
Chapter  7
Least Squares and Data Models

7.1 Introduction

 In Chapter 6 the concept of interpolation played a major role in the computation of
polynomial and spline models.  The mathematical development in this chapter will eliminate the
interpolation requirement in favor of a different criterion.  Figure 7.1 shows six data points that
could be modeled with an interpolating polynomial, ; however, given the rapid increase inT ÐBÑ&

the values,  may not provide an acceptable approximation. A graph of the data suggests thatT ÐBÑ&

an exponential model may be more appropriate than an interpolating polynomial.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

350

400

450

Figure 7.1 Possible Exponential Data

 We begin by considering a set of data points  for  to .  Our goal is toÐ B ß C Ñ 3 œ " 83 3

construct an approximating function, say , to model the data.  As before,  will containJÐBÑ J ÐBÑ
unknown parameters or coefficients, ; however, in this case need - ß - ß á - J ÐBÑ" # 5 not
interpolate the data.  Typically, the number of parameters, , will be much smaller than the5
number of data points, .  With this simple description, the possible structure of  is8 JÐBÑ
unlimited.  To simplify our analysis, we assume that  has the linear form used in Chapter 6,JÐBÑ

J ÐBÑ œ - 1 ÐBÑ � - 1 ÐBÑ � - 1 ÐBÑ �á � - 1 ÐBÑ" " # # $ $ 5 5 , (7.1)

where the 's are known linearly independent functions.  Frequently, the choice of the 's1 ÐBÑ 1 ÐBÑ4 4

is suggested by a knowledge of the problem under consideration.  For example, we may suspect
that there is a linear relationship between the independent and dependent variables represented by
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the data.  In which case a choice of   and  provides a reasonable model.5 œ # J ÐBÑ œ - B � - "" #

This idea will be explored in Section 7.3.
 Since interpolation is no longer required we should expect to find differences between
JÐB Ñ C . œ JÐB Ñ � C3 3 3 3 3 and .  The value of each difference, , will depend on the specified
1 ÐBÑ - 8 .4 4 3's and the parameters, the 's.  The  differences,  denoted by ,  are the key factors in
determining the parameters.  For example, it may be possible to minimize the maximum of  | |.3

or to minimize a sum that represents the total of the absolute values of the differences, | |.!
3œ"

8

3.

In each case positive numbers are involved.

7.2 The Least Squares Method

 Gauss proposed that the parameters be computed by minimizing the sum of differences

squared,  . This choice eliminates the need for absolute values and, as we shall see,!
3œ"

8
#
3.

simplifies computations. The value of this sum will depend on the parameters in the model.  In
other words

IÐ- ß - ßá - Ñ œ JÐB Ñ � C" # 5 3 3

3œ"

8 #

, . (7.2)"’ “
The parameters are determined by the solution of a multiple variable calculus problem: minimize
the sum of differences squared, , with respect to the parameters.IÐ- ß - ß á - Ñ" # 5

 To simplify our efforts set  so that (7.2) becomes5 œ #

IÐ- ß - Ñ œ JÐB Ñ � C œ - 1 ÐB Ñ � - 1 ÐB Ñ � C" # 3 3 " " 3 # # 3 3

3œ" 3œ"

8 8# #" "’ “ ’ “ . (7.3)

From calculus, the values for  and  that minimize  are solutions of the following- - IÐ- ß - Ñ" # " #

equations

`IÐ- ß - Ñ `IÐ- ß - Ñ

` `
œ ! œ !Þ

" # " #

"c c
    and     (7.4)

2

Computing the partial derivatives yields

`IÐ- ß - Ñ

`
# - 1 ÐB Ñ � - 1 ÐB Ñ � C 1 ÐB Ñ œ !

" #

" 3œ"

8

" " 3 # # 3 3 " 3c
œ " ’ “

`IÐ- ß - Ñ

`
# - 1 ÐB Ñ � - 1 ÐB Ñ � C 1 ÐB Ñ œ !

" #

# 3œ"

8

" " 3 # # 3 3 # 3c
œ " ’ “

Distributing  and , using three sums in each equation, and rearranging terms leads to1 ÐB Ñ 1 ÐB Ñ" 3 32
the so-called  equationsnormal



Chapter 7 Page 100

- 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ œ C 1 ÐB Ñ" " 3 " 3 # # 3 " 3 3 " 3

3œ" 3œ" 3œ"

8 8 8

 (7.5)" " "

- 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ œ C 1 ÐB Ñ" " 3 # 3 # # 3 # 3 3 # 3

3œ" 3œ" 3œ"

8 8 8

 (7.6)" " "
 The  linear system in (7.5) and (7.6) is a direct result of the linear structure ofsymmetric
JÐBÑ 5 and Gauss' use of the differences squared.  Other values for  will give comparable results.
With , the normal equations are5 œ $

- 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ œ C 1 ÐB Ñ" " 3 " 3 # # 3 " 3 $ $ 3 " 3 3 " 3

3œ" 3œ" 3œ" 3œ"

8 8 8 8

 " " " "

- 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ œ C 1 ÐB Ñ" " 3 # 3 # # 3 # 3 $ $ 3 # 3 3 # 3

3œ" 3œ" 3œ" 3œ"

8 8 8 8

 (7.7)" " " "

- 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ � - 1 ÐB Ñ1 ÐB Ñ œ C 1 ÐB Ñ" " 3 $ 3 # # 3 $ 3 $ $ 3 $ 3 3 $ 3

3œ" 3œ" 3œ" 3œ"

8 8 8 8

 " " " "

7.3 Least Squares Polynomials and MATLAB

 The scatter plot shown in Figure 7.2 suggests a linear relationship; thus, a linear least
squares model seems appropriate.

-3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

5

Figure 7.2  Scatter Plot of Data
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 A linear least squares model will have the form .  In other words,JÐBÑ œ - B � - "" #

1 ÐBÑ œ B 1 ÐBÑ œ "" # and  .  Substituting into the normal equations (7.5) and (7.6) gives, in matrix
form,

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
! ! !
! ! !” •3œ" 3œ" " 3œ"

8 8 8
#
3 3 3 3

3œ" 3œ" 3œ"

8 8 8

3 3
#

B B C B

B " C

-
-

œ (7.8)

 Constructing the various sums in (7.8) and solving for  and  is a somewhat tedious- -" #

task.  MATLAB's polyfit will complete the task with one command.  In Chapter 6 the third
argument in  represented the degree of an interpolating polynomial.  To compute thepolyfit
coefficients of a linear least squares model the third argument must be set to one.
 Assuming that the data shown in Figure 7.2 is contained in the vectors  and , theB. C.

following MATLAB commands will compute the linear least squares coefficients, plot the data
and also plot the least squares line. Note the use of  to find the  values  of points on thepolyval C
line.

 >> lscoef1 = polyfit(xd,yd,1)
 lscoef1 =
  -9.8557e-001  1.5737e+000
 >> plot(xd,yd,'k*',xd,polyval(lscoef1,xd),'k')

lscoef1 provides the data for the least squares line:  C œ �!Þ*)&&(B � "Þ&($(Þ
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Figure 7.3 Data and Linear Least Squares Approximation

 Recall that the least squares line has minimized the sum of differences squared.  It is a
simple task to compute this minimum. See . Any other line close to the least squares>> help sum
line, for example , will produce a larger value for the sum of differences squared.C œ �"B � "Þ&
Study the following commands carefully to see that equation (7.3) is being computed for two
different lines:  and .C œ �!Þ*)&&(B � "Þ&($( C œ �"B � "Þ&
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 >> diffsq = sum((polyval(lscoef1,xd) - yd).^2)
 diffsq =
   1.0298e+000
 >> diffsq = sum((polyval([-1,1.5],xd) - yd).^2)
 diffsq =
   1.1146e+000

 Although the linear least squares approximation appears satisfactory, we might ask if
there is a significant quadratic component in the data.  A quadratic least squares model will have
the form  .JÐBÑ œ - B � - B � - "" # $

#

 In this special case, the matrix form of the normal equations (7.7) becomes

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

! ! ! !
! ! ! !
! ! !

3œ" 3œ" 3œ" 3œ"

8 8 8 8
% $ # #
3 3 3 3

3œ" 3œ" 3œ" 3œ"

8 8 8 8
$ #
3 3 3

3œ" 3œ" 3œ"

8 8 8
#
3 3

3

3

B B B C B

B B B C

B B "

-
-
-

œ
"

#

$

B

C

3

3œ"

8

3
!

(7.9)

 Once again  will compute the coefficients, leading to a quadratic least squarespolyfit
model for the data. In the quadratic case, the third argument is set equal to two.

 >> lscoef2 = polyfit(xd,yd,2)
 lscoef2 =
   2.9356e-002 -9.9002e-001  1.4440e+000

Although  does contain a small quadratic term theJÐBÑ œ !Þ!#*$&'B � !Þ**!!#B � "Þ%%%#

approximation is dominated by the linear term which is not too much different from the linear
model determined previously.  Graphical results, shown in Figure 7.4, show a minor difference.
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Figure 7.4 Linear (dashed) and Quadratic (solid) Models
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 In terms of differences squared, the least squares quadratic model, specified by the
parabola  , is slightly better that the linear model.!Þ!#*$&'B � !Þ**!!#B � "Þ%%%#

 >> diffsq = sum((polyval(lscoef2,xd)-yd).^2)
 diffsq =
   8.9035e-001

 It is important to realize that  is designed to compute the coefficients forpolyfit
polynomial least squares models.  As we have seen, polynomial models allow the normal
equations to take on a very simple form, such as (7.8) or (7.9).  Higher order polynomial least
squares models may be constructed; however, there is a source of difficulty.  Depending on the

data, terms in the coefficient matrix, for example !
3œ"

8

3
%B  in (7.9), may become very large leading

to an ill-conditioned matrix.  Typically, polynomial least squares models are of low order.

7.4 Non polynomial Least Squares

 In the previous section, the 's  were selected as powers of .  As you may expect,1 ÐBÑ B4

other functions may be chosen to build least squares models.  The normal equations will contain

numerous terms of the form  and .  It is necessary to compute these! !
3œ" 3œ"

8 8

4 3 5 3 3 4 31 ÐB Ñ1 ÐB Ñ C 1 ÐB Ñ

sums in order to determine the coefficients in a least squares approximation.
 Suppose we wish to build a three term least squares model in the standard form,
JÐBÑ œ - 1 ÐBÑ � - 1 ÐBÑ � - 1 ÐBÑ Ð B ß C Ñ 3 œ " 8" " # # $ $ 3 3, for a given data set  for  to .  As mentioned
above, with ,  and  specified, the normal equations may be constructed from the1 ÐBÑ 1 ÐBÑ 1 ÐBÑ" # $

various sums; however, let's take a different approach.  Although interpolation has been forgone
in this chapter, assume for the moment that  must interpolate the data.  In other words,JÐBÑ
J ÐB Ñ œ C 8 $3 3.  The result is  equations in unknowns, each of the form

- 1 ÐB Ñ � - 1 ÐB Ñ � - 1 ÐB Ñ œ C" " 3 # # 3 $ $ 3 3  .

In matrix form the equations are

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C

ã ã ã ã
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C

-
-
-

œ

" # $ "

" # $ #

" # $ 8

"

#

$

1 1 1

2 2 2

n n n

(7.10)

Equation (7.10), denoted  is an  system more equations thanG- Cœ , over determined �
unknowns.  The matrix G G is .  Multiplying both sides of (7.10) by , a  matrix, will8 ‚ $ $ ‚ 8X

give the  system  .  The matrix product on the left hand side,$ ‚ $ G G GX X- Cœ
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G GX  œ
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ

ã ã ã ã ã ã
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB

" # $ " # $

" # $ " # $

" # $ " #

X
1 1 1 1 1 1

2 2 2 2 2 2

n n n n n nÑ 1 ÐB Ñ$

, (7.11)

is a  matrix that is equal to the coefficient matrix in the normal system (7.7).  In a similar$ ‚ $
fashion

G YX œ

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C

ã ã ã ã
1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ C

" # $ "

" # $ #

" # $ 8

X
1 1 1

2 2 2

n n n

(7.12)

is a matrix that is equal to the right hand side of (7.7).  In other words, $ ‚ " G G GX X- Cœ

represents the standard  normal system for the computation of the least squares coefficients.$ ‚ $
It should be clear that the result holds in general.  From a computational point of view, the matrix
G, along with the data vector  are the critical elements.C

 With the columns of  populated by the appropriate values, the MATLAB commandG
>>lscoef = (g'*g)\(g'*y) will compute the least squares coefficients.  Actually, in the case of an
over determined system such as , MATLAB recognizes the mismatch and defaults to theG- Cœ

least squares solution.  In other words, if we simply enter the over determined system, ,G- Cœ

as   MATLAB will, by default, compute the solution to .>> lscoef = g\y (g'*g)\(g'*y)
 As an example, consider a least squares approximation to data using the model
JÐBÑ œ - Ð�BÑ � - ÎB � - ÐBÑ" # $exp sin .  Assuming that the data is in the column vectors  andB.

C., our first task is to construct the matrix G G.  For example, the first column of  should contain
the values exp .   The following MATLAB commands will construct the matrix1 ÐB. Ñ œ Ð�B. Ñ" 3 3

G and solve for the coefficients.  Note the use of the colon operator to fill all rows in a column
with one MATLAB command.

 >> xd = (1:.25:4)';
 >> g(:,1) = exp(-xd);
 >> g(:,2) = 1./xd;
 >> g(:,3) = sin(xd);
 >> c = g\yd
 c =
  -1.7815e+002
   9.9946e+001
   2.0397e+002

 The non polynomial model is JÐBÑ œ �"()Þ"& Ð�BÑ � **Þ*%'ÎB � #!$Þ*( ÐBÑexp sin .  A
graph of  along with the data is JÐBÑ displayed in Figure 7.5 using the commands

 >> xi=(1:.1:4)';
 >> yi=c(1)*exp(-xi)+c(2)./xi+c(3)*sin(xi);
 >> plot(xd,yd,'k*',xi,yi,'k')



Chapter 7 Page 105

1 1.5 2 2.5 3 3.5 4
-150

-100

-50

0

50

100

150

200

250

Figure 7.5 Non Polynomial Least Squares Model

 In the preceding example, the vector  was obtained by adding normally distributedC.

random numbers to the function sin .  MATLAB's  wasC œ � "!/ � &!ÎB � #!! ÐBÑ�B randn
used to generate the random numbers producing .  You may wishC. Cœ � #!‡randn(size(xd))
to determine how well the least squares model for  approximates the data determined by C. C

itself.  Since randn is random, your graph will not be identical to Figure 7.5.

7.5 Nonlinear Models

 In many cases the structure of our approximating function, (7.1), wherein the coefficients
and functions appear in a linear manner, is not appropriate.  A knowledge of the phenomenon or
system producing the data may indicate that an exponential model, should beJÐBÑ œ / ß" !B

constructed.  Other possible simple models are power functions, , rational functions,"B!

"ÎÐ B � Ñß Ð BÑ! " " !or log functions,  ln .

Exponential Functions

 Suppose that the data is from an exponential process, .  SinceC œ /" !B

ln ln plotting ln  versus , using a linear scale on both axes, will result in theÐCÑ œ B � Ð Ñß ÐCÑ B! "

graph of a line.  As an alternative, plotting  versus , with a logarithmic scale on the verticalC B
axis, will also give a line.  MATLAB contains numerous plot options including .  Seesemilogy
>> help semilogy for further information and other plot options.  Since the exponential model
can be written as  log log log  the use of base logarithms by "! "! "!ÐCÑ œ B Ð/Ñ � Ð Ñ "!! " semilogy
poses no problems.  To illustrate these ideas consider the exponential function   onC œ "Þ&/�#Þ$B

the interval  .Ò !ß $ Ó
 Figure 7-6 shows two subplots for the exponential function.  To aid our understanding of
these unfamiliar plots, note that when , , and ln .  The pointsB œ " C œ !Þ"&!% ÐCÑ œ �"Þ)*
Ð"ß�"Þ)*Ñ Þ ! † "!and (1, 1 5 4 ) are plotted on the graphs for reference.  You should be able to�"

verify that the points corresponding to  are at the proper locations.  The MATLABB œ !
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command  prints a label on the vertical axis.  See also .  Recall thatylabel >> help xlabel
MATLAB uses  for ln and  for log .log log10 "!
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Figure 7.6 The Exponential Function "Þ&/�#Þ$B

  The scatter plot of a data set from an exponential process should resemble a line if the
data is plotted with a logarithmic scale on the vertical axis or if the vertical scale is ln .ÐCÑ
Consider the following data

B !Þ' "Þ# #Þ& $Þ# %Þ# &Þ(
C %Þ( 'Þ* "*Þ$ $!Þ" '"Þ# "(!Þ&
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Figure 7.7 Exponential Data

Figure 7.7 shows three plots of the data using the following MATLAB commands.
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 >> subplot(131),plot(x,y,'k*',x,y,'k'),title('LINEAR'),xlabel('x'),ylabel('y')
 >> subplot(132),plot(x,log(y),'k*'),title('LINEAR'),xlabel('x'),ylabel('ln(y)')
 >> subplot(133),semilogy(x,y,'k*'),title('SEMILOG'),xlabel('x'),ylabel('y')

 Subplot(131) suggests exponential growth in the data.  Subplots(132) and (133) appear to
be linear supporting the exponential conjecture.  Since the exponential model, , may beC œ /" !B

restructured as ln ln , Gauss' least squares method may be used to compute theÐCÑ œ B � Ð Ñ! "

parameters,  and ln , for the line.  The normal equation, (7.8), may be modified to determine! "Ð Ñ
! " and ln  as follows:Ð Ñ

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
! ! !
! ! !” •3œ" 3œ" 3œ"

8 8 8
#
3 3 3 3

3œ" 3œ" 3œ"

8 8 8

3 3

B B ÐC ÑB

B " ÐC Ñ
Ð Ñ

œ
!

"ln

ln

ln
(7.13)

 MATLAB will compute the linear least squares coefficients, ! " and ln , usingÐ Ñ

 >> lscoef = polyfit(x,log(y),1)
 lscoef =
   7.2084e-001  1.0824e+000

 Note that  and ln( .   The numerical value of  islscoef(1) lscoef(2)œ œ Ñ! " "

 >> beta = exp(lscoef(2))
 beta =
   2.9517e+000

Using  and  our exponential model for the data is lscoef(1) beta C œ / œ #Þ*&"( / Þ" !B !Þ(#!)%B

 Figure 7-8 is a graph of the data and least squares exponential model.
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Figure 7.8 Exponential Data and Model
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 It is tempting to use  to compute values for .  The MATLAB commandpolyval C3
polyval(lscoef,xi) will actually evaluate the linear term ln .  In other words, values of! "B � Ð Ñ3

the logarithm of , not  itself, will be computed.  The exponential function may be used toC C3 3

produce the correct values for  with the command  .C3 exp(polyval(lscoef,xi))

Power Functions

 As a second example, consider a power function model .  Taking logarithms ofC œ B" !

both sides gives ln ln ln .  Plotting ln  versus ln , using a linear scale onÐCÑ œ ÐBÑ � Ð Ñ ÐCÑ ÐBÑ! "

both axes, will produce a line.  Clearly, plotting  versus , using logarithmic scales for both theC B
vertical and horizontal axes, will also result in a line.  The MATLAB plot command  willloglog
implement the second approach.  The normal equations for this model are

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
! ! !
! ! !” •3œ" 3œ" 3œ"

8 8 8
#

3 3 3 3

3œ" 3œ" 3œ"

8 8 8

3 3

ln ln ln ln

ln lnln

ÐB Ñ ÐB Ñ ÐC Ñ ÐB Ñ

ÐB Ñ " ÐC Ñ
Ð Ñ

œ
!

"
. (7.14)

 The following MATLAB commands will plot the power function  on theC œ 'Þ'B!Þ#$

interval in two different formats.Ò !Þ#ß (Þ( Ó

 >> x = (.2:.5:7.7)';
 >> y = 6.6*x.^(.23);
 >> subplot(121),plot(log(x),log(y),'k*'),title('LINEAR'),xlabel('ln(x)'),ylabel('ln(y)')
 >> subplot(122),loglog(x,y,'k*'),title('LOGLOG'),xlabel('x'),ylabel('y')
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Figure 7.9 Plots of   on   C œ 'Þ'B Ò !Þ#ß (Þ( Ó!Þ#$
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 Suppose that the values of   have been perturbed by random values producingC œ 'Þ'B!Þ#$

a data set ( .  We may construct a least squares approximation, ln ln ln ,B ß D Ñ ÐDÑ œ ÐBÑ � Ð Ñ3 3 ! "

using  on logarithms of the data.polyfit

 >> z = y + .3*randn(size(x)); % perturbed power function data
 >> lscoef = polyfit(log(x),log(z),1)
 lscoef =
   2.4760e-001  1.8692e+000
 >> lnz = polyval(lscoef,log(x));
 >> subplot(121),plot(x,z,'k*',x,exp(lnz),'k'),title('LINEAR'),xlabel('x'),ylabel('z')
 >> subplot(122),loglog(x,z,'k*',x,exp(lnz),'k'),title('LOGLOG'),xlabel('x'), ...
  ylabel('z')

  is actually ln ; thus  and the least squares model is givenlscoef(2) Ð Ñ œ / œ 'Þ%)$"" " "Þ)'*#

by .  Since  has been used to compute , the actual values of  areD œ 'Þ%)$"B D!Þ#%(' polyval lnz
given by .  Figure 7.10 displays the perturbed data and the least squares approximationexp(lnz)
in two different formats.
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Figure 7.10 Least Squares Power Function Approximation

Rational Functions

 At first thought it does not seem possible that the least squares method could be applied
to simple rational functions such as or  .  If  is neverC œ "ÎÐ B � Ñ C œ "ÎÐ B � B � Ñ C! " ! " ##

equal to zero, both functions may be studied by inverting the expressions:   or"ÎC œ B �! "

"ÎC œ B � B �! " ## .  In either case  may be used to compute the coefficients.  In will be polyfit
necessary to enter the data values for  using array division.  The commands  orC polyfit(x,1./y,1)
polyfit(x,1./y,2) will compute the least squares coefficients for a linear or quadratic model.
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 If the coefficients computed by  are used in  it is important to realize that,polyfit polyval
given , the reciprocal  will be calculated.  In other words, an additional inversion (arrayB "ÎC3 3

division) will be needed to determine the predicted model value for .C3

7.6 Problems

7-1. The error, or RMS error, is defined by root-mean-square Ë !"
8
3œ"

8

3 3
#Ò J ÐB Ñ � C Ó Þ

 Find the equations that will minimize the RMS error if JÐBÑ œ - 1 ÐBÑ � - 1 ÐBÑ" " # # .

7-2. Consider the data and  and a linear least squaresÐ !ß " Ñß Ð "ß " Ñß Ð #ß # Ñ Ð %ß & Ñ
 approximation, .C œ - B � -" #

 a. Find the explicit form for the error term .IÐ- ß - Ñ œ - B � - � C" # " 3 # 3
3œ"

8 #!’ “
 b. Differentiate your  from part a to determine two linear equations whoseIÐ- ß - Ñ" #

     solution minimizes .IÐ- ß - Ñ" #

 c. How do your equations compare to the normal equations given in equation (7.8)?
 d. Solve the system in part b and graph the data and least squares line.

7-3. Repeat Problem 7-2 using the data  and .Ð!ß�"Ñß Ð"ß "Ñß Ð#ß "Ñ Ð%ß !Ñ

7-4. Recall the spring data from Chapter 6.
 The force needed to stretch a spring from its normal length is given in the table.

 B Ð-7Ñ $Þ! $Þ& %Þ! %Þ& &Þ! 'Þ! (Þ! )Þ!
J Ð.C8/=Ñ #Þ$( )Þ#& "%Þ"! #!Þ!! ##Þ%& #%Þ)# #'Þ#( #)Þ'"

 
 Using MATLAB,
 a. Construct a linear least squares model for the data.
 b. Plot the model and spring data.
 c. Estimate the spring constant.

7-5. Recall the corrected thermocouple data from Chapter 6.

 °X Ð J Ñ %& &! && '! (! )! *! "!!
Z Ð7Z Ñ $Þ%* $Þ"( #Þ*$ #Þ($ #Þ$( #Þ!) "Þ)& "Þ'&

 Using MATLAB,
 a. Construct a quadratic least squares model for the data.
 b. Plot the model and thermocouple data.
 c. Approximate  and  at  and Z ÐX Ñ .Z Î.X X œ '' ('Þ

7-6. Repeat Problem 7-5 using an exponential least squares model.
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7-7. In matrix form, write out the normal equations for a least squares model
 using JÐBÑ œ - Ð�BÑ � - ÎB � - ÐBÑ" # $exp sin .

7-8. Construct normal equations for the least squares method that will allow you to
 determine the parameters,  and , in the model .+ , C œ Ð+B � ,/ ÑÈ # �B

7-9. Given the following data
 >> x = (.4:.2:1.8)';
 >> y = [.189,.202,.265,.300,.345,.563,.691,1.249]';
 a. Construct four least squares models: quadratic, exponential, power and reciprocal,
     , for the data.C œ "ÎÐ7B � ,Ñ
 b. Which model appears to provide the best approximation. Explain your reasoning.
     Note:  The sum of differences squared, (7.2), is one way to compare various models.

7-10. Suppose that we have a data set,  for to , that represents the numericalÐ > ß C Ñ 3 œ " 83 3

 solution of an initial value problem in differential equations.  The solution of the initial
 value problem is thought to be of the form   Show howCÐ>Ñ œ Ð+> � ,> � -Ñ Þ# �"

 MATLAB may be used to compute the least squares values for the parameters.

7-11. Given the following data

 B �" �!Þ& ! Þ& " "Þ& #
C Þ!)! Þ"&' Þ&$( Þ)$) Þ*$' Þ)"( Þ#'(

 Determine the coefficients in a least squares model, exp , forC œ Ð+B � ,B � -Ñ#

 the data.  Plot the data and model results.

7-12. Consider the data

 B Þ#($ Þ%&! Þ"!' Þ(!' Þ$') Þ"%#
C �Þ&%' Þ&$" �#Þ&$ "Þ## Þ!") �"Þ*(

 a. Plot the data
 b. Is an exponential model a reasonable choice?  Explain.
 c. Determine a least squares model in the form ln .C œ , Ð+BÑ
 d. Plot the data and model results.

7-13. Given the data

 B "Þ! "Þ% #Þ" #Þ' $Þ( %Þ' &Þ# 'Þ)
C �%Þ(" �$Þ&$ �"Þ)) �"Þ$" !Þ"" !Þ") !Þ*( "Þ)*

 Choose two likely models for the data and compute the coefficients.  Plot graphs of your
 results and explain why you selected the particular models.  Is one better than the other?
 Explain why.  Perhaps MATLAB has the answer.  Try .>> why


