Recap: Unsupervised Learning

Data D
$$\{x_1,...,x_N\}$$

 $x_i = (a_1,a_2,...,a_M)^T$

$$\mathbf{X} \longrightarrow \mathsf{Model} \{\theta_1, \theta_2, ..., \theta_L\} \longrightarrow$$

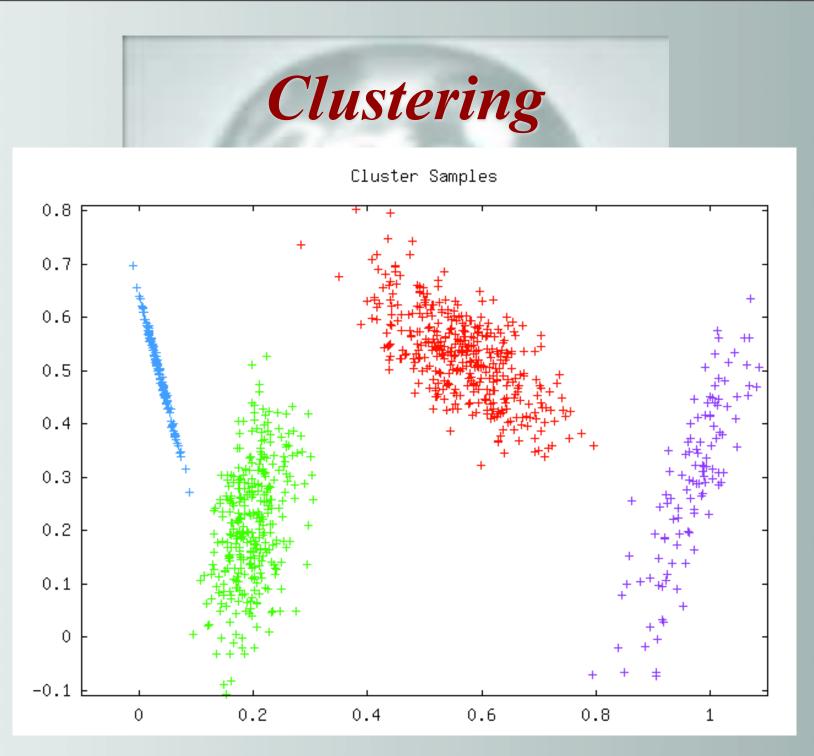
Clustering: y categorical

Dimensionality Reduction: $x \in \Re^{M} \Rightarrow y \in \Re^{K}$, with K<M

15-381: Artificial Intelligence

Lecture 12: Clustering

У



Where Are the Clusters?



15-381: Artificial Intelligence

Cluster Samples 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 0.2 -0.6 -0.4 -0.2 0.6 0.8 0 0.4 1

15-381: Artificial Intelligence

Lecture 12: Clustering

The Clustering Problem

- Given a set of data samples x_1, \ldots, x_N ,
- Assign the data to K clusters
 - *Partitioning* the dataset
 - Also called segmentation
- *K* may be given, or chosen automatically
- Techniques fall into:
 - Combinatorial techniques: work directly on data
 - Mixture modeling: Assume data is IID, and models underlying pdf
 - Mode seeking: aka bump hunting

15-381: Artificial Intelligence

Clustering Techniques

- We'll focus on the following
 - K-means
 - Gaussian Mixture modeling (Also called soft K-means)
 - Hierarchical clustering (Agglomerative/divisive) clustering
- These techniques are used regularly, often as part of a much larger system that might include supervised learning
 - e.g. discretize continuous input to make classification easier
 - e.g. Representing pdf for Bayes classifier

K-Means

- Wonderfully simple algorithm
- K-means:
 - Initialize cluster centers
 - Repeat until done
 - Assign each data point to nearest cluster center
 - Replace each cluster center with the mean of the data points associated to it

K-Means Concepts

- Let's assume the data is 2-D, and was generated from K clusters
- We'll model the problem with K prototype vectors
 - We'll call these *means*, and you'll see why
- We assign a data point x to a cluster based on *distance*
 - Data point x is assigned to the *closest* prototype

 $y = \arg \min_{k=1...K} Distance(x, m_k)$

Note, this is similar to nearest neighbor classification and regression methods, which we will come back to

15-381: Artificial Intelligence

Lecture 12: Clustering

K-Means Concepts

- Let's assume the data is 2-D, and was generated from K clusters
- We'll model the problem with K prototype vectors
 - How do we define distance?
- We assign a data point x to a cluster based on *distance*
 - Data point x is assigned to the *closest* prototype

$$y = \arg \min_{k=1...K} Distance(x, m_k)$$

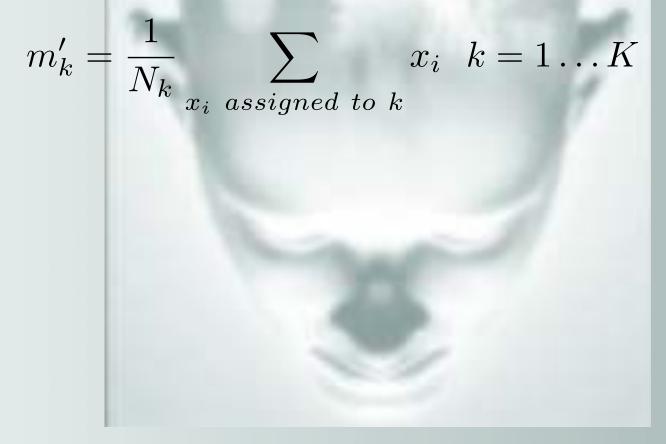
Prototypes

Note, this is similar to nearest neighbor classification and regression methods, which we will come back to

15-381: Artificial Intelligence

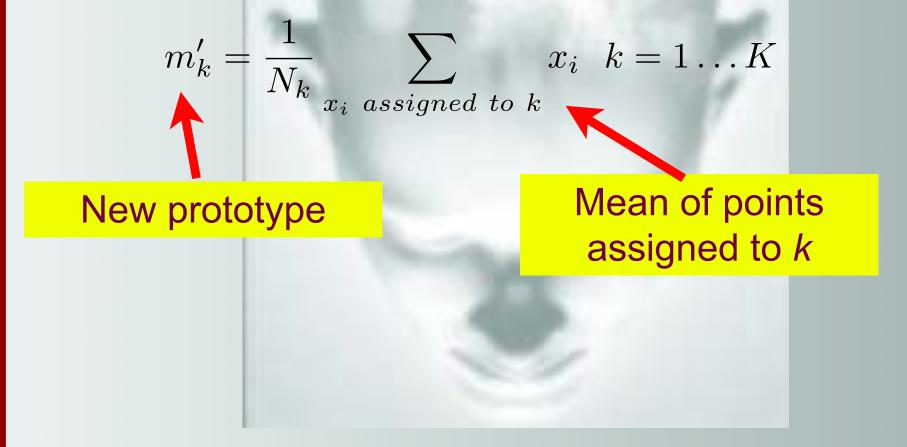
K-Means Update

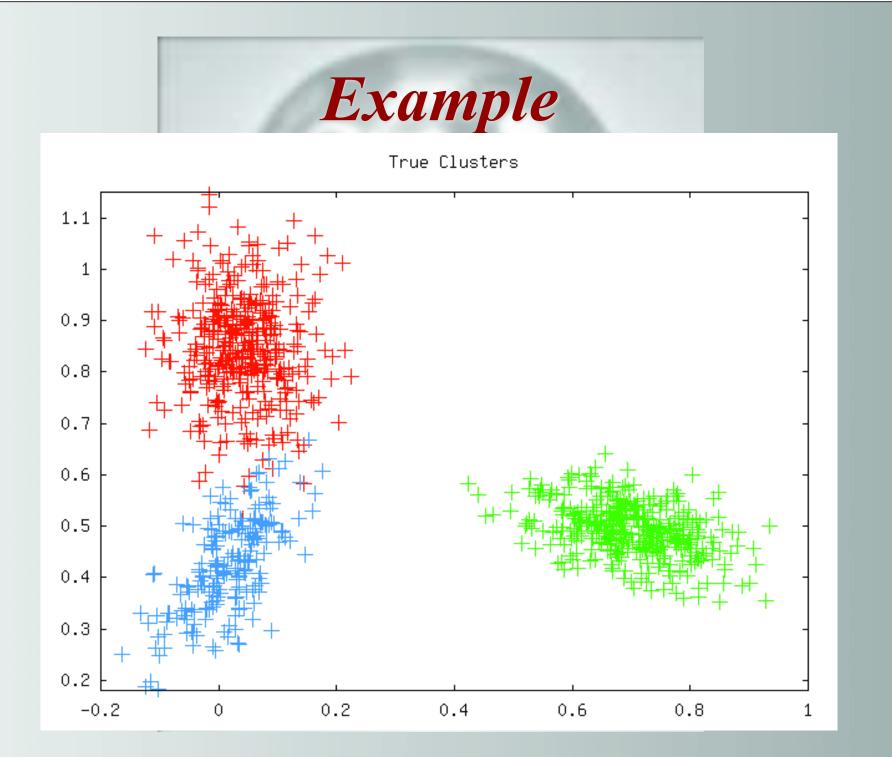
• We *update* our prototypes based on the points that were assigned to it, but taking the average/centroid/mean



K-Means Update

• We *update* our prototypes based on the points that were assigned to it, but taking the average/centroid/mean

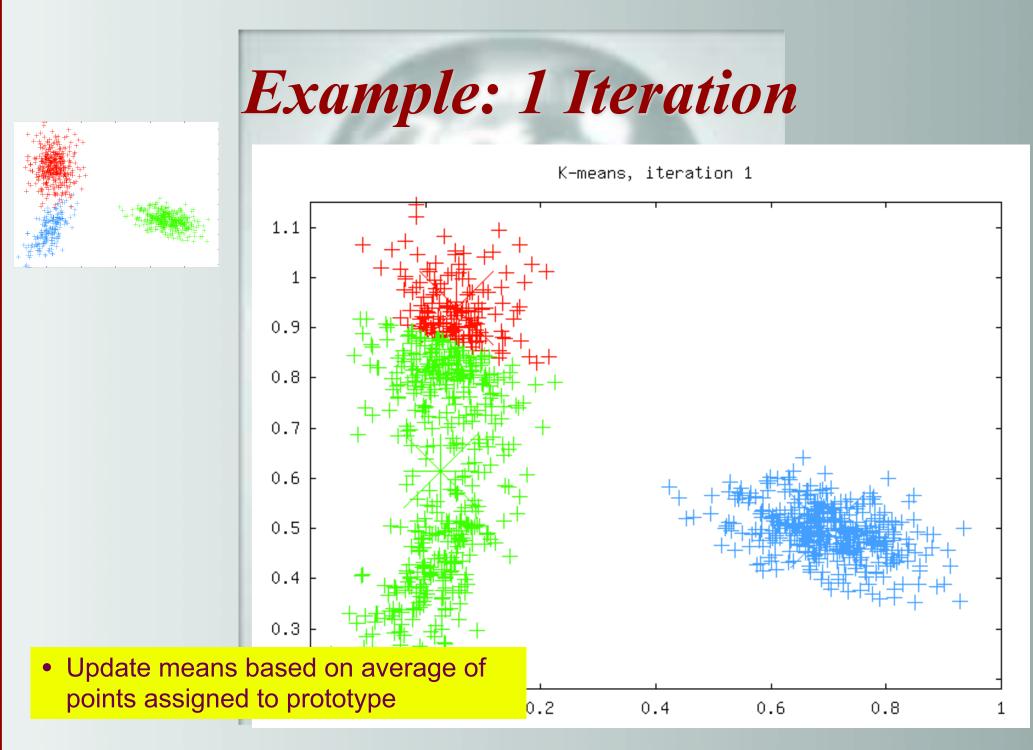


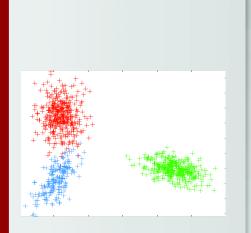


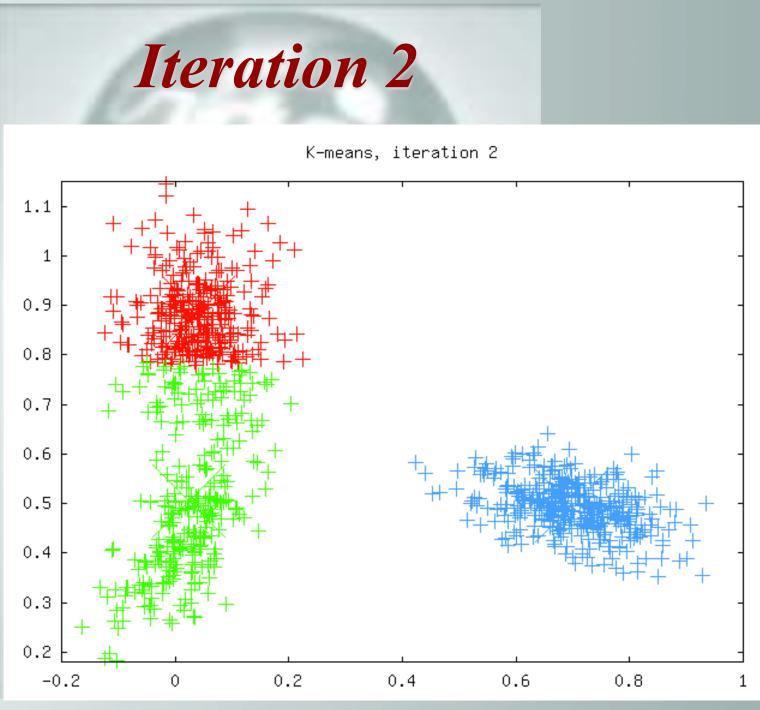
Example: Initialization K-means, iteration 0 1.1 **Estimated** mean 0.9 0.8 0.7 0.6 0.5 • Initialize cluster centers (randomly selecting data in this example) Assign to cluster centers based on nearest prototype mean 0.4 0.8 2 0.6

15-381: Artificial Intelligence

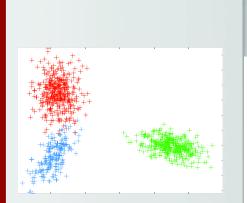
Lecture 12: Clustering



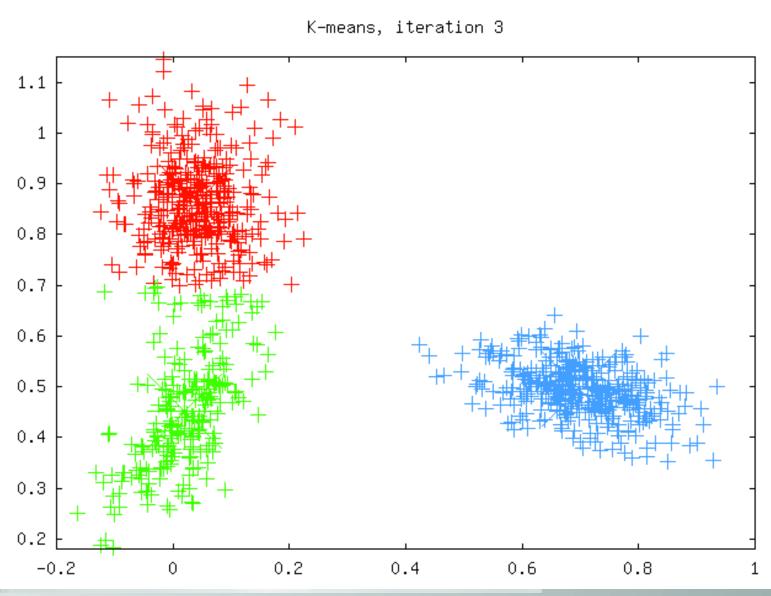




Lecture 12: Clustering

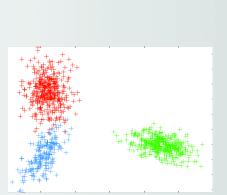


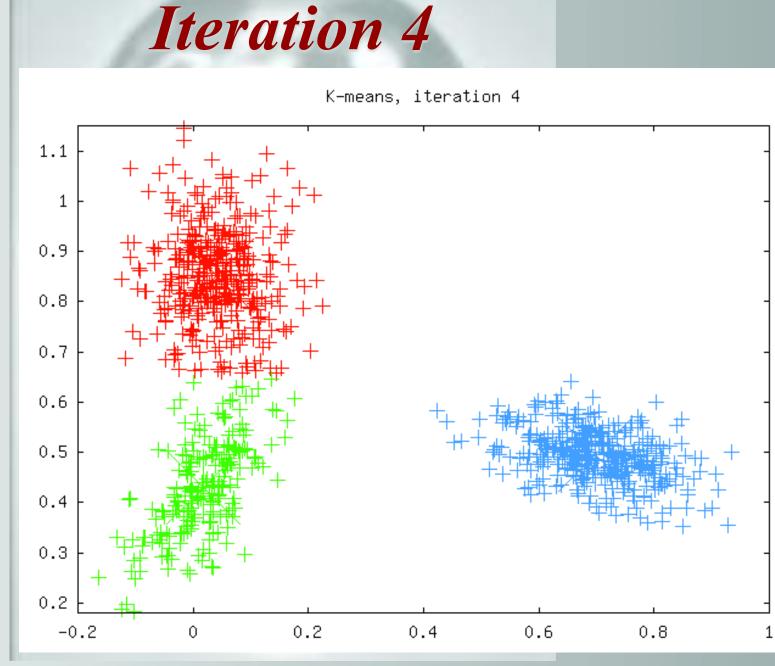
Iteration 3



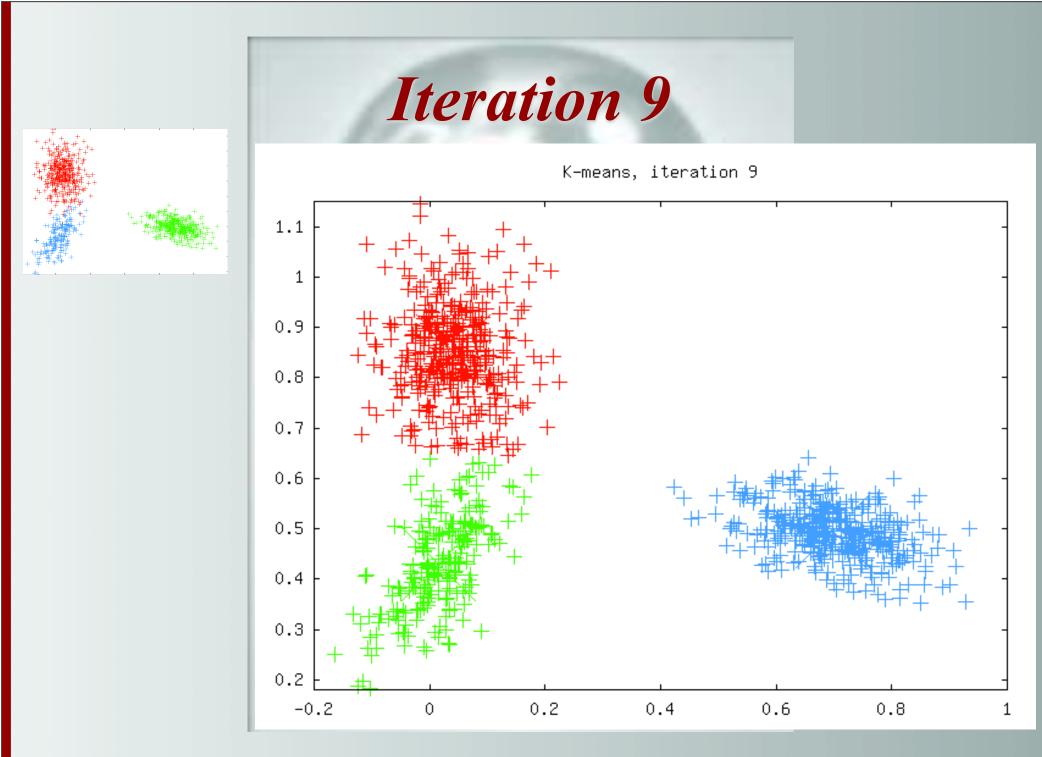
15-381: Artificial Intelligence

Lecture 12: Clustering





Lecture 12: Clustering



Lecture 12: Clustering

Question Time

- How *well* does it fit the data?
- When should we terminate? Will it always terminate?
- Does it always work?
- How do we tell how many clusters are there (ie. what is *K*)?

How Well Does It Fit The Data?

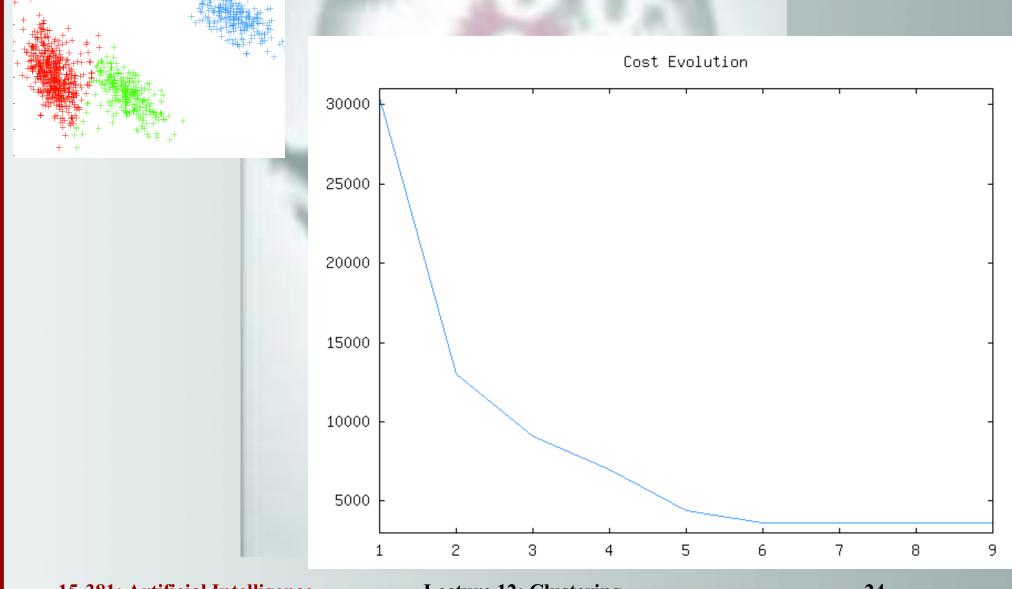
- K-means is a local search technique for optimizing the distortion of the data
- Formally, K-means tries to optimize the within-point scatter

$$C = \sum_{k} N_{k} \sum_{y_{i}=k} ||x_{i} - m_{k}||^{2}$$

How does this change with each iteration?

15-381: Artificial Intelligence

From Previous Example

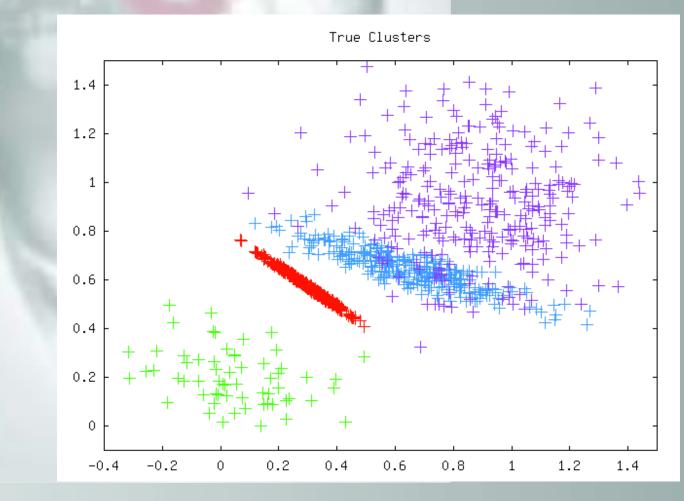


15-381: Artificial Intelligence

Lecture 12: Clustering

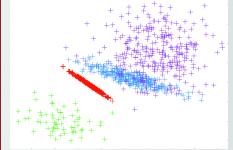
Does It Always Work?

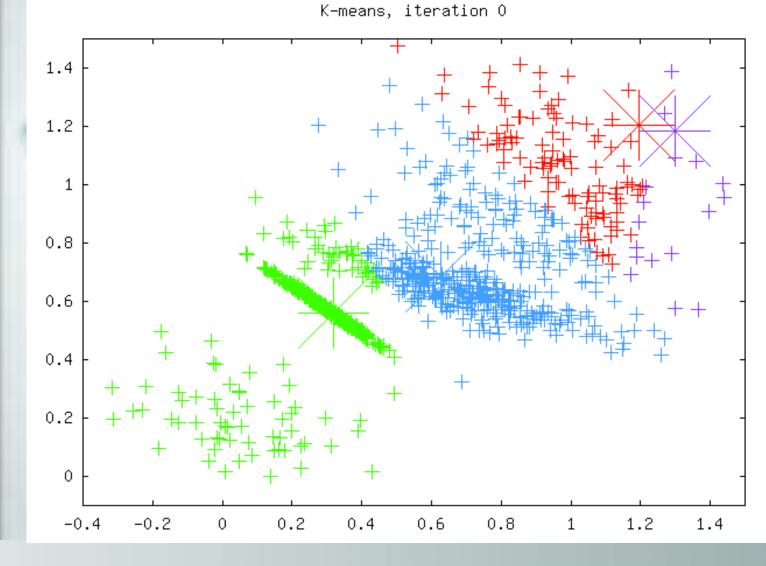
• Unfortunately, no



15-381: Artificial Intelligence

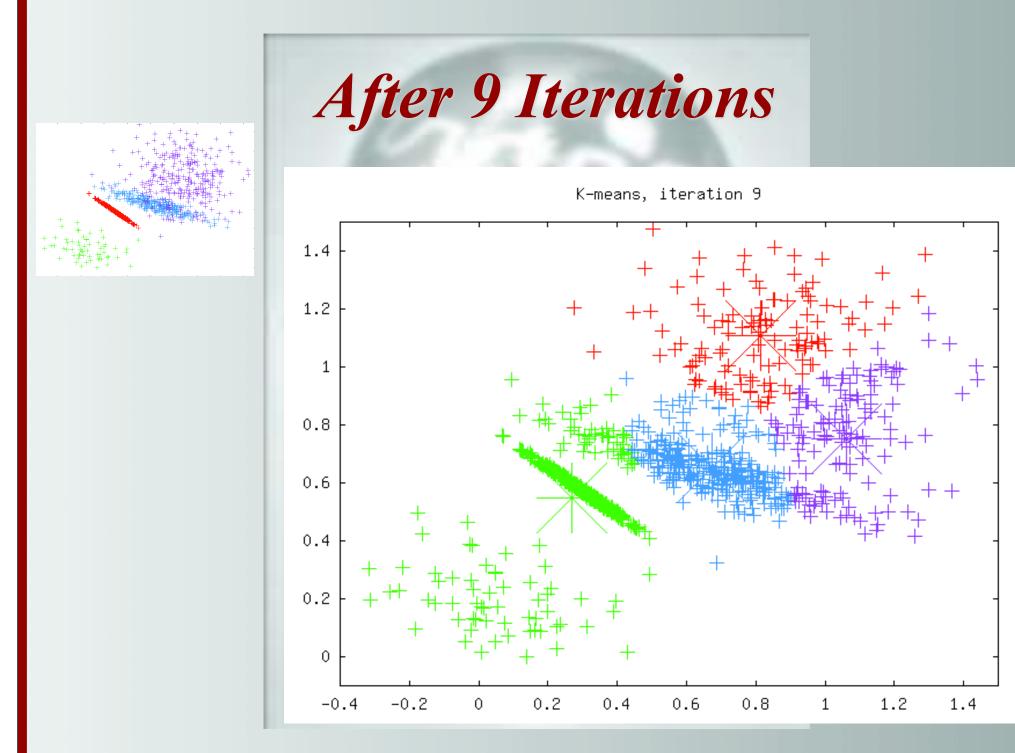
Does It Always Work?





15-381: Artificial Intelligence

Lecture 12: Clustering



Lecture 12: Clustering

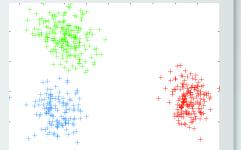
What Happened?

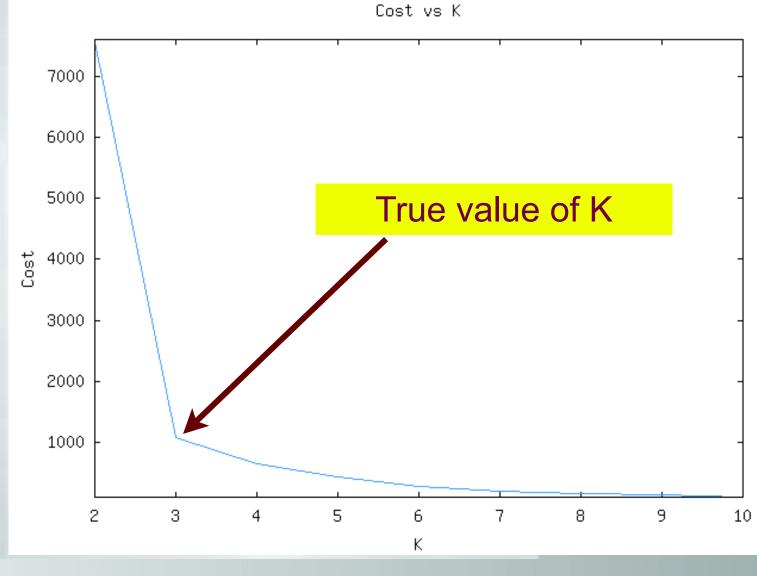
- K-means can get stuck in local optima
 - Effectively, it will depend on the starting condition
- How can we "fix" this?

What Happened?

- K-means can get stuck in local optima
 - Effectively, it will depend on the starting condition
- How can we "fix" this?
 - Use random restarts (remember local search?)
 - Keep track of *best* solution so far
- K-means will converge
 - May want to limit iterations though

How Many Clusters?





15-381: Artificial Intelligence

Lecture 12: Clustering

K-Means Summary

- Practical algorithm, good to have in the tool box
- Implementation
 - Need to run with random restarts
 - Need to keep track of best solution found
 - Need to provide (or estimate) K
 - Can be slow on big datasets
- Can use different distance metrics
 - Part of algorithm design
- Speeding up K-means
 - Faster nearest neighbor algorithms/data structures

15-381: Artificial Intelligence

Hierarchical Methods

- Recall K-means
 - Input = K, measure of dissimilarity (distances)
 - Output = Cluster centers
- Hierarchical techniques avoid needing to specify K
 - Input = Measure of dissimilarity (e.g. distances)
 - Output = Hierarchical model of data similarity
- Output is a tree (dendogram)

Lecture 12: Clustering

C12

All the data

 C_{11}

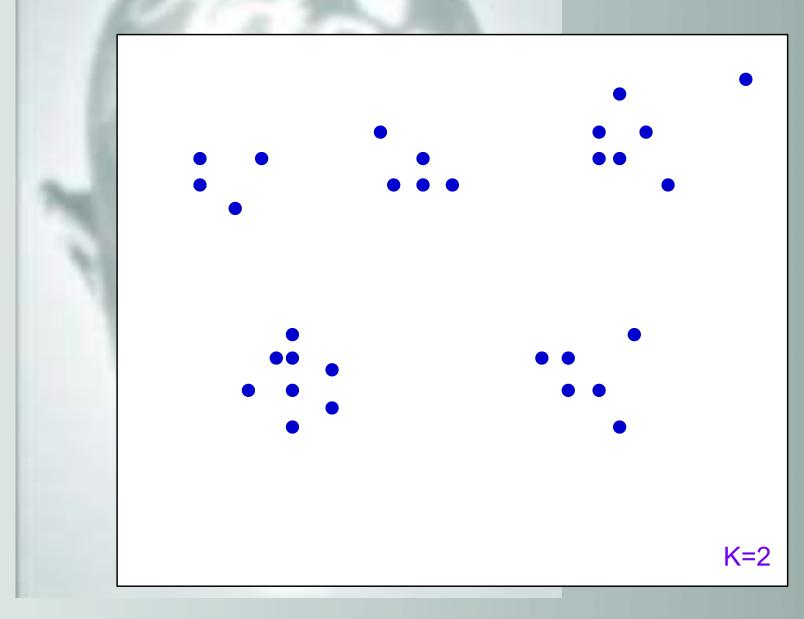
C32

C22

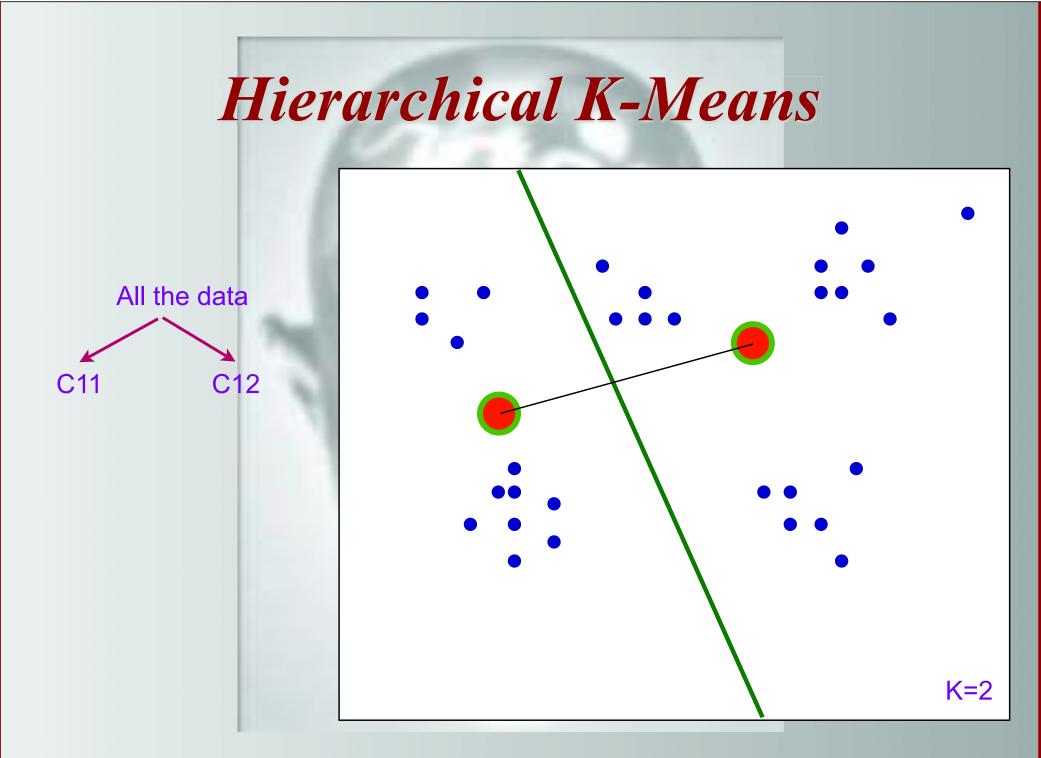
Divisive Methods

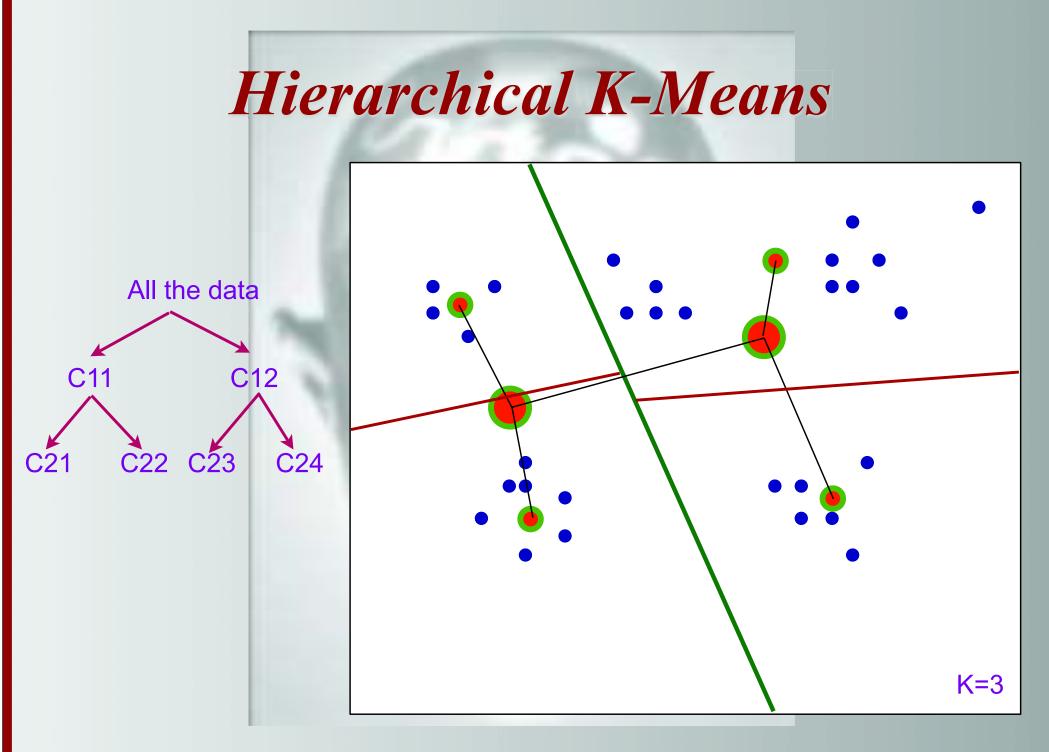
- Two types of hierarchical clustering:
 - Divisive (top down), and agglomerative (bottom up)
- Hierarchical K-means is a divisive method
 - Start with all the data in 1 cluster
 - Split using "flat" K-means
 - For each cluster, recursively split each cluster
- K is usually small
- Need to decide when to stop

Hierarchical K-Means

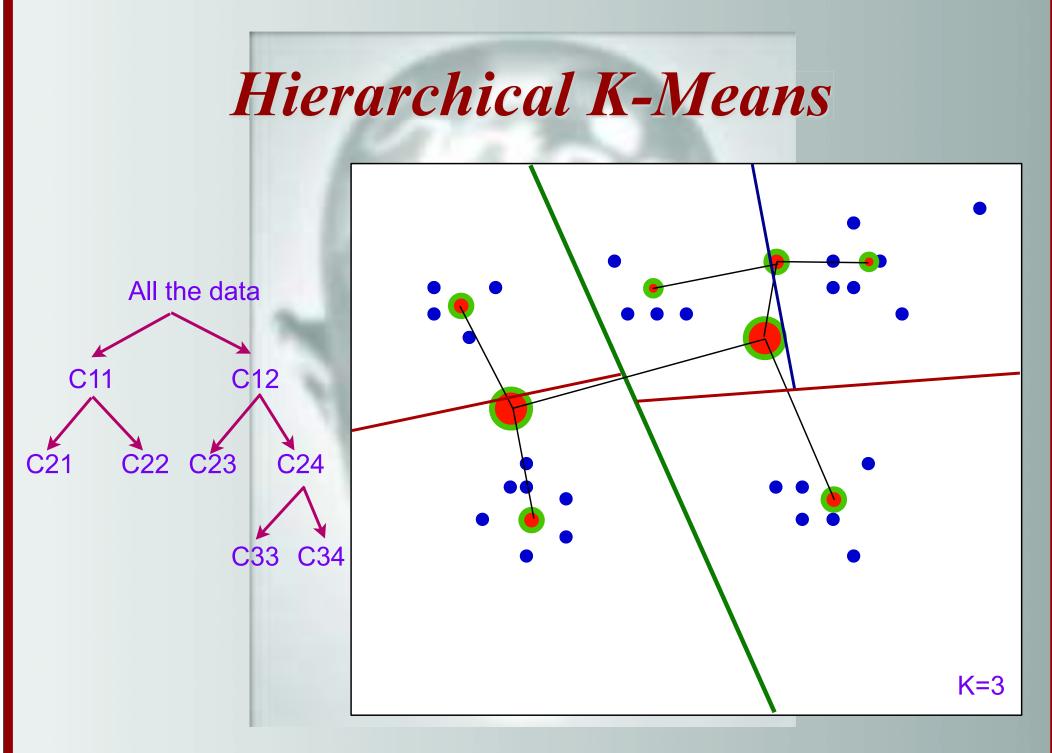


15-381: Artificial Intelligence





Lecture 12: Clustering



Lecture 12: Clustering

Agglomerative Techniques

- Work in reverse direction (bottom up)
- Given N data points and dissimilarity measure
 - Start with all the data in separate classes
 - Repeat N-1 times
 - Find *closest* two groups and merge them
- How do we measure dissimilarity between groups?

Agglomerative Clustering

- Define dissimilarity between two pairs of data d
- Distance between two groups G₁ and G₂
- Single linkage (SL)

$$d_{SL}(G_1, G_2) = \min_{i \in G_1, \ j \in G_2} d_{ij}$$

• Complete linkage (CL)

$$d_{CL}(G_1, G_2) = \max_{i \in G_1, \ j \in G_2} d_{ij}$$

• Group Average (GA)

$$d_{GA}(G_1, G_2) = \frac{1}{N_{G_1} N_{G_2}} \sum_{i \in G_1} \sum_{j \in G_2} d_{ij}$$

15-381: Artificial Intelligence

Dissimilarity Measures

- If data is nicely clustered, particular choice doesn't matter
- If data is not nicely clustered, you will get different clusters

