INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2

Chapter 4, Sections 1-2 1

Outline

> Best-first search
> A* search

{> Heuristics

Chapter 4, Sections 1-2

2

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem] applied to STATE(node) succeeds return node
fringe «+— INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1-2

Best-first search

|dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Chapter 4, Sections 1-2

4

Romania

with step costs in km

[] Oradea
Neamt
- 87
[] lasi
Arad
92
Sibiu gg Fagaras
118 .
80 |] Vaslui
Timisoara . Rimnicu Vilcea
™ _ _ 211 142
] Lugoj Pitesti
70 = 98 .
85]] Hirsova
[] Mehadia 101 Urziceni
] 86
75 120 138 Bucharest
Dobreta [] L 920 =
Craiova Eforie
] Giurgiu

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
las

Lugoj

M ehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vadui
Zerind

Chapter 4, Sections 1-2

5

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1-2 6

Greedy search example

366

Chapter 4, Sections 1-2

7

Greedy search example

374

Chapter 4, Sections 1-2

8

Greedy search example

366 176

Chapter 4, Sections 1-2 9

Greedy search example

Chapter 4, Sections 1-2

10

Properties of greedy search

Complete??

Chapter 4, Sections 1-2

11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?7?

Chapter 4, Sections 1-2 12

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,

lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1-2

13

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

14

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1-2

15

A* search

ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

(n) = cost so far to reach n
n) = estimated cost to goal from n

9
h(
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1-2

16

A* search example

366=0+366

Chapter 4, Sections 1-2

17

A* search example

393=140+253 447=118+329 449=75+374

Chapter 4, Sections 1-2 18

A* search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Chapter 4, Sections 1-2 19

A* search example

 Aad
. sbu_ imisoarad Czerind >

447=118+329 449=75+374

Carad D PCFagaras> COradea > @nauviced

646=280+366 415=239+176 671=291+380

CCraiova > pitesti > C_Sibiu_3

526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 20

A* search example

 Aad
. sbu_ imisoarad Czerind >

447=118+329 449=75+374

Carad > (Fagaras> COradea > imiou Viced

646=280+366 671=291+380

o> G G o> Comn

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 21

A* search example

. sbu_ Cimisoarad Czerind >

447=118+329 449=75+374

Carad > (Fagarasd COradea > EnmicuViced

646=280+366 671=291+380
«>
591=338+253 450=450+0 526=366+160 553=300+253

>

CCraiova D

418=418+0 615=455+160 607=414+193

Chapter 4, Sections 1-2 22

Optimality of A* (standard proof)

Suppose some suboptimal goal (5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal ;.
Sart

NI

G@® G,

=
S
D
I
=S
Q3
D

since h(Gs) =0
q(Gh) since (G5 is suboptimal

AVARRY.
P
3

since h is admissible

Since f(G2) > f(n), A* will never select G, for expansion

Chapter 4, Sections 1-2 23

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing [value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour 7 has all nodes with f = f;, where f; < f;11

Chapter 4, Sections 1-2

24

Properties of A*

Complete??

Chapter 4, Sections 1-2

25

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?7?

Chapter 4, Sections 1-2

26

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in i X length of soln.]

Space??

Chapter 4, Sections 1-2

27

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in i X length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

28

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in i X length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f;.; until f; is finished

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-2 29

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')

If h is consistent, we have c(n,a,n’)
fn') = g(n') + h(n')

(
g(n) + c(n,a,n’) + h(n')
(n) + h(n)

n

g
f(n)

l.e., f(n) is nondecreasing along any path.

| Ava|

S

Chapter 4, Sections 1-2 30

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

Chapter 4, Sections 1-2

31

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
5 6
8 3 1

hi(S) =77 8

ho(S) =77 3+14+2424+2+43+3+2 = 18

Start State

1l 2
4 1l s
7 Il 8

Goal State

Chapter 4, Sections 1-2

32

Dominance

If ho(n) > hi(n) for all n (both admissible)
then /o dominates h; and is usually better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hy) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics h,, hy,
h(n) = max(hy(n), hy(n))

is also admissible and dominates h,, h;

Chapter 4, Sections 1-2 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then ho(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1-2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1-2 35

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest A
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1-2 36

