
Chapter 9
Differential Equations

9.1 Introduction

 A differential equation is an equation involving an unknown function, , and itsCÐ>Ñ
derivatives. Many differential equations are solved in calculus. For example, if is0Ð>Ñ
continuous on an interval , the solution of the equationÒ > ß > Ó! 0

.C

.>
œ 0Ð>Ñ (9.1)

is given by the fundamental theorem of calculus

CÐ>Ñ œ G � 0Ð Ñ.(
>

>

!

7 7 . (9.2)

Equation (9.2) describes a family of solutions determined by the constant . A particularG
solution is computed by requiring that the solution pass through the point . In other wordsÐ> ß C Ñ! !

CÐ> Ñ œ C! !. (9.3)

The problem specified by (9.1) and (9.3) is called an (IVP) and has theinitial value problem
solution

CÐ>Ñ œ C � 0Ð Ñ.!
>

>

(
!

7 7 .

 A general initial value problem consists of a differential equation and an initialfirst order
value as follows:

C Ð>Ñ œ 0Ð>ß CÑ CÐ> Ñ œ Cw
! !, . (9.4)

We assume that the known function is continuous in and . Introductory textbooks on0Ð>ß CÑ > C
differential equations provide analytical solution methods for many first order initial value
problems along with various theoretical aspects. The solution methods are based on special cases
for . The following example is called a 0Ð>ß CÑ separable initial value problem since 0Ð>ß CÑ
œ �#>C � CÎ> > Cmay be expressed as a product of a function of and a function of .

C œ Ð�#> � "Î>ÑCß CÐ!Þ#&Ñ œ !Þ'w (9.5)

By direct substitution you should be able to verify that is a solution of theCÐ>Ñ œ #Þ%>/�> �!Þ!'#&#

IVP given in (9.5). If you are familiar with differential equations, you will recognize that (9.5) is
also a linear initial value problem. There are special solution methods for linear problems.
Unfortunately, many initial value problems cannot be solved by analytical techniques. This leads
to the need for numerical methods.

Chapter 9 148

 This chapter will focus on some elementary methods for the numerical solution of initial
value problems. This means that we wish to compute a set of points , ,Ð > ß C Ñ 3 œ !ß "ß #ßá ß 8s3 3

to approximate the true solution, . The notation will be used. In many cases weCÐ>Ñ C ¸ CÐ> Ñs3 3

assume that where is a constant called the Obviously, the first point is> œ > � 3 † 2 23 ! step size.
Ð> ß C Ñ! ! . Note also, the initial slope of the true solution is given by the known value
C Ð> Ñ œ 0Ð> ß CÐ> ÑÑ œ 0Ð> ß C Ñw

! ! ! ! ! .
 To begin our study, consider the linear Taylor polynomial plus remainder centered at >!

CÐ>Ñ œ CÐ> Ñ � C Ð> ÑÐ> � > Ñ � C Ð- ÑÐ> � > Ñ
"

#
! ! ! ! !

w ww #

or

CÐ>Ñ œ C � 0Ð> ß C ÑÐ> � > Ñ � C Ð- ÑÐ> � > Ñ
"

#
! ! ! ! ! !

ww # (9.6)

where is an unknown between and . With , (9.6) becomes- > > > œ > œ > � 2! ! " !

CÐ> Ñ œ C � 20Ð> ß C Ñ � C Ð- Ñ2
"

#
" ! ! ! !

ww # (9.7)

The first two terms on the right hand side of (9.7) lead to a simple numerical method to
approximate . We find . S we have neglected CÐ> Ñ CÐ> Ñ ¸ C œ C � 20Ð> ß C Ñ C Ð- Ñ2s" " ! ! ! !"

"
#

ww #ince
to form the approximation, the remaining term on the right hand side of (9.7) is called the local
truncation error. We say that the local truncation error is (.b 2 Ñ#

9.2 Euler's Method

 The approximation given at the end of the last section, ,CÐ> Ñ ¸ C œ C � 20Ð> ß C Ñs" ! ! !"

may be viewed as a tangent line approximation. From calculus, a tangent line requires a point,
Ð> ß C Ñ C Ð> Ñ œ 0Ð> ß C Ñ! ! ! ! !

w, and a slope, ; thus, the point-slope equation of the line is

C � C œ 0Ð> ß C ÑÐ> � > Ñ
C œ C � 0Ð> ß C ÑÐ> � > Ñ
! ! ! !

! ! ! !

.

With replaced by , the value for is given by .> > œ > � 2 C C � 20Ð> ß C Ñs" ! ! ! !"

 It is tempting to use a second linear Taylor polynomial plus remainder, centered at , to>"
compute the next step. Consider

CÐ>Ñ œ CÐ> Ñ � C Ð> ÑÐ> � > Ñ � C Ð- ÑÐ> � > Ñ
"

#
" " " " "

w ww #

or

CÐ>Ñ œ CÐ> Ñ � 0Ð> ß CÐ> ÑÑÐ> � > Ñ � C Ð- ÑÐ> � > Ñ
"

#
" " " " " "

ww #. (9.8)

With , (9.8) becomes> œ > œ > � 2# "

Chapter 9 149

CÐ> Ñ œ CÐ> Ñ � 0Ð> ß CÐ> ÑÑ2 � C Ð- Ñ2
"

#
" " " "

ww #. (9.9)

The computational problem should be obvious: an exact value for is not available. UsingCÐ> Ñ"
the approximate value, , the first two terms on the right hand side of (9.9) lead to a formulaCs"
estimating .CÐ> Ñ#

C œ C � 20Ð> ß C Ñs s s# " "" (9.10)

 Generalizing equation (9.10) leads to Euler's method

C œ C � 20Ð> ß C Ñß 3 œ !ß "ß #ßá8s s s3�" 3 33 for . (9.11)

Note that . The first three iterations of Euler's method areC œs! C!

C œ C � 20Ð> ß C Ñs

C œ C � 20Ð> ß C Ñs s s

C œ C � 20Ð> ß C Ñs s s

" ! ! !

" ""

$ # ##

 To fully understand Euler's method, let's write out the details of the first three iterations
using the initial value problem . With :C œ Ð�#> � "Î>ÑCß CÐ!Þ#&Ñ œ !Þ' 2 œ !Þ"w

C œ C � 20Ð> ß C Ñs
œ C � 2Ð�#> � "Î> ÑC
œ !Þ' � !Þ" † Ð�# † !Þ#& � "Î!Þ#&Ñ † !Þ' œ !Þ)"

C œ C � 20Ð> ß C Ñs s s
œ C � 2Ð�#> � "Î> ÑCs s
œ !Þ)" � !Þ" † Ð�# † !Þ$& � "Î!

" ! ! !

! ! ! !

" ""

" "" "

Þ$&Ñ † !Þ)" œ !Þ*)&

C œ C � 20Ð> ß C Ñs s s
œ C � 2Ð�#> � "Î> ÑCs s
œ !Þ*)& � !Þ" † Ð�# † !Þ%& � "Î!Þ%&Ñ † !Þ*)& œ "Þ""&

$ # ##

#

(9.12)

Keep in mind that , 4 and . Figure 9.1 shows the valuesC ¸ C ¸ C ¸s s s1 2 3CÐ!Þ$&Ñ CÐ!Þ &Ñ CÐ!Þ&&Ñ
computed with Euler's method and a graph of the true solution. The axes setting in the figure
have been modified from MATLAB's default choices to provide a consistent window. As you
can see, the data points from Euler's method are above the true solution. Why is this the case?
 An M-file to compute, display and plot the results of Euler's method for the example
initial value problem is given on the next page. The M-file ydot.m contains C œ 0Ð>ß CÑw

œ �#>C � CÎ>. There are two new MATLAB commands that should be reviewed with the help
command, pause hold on and . For graphical purposes, the exact solution is in the M-file fct1.m.

M-file ydot.m

 function yp=ydot(t,y)
 %YDOT ydot = f(t,y) for initial value problems
 yp=-2*t*.y+y/.t;

Chapter 9 150

M-file euler.m

 function [t,y] = euler(t0,y0,h,n)
 % EULER Euler's method
 % Requires ydot.m and fct1.m
 % initial values,to, yo; step size = h; and number of steps = n
 t(1) = t0;y(1)=y0;
 t = t0:h:t0+h*n;
 for i = 1:n
 y(i+1) = y(i)+h*ydot(t(i),y(i));
 end
 % display results and pause
 disp(' t y')
 disp([t',y']),pause
 % plot results and pause
 plot(t,y,'k*'),xlabel('t'),ylabel('y')
 hold on,pause
 % plot exact solution
 x=t0:h/10:t0+h*n;
 z = fct1(x);
 plot(x,z,'k')

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

y

h=0.1

Figure 9.1 Euler's Method, and 2 œ !Þ"ß CÐ>Ñ œ #Þ%>/�> �!Þ!'#&#

Numerical results will confirm the values computed in (9.12).

 >> [t,y] = euler(.25,.6,.1,3)à
 t y
 2.5000e-001 6.0000e-001
 3.5000e-001 8.1000e-001

Chapter 9 151

 4.5000e-001 9.8473e-001
 5.5000e-001 1.1149e+000

 Decreasing the step size will improve the accuracy of Euler's method. The following
table summarizes the error at for three different step sizes. Note .> œ !Þ&& CÐ!Þ&&Ñ œ "Þ!$)$

Step Size Iterations Approximation Global Error

00

2 3 l CÐ!Þ&&Ñ �
!Þ" $ "Þ""%* !Þ!(''
!Þ!& ' "Þ!()$!Þ!%
!Þ!#& "# "Þ!&)(!Þ!#!%

 C C ls s3 3

The errors computed in the table reflect the accumulation of error in each of the previous
iterations. The data suggest, imperfectly, that decreasing the step size by half also decreases the
error by half. In other words it appears that the error is The at is defined asbÐ2ÑÞ >global error 3

l CÐ> Ñ �3 C ls3 . Advanced texts on numerical analysis contain proofs showing that the global error
of Euler's method is , neglecting roundoff errors.bÐ2Ñ
 Figure 9.2 shows the result of a smaller step size for our example initial value problem.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

y

h = 0.025

Figure 9.2 Euler's Method, 025 and 2 œ !Þ ß CÐ>Ñ œ #Þ%>/�> �!Þ!'#&#

 Note that the Euler values remain above the true solution for the interval shown. Since
the global error is , Euler's method is often called a first order numerical method. FiguresbÐ2Ñ
9.1 and 9.2 suggest that the maximum of the global error occurs at the final time, . As> œ !Þ&&
we shall see, this is not always the case. Although Euler's method is simple to derive and easy to
analyze, the global error performance is not satisfactory for practical use in the numerical
solution of initial value problems. In other words, numerical schemes with better error
characteristics are the methods of choice.

Chapter 9 152

9.3 The Improved Euler Method

 Euler's method is an example of a method. In a one-step method onlyone-step
information on the interval is used in the computation of Ò > ß > Ó3�" 3 Cs3. Various one-step methods
may be derived by integrating from to as follows:C œ 0Ð>ß CÑ > >w

3 3�"

CÐ> Ñ � CÐ> Ñ œ 0Ð>ß CÐ>ÑÑ .>3�" 3
>

>

(
3

3�"

or

CÐ> Ñ œ CÐ> Ñ � 0Ð>ß CÐ>ÑÑ .>3�" 3
>

>

(
3

3�"

(9.13)

Since is unknown the integral in (9.13) cannot be evaluated; however, using integrationCÐ>Ñ ß
techniques discussed in Chapter 8, two one-step methods will be developed in this section. For
example, if the integrand is replaced with the constant), (9.13) becomes0Ð>ß CÐ>ÑÑ 0Ð> ß Cs3 3

CÐ> Ñ ¸ CÐ> Ñ � 0Ð> ß C .>s3�" 3 3
>

>

3(
3

3�"

)

or

CÐ> Ñ ¸ CÐ> Ñ � 20Ð> ß Cs3�" 3 3 3). (9.14)

Equation (9.14) leads directly to Euler's method, .C œ C � 20Ð> ß C Ñs s s3�" 3 33

 Another approach for estimating the integral in (9.13) employs a linear interpolating
polynomial using the points and . Actually, we are using the Trapezoidal RuleÐ> ß C Ñ Ð> ß C Ñs s3 3�"3 3�"

to arrive at

CÐ> Ñ ¸ CÐ> Ñ � 0Ð> ß C � 0Ð> ß C Ñ
2

#
s s3�" 3 3 3�"3 3�"’ “) .

This suggests the formula

C œ C � 0Ð> ß C � 0Ð> ß C Ñs s s s
2

#3�" 3 3 3�"3 3�"’ “) . (9.15)

Unfortunately, the unknown value Cs3�" now appears on both sides of (9.15) since it appears as an
argument of on the right hand side. Instead of using a root finding method (recall Chapter 4),0
to find , the so-called Cs3�" improved Euler method is obtained from (9.15) by replacing the right
hand C C � 20Ð> ß C Ñs s s3�" 3 33 with a value from Euler's method, . Using this preliminary estimate of
Cs3�"we find

C œ C � 0Ð> ß C � 0Ð> ß C � 20Ð> ß C ÑÑs s s s s
2

#3�" 3 3 3 33 3�" 3’ “) . (9.16)

 The complicated structure of (9.16) can be simplified by introducing additional notation.
Define and as follows:5 5" #

Chapter 9 153

5 œ 0Ð> ß Cs

5 œ 0Ð> � 2ß C � 25 Ñs
" 3 3

3 "3

)

Using these definitions, the improved Euler method becomes

C œ C � 5 � 5 Þs s
2

#3�" 3 " #’ “ (9.17)

Note that two function evaluations are needed to compute and that must be computedC 5s3�" "

before On a positive note, it can be shown that the global error of the improved Euler method5 Þ#
is .bÐ2 Ñ#

 Details of the computations for the first two iterations of the improved Euler method with
2 œ !Þ" are provided below. You will note the similarity to some of the computations for Euler's
method found in equations (9.12).

5 œ 0Ð> ß C Ñ
œ Ð�#> � "Î> ÑC
œ Ð�# † !Þ#& � "Î!Þ#&Ñ † !Þ'!! œ #Þ"!

5 œ 0Ð> � 2ß C � 25 Ñ
œ Ð�#Ð> � 2Ñ � "ÎÐ> � 2ÑÑÐC � 25 Ñ
œ Ð�# † !Þ$& � "Î!Þ$&Ñ † Ð!Þ'!! � !Þ#"!

" ! !

! ! !

! ! "

! ! ! "

Ñ œ "Þ(%(

C œ C � Ð5 � 5 Ñs

œ !Þ' � Ð#Þ"! � "Þ(%(Ñ œ !Þ(*#
" ! " #

2
#
!Þ"
#

(9.18)

5 œ 0Ð> ß C Ñs
œ Ð�#> � "Î> ÑCs
œ Ð�# † !Þ$& � "Î!Þ$&Ñ † !Þ(*# œ "Þ("

5 œ 0Ð> � 2ß C � 25 Ñs
œ Ð�#Ð> � 2Ñ � "ÎÐ> � 2ÑÑÐC � 25 Ñs
œ Ð�# † !Þ%& � "Î!Þ%&Ñ † Ð!Þ(*# � !

" " "

" " "

" ""

" " ""

Þ"("Ñ œ "Þ#(

C œ C � Ð5 � 5 Ñs s

œ !Þ(*# � Ð"Þ(" � "Þ#(Ñ œ !Þ*%"
"

2
"

!Þ"
#

(9.19)

The approximate values for and , found in (9.18) and (9.19), are slightly lowerCÐ!Þ$&Ñ CÐ!Þ%&Ñ
than the corresponding values computed with Euler's method, (9.12), and closer to the actual
values of the solution.
 The following M-file implementing the improved Euler method, is very similar toß
euler.m found in Section 9.2.

Chapter 9 154

M-file impeuler.m

 function [t,y] = impeuler(t0,y0,h,n)
 % IMPEULER Improved Euler method
 % requires ydot.m and fct1.m
 % initial values,to, yo; step size = h; and number of steps = n
 t(1) = t0;y(1)=y0;
 t = t0:h:t0+h*n;
 for i = 1:n
 k1 = ydot(t(i), y(i));
 k2 = ydot(t(i)+h, y(i)+h*k1);
 y(i+1) = y(i)+h*(k1+k2)/2;
 end
 % display results and pause
 disp(' t y')
 disp([t',y']),pause
 % plot results and pause
 plot(t,y,'k*'),xlabel('t'),ylabel('y')
 hold on,pause
 % plot exact solution
 x=t0:h/10:t0+h*n;
 z = fct1(x);
 plot(x,z,'k')

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

y

h = 0.025

Figure 9.3 Improved Euler Method, 025 and 2 œ !Þ ß CÐ>Ñ œ #Þ%>/�> �!Þ!'#&#

Figure 9.3 shows the graphical results of Comparing Figures>> [t,y]=impeuler(.25,.6,.025,12)à .
9.2 and 9.3 we note the improved global error.
 As with Euler's method, decreasing the step size will improve the accuracy of the
improved method. The following table summarizes the global error at for four step> œ !Þ&&
sizes. Recall CÐ!Þ&&Ñ œ "Þ!$)$Þ

Chapter 9 155

Step Size Iterations Approximation Global Error
2 3 l CÐ!Þ&&Ñ �

!Þ" $ "Þ!%#! !Þ!!$(
!Þ!& ' "Þ!$*& !Þ!!"#
!Þ!#& "# "Þ!$)(!Þ!!!%
!Þ!"#& #% "Þ!$

 C C ls s3 3

)% !Þ!!!"

With a global error of we expect the error to drop by a factor of approximately four whenbÐ2 Ñ#

the step size is cut in half. Our results seem close to this expected behavior as becomes2
smaller. Figure 9.4 shows both Euler methods for our sample initial value problem over a longer
time interval, .Ò !Þ#&ß #Þ#& Ó

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y

Euler
Improved Euler
Exact

Figure 9.4 Euler Methods, 2 œ !Þ!&

 Based on this figure, the accuracy of a higher order numerical method is well worth the
increase in computational effort. The data from >> [t,y] = euler(.25,.6,.05,40); is contained in
the vectors and ; thus, the following commands will locate the maximum of the global error.t y

 >> yexact = fct1(t);
 >> err = abs(yexact-y);
 >> [maxerr,n] = max(err)
 maxerr =
 7.6881e-002
 n =
 15

In other words, the maximum global error for Euler's method is at .!Þ!('* > œ !Þ*&"%

(Remember that MATLAB vectors begin with position one.) Similar computations for the
improved Euler method yield a maximum global error of at . In both cases!Þ!!"&% > œ !Þ)!""

the maximum error occurs after the peak of the exact solution.

Chapter 9 156

9.4 Higher Order One-Step Methods

 With a global error of the improved Euler method is called a second order method.bÐ2 Ñ#

Higher order methods can be derived by including additional terms in a Taylor expression. For
example, a quadratic Taylor polynomial plus remainder centered at is>!

CÐ>Ñ œ CÐ> Ñ � C Ð> ÑÐ> � > Ñ � C Ð> ÑÐ> � > Ñ � C Ð- ÑÐ> � > Ñ
" "

'
! ! ! ! ! ! !

w ww # www $

or

CÐ>Ñ œ C � 0Ð> ß C ÑÐ> � > Ñ � 0Ð>ß CÑ Ð> � > Ñ � C Ð- ÑÐ> � > Ñ
" . "

.> '
! ! ! ! ! ! !

Ð> ßC Ñ

www $’ “º
! !

. (9.20)

With , equation (9.20) becomes> œ > œ > � 2" !

CÐ> Ñ œ C � 20Ð> ß C Ñ � 0Ð>ß CÑ � C Ð- Ñ2
2 . "

.> '
" ! ! ! !

#

Ð> ßC Ñ

www $’ “º
! !

. (9.21)

 The derivative in the third term on the right hand side of (9.21) is expressed in terms of
partial derivatives as follows:

. .C

.> .>
0Ð>ß CÑ œ 0 Ð>ß CÑ � 0 Ð>ß CÑ † œ 0 Ð>ß CÑ � 0 Ð>ß CÑ † 0Ð>ß CÑÞ’ “ > C > C

Substituting into (9.21) gives the lengthy expression

CÐ> Ñ œ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 0 Ð> ß C Ñ † 0Ð> ß C Ñ � C Ð- Ñ2
2 "

'
" ! ! ! > ! ! C ! ! ! ! !

#
www $’ “

that leads to the Taylor approximation with local truncation error of bÐ2 Ñ$

C œ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 0 Ð> ß C Ñ † 0Ð> ß C Ñ Þs
2

#" ! ! ! > ! ! C ! ! ! !

’ “ (9.22)

 Generalizing (9.22) gives the second order Taylor method

C œ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 0 Ð> ß C Ñ † 0Ð> ß C Ñ Þ $s s s s s s
2

#3�" 3 3 3 3 33 > 3 C 3 3

’ “ (9.2)

The complexity of (9.23) is apparent. First of all we must compute the partial derivatives, and0>
0 Ð> ß C ÑsC 3 3, followed by three function evaluations at the point . For these reasons Taylor methods
are seldom used in practice; however, they are extremely important in the derivation of numerical
methods that do not require computation of partial derivatives of . One such method is0Ð>ß CÑ
discussed in the next section.

Chapter 9 157

9.5 Runge-Kutta Methods

 Runge-Kutta methods are designed to match the local truncation error of a Taylor method
while avoiding the need for partial derivatives of . The general form of a Runge-Kutta0Ð>ß CÑ
method is

C œ C � 2 Ð> ß C ß 2ß 0Ñs s s3�" 3 33F (9.24)

where is a linear combination of values of . Runge-Kutta methods are derived by firstF 0Ð>ß CÑ
specifying a of your choosing containing numerous unknown parameters. The parameters areF

determined by attempting to make resemble the terms in an appropriate Taylor method. AnF

example will clarify the procedure.
 Suppose contains only one value of with three parameters:F 0

F ! "Ð> ß C ß 2ß 0Ñ œ + 0Ð> � 2ß C � 2 Ñs s3 " 3 " "3 3

With this choice (9.24) becomes

C œ C � 2 † + 0Ð> � 2ß C � 2 Ñs s s3�" 3 3" 3 " "! " . (9.25)

We now attempt to find the parameters, and , so that (9.25) resembles the three term+ ß" " "! "

Taylor method in (9.23). At first glance this seems to be an impossible task. There are no partial
derivatives in (9.25).
 The remedy is found in the Taylor expansion of a function of two variables. For our
purposes we simply state the result. The Taylor expansion of centered at the point 0Ð>ß CÑ Ð> ß C Ñs3 3

is

0Ð>ß CÑ œ 0 � Ð> � > Ñ0 � ÐC � Ñ0

� Ð> � > Ñ 0 � #Ð> � > ÑÐC � Ñ0 � ÐC � Ñ 0

�

Ð> ß C Ñ Ð> ß C Ñ C Ð> ß C Ñs s s s

Ð> ß C Ñ C Ð> ß C Ñ C Ð> ß C Ñs s s s s

3 3 33 3 3 3

3 3 33 3 3 3 3

3 > C

"
#x 3 >> 3 >C CC

#’ “
 Higher Order Terms

With this result

0Ð> � 2ß C � 2 Ñ œ Ð> ß C Ñ � Ð> ß C Ñ Ð> ß C Ñs s s s3 " " 3 3 33 3 3 3! " 0 20 � 2 0 �â! "" > " C . (9.26)

Substituting into (9.25) gives the expanded form of the Runge-Kutta method.

C œ C � 2 † + Ð> ß C Ñ � Ð> ß C Ñ Ð> ß C Ñ �âs s s s s3�" 3 3 3 3" 3 3 3’0 20 � 2 0 Þ! "" > " C “ (9.27)

Dropping the higher order terms in (9.27) gives

C ¸ C � 2 † + Ð> ß C Ñ � Ð> ß C Ñ Ð> ß C Ñs s s s s3�" 3 3 3 3" 3 3 3’0 20 � 2 0 Þ! "" > " C “ (9.28)

 The coefficients in (9.28) are determined by comparison with the second order Taylor
method, (9.23).

Chapter 9 158

C œ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 0 Ð> ß C Ñ † 0Ð> ß C Ñ Þs s s s s s
2

#3�" 3 3 3 3 33 > 3 C 3 3

’ “
The terms of both expressions may be lined up for easy comparison.

R-K (9.27)
Taylor (9.23)

C ¸ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 2 0 Ð> ß C Ñs s s s s

C œ C � 20Ð> ß C Ñ � 0 Ð> ß C Ñ � 0Ð> ß Cs s s s
3�" 3 3 3 33 > 3 C 3

#

3�" 3 3 33 > 3 3

+ + 2 +

2
" " " " "

#

" "
#

#

! "

s sÑ2 0 Ð> ß C Ñ3 3
#

C 3

Equating corresponding terms it follows that , , and + œ " œ œ" " "
" "
#! " 0Ð> ß C Ñs3 3 .

 These values can now be substituted into (9.25) to produce what is often called the
Midpoint method.

C œ C � 20Ð> � 2ß C � 2 0Ð> ß C ÑÑs s s s
"

#3�" 3 3 33 3
"

#
. (9.29)

Since the midpoint method has matched all terms in the Taylor method through the local2#

truncation error is and the global error is . Thus, the midpoint method isb bÐ2 Ñ Ð2 Ñ$ #

comparable to the improved Euler method. Although both methods have the same global error
performance, this does not mean that the numerical results generated will be the same. It is easy
to modify the M-file impeuler.m to implement the midpoint method. This task is left to the
problems at the end of this chapter. Figure 9.5 shows the numerical solution of our example
initial value problem. The graphical result is similar to the improved Euler method shown in
Figure 9.4.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Midpoint
Exact

Figure 9.5 Midpoint Method, 2 œ !Þ!&

 The midpoint method as well as the improved Euler method are second order Runge-
Kutta methods. Using a different form for ,F

F ! "Ð> ß C ß 2ß 0Ñ œ + 0Ð> ß C Ñ � + 0Ð> � 2ß C � 2 Ñs s s3 " 3 # 3 " "3 3 3 ,

Chapter 9 159

many advanced texts derive the improved Euler method as another example of the Runge-Kutta
procedure. With other choices for , higher order Runge-Kutta methods with improved globalF

error performance can be derived. The most frequently used Runge-Kutta method is the fourth
order scheme where

FÐ> ß C ß 2ß 0Ñ œ + 5 � + 5 � + 5 � + 5s3 " " # # $ $ % %3

and

5 œ 0Ð> ß C Ñs

5 œ 0Ð> � 2ß C � 25 Ñs

5 œ 0Ð> � 2ß C � 25 � 25 Ñs

5 œ 0Ð> � 2ß C � 25 � 25 � 25 Ñs

" 3 3

3 " " "3

$ 3 # # " $ #3

% 3 $ % " & # ' $3

! "

! " "

! " " "

 Using a Taylor polynomial of degree four will give equations in unknowns. For"" "$
example, one of the equations is . Since is a weighted sum of slopes"" + � + � + � + œ "" # $ % F

(i.e., values), this equation seems reasonable in view of the form of the one-step method0Ð>ß CÑ
(9.24). Note that in the improved Euler method, (9.17), each of the slopes is weighted with ."#
 A common choice for the parameters results in"$

FÐ> ß C ß 2ß 0Ñ œ 5 � 5 � 5 � 5s
" " " "

3 " # $ %3 6 3 3 6

5 œ 0Ð> ß C Ñs

5 œ 0Ð> � 2Î#ß C � 25 Î#Ñs

5 œ 0Ð> � 2Î#ß C � 25 Î#Ñs

5 œ 0Ð> � 2ß C � 25 Ñs

" 3 3

3 "3

$ 3 #3

% 3 $3

The Runge-Kutta method, with global error isbÐ2 Ñß%

C œ C � Ò5 � #5 � #5 � 5 ÓÞs s
2

'3�" 3 " # $ % (9.30).

 As we now know, decreasing the step size will reduce the global error at a particular time.
The following table presents data for the Runge-Kutta method using three step sizes and a final
time of . The true solution is .> œ #Þ#& CÐ#Þ#&Ñ œ !Þ!$'$)%*

Step Size Iterations Approximation Global Error
2 3 l CÐ#Þ#&Ñ �

!Þ# "! !Þ!$'''$!Þ!!!#)
!Þ" #! !Þ!$'$** !Þ!!!!"%
!Þ!& %! !Þ!$'$)' !Þ!!!!!"

 C C ls s3 3

In theory the global error should drop by a factor of approximately when the step size is cut in"'
half. The results seem consistent with the theoretical predictions.
 Figure 9.6 shows the Euler and Runge-Kutta results for our example initial value problem
on the interval with . The maximum global error for the Runge-KuttaÒ !Þ#&ß #Þ#& Ó 2 œ !Þ"
method for our example is at 5, again just after the peak of the exact solution.!Þ!!!!#% > œ !Þ(&

 Based on Figure 9.6 it appears that both methods eventually approach the exact solution,
#Þ%>/ >�> �!Þ!'#&# , as gets large; however, the fourth order Runge-Kutta method is superior. The

Chapter 9 160

graphs in Figure 9.6, and others, do not give the complete picture when it comes to comparing
methods. For our example initial value problem the exact solution is known; thus, we have the
luxury of computing the global errors for all of the methods we have discussed. The economy of
higher order method is easy to document.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y

Euler
Runge-Kutta
Exact

h = 0.1

Figure 9.6 Euler and Runge-Kutta, 2 œ !Þ"

 A tabulation of global error at shows the performance of the fourpercent > œ #Þ#&
methods we have discussed. Percent error, relative error times %, is a practical way to"!!
compare methods.

Percent Global Error at > œ #Þ#&

Step Size Iterations Euler Improved Euler Midpoint Runge-Kutta

0.2 55.5 36.7 19.8 0.8
0.1 21.5 6.9 3.9 0.04
0.05 9.3 1.

2 3 Ð2Ñ Ð2 Ñ Ð2 Ñ Ð2 Ñ
"!
#!
%!

b b b b# # %

6 0.9 0.003

 The data may be used to make comparisons for our initial value problem. For example,
using the midpoint method with is comparable, in terms of percent error, to the Runge-2 œ !Þ!&
Kutta method with . Function evaluation is the time consuming aspect of numerical2 œ !Þ#
methods. The midpoint method will require evaluations, two per step, versus evaluations,)! %!
four per step, for the Runge-Kutta method to attain comparable percent error. Once again we see
the advantage of higher order methods.

Chapter 9 161

9.6 Initial Value Problems and MATLAB

 In Section 8.8 we discussed adaptive quadrature wherein the length of a subinterval was
adjusted depending on error estimates. Furthermore, in Section 9.3 we saw how integration
methods were used to derive numerical methods for the solution of initial value problems. It
should be clear that the concept of changing the length of a subinterval while computing a
definite integral corresponds to the idea of adjusting the step size, at each step, in the solution of
an initial value problem.
 Typically, an adaptive step size procedure uses two different methods: one with local
truncation error of and another of . To describe the procedure, assume we haveb bÐ2 Ñ Ð2 Ñ8 8�"

computed an approximation the point , and now wish to take the next step to . UsingÐ> C Ñ >s
3 3 3�"

the two methods we compute the approximations, say and , where the superscriptsC Cs s
Ð8Ñ Ð8�"Ñ
3�" 3�"

denote the order of the method. If the low order method generates values very close to the higher
order method, , there is no need to reduce the step size; however, if there is aC ¸ Cs s

Ð8Ñ Ð8�"Ñ
3�" 3�"

major difference between the two values the step size should be reduced and values recomputed.
A detailed explanation of how the step size may be adjusted (lower) is discussed in more
advanced texts.
 MATLAB contains several commands which implement the solution of initial value
problems. For example, ode23 ode45 uses Runge-Kutta methods of and andb bÐ2 Ñ Ð2 Ñ# $

employs Runge-Kutta methods of and in adaptive algorithms. Both functions use ab bÐ2 Ñ Ð2 Ñ% &

sophisticated procedure called the method. Details may be found in manyRunge-Kutta-Fehlberg
advanced texts. For most problems will be satisfactory. See ode45 >> help ode23 >> help or
ode45.
 To illustrate the basic use of ode45 let's compute the solution of our example initial value
problem on the interval . Since automatically computes an initial step there isÒ !Þ#&ß #Þ#& Ó ode45
no need to specify a step size nor the number of intervals as we did in euler.m and impeuler.m.
With in ydot.m, the following MATLAB commands will compute the numerical solution0Ð>ß CÑ
with the output values in the column vectors and .ti yi

 >> tint = [0.25, 2.25];
 >> y0 = 0.6;
 >> [ti, yi] = ode45('ydot',tint,y0);

 The results are plotted in Figure 9.7. The values of where the solution is actually>3
computed are shown on the horizontal axis. will reveal the step sizes used by . Fordiff(ti) ode45
our example problem only three step sizes are used and . The2 œ !Þ!"%$&%ß !Þ!& !Þ!$&'%'
smallest step size is used at the beginning of the interval where the slope of the solution curve is
the largest. As you can see, the step size of is used for most of the interval. The maximum!Þ!&
global error occurs at and equals 0.000012.> œ #Þ!!(%3

 If necessary, MATLAB does allow the user to specify numerous parameters in the
solution process. Parameter values may be passed to by adding a fourth argument, sayode45
options, to the calling list as follows:

 >> [ti, yi] = ode45('ydot',tint,y0,options);

Chapter 9 162

The argument is constructed using MATLAB's . See In mostoptions odeset >> help odeset.
cases, the default values automatically specified are more than adequate.

0 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y

Runge-Kutta
Exact

Figure 9.7 Solution from ode45

Problems

9-1. a. Consider the initial value problem Using hand/calculatorC œ C � $> ß CÐ!Ñ œ "Þw #

 computations with , approximate using each of the following methods:2 œ !Þ" CÐ!Þ$Ñ
 Euler, Improved Euler, Midpoint, Runge-Kutta 4 order. Construct a table to display>2

 your results.

 b. The solution of the IVP in part a is . Construct a table toCÐ>Ñ œ (/ � $Ð> � #> � #Ñ> #

 display the errors at each step for all four methods.

9-2. Modify the M-file impeuler.m to implement the midpoint method, (9.29), and the Runge-
 Kutta method, (9.30). Suggested M-file names: midpoint.m and rkutta.m. Test your
 modifications on the text example.

9-3. Use MATLAB and the M-files of problem 9-2 to repeat problem 9-1 with .2 œ !Þ!&

9-4. Use a forward difference approximation from Section 8.2 to derive Euler's method.

Chapter 9 163

9-5. Show that the improved Euler method, (9.16), and the second order Taylor method,
 (9.23), are identical if where and are constants.0Ð>ß CÑ œ +> � ,C + ,

9-6. Consider the example IVP in the text: .C œ Ð�#> � "Î>Ñß CÐ!Þ#&Ñ œ !Þ'w

 Using on the interval , determine when the midpoint method2 œ !Þ" Ò !Þ#&ß #Þ#&Ó
 provides a more accurate solution compared to the improved Euler method by
 computing the errors at each step. Use absolute values.

9-7. Use to compute the solution of the example IVP. Graph the solution, seeode23
 Figure 9.7. Determine the maximum global error on the interval based onÒ !Þ#&ß #Þ#& Ó
 the data from .ode23

9-8. Consider the initial value problem: with . The exact solutionC œ !Þ&/ ÎC CÐ!Ñ œ #w Ð�>Ñ

 is .CÐ>Ñ œ & � /È Ð�>Ñ

 a Use the improved Euler method with and to estimate .Þ 2 œ !Þ#ß !Þ" !Þ!& CÐ%Ñ
 b Compute the errors at and verify that the improved Euler method is a secondÞ > œ %
 order method.

 For problems 9-9 through 9-12 consider the initial value problem:logistic
 with . The solution is .C œ #&C � C CÐ!Ñ œ " CÐ>Ñ œ #&ÎÐ" � #%/ Ñw # �#&>

9-9. Analyze the logistic IVP as follows:
 a. Use Euler's method with to estimate and determine the maximum2 œ !Þ" CÐ!Þ$Ñ
 global error.
 b. Repeat part a with 2 œ !Þ!"
 c. Explain why is below the exact solution.Cs"

9-10. Using four methods, Euler, improved Euler, midpoint and Runge-Kutta, each with the
 same step size, , graph the solutions on the interval Comment on the2 œ !Þ" Ò !ß $Þ! ÓÞ
 results of this numerical experiment. Compute the global errors at .> œ $Þ!

9-11. Repeat problem 9-10 using and .ode23 ode45

9-12. Differential equations whose solution contains a rapidly decaying term such as are/�#&>

 often called problems. In other words, is an important factor in the solution forstiff /�#&>

 a very short time. MATLAB contains special commands to solve stiff initial value
 problems. The algorithms for treating stiff problems are beyond the scope of our efforts.
 See .>> help ode23s. Repeat problem 9-10 using ode23s

9-13. Consider the differential equation .C œ Ð#> � CÑÎÐ> � #C � !Þ"Ñw

 a Using two different numerical methods of different order, compute the solutionÞ
 beginning at the point . Plot your data.Ð�#ß�$Ñ
 b Repeat part a using the initial point .Þ Ð�#ß�#Ñ
 c Discuss the results of your numerical computations.Þ
 Hint: The slope is undefined whenever .> � #C � !Þ" œ !

Chapter 9 164

9-14. An example of a initial value problem is: , with .Riccati C œ > � C CÐ"Ñ œ "w # #

 Although the Riccati equation appears simple, the factor of will cause the slope to>#

 grow very rapidly as increases. Compute the solution at using several different> > œ "Þ(
 methods. Discuss the results of your numerical computations.

