and j,
each measured on q variables, xil, xjl, l = 1, …, q.

d x xij il jl

l

q
2

1

1

2
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� Euclidean distances are the starting point for many clustering
techniques, but care is needed if the variables are on very
different scales, in which case some form of standardization
will be needed (see Everitt et al., 2001).

� For a comprehensive account of both distance and similarity
measures, see Everitt et al. (2001).

(2) Agglomerative hierarchical techniques

� These are a class of clustering techniques that proceed by a
series of steps in which progressively larger groups are formed
by joining together groups formed earlier in the process.

� The initial step involves combining the two individuals who are
closest (according to whatever distance measure is being used).

� The process goes from individuals to a final stage in which all
individuals are combined, with the closest two groups being
combined at each stage.

� At each stage, more and more individuals are linked together to
form larger and larger clusters of increasingly dissimilar elements.

� In most applications of these methods, the researcher will want
to determine the stage at which the solution provides the best
description of the structure in the data, i.e., determine the
number of clusters.

� Different methods arise from the different possibilities for defin-
ing inter-group distance. Two widely applied methods are com-
plete linkage in which the distance between groups is defined
as the distance between the most remote pair of individuals,
one from each group, and average linkage in which inter-group
distance is taken as the average of all inter-individual distances
made up of pairs of individuals, one from each group.

� The series of steps in this type of clustering can be conveniently
summarized in a tree-like diagram known as a dendrogram
(examples are given in the text).

(3) k-means clustering

� This is a method of clustering that produces a partition of the
data into a particular number of groups set by the investigator.

� From an initial partition, individuals are moved into other
groups if they are “closer” to its mean vector than that of their
current group (Euclidean distance is generally used here). After
each move, the relevant cluster mean vectors are updated.
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Box 12.2 Fisher’s Linear Discriminant Function

� The procedure continues until all individuals in a cluster are
closer to their own cluster mean vector than to that of any
other cluster.

� Essentially the technique seeks to minimize the variability
within clusters and maximize variability between clusters.

� Finding the optimal number of groups will also be an issue
with this type of clustering. In practice, a k-means solution is
usually found for a range of values of k, and then one of the
largely ad hoc techniques described in Everitt et al. (2001) for
indicating the correct number of groups applied.

� Different methods of cluster analysis applied to the same set
of data often result in different solutions. Many methods are
really only suitable when the clusters are approximately spher-
ical in shape, details are given in Everitt et al. (2001).

� A further aspect of the classification of multivariate data con-
cerns the derivation of rules and procedures for allocating
individuals/objects to one of a set of a priori defined groups
in some optimal fashion on the basis of a set of q measure-
ments, x1, x2, …, xq, taken on each individual or object.

� This is the province of assignment or discrimination tech-
niques.

� The sample of observations for which the groups are known
is often called the training set.

� Here we shall concentrate on the two group situation and on
the most commonly used assignment procedure, namely,
Fisher’s linear discriminant function (Fisher, 1936).

� Fisher’s suggestion was to seek a linear transformation of the
variables

such that the separation between the group means on the
transformed scale, –z1 and –z2, would be maximized relative to
the within group variation on the z-scale.

z a x a x a xp q1 1 2 2 L
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� Fisher showed that the coefficients for such a transformation
are given by

where aT = [a1, a2, L, aq ] and
–
x1 and

–
x2 are the group mean

vectors of sample means in the two groups and S is the pooled
within-groups covariance matrix, calculated from the separate
within-group covariance matrices S1 and S2 as

where n1 and n2 are the sample sizes of each group.
� If an individual has a discriminant score closer to –z1 than to –z2,

assignment is to group 1, otherwise it is to group 2.
� The classification rule can be formalized by defining a cut-off

value –zc given by

� Now, assuming that –z1 is the larger of the two means, the
classification rule of an individual with discriminant score zi is

Assign individual to group 1 if zi – zc > 0 
Assign individual to group 2 if zi – zc 0

(This rule assumes that the prior probabilities of being in each
group are 0.5; see Hand, 1997, for how the rule changes if the
prior probabilities differ from each other.)

� The assumptions under which Fisher’s method is optimal are:
(1) The data in both groups have a normal distribution
(2) The covariance matrices of each group are the same

� If the first assumption is in doubt, then a logistic regression
approach might be used (see Huberty, 1994).

� If the second assumption is not thought to hold, then a quadratic
discriminant function can be derived without the need to pool
the covariance matrices of each group. In practice, this quadratic
function is not usually of great use because of the number of
parameters that need to be estimated to define the function.

� Assignment techniques when there are more than two groups,
for example, canonical variates analysis, are described in Hand
(1998).

a S x x1

1 2

S
1

2
1 1

1 2
1 1 2 2n n

n nS S

z
z z

c
1 2

2
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12.3 Analysis Using SPSS

12.3.1 Tibetan Skulls: Deriving a Classification Rule

The Data View spreadsheet for the data in Table 12.1 contains the five skull
measurements (meas1 to meas5) and a numeric (place) and string version
(type) of the grouping variable. As always, some preliminary graphical
display of the data might be useful and here we will display them as a
scatterplot matrix in which group membership is indicated (see Display
12.1). While this diagram only allows us to assess the group separation
in two dimensions, it seems to suggest that face breadth between outer-
most points of cheek bones (meas5), greatest length of skull (meas1), and
upper face length (meas4) provide the greatest discrimination between the
two skull types.

We shall now use Fisher’s linear discriminant function to derive a
classification rule for assigning skulls to one of the two predefined groups
on the basis of the five measurements available. A discriminant function
analysis is requested in SPSS by the commands:

Analyze – Classify – Discriminant…

Display 12.1 Scatterplot matrix of skull measurements from Table12.1.

Greatest length of
skull

Greatest horizontal 

Height of skull

Upper face length

Face breadth
between

Type of skull 

B

A
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This opens the Discriminant Analysis dialogue box where the potential
discriminating variables are included under the Independents list and the
grouping variable under the Grouping Variable heading (Display 12.2). 

The Statistics sub-dialogue box can be used to request descriptive
statistics and Box’s test of equality of covariance matrices (Display 12.3).
We opt for Means, Separate-groups covariance and the formal test. (We also
check the two options for Function Coefficients. This affects the classification
output and we will discuss the related output tables later.) 

The resulting descriptive output is shown in Display 12.4. Means and
standard deviations of each of the five measurements for each type of
skull and overall are given in the “Group Statistics” table. The within-group
covariance matrices shown in the “Covariance Matrices” table suggest that

Display 12.2 Declaring a discriminant function analysis.

Display 12.3 Requesting descriptive statistics and Box’s test of equality of co- 
variance matrices.
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the sample values differ to some extent, but according to Box’s test for
equality of covariances (tables “Log Determinants” and “Test Results”)
these differences are not statistically significant (F (15,3490) = 1.2, p = 0.25).
It appears that the equality of covariance matrices assumption needed for
Fisher’s linear discriminant approach to be strictly correct is valid here.
(In practice, Box’s test is not of great use since even if it suggests a
departure for the equality hypothesis, the linear discriminant may still be

Display 12.4 Descriptive output for the skulls data.

Group Statistics

174.824 6.7475 17 17.000

139.353 7.6030 17 17.000

132.000 6.0078 17 17.000

69.824 4.5756 17 17.000

130.353 8.1370 17 17.000

185.733 8.6269 15 15.000

138.733 6.1117 15 15.000

134.767 6.0263 15 15.000

76.467 3.9118 15 15.000

137.500 4.2384 15 15.000

179.938 9.3651 32 32.000

139.063 6.8412 32 32.000

133.297 6.0826 32 32.000
72.938 5.3908 32 32.000

133.703 7.4443 32 32.000
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Greatest horizontal
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Upper face length
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outermost points of
cheek bones
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breadth of skull

Height of skull
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Face breadth between
outermost points of
cheek bones
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Greatest horizontal
breadth of skull
Height of skull

Upper face length

Face breadth between
outermost points of
cheek bones

place where skulls
were found
Sikkem or Tibet

Lhasa

Total

Mean Std. Deviation Unweighted Weighted

Valid N (listwise)

Covariance Matrices

45.529 25.222 12.391 22.154 27.972

25.222 57.805 11.875 7.519 48.055

12.391 11.875 36.094 -.313 1.406

22.154 7.519 -.313 20.936 16.769

27.972 48.055 1.406 16.769 66.211

74.424 -9.523 22.737 17.794 11.125

-9.523 37.352 -11.263 .705 9.464

22.737 -11.263 36.317 10.724 7.196

17.794 .705 10.724 15.302 8.661

11.125 9.464 7.196 8.661 17.964
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preferable over a quadratic function.) Here we shall simply assume nor-
mality for our data relying on the robustness of Fisher’s approach to deal
with any minor departure from the assumption (see Hand, 1998).

The type of discriminant analysis can be declared using the Classify…
button in the Discriminant Analysis dialogue box. This opens the Classification
sub-dialogue box (Display 12.5). A linear discriminant function is con-
structed when the default Within-groups covariance matrix is used. (The
Prior Probabilities setting is left at its default setting of All groups equal.) Finally,
we request Summary table and Leave-one-out classification to evaluate the
classification performance of our discriminant rule (see later).

Display 12.4 (continued)

Display 12.5 Requesting a linear discriminant function.

Log Determinants

5 16.164

5 15.773

5 16.727

place where skulls
were found
Sikkem or Tibet

Lhasa

Pooled within-groups

Rank
Log

Determinant

The ranks and natural logarithms of determinants
printed are those of the group covariance matric

Test Results

22.371

1.218

15

3489.901

.249

Box's M

Approx.

df1

df2

Sig.

F

Tests null hypothesis of equal population covariance matric
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The resulting discriminant analysis output is shown in Display 12.6. In
the first part of this display, the eigenvalue (here 0.93) represents the ratio
of the between-group sums of squares to the within-group sum of squares
of the discriminant scores. It is this criterion that is maximized in discrim-
inant function analysis (see Box 12.2). The canonical correlation is simply
the Pearson correlation between the discriminant function scores and
group membership coded as 0 and 1. For the skull data, the canonical
correlation value is 0.694 so that 0.694 0.694 100 = 48.16% of the

Display 12.6 Discriminant analysis output for skulls data.

Eigenvalues

.930a 100.0 100.0 .694
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a.

Wilks' Lambda

.518 18.083 5 .003
Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.

Classification Function Coefficients

1.468 1.558

2.361 2.205

2.752 2.747

.775 .952

.195 .372

-514.956 -545.419
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breadth of skull
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Face breadth between
outermost points of
cheek bones
(Constant)

Sikkem or
Tibet Lhasa
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Fisher's linear discriminant functions

Canonical Discriminant Function Coefficients

.048
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-.003
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-16.222
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variance in the discriminant function scores can be explained by group
differences.

The “Wilk’s Lambda” part of Display 12.6 provides a test for assessing
the null hypothesis that in the population the vectors of means of the five
measurements are the same in the two groups (cf MANOVA in Chapter 5).
The lambda coefficient is defined as the proportion of the total variance
in the discriminant scores not explained by differences among the groups,
here 51.84%. The formal test confirms that the sets of five mean skull
measurements differ significantly between the two sites (X 2(5) = 18.1, p =
0.003). If the equality of mean vectors hypothesis had been accepted,
there would be little point in carrying out a linear discriminant function
analysis.

Next we come to the “Classification Function Coefficients”. This table
is displayed as a result of checking Fisher’s in the Statistics sub-dialogue
box (see Display 12.3). It can be used to find Fisher’s linear discrimimant
function as defined in Box 12.2 by simply subtracting the coefficients
given for each variable in each group giving the following result:

(12.1)

The difference between the constant coefficients provides the sample
mean of the discriminant function scores 

Display 12.6 (continued)

Functions at Group Centroids

Unstandardized canonical discriminant
functions evaluated at group means

-.877

.994

place where skulls
were found
Sikkem or Tibet

Lhasa

1

Function

Standardized Canonical Discriminant Function Coefficients
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 (12.2)

The coefficients defining Fisher’s linear discriminant function in equa-
tion (12.1) are proportional to the unstandardized coefficients given in
the “Canonical Discriminant Function Coefficients” table which is produced
when Unstandardized is checked in the Statistics sub-dialogue box (see
Display 12.3). The latter (scaled) discriminant function is used by SPSS to
calculate discriminant scores for each object (skulls). The discriminant
scores are centered so that they have a sample mean zero. These scores
can be compared with the average of their group means (shown in the
“Functions at Group Centroids” table) to allocate skulls into groups. Here
the threshold against which a skull’s discriminant score is evaluated is

(12.3)

Thus new skulls with discriminant scores above 0.0585 would be assigned
to the Lhasa site (type B); otherwise, they would be classified as type A. 

When variables are measured on different scales, the magnitude of an
unstandardized coefficient provides little indication of the relative contri-
bution of the variable to the overall discrimination. The “Standardized
Canonical Discriminant Function Coefficients” listed attempt to overcome
this problem by rescaling of the variables to unit standard deviation. For
our data, such standardization is not necessary since all skull measurements
were in millimeters. Standardization should, however, not matter much
since the within-group standard deviations were similar across different
skull measures (see Display 12.4). According to the standardized coeffi-
cients, skull height (meas3) seems to contribute little to discriminating
between the two types of skulls.

A question of some importance about a discriminant function is: how
well does it perform? One possible method of evaluating performance is
to apply the derived classification rule to the data set and calculate the
misclassification rate. This is known as the resubstitution estimate and the
corresponding results are shown in the “Original” part of the “Classification
Results” table in Display 12.7. According to this estimate, 81.3% of skulls
can be correctly classified as type A or type B on the basis of the
discriminant rule. However, estimating misclassification rates in this way
is known to be overly optimistic and several alternatives for estimating
misclassification rates in discriminant analysis have been suggested (Hand,
1997). One of the most commonly used of these alternatives is the so-
called leaving one out method, in which the discriminant function is first
derived from only n – 1 sample members, and then used to classify the
observation left out. The procedure is repeated n times, each time omitting

z 30 463.

0 0585 1 2 0 877 0 994. . .
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a different observation. The “Cross-validated” part of the “Classification
Results” table shows the results from applying this procedure (Display
12.7). The correct classification rate now drops to 65.6%, a considerably
lower success rate than suggested by the simple resubstitution rule. 

12.3.2 Tibetan Skulls: Uncovering Groups 

We now turn to applying cluster analysis to the skull data. Here the prior
classification of the skulls will be ignored and the data simply “explored”
to see if there is any evidence of interesting “natural” groupings of the
skulls and if there is, whether these groups correspond in anyway with
Morant’s classification. 

Here we will use two hierarchical agglomerative clustering procedures,
complete and average linkage clustering and then k-means clustering (see
Box 12.1). 

Display 12.7 Classification output for skulls data.

Prior Probabilities for Groups

.500 17 17.000

.500 15 15.000

1.000 32 32.000

place where skulls
were found
Sikkem or Tibet

Lhasa

Total

Prior Unweighted Weighted

Cases Used in Analysis

Classification Resultsb,c

14 3 17

3 12 15

82.4 17.6 100.0

20.0 80.0 100.0

12 5 17

6 9 15

70.6 29.4 100.0

40.0 60.0 100.0

place where skulls
were found
Sikkem or Tibet

Lhasa

Sikkem or Tibet

Lhasa

Sikkem or Tibet

Lhasa

Sikkem or Tibet

Lhasa

Count

%

Count

%

Original

Cross-validateda

Sikkem or
Tibet Lhasa

Predicted Group
Membership

Total

Cross validation is done only for those cases in the analysis. In cross
validation, each case is classified by the functions derived from all cases other
than that case.

a.

81.3% of original grouped cases correctly classified.b.

65.6% of cross-validated grouped cases correctly classified.c.
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A hierarchical cluster analysis can be requested in SPSS using the
commands

Analyze – Classify – Hierarchical Cluster…

This opens the Hierarchical Cluster Analysis dialogue box where the variables
to be used in the cluster analysis are specified under the Variable(s) list
(Display 12.8). Our interest is in clustering cases (skulls) rather than
variables and so we keep Cases checked under the Cluster part of the box.
By checking the Statistics…. button and the Plots… button in this dialogue
box, further boxes appear (Displays 12.9 and 12.10) that allow particular
tables and plots to be chosen.

Display 12.8 Declaring a hierarchical cluster analysis.

Display 12.9 Specifying table output of a hierarchical cluster analysis.
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The Method… button opens the Method sub-dialogue box and determines
the cluster method to be employed (Display 12.11). Hierarchical clustering
involves, essentially, two main steps: First, the data is converted into a
proximity matrix the elements of which are either distances or similarities
between each pair of skulls. These are then used to combine skulls
according to the process outlined in Box 12.2. 

SPSS offers a variety of proximity measures under the Measure part of
the Method sub-dialogue box. The measures are listed according to the
type of data for which they can be used (for more details on proximity
measures, see Everitt et al., 2001). All our five variables are measured on an
interval scale making Euclidean distance an obvious choice (Display 12.11).

Display 12.10 Requesting a dendrogram.

Display 12.11 Specifying the proximity measure and the linking (cluster) 
method.
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(Since all five measurements are in millimeters and each has similar
standard deviations — see Display 12.4 — we will not standardize them
before calculating distances.)

The hierarchical (linkage) method can be chosen from the Cluster Method
drop-down list. SPSS provides all the standard linkage methods, including
complete and average linkage. To start with, we request complete linkage
clustering by selecting Furthest neighbor (furthest neighbor is a synonym for
complete linkage).

The complete linkage clustering output is shown in Display 12.12. The
columns under the “Cluster Combined” part of the “Agglomeration Sched-
ule” table shows which skulls or clusters are combined at each stage of
the cluster procedure. First, skull 8 is joined with skull 13 since the

Display 12.12 Complete linkage output for skulls data.

Agglomeration Schedule

8 13 3.041 0 0 4

15 17 5.385 0 0 14

9 23 5.701 0 0 11

8 19 5.979 1 0 8

24 28 6.819 0 0 17

21 22 6.910 0 0 21

16 29 7.211 0 0 15

7 8 8.703 0 4 13

2 3 8.874 0 0 14

27 30 9.247 0 0 23

5 9 9.579 0 3 13

18 32 9.874 0 0 18

5 7 10.700 11 8 24

2 15 11.522 9 2 28

6 16 12.104 0 7 22

14 25 12.339 0 0 21

24 31 13.528 5 0 23

11 18 13.537 0 12 22

1 20 13.802 0 0 26

4 10 14.062 0 0 28

14 21 15.588 16 6 25

6 11 16.302 15 18 24

24 27 18.554 17 10 27

5 6 18.828 13 22 29

12 14 20.700 0 21 30

1 26 24.597 19 0 27

1 24 25.269 26 23 30

2 4 25.880 14 20 29
2 5 26.930 28 24 31

1 12 36.342 27 25 31

1 2 48.816 30 29 0

Stage
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

Cluster 1 Cluster 2

Cluster Combined

Coefficients Cluster 1 Cluster 2

Stage Cluster First
Appears

Next Stage
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Euclidean distance between these two skulls is smaller than the distance
between any other pair of skulls. The distance is shown in the column
labeled “Coefficients”. Second, skull 15 is joined with skull 17 and so on.
SPSS uses the number of the first skull in a cluster to label the cluster.
For example, in the fourth step, skull 19 is joined with the cluster consisting
of skull 8 and skull 13 (labeled “cluster 8” at this stage). When clusters
are joined, the “Coefficient” value depends on the linkage method used.
Here with complete linkage, the distance between “cluster 8” and skull 19
is 5.98 millimeters since this is the largest distance between skull 19 and
any of the members of “cluster 8” (distance to skull 13). 

The columns under the heading “Stage Cluster First Appears” show
the stage at which a cluster or skull being joined first occurred in its
current form. For example, “cluster 8” joined at stage 4 was constructed
at stage 1. Finally, the “Next Stage” column shows when a cluster constructed
at the current stage will be involved in another joining. For example,
“cluster 8” as constructed in stage 4 (skulls 8, 13, and 19) will not be used
until stage 8 where it is linked with skull 7.

It is often easier to follow how groups and individual skulls join
together in this process in a dendrogram, which is simply a tree-like

Display 12.12 (continued)

* * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * *

Dendrogram using Complete Linkage

Rescaled Distance Cluster Combine

C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+

8
13
19
7
9
23
5
16
29
6
18
32
11
15
17
2
3
4
10
21
22
14
25
12
27
30
24
28
31
1
20
26
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diagram that displays the series of fusions as the clustering proceeds for
individual sample members to a single group. The dendrogram in this
case is shown in the output in Display 12.12. (However, note that SPSS
rescales the joining distances to the range 0 to 25.) 

The dendrogram may, on occasions, also be useful in deciding the
number of clusters in a data set with a sudden increase in the size of the
difference in adjacent steps taken as an informal indication of the appro-
priate number of clusters to consider. For the dendrogram in Display 12.12,
a fairly large jump occurs between stages 29 and 30 (indicating a three-
group solution) and an even bigger one between this penultimate and
the ultimate fusion of groups (a two-group solution).

To now apply average linkage clustering based on Euclidean distances
between pairs of skulls, we need to select Between-groups linkage as the
Cluster Method in the Method sub-dialogue box (see Display 12.11). The
resulting dendrogram is shown in Display 12.13. The initial steps agree
with the complete linkage solution, but eventually the trees diverge with
the average linkage dendrogram successively adding small clusters to one
increasingly large cluster. (Note that the joining distances are not compa-
rable across different dendograms due to differential rescaling.) For the

Display 12.13 Dendrogram from average linkage clustering of skulls data.

* * * * * * H I E R A R C H I C A L C L U S T E R A N A L Y S I S * * * * * *

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+

8
13
19
7
9

23
5
16
29
21
22
32
6

11
24
28
18
20
14
25
12
27
30
31
26
1

15
17
3
2
4

10
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average linkage dendrogram in Display 12.13 it is not clear where to cut
the dendrogram to give a specific number of groups.

Finally, we can apply the k-means clustering procedure by using the
commands

Analyze – Classify – K-Means Cluster…

This opens the K-Means Cluster Analysis dialogue box where the variables
used in the clustering need to be specified (Display 12.14). The number
of clusters needs to be set by the investigator. Here we request a two-group
cluster solution since the complete linkage dendrogram has suggested the
possibility of a “natural” partition into two sets of skulls. 

The resulting cluster output is shown in Display 12.15. The “Initial
Cluster Centers” table shows the starting values used by the algorithm (see
Box 12.1). The “Iteration History” table indicates that the algorithm has
converged and the “Final Cluster Centers” and “Number of Cases in each
Cluster” tables describe the final cluster solution. In k-means clustering,
the cluster centers are determined by the means of the variables across
skulls belonging to the cluster (also known as the centroids). As is typical
for a two-group partition based on positively correlated variables, the
centroids indicate a cluster with higher scores on all of the five measure-
ment variables (cluster 1, containing 13 skulls) and one with lower scores
(cluster 2, containing 19 skulls). We also see that the clusters differ most
on meas1 (greatest length of skulls), meas5 (face breadth between outer-
most points of cheek bones), and meas4 (upper face length). 

How does the k-means two-group solution compare with Morant’s orig-
inal classification of the skulls into types A and B? We can investigate this
by first using the Save… button on the K-Means Cluster Analysis dialogue box
to save cluster membership for each skull in the Data View spreadsheet. The
new categorical variable now available (labeled qcl_1) can be cross-tabulated

Display 12.14 Declaring a k-means cluster analysis.
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with assumed skull type (variable place). Display 12.16 shows the resulting
table; the k-means clusters largely agree with the skull types as originally
suggested by Morant, with cluster 1 consisting primarily of Type B skulls
(those from Lhasa) and cluster 2 containing mostly skulls of Type A (from
Sikkim and the neighboring area of Tibet). Only six skulls are wrongly
placed.

Display 12.15 k-means cluster output for skulls data.

Initial Cluster Centers

200.0 167.0

139.5 130.0

143.5 125.5

82.5 69.5

146.0 119.5

Greatest length of skull

Greatest horizontal
breadth of skull
Height of skull

Upper face length

Face breadth between
outermost points of
cheek bones

1 2

Cluster

Iteration Historya

16.626 16.262

.000 .000

Iteration
1

2

1 2

Change in Cluster
Centers

Convergence achieved due to no or small distance
change. The maximum distance by which any center
has changed is .000. The current iteration is 2. The
minimum distance between initial centers is 48.729.

a.

Final Cluster Centers

188.4 174.1

141.3 137.6

135.8 131.6

77.6 69.7

138.5 130.4

Greatest length of skull

Greatest horizontal
breadth of skull
Height of skull

Upper face length

Face breadth between
outermost points of
cheek bones

1 2

Cluster

Number of Cases in each Cluster

13.000
19.000

32.000

.000

1
2

Cluster

Valid

Missing
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12.4 Exercises

12.4.1 Sudden Infant Death Syndrome (SIDS)

The data below were collected by Spicer et al. (1987) in an investigation
of sudden infant death syndrome (SIDS). Data are given for 16 SIDS
victims and 49 controls. All children had a gestational age of 37 or more
weeks and were regarded as full term. Four variables were recorded for
each infant as follows:

� Heart rate in beats per minute (HR)
� Birthweight in grams (BW)
� A measurement of heart and lung function (Factor68)
� Gestational age in weeks (Gesage)

Also given is the group variable, 1 = control, 2 = SIDS.

1. Using only the birthweight and heart and lung function measure-
ment, construct a scatterplot of the data that shows the location of
Fisher’s linear discriminant function and labels the infants by group.
(Hint: save the group membership predicted for each child accord-
ing to the discriminant rule.)

2. Find Fisher’s linear discriminant function based on all four variables
and determine into which group this would assign an infant with
the following four measurements:

HR = 120.0, BW = 2900, Factor68 = 0.500, Gesage = 39

Display 12.16 Cross-tabulation of cluster-membership by site.

Cluster Number of Case * place where skulls were found Crosstabulation

2 11 13

11.8% 73.3% 40.6%

15 4 19

88.2% 26.7% 59.4%

17 15 32

100.0% 100.0% 100.0%

Count

% within place where
skulls were found

Count
% within place where
skulls were found

Count
% within place where
skulls were found

1

2

Cluster Number
of Case

Total

Sikkem or
Tibet Lhasa

place where skulls
were found

Total
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Table 12.2 SIDS Data

Group HR BW Factor68 Gesage

1 115.6 3060 0.291 39
1 108.2 3570 0.277 40
1 114.2 3950 0.39 41
1 118.8 3480 0.339 40
1 76.9 3370 0.248 39
1 132.6 3260 0.342 40
1 107.7 4420 0.31 42
1 118.2 3560 0.22 40
1 126.6 3290 0.233 38
1 138 3010 0.309 40
1 127 3180 0.355 40
1 127.7 3950 0.309 40
1 106.8 3400 0.25 40
1 142.1 2410 0.368 38
1 91.5 2890 0.223 42
1 151.1 4030 0.364 40
1 127.1 3770 0.335 42
1 134.3 2680 0.356 40
1 114.9 3370 0.374 41
1 118.1 3370 0.152 40
1 122 3270 0.356 40
1 167 3520 0.394 41
1 107.9 3340 0.25 41
1 134.6 3940 0.422 41
1 137.7 3350 0.409 40
1 112.8 3350 0.241 39
1 131.3 3000 0.312 40
1 132.7 3960 0.196 40
1 148.1 3490 0.266 40
1 118.9 2640 0.31 39
1 133.7 3630 0.351 40
1 141 2680 0.42 38
1 134.1 3580 0.366 40
1 135.5 3800 0.503 39
1 148.6 3350 0.272 40
1 147.9 3030 0.291 40
1 162 3940 0.308 42
1 146.8 4080 0.235 40
1 131.7 3520 0.287 40
1 149 3630 0.456 40
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12.4.2 Nutrients in Food Data

The data given below show the nutrients in different foodstuffs. (The
quantity involved is always three ounces.) Use a variety of clustering
techniques to discover if there is any evidence of different groups of
foodstuffs and whether or not the different techniques you use produce
the same (or very similar) solutions.

12.4.3 More on Tibetan Skulls

1. The results given in the chapter show that the Type A and Type
B skulls can be discriminated using the five measurements avail-
able, but do all five variables contribute to this discrimination?

Table 12.2 (continued) SIDS Data

Group HR BW Factor68 Gesage

1 114.1 3290 0.284 40
1 129.2 3180 0.239 40
1 144.2 3580 0.191 40
1 148.1 3060 0.334 40
1 108.2 3000 0.321 37
1 131.1 4310 0.45 40
1 129.7 3975 0.244 40
1 142 3000 0.173 40
1 145.5 3940 0.304 41
2 139.7 3740 0.409 40
2 121.3 3005 0.626 38
2 131.4 4790 0.383 40
2 152.8 1890 0.432 38
2 125.6 2920 0.347 40
2 139.5 2810 0.493 39
2 117.2 3490 0.521 38
2 131.5 3030 0.343 37
2 137.3 2000 0.359 41
2 140.9 3770 0.349 40
2 139.5 2350 0.279 40
2 128.4 2780 0.409 39
2 154.2 2980 0.388 40
2 140.7 2120 0.372 38
2 105.5 2700 0.314 39
2 121.7 3060 0.405 41
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Investigate using the stepwise variable selection procedures avail-
able in SPSS.2.

2. Save the discriminant function scores for each skull and then
construct a histogram of the scores. Comment on the shape of the
histogram.

3. Compare the two-group solution from complete and average link-
age clustering to both the two-group solution from k-means clus-
tering and the Type A/Type B classification. Comment on the
results. Display each solution and the original classification of the
skulls in the space of the first two principal components of the data. 

Table 12.3 Nutrients in Foodstuffs

Food
Energy

(Calories)
Protein

(Grams)
Fat

(Grams)
Calcium

(Milligrams)
Iron

(Milligrams)

BB Beef, braised 340 20 28 9 2.6
HR Hamburger 245 21 17 9 2.7
BR Beef, roast 420 15 39 7 2.0
BS Beef, steak 375 19 32 9 2.5
BC Beef, canned 180 22 10 17 3.7
CB Chicken, broiled 115 20 3 8 1.4
CC Chicken, canned 170 25 7 12 1.5
BH Beef heart 160 26 5 14 5.9
LL Lamb leg, roast 265 20 20 9 2.6
LS Lamb shoulder, roast 300 18 25 9 2.3
HS Smoked ham 340 20 28 9 2.5
PR Pork, roast 340 19 29 9 2.5
PS Pork, simmered 355 19 30 9 2.4
BT Beef tongue 205 18 14 7 2.5
VC Veal cutlet 185 23 9 9 2.7
FB Bluefish, baked 135 22 4 25 0.6
AR Clams, raw 70 11 1 82 6.0
AC Clams, canned 45 7 1 74 5.4
TC Crabmeat, canned 90 14 2 38 0.8
HF Haddock, fried 135 16 5 15 0.5
MB Mackerel, broiled 200 19 13 5 1.0
MC Mackerel, canned 155 16 9 157 1.8
PF Perch, fried 195 16 11 14 1.3
SC Salmon, canned 120 17 5 159 0.7
DC Sardines, canned 180 22 9 367 2.5
UC Tuna, canned 170 25 7 7 1.2
RC Shrimp, canned 110 23 1 98 2.6
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