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1 Lyapunov stability

Let us consider the following autonomous system Σ of ordinary differential
equations:

ẋ(t) = f(x(t)), (1)

where f : D → Rn is a locally Lipshitz map from a domain D ⊂ Rn into Rn.
Let us assume that the point x̄ is an equilibrium point of (1), i.e. f(x̄) = 0.

Let us assume that x̄ 6= 0. Consider the change of the coordinates y :=
x− x̄. Let x(·) be a solution of (1) defined on some open interval I, and let
y(t) := x(t)− x̄ for each t ∈ I. Then for each t ∈ I we have that

ẏ(t) = ẋ(t) = f(x(t)) = f(y(t) + x̄) = g(y(y)),

where g(y) := f(y + x̄). Clearly, g(0) = f(x̄) = 0.
In the new variable y the system Σ has equilibrium at the origin. Thus,

without loss of generality, we may assume that the function f satisfies f(0) =
0, and we shall study the stability of (1) at the origin.

Definition 1.1

The equilibrium point 0 of (1) is

♦ stable, if for each ε > 0, there exists δ = δ(ε) > 0 such that for
each point x0 with ‖x0‖ < δ the corresponding solution x(·, x0) of
(1) starting from the point x0 is defined on the interval [0,+∞) and
‖x(t, x0)‖ ≤ ε for each t ∈ [0,+∞).

♦ asymptotically stable, if it is stable and δ > 0 can be chosen such that

lim
t↑∞

x(t, x0) = 0.

Theorem 1.2 Let the origin be an equilibrium point for (1). Let the function
V : D → R be continuously differentiable on a neighborhood D of the origin
and V (0) = 0 and V (x) > 0 for each x ∈ D\{0}. If V̇f (x) := V ′(x)f(x) ≤ 0,
then (1) is stable at the origin. Moreover, if V̇f (x) < 0 for each x ∈ D \ {0},
then (1) is asymptotically stable at the origin.
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Proof. Let us fix an arbitrary ε > 0. We choose r ∈ (0, ε) so that the ball
Br := {x ∈ Rn : ‖x‖ ≤ r} ⊂ D. We set Sr := {x ∈ Rn : ‖x‖ = r} and let
α := min

x∈Br

V (x). Then α > 0 (because V (x) > 0 for each x ∈ D \ {0}). Take

β ∈ (0, α) and define the set Ωβ := {x ∈ Br : V (x) ≤ β}. Clearly, 0 ∈ Ωβ.
Let us assume that Ωβ ∩ Sr 6= ∅. Then there exists a point p ∈ Ωβ ∩ Sr,

and hence V (p) ≥ α > β ≥ V (p). The obtained contradiction shows that
Ωβ ∩ Sr = ∅, and hence Ωβ ⊂ Br.

Let x0 be an arbitrary point of the set Ωβ and let x(·, x0) be the corre-
sponding solution of (1) starting from x0. Since

V (x(t, x0)) = V (x0) +
∫ t

0
V̇f (x(s, x0)) ds ≤ V (x0)

the solution x(·, x0) of (1) remains in the closed bounded set Ωβ, and hence
it is defined on [0,+∞).

Since the function V is continuous and V (0) = 0 < β, there exists δ > 0
so that V (x) < β for each x ∈ Bδ, i.e. Bδ ⊂ Ωβ ⊂ Br ⊂ Bε which shows that
the origin is a stable equilibrium point of (1).

Next we prove that the inequality V̇f (x) < 0 for each x ∈ D \ {0} implies
that (1) is asymptotically stable at the origin. Let x0 be an arbitrary point
of Bδ and let x(·) denote the corresponding solution of (1) starting from x0.
We shall prove that lim

t↑∞
x(t) = 0, i.e. for each µ > 0 there exists T > 0 such

that ‖x(t, x0)‖ < µ for each t > T .
Since V (x(t)) is monotonically decreasing and bounded from below by

zero, V (x(t)) → c ≥ 0 as t tends to infinity. Let us assume that c > 0.
Since V (0) = 0 and V is a continuous function, there is d ∈ (0, ε) such that
V (x) < c for each x ∈ Bd, i.e. Bd ⊂ Ωc. Then the relation V (x(t))→ c ≥ 0
as t tends to infinity implies that the trajectory x(t) lies outside the ball Bd

for each t ≥ 0. Let
−γ = max

x∈{y∈Br: ‖y‖≥d}
V (x).

Then it follows that

V (x(t)) = V (x0) +
∫ t

0
V̇f (x(s) ds ≤ V (x0)− γt.

Since the right-hand side of this inequality tends to −∞ as t → ∞, this
inequality contradicts the assumption that c > 0. Hence c = 0, and hence
V (x(t))→ 0 as t→∞.
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Let µ > 0 be an arbitrary positive number. By repetition of the previous
arguments, there exists ν > 0 such that Ων ⊂ Bµ. Because V (x(t)) → 0 as
t tends to infinity, there exists T > 0 such that 0 ≤ V (x(t)) < ν for each
t > T , i.e. x(t) ∈ Ων ⊂ Bµ for each t > T . Hence x(t) → 0 as t → ∞ and
this completes the proof. ♦

Example 1.3 Consider the first order differential equation

ẋ = −g(x),

where g : (−ε, ε)→ R is a locally Lipschitz function such that g(0) = 0 and
xg(x) > 0 for each x ∈ (−ε, ε). It follows from here that g(x) > 0 for x > 0
andg(x) < 0 for x < 0.

Let us consider the function V : (−ε, ε)→ R which is defined as follows:

V (x) =
∫ x

0
g(y) dy.

Clearly, V is continuously differentiable, V (0) = 0 and V (x) > 0 for each
x 6= 0 (For example, consider the case x > 0. Then

V (x) = V (0) +
∫ x

0
g(y) dy > 0.

The case x < 0 can be considered in the same way.) Since

V̇−g(x) = −g(x)2 < 0 for each x ∈ (−ε, ε) \ {0},

we may conclude that this system is asymptotically stable at the origin.

Further we denote V̇f just by V̇ when the right-hand side of the equation
ẋ = f(x) is known.

Example 1.4 Consider the pendulum equation without friction{
ẋ = y
ẏ = −g

l
sinx

on the set Ω = {(x, y) : x ∈ (−2π, 2π)}. As a Lyapunov function we consider
the total mechanical energy of the pendulum

E(x, y) =
1

2
ml2y2 +mgl(1− cosx).
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Direct calculation shows that

Ė(x, y) = 12ml2y(−g
l

sinx) +mgl(sinx)y = 0.

Hence, the pendulum without friction is stable at the origin.

Example 1.5 Consider the pendulum equation with friction{
ẋ = y
ẏ = −g

l
sinx− k

m
y

on the set Ω = {(x, y) : x ∈ (−2π, 2π)}. As a Lyapunov function we consider
again the total mechanical energy of the pendulum

E(x, y) =
1

2
ml2y2 +mgl(1− cosx).

Direct calculation shows that

Ė(x, y) = ml2y(−g
l

sinx− k

m
y) +mgl(sinx)y = −kl2y2 ≤ 0.

Hence, we can conclude that the pendulum with friction is stable at the
origin.

Next, let us look for a more general Lyapunov function of the form

V (x, y) =
1

2
(x, y)

(
a b
b c

)(
x
y

)
+mgl(1− cosx),

where a > 0 and ac − b2 > 0 (this means that the corresponding quadratic
form is positive definite. Clearly,

V (x, y) =
1

2
ax2 + bxy +

1

2
cy2 + d(1− cosx).

Then
V̇ (x) = axẋ+ b(ẋy + xẏ) + cyẏ + dẋ sinx,

i.e.
V̇ (x) = ẋ(ax+ by +mgl sinx) + ẏ(bx+ cy).

By simplifying we obtain

V̇ (x) = y(ax+ by +mgl sinx) + (bx+ cy)

(
−g
l

sinx− k

m
y

)
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and

V̇ (x) = xy

(
a− b k

m

)
+ y2

(
b− c k

m

)
+ y sinx

(
d− cg

l

)
− x sinxb

g

l
.

We set d =
k

m
, b =

1

2

k

m
, a =

1

2

k2

m2
and c = 1. Then we obtain that

V̇ (x) = −1

2

k

m
y2 − 1

2

k

m

g

l
x sinx < 0 for (x, y) 6= (0, 0).

The term x sinx < 0 for each |x| < π. Hence, we can conclude that the
pendulum with friction is asymptotically stable at the origin.

2 LaSalle’s Invariance Principle

Studying the pendulum equation with friction (cf. Example 1.5), we saw
that Ė(x, y) = −(k/m)y2 ≤ 0. Notice that Ė is negative everywhere except
the line l := {(x, y) : y = 0}, where Ė ≡ 0. If a trajectory of the considered
pendulum stays on l, then y(t) ≡ 0. This implies that ẋ(t) = y(t) ≡ 0.
So, that x(t) ≡ constant. Also, y(t) ≡ 0 implies that ẏ(t) ≡ 0, and hence,
sinx(t) = 0. Thus on the interval −π < x < π the equality sin x = 0 is
possible only for x = 0. Therefore, E(x(t), y(t)) degreases to zero as t→∞.

This arguments shows that if a positive function V is known such that
its derivative V̇ is negative semidefinite and no trajectory of the system can
stay on the set {x ∈ Rn : V̇ (x) = 0} except the origin, then the origin is
asymptotically stable. This leads to the so called LaSalle invariance principle.

To formulate and prove this principle, we introduce some notions: Let
ϕ(·, x0) be a solution of (1) starting from the point x0. A point p is said
to be a positive limit point of the trajectory ϕ(·, x0) if there is a sequence
tn →∞ as n→∞ such that ϕ(tn, x0)→ p as n→∞. The set of all positive
limit points is called positive limit set and is denoted by Ω(x0). A set S is
said to be (positive, negative) invariant with respect to (1), if ϕ(t, x0) ∈ S for
each point x0 ∈ S and for each real t (t ≥ 0, t ≤ 0). We also say that ϕ(·, x0)
approaches the set S as t → ∞, if for each ε > 0 there is T > 0 such that
dist (ϕ(t, x0), S) < ε for each t > T . Here dist (x, S) := inf(‖x−y‖ : y ∈ S).

Imagine that a stable limit cycle L exist for a two-dimensional system (1).
This stable cycle L is the positive limit set Ω(x0) for each point x0 which is
sufficiently closed to L, i.e. the solution ϕ(t, x0) approaches L as t → ∞.
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Notice, that the solution ϕ(t, x0) does not approach any fixed point of L, i.e.
the relation ϕ(t, x0) → L as t → ∞ does not imply that lim

t→∞
ϕ(t, x0) exists.

Also, notice that an equilibrium point and a limit cycle are invariant sets.
Also the set Mc := {x ∈ Rn : V (x) ≤ c} is positive invariant whenever
V̇ (x) ≤ 0. Indeed, let x0 be an arbitrary point of Mc and let ϕ(·, x0) be the
solution of (1) starting from the point x0. Then we have that

V (ϕ(t, x0)) = V (x0) +
∫ t

0
V̇ (ϕ(s, x0)) ds ≤ V (x0),

and hence, the set Mc := {x ∈ Rn : V (x) ≤ c} is positive invariant.
A fundamental property of the limit sets is given by the following

Lemma 2.1 Let the solution ϕ(·, x0) of (1), starting from the point x0, be
bounded. Then the set Ω(x0) is nonempty compact connected and invariant
with respect to (1). Moreover, lim

t→∞
ϕ(t, x0) = Ω(x0).

Proof. Let tk be an arbitrary sequence tending to +∞ as k → +∞. Since
the sequence ϕ(tk, x0) is bounded, there exist a convergent sequence {xkj}∞j=1

of the sequence {xk}∞k=1. Let {xkj} → x as j → ∞. Then x ∈ Ω(x0). So
that the set Ω(x0) is nonempty.

Let us choose b > 0 so that ‖ϕ(t, x0)‖ ≤ b for each t ≥ 0. Let x be an
arbitrary point of the set Ω(x0). Then there exists a sequence {tk} → ∞ as
k →∞ such that ϕ(tk, x0)→ x as k →∞. From the inequality ‖ϕ(tk, x0)‖ ≤
b follows that ‖x‖ ≤ b. Because x is an arbitrary point of the set Ω(x0), we
obtain that Ω(x0) is bounded.

Let {xk}∞k=1 be an arbitrary sequence of points belonging to Ω(x0) such
that xk → x as k → ∞. Then for every positive integer k there exists a
sequence tkj tending to +∞ as j →∞ such that ϕ(tkj , x0)→ xk as j →∞.
Then there exists two positive integers J1 and J2 such that tkj > k for each
j > J1 and ‖ϕ(tkj , x0) − xk‖ < 1/k for each j > J2. Let us set τk = tkj̄
for some j̄ > max(J1, J2) Then τk > k and ‖ϕ(τk, x0) − xk‖ < 1/k for each
positive integer k. Let ε > 0 be arbitrary. Then there exists positive integers
N1 and N2 such that

‖ϕ(τk, x0)− xk‖ <
ε

2
for each positive integer k > N1

and
‖xk − x‖ <

ε

2
for each positive integer k > N2.
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It follows from here that

‖ϕ(τk, x0)− x‖ < ε for each positive integer k > max(N1, N2),

and hence ϕ(τk, x0)→ x as k →∞. In this way we have proved that the set
Ω(x0) is closed, and so it is compact (because it is bounded).

Let us assume that the set Ω(x0) is not connected. Then there exist two
open sets U and V such that

Ω(x0) ∩ U 6= ∅, Ω(x0) ∩ V 6= ∅, U ∩ V 6= ∅, Ω(x0) ⊂ U ∪ V.

Then there exists two sequences tk →∞ and sk →∞ as k →∞ such that

ϕ(sk, x0) ∈ U, ϕ(tk, x0) ∈ V and sk < tk < sk+1 for each positive integer k.

Because for each positive integer k the set {ϕ(t, x0) : t ∈ [sk, tk]} is a
connected curve going from a point in U to a point in V , there must exist
a point τk ∈ [sk, tk] such that ϕ(τk, x0) ∈ Rn \ (U ∪ V ). On the other hand,
since the sequence {ϕ(τk, x0)}∞k=1 is bounded, there exists a point x̄ and a
subsequence τkj →∞ as j →∞ such that (ϕ(τkj , x0)→ x̄ as j →∞. Hence
the point x̄ belongs to Ω(x0). But this is impossible, the set Rn \ (U ∪ V )
is closed, and hence the inclusion ϕ(τkj , x0) ∈ Rn \ (U ∪ V ) implies that
x̄ ∈ Rn \ (U ∪ V ). Then

x̄ 6∈ U ∪ V ⊃ Ω(x0) 3 x̄.

The obtained contradiction shows that the set Ω(x0) is connected.
Let x be an arbitrary point of the set Ω(x0) and let ϕ(t, x) be the solution

of (1) starting from the point x. Since x ∈ Ω(x0), there exists a sequence
tk tending to +∞ as k → ∞ such that ϕ(tk, x0) → x as j → ∞. We set
xk = ϕ(tk, x0). By the uniqueness of the solution of (1) one can prove that

ϕ(t, xk) = ϕ(t, ϕ(tk, x0)) = ϕ(t+ tk, x0)

Since tk →∞ as k →∞ we have that there exists K > 0 such that tk+ t > 0
for each positive integer k > K. From the continuity of solutions of (1) with
respect to the initial point we have that

ϕ(t, x) = lim
k→∞

ϕ(t, xk) = lim
k→∞

ϕ(t+ tk, x0),
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and hence x ∈ Ω(x0). Hence the set Ω(x0) is invariant with respect to the
trajectories of (1).

Let us assume that ϕ(t, x0) does not approach the set Ω(x0) as t → ∞.
This means that there exists ε0 > 0 and a sequence {tk} → ∞ as k → ∞
such that dist (ϕ(tk, x0),Ω(x0)) ≥ ε0 for each positive integer k. Since the
sequence {ϕ(tk, x0)}∞k=1 is bounded, there exists a point x̄ and a subsequence
tkj → ∞ as j → ∞ such that (ϕ(tkj , x0) → x̄ as j → ∞. Hence the point
x̄ belongs to Ω(x0). But this is impossible, because the distance between x̄
and the set Ω(x0) is greater than or equal to ε0. The obtained contradiction
shows that ϕ(t, x0) approaches the set Ω(x0) as t→∞. ♦

Now we can formulate the LaSalle invariance principle:

Theorem 2.2 Let S be a closed and bounded subset of Rn which is positive
invariant with respect to the trajectories of (1). Let V : S → R be a contin-
uously differentiable function such that V̇ (x) ≤ 0 for each point x ∈ S. We
set Z = {x ∈ S : V̇ (x) = 0} and let M be the largest subset of S which is
invariant with respect to the trajectories of (1). Then every solution of (1)
starting from a point of S approaches M as t→∞.

Proof. Let x0 be an arbitrary point of S and let ϕ(·, x0) be the solution
of (1) starting from x0. Because the set S is closed bounded and positive
invariant with respect to the trajectories of (1), ϕ(·, x0) is well defined on
[0,+∞). Since V̇ (x) ≤ 0 for each point x ∈ S, the function V (ϕ(·, x0)) is
monotonically decreasing on [0,+∞). Since V is continuous and the set S
is bounded and closed, the set {V (ϕ(t, x0)) : t ≥ 0} is bounded. Let c
denote its exact lower limit, i.e. c ≤ V (ϕ(t, x0)) for each t ≥ 0, and for each
positive integer n there exists tn ≥ 0 so that V (ϕ(tn, x0)) < c+ 1/n. Hence,
c ≤ V (ϕ(t, x0)) < c+1/n for each t ≥ t/n which means that V (ϕ(t, x0))→ c
as t → ∞. Note that Ω(x0) is contained in S (because S is closed and
positive invariant with respect to the trajectories of (1). Then for a each
point p ∈ Ω(x0) there exists a sequence {tk} → ∞ as k → ∞ such that
ϕ(tk, x0)→ p. The continuity of V implies that V (p) = V (ϕ(tk, x0))→ c as
k → ∞. Hence V (p) = c for each p ∈ Ω(x0). Because the set S is invariant
with respect to the trajectories of (1), V̇ (p) = 0 for each p ∈ Ω(x0). Thus

Ω(x0) ⊂M ⊂ Z ⊂ S.
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Since ϕ(t, x0) is bounded, ϕ(t, x0) approaches the set Ω(x0) as t→∞. Hence
x(t) approaches M as t→∞. This completes the proof. ♦

Let V : Rn → R be a continuously differentiable function. It is said that
V is radially unbounded if lim

‖x‖→∞
V (x) =∞. For example, V1(x, y) = x4 + y4

is radially unbounded. But the function V1(x, y) = (x − y)4 is not radially
unbounded. If the function V is radially unbounded, then for each real
number c the set Sc := {x ∈ Rn : V (x) ≤ c} is bounded.

Corollary 2.3 (Barbashin and Krasovskii’s theorem) Let 0 be an equi-
librium point for (1), D be a neighborhood of the origin and V : D → R be a
continuously differentiable, positive definite function such that V̇ (x) ≤ 0 for
each point x ∈ D. Let Z = {x ∈ D : V̇ (x) = 0}. Assume that the only
solution of (1) that can stay forever in Z is the trivial solution. Then the
origin is asymptotically stable. If, in addition, V is radially unbounded, then
the origin is globally asymptotically stable.

Example 2.4 Consider the system

ẋ = y
ẏ = −g(x)− h(y),

where
g(0) = 0, xg(x) < 0 for each 0 6= x ∈ (−ε, ε)

and
g(0) = 0, yh(y) < 0 for each 0 6= y ∈ (−ε, ε)

Clearly, the origin is an isolated equilibrium of this system. This system can
be considered as a generalized pendulum equation with h(y) as the friction
term. Hence, as a Lyapunov function can be taken the following energy-like
function:

V (x, y) :=
∫ x

0
g(s)ds+

1

2
y2

We set D := {(x, y) : x ∈ (−ε, ε), y ∈ (−ε, ε)}. Then V is positive definite
on D. The derivative of V with respect to the trajectories of this system is

V̇ (x, y) = yg(x) + y(−g(x)− h(y)) ≤ 0.

Note that if V̇ (x, y) = 0 then y must be equal to 0. Hence,

Z = {(x, y) : V̇ (x, y) = 0} = {(x, y) : y = 0}.
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Assume that (x(t), y(t)) is a trajectory belonging to the set Z. Then y(t) ≡ 0.
From here we obtain that ẋ(t) ≡ 0, and so, x(t) ≡ c, where the constant
c ∈ (−ε, ε). On the other hand, y(t) ≡ 0 implies that ẏ(t) ≡ 0, and so,
g(c) = 0. Since the last equality is possible only for c = 0, the origin is
asymptotically stable.

Example 2.5 Consider the system

ẋ = −y − x3

ẏ = x5.

We set V (x, y) := x2 + y2. Then one can check that

V̇ (x, y) = −2xy − 2x4 + 2x5y,

and hence
V̇ (ε,±ε) = ±ε2 − 2ε4 ± ε5 = ±ε2(1∓ ε2 + ε3).

Thus the function V changes its sign if we choose ε > 0 to be sufficiently
small. The same conclusion can be made if V (x, y) is chosen to be V (x, y) =
x2 +αxy+βy2, where the constants α and β satisfy the inequality: α2−4β <
0.

If we set Vα(x, y) = x6 + αy2, then

V̇α(x, y) = −6x8 + 2(α− 3)x5y,

and hence for α = 3 we obtain that V̇3(x, y) = −6x8 ≤ 0. Note that if
V̇3(x, y) = 0 then x must be equal to 0. Hence,

Z = {(x, y) : V̇3(x, y) = 0} = {(x, y) : x = 0}.

Assume that (x(t), y(t)) is a trajectory belonging to the set Z. Then x(t) ≡ 0.
From here we obtain that ẏ(t) ≡ 0, and so, y(t) ≡ c, where c is a constant.
On the other hand, x(t) ≡ 0 implies that ẋ(t) ≡ 0, and so, c = 0. In this way
we obtain that the origin is asymptotically stable, and hence there exists a
Lyapunov function.

One can guess that the function V (x, y) = x6 + 3y2 + xy3 is a Lyapunov
function for this example. To prove this, we use the following
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Lemma 2.6 (Young’s inequality): If a ≥ 0 and b ≥ 0 then the following
inequality holds true:

ab ≤ ap

p
+
bq

q
,

where p > 1, q > 1 and
1

p
+

1

q
= 1.

Proof. Clearly, the inequality holds true for b = 0. Let b > 0. We set

g(x) :=
xp

p
+
bq

q
− bx.

Then one can check that

g′(x) = xp−1 − b, lim
x→0

g′(x) = −b < 0, lim
x→∞

g′(x) =∞.

Hence, the function g′(x) is increasing and has a global minimum at
b1/(p−1). Since g′(b1/(p−1)) = 0, the proof is completed.

Let us return to the function V (x, y) = x6 + 3y2 + xy3. One can check
that

V̇ (x, y) = (6x5 + y3)(−y − x3) + (6y + 3xy2)x5 = −6x8 − y4 − x3y3 + 3x6y2.

Applying the Young’s inequality for p = 6 and q = 6/5, we obtain that

|x| |y|3 ≤ x6

6
+

5

6
|y|18/5 ≤ x6

6
+

5

6
|y|2

for |y| ≤ 1. Hence

V (x, y) ≥ x6 + 3y2 − |x| |y|3 ≥ x6

6
x6 +

13

6
y2,

i.e. the function V is positive definite.
Analogously, we apply the Young’s inequality for p = 8/3 and q = 8/5

and obtain that

|x|3 |y|3 ≤ 3x8

8
+

5

8
|y|24/5 ≤ 3x8

8
+

5

8
|y|4

for |y| ≤ 1.
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Also, we apply the Young’s inequality for p = 4/3 and q = 4 and obtain
that

|x|6 |y|2 ≤ 3x8

4
+

1

4
y8 ≤ 3x8

4
+

1

4

1

16
y4

for |y| ≤ 1/2.
Hence

V̇ (x, y) ≤ −6x8−y4 + |x|3|y|3 +3x6y2 ≤ −6x8−y4 +
3x8

8
+

5

8
y4 +

9x8

4
+

3

64
y4,

i.e.

V̇ (x, y) ≤ −27

8
x8 − 21

64
y4

i.e. the function V̇ is negative definite. So have proved that V is a Lyapunov
function.

3 Barbalat’s lemma

This a very useful assertion for studying asymptotic stability:

Definition 3.1 It is said that f : R→ R is uniformly continuous if for each
ε > 0 there exists δ > 0 such that if |t2 − t1| < δ, then |f(t2)− f(t1)| < ε.

Clearly, if f(·) is differentiable and its derivative is bounded, then f(·) is
uniformly continuous.

Barbalat’s lemma: Let y : (0,∞) → R be Riemann integrable and
uniformly continuous then

lim
t→∞

y(t) = 0.

An equivalent formulation of Barbalat’s lemma: Let f : R→ R be
differentiable and has a finite limit as t→∞. If f ′(·) is uniformly continuous
then f ′(t)→ 0 as t→∞.

Further note that the uniform continuity is required to prevent sharp
“spikes” that might prevent the limit from existing. For example suppose we
add a spike of height 1 and area 2−n at every integer. Then the function is
continuous and L1 (and thus Riemann integrable), but y(t) would not have
a limit at infinity.

Proof of Barbalat’s lemma. We suppose that y(t) 6→ 0 as t → ∞.
Then there exists a sequence {tn} in R such that tn → ∞ as n → ∞ and
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|y(tn)| ≥ ε for all n. By the uniform continuity of y there exists a δ such
that, for all n and all t ∈ R

|tn − t| ≤ δ ⇒ |y(tn)− y(t)| ≤ ε

2
.

So, for all t ∈ [tn, tn + δ] and for all n we have

|y(t)| = |y(tn)− (y(tn)− y(t))| ≥ |y(tn)| − |y(tn)− y(t)| ≥ ε− ε

2
=
ε

2
,

i.e. the sign of y(t) is constant on [tn, tn + δ]. Therefore,∣∣∣∣∣
∫ tn+δ

0
y(t)dt−

∫ tn

0
y(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ tn+δ

tn
y(t)dt

∣∣∣∣∣ =
∫ tn+δ

tn
|y(t)|dt ≥ εδ

2
.

for each n. By the hypothesis, the improprer Riemann integral
∫ ∞

0
y(t)dt

exists, and thus the left hand side of the inequality converges to 0 as n→∞
yielding a contradiction.

Corollary 3.2 Let f : R → R be twice differentiable, has a finite limit as
t→∞ and its second derivative is bounded. Then f ′(t)→ 0 as t→∞.

In general, the fact that derivative tends to zero does not imply that the
function has a limit. Take for example the function f(t) = sin(ln(t)). Then
f(·) does not have a limit as t→∞, while

lim
t→∞

f ′(t) = lim
t→∞

cos(ln(t))

t
= 0.

Also, the converse is not true. Take for example the function f(t) =
e−t sin(e2t). Then f(t)→ 0 as t→∞, while

lim
t→∞

f ′(t) = lim
t→∞
−e−t sin(e2t) + lim

t→∞
2et cos(e2t)

does not exist.
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4 A mathematical model of chemostat

The mass balance model in a continuously stirred tank bioreactor is described
by the following nonlinear system Σ of ordinary differential equations

d

dt
s(t) = u(sin − s(t))− k µ(s(t)) x(t) (2)

d

dt
x(t) = (µ(s(t))− αu)x(t) (3)

The state variables s1, s2 and x1, x2 denote substrate and biomass concen-
trations, respectively. The input substrate concentrations sin, the dilution
rate u, the proportion of dilution rate α (reflecting the process heterogeneity)
and the model parameter k are constant.

The function µ is the specific growth rates of the microorganisms. We do
not assume to know explicit expressions for the latter, we only impose the
following general assumptions on µ:

Assumption A1: The function µ(si) is defined for s ∈ [0,+∞), µ(0) =
0, µ(s) > 0 for s > 0; µ(s) is continuously differentiable and bounded for all
s ∈ [0,+∞).

One can directly verify that the point (s̄, x̄) which is determined by the
equalities

µ(s̄) = αu, x̄ =
sin − s̄
αk

(4)

is a nontrivial equilibrium point for the system.
Assumption A2: The following inequalities hold true: 0 < s̄ < sin,

µ(s) < αu for each s ∈ (0, s̄) and µ(s) > αu for each s ∈ (s̄, ŝ] with ŝ > sin.

Lemma 4.1 (cf. [5]) Let the Assumptions A1 and A2 be satisfied and
(s0, x0) be an arbitrary point satisfying the inequalities x0 > 0 and s0 > 0.
Then there exists T > 0 such that the corresponding solution (s(t), x(t)) of
Σ satisfies the inequality: s(t) < sin for all t > T .

Proof. Notice that ṡ(t) < u(sin − s(t)) for each t ≥ 0. Let us assume that
s(t) ≥ sin for each t ≥ 0. Then ṡ(t) < u(sin−s(t)) ≤ 0. From here we obtain

that
d

dt
(s(t)−sin) ≤ u(sin−s(t)) and hence s(t) ≤ sin+ e−tu(s0−sin). Thus

for each ε > 0 there exists Tε > 0 such that sin ≤ s(t) ≤ sin + ε for each
t ≥ Tε. The inequality µ(sin) > αu and the continuity of µ imply the exis-
tence of ε0 > 0 so that µ(s)− αu > 0 for each s ∈ (sin − ε0, sin + ε0). Hence
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µ(s(t)) − αu > 0 for each t ≥ Tε0 , and so ẋ(t) = x(t)(µ(s(t)) − αu) > 0 for
each t ≥ Tε0 . The last inequality implies that x(t) > x(Tε0) for each t ≥ Tε0 .
But then ṡ(t) ≤ −kµ(s(t))x(t) < −kαux(Tε0) < 0 for each t ≥ Tε0 . This
inequality shows that there exists t̄ > 0 such that s(t̄) < sin. If for some
t̂ > t̄ we have that s(t̂) = sin, then from ṡ(t̂) = −kµ(t̂)x(t̂) < 0 we obtain
that s(t̂ + τ) < s(t̂) = sin for each sufficiently small τ > 0 and so, s(t̂ + τ)
can not be larger than sin. Thus there exists T := Tε0 such that s(t) < sin
for each t ≥ T . ♦

Lemma 4.2 (cf. [7]) Let the Assumption A1 be satisfied and (s0, x0) be
an arbitrary point satisfying the inequalities x0 > 0 and sin > s0 > 0. Then
for any ε > 0, there exists T > 0 such that the corresponding solution (s(t),
x(t)) of Σ satisfies the inequality:

sin − ε < s(t) + k x(t) <
sin
α

+ ε

for all t > T .

Proof. We us fix an arbitrary point (s0, x0) satisfying the inequalities
x0 > 0 and sin > s0 > 0 and denote by (s(·), x(·)) the corresponding solution
of Σ with initial condition s(0) = s0 and x(0) = x0. Clearly, s(t) > 0 and
x(t) > 0 for each t > 0 where the solution is defined. We set

p(t) := s(t) + k x(t)− sin
α

and
q(t) := s(t) + k x(t)− sin.

One can directly check that

ṗ(t) = u(sin − s(t))− αkux(t))

≤ −αu
(
s(t) + k x(t)− sin

α

)
= −αup(t),

and hence
p(t) = s(t) + k x(t)− sin

α
≤ p(0) · e−tαu.

This inequality shows that p(t) is bounded from above. From here and using
the fact that the values of s(t) and x(t) are positive, one can easily obtain
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that the trajectory (s(t), x(t)) is well defined and bounded for all t ≥ 0.
Analogously

q̇(t) = u(sin − s(t))− αkux(t))

≥ −u (s(t) + k x(t)− sin) = −αuq(t),
and hence

q(t) = s(t) + k x(t)− sin ≥ q(0) · e−tu.
This completes the proof. ♦

Theorem 4.3 Let the Assumptions A1 and A2 be satisfied. The system Σ
is asymptotically stable at the point (s̄, x̄) which is determined by (4).

Proof. Following [2], we set

V (s, x) :=
∫ s

s̄
Q(ξ) dξ +

∫ x

x̄

ζ − x∗

ζ
dζ,

where the smooth function Q will be chosen later. One can directly check
that the Lie derivative of V with respect to the trajectories of the system Σ
is

V̇ (s, x) = Q(s)[u(sin − s)− kµ(s)x(s)] +
x− x̄
x

(µ(s)− αu)x

= [Q(s)u(sin − s)− (µ(s)− αu)x̄]

+ (µ(s)− αu)x

[
1− Q(s)kµ(s)

µ(s)− αu

]
.

We set

Q(s) :=
(µ(s)− αu)x̄

u(sin − s)
and obtain

V̇ (s, x) = (µ(s)− αu)x

[
1− (µ(s)− αu)x̄

u(sin − s)
kµ(s)

µ(s)− αu

]
(5)

= (µ(s)− αu)x

[
1− (µ(s)− αu)x̄

u(sin − s)
kµ(s)

µ(s)− αu

]
(6)

= (µ(s)− αu)x

[
1− sin − s̄

sin − s
µ(s)

αu

]
(7)
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Since

1− µ1(s)(sin − x̄)

αk(sin − s)

{
< 0, if 0 < s < s̄
> 0, if s̄ < s ≤ sin,

we obtain that

V̇ (s, x) = (µ(s)− αu)x

[
1− sin − s̄

(sin − s)
kµ(s)

αku

]
≤ 0.

Hence,

Z = {(s, x) : V̇ (s, x) = 0} = {(s, x) : x = 0 or s = s̄}.

According to the Assumption A2 we have that s̄ < sin. Let us choose
ε > 0 so small that 3ε < sin − s̄. Then there exists T > 0 such that for each
t ≥ T we have that

sin − ε < s(t) + k x(t) <
sin
α

+ ε

Let us assume that for some t̄ > T we have that 0 < x(t̄) ≤ ε/k. For the
corresponding value of s(t̄) we obtain that

s(t̄) > sin − ε− k x(t̄) > s̄+ 2ε− ε = s̄+ ε > s̄

Applying again Assumption A2, we obtain that ẋ(t̄) = x(t̄)(µ(s̄(t̄) − αu) >
x(t̄)(µ(s̄ + ε) − αu) > 0. This implies that x(t) ≥ x(t̄) > 0 for each t > t̄
such that x(t) ≤ ε/k. Hence the maximal invariant subset of Z is the point
(s̄, x̄). This completes the proof. ♦

5 Stabilization of the mathematical model of

chemostat

Let us consider again the model in a continuously stirred tank bioreactor
which is described by the following nonlinear system Σ of ordinary differential
equations

d

dt
s(t) = u(sin − s(t))− k µ(s(t)) x(t) (8)

d

dt
x(t) = (µ(s(t))− αu)x(t) (9)
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The state variables s1, s2 and x1, x2 denote substrate and biomass concen-
trations, respectively. The input substrate concentrations sin, the dilution
rate u, the proportion of dilution rate α (reflecting the process heterogeneity)
and the model parameter k are constant. Here we consider u as a control
function.

Again, the function µ is the specific growth rates of the microorganisms.
We do not assume to know explicit expressions for the latter, we only impose
the following general assumptions on µ:

Assumption A1: The function µ(si) is defined for s ∈ [0,+∞), µ(0) =
0, µ(s) > 0 for s > 0; µ(s) is continuously differentiable and bounded for all
s ∈ [0,+∞).

One can directly verify that the point (s̄, x̄) which is determined by the
equalities

µ(s̄) = αu, x̄ =
sin − s̄
αk

(10)

is a nontrivial equilibrium point for the system.

Assumption A2: The following inequalities hold true: 0 < s̄ < sin,
µ(s) < αu for each s ∈ (0, s̄) and µ(s) > αu for each s ∈ (s̄, ŝ] with ŝ > sin.

Assumption A3: The values of the functions s : [0,∞) → R+ and
y : [0,∞)→ R+ with y(t) := λµ(s(t))x(t) are on-line measurable.

We have already discussed assumptions A1 and A2 in the previous section.
Assumptions A3 is again very general. Real sensors or numerical estimators
can indeed be used to obtain online the quantity s and y. Remark that,
for a large part of bioprocesses, the production (or consumption) of gaseous
components (O2,CO2...) is monitored and is directly related to the reaction
kinetics y.

First, we propose an output feedback controller, that achieves the global
asymptotic stabilization of a bioprocess, without any knowledge of its kinetics
and with respect to the non-negativity constraint of the input. However, this
static controller requires accurate knowledge of the parameters k, sin and λ
to achieve asymptotic regulation without error.

Let us denote s∗ ∈ (0, sin) the desired set point for substrate concentra-
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tion. We set x∗ =
sin − s∗

αk
and define the following static feedback control

law:

u(s, x) :=
kµ(s)x

sin − s∗
.

Proposition 5.1 Let the assumptions A1 and A2 hold true. Then the above
written static feedback control law globally stabilizes the model Σ towards the
point (s∗, x∗).

Proof. We substitute the feedback control law u(s, x) in the model Σ and
obtain

d

dt
s(t) = −kµ(s(t))x(t)

sin − s∗
(s(t)− s∗) (11)

d

dt
x(t) = −αkµ(s(t))x(t)

sin − s∗
(x(t)− x∗) (12)

From Assumption A1, it is straightforward that the non-negative orthant
of the state space is positively invariant by system (16)-(17). Thus, for any
positive initial state conditions (that are assumed to be positive throughout
the paper), the feedback control law u(s, x) takes only nonnegative values.
Integrating the system (16)-(17), one can obtain that

max(x(0), x∗) ≥ x(t) ≥ min(x(0), x∗)

max(s(0), s∗) ≥ s(t) ≥ min(s(0), s∗)

Using Assumption A1, we conclude that for any positive initial state
conditions and for all non-negative time, the function the feedback control
law u(s, x) is bounded below by a positive constant. Considering the closed
loop system (16)-(17), it is straightforward to see that (s∗, x∗) is globally
exponentially stable.

The static feedback control law u(s, x) proposed above, requires perfect
knowledge of the parameters k/λ and sin to perform the stabilization to-
wards the targeted set point without static error. However, identification
of these parameters is a difficult task, especially for bioprocesses. To solve
this drawback, we propose an adaptive feedback control law. In the sequel,
we suppose that the Assumptions A1, A2 and A3 hold true. Moreover, we
assume that s∗ belongs to the interval (0, sin). Let us denote by z = (s, x, γ)
the new state vector and set γ∗ := k/(λ(sin − s∗)). We choose the constants
γM and γm so that the following inequalities hold true γm < γ∗ < γM .
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Proposition 5.2 We consider the control system Σ̄: (8)-(9) and

γ̇(t) = −Kλµ(s(t))x(t)(s(t)− s∗)(γ(t)− γm)(γM − γ(t))

with initial data s(0) = s0 > 0, x(0) = x0 > 0 and γ(0) = γ0 ∈ (γm, γM).
Then the following adaptive feedback control law u(s, x, γ) = λγxµ(s) stabi-
lizes asymptotically Σ̄ towards the point (s∗, x∗, γ∗).

Proof. Substituting the adaptive feedback control law u(s, x, γ) in Σ̄, we
obtain the following closed-loop system:

d

dt
s(t) = λµ(s(t))x(t)(γ(t)(sin − s(t))−

k

λ
) (13)

d

dt
x(t) = λµ(s(t))x(t)(

1

λ
− αγ(t)x(t)) (14)

d

dt
γ(t) = −Kλµ(s(t))x(t)(s(t)− s∗)(γ(t)− γm)(γM − γ(t)) (15)

One can directly checked that s(t) > 0, x(t) > and γ(t) ∈ (γm, γM) for
each t, where the solution is defined. We make the following time change:

t′ := f(t) with f(t) := λ
∫ t

0 µ(s(τ))x(τ)dτ . Clearly,
d

dt
f(t) = λµ(s(t))x(t) >

0, and hence there exists f−1(t′). Differentiating the identity t = f−1(f(t)),
we obtain that

1 =
d

dt′
f−1′(f(t)).

d

dt
f(t), i.e.

d

dt′
f−1′(t′) =

1

λµ(s(f−1(t′)))x(f−1(t′))
.

Hence
d

dt′
s(t) =

d

dt′
s(f−1(t′)) =

d

dt
s(f−1(t′))

d

dt′
f−1(t′) =

=
d

dt
s(f−1(t′))

1

λµ(s(f−1(t′)))x(f−1(t′))
.

Similarly one can calculate
d

dt′
x(t). We set s̃(t′) = s(f−1(t′)), x̃(t′) =

x(f−1(t′)) and γ̃(t′) = γ(f−1(t′)). Also, we make the following change of
coordinate: v(t′) = sin− s̃(t′). Then the system (16)-(18) becomes (denoting
with a prime the time derivatives with respect to t′ and v∗ = sin − s∗):

v′(t′) =
k

λ
− γ(t′)v(t′) = γ∗v∗ − γ(t′)v(t′) (16)

x̃′(t′) =
1

λ
− αγ(t′)x(t′) (17)

γ̃′(t) = K(v(t′)− v∗)(γ(t′)− γm)(γM − γ(t′)) (18)
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If v(t′) ≤ 0, then v′(t′) ≥ γ∗v∗ > 0. This observation shows that there
exists t′0 > 0 with v′(t′0) > 0. Let us consider the subsystem Σ̃ of Σ̄ (with
dynamics determined by the differential equations (16) and(18)) on the set
S := {(v, γ) : v > 0, γ ∈ (γm, γM)}. Clearly, the set S is a bounded set which
is positively invariant with respect to the trajectories of Σ̃.

We set

W (v, γ) :=
∫ v

v∗

w − v∗

w
dw +

∫ γ

γ∗

ξ − γ∗

K(ξ − γm)(γM − ξ)
dξ,

We check that W (v, γ) is defined, non-negative on the set S and vanishes
only for v = v∗ and γ = γ∗. Furthermore, one can check that

Ẇ (v, γ) = W ′
v(v, γ)(γ∗v∗ − γv) +W ′

γ(v, γ)(K(v − v∗)(γ − γm)(γM − γ)) =

=
v − v∗

v
(γ∗v∗ − γv) +

γ − γ∗

K(γ − γm)(γM − γ)
(K(v − v∗)(γ − γm)(γM − γ)) =

=
v − v∗

v
(γ∗v∗ − γv) + (γ − γ∗)(v − v∗) =

=
v − v∗

v
(γ∗v∗ − γv + γv − γ∗v) = −γ∗ (v − v

∗)2

v
≤ 0,

and Ẇ (v, γ) = 0 only for v = v∗.
According to Lasalle’s invariance principle we obtain that every solution

trajectory of Σ̃ approaches the largest invariant subset M of the set {(v, γ) :
v = v∗, γ ∈ (γm, γM)}. Now, consider a trajectory starting from (v∗, γ0) with
γ ∈ (γm, γM) and γ 6= γ∗. It is clear that this trajectory escapes from and
therefore that the largest invariant set in the set S is the fixed point (v∗, γ∗).
Then (v∗, γ∗) is a globally attractive fixed point for system Σ̃.

A straightforward Jacobian matrix computation at the point (v∗, γ∗)
proves that this fixed point is locally stable too. Then, we can conclude
that (v∗, γ∗) is a globally asymptotically stable fixed point for system Σ̃.

Next we study the behavior of the original system Σ on the set Ω =
{(v∗, x, γ∗) : x > 0}. The dynamics is linear, has a single equilibrium for

x∗ =
1

αλγ∗
and is globally asymptotically stable at x∗. To finish the proof,

we apply the main of [1] for autonomous system.
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