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Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:

a; < g(in;) = g (2;W;,a;)

Bias Weight _
W, 8= g(in)

2= -1

Input Input  Activation

_ ) _ Output
Links Function Function

Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions

glin;) , 9in)
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(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 +e™")

Changing the bias weight 1/ ; moves the threshold location
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Implementing logical functions

W, = 1.5 Wy = 0.5 Wy =-05

AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = ;)
g(x)=sign(z), a; = + 1, holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss5-as+ Wys-ay)
= gWs5-gWis-a1+Was-as) +Wis-g(Wiyg-ar+Way-ay))

Adjusting weights changes the function: do learning this way!
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Single-layer perceptrons
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Zjoxj >0 or W-x>0

X1 ) X1 X1
10 ® 1@ ® 1@ @
?
0O O—» 0 OO0—eo—
0 1 X 0 1 X 0 1 X
(@) X; and Xo (b) Xq orv Xo (C) X1 xor Xo

Minsky & Papert (1969) pricked the neural network balloon
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

1 1
b= §E7”7"2 =5y - hrw (x))”
Perform optimization search by gradient descent:
OF OFErr 0 n
67‘/‘/} = FErr X aW] = Frr X TM/} (y — g(Z]:OW]‘CE]))

= —Err x ¢'(in) X x;
Simple weight update rule:
W; — W, +ax Errx ¢'(in) x z;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11



Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless
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Training set size - MAJORITY on 11 inputs Training set size -

RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

aj

numbers of hidden units typically chosen by hand
Output units

Layers are usually fully connected;
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wii—Wii+axajxA;

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj=gling) S Wil

Update rule for weights in hidden layer:
Wi« Wii+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

1

B=gxm—a),
where the sum is over the nodes in the output layer.
6’E B 8@1- o ag(’”%)
v, Wi g = T )
— _<y2’ — ai)g/@ni)aWj?@ — _(yz' — az')g/(?’nz)aww (Z WJ zaj)

= —(yi — @)y (ini)a; = —a;A;
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Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

O/ FHBIM|s|b|7|F
20010|172141D/6|7|%

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

A |

Current best (kernel machines, vision algorithms) ~ 0.6% error
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Summary

Most brains have lots of neurons; each neuron = linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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