
Chapter  8
Numerical Differentiation and Integration

8.1 Introduction

 The concepts of differentiation and integration are fundamental to calculus.  The problem
of computing a rate of change, for example velocity from position, and the geometric task of
calculating an area beneath the graph of a positive a function are, perhaps, the most common
applications of these concepts.  Although both ideas are well understood and simple to compute,
the basic mathematical definitions of these fundamental concepts are often forgotten.
 The derivative and the definite integral are both defined in terms of special limits.  As we
investigate differentiation and integration from a numerical point of view it is important to recall
the basic definitions.  The derivative of , denoted (  is defined by the limit of a quotient0ÐBÑ 0 BÑßw

of differences.  The standard form is

0 ÐBÑ œ
0ÐB � 2Ñ � 0ÐBÑ 0ÐB � 2Ñ � 0ÐBÑ

ÐB � 2Ñ � B 2
w

2Ä! 2Ä!
lim lim œ  . (8.1)

 There are various equivalent definitions that may be useful in certain applications, for
example, if  exists,0 w

0 ÐBÑ œ
0ÐB � 2Ñ � 0ÐB � 2Ñ

#2
w

2Ä!
lim (8.2)

is a definition centered at .B
 The definite integral of  from to , denoted , is often defined as the limit0ÐBÑ + , 0ÐBÑ.B'

+

,

of a Riemann sum
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+

,

8Ä_
3œ"

8

30ÐBÑ.B œ 0Ð Ñ Blim  (8.3)0 ?

where  and  is a value in the  subinterval of   specified by the? 0B œ Ð, � +ÑÎ8 3 Ò +ß , Ó3
>2

inequality + � Ð3 � "Ñ B Ÿ Ÿ + � 3 BÞ? 0 ?3

 Limit definitions such as (8.1), (8.2) and (8.3) frequently provide the basis for numerical
approximations.  For example, using (8.2), the derivative of at  may be approximated by0ÐBÑ B"

simply deleting the limit and selecting a small value for .2

0 ÐB Ñ ¸
0ÐB � 2Ñ � 0ÐB � 2Ñ

#2
w

"
" " . (8.4)

The geometric implication of (8.4) should be clear.  The slope of a line between the points
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(  and  (  will approximate the derivative.  The definiteB � 2ß 0ÐB � 2Ñ Ñ B � 2ß 0ÐB � 2Ñ Ñ" " " "

integral may be approximated by the sum    wherein each product  may be!
3œ"

8

3 30Ð Ñ B 0Ð Ñ B0 ? 0 ?

interpreted, assuming that  is positive, as the area of a rectangle with base  and height0ÐBÑ B?

0Ð Ñ03 .

8.2 Derivatives and Numerical Approximations

 It is important to understand that there are two underlying themes in the numerical
approximation of derivatives.  On one hand, we may have a data set and desire to approximate a
rate of change at some point, say .  Our previous work with interpolating polynomials, splinesB�

and least squares models has demonstrated how these different approaches may be used to
estimate derivatives.  We simply compute or .  All three methods willT ÐBÑß W ÐBÑ J ÐBÑ� � �w w w

8

provide estimates of the rate of change  some good and some not so good.�
 A second point of view focuses on deriving formulas to approximate derivatives.  For
example, using (8.4), the differential equation   at  , mayC œ B � C B œ B C ÐB Ñ œ B � CÐB Ñw w

3 3 3 3,
be approximated by a  equation,difference

CÐB � 2Ñ � CÐB � 2Ñ

#2
B � CÐB Ñ

3 3
3 3œ . (8.5)

Equation (8.5) represents a  model for the continuous differential equation.  Using thediscrete
notation  and , equation (8.5) becomes  . TheB œ B � 32 C œ CÐB Ñ C œ C � #2ÐB � C Ñ3 ! 3 3 3�" 3�" 3 3

solution to this difference equation will model the solution of the differential equation.  If you are
familiar with analytic solution methods for differential equations, the procedures to solve
difference equations are similar.

Lagrange Polynomial Models

 Lagrange interpolating polynomials, discussed in Section 6.2, may be used to compute
approximations for derivatives.  For example, the derivative of a linear interpolating polynomial
T ÐBÑ T ÐBÑ œ"

w
", (6.10), gives the expected difference result .  The MATLAB commandC �C

B �B

# "

# "

diff  may be used to compute this quotient.  Convince yourself that the following MATLAB
commands will compute four difference quotients each of the form .C �C

B �B

3�" 3

3�" 3

 >> x=[1 2 3 4 5];y=[3 7 -1 2 6];
 >> diff(y)./diff(x)
 ans =
      4    -8     3     4

 A quadratic interpolating polynomial, see more complicated formula follows from a 
(6.12),  T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC � 6 ÐBÑC T ÐBÑ# " " # # $ $ #

w.  The important factors in  are the
derivatives of the quadratic 's defined in Chapter 6.  Differentiating the quadratic Lagrange6 ÐBÑ3

terms we find
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6 ÐBÑ œw
"

ÐB � B Ñ � ÐB � B Ñ

ÐB � B ÑÐB � B Ñ
# $

" # " 3
,

6 ÐBÑ œw
#

ÐB � B Ñ � ÐB � B Ñ

ÐB � B ÑÐB � B Ñ
" $

# " # $
, (8.6)

and .6 ÐBÑ œw
$

ÐB � B Ñ � ÐB � B Ñ

ÐB � B ÑÐB � B Ñ
" #

$ " $ #

 The expressions in (8.6) may be used with data values, and , to construct anB ß B ß B" # $

approximation for the derivative.  If , provides a numerical estimate of theB œ B T ÐBÑ� �w
#

derivative using the formula

T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC � 6 ÐBÑC� � � �w w w w
# " # $" # $ . (8.7)

One possible use of equation (8.7) is the computation of endpoint slopes for use in a clamped
spline.  See (6.43).  Given the luxury of preselecting  and  difference formulas for theB ß B ß B" # $

derivative will follow.  For example, with  , and , (8.7)B œ Bß B œ B � 2 B œ B � #2� � �
" # $

becomes

T ÐBÑ œ C � C � C�w
# " # $ 

�$2 �#2 �2

Ð�2ÑÐ�#2Ñ Ð2ÑÐ�2Ñ Ð#2ÑÐ2Ñ

or (8.8)T ÐBÑ œ T ÐB Ñ œ � C � C � C œ Þ� �$C � %C � "C

#2
w w
# # " " # $

" # $$ % "

#2 #2 #2

Equation (8.8) is called a  difference approximation for the first derivative.  With ,forward 2 � !
the values for  and  are to the right or forward of .  Since the coefficients (weightingB B B# $ "

values) in the numerator, and sum to zero, the numerator will also approach zero as �$ß % �"ß 2
approaches zero producing the familiar undetermined form .!Î!
 Extending the development begun in Section 6.2, the symbolic capability of MATLAB
may be used to derive the forward difference formula given in (8.8).  Using the data points
ÐB ß C Ñ ÐB" " #, ß C Ñ ÐB ß C# $ $ and ), the following MATLAB commands construct, differentiate and
evaluate a symbolic quadratic interpolating polynomial, denoted .  Recall that P2 v represents the
Vandermonde matrix.

 >> syms h x x1 x2 x3 y1 y2 y3
 >> v = [x1^2, x1, 1; x2^2, x2, 1; x3^2, x3, 1];
 >> P2 = [x^2, x, 1]*inv(v)*[y1; y2; y3];
 >> P2prime = diff(P2);
 >> P2primeatx1 = subs(P2prime,x,x1);
 >> factor(subs(P2primeatx1,[x2, x3],[x1+h, x1+2*h]))
 ans =
 -1/2*(3*y1-4*y2+y3)/h
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 As a second example, set   and . In this case (8.7)B œ Bß B œ B � 2ß B œ B � 2� � �2 " $

becomes

T ÐBÑ œ T ÐB Ñ œ C � C � C œ� �"C � "C

#2
w w
# # # " # $

" $ (8.9)
�2 ! 2

Ð�2ÑÐ�#2Ñ Ð2ÑÐ�2Ñ Ð#2ÑÐ2Ñ
.

Using MATLAB we may verify the result given in (8.9).

 >> P2primeatx2 = subs(P2prime, x, x2);
 >> factor(subs(P2primeatx2, [x1, x3], [x2-h, x2+h]))
 ans =
 -1/2*(y1-y3)/h

 Equation (8.9) defines a  difference approximation for the first derivative andcentral
represents the slope of a line between the points   and .  Note that valuesÐ B � 2ß C Ñ Ð B � 2ß C Ñ� �

" $

on either side of   are used in the quotient.  Although approximations (8.8) and (8.9) areB œ B�2
based on equally spaced values, it is important to remember that the general form of (8.7) may be
used with any values of and .B ß B ß B" # $

 The second derivative of   is a constant on the interval .  Using equallyT ÐBÑ Ò B ß B Ó# " $

spaced data,  , and , we findB œ Bß B œ B � 2 B œ B � #2� � �
" # $

 >> factor(subs(diff(P2, 2), [x2, x3], [x1+h, x1+2*h]))
 ans =
 (y1-2*y2+y3)/h^2

that is, (8.10)T ÐBÑ œ
C � #C � C

2
ww
#

" # $

#
.

Once again, the weights in the numerator of (8.10) sum to zero.  This property of difference
approximations for derivatives will be explained later in the section.
 Since  requires three points, the formulas given in (8.8), (8.9) and (8.10) areT ÐBÑ#

sometimes called three term approximations for derivatives.  Additional points and higher order
interpolating polynomials lead to various formulas for difference approximations.  The problems
at the end of this chapter will provide additional examples.

Taylor Polynomial Models

 Taylor polynomials may also be used to construct difference approximations of
derivatives.  The defining equations for and , from (3.4) and (3.8), give the TaylorX ÐBÑ V ÐBÑ8 8

expression for  centered at :0ÐBÑ +

0ÐBÑ œ 0 Ð-ÑÐB � +Ñ
"

Ð8 � "Ñx
"
5œ!

8
Ð5Ñ 5"

5x
0 Ð+ÑÐB � +Ñ � Ð8�"Ñ 8�", (8.11)

where is an unknown between  and - + BÞ
 To simplify our initial efforts, we begin with .8 œ "
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0ÐBÑ œ 0Ð+Ñ � 0 Ð-ÑÐB � +Ñ
"

#
0 Ð+ÑÐB � +Ñ �w ww # (8.12)

The choices  and  lead to+ œ B B œ B3 3�"

0ÐB Ñ œ 0ÐB Ñ � Ð Ð 0 Ð-Ñ3�" 3
"
#

wwB � B Ñ0 ÐB Ñ � B � B Ñ3�" 3 3 3�" 3
w # . (8.13)

Solving for  gives0 ÐB Ñw
3

0 ÐB Ñ œ � B � B Ñ
B � B

w
3 3�" 3

3�" 3

0ÐB Ñ � 0ÐB Ñ "

#
Ð 0 Ð-Ñ

3�" 3 ww . (8.14)

 It should be clear that the difference approximation   with ,0 ÐB Ñ ¸ 3 œ "w
3 B �B

0ÐB Ñ�0ÐB Ñ3�" 3

3�" 3

0 ÐB Ñ ¸w
"

0ÐB Ñ�0ÐB Ñ
B �B B �B

w
"

C �C# "

# " # "

# ", corresponds to the difference formula given by T ÐBÑ œ .  In both
cases, the slope of a secant line is used to approximate the derivative.  The Taylor result, (8.14),
includes an error term, .  Note that the length of the interval, , and� Ð 0 Ð-Ñ"

#
wwB � B Ñ B � B3�" 3 3�" 3

the concavity of the function (measured by the second derivative) are the important factors in the
error expression.  If the concavity is small, the graph of  resembles a line and the forward0ÐBÑ

difference 0ÐB Ñ�0ÐB Ñ3�" 3

B �B 3
3�" 3

 gives a good approximation to the derivative at .B

 A second choice of values in (8.12),  and , results in a + œ B B œ B3 3�" backward
difference model

0 ÐB Ñ œ B � B Ñ
B � B

w
3 3 3�"

3 3�"

0ÐB Ñ � 0ÐB Ñ "

#
Ð 0 Ð- Ñ�3 3�" ww

� . (8.15)

Both (8.14) and (8.15) may be simplified using  and x .  Note that theB œ B � 2 œ B � 23�" 3 3�" 3

error terms will depend on  the spacing between the values.  In the remainder of this section, we2
assume that the data is uniformly spaced.
 Numerous formulas may be derived from the Taylor expression (8.11).  Particular choices
for ,  and  lead to specific models.  For example, with  we have the four term Taylor8 + B 8 œ #
expression

0ÐBÑ œ 0Ð+Ñ � 0 Ð+ÑÐB � +Ñ � 0 Ð-ÑÐB � +Ñ
" "

# $x
0 Ð+ÑÐB � +Ñ �w ww # www $. (8.16)

With  and   (8.16) becomes+ œ B B œ B � 2ß3 3

0Ð Ñ œ 0Ð Ñ � 2 2 0 Ð Ñ � 2 0 Ð-Ñ
" "

# $x
B � 2 B 0 ÐB Ñ � B3 3 3 3

w # ww $ www . (8.17)

Replacing  by  gives2 �2

0Ð Ñ œ 0Ð Ñ � 2 2 0 Ð Ñ � 2 0 Ð- Ñ
" "

# $x
�B � 2 B 0 ÐB Ñ � B3 3 3 3

w # ww $ www . (8.18)

 Subtracting (8.18) from (8.17) will eliminate 0Ð Ñ 0 Ð ÑB B3 3 and  so thatww

0Ð Ñ � 0Ð Ñ œ #2 0 Ð-Ñ � 0 Ð- ÑÓ�B � 2 B � 2 0 ÐB Ñ � Ò
2

'
3 3 3

w
$

www www .
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Solving for  produces the central difference model for the first derivative together with the0 ÐB Ñw
3

error term:

0 ÐB Ñ œ Ò B � 2 B � 2 Ò
" 2 "

#2 ' #
w

3 3 3

#

0Ð Ñ � 0Ð ÑÓ � 0 Ð-Ñ � 0 Ð- ÑÓ�www www .

The expression "# Ò0 Ð-Ñ � 0 Ð- ÑÓ�www www  in the error term is an average to two unknown values of the
third derivative.  Using the from calculus we may show thatIntermediate Value Theorem 
"
# 3 3Ò B � 2 B � 20 Ð-Ñ � 0 Ð- ÑÓ œ 0 Ð Ñ�www www www where the unknown  is somewhere between 0 0  and .
Thus, the final expression becomes

0 ÐB Ñ œ Ò B � 2 B � 2
" 2

#2 '
w

3 3 3

#

0Ð Ñ � 0Ð ÑÓ � 0 Ð Ñwww 0 . (8.19)

Equation (8.19) shows that the error in a central difference approximation is proportional to .2#

This is superior to the forward and backward difference error results which are proportional to
2". See (8.14) and (8.15).  Wherever possible, the first derivative should be approximated with
the central difference formula 0 ÐB Ñ ¸ Ò B � 2 B � 2w

3 3 3
"
#2 0Ð Ñ � 0Ð ÑÓ.

 Let's use MATLAB to illustrate the use of the three difference approximations.  Consider
the derivative of sin  at , i.e., cos .  The following commands will produce fiveÐBÑ B œ "Þ"# Ð"Þ"#Ñ
data points on the interval  with .Ò "Þ"!ß "Þ"% Ó B œ "Þ"#$

 >> x=linspace(1.10,1.14,5); y=sin(x);

Forward and backward difference approximations are

 >> FwdDiff=(y(4)-y(3))/.01
 FwdDiff =
   4.3117e-001
 >> BkwDiff=(y(3)-y(2))/.01
 BkwDiff =
   4.4018e-001

For comparison, the true value of the derivative is given by

 >> True=cos(x(3))
 True =
   4.3568e-001

 Using the error terms in (8.14) and (8.15) you should be able to show, for this example,
that the forward difference approximation is too low and, conversely, the backward difference
approximation is too high as is seen in the preceding numerical results.  From (8.19), the central
difference approximation is

 >> CtrDiff=(y(4)-y(2))/.02
 CtrDiff =
   4.3568e-001
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 >> Err=True-CtrDiff
 Err =
   7.2613e-006

 The value Err reveals that the central difference approximation is more accurate but still
low.  The error term in (8.19) will allow us to bound the error. Since the third derivative of
sin  is cos ,  we haveÐBÑ � ÐBÑ

� 0 Ð Ñ œ � Ð� Ð ÑÑ
2 ÐÞ!"Ñ

' '

# #
Ð$Ñ 0 0cos  where  "Þ"! Ÿ Ÿ "Þ"%0 .

It is a simple task to show that the error term is positive and less than cosÐÞ!"Ñ
'

#

Ð"Þ"!Ñ

¸ (Þ&&** † "! (Þ#'"$ † "!�' �' on the interval   The actual error  is slightly"Þ"! Ÿ Ÿ "Þ"%0 .
smaller than the bound.  An error analysis of this type works well for known functions.  A similar
analysis for experimental data is not possible.  (Why?)
 Other formulas may be derived by thoughtful use of Taylor expansions.  As an example
we will derive a three term forward difference approximation.  Consider (8.16) with the error
term deleted

 0ÐBÑ ¸ 0Ð+Ñ � 0 Ð+ÑÐB � +Ñ
"

#
0 Ð+ÑÐB � +Ñ �w ww #.

Replacing   with and  with ,+ B B B � 23 3

0ÐB � 2Ñ ¸ 0ÐB Ñ � 2 B 2 0 ÐB Ñ
"

#
3 3 3 3

# ww0 Ð Ñ �w ,

and then a second time with  replaced by gives2 #2

0ÐB � #2Ñ ¸ 0ÐB Ñ � #2 B Ð#2Ñ 0 ÐB Ñ
"

#
3 3 3 3

# ww0 Ð Ñ �w .

Forming the difference  will eliminate the second derivative  as0ÐB � #2Ñ � %0ÐB � 2Ñ 0 ÐB Ñ3 3 3
ww

follows:

0ÐB � #2Ñ � %0ÐB � 2Ñ ¸ � $0ÐB Ñ � #2 B3 3 3 30 Ð Ñw .

One last step gives a three term forward difference formula for the first derivative

0 Ð Ñ w B ¸ �$0ÐB Ñ � %0ÐB � 2Ñ � "0ÐB � #2Ñ
"

#2
3 3 3 3’ “. (8.20)

Equation (8.20) corresponds to the Lagrange form given in (8.8).

Second derivatives

 So far our efforts have focused on the first derivative.  Taylor methods may be used to
model higher order derivatives.  Using the expressions from (8.17) and (8.18),
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0ÐB � 2Ñ ¸ 0ÐB Ñ � 2 B 2 0 ÐB Ñ
"

#
3 3 3 3

# ww0 Ð Ñ �w

and 0ÐB � 2Ñ ¸ 0ÐB Ñ � 2 B 2 0 ÐB Ñ
"

#
3 3 3 3

# ww0 Ð Ñ �w ,

a formula for the second derivative may be obtained by addition:

0ÐB � 2Ñ � 0ÐB � 2Ñ ¸ #0ÐB Ñ � 2 0 ÐB Ñ3 3 3 3
# ww .

Solving for the second derivative gives a central difference approximation for the second
derivative:

0 ÐB Ñ ¸ Ò0ÐB � 2Ñ � #0ÐB Ñ � 0ÐB � 2ÑÓ
"

2
ww

3 3 3 3#
(8.21)

Undetermined Coefficients

 There is a third approach for developing difference formulas.  For example, the three term
forward difference formula for the first derivative given in (8.20) is a linear combination of three
values of   We may construct a four term forward difference approximation for 0ÐBÑÞ B0 Ð Ñw

3  as
follows:

0 Ð Ñw B ¸ E0ÐB Ñ � F0ÐB � 2Ñ � G0ÐB � #2Ñ � H0ÐB � $2Ñ3 3 3 3 3 , (8.22)

where the parameters  and are unknown, the undetermined coefficients.EßFßG H
 Using Taylor expansions centered at  for the second, third and fourth terms in (8.22) weB3

find

0 Ð Ñ

� 20 ÐB Ñ � 2 0 ÐB Ñ � 2 0 ÐB Ñ �á
" "

# '

� G � #20 ÐB Ñ � %2 0 ÐB Ñ � )2 0 ÐB Ñ �á
" "

# '

�H � $20 ÐB Ñ � *2 0
"

#

w

w # ww $ www
3 3 3

w # ww $ www
3 3 3

w #
3

B ¸ E0ÐB Ñ

� F 0ÐB Ñ

0ÐB Ñ

0ÐB Ñ

3 3

3

3

3

’
’
’

“
“

ww $ www
3 3ÐB Ñ � #(2 0 ÐB Ñ �á

"

'
“.

Collecting terms on like powers of  gives2

0 Ð Ñ

� 2 F � %G � *H 0 ÐB Ñ

� 2 F � )G � #(H 0 ÐB Ñ �á

w

"
#

# ww
3

"
'

$ www
3

B ¸ E�F �G �H 0ÐB Ñ

� 2 F � #G � $H 0 ÐB Ñ

3 3

w
3

’ “
’ “
’ “
’ “

(8.23)

 We may ensure that a difference approximation derived from the right hand side of (8.23)
is close to the derivative  by imposing the following four conditions:0 Ð Ñw B3
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E�F �G �H œ !

"

#
2 ÒF � %G � *HÓ œ !

"

'
2 ÒF � )G � #(HÓ œ !

2ÒF � #G � $HÓ œ "

#

$

The first equation forces the multiplier of  to zero.  This will guarantee that the weights will0ÐB Ñ3
sum to zero as observed in earlier difference approximations.  In matrix form the equations are

Ô ×Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ ØÕ Ø Õ Ø

" " " " E !
! " # $ F "Î2
! " % * G !
! " ) #( H !

œ (8.24)

 Using the symbolic capability of MATLAB the solution of (8.24) is

 >> syms h
 >> sym([1 1 1 1;0 1 2 3;0 1 4 9;0 1 8 27])\[0;1/h;0;0]
 ans =
 [ -11/6/h]
 [     3/h]
 [  -3/2/h]
 [   1/3/h]

With a common denominator of , our four term approximation becomes'2

0 Ð Ñw B ¸ Ò � ""0ÐB Ñ � ")0ÐB � 2Ñ � *0ÐB � #2Ñ � #0ÐB � $2ÑÓ
"

'2
3 3 3 3 3 . (8.25)

 Error terms associated with the Taylor expansions used to derive (8.23) will depend on
2 0% Ð%Ñ,  and the undetermined coefficients.  Since the undetermined coefficients are proportional
to , the error in (8.25) is actually proportional to ."Î2 2$

 All three procedures, Lagrange interpolating polynomials, Taylor expansions and
undetermined coefficients, may be used to derive difference approximations.  For reference,
some standard formulas are summarized below.  Errors proportional to  are expressed using28

the big oh notation, .bÐ2 Ñ8

First Derivative - Forward Differences:

0 Ð Ñw B œ Ò0ÐB � 2Ñ � 0ÐB ÑÓ � Ð2Ñ
"

2
3 3 3 b

0 Ð Ñw B œ Ò � 0ÐB � #2Ñ � %0ÐB � 2Ñ � $0ÐB ÑÓ � Ð2 Ñ
"

#2
3 3 3 3

#b
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0 Ð Ñw B œ Ò#0ÐB � $2Ñ � *0ÐB � #2Ñ � ")0ÐB � 2Ñ � ""0ÐB ÑÓ � Ð2 Ñ
"

'2
3 3 3 3 3

$b

First Derivative - Central Difference:

0 Ð Ñw B œ Ò0ÐB � 2Ñ � 0ÐB � 2ÑÓ � Ð2 Ñ
"

#2
3 3 3

#b

First Derivative - Backward Differences:

0 Ð Ñw B œ Ò0ÐB Ñ � 0ÐB � 2ÑÓ � Ð2Ñ
"

2
3 3 3 b

0 Ð Ñw B œ Ò$0ÐB Ñ � %0ÐB � 2Ñ � 0ÐB � #2ÑÓ � Ð2 Ñ
"

#2
3 3 3 3

#b

Second Derivative - Forward Difference:

0 Ð Ñww B œ Ò0ÐB � #2Ñ � #0ÐB � 2Ñ � 0ÐB ÑÓ � Ð2Ñ
"

2
3 3 3 3#

b

Second Derivative - Central Difference:

0 Ð Ñww B œ Ò0ÐB � 2Ñ � #0ÐB Ñ � 0ÐB � 2ÑÓ � Ð2 Ñ
"

2
3 3 3 3#

#b

 There are comparable difference formulas for partial derivatives that are used in the
numerical solution of partial differential equations.  Advanced texts on numerical analysis will
provide the specific formulas.

8.3 Numerical Integration - Introduction

 The computation of a definite integral, , is usually accomplished using theM œ 0ÐBÑ.B'
+

,

Fundamental Theorem of Integral Calculus, , where  is an antiderivativeM œ JÐ,Ñ � JÐ+Ñ J ÐBÑ
of so that .  The theorem assumes that the antiderivative can be found.0ÐBÑ J ÐBÑ œ 0ÐBÑw

Unfortunately, there are cases where  cannot be determined in closed form.  In these cases, aJÐBÑ
numerical method will be necessary to compute an approximate value for the integral.  A
standard example that cannot be evaluated by the Fundamental Theorem is the integral
' '
+

, �B �B/ .B / .B
# #.  In other words, the antiderivative  cannot be expressed in a simple form.

 Current mathematical software is designed to apply the Fundamental Theorem to most
problems; however, difficulties do arise in special cases.  There are exceptional problems where
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the computation of an antiderivative is possible provided extra, time consuming, steps are taken
by the user before the software may finish the task.  For many of these exceptional cases, a fast
numerical approximation may be the preferred choice.
 Numerical approximation schemes, sometimes called quadrature formulas or rules,
usually resemble the Riemann sum in (8.3). They have the general form

U œ A 0Ð Ñ8 3 3

3œ"

8" 0 , (8.26)

where the 's (weights) and 's (values in the interval [a, b]) are specified by a particular rule.A3 30

The goal is to specify the 's and 's so that  approximates the true value of the definiteA U3 3 80

integral.  As may be expected, the choice of  is related to accuracy.8
 Many quadrature rules are derived by approximating the integrand, , with a known0ÐBÑ
function that is simple to integrate.  In the following sections, we will discuss the Trapezoidal
Rule Simpson's Rule (replace the integrand with a linear interpolating polynomial  and 0ÐBÑ Ñ
(replace the integrand with a quadratic interpolating polynomial).  Another approach, Gaussian
quadrature, is designed to be exact provided the integrand is a polynomial.

8.4 The Trapezoidal Rule

 As noted above, the  uses a linear interpolating polynomial, , toTrapezoidal Rule T ÐBÑ"

approximate the integrand.  In other words, .  Figure 8.1M œ 0ÐBÑ.B ¸ X œ T ÐBÑ.B' '
+ +

, ,
" "

shows a graph of    interpolating  at  and .T ÐBÑ 0ÐBÑ B B" " #
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Figure 8.1 Trapezoidal Rule

 The trapezoidal area beneath  motivates the name of the method.  Using (6.10), weT ÐBÑ"

find

X œ T ÐBÑ.B œ 0ÐB Ñ � 0ÐB Ñ .B
B � B B � B

B � B B � B
" " " #

+ +

, ,
# "

" # # "
( ( ’Š ‹ Š ‹ “
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or

X œ 0ÐB Ñ .B � 0ÐB Ñ .B
B � B B � B

B � B B � B
" " #

+ +

, ,
# "

" # # "
( (Š ‹ Š ‹ . (8.27)

 It should be clear that the numerical value of   depends on the location of theX"

interpolation points,  and , in the interval   To avoid numerous trapezoidal rules,B B Ò +ß , ÓÞ" #

convention requires that the interpolation points correspond to the limits of integration; thus,
B œ + B œ ," #and  .  With this choice, it is a simple matter to arrive at the Trapezoidal Rule
where .2 œ , � +

X œ 2 0Ð+Ñ � 0Ð,Ñ
"

#
" ’ “. (8.28)

 A simple application of the Trapezoidal Rule seldom provides a satisfactory
approximation.  One way to improve accuracy begins with a partition of the interval  intoÒ +ß , Ó
multiple subintervals.  For convenience, we may subdivide the interval into  subintervals each8

of length  so that the original problem  is converted into a sum of2 œ Ð, � +ÑÎ8 0ÐBÑ.B'
+

,

integrals

( ("
+ B

, B

3œ"

8

0ÐBÑ.B œ 0ÐBÑ.BÞ
3

3�"

(8.29)

where .  We now apply the Trapezoidal template, (8.28), to each integral inB œ + � Ð3 � "Ñ23

(8.29) to arrive at the Trapezoidal Rule for  subintervalscomposite 8

X œ 2 0ÐB Ñ � 0ÐB Ñ
"

#
8 3 3�"

3œ"

8" ’ “. (8.30)

With , (8.30) may be written as0 œ 0ÐB Ñ3 3

X œ 2 0 � #0 � #0 �á � #0 � 0
"

#
8 " # $ 8 8�"’ “. (8.31)

 Note that the composite formula  actually uses  function evaluations.  ToX 8 � "8

illustrate the use of the composite formula, we approximate the integral  using '
1

1# ÐBÑ
B

sin .B 8 œ %

subintervals. With ,2 œ 1

%

X œ " � # � # � # � " ¸ �Þ%!*
" Ð Ñ Ð& Î%Ñ Ð' Î%Ñ Ð( Î%Ñ Ð# Ñ

# % & Î% ' Î% ( Î% #
%

1 1 1 1 1 1

1 1 1 1 1
’ “sin sin sin sin sin

 .

The example integral may be evaluated using sinint a special MATLAB command to evaluate
the so-called  function,  Si .  Using properties of definite integralsSine Integral ÐBÑ œ .>'

!

B Ð>Ñ
>

sin
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( ( (
1

1 1 1# #

! !

sin sin sin
Si Si .

ÐBÑ ÐBÑ ÐBÑ

B B B
.B œ .B � .B œ Ð# Ñ � Ð Ñ1 1

 >> sinint(2*pi)-sinint(pi)
 ans =
  -4.3379e-001

The value for  is reasonable but not too accurate.X%

 Intuitively, we expect that increasing the number of subintervals will produce a better
value and that  .  In theory, the mathematical Trapezoidal Rule will converge to thelim

8Ä_
8X œ M

true value of the integral; however, implementing the Trapezoidal Rule on a computer introduces
errors as the result of a finite word length.  In other words, an estimate of , denoted , isX Xs8 8

actually calculated.  At some point, the accumulated error from numerous computations may give
misleading information about the value of the integral.
 It seems reasonable to approximate  by computing a sequence of values { , , ,M X X Xs s s" # $

X á X X Xs s s s% # % ), }.  As we shall see, there are advantages to computing the sequence of values { , , ,
X ás"', } wherein the number of subintervals is doubled each time.  One advantage is that some
values of  may be reused in subsequent steps; thus, there is no need to re-compute all values.0
 Consider the following expressions

X œ 0Ð+Ñ � #0Ð+ � Ñ � 0Ð,Ñ
" Ð, � +Ñ 2

# # #
2 ’ “

and

X œ 0Ð+Ñ � #0Ð+ � Ñ � #0Ð+ � Ñ � #0Ð+ � Ñ � 0Ð,Ñ
" Ð, � +Ñ 2 #2 $2

# % % % %
% ’ “.

As we move from  to  some values of  may be reused.  For example,  andX X 0 0Ð+ � Ñ# %
2
#

0Ð+ � Ñ B œ + � Ð3 � "Ñ2#2
% 3 are the same.  Rewriting these expressions using  gives

X œ 0 + � #0 B Ñ � 0Ð,Ñ
" Ð, � +Ñ

# #
2 ’ “( ) ( #

and

X œ 0Ð+Ñ � #0ÐB Ñ � #0ÐB Ñ � #0ÐB Ñ � 0Ð,Ñ
" Ð, � +Ñ

# %
% # $ %’ “.

Note that and need not be re-computed and that  in  is identical to in .0Ð+Ñ 0Ð,Ñ 0ÐB Ñ X 0ÐB Ñ X$ % # #

Only new values for and  are needed.  An economical structure exploiting doubling0ÐB Ñ 0ÐB Ñ# %

is given by

X œ 0Ð+Ñ � 0Ð,Ñ � # 0 � 0 �á � # 0 � 0 �á
" Ð, � +Ñ

# 8
8 # $ &’ “( ) ( ) . (8.32)4

where terms with even and odd subscript indices have been grouped together.  The reason for this
grouping will become clear in the next section.
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8.5 Simpson's Rule

  uses a quadraticSimpson's Rule, named after Thomas Simpson (1727-1761),
interpolating polynomial, , to approximate the integrand.  In other words, T ÐBÑ M œ 0ÐBÑ.B# +

,'
¸ W œ T ÐBÑ.B Ò +ß , Ó# #+

,' .  Again, the choice of interpolation points on the interval  is an
important factor.  Following convention we set  (the midpoint), andB œ +ß B œ Ð+ � ,Ñ œ -" #

"
#

B œ ,$ .  Using (6.12) we find

W œ T ÐBÑ.B œ 0Ð+Ñ � 0Ð-Ñ � 0Ð,Ñ .B
ÐB � ,ÑÐB � -Ñ ÐB � +ÑÐB � ,Ñ ÐB � +ÑÐB � -Ñ

Ð+ � ,ÑÐ+ � -Ñ Ð- � +ÑÐ- � ,Ñ Ð, � +ÑÐ, � -Ñ
# #

+ +

, ,

( ( ’ “ .

Integrating each term gives

W œ 0Ð+Ñ .B � 0Ð-Ñ .B � 0Ð,Ñ .B
ÐB � ,ÑÐB � -Ñ ÐB � +ÑÐB � ,Ñ ÐB � +ÑÐB � -Ñ

Ð+ � ,ÑÐ+ � -Ñ Ð- � +ÑÐ- � ,Ñ Ð, � +ÑÐ, � -Ñ
#

+ + +

, , ,

( ( ( .

 With and , MATLAB may be employed to evaluate the integrals.- œ + � 2 , œ + � #2
In each case the results will be expressed in terms of .2 œ Ð, � +Ñ"

#

 >> syms a b c h x
 >> term1 = factor(subs(int((x-b)*(x-c)/((a-b)*(a-c)),a,b),[c,b],[a+h,a+2*h]))
 term1 =
 1/3*h
 >> term2 = factor(subs(int((x-a)*(x-b)/((c-a)*(c-b)),a,b),[c,b[,[a+h,a+2*h]))
 term2 =
 4/3*h
 >> term3 = factor(subs(int((x-a)*(x-c)/((b-a)*(b-c)),a,b),[c,b],[a+h,a+2*h]))
 term3 =
 1/3*h

Study the syntax carefully.  Three separate MATLAB commands,  areint subs factor,  and ,
nested together to compute the integrals, substitute for  and , and factor the results.- ,
Substituting the integral values gives Simpson's Rule.

W œ 2 0Ð+Ñ � %0Ð-Ñ � 0Ð,Ñ
"

$
# ’ “ (8.33)

The subscript on  reflects the fact that there are two subintervals, each of length .W 2

 The composite Simpson's Rule may be developed by subdividing the interval  intoÒ +ß , Ó

an  number of subintervals.  The integral  is now a sum of integrals.even '
+

,
0ÐBÑ.B 8Î#
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( "
+

,

3œ"

8

0ÐBÑ.B œ 0ÐBÑ.B
/2 (

B

B

23�"

#3�"

(8.34)

where . We now apply the Simpson template, (8.33), to each integral in (8.34)B œ + � Ð3 � "Ñ23

to arrive at the composite formula for  subintervals8

W œ 2 0ÐB Ñ � %0ÐB Ñ � 0ÐB Ñ
"

$
8 #3�" #3 #3�"

3œ"

8Î#

" ’ “. (8.35)

 To better understand the summation in (8.35), let's write out a few terms

W œ 2 0ÐB Ñ � %0ÐB Ñ � 0ÐB Ñ
"

� 2 0ÐB Ñ � %0ÐB Ñ � 0ÐB Ñ
"

� 2 0ÐB Ñ � %0ÐB Ñ � 0ÐB Ñ
"

ã

� 2 0ÐB Ñ � %0ÐB Ñ � 0ÐB Ñ
"

8 " # $

$ % &

& ' (

8�" 8 8�"

3

3

3

3
.

’ “
’ “
’ “

’ “
Changing to subscript notation and regrouping terms gives the composite rule

W œ 0Ð+Ñ � 0Ð,Ñ � % 0 � 0 �á � 0 � # 0 � 0 �á � 0
" Ð, � +Ñ

$ 8
8 # 8 $ & 8�"’ “( ) ( ) . (8.36)4

The differences between (8.36) and the composite Trapezoidal Rule, (8.32), are the fractional
multiplier in front, versus , and the multiplier of the even terms,  versus ." "

#3 % #

 Let's re-compute the example integral of the previous section, , using'
1

1# ÐBÑ
B

sin .B

Simpson's Rule, (8.36), with four subintervals.

W œ � � % � � # ¸ �Þ%$%
" Ð Ñ Ð# Ñ Ð& Î%Ñ Ð Î%Ñ Ð Î%Ñ

$ % # & Î% Î% Î%
%

1 1 1 1 1 1

1 1 1 1 1
’ “ˆ ‰sin sin sin sin 7 sin 6

7 6

The Simpson result, , is much closer to the actual value of .W �Þ%$$(*%

 The theoretical comments about the Trapezoidal Rule also apply to Simpson's Rule.
Increasing the number of subintervals will produce a better estimate and  .  As alim

8Ä_
8W œ M

practical issue we actually compute an estimate of , say .  As noted earlier, there areW Ws8 n

advantages to computing a sequence of values { , , , , } wherein the number ofW W W W ás s s s
# % ) "'

subintervals is doubled each time.  In fact, (8.36) is structured to exploit the doubling scheme.
 The following M-file will compute the composite results for both the Trapezoidal Rule
and Simpson's Rule given in (8.32) and (8.36).
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M-file trapsimp.m

 function trapsimp(fun,a,b)
 %TRAPSIMP Trapezoidal and Simpson's rule
 % fun = the integrand in an M-file
 % a, b = limits of integration
 % n max  = 2^10 = 1024; may be changed
 send = feval(fun,a)+feval(fun,b);
 sodd = 0; seve = 0;
 fprintf('     n                                     Trap                                 Simp\n')
 for j = 2:11
    n = 2^(j-1);
    h = (b-a)/n;
    sodd = sodd+seve;
    seve = 0;
    for k = 1:2:n-1
  x = a+k*h;
  seve = seve+feval(fun,x);
    end
    % Trapezoidal rule
    tr = h*(send+2*seve+2*sodd)/2;
    % Simpson's rule  
    sp = h*(send+4*seve+2*sodd)/3;
    output = [n tr sp];
    fprintf('%6.0f \t %8.4e \t %8.4e \n',output)
 end

 Note that the endpoint values are only computed once: send = feval(fun,a)+feval(fun,b).
The critical part of the code is the for-end loop that computes new even function values when the
number of subintervals is doubled.

    for k = 1:2:n-1
  x = a+k*h;
  seve = seve+feval(fun,x);
    end

To illustrate, set .  The counter  will take on values  and  leading to 8 œ ) 5 "ß $ß & ( B œ + � 2ß
+ � $2ß + � &2 + � (2 B ß B ß B B and .  Convince yourself that these values are  and .  These# % ' )

numbers are used to compute the new even values as we move from X X W Ws s s s
% ) % ) to  and  to .

 As an example consider the integral

M œ / .BÞ
"

#
   ( È�"

"
� B

1

"
#

#

M B represents the probability that  is within one standard deviation of the mean of a normal



Chapter 8 Page 128

distribution with a standard deviation equal to one.  The normal distribution is often called the
bell-shaped curve.  Output from trapsimp is

 >> trapsimp('fct1',-1,1)
      n             Trap               Simp
      2   6.4091e-001   6.9324e-001
      4   6.7252e-001   6.8306e-001
      8   6.8016e-001   6.8271e-001
     16   6.8206e-001   6.8269e-001
     32   6.8253e-001   6.8269e-001
     64   6.8265e-001   6.8269e-001
    128   6.8268e-001   6.8269e-001
    256   6.8269e-001   6.8269e-001
    512   6.8269e-001   6.8269e-001
   1024   6.8269e-001   6.8269e-001

The values suggest that the integral is approximately 0.68 .  Correct to ten decimal places,#'*
M ¸ !Þ')#') *%*#".  By observing how quickly the values for  and  approach the Trap Simp
displayed 9 it appears that Simpson's Rule is the better choice for this integral.!Þ')#'

8.6 Open Quadrature Rules

 The composite Trapezoidal and Simpson's Rules provide simple and economical
algorithms to approximate definite integrals.  Both are examples of  Newton-Cotesclosed
quadrature formulas in that the endpoint values,  and , are part of the results.   So-called0Ð+Ñ 0Ð,Ñ
open quadrature formulas avoid endpoint values.
 For example, a simple midpoint formula approximates the integrand with a constant
leading to a  rule.  In other words the integral  may be approximatedrectangular M œ 0ÐBÑ.B'

+

,

by the simple formula

Q œ Ð, � +Ñ0Ð Ð+ � ,ÑÑ
"

#
" . (8.37)

that represents the area of a rectangle with base, , and height, .   Generalizing, � + 0Ð Ð+ � ,ÑÑ"
#

this result to  subintervals is left to the problems at the end of the chapter.8
 The Trapezoidal Rule, (8.28), assumes that the interpolation points for have beenT ÐBÑ"

located at the ends of an interval.  An open trapezoidal rule may be derived by selecting the
interpolation points interior to the interval .  Recall Figure 8.1.  One standard open formulaÒ +ß , Ó
is based on subdividing the interval into thirds.  With , the points  and2 œ Ð, � +Ñ B œ + � 2"

$ "

B œ + � #2 T ÐBÑ# " will provide the data for .  The quadrature formula will resemble the
Trapezoidal Rule, (8.28), and is given by

"

#
Ð, � +Ñ 0Ð+ � 2Ñ � 0Ð+ � #2Ñ’ “ (8.38)
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 Advanced texts in numerical analysis will provide further details for open Newton-Cotes
quadrature formulas.  The open formulas are often used to estimate values of convergent
improper integrals where an endpoint function value is undefined.

8.7 Error Analysis for the Trapezoidal Rule

 The error expression for interpolating polynomials, (6.19), provides the starting point for
error analysis of many quadrature formulas.  Including the error term for , see (6.20), givesT ÐBÑ"

M œ 0ÐBÑ.B œ T ÐBÑ � 0 Ð-Ñ .B
ÐB � +ÑÐB � ,Ñ

#
( ( ’ “
+ +

, ,

"
ww

or

M œ X � 0 Ð-Ñ.BÞ
ÐB � +ÑÐB � ,Ñ

#
"

+

,
ww( (8.39)

 The integral in (8.39) is confounded by the unknown value of  in the second derivative-
where  depends on the integration variable .   Using the so-called  - B Weighted Mean Value
Theorem for definite integrals leads to

M � X œ I œ 0 Ð Ñ .B
ÐB � +ÑÐB � ,Ñ

#
"

X ww
"

+

,

( (
where  is now an unknown number in the interval .  A simple integration( Ò +ß , Ó

 >> syms a b x
 >> factor(int((x-a)*(x-b)/2,a,b))
 ans =
 1/12*(a-b)^3

gives the standard error formula for the Trapezoidal Rule

I œ � 0 Ð Ñ œ � 0 Ð Ñ
Ð, � +Ñ 2

"# "#
X ww ww
"

$ $

( ( . (8.40)

 It is a simple task to show that the error formula for the composite Trapezoidal Rule with
8 subintervals is

I œ � 0 Ð Ñ
2

"#
X ww
8

3œ"

8 $

3" ( ,  (8.41)

where  and .B Ÿ Ÿ B 2 œ Ð, � +ÑÎ83 3 3�"(

 Using the Intermediate Value Theorem, (8.41) may be written as ,I œ � 80 Ð ÑX ww
8

2
"#

$

-

where  is yet another unknown number in .   With , the error formula may- Ò +ß , Ó 2 œ Ð, � +ÑÎ8
be structured to stress  the length of a subinterval  or the number of subintervals .  In other2 Ð Ñ 8 Ð Ñ
words,
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I œ � Ð, � +Ñ0 Ð Ñ œ � 0 Ð Ñ
2 Ð, � +Ñ

"# "#8
X ww ww
8

# $

#
- - . (8.42)

 The composite error formula shows that  , so that  will converge to lim
8Ä_ 8

X
8I œ ! X M

provided  is a bounded function on . Note also that the error depends on the concavity of0 Ò +ß , Óww

the integrand as measured by the second derivative.
 If a quadrature formula integrates an  degree polynomial exactly, we say that the7>2

formula has a of .  Since the error formula (8.42) contains the second derivativeprecision 7 , the
precision of the Trapezoidal Rule is one.
 To illustrate the use of (8.42) recall the example in Section 8.5, M œ / .B .'

�"

" "
#

� B
È

1

"
#

#

Suppose we wish to approximate  with the composite Trapezoidal Rule and at the same timeM
ask that the error be less than a prescribed tolerance, TOL.  In other words, we require that |IX |
œ 0 Ð Ñ Ÿ | | TOL.  Since  is unknown, we are faced with a similar problem encounteredÐ,�+Ñ

"#8
ww

$

# - -

in the error analysis of Taylor polynomials  determine the maximum value of  | | on the� 0 Ð Ñww -

interval .  In other words, solve the following inequality for .Ò +ß , Ó 8

   max | | TOL (8.43)
  

Ð, � +Ñ

"#8 Ò +ß , Ó
0 Ð Ñ Ÿ

$

#
ww -

 In many cases a graphical approach will provide satisfactory information about the
maximum value.  The following MATLAB commands will plot the absolute value of the second
derivative of / Ò�"ß " Ó� B"

#
#on the interval .

 >> syms x
 >> ezplot(abs(diff(exp(-x*x/2),2)),[-1,1]) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.8

1

x

abs(-exp(-1/2 x2)+x2 exp(-1/2 x2))

Figure 8.2 Graphical Maximum 
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 Based on the graph, the absolute value of  Ð/ Ñ " B œ !� B ww"
#

#   has a maximum value of  at .
Substituting into (8.43) we find

  TOL.
Ð" � Ð�"ÑÑ "

"#8 #
" Ÿ

$

# È 1

With TOL , solution of the inequality  œ !Þ!!!" )
"#8 ##È

1

Ÿ !Þ!!!" 8   &# is .  Since a maximum
value was used in the analysis, the prediction of  intervals is actually larger than is actually&#
necessary.  Using the maximum value of |  is an inherently conservative approach; however,0 lww

the procedure will guarantee that | TOL.  Using the Trapezoidal Rule data from SectionlM � X Ÿ8

8.5 with error values appended we see that  intervals comes very close to meeting the specified$#
error tolerance; whereas,  intervals is more than necessary.'%

      n       Trap               Simp              M � X8

     16   6.8206e-001   6.8269e-001  !Þ!!!'#
     32   6.8253e-001   6.8269e-001   !Þ!!!"&
     64   6.8265e-001   6.8269e-001   !Þ!!!!$

Since trapsimp.m does not provide all values of  we may only estimate that an  somewhat8 8
greater than  and less than will be satisfactory.  The result of our analysis,  intervals$# '% &#
seems reasonable.

Asymptotic Error Formula for the Trapezoidal Rule

 As an alternative to (8.43), we return to the error summation given in (8.41).

I œ � 0 Ð Ñ I œ � 0 Ð Ñ2X ww X ww
8 8

3œ" 3œ"

8 8
2 2
"# "#3 3! !$ #

( ( or .  The Riemann sum in the last expression may be

approximated by a definite integral, leading to the  (large ) error formula for theasymptotic 8
composite Trapezoidal Rule as follows:

I ¸ � 0 ÐBÑ.B œ � 0 Ð,Ñ � 0 Ð+Ñ
2 2

"# "#
X ww w w
8

# #

+

,

( ’ “. (8.44)

 In many cases the asymptotic error formula will provide a more realistic estimate of the
number of intervals needed to meet an error tolerance.  The asymptotic result leads to the
inequality

Ð, � +Ñ

"#8
0 Ð,Ñ � 0 Ð+Ñ l Ÿ

#

#
w w| TOL (8.45)

 For our example, the asymptotic inequality (8.45) results in

#

"#8
l0 Ð"Ñ � 0 Ð�"Ñl Ÿ !Þ!!!"

#

#
w w .

A simple computation will show that  should be larger than .  This value seems consistent8 %"
with the numerical results shown above.
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Outcomes from the Error Formula

 Computing estimates of the number of intervals needed to reach an error tolerance is not
the only application of the Trapezoidal error formula.  In Section 8.4 we noted a computational
advantage obtained by doubling the number of intervals.  Using (8.42) we may show

I M � X 0 Ð Ñ

I
œ œ %

M � X 0 Ð Ñ

X ww
8
X
#8

8

#8
ww

-

.
.

As  becomes large this ratio should approach four.  In other words, doubling the number of8
subintervals should cause the error to drop by a factor of four, approximately.  Provided  is not8
so large that the accumulated error becomes significant, a similar result holds for the computed
estimates

M � Xs

M � Xs
%

8

#8

¸ . (8.46)

 The expression in (8.46) provides two interesting and important results.  Using
M � X ¸ %ÐM � X Ñs s8 #8  we may rearrange terms to give

M � X ¸ ÐX � X ÑÞs s s"

$
#8 #8 8 (8.47)

In other words, an estimate for the error in  may be determined by calculating X ÐX � X ÑÞs s s#8 #8 8
"
$

The ability to estimate errors is an important aspect of quadrature programs.  Using the
theoretical error formula, (8.42), is not easy; however, the error estimate, (8.47), is simple to
compute.  A quadrature program implementing the Trapezoidal Rule can be terminated when the
estimated error is less than some prescribed tolerance, i.e., TOL."

$ #8 8ÐX � X Ñ Ÿs s

 Solving the relation  for  gives the second result.M � X ¸ %ÐM � X Ñ Ms s8 #8

M ¸ Ð%X � X ÑÞ
"

$
s s#8 8 (8.48)

 The right hand side is often denoted  and is called a  extrapolationVs #8 Richardson
formula.  Typically, the numerical value of   provides a more accurateV œ Ð%X � X Ñs s s#8 #8 8

"
$

estimate for  than  itself.  The following data from a MATLAB program similar toM Xs#8

trapsimp.m  provides a wealth of information about our example integral,  M œ / .'
�"

" "
#

� B
È

1

"
#

#

 >> trap('fct1',-1,1,true)
      n         Trap             Err Ratio        Error          Est Error      Rich          RichErr
      2    6.409e-001  4.757e+000  4.178e-002  5.232e-002  6.932e-001 -1.055e-002
      4    6.725e-001  4.109e+000  1.017e-002  1.054e-002  6.831e-001 -3.686e-004
      8    6.802e-001  4.026e+000  2.526e-003  2.547e-003  6.827e-001 -2.148e-005
     16    6.821e-001  4.006e+000  6.305e-004  6.318e-004  6.827e-001 -1.320e-006
     32    6.825e-001  4.002e+000  1.576e-004  1.576e-004  6.827e-001 -8.220e-008
    64    6.827e-001  4.000e+000  3.938e-005  3.939e-005  6.827e-001 -5.167e-009
    128    6.827e-001  4.000e+000  9.846e-006  9.846e-006  6.827e-001 -3.576e-010
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    256    6.827e-001  4.000e+000  2.461e-006  2.461e-006  6.827e-001 -5.712e-011
    512    6.827e-001  4.000e+000  6.153e-007  6.154e-007  6.827e-001 -3.834e-011
   1024    6.827e-001  4.001e+000  1.538e-007  1.538e-007  6.827e-001 -3.716e-011

 The output reveals that the error ratio is approximately four and that the estimated error is
very close to the actual error with results improving as  increases.  Using  subintervals as an8 "'

example, we see that the error in the Richardson formula, | | , is smaller thanM � V œ "Þ$# † "!s
"'

�'

the error in the corresponding Trapezoidal Rule, .  Since the errorlM � X l œ 'Þ$!& † "!s"'
�%

lM � X l œ #Þ%'" † "! V "(s s s#&' "'
�' we observe that  (  integrand evaluations) corresponds to T256

(  integrand evaluations).  This is a rather dramatic savings in the number of function#&(
evaluations needed to compute the integral.

Summary of Results for Simpson's Rule

 All of the error analysis presented earlier in this section may be repeated, with some
complications, for Simpson's Rule.  The results are summarized below.

 Standard error formula:

I œ � 0 Ð Ñ œ � 0 Ð Ñ 2 œ Ð, � +ÑÎ#
Ð, � +Ñ 2

#))! *!
W Ð%Ñ Ð%Ñ
#

& &

( ( , where (8.49)

 Composite error formula  is even):Ð8

IW Ð%Ñ Ð%Ñ
8

% &

%
œ � 0 Ð Ñ œ � 0 Ð Ñ 2 œ Ð, � +ÑÎ8

2 Ð, � +Ñ Ð, � +Ñ

")! ")!8
- - , where (8.50)

 Asymptotic error formula:

I ¸ � 0 Ð,Ñ � 0 Ð+Ñ
2

")!
W Ð$Ñ Ð$Ñ
8

% ’ “ (8.51)

 Error Ratio:

I M � W 0 Ð Ñ M � W

I
œ œ "' ¸ "'

M � W 0 Ð Ñ

s

M � Ws

W Ð%Ñ
8
W
#8 #8

8 8

#8
Ð%Ñ

-

.
   and   (8.52)

 Error estimate:

M � W ¸ ÐW � W Ñs s s"

"&
#8 #8 8 (8.53)
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 Richardson extrapolation:

M ¸ Ð"'W � W Ñ
"

"&
s s
#8 8 (8.54)

You may wish to compare the corresponding formulas for both the Trapezoidal and Simpson's
Rule side by side.  For example, since the error in Simpson's Rule depends on the fourth
derivative, the precision will be three.
 To illustrate some of the preceding formulas, let's return to  . M œ / .B'

�"

" "
#

� B
È

1

"
#

#

Suppose we wish to approximate  with the composite Simpson's Rule and at the same time askM
that the error be less than a prescribed tolerance, TOL .  In other words, we requireœ "!�'

l IW Ð%Ñ �'
8

&

%
l œ l 0 Ð Ñ l Ÿ "!

Ð, � +Ñ

")!8
- (8.55)

 The following MATLAB commands will plot the absolute value of the fourth derivative
of / Ò�"ß " Ó� B"

#
#on the interval  showing a maximum value of three.

 >> syms x
 >> f = exp(-x*x/2);
 >> ezplot(abs(diff(f,4)),[-1,1]), grid on

Substituting into (8.55) gives

Ð" � Ð�"ÑÑ "

")!8 #
$ Ÿ

5

% È 1
 "! 8   Þ�' or  22

 The following MATLAB output shows , ,  and the estimated error from (8.53).8 W I8 8
W

The data shows that the predicted value of at least  intervals is in the ballpark.  Note also that##
as  increases the estimated error is close to the true error.8

 >> true = .6826894921;
 >> simp('fct1',-1,1,true)
   n    Simp                  Error          Est Error
   2         6.9324e-001 -1.0547e-002  4.6216e-002
   4         6.8306e-001 -3.6861e-004 -6.7858e-004
   8         6.8271e-001 -2.1484e-005 -2.3142e-005
   16        6.8269e-001 -1.3202e-006 -1.3442e-006
   32        6.8269e-001 -8.2200e-008 -8.2532e-008

8.8 Adaptive Quadrature and MATLAB

 MATLAB's command for numerical integration, quad, is based on an "adaptive recursive
Simpson's Rule."  The use is as follows:

 >> I = quad('fct1',a,b,TOL)
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where the integrand is in the M-file fct1.m.  If an integration tolerance is omitted the default is
!Þ!!".  See .  The procedures presented in Sections 8.4 and 8.5 simply increase the>> help quad
number of subintervals, uniformly, in  without considering the nature of the integrand.  AnÒ +ß , Ó
adaptive quadrature scheme will adjust the number of subintervals on various parts of Ò +ß , Ó
depending on the behavior of the integrand.
 Any quadrature method may be used in an adaptive procedure; however, computer
implementation requires the capability to estimate the integration error as the number of
subintervals is increased.  Since  uses Simpson's Rule, the error estimate, (8.53),quad
M � W ¸ ÐW � W Ñs s s

#8 #8 8
"
"&  is important.  In particular, with , we may estimate the error in8 œ #

W M � W ÐW � W Ñs s s s
% % % #

"
"&, .  This formula, using two and four subintervals, is a major factor inwith 

an adaptive scheme.
 Simpson's Rule two interval template is .  This is the basic"

$2 0Ð+Ñ � %0Ð-Ñ � 0Ð,Ñ’ “
building block in an adaptive scheme.  We begin by denoting  on the interval  byW Ò+ß ,Ós

#

UÐ+ß ,ß #Ñ U where the arguments of  are the limits of integration and the number of subintervals.
UÐ+ß ,ß #Ñ is one application of the basic Simpson's Rule.  Doubling the intervals to four, we
apply Simpson's Rule once on the interval  and again on the interval .  Adding theÒ+ß Ó Ò ß ,Ó+�, +�,

# #

results together gives the same result as the composite Simpson's Rule with 4 subintervals.  The
result is .  To keep track of the interval and number ofW œ UÐ+ß ß #Ñ � UÐ ß ,ß #Ñs4

+�, +�,
# #

subintervals, denote this result by .  Using TOL as our integration tolerance, we test theUÐ+ß ,ß %Ñ
accuracy of   as follows:UÐ+ß ,ß %Ñ

If TOL, accept . (8.56) l UÐ+ß ,ß %Ñ � UÐ+ß ,ß #Ñ l Ÿ "& † M ¸ UÐ+ß ,ß %Ñ

If the inequality is not satisfied, we subdivide and test again.  The subdivision will result in four,
two subinterval Simpson's Rules as follows:

UÐ+ß ß #Ñ UÐ ß ß #Ñ UÐ ß ß #Ñ UÐ ß ,ß #Ñ+�, +�, +�, +�,
% % # # % %

$Ð+�,Ñ $Ð+�,Ñ      

Adding the first and second terms and the third and fourth terms gives

UÐ+ß ß %Ñ œ UÐ+ß ß #Ñ � UÐ ß ß #Ñ
+ � , + � , + � , + � ,

# % % #

UÐ ß ,ß %Ñ œ UÐ ß ß #Ñ � UÐ ß ,ß #Ñ
+ � , + � , $Ð+ � ,Ñ $Ð+ � ,Ñ

# # % %

Assuming that the error is uniformly distributed over the entire interval , we use  TOL  inÒ +ß , Ó Î#
the following tests.

If  TOL , (8.57)lUÐ+ß ß %Ñ � UÐ+ß ß #Ñl Ÿ "& † Î# 0ÐBÑ.B ¸ UÐ+ß ß %ÑÞ
+ � , + � , + � ,

# # #
(
+

+�,
#

If  TOL , (8.58)lUÐ ß ,ß %Ñ � UÐ ß ,ß #Ñl Ÿ "& † Î# 0ÐBÑ.B ¸ UÐ ß ,ß %ÑÞ
+ � , + � , + � ,

# # #
(

+�,
#

,
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 An example will clarify the adaptive procedure.  Let  on the0ÐBÑ œ #/ � !Þ&B� B5 #

interval  and suppose an error tolerance of  is specified for the integral! Ÿ B Ÿ # !Þ!!"
'
!

#
0ÐBÑ.BÞ 0ÐBÑ  A graph of , see Figure 8.3, shows that the integrand changes rapidly on the first

half of the interval and is close to a line on the second half.  As a first step the M-file trapsimp.m
in Section 8.5 may be used to compute the Simpson's Rule values for  and  subintervals.8 œ # %

 >> trapsimp('fct1',0,2)
      n      Trap                  Simp
      2   2.0135e+000   1.6846e+000
      4   1.7933e+000   1.7198e+000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

x

2 exp(-5 x x)+05 x

Figure 8.3 The Integrand 0ÐBÑ œ #/ � !Þ&B�&B#

Using the expression in (8.56) we may compare the Simpson's Rule data as follows:

l UÐ!ß #ß %Ñ � UÐ!ß #ß #Ñ l œ l "Þ("*) � "Þ')%' l œ !Þ!$&#.

Since  is not less than , subdivide the interval  and try again.  The!Þ!$&# "& † !Þ!!" œ !Þ!"& Ò !ß # Ó
intervals to be examined are now   and   .  Consider  first and use the expressionÒ !ß "Ó Ò "ß # Ó Ò "ß # Ó
in (8.58).  We find

 >> trapsimp('fct1',1,2)
      n       Trap                Simp
      2   7.5338e-001   7.5226e-001
      4   7.5189e-001   7.5140e-001

l UÐ"ß #ß %Ñ � UÐ"ß #ß #Ñ l œ l !Þ(&"%! � !Þ(&##' l œ !Þ!!!)'  .
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Since this is less than TOL , we accept the approximation  as within"& † Î# œ !Þ!!(& UÐ"ß #ß %Ñ

tolerance for the value of the integral , in other words'
"

#
0ÐBÑ.B

(
"

#

0ÐBÑ.B ¸ UÐ"ß #ß %Ñ.

Using (8.57), consider  next.Ò !ß " Ó

 >> trapsimp('fct1',0,1)
      n       Trap                Simp
      2   1.0399e+000   9.6759e-001
      4   1.0408e+000   1.0411e+000

lUÐ!ß "ß %Ñ � UÐ!ß "ß #Ñl œ l "Þ!%"" � !Þ*'(&* l œ !Þ!($&"Þ

This is not less than , so we need to subdivide the interval  once more.  Consider the!Þ!!(& Ò !ß " Ó
interval    and the new tolerance 15 TOL .Ò !ß !Þ& Ó † Î% œ !Þ!!$(&

 >> trapsimp('fct1',0,.5)
      n       Trap                Simp
      2   7.4993e-001   7.6466e-001
      4   7.6119e-001   7.6494e-001

l UÐ!ß !Þ&ß %Ñ � UÐ!ß !Þ&ß #Ñ l œ l !Þ('%*% � !Þ('%'' l œ !Þ!!!#8.

This is within the prescribed tolerance, so we accept  for  Finally considerUÐ!ß Þ&ß %Ñ 0ÐBÑ.BÞ'
0

.5!

the interval    with the same error tolerance .  Here we findÒ !Þ&ß " Ó !Þ!!$(&

 >> trapsimp('fct1',.5,1)
      n       Trap                Simp
      2   2.9084e-001   2.7641e-001
      4   2.8006e-001   2.7647e-001

l UÐ!Þ&ß "ß %Ñ � UÐ!Þ&ß "ß #Ñ l œ l !Þ#('%( � !Þ#('%" l œ !Þ!!!!'.

This is also within tolerance and we accept the value of  for  .  The finalUÐ!Þ&ß "ß %Ñ 0ÐBÑ.B'
!Þ&

"

approximation of the integral  is given by the sum of three terms'
!

#
0ÐBÑ.B

( ( (
0

.5! " #

!Þ& "

0ÐBÑ.B � 0ÐBÑ.B � 0ÐBÑ.B œ 

UÐ!ß !Þ&ß %Ñ � UÐ!Þ&ß "ß %Ñ � UÐ"ß #ß %Ñ œ

!Þ('%*% � !Þ#('%( � !Þ(&"%! œ "Þ(*#)" .

The three integrals require that be evaluated at the nodes .0 Ö!ß !Þ"#&ß ! #&ß ! Þ$(&ß !Þ&ß ! Þ'#&ß
!Þ(&ß !Þ)(&ß "ß "Þ#&ß "Þ&ß "Þ(&ß #× ".  Observe that there are fewer function evaluations between 
and  than between  and .  The quadrature procedure has adapted to the way in which the# ! "
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integrand changes. Figure 8.4 shows where the integrand has been evaluated.  Nodes are shown
as asterisks at the bottom of the figure.
 Recall that the error in estimating the integral with  is approximately .W ÐW � W Ñs s s4  "

"& % #

Although we accepted the estimate if  was less than the tolerance, an adaptive"
"& % #ÐW � W Ñs s

quadrature routine using Simpson's Rule may use a more conservative decision rule obtained by
replacing the theoretical value of 15 with a smaller value, say 10.  The rule becomes: accept
when TOL.  This may necessitate extra subdivisions but should provide more¹ ¹W � W "! †s s

% # 9

assurance of the desired tolerance level.
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Figure 8.4 Adaptive Integration Points
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Figure 8.5 Integration Points Used by quad
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  is a more sophisticated adaptive algorithm.  The numerical result forMATLAB's quad
our example is given by

 >> quad('fct',0,2,.001)
 ans =
   1.7926e+000

An optional fifth argument will provide information on integrand evaluations.  See >> help
quad.  The  integration points used for a tolerance of   are shown in Figure 8.5.  Again,$# !Þ!!"
integration nodes are shown at the bottom of the figure.

8.9 Gaussian Quadrature

 Recall that a quadrature scheme has precision  if it integrates polynomials of degree 8 8
exactly.  In Sections 8.4 and 8.5 the precision's of the Trapezoidal Rule and Simpson's Rule, one
and three respectively, were outcomes of the error analysis.  Gaussian quadrature formulas are
derived with exact integration of polynomials as the guiding principle.  We approximate integrals
of the form with an -point Gaussian formula ,'

�"

"
80ÐBÑ.B 8 K

( "
�"

"

8 3 3

3œ"

8

0ÐBÑ.B ¸ K œ A 0Ð Ñ0 , (8.59)

where the 's (weights) and 's (  values in the interval [ , ]) are found by requiring that A B �" " K3 3 80

be exact if  is a polynomial of some specified degree.0ÐBÑ
 We begin with a one point formula, ,K"

(
�"

"

" " "0ÐBÑ.B ¸ K œ A 0Ð Ñ0 .

Since there are two unknown parameters in ,  and , and two coefficients in a linearK A" " "0

polynomial, it seems plausible that may have a precision of one.  With , whereK 0ÐBÑ œ 7B � ,"

7 , M œ K and  may be any values, we attempt to solve the problem or"

(
�"

"

" "Ð7B � ,Ñ.B œ A Ð7 � ,Ñ0 .

 Integrating and distributing  gives  .  This equation must hold forA #, œ A 7 �A ," " " "0

all arbitrary values of  and ; thus, we equate corresponding terms on both sides.7 ,

7 ! œ A
, # œ A
 terms:
 terms:

" "

"

0

We observe that  and  so that the one point approximation isA œ # œ !" "0

(
�"

"

"0ÐBÑ.B ¸ K œ #0Ð!Ñ. (8.60)
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For example,  compared to the exact value .'
�"

" B ! �"
"/ .B ¸ K œ #/ œ # / � / ¸ #Þ$&

 A two point formula, , is the next step.K#

(
�"

"

# " " # #0ÐBÑ.B ¸ K œ A 0Ð Ñ � A 0Ð Ñ0 0 .

There are four unknown parameters in  and four coefficients in a cubic polynomial; again, itK#

seems plausible that  may have a precision of three.  Replacing  by the cubic polynomialK 0ÐBÑ#

+B � ,B � -B � .$ #  gives

(
�"

"
$ # $ # $ #

" " # #" " # #Ð+B � ,B � -B � .Ñ.B œ A Ð+ � , � - � .Ñ � A Ð+ � , � - � .Ñ0 0 0 0 0 0 .

Integrating

 >> syms a b c d x
 >> int(a*x^3+b*x^2+c*x+d,-1,1)
 ans =
 2/3*b+2*d

leads to

0 .† + � † , � ! † - � # † . œ A Ð+ � , � - � .Ñ � A Ð+ � , � - � .Ñ
#

$
" " # #" " # #

$ # $ #0 0 0 0 0 0

As above, this equation must be true for arbitrary values of , ,  and  resulting in four+ , - .
equations.

+ ! œ A � A

, œ A � A

- ! œ A � A
. # œ A � A

 terms:
 terms:
 terms:
 terms:

(8.61)

" #" #
$ $

#
$ " #" #

# #

" " # #

" #

0 0

0 0

0 0

 Equation (8.61) is a nonlinear system.  Our efforts in Chapter 5 have not prepared us for
this situation.  There are numerical methods to solve nonlinear systems; however, they are
beyond the scope of this text.  In this instance we shall rely on our intuition and trial and error.
The last line in (8.61), the  terms, indicates that the sum of the weights is two.  It seems.
reasonable that both terms in should be weighted equally so we set  and  .  InK A œ " A œ "# " #

turn, the third line,  terms, will give  which shows  or .  Using- œ � œ # œ $Î$0 0 0 0# " "$ "
#2 È

these values the two point formula becomes

(
�"

"

#0ÐBÑ.B ¸ K œ "0Ð Ñ � "0Ð� ÑÈ È$Î$ $Î$ . (8.62)

 Data for Gaussian quadrature formulas is tabulated in various handbooks.  For example,
the three point formula is
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(
�"

"

0ÐBÑ.B ¸ K œ 0Ð Ñ � 0Ð!Ñ � 0Ð� Ñ
& ) &

* * *
3 È ÈÐ$Î&Ñ Ð$Î&Ñ . (8.63)

 Usually, definite integrals are not in the standard Gaussian form .  In order to'
�"

"
0ÐBÑ.B

integrate  using the Gaussian formulas it will be necessary to make a change of'
+

,
0ÐBÑ.B

variable so that the limits of integration are changed.  Assuming that , we require thatB œ > �! "

B œ + > œ �" B œ , > œ "correspond to  and  correspond to .  With these requirements
! " !œ Ð, � +ÑÎ# œ Ð+ � ,ÑÎ#Þ .B œ .> and   Note also that  .  In other words

( (
+ �"

, "

0ÐBÑ.B œ 0Ð > � Ñ.>
, � + , � + + � ,

# # #
.

 In general, the -point Gaussian quadrature formula has the form8

( "
+

,

8 3 3

3œ"

8

0ÐBÑ.B ¸ K œ † A 0Ð � Ñ
, � + , � + + � ,

# # #
0 . (8.64)

As an example, suppose we wish to approximate the integral ln'
"

&
ÐBÑ.B

œ & Ð&Ñ � % ¸ %Þ!%("*ln  with Gaussian quadrature.  Transforming the limits of integration with
B œ #> � $ gives

( (
" �"

& "

ln ln .ÐBÑ.B œ # † Ð#> � $Ñ.>

Using the Gaussian formulas (8.60), (8.62) and (8.63) we find

K œ # † # † ¸ %Þ$*%%&

K œ # † " † Ð# � $Ñ � " † Ð�# � $ ¸ %Þ!($(&

K œ # † † Ð# � $Ñ � † Ð$Ñ � † Ð�# � $Ñ ¸ %Þ!%*)$

"

#
$ $

$ $

$
& $ ) & $
* & * * &

’ “
’ “
’ “É É

ln(3) 

ln ln

ln ln ln

È È

 As the number of points increases the accuracy of the Gaussian formulas improves.  Note
the economy of the procedure.  For this example only three integrand evaluations results in two
decimal places of accuracy.  As a result of their simple form Gaussian quadrature formulas are
often embedded in more advanced numerical methods that require integration of polynomials.
One common application is the finite element method used to solve partial differential equations.

8.10 Integration of Numerical Data

 The quadrature methods presented in this chapter have been based on the known
functional form of the integrand .  The Trapezoidal Rule, Simpson's Rule and Gaussian0ÐBÑ
Quadrature are all based on evaluating the integrand at specific values.  Given a set of  8 � "
data points, , describing the integrand, these formulas may or may not be applicable.Ð B ß C Ñ3 3

 The composite Trapezoidal rule was based on
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( ("
+ B

, B

3œ"

8

0ÐBÑ.B œ 0ÐBÑ.BÞ
3

3�"

where  and .  Using the data to construct a piece wise linear model for theB œ + B œ ," 8�"

integrand leads to the approximation of the integrals as follows:

"
3œ"

8

3�" 3 3 3�"
"

#
ÐB � B ÑÐC � C ÑÞ (8.65)

You should recognize "# 3�" 3 3 3�" 3ÐB � B ÑÐC � C Ñ B as the area of a trapezoid.  If the 's are equally
spaced and the number of intervals is even, the composite Simpson Rule, (8.35), provides an
approximation of the integral.  Function values are replaced by the data values to give

" ’ “
3œ"

8Î#

#3�" #3 #3�"
"

$
2 C � %C � C .

 Our previous work with interpolating polynomials, splines and least squares models have
demonstrated various procedures to model data with continuous functions.  Integration of these
continuous functions may be used to approximate a definite integral.
 For example, consider the data of Section 6.2 and the interpolating polynomial (6.18).
We may approximate the definite integral specified by the data with .  Keep in mind'

#

'
%T ÐBÑ.B

that the antiderivative of a fourth degree polynomial will be a fifth degree polynomial.  We need
only to compute the coefficients of the fifth degree polynomial.  See  in the followingc4int
MATLAB code.  Note that the constant of integration has been set to zero.

 c4 =
  -7.1857e-002  1.0941e+000 -5.9312e+000  1.3783e+001 -9.8221e+000
 >> m=length(c4);
 >> for j = 1:m
 c4int(j) = c4(j)/(m+1-j);
 end
 >> c4int(m+1) = 0;
 >> c4int
 c4int =
  -1.4371e-002  2.7354e-001 -1.9771e+000  6.8917e+000 -9.8221e+000            0
 >> polyval(c4int,6)-polyval(c4int,2)  %The Fundamental Theorem
 ans =
   8.8452e+000

The value for ans provides a reasonable approximation for the area beneath .  See FigureT ÐBÑ%

6.1.  Since the actual integrand is unknown, the accuracy of the approximation is also unknown.
 In Chapter 6 cubic interpolating splines eliminated the oscillatory problems associated
with some interpolating polynomials.  It seems plausible that integrating a spline may provide a
good numerical approximation.  The key equation is
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W ÐBÑ œ + ÐB � B Ñ � , ÐB � B Ñ � - ÐB � B Ñ � . B Ÿ B Ÿ B4 4 4 4 4 4 4 4 4 4�"
$ # ,    . (6.25)

Integrating (6.25) gives

(
B

B

4
4

4�"

W ÐBÑ.B œ
"

%
+ 2 Ñ � , Ð2 Ñ � - Ð2 Ñ � . 2

" "

$ #
4 4 4 4 4 4 4 4

% $ #( . (8.66)

where 2 œ4 B � B4�" 4.
 As we can see, the spline coefficients for the  subinterval and the length of the4>2

subinterval,24, are the important factors in the integration.  Summing over each subinterval, our
composite approximation is

( "’
+

,

4œ"

8

WÐBÑ.B œ
"

%
+ 2 Ñ � , Ð2 Ñ � - Ð2 Ñ � . 2

" "

$ #
4 4 4 4 4 4 4 4

% $ #( . (8.67)“

To compute (8.67) we need to extract the spline coefficients from spline(x,y), determine the
lengths of the  intervals and evaluate the summation.8
 Extracting the coefficients requires the MATLAB commands

 >> spdata = spline(x,y);
 >> [breaks,spcoef,pieces,order,dim] = unmkpp(spdata);

Recall that the 's are in the first column of +4 spcoef, the 's in the second column and so forth.,4
   MATLAB's  is .  diff( )B ÒB � B ß B � B ßá ß B � B Ó œ Ò2 ß 2 ßá ß 2 Ó# " $ # 8�" 8 " # 8 In other
words, the vector 2 contains the lengths of the  subintervals.8

 >> h = diff(x);

 Equation (8.67) may be evaluated with careful use of array operations.  For example, the
8 . 2 ß products in the last term, are contained in the vector 3 3 spcoef(:,4).*h.
 Including all terms, the integral of the spline is given by

 >> sum(spcoef(:,1).*h.^4/4+spcoef(:,2).*h.^3/3+spcoef(:,3).*h.^2/2 ...
 +spcoef(:,4).*h)

8.11 Problems

8-1. Verify T ÐBÑ œww
#

C �#C �C
2

" # $
# , (8.10), by computing the second derivative of

  with  , and .T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC � 6 ÐBÑC B œ Bß B œ B � 2 B œ B � #2� � �
# " " # # $ $ " # $

8-2. Consider the first derivative of  the following functions at .  Use the numericalB œ "
 formulas at the end of Section 8.2 to approximate the first derivative using 2 œ !Þ"ß !Þ!&
 and . Compute the errors in your approximations using the exact value of the!Þ!#&
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 derivative.  Display the results, derivatives and errors, in table form.  Plot the functions
 near  to see if your answers are reasonable.B œ "

 a. 0ÐBÑ œ /�#B

 b. sin(   Use radians.0ÐBÑ œ BÑÞÈ
 c. sin .  Use radians.0ÐBÑ œ B Ð#BÑ

8-3. Recall that 0ÐBÑ œ k kB  is not differentiable at zero.
  a. Compute the (first) forward difference at zero using .2 œ „ !Þ"ß „ !Þ!"ß „ !Þ!!"
  b. Compute the central difference for .2 œ !Þ"ß ! Þ!"ß ! Þ!!"
  c. Give an explanation of your results based on the slope of the graph of .0
  d. What conclusion(s) can you draw from the data you have generated.

8-4. Use a method of your choice, Lagrange, Taylor or undetermined coefficients, to find a
 backward difference approximation to the second derivative of  at .0ÐBÑ B3

8-5. Consider the second derivative of  at .  Use the numerical formulas at0ÐBÑ œ / B œ "�#B

 the end of Section 8.2 to approximate the second derivative using  and2 œ !Þ"ß !Þ!&
  .  Compute the errors in your approximations and build tables to display the results.!Þ!#&

8-6. Construct the cubic interpolating polynomial  for the data ( T ÐBÑ B ß C Ñß ÐB � 2ß C Ñß$ " " " #

  and Simplify the denominators of each term and thenÐB � #2ß C Ñ ÐB � $2ß C ÑÞ" $ " %

 compute the derivative of the cubic interpolating polynomial.  Remember that the product
 rule is ..

.B
w w wÒ0ÐBÑ1ÐBÑ2ÐBÑÓ œ 0 ÐBÑ1ÐBÑ2ÐBÑ � 0ÐBÑ1 ÐBÑ2ÐBÑ � 0ÐBÑ1ÐBÑ2 ÐBÑ

 a. Compute  at  and compare your result to (8.25)T ÐBÑ B œ Bw
$ "

 b. Compute  at .  What is an appropriate name for the formula?T ÐBÑ B œ B � $2w
$ "

8-7. Use Taylor expansions to verify the three term backward difference approximation for
 the first derivative.

8-8. Construct a four term backward difference approximation for  in the form0 ÐB Ñ
w

3

 0 Ð Ñ
w

B ¸ E0ÐB Ñ � F0ÐB � 2Ñ � G0ÐB � #2Ñ � H0ÐB � $2Ñ3 3 3 3 3  using the method
 of undetermined coefficients.  Compare your result to the forward difference formula.

8-9. Construct a four term forward difference approximation for  in the form0 ÐB Ñww
3

 0 Ð Ñww B ¸ E0ÐB Ñ � F0ÐB � 2Ñ � G0ÐB � #2Ñ � H0ÐB � $2Ñ3 3 3 3 3  using the method
 of undetermined coefficients.  Hint:  See (8.22) and (8.23).

8-10. If you have four data points in the vectors B C and , write the MATLAB commands that
 will evaluate the first and second derivatives of the interpolating polynomial at .B"

8-11. Consider sin .M œ ÐB Î&Ñ .B'
#Þ&

% #

 a. Approximate  with the composite Trapezoidal rule with M 8 œ %
 b. Bound the error in .X%

8-12. Repeat Problem 11 with Simpson's rule.
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8-13. If sin  is to be approximated with an error of no more than ,M œ ÐB Î&Ñ .B !Þ!!!"'
#Þ&

% #

 determine the number of intervals, , to accomplish the task.8
 a. Use the Trapezoidal rule
 b. Use Simpson's rule

8-14. Modify the M-file trapsimp.m in two ways.  First, allow the true value of an integral to
 be an input.  Second, compute and display the actual errors for both the Trapezoidal
 Rule and Simpson's Rule.  Test your file with the text example M œ / .BÞ '�"

" "
#

� B
È

1

"
#

#

8-15. Given sin( .M œ BÑ.B' È
"

%

 a. Determine the exact value of   Recall MATLAB's MÞ int.
 b. Find the number of intervals needed to approximate  with an error tolerance ofM
     0.000005 using the Trapezoidal Rule and Simpson's Rule.
 c. Repeat part b) using the asymptotic error formulas.
 d. Using the modified trapsimp.m compare your predictions in parts b and c with the
     output data.

8-16. Recall the midpoint template Q œ Ð, � +Ñ0Ð Ð+ � ,ÑÑ"
"
# , (8.37).  Construct an expression

 for the composite midpoint rule .Q8

8-17. Verify the open Trapezoidal Rule given in (8.38).

8-18. Consider .  Approximate  with a third degree interpolating polynomialM œ 0ÐBÑ.B 0ÐBÑ'
+

,

  using the four values of : and .  Using MATLABT ÐBÑ B +ß + � 2ß + � #2 + � $2$

 integrate each term symbolically from  to .  Write the quadrature formula+ , œ + � $2
 that approximates .  The result is called Simpson's 3/8 Rule.M

8-19. Using M�Ws

M�Ws
8

#8

¸ "', derive (8.53) and (8.54).

8-20. Use the Gaussian formulas   and  to approximate K ß K K" # $ M œ ÐB Î&Ñ .B'
#Þ&

% #sin .

8-21. A three point Gaussian formula is given by .  WithK œ A 0Ð Ñ � A 0Ð Ñ � A 0Ð Ñ$ " " # # $ $0 0 0

 six parameters it seems plausible that the precision of  is five.  Construct six equationsK$

 similar to (8.61) and verify that the values given in (8.63) satisfy the equations.

8-22. Given M œ 0ÐBÑ.B 0ÐBÑ + ,'
+

, .  Write an M-file that will accept ,  and  as inputs and
 return ,  and  as outputs.  Test your file on .  Use K K K M œ .B" # $

ÐBÑ
B

'
1
2 sin sinint to

 compute the integral and then determine the errors in the Gaussian approximations.

8-23. Explain and discuss an adaptive quadrature scheme based on the Trapezoidal Rule.
 Evaluate the text example in Section 8.8 using your scheme.
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8-24. Consider a curve specified in parametric form.
 cos cos  and cos sin  for .BÐ>Ñ œ Ð# � Ð>ÑÑ Ð>Ñ CÐ>Ñ œ Ð# � Ð>ÑÑ Ð>Ñ ! Ÿ > Ÿ 1

 Look up the formula for arc length of parametric equations in a calculus text and
 construct the arc length integral.  MATLAB can help with the derivatives and algebra.
 Although the integral has a rather simple integrand there is no antiderivative.  Use quad
 to compute the arc length.  Explain why your result is reasonable.

8-25. Given 3  on the interval .  Use  to compute the volume and surface0ÐBÑ œ / Ò !ß # Ó&B quad
 area if  is rotated about the -axis.0ÐBÑ B

8-26. Consider the following data from Section 6.4:
 B # #Þ& % %Þ& '

C "Þ'#$ "Þ)&& #Þ%#& #Þ)!' $Þ*''

 Approximate the definite integral from  to  using a piece wise linear approximation,# '

 (8.65), an interpolating polynomial  and then a spline ' '
# #

' '
%T ÐBÑ.B WÐBÑ.B, .  Which

 procedure gives the best approximation?  Explain your reasoning.  See Figure 6.1.

8-27. Explain and discuss the following segment of MATLAB code.

 >> x = linspace(1,4);y = sin(sqrt(x));
 >> spdata = spline(x,y);
 >> [breaks,spcoef,pieces,order,dim] = unmkpp(spdata);
 >> a = spcoef(:,1);b = spcoef(:,2);c = spcoef(:,3);d = spcoef(:,4);
 >> h = diff(x);SUM = 0;
 >> for k = 1:length(h)
 SUM = SUM+a(k)*h(k)^4/4+b(k)*h(k)^3/3+c(k)*h(k)^2/2+d(k)*h(k);
 end

 What does the final value of ?SUM represent

8-29. Use a spline to approximate the integrand of M œ / .B .'
�"

" "
#

� B
È

1

"
#

#

 Vary the number of subintervals in the spline and attempt to determine a relationship
 between the number of subintervals and the accuracy of the approximation. 


