# Chapter 18 – Learning goals

#### Being familiar with:

- Motivation for learning
- Decision tree formalism
- Decision tree learning
- Information Gain for structuring model learning
- Overfitting and what to do to avoid it

#### Learning

#### This is the second part of the course:

- We have learned about **representations** for uncertain knowledge
- Inference in these representations
- Making **decisions** based on the inferences

#### Now we will talk about learning the representations:

- Decision trees
- Instance-based learning/Case-based reasoning
- Artificial Neural Networks
- Reinforcement learning

# Why do Learning?

- Learning is essential for unknown environments, i.e., when designer lacks omniscience
- Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent's decision mechanisms to improve performance

#### Learning agents



#### Learning element

#### Design of learning element is dictated by...

- what type of performance element is used
- which functional component is to be learned
- how that functional component is represented
- what kind of feedback is available

# Learning element

- what type of performance element is used
- which functional component is to be learned
- how that functional component is represented
- what kind of feedback is available

#### **Example scenarios:**

| Performance element | Component         | Representation           | Feedback       |  |  |
|---------------------|-------------------|--------------------------|----------------|--|--|
| Alpha-beta search   | Eval. fn.         | Weighted linear function | Win/loss       |  |  |
| Logical agent       | Transition model  | Successor-state axioms   | Outcome        |  |  |
| Utility-based agent | Transition model  | Dynamic Bayes net        | Outcome        |  |  |
| Simple reflex agent | Percept-action fn | Neural net               | Correct action |  |  |

Supervised learning: correct answers for each instance Reinforcement learning: occasional rewards

8

### Inductive learning

Simplest form: Learn a function from examples

f is the target function

An example is a pair 
$$\{x, f(x)\}$$
, e.g.,  $\left\{ \begin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \hline \end{array} \right\}$ , +1

#### **Problem:**

Find hypothesis  $h \in H$  s.t.  $h \approx f$  given a training set of examples

This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given

- Construct/adjust h to agree with f on training set
- h is **consistent** if it agrees with f on all examples



- Construct/adjust h to agree with f on training set
- *h* is **consistent** if it agrees with *f* on all examples



- Construct/adjust h to agree with f on training set
- *h* is **consistent** if it agrees with *f* on all examples



- Construct/adjust h to agree with f on training set
- *h* is **consistent** if it agrees with *f* on all examples



- Construct/adjust h to agree with f on training set
- *h* is **consistent** if it agrees with *f* on all examples



- Construct/adjust h to agree with f on training set
- h is **consistent** if it agrees with f on all examples

Example – curve fitting:



Ockham's razor: maximize consistency and simplicity!

#### Attribute-based representations

Examples described by **attribute values** (Boolean, discrete, continuous, etc.)

E.g., situations where the authors will/won't wait for a table:

| Example  | Attributes |     |     |     |      |             |      |     |         |       |          |
|----------|------------|-----|-----|-----|------|-------------|------|-----|---------|-------|----------|
| A        | Alt        | Bar | Fri | Hun | Pat  | Price       | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | Т          | F   | F   | Т   | Some | \$\$\$      | F    | Т   | French  | 0–10  | Т        |
| $X_2$    | Т          | F   | F   | Т   | Full | \$          | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F          | Т   | F   | F   | Some | \$          | F    | F   | Burger  | 0–10  | Т        |
| $X_4$    | Т          | F   | Т   | Т   | Full | \$          | Т    | F   | Thai    | 10–30 | Т        |
| $X_5$    | Т          | F   | Т   | F   | Full | \$\$\$      | F    | Т   | French  | >60   | F        |
| $X_6$    | F          | Т   | F   | Т   | Some | <b>\$\$</b> | Т    | Т   | Italian | 0–10  | Т        |
| $X_7$    | F          | Т   | F   | F   | None | \$          | Т    | F   | Burger  | 0–10  | F        |
| $X_8$    | F          | F   | F   | Т   | Some | <b>\$\$</b> | Т    | Т   | Thai    | 0–10  | Т        |
| $X_9$    | F          | Т   | Т   | F   | Full | \$          | Т    | F   | Burger  | >60   | F        |
| $X_{10}$ | Т          | Т   | Т   | Т   | Full | \$\$\$      | F    | Т   | Italian | 10–30 | F        |
| $X_{11}$ | F          | F   | F   | F   | None | \$          | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T          | Т   | Т   | Т   | Full | \$          | F    | F   | Burger  | 30–60 | Т        |

**Classification** of examples is **positive** (T) or **negative** (F)

#### Decision trees

#### One possible representation for hypotheses: Decision Trees



| Example  | Attributes |     |     |     |      |       |      |     |        | Target |          |
|----------|------------|-----|-----|-----|------|-------|------|-----|--------|--------|----------|
| Example  | Alt        | Bar | Fri | Hun | Pat  | Price | Rain | Res | Type   | Est    | WillWait |
| $X_3$    | F          | Т   | F   | F   | Some | \$    | F    | F   | Burger | 0–10   | Т        |
| $X_{12}$ | Т          | Т   | Т   | Т   | Full | \$    | F    | F   | Burger | 30–60  | Т        |

#### Converting a decision-tree to rules



IF(Patrons?=Full)  $\land$  (WaitEstimate?=0-10)THENWait? = True

 $\label{eq:IF} \begin{array}{ll} \mathsf{IF} & (\texttt{Patrons?=Full}) \land (\texttt{WaitEstimate?=30-60}) \land (\texttt{Alternate?=Yes}) \land (\texttt{Fri/Sat?=No}) \\ \mathsf{THEN} & \texttt{Wait?=False} \end{array}$ 

TDT4171 Artificial Intelligence Methods

. . .

#### Decision tree representation

#### Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

Class task: How would we represent these with decision trees?

- $A \wedge B$ ,  $A \vee B$ , A XOR B.
- $(A \wedge B) \vee (A \wedge \neg B \wedge C)$

• m of n: At least m of  $A_1, A_2, \ldots, A_n$  (try n = 3, m = 2).

#### Expressiveness

Decision trees can express any function of the input attributes.

E.g., for Boolean functions, truth table row  $\rightarrow$  path to leaf:



There is a **consistent** decision tree for any training set w one path to leaf for each example (unless f nondeterministic in x) ... but it **probably won't generalize to new examples** 

Prefer to find more **compact** decision trees

How many distinct decision trees with n Boolean attributes??

How many distinct decision trees with n Boolean attributes?? = number of Boolean functions

= number of distinct truth tables with  $2^n$  rows =  $2^{2^n}$ 

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with  $2^n$  rows =  $2^{2^n}$ 

E.g., with 6 Boolean attributes, there are 18, 446, 744, 073, 709, 551, 616 trees

How many purely conjunctive hypotheses (e.g., hungry  $\land \neg rain$ )??

How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with  $2^n$  rows =  $2^{2^n}$ 

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., hungry  $\land \neg rain$ )?? Each attribute can be in (positive), in (negative), or out  $\Rightarrow 3^n$  distinct conjunctive hypotheses E.g., with 6 Boolean attributes, there are 729 rules of this kind

How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with  $2^n$  rows =  $2^{2^n}$ 

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., hungry  $\land \neg rain$ )?? Each attribute can be in (positive), in (negative), or out  $\Rightarrow 3^n$  distinct conjunctive hypotheses E.g., with 6 Boolean attributes, there are 729 rules of this kind

#### More expressive hypothesis space:

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set

 $(\mathbf{a})$ 

 $\Rightarrow$  may get worse predictions

#### When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

#### Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Classifying email as spam or ham

# Decision tree learning

**Aim:** find a small tree consistent with the training examples **Idea:** (recursively) choose "best" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a DT
if examples is empty then return default
else if all examples have same class then return class
else if attributes is empty then return Mode(examples)
else
    best — Choose-Attribute(attributes, examples)
    tree \leftarrow a new decision tree with root test best
   for each value v_i of best do
      ex_i \leftarrow \{\text{elements of } examples \text{ with } best = v_i\}
      subtree \leftarrow DTL(ex_i, attributes - best, Mode(examples))
      add a branch to tree with label v_i and subtree subtree
return tree
```

# Search in the hypothesis space



#### **DEMO:** Random selection

# Choosing an attribute

**Idea:** a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Patrons? is a better choice – gives **information** about the classification

#### Information

Information answers questions!

The more clueless we are about the answer initially, the more information is contained in the answer:

**Scale:** 1 bit = answer to Boolean question with prior (0.5, 0.5)

Information in an answer when prior is  $\langle P_1, \ldots, P_n \rangle$  is

$$H(\langle P_1, \ldots, P_n \rangle) = \sum_{i=1}^n - P_i \log_2 P_i$$

(also called **entropy** of the prior  $\langle P_1, \ldots, P_n \rangle$ )

# Information contd.

#### Suppose we have p positive and n negative examples at root

•  $H(\langle p/(p+n), n/(p+n) \rangle)$  bits needed to classify new example E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

# Information contd.

Suppose we have p positive and n negative examples at root

•  $H(\langle p/(p+n), n/(p+n) \rangle)$  bits needed to classify new example E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets  $E_i$ , we hope each needs less information to classify...

Let  $E_i$  have  $p_i$  positive and  $n_i$  negative examples:

- $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$  bits needed to classify
  - $\Rightarrow$  expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

# Information contd.

Suppose we have p positive and n negative examples at root

•  $H(\langle p/(p+n), n/(p+n) \rangle)$  bits needed to classify new example E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets  $E_i$ , we hope each needs less information to classify...

Let  $E_i$  have  $p_i$  positive and  $n_i$  negative examples:

- $H(\langle p_i/(p_i+n_i),n_i/(p_i+n_i)\rangle)$  bits needed to classify
  - $\Rightarrow$  expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

**Heuristic:** Choose the attribute that minimizes the **remaining** information needed to classify new example

### Example contd.

#### Decision tree learned from the 12 examples:



Substantially **simpler than "true" tree** – a more complex hypothesis isn't justified by **small amount of data** 

**DEMO:** Gain selection

#### Performance measurement

How do we know that  $h \approx f$ ?

Try *h* on a new **test set** of examples (use **same distribution over example space** as training set)



### Performance measurement contd.

Learning curve depends on...

- realizable (can express target function) vs. non-realizable
- non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)



# Overfitting in decision trees

#### Consider adding noisy training examples $X_{13}$ and $X_{14}$ :

| Example  | Attributes |     |     |     |      |             |      |     | Target |      |          |
|----------|------------|-----|-----|-----|------|-------------|------|-----|--------|------|----------|
| Example  | Alt        | Bar | Fri | Hun | Pat  | Price       | Rain | Res | Type   | Est  | WillWait |
| $X_{13}$ | F          | Т   | Т   | Т   | Some | <b>\$\$</b> | F    | Т   | French | 0–10 | F        |
| $X_{14}$ | F          | Т   | Т   | Т   | Some | \$          | F    | Т   | Thai   | 0–10 | F        |

Class task:

What is the effect on the tree we learned earlier?



# Overfitting

Consider error of hypothesis h over

- Training data:  $\operatorname{error}_t(h)$
- Entire distribution  $\mathcal{D}$  of data (often approximated by measurement on test-set):  $\operatorname{error}_{\mathcal{D}}(h)$

#### Overfitting

Hypothesis  $h \in H$  overfits training data if there is an alternative hypothesis  $h' \in H$  such that

 $\operatorname{error}_t(h) < \operatorname{error}_t(h') \text{ and } \operatorname{error}_{\mathcal{D}}(h) > \operatorname{error}_{\mathcal{D}}(h')$ 

# Overfitting (cont'd)



#### Avoiding Overfitting

#### How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

#### How to select "best" tree:

- Measure performance over training data (statistical tests needed)
- Measure performance over separate validation data set

# Reduced-Error Pruning

Split data into *training* and *validation* set

#### Do until further pruning is harmful:

- Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- Greedily remove the one that most improves validation set accuracy
- $\Rightarrow$  Produces smallest version of most accurate subtree

#### Effect of Reduced-Error Pruning



#### Summary

#### Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation
- For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set