Recap: Unsupervised Learning

Data D {x1,...,xn}
xi=(a1,az,...,am)’

\ 4

Model {61, 62, ..., 6L} —— VY

Clustering: y categorical

Dimensionality Reduction:
X €RM = y e RK with K<M
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* What is the shape of each cluster? 04

e How many clusters?
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The Clustering Problem

* Given a set of data samples xi,...,xn,

« Assign the data to K clusters
— Partitioning the dataset

— Also called segmentation

« K may be given, or chosen automatically

* Techniques fall into:
— Combinatorial techniques: work directly on data
— Mixture/modeling: Assume data 1s IID, and models underlying pdf
— Mode seeking: aka bump hunting
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Clustering Techniques

« We’ll focus on the following
— K-means
— Gaussian Mixture modeling (Also called soft K-means)

— Hierarchical clustering (Agglomerative/divisive) clustering

» These techniques are used regularly, often as part of a much
larger system that might include supervised learning

— e.g. discretize continuous input to make classification easier

— ¢.g. Representing pdf for Bayes classifier
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K-Means

* Wonderfully simple algorithm
 K-means:

— Initialize cluster centers

— Repeat until done
« Assign each data point to nearest cluster center
» Replace each cluster center with the mean of the data points associated to it
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K-Means Concepts

« Let’s assume the data is 2-D, and was generated from K
clusters

« We’ll model the problem with K prototype vectors

— We’ll call these means, and you’ll see why

* We assign a data point x to a cluster based on distance

— Data point x 1s assigned to the closest prototype

Yy = arg min Distance(x,mk)
k=1...K

Note, this is similar to nearest neighbor classification and
regression methods, which we will come back to
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K-Means Concepts

« Let’s assume the data is 2-D, and was generated from K
clusters

« We’ll model the problem with K prototype vectors

" How do we define distance?

e We assigiya udla poliit x L ¥UDLCI vdscu VLI uLsLtance

— Data point x 1s assigned to the §osest prototype

= in_ Dist
y =arg min Dis ance(x, mkk)
Prototypes

Note, this is similar to nearest neighbor classification and
regression methods, which we will come back to
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K-Means Update

* We update our prototypes based on the points that were
assigned to it, but taking the average/centroid/mean

/ il . ) .

x; assigned to k
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K-Means Update

* We update our prototypes based on the points that were
assigned to it, but taking the average/centroid/mean

1
/I 1 I ) %
mp = Fk Z x; k=13 K
x x; assigned to k \
New prototype Mean of points

assigned to k
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- Example.

True Clusters
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- Example: Initialization

K-means, iteration 0
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e |nitialize cluster centers (randomly HF LTt
selecting data in this example)
» Assign to cluster centers based on
nearest prototype mean > o4 - o8
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0.

3

K-means,

Example: 1 Iteration

iteration 1

-

e Update means based on average of

points assigned to prototype
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K-means, iteration 2
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atior

K-means, iteration 3
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atior

K-means, iteration 4
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K-means, iteration 9
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Question Time

 How well does it fit the data?
* When should we terminate? Will it always terminate?
* Does 1t always work?

 How do we tell how many clusters are there (1e. what 1s K)?
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How Well Does It Fit The Data?

« K-means is a local search technique for optimizing the
distortion of the data

« Formally, K-means tries to optimize the within-point scatter

C=> Ny |lzi—mylf
k yi=k

How does this change with each iteration?
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- From Previous Example
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Does It Always Work?

* Unfortunately, no
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oes | ork?
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K-means, iteration 0O
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K-means, iteration 9
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What Happened?

« K-means can get stuck in local optima

— Effectively, 1t will depend on the starting condition

e How can we “fix”’ this?
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What Happened?

« K-means can get stuck in local optima

— Effectively, 1t will depend on the starting condition

 How can we “fix” this?
— Use random restarts (remember local search?)

— Keep track of best solution so far

« K-means will converge

— May want to limit iterations though
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How Many Clusters?
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K-Means Summary

* Practical algorithm, good to have 1n the tool box
e Implementation

— Need to run.with random restarts
— Need to keep track of best solution found
— Need to provide (or estimate) K

— Can be slow on big datasets

e (Can use different distance metrics
— Part of algorithm design

* Speeding up K-means

— Faster nearest neighbor algorithms/data structures
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Hierarchical Methods

e Recall K-means

— Input = K, measure of dissimilarity (distances)

— Output = Cluster centers

« Hierarchical techniques avoid needing to specify K

— Input = Measure of dissimilarity (e.g. distances)

— QOutput = Hierarchical model of data similarity

e Output 1s a tree (dendogram)
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Divisive Methods

* Two types of hierarchical clustering:

— Divisive (top down), and agglomerative (bottom up)
e Hierarchical K-means 1s a divisive method

— Start with all the data in 1 cluster

— Split using “flat” K-means

— For each cluster, recursively split each cluster

e K is usually small

Need to decide when to stop
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Hierarchical K-Means
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Hierarchical K-Means

All the data

~

C11 C12
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Hierarchical K-Means

o
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Hierarchical K-Means

o
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Agglomerative Techniques

« Work 1n reverse direction (bottom up)
* Given N data points and dissimilarity measure

— Start with all the data in separate classes

— Repeat N-1 times

* Find closest two groups and merge them

 How do we measure dissimilarity between groups?
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Agglomerative Clustering

Define dissimilarity between two pairs of data d
Distance between two groups G and G2

Single linkage (SL)
dsp(G1,G2) = ' d; ;
sp(G1, G2) z‘eGIlI,H?eGQ J
Complete linkage (CL)
dcr(G1,G2) = ierlf{aJ?ieGQ d;j
Group Average (GA)
1
dga(G1,G2) = Ne Ne, S: y: oy
1€G1 JeG2
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Dissimilarity Measures

 [f data 1s nicely clustered, particular choice doesn’t matter

 If data 1s not micely clustered, you will get different clusters

Single Link Group Average Complete Link

Less compact clusters More compact clusters
(chaining)
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