
Chapter 6
Interpolation and Splines

6.1 Introduction

 In basic terms, interpolate means to estimate function values between known values.
Prior to modern technology, interpolation in standard tables of tabulated functions was used to
compute values for arguments not tabulated. Today, table interpolation of known functions has
been virtually eliminated by modern calculators and computers; however, the concept of
interpolation is still important both in the analysis of experimental data and in the mathematical
development of various numerical schemes.
 As an example, consider the following data which describes the saturated vapor pressure
of water as a function of temperature.

Temperature (°C)
Pressure (atm)

$! %! '!)! "!! "&!
!Þ!%") !Þ!(#) !Þ"*' !Þ%'("Þ!! %Þ'*

Estimating the pressure at other temperatures is the goal of interpolation. If we wish to estimate
the pressure at °C, a line between the points and ,*! Ð)!ß !Þ%'(Ñ Ð "!!ß "Þ!! Ñ

T � !Þ%'(œ ÐX �)!Ñ
"Þ!! � !Þ%'(

"!! �)!
Š ‹ ,

will provide an approximation. In this chapter we will focus our efforts on polynomial methods,
lines, parabolas, etc., to compute interpolated values.
 Suppose we have a set of data points for to . The data may be from anÐ B ß C Ñ 3 œ " 83 3

experiment or a known function so that . Our goal is to build an C œ 0ÐB Ñ3 3 interpolating
function, say , to approximate or model the given data. The interpolation requirements areJÐBÑ
specified by the equations for to . In basic geometric terms, a graph of theJÐB Ñ œ C 3 œ " 83 3

function must pass through the data points.JÐBÑ 8
 Typically, has the formJÐBÑ

J ÐBÑ œ - 1 ÐBÑ � - 1 ÐBÑ � - 1 ÐBÑ �á � - 1 ÐBÑ" " # # $ $ 8 8 (6.1)

where the 's are known linearly independent functions.1 ÐBÑ4

 A set of functions { } is said to be on an interval if there exists a1 ÐBÑ4 linearly dependent
set of constants { }, not all zero, such that-4

- 1 ÐBÑ � - 1 ÐBÑ � - 1 ÐBÑ �á � - 1 ÐBÑ œ !" " # # $ $ 8 8 (6.2)

for all in the interval. This means that at least one function is a linear combination of others.B
For example, may equal . The set of functions { } is said to be1 ÐBÑ %1 ÐBÑ � (1 ÐBÑ 1 ÐBÑ$ " & 4

linearly independent on the interval if the set is not linearly dependent. This means that (6.2)
will be satisfied for all only if all of the This implies that no function in the set may beB - œ !Þ3

expressed as a linear combination of other functions in the set.

Chapter 6 Page 73

 Matrix notation will simplify our development of interpolation. Equation (6.1) may be
written in matrix form as follows:

Ò J ÐBÑ Ó œ 1 ÐBÑ 1 ÐBÑ 1 ÐBÑ á 1 ÐBÑ -

-
-

ã
-

c d
Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

" # $ 8 $

"

#

8

. (6.3)

With the 's specified, the interpolation requirement results in1 ÐBÑ J ÐB Ñ œ C4 3 3

Ò J ÐB Ñ Ó œ œ Ò C Ó1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ á 1 ÐB Ñ -

-
-

ã
-

3 3" 3 # 3 $ 3 8 3 $

"

#

8

c d
Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

.

Since and are both , the matrix notation could be eliminated; however,Ò J ÐB Ñ Ó Ò C Ó " ‚ "3 3

combining the results for each will result in an linear system as follows:B 8 ‚ 83

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

JÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ â 1 ÐB Ñ
J ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ â 1 ÐB Ñ
J ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ â 1 ÐB Ñ
ã ã ã ã ã ã

J ÐB Ñ 1

œ

" " " # " $ " 8 "

" # # # $ # 8

$ " $ # $ $ $ 8 $

8 "ÐB Ñ 1 ÐB Ñ 1 ÐB Ñ â 1 ÐB Ñ - C

- C
- C
- C
ã ã
œ

8 # 8 $ 8 8 8 8 8

" "

#

$ $

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

In matrix form we have

K- œ C (6.4)

where . The solution of (6.4) provides the coefficients for our interpolating function,G34 3œ 1 ÐB Ñ
4

JÐBÑ, specified in (6.1). Keep in mind that any appropriate functions may be selected for the
1 ÐBÑ 1 ÐBÑ4 4's. In this chapter we will discuss how to construct several families of 's.

6.2 Lagrange Interpolating Polynomials

 The development in Section 6.1 was in very general terms. To simplify our development,
assume that the data set consists of two points, and , and that is aÐ B ß C Ñ Ð B ß C Ñ J ÐBÑ" " # #

polynomial of first degree, . In matrix form may be written asT ÐBÑ œ - B � - " T ÐBÑ" " # "

Ò T ÐBÑ Ó œ Ò B " Ó
-
-"
"

#
” •. (6.5)

Chapter 6 Page 74

The interpolation requirements, and , result in theJÐB Ñ œ T ÐB Ñ œ C J ÐB Ñ œ T ÐB Ñ œ C" " " " # " # #

linear system

” • ” •” • ” •T ÐB Ñ B " - C
T ÐB Ñ B " - C

œ œ" " " " "

" # # # #
. (6.6)

The matrix in (6.6), # ‚ # ” •B "
B "
"

#
, is called a matrix. The solution of (6.6)Vandermonde

may be expressed in terms of the inverse of the Vandermonde matrix.

” • ” • ” •- B " C
- B " C

œ" " "

#

�"

. (6.7)

Substituting (6.7) into (6.5) gives

Ò T ÐBÑ Ó œ Ò B " Ó
B " C
B " C"
" "

#

�"” • ” •. (6.8)

 The inverse of the matrix is obtained by interchanging the elements on# ‚ #
B "
B "” •"

#

�"

the main diagonal, negating the off-diagonal terms and dividing by the determinant, B � B" #

(recall Problem 1-12); thus, (6.8) becomes

Ò T ÐBÑ Ó œ Ò B " Ó

" � "
� B B

B � B

C
C"

"

" #

"

#
Š ‹” • ” •. (6.9)

Associating the matrices as indicated in (6.9) will give the form of a linearLagrange
interpolating polynomial

T ÐBÑ œ C � C
B � B B � B

B � B B � B
" " #

"

" # # "
Š ‹ Š ‹ . (6.10)

 The two linear polynomials and on the right side of (6.10) are calledB�B B�B
B �B B �B

"

" # # "

Lagrange polynomials. They are denoted and , so that (6.10) may be written as6 ÐBÑ 6 ÐBÑ" #

T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC" " " # #.

Lagrange polynomials have many interesting properties. Convince yourself that the linear
polynomials satisfy the relationship 6 ÐBÑ � 6 ÐBÑ œ "Þ" #

 Using the Lagrange form to interpolate at we findB œ B�

T ÐBÑ œ C � C œ 6 ÐBÑC � 6 ÐBÑC� � �B � B B � B� �

B � B B � B
" " # " " # #

"

" # # "
Š ‹ Š ‹ . (6.11)

The values of the Lagrange polynomials at represent the weights associated with and .B C C�
" #

Observe that if is the midpoint of the interval , each of the weights will be givingB Ò B ß B Ó�
" #

"
#

equal weighting to both and , an intuitive result for linear interpolation.C C" #

Chapter 6 Page 75

 MATLAB's interp1q will perform linear interpolation in a table of values by building a
linear interpolating polynomial for each interval and then selecting the proper interval for a given
B�. Consider the following data:interp1q requires that data be entered as columns.

B C
#Þ! "Þ'#$
#Þ& "Þ)&&
%Þ! #Þ!%"
%Þ& #Þ$$$
'Þ! #Þ&'"

The following commands will guarantee that x y interp1 and are columns (for) and will
interpolate at the three values and .B œ #Þ#ß $Þ" &Þ#�

 >> x = x(:);y = y(:);
 >> interp1q(x,y,[2.2, 3.1,5.2]')

 ans =
 1.7158e+000
 1.9294e+000
 2.4394e+000

The output shows that the value of the a linear interpolating polynomial at is . With$Þ" "Þ*#*%
$Þ" Ò #Þ&ß %Þ! Ó in the interval you should be able to verify that

"Þ*#*$ œ 6 Ð$Þ"Ñ † "Þ)&& � 6 Ð$Þ"Ñ † #Þ!%"" #

by constructing the appropriate and . Since the original data contains three decimal6 ÐBÑ 6 ÐBÑ" #

places, it is standard practice to retain only three places, , for the interpolated value."Þ*#*

Quadratic Interpolating Polynomials

 The procedures applied to two data points may be extended easily to three data points
resulting in a quadratic interpolating polynomial. In matrix form, a quadratic polynomial,
- B � - B � - "" # $

, may be written as

Ò T ÐBÑ Ó œ œB B " B B "
-
-
-

#
#

"

#

$

c d c dÔ ×
Õ Ø -.

Interpolation requirements yield the linear system$ ‚ $

Ô ×Ô × Ô ×
Õ ØÕ Ø Õ Ø
B B "

B B "

B B "

- C
- C
- C

œ

#
" "
#
#
#
$ $

" "

#

$ $

 or Z - œ C.

The structure of the Vandermonde matrix, , begins to emerge. The third column consists ofV
ones, the second column contains the values of and the first column contains the squares of .B B

>> help vander provides the specific details.

Chapter 6 Page 76

 With , the quadratic interpolating polynomial becomes- Cœ V �"

Ò T ÐBÑ Ó œ Ð B B "#
#c dV �"ÑC

where the terms have been grouped as in (6.8). The symbolic computation of

c dB B " 6 ÐBÑ 6 ÐBÑ 6 ÐBÑ#
" # $V �" œ c d

is a daunting task. Fortunately, the symbolic capabilities of MATLAB provide the result. The
factor command is used to simplify the matrix expression. In addition, for display purposes,
MATLAB's non-conjugate transpose, .' , is used on the symbolic expression.

 >> syms x x1 x2 x3
 >> v=[x1^2,x1,1;x2^2,x2,1;x3^2,x3,1];
 >> Lagrange = factor([x^2,x,1]*inv(v)).'
 Lagrange =
 [(x-x3)*(x-x2)/(x1-x3)/(x1-x2)]
 [-(x-x3)*(x-x1)/(x2-x3)/(x1-x2)]
 [(x-x2)*(x-x1)/(x2-x3)/(x1-x3)]

With the MATLAB output the structure of c d6 ÐBÑ 6 ÐBÑ 6 ÐBÑ" # $ should be clear. Rearranging
terms slightly produces the standard forms

6 ÐBÑ œ"
ÐB � B ÑÐB � B Ñ

ÐB � B ÑÐB � B Ñ
ß

$

" # " 3

6 ÐBÑ œ#
ÐB � B ÑÐB � B Ñ

ÐB � B ÑÐB � B Ñ
ß

" $

" # $

6 ÐBÑ œ$
ÐB � B ÑÐB � B Ñ

ÐB � B ÑÐB � B Ñ
" #

$ " $ #
.

Note the symmetry in the quadratic Lagrange polynomials. Multiplying each of the
corresponding terms by the appropriate completes the Lagrange form of the quadraticC3
interpolating polynomial

T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC � 6 ÐBÑC# " " # # $ $. (6.12)

Each has two zeros. For example, has zeros at both and . In addition, the graph6 ÐBÑ 6 ÐBÑ B B3 # " $

of goes through the point . There are similar properties for the other two terms.6 ÐBÑ ÐB ß "Ñ# #

MATLAB shows that the sum of the quadratic Lagrange polynomials, the weighting values for
interpolation, is one. Lagrange is defined in the MATLAB output above.

 >> factor(Lagrange(1)+Lagrange(2)+Lagrange(3))
 ans =
 1

Chapter 6 Page 77

 It is a simple task to generalize Lagrange's polynomial structure. The Lagrange form for
8 8 � " data points, a polynomial of degree , is given by

T ÐBÑ œ 6 ÐBÑC � 6 ÐBÑC � 6 ÐBÑC �á � 6 ÐBÑC8�" " " # # $ $ 8 8, (6.13)

where each is also a polynomial of degree with the form6 ÐBÑ 8 � "3

6 ÐBÑ œ
ÐB � B ÑâÐB � B ÑÐB � B ÑâÐB � B Ñ

ÐB � B ÑâÐB � B ÑÐB � B ÑâÐB � B Ñ
3

" 3�" 3�" 8

3 " 3 3�" 3 3�" 3 8
.

Note that the term is missing from the numerator and that appears in each term ofÐB � B Ñ B3 3

the denominator. Lagrange interpolating polynomials are easy to understand; however, the many
differences and products makes the Lagrange procedure cumbersome for large . Moreover, if8
one more data point is added, a new set of 's must be computed to construct .6 ÐBÑ T ÐBÑ3 8

6.3 Newton Interpolating Polynomials

 Newton suggested an alternative scheme to systematically construct interpolating
polynomials. The polynomials are structured so that adding one additional data point, which
increases the degree, requires the addition of only one new term. Beginning with the firstT ÐBÑ1
few polynomials are

T ÐBÑ œ + � + ÐB � B Ñ

$ T ÐBÑ œ T ÐBÑ � + ÐB � B ÑÐB � B Ñ

% T ÐBÑ œ T ÐBÑ � + ÐB � B ÑÐB � B ÑÐB � B Ñ

 data points:
 data points:
 data points:

" ! " "

" # "

$ # $ " # $

The structure of Newton's form allows for nested evaluation. For example,

T ÐBÑ œ + � + ÐB � B Ñ � + ÐB � B ÑÐB � B Ñ2 ! " " # " #

may be rewritten as

T ÐBÑ œ + ÐB � B Ñ � + ÐB � B Ñ � +2 [] . (6.14)# # " " !

 To evaluate (6.14) we begin with , followed by multiplication by , addition ofÐB � B Ñ +# #

+ ÐB � B Ñ +" " !, multiplication by and, finally, addition of . The nested method for polynomial
evaluation reduces the number of arithmetic operations and typically improves numerical
accuracy.
 The coefficients in the Newton polynomial form are determined by the interpolation
requirements beginning with . At , It isß T ÐB Ñ œ + œ C B T ÐB Ñ œ + � + ÐB � B Ñ œ C Þ" " ! " # " # ! " # " #

easy to see that The coefficient is called a for+ œ œ Þ +" "
C �+ C �C

B �B B �B

! # "

" # "

first divided difference
the data at and . If there is a third data point we use to compute . SubstitutingB B T ÐB Ñ +" # $ #2
gives . It may be shown thatT ÐB Ñ œ + � + ÐB � B Ñ � + ÐB � B ÑÐB � B Ñ œ C2 $! " $ " # $ " $ # $

+ œ
B � B

#
$ "

C �C C �C

B �B B �B

$ # # "

$ # # "

�

. (6.15)

Chapter 6 Page 78

 The coefficient given in (6.15) is called a second divided difference for the data. The+#
quotients in the numerator are both first order divided differences using different data points.
Elaborate notations are used to identify various divided differences. For example the coefficient
+ œ C HH ÒB Ó! " ! ", a zeroth divided difference, may be denoted . Continuing this scheme we find

+ œ HH ÒB ß B Ó œ œ
HH ÒB Ó � HH ÒB Ó C � C

B � B B � B
" " " #

! # ! " # "

" # "

and .+ œ HH ÒB ß B ß B Ó œ œ
HH ÒB ß B Ó � HH ÒB ß B Ó

B � B B � B
" # $

" # $ " " #

$ " $ "

C �C C �C

B �B B �B

$ # # "

$ # # "

�

At this point the structure of the coefficients emerges with given by a third divided difference+$

+ œ HH ÒB ß B ß B ß B Ó œ
HH ÒB ß B ß B Ó � HH ÒB ß B ß B Ó

B � B
$ $ " # $ %

$ % # " # $

% "

Typically, the various divided differences are displayed in a table, for example,

B C HH HH HH

B C œ HH ÒB Ó
HH ÒB ß B Ó

B C œ HH ÒB Ó HH ÒB ß B ß B Ó
HH ÒB ß B Ó HH ÒB ß B ß B ß B Ó

B C œ HH ÒB Ó HH ÒB ß B ß B Ó
H

3 3

" " ! "

" " #

! # # " # $

" # $ $ " # $ %

$ $! $ # # $ %

First Second Third

H ÒB ß B Ó
B C œ HH ÒB Ó

" $ %

% % ! %

 The coefficients for Newton's interpolating polynomial are found at the top of each
column of differences. Most advanced texts on numerical analysis provide additional
information about divided differences and their properties. A divided difference table for the
data in Section 6.2 is given by

B3 C HH HH HH HH

#Þ! "Þ'#$
!Þ%'%

#Þ& "Þ)&& �!Þ"(
!Þ"#% !Þ"'

%Þ! #Þ!%" !Þ#$ �!Þ!(")&'
!Þ&)% �!Þ"#(%$$

%Þ& #Þ$$$ �!Þ#"'

3 First Second Third Fourth

!Þ"&#
'Þ! #Þ&'"

Chapter 6 Page 79

Test your knowledge of the divided difference formulas by verifying the values in the table. Pay
particular attention to the values used in the denominators of each difference. We may now
identify the coefficients for the fourth degree Newton interpolating polynomial. They are as
follows: and .+ œ "Þ'#$ß + œ !Þ%'%ß + œ �!Þ"(ß + œ !Þ"' + œ �!Þ!(")&'! " # $ %

 The M-file divdif.m will compute the divided difference coefficients for use in Newton
interpolating polynomials. MATLAB's length will determine the number of data points.

M-file divdif.m

 function dd=divdif(x,y)
 %DIVDIF Newton divided differences
 x = x(:);y = y(:);
 n = length(x);
 d = y;
 for i = 2:n
 for j = n:-1:i
 d(j)=(d(j)-d(j-1))/(x(j)-x(j-i+1));
 end
 end
 dd = d;

 Using the data from Section 6.2, the coefficients for the Newton form of may beT ÐBÑ%

computed as follows:

 >> a=divdif(x,y)
 a =
 1.6230e+000
 4.6400e-001
 -1.7000e-001
 1.6000e-001
 -7.1857e-002

The Newton interpolating polynomial is given by

T ÐBÑ œ "Þ'#$ � !Þ%'%ÐB � #Ñ � !Þ"(ÐB � #ÑÐB � #Þ&Ñ

� !Þ"'ÐB � #ÑÐB � #Þ&ÑÐB � %Ñ

!Þ!(")&(ÐB � #ÑÐB � #Þ&ÑÐB � %ÑÐB � %Þ&Ñ

%

� .

 (6.16)

Although does not appear explicitly in , the fifth data point, , has beenB œ ' T ÐBÑ Ð 'ß #Þ&'" Ñ& %

used in the divided difference computations. You may wish to verify that . BeginT Ð'Ñ œ #Þ&'"%

by rewriting (6.16) in nested form

T ÐBÑ œ + ÐB � B Ñ � + ÐB � B Ñ � + ÐB � B Ñ � + ÐB � B Ñ � +% % % $ $ # # " " !š’Š ‹ “ ›
before you start the actual computations.

Chapter 6 Page 80

6.4 Polynomial Interpolation - MATLAB

 If we wish to express the interpolating polynomial in the power form,

T ÐBÑ œ - B � - B � - B �á � - B � -8�" " # $ 8�" 8
8�" 8�# 8�$, (6.17)

neither the Lagrange nor the Newton structure permit easy identification of the coefficients. To
resolve this problem the general approach of Section 6.1 may be used. With JÐBÑ œ T ÐBÑ8�"

and , and we may find the desired1 ÐBÑ œ B ß 1 ÐBÑ œ B ß á ß 1 ÐBÑ œ B á 1 ÐBÑ œ "" # 4 8
8�" 8�# 8�4

coefficients using the interpolation requirements on (6.17).

T ÐB Ñ œ - B � - B � - B �á � - B � - œ C8�" 3 " # $ 8�" 3 8 33 3 3
8�" 8�# 8�$,

for to . In matrix form, we have an Vandermonde system 3 œ " 8 8 ‚ 8 V- œ C.
 Constructing the matrix from the data is not a difficult task; however, MATLABV
provides a command, , which will construct and also solve the linear system, ,polyfit V V- œ C

returning the coefficients in descending order. Once the coefficient vector has been computed,-

the interpolating polynomial (6.17) may be evaluated with .polyval
 As an example, let's use the data from Section 6.2. Recall that the degree of the
polynomial is one less than the number of data points. With five data points given, a fourth
degree polynomial is required.. The inputs to are the and data along with the degree.polyfit B C
It is important to enter the degree correctly. If a degree error is made, will returnpolyfit
coefficient values for a polynomial. (See Chapter 7.) least squares The degree of the
polynomial may be entered explicitly or computed by MATLAB using .length

 >> c4 = polyfit(x,y,length(x)-1)
 c4 =
 -7.1857e-002 1.0941e+000 -5.9312e+000 1.3783e+001 -9.8221e+000

In power form, the interpolating polynomial is

T ÐBÑ œ �!Þ!(")&(B � "Þ!*%"B � &Þ*$"#B � "$Þ()$B � *Þ)##"%
% $ # . (6.18)

Observe that the coefficient of in (6.18), , is also found in the last term of (6.16).B �!Þ!(")&(%

 To confirm that does indeed interpolate, the command will return theT ÐBÑ% polyval(c4,x)
data values for .C

 >> polyval(c4,x)'
 ans =
 1.6230e+000
 1.8550e+000
 2.0410e+000
 2.3330e+000
 2.5610e+000

 Between data points the behavior of interpolating polynomials may be less than
satisfactory. A plot of will expose serious problems with polynomial interpolation. ToT ÐBÑ%

Chapter 6 Page 81

produce a smooth graph we evaluate at many points on the interval and plot theT ÐBÑ Ò #ß ' Ó%

results with the following commands.

 >> xi=2:.01:6;yi=polyval(c4,xi);
 >> plot(x,y,'ko',xi,yi,'k')

 As seen in the left side of Figure 6.1 the plot of on the interval seemsT ÐBÑ Ò #ß %Þ& Ó%

reasonable; however, on the interval the plot has a local maximum that appears to beÒ %Þ&ß ' Ó
inconsistent with the data. The plot of is typical of interpolating polynomials; however,T ÐBÑ%

the data points play a major part in the results. As a second example consider a revised data set
in which the last three values have been increased from the data set in Section 6.2.C

B C<
#Þ! "Þ'#$
#Þ& "Þ)&&
%Þ! #Þ%#&
%Þ& #Þ)!'
'Þ! $Þ*''

Using the revised data values, a different is computed. The graphs of both polynomialsT ÐBÑ%

are plotted in the same figure window using . As given below produces one rowsubplot subplot
and two columns of smaller figure windows. See for additional information>> help subplot
about the parameter list. Note also the use of MATLAB's command.title

 >> subplot(1,2,1),plot(x,y,'ko',xi,yi,'k'),title('P4(x), Original Data')
 >> subplot(1,2,2),plot(x,yr,'ko',xi,yri,'k'),title('P4(x), Revised Data')

2 3 4 5 6
1.5

2

2.5

3

3.5

4
P4(x), Original Data

2 3 4 5 6
1.5

2

2.5

3

3.5

4
P4(x), Revised Data

Figure 6.1 Interpolating Polynomials

 It should be clear that polynomial interpolation is highly dependent on the data set.
Sometimes the results are very reasonable. In other cases poor results are found.

Chapter 6 Page 82

6.5 Error in Polynomial Interpolation

 Attempts to quantify the accuracy of interpolating polynomials based on experimental
data are usually limited to a graphical evaluation as in Figure 6.1. There are no methods to
compute or estimate the accuracy of results. It is perhaps best to use more than one method to
estimate a value between data points.
 On the other hand, there are situations in which we wish to approximate a known
function, , by an interpolating polynomial. In Chapter 3 we approximated a function by a0ÐBÑ
Taylor polynomial centered at a specified point, asking for interpolation of the function and
various derivatives at that point. Constructing a Taylor polynomial or an interpolating
polynomial have similar goals replace a complicated function with a polynomial.�
 In this chapter, the 's are selected from the interval with the corresponding 'sB Ò+ß ,Ó C3 3

computed from . Similar to Taylor polynomials, there is an error formula for0ÐB Ñ œ C3 3

interpolation. The formula assumes that has continuous derivatives on the interval 0ÐBÑ 8 Ò+ß ,Ó
and that the 's are distinct values also in . The result for points is stated without proof.B Ò +ß , Ó 83

Error , (6.19)ÐBÑ œ 0ÐBÑ � T ÐBÑ œ 0 Ð-Ñ
ÐB � B ÑÐB � B ÑâÐB � B ÑÐB � B Ñ

8x
8�"

" # 8�" 8 Ð8Ñ

where is in and is an unknown number in the open interval . The remainder termB Ò+ß ,Ó - Ð+ß ,Ñ
for a Taylor expansion looks similar. See (3.8) with replaced by .8 8 � "
 The implications of (6.19) are difficult to comprehend without a specific example. As
noted at the beginning of this chapter linear interpolation in tables of known functions, using two
adjacent data points, was once a common procedure. With , (6.19) becomes8 œ #

0ÐBÑ � T ÐBÑ œ 0 Ð-Ñ
ÐB � B ÑÐB � B Ñ

#
"

" # ww . (6.20)

 The geometric implication of (6.20) rests on the fact that concavity is measured by the
value of the second derivative. If the concavity of on the interval is small, i.e. the0ÐBÑ Ò+ß ,Ó
graph of resembles a line, we should expect the error in linear interpolation to be small as0ÐBÑ
well. Since is unknown, an analysis of (6.20) makes use of a bound for as follows:- 0 ÐBÑww

l 0ÐBÑ � T ÐBÑ l Ÿ l ÐB � B ÑÐB � B Ñ l † l 0 Ð Ñ l
"

#
" " #

wwmax x . (6.21)
 Ò B ß B Ó" #

 The other terms in (6.21) are related to the spacing of the data points. In other words,
with between and a smaller interval, , should produce better results. For in theB B B Ò B ß B Ó B" # " #

interval , we may show that so that the error in linearÒ B ß B Ó l ÐB � B ÑÐB � B Ñ l Ÿ ÐB � B Ñ" # " # # "
"
%

#

interpolation is bounded by

l 0ÐBÑ � T ÐBÑ l Ÿ ÐB � B Ñ † l 0 Ð Ñ l
"

)
" # "

ww max x . (6.22)
 Ò B ß B Ó" #

 The error bound (6.22) may be used to establish a relationship between the spacing of the
B C3 3's and the number of decimal places for the 's in a table which will be used for linear

Chapter 6 Page 83

interpolation. For example, standard tables of the exponential function, , on the interval ,/ Ò!ß "ÓB

typically have a spacing of and provide four decimal place values. Since the maximum!Þ!"
value of the second derivative of on the interval is , the error bound becomes/ Ò !ß " Ó /B

l/ � T ÐBÑl Ÿ Ð!Þ!"Ñ / ¸ !Þ!!!!$%B #
"

"
) . In other words, we may expect linear interpolation in

this table to provide at least four decimal places of accuracy.

Polynomial Models for Known Functions

 Constructing interpolating polynomials to approximate known functions suffers the same
fate as noted with experimental data. An example will illustrate the situation. Let us
approximate sin on the interval with by selecting five equally spaced0ÐBÑ œ ÐBÑ Ò !ß Ó T ÐBÑ1 %

points using The following MATLAB commands construct and evaluate . linspace. T ÐBÑ%

Figure 6.2 shows the data points, the interpolating polynomial , and the error termT ÐBÑ%

Ð ÐBÑ � T ÐBÑÑ "!!sin , multiplied by .%

 >> x = linspace(0,pi,5);
 >> y = sin(x);
 >> c4 = polyfit(x,y,4);
 >> xi = 0:.01:3.14;
 >> p4i = polyval(c4,xi);
 >> e4i = sin(xi)-p4i;
 >> subplot(121),plot(x,y,'ko',xi,p4i,'k',xi,100*e4i,'k'),title('UNIFORM'), grid on

 Figure 6.2 reveals that the error is largest near the end points of the interval. The
magnitude of the error peaks may be reduced using techniques which select different points in
the interval. The second subplot shows the effect of non-uniformly spaced data points specified
in the vector .B- œ ÒÞ!)ß Þ'&ß "Þ&(ß #Þ%*ß $Þ!'Ó

0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
UNIFORM

0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
NON-UNIFORM

Figure 6.2 sin and Interpolation ErrorÐBÑ

Chapter 6 Page 84

 In either case, the errors are largest near the end points of the interval. The source of the
problem may be found in the error expression(6.19), with :8 œ &

sin cos . (6.23)ÐBÑ � T ÐBÑ œ ÐB � B ÑÐB � B ÑÐB � B ÑÐB � B ÑÐB � B Ñ Ð-ÑÎ&x4 " # $ % &

The fifth degree polynomial in (6.23) controls the shape of the error curve. Note that both error
curves in the figure have five zeros. With proper choice of interpolation points, the shape of the
error curve may be adjusted to minimize the error peaks. The technique for selecting the values
used in may be found in more advanced texts on numerical analysis.B-

6.6 Piecewise Interpolating Polynomials

 Examples in the previous sections have illustrated problems associated with interpolating
polynomials of modest degree. Another possible approach treats the data by grouping data points
so that lower order polynomials may be used.
 The data set in Section 6.2 contained five points leading to an interpolating polynomial of
fourth degree. Piecewise linear interpolation will construct four linear polynomials, one for each
subinterval. This is exactly what produces. If is used to plot a data set, MATLABinterp1q plot
automatically draws lines between the points.
 Continuing the piecewise approach, quadratic interpolating polynomials may be
constructed using groupings of three data points. If we use the first three data points a quadratic
polynomial may be constructed on the interval . Likewise, using points three, four andÒ B ß B Ó" $

five, a second quadratic may be constructed on the interval .Ò B ß B Ó3 5
 The following MATLAB commands may be used to plot both the piecewise linear and
quadratic polynomials using the data set of Section 6.2. Study the sequence of commands
carefully.

 >> x = [2, 2.5, 4, 4.5, 6];
 >> y = [1.623, 1.855, 2.041, 2.333, 2.561];
 >> subplot(121),plot(x,y,'k',x,y,'ko'),title('LINEAR')
 >> x1 = [2 2.5 4]; x2 = [4 4.5 6];
 >> y1 = [1.623 1.855 2.041];y2 = [2.041 2.333 2.561];
 >> c21 = polyfit(x1,y1,2); c22 = polyfit(x2,y2,2);
 >> x1i = 2:.01:4; x2i = 4:.01:6;
 >> y1i = polyval(c21,x1i); y2i = polyval(c22,x2i);
 >> subplot(122),plot(x1,y1,'ko',x1i,y1i,'k',x2,y2,'ko',x2i,y2i,'k'), ...
 title('QUADRATIC')

 The plot in Figure 6.3 shows both piecewise quadratics to be concave down; thus we
expect the quadratic scheme to give higher interpolated values compared to the linear approach.
Some interpolated values for the data are given in the following table.

B T ÐBÑ
$Þ& "Þ*(* #Þ!&) "Þ)*!
%Þ$ #Þ#"' #Þ##* #Þ#!$
&Þ& #Þ%)& #Þ&*$ #Þ)&!

Linear Quadratic %

Chapter 6 Page 85

2 3 4 5 6
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
LINEAR

2 3 4 5 6
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
QUADRATIC

Figure 6.3 Piecewise Interpolation

 One of the most obvious differences between the piecewise polynomials and T ÐBÑ%

occurs where the piecewise segments are joined together. At these point, the interpolating
function makes an abrupt change. In mathematical terms, the derivative does not exist at these
points. In the next section we will consider a procedure to construct an interpolating function
that will eliminate the abrupt changes.

6.7 Interpolating Splines

 Given n interpolating is a piecewisea set of data points for to , aÐ B ß C Ñ 3 œ " 83 3 spline
mathematical function designed to model the data. It is customary to call the 's B3 nodes.

Definition: A spline, , is a piecewise interpolating polynomial of low degree, orWÐBÑ 7 œ "ß #ß
$ B ß B ßá ß B, between each pair of consecutive nodes, joined together at the interior nodes, ,# $ 3�"

so that derivatives of are continuous on the interval .7� " WÐBÑ Ð B ß B Ñ" 8

 is composed of polynomials, one for each subinterval.WÐBÑ 8 � "

WÐBÑ œ

W
ã

ã

ÚÝÝÝÝÝÝÝÛÝÝÝÝÝÝÝÜ

W ÐBÑ B Ÿ B Ÿ B
ÐBÑ B Ÿ B Ÿ B

W ÐBÑ B Ÿ B Ÿ B

W ÐBÑ B Ÿ B Ÿ

" " #

$

4 4 4�"

8�# 8�#

,
,

,

,

B

W ÐBÑ B Ÿ B Ÿ B
8�"

8�" 8�" 8,

(6.24)

 The special case of is easy to understand. In a first degree spline each will7 œ " W ÐBÑ4

be a line segment resulting in the piecewise linear model discussed earlier. While interesting,
quadratic splines, , will not be discussed. See Problem 6-19 in the chapter problems.7 œ #

Chapter 6 Page 86

Details may be found in more advanced texts. Do not confuse a quadratic spline with the
piecewise quadratic scheme discussed in the previous section. The major difference is in how
the pieces are joined together.
 The main focus of this section is on third degree or splines, . In ourcubic 7 œ $
development each will be expressed in descending powers of .W ÐBÑ ÐB � B Ñ4 4

W ÐBÑ œ + ÐB � B Ñ � , ÐB � B Ñ � - ÐB � B Ñ � . B Ÿ B Ÿ B4 4 4 4 4 4 4 4 4 4�"
$ # , (6.25)

To comprehend the task at hand, note that there are four unknown coefficients in each ,W ÐBÑ4

multiplied by the number of subintervals, , gives total of unknowns to be computed.8 � " %8 � %
 The unknowns will be determined from the definition of a cubic spline that requires
interpolation of the data and continuity of the first and second derivatives of WÐBÑ on the interval
Ð B ß B Ñ WÐBÑ" 8 . It should be clear that interpolation and the piecewise structure of guarantees the
continuity of itself. Although not obvious, the requirements in the definition will result inWÐBÑ
%8 � ' equations. Two additional equations, usually called endpoint conditions, will be
necessary to compute the unknowns. Depending on the nature of the endpoint conditions various
types of cubic splines may be constructed.
 U the interpolation requirement sing (6.25) and shows that for all .W ÐB Ñ œ C . œ C 44 4 4 4 4

Unfortunately, the other coefficients are not so easy to determine. The remaining coefficients,
the 's, 's and 's, may be found from three equations derived from the continuity+ , -4 4 4

requirements at the interior nodes, as follow:B ß B ßá ß B# $ 8�"

W ÐB Ñ œ W ÐB Ñ 4 œ #ß $ßá ß 8 � "

W ÐB Ñ œ W ÐB Ñ 4 œ #ß $ßá ß 8 � "

W ÐB Ñ œ W ÐB Ñ 4 œ #ß $ßá ß 8 � "

4�" 4 4 4

w w
4�" 44 4

ww ww
4�" 44 4

, for

, for

, for

 Using (6.25), these three equations become

+ ÐB � B Ñ � , ÐB � B Ñ � - ÐB � B Ñ � . œ .

$+ ÐB � B Ñ � #, ÐB � B Ñ � - œ - ß

'+ ÐB � B Ñ � #, œ #,

4� 4 4�" 4�" 4 4�" 4�" 4 4�" 4�" 4
$ #

4�" 4 4�" 4�" 4 4�" 4�" 4
#

4�" 4 4�" 4�" 4

1 ,

.

To simplify the development, assume that the nodes are equally spaced, so that each
ÐB � B Ñ œ 24 4�" . The three equations may now be written as

+ 2 � , 2 � - 2 � . œ .

$+ 2 � #, 2 � - œ -

'+ 2 � #, œ #,

4� 4�" 4�" 4�" 4
$ #

4�" 4�" 4�" 4
#

4�" 4�" 4

1 (6.26)

(6.27)

(6.28)

Chapter 6 Page 87

 Ignoring subscripts for the moment, (6.26), (6.27) and (6.28) may be viewed as three
equations in three unknowns. Keep in mind that the 's and are known. Elimination will. 24

allow us to construct one equation from the three. We begin by solving (6.28) for
+ œ Ð, � , ÑÎ2Þ4�" 4 4�"

"
$ Substituting into (6.26) and (6.27) gives, after simplification,

"

$
Ð#, � , Ñ2 � - 2 � . œ .

Ð, � , Ñ2 � - œ -

4�" 4 4�" 4�" 4

4�" 4 4�" 4

2 (6.29)

(6.30)

Solving (6.29) for yields-4�"

- œ � Ð#, � , Ñ2 � Ð � . � . ÑÎ2
"

$
4�" 4�" 4 4�" 4 . (6.31)

For use in (6.30) the subscript in (6.31) may be incremented by one to give

- œ � Ð#, � , Ñ2 � Ð�. � . ÑÎ2
"

$
4 4 4 4 4+1 +1 . (6.32)

Finally, substituting , (6.31), and , (6.32), into (6.30) gives, after collecting terms,- -4�" 4

, � %, � , œ $Ð. � #. � . ÑÎ2 ß 4 œ #ßá ß 8 � #4�" 4 4�" 4�" 4 4�"
. (6.33)

Equation (6.33) is the key result for finding the coefficients of the spline. The equations are

For :

For :

For :

For

4 œ # , � %, � , œ $Ð. � #. � . ÑÎ2

4 œ $, � %, � , œ $Ð. � #. � . ÑÎ2
ã ã

4 œ 8 � $, � %, � , œ $Ð. � #. � . ÑÎ2

" "
#

#

8�% 8�$ 8�# 8�% 8�$ 8�#
#

2 3 2 3

2 3 4 2 3 4

 :

(6.34)

4 œ 8 � # , � %, � , œ $Ð. � #. � . ÑÎ28�$ 8�# 8�" 8�$ 8�# 8�"
#

 The linear system in (6.34) contains equations with unknowns, the 's.8 � $ 8 � " ,4
Recall that the 's equal the known 's. So that is represented in the system, we create. C C œ .4 4 8 8

one additional equation with ,4 œ 8 � "

, � %, � , œ $Ð. � #. � . ÑÎ28� 8� 8 8� 8� 8
#

2 1 2 1 (6.35)

Adding (6.35) does not alter the fact that there are more unknowns than equations. In matrix
form we have equations in unknowns.8 � # 8

Chapter 6 Page 88

Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×Ö ÙÖ Ù

Ö ÙÖ Ù
Õ Ø

" % " ! ! ! ! ! , C
! " % " ! ! ! ! ,
! ! " % " ! ! ! ,
! ! ! ä ä ä ! ! ã
! ! ! ! " % " ! ,
! ! ! ! ! " % " ,

,

,

œ
$

2

"

#

$

%

8�#

8�"

8

#

" # $

$ %

$ % &

8�$ 8�# 8�"

8�# 8�" 8

� #C � C
C � #C � C
C � #C � C

ã
C � #C � C
C � #C � C

(6.36)

Two additional equations are provided by the endpoint conditions. This will allow the 's to be,4
computed. With the 's known, the 's and 's may be found from, + -4 4 4

+ œ Ð, � , ÑÎ2
"

$
4 4 4+1 (6.37)

and . (6.38)- œ � Ð#, � , Ñ2 � Ð�. � . ÑÎ2
"

$
4 4 4 4 4+1 +1

Endpoint Conditions: Natural Cubic Spline

 The endpoint conditions for a cubic spline are defined to make the graph of natural WÐBÑ
resemble a line near the two exterior nodes, and , by asking that the concavity be zero atB B" 8

both and . In other words, and . The second derivative of (6.25) isB B W ÐB Ñ œ ! W ÐB Ñ œ !" 8 " 8
ww ww

W ÐBÑ œ '+ ÐB � B Ñ � #,ww
4 4 4 4. (6.39)

 Using (6.39), . A similar result holds with so that W ÐB Ñ œww
" W ÐB Ñ œ #, œ ! 4 œ 8 ,ww

" " " "

and are both zero. With , the system (6.36) becomes a tridiagonal linear system, , œ , œ !8 " 8

with equations and unknowns .8 � # 8 � # , ßá ß ,# 8�"

Ô ×Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ ØÕ Ø Õ Ø

% " ! ! ! ! , C � #C � C
" % " ! ! ! , C � #C � C
! " % " ! ! , C � #C �
! ! ä ä ä ! ã
! ! ! " % " ,
! ! ! ! " % ,

œ
$

2

" # $

$ # $ %

% $ %

8�#

8�"

#

C
ã

C � #C � C
C � #C � C

&

8�$ 8�# 8�"

8�# 8�" 8

(6.40)

Remember that (6.40) is based on equally spaced nodes. In the case of unequally spaced nodes
the key equation, (6.33), will reflect the values of and . Details2 œ B � B 2 œ B � B4�" 4 4�" 4 4�" 4

may be found in more advanced texts.

Chapter 6 Page 89

Endpoint Conditions: Not-a-Knot Cubic Spline

 The extra conditions for a spline are not actually endpoint conditions. Insteadnot-a-knot
they impose additional continuity requirements on at the interior nodes and . InWÐBÑ B B# 8�"

particular, the third derivative, , must be continuous at both and . Since we areW ÐBÑ B Bwww
8�"

working with cubic splines, the third derivative, , will be a constant. Continuity ofW ÐBÑ œ '+4
www

4

W ÐB Ñ W ÐB Ñ œ W ÐB Ñ '+ œ '+ + œ + Þ Bwww www www
" # " # 8�"" # means so that or Similar equations at

result in .+ œ +8�# 8�"

 Equation (6.37) may be used to determine the effect of these equalities on the unknown
, + œ +4 " #'s. For example, implies " "

$ $# " $ # " # $Ð, � , ÑÎ2 œ Ð, � , ÑÎ2 , œ #, � , or . Substituting
for in the first equation of (6.34) gives,"

', œ $Ð. � #. � . ÑÎ22 2 3"
#.

 Likewise, + œ + , œ � , � #,8�# 8�" 8 8�# 8�" will give . Substituting into (6.35) gives

', œ $Ð. � #. � . ÑÎ28� 8� 8� 8
#

1 2 1 .

 With these new equations, the unknowns for the not-a-knot cubic spline are found by
solving the tridiagonal system

Ô ×Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ ØÕ Ø Õ Ø

' ! ! ! ! ! , C � #C � C
" % " ! ! ! , C � #C � C
! " % " ! ! , C � #C �
! ! ä ä ä ! ã
! ! ! " % " ,
! ! ! ! ! ' ,

œ
$

2

" # $

$ # $ %

% $ %

8�#

8�"

#

C
ã

C � #C � C
C � #C � C

&

8�$ 8�# 8�"

8�# 8�" 8

. (6.41)

 MATLAB contains a command, spline, that will assemble and solve the tridiagonal
system (6.41) and compute the remaining coefficients, (6.37) and (6.38). Examples will be
discussed in Section 6.8.

Endpoint Conditions: Clamped Cubic Spline

 A spline specifies values for the slope at both endpoints, andclamped W ÐB Ñ œ Qw
" "

W ÐB Ñ œ Qw
8 8. The first derivative of (6.25) is

W ÐBÑ œ $+ ÐB � B Ñ � #, ÐB � B Ñ � -w #
4 4 4 4 4 4. (6.42)

 With (6.41), . Using in (6.38) we findW ÐB Ñ œw
" W ÐB Ñ œ - œ Q 4 œ "w

" " "1

- œ � Ð#, � , Ñ2 � Ð � . � . ÑÎ2 œ Q Þ
"

$
1 1 2 1 2 " (6.43)

Equation (6.43) may be solved for with the result used in the first equation of (6.34). There is,"
a comparable development at . The computations are omitted. Once again, a tridiagonal linearB8
system must be solved. MATLAB provides an option to construct a clamped spline with the

Chapter 6 Page 90

endslopes specified. Simply use the vector in place of the usual dataÒQ C C áC Q Ó" " # 8 8

values.
 The clamped first derivative values, and , may be chosen with some goal in mindQ Q" 8

or estimated from the known data. In a later chapter, methods to approximate derivatives based
on data will be studied. These methods will provide the equations needed to produce values for
Q Q" 8and .
 Further information and other ways to construct splines may be found in more advanced
texts on numerical analysis.

6.8 MATLAB and Splines

 As noted in the previous section, MATLAB's spline is the basic command for
computations of not-a-knot splines. If we wish to model a set of data, Ð B ß C Ñ 3 œ " 83 3 for to ,
with and in turn compute the MATLAB command WÐBÑ WÐB3Ñ >> sofxi = spline(x,y,xi) will
return the desired value. To generate a plot of the single value may replaced by a vector.WÐBÑ B
As an example, consider the MATLAB commands

 >> x=[1 2.3 3.1 4 5.2 5.9 6.7]';
 >> y=[1.7 2.8 3.6 4.5 3.4 3.1 3.1]';
 >> xi=1:.1:6.7;
 >> si=spline(x,y,xi);
 >> c6=polyfit(x,y,6);
 >> yi=polyval(c6,xi);
 >> plot(x,y,'ko',xi,yi,'k.',xi,si,'k'),title('S(x) and P6(x)')

1 2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

5
S(x) and P6(x)

Figure 6.4 Spline and Polynomial Approximation

Figure 6.4 shows a plot of both the spline and the sixth degree interpolating polynomial, .T ÐBÑ'

Between and both interpolating approximations appear satisfactory; however,B œ #Þ$ B œ '

Chapter 6 Page 91

near the end points, the spline provides a better approximation for the data. To represent the data
with a clamped spline, estimates for the endslopes are needed. Using a line between the first two
data points, and , gives an approximate value of for the slope atÐ "ß "Þ(Ñ Ð #Þ$ß #Þ) Ñ !Þ)& œ Q"

B Þ C C $Þ"ß !Þ! œ Q B" ' (((Since both and are a slope value of may be used at . The data vector
C C- œ Ò !Þ)&ß "Þ(ß #Þ)ß $Þ'ß %Þ&ß $Þ%ß $Þ"ß $Þ"ß !Þ! Ó is now replaced with . In this example, the
differences between the not-a-knot and clamped splines will be slight. You may wish to plot the
clamped spline and compare the results with the not-a-knot spline shown in Figure 6.4.
 Information about the piecewise cubic polynomials that make up may be obtainedWÐBÑ
from . If the third argument in spline spline is omitted, MATLAB provides the spline data in a
piecewise form. To actually obtain the coefficients, the 's, it will be necessary to+ , - .4 4 4 4

disassemble the spline data. Using the example data of this section we find the following
MATLAB data.

 >> spdata = spline(x,y)
 spdata =
 form: 'pp'
 breaks: [1 2.3000e+000 3.1000e+000 4 5.2000e+000 5.9000e+000 6.7000e+000]
 coefs: [6x4 double]
 pieces: 6
 order: 4
 dim: 1

To view the coefficient data in the by array, , it is necessary to take apart the spline' % coefs
information in using the MATLAB command as follows:spdata unmkpp

 >> [breaks,spcoef,pieces,order,dim]=unmkpp(spdata);

 The spline coefficients are contained in in the order , , , . Recall thatspcoef + , - .4 4 4 4

. œ C4 4, the known data values.

 >> spcoef
 spcoef =

 1.1973e-001 -3.3383e-001 1.0778e+000 1.7000e+000
 1.1973e-001 1.3313e-001 8.1687e-001 2.8000e+000
 -7.8789e-001 4.2048e-001 1.2598e+000 3.6000e+000
 7.1490e-001 -1.7068e+000 1.0205e-001 4.5000e+000
 -2.6415e-001 8.6684e-001 -9.0593e-001 3.4000e+000
 -2.6415e-001 3.1213e-001 -8.0650e-002 3.1000e+000

As expected for a not-a-knot spline, the first column shows and . The fourth+ œ + + œ +" # & '

column gives the values. A typical may be constructed using (6.25). For example, withC W ÐBÑ3 4

4 œ $,

Chapter 6 Page 92

W ÐBÑ œ �!Þ(ÐB � $Þ"Ñ � !Þ%#ÐB � $Þ"Ñ � "Þ# ÐB � $Þ"!Ñ � $Þ' $Þ" Ÿ B Ÿ %$
$ #9 6 , .

 With known, the spline may be evaluated at the vector using . Asspdata ppvalWÐBÑ B3
the name suggests, will evaluate piecewise polynomials. As a practical matter theppval
MATLAB commands

 >> spdata=spline(x,y);
 >> si=ppval(spdata,xi);

or >> si=spline(x,y,xi);

will produce identical results.
 Interpolating polynomials and splines may also be used to estimate rates of change from
the given data. MATLAB's will easily treat the polynomial case. Recall the fourthpolyder
degree interpolating polynomial (6.18)

T ÐBÑ œ �!Þ!(")&(B � "Þ!*%"B � &Þ*$"#B � "$Þ()$B � *Þ)##"%
% $ # .

The coefficients of are contained in . For example, may be computed using theT ÐBÑ T Ð$Ñ%
w
%c4

MATLAB commands

 c4 =
 -7.1857e-002 1.0941e+000 -5.9312e+000 1.3783e+001 -9.8221e+000
 >> c4prime=polyder(c4)
 c4prime =
 -2.8743e-001 3.2824e+000 -1.1862e+001 1.3783e+001
 >> p4prime=polyval(c4prime,3)
 p4prime =
 -2.2857e-002

Note that contains the coefficients of the derivative.c4prime
 Extra effort is needed to determine the derivative of the spline . To begin, the firstWÐBÑ
derivative of (6.25) is

W ÐBÑ œ $+ ÐB � B Ñ � #, ÐB � B Ñ � - B Ÿ B Ÿ Bw #
4 4 4 4 4 4 4 4�", . (6.43)

As noted above the spline coefficients are in spcoef and it is a simple task to use the data in the
array to compute the coefficients in the piecewise derivative. Multiply the first column of spcoef
by , the second column by , the third column by (no change) and delete the fourth column.$ # "
 The following M-file computes the coefficients for the derivative of the spline.
MATLAB's mkpp dspdata ppval will build (make) the piecewise polynomial form for use by .

M-file dspline.m

 function dspdata=dspline(spdata)
 %DSPLINE Computes coefficients for the derivative of S(x)
 % spdata = spline(x,y), the spline data

Chapter 6 Page 93

 % take apart spdata:
 [breaks, spcoef, m, order, dim]=unmkpp(spdata);
 % compute coefficients of derivative
 dspcoef(:,1) = 3*spcoef(:,1); % 3*ai's
 dspcoef(:,2) = 2*spcoef(:,2); % 2*bi's
 dspcoef(:,3) = 1*spcoef(:,3); % 1*ci's
 % construct piecewise data for the derivative
 dspdata = mkpp(breaks,dspcoef);

The derivative of the spline representing our example data may be evaluated and plotted as
follows: (Recall xi=1:.1:6.7.)

 >> spdata=spline(x,y);
 >> dspdata=dspline(spdata);
 >> dsi=ppval(dspdata,xi);
 >> plot(x,y,'ko',xi,si,'k',xi,dsi,'k'),title('S(x) and Derivative'),grid on

1 2 3 4 5 6 7
-2

-1

0

1

2

3

4

5
S(x) and Derivative

Figure 6.5 and WÐBÑ W ÐBÑw

6.9 Inverse Interpolation

 As mentioned in Section 4.4, MATLAB's root finding command uses inversefzero
quadratic interpolation. At first thought, polynomial interpolation and root finding seem
unrelated. Actually the ideas are similar. For example, a linear polynomial may be used for
interpolation and, in root finding, lines may be used in various methods to estimate the root.

Chapter 6 Page 94

 Consider a function on the interval with . We know that0ÐBÑ Ò B ß B Ó 0ÐB Ñ0ÐB Ñ 0 !" # " #

there must be a root, , in the interval. To reflect the known function values, (6.10) may be!

rewritten as

T ÐBÑ œ 0ÐB Ñ � 0ÐB
B � B B � B

B � B B � B
" " #

"

" # # "
Š ‹ Š ‹). (6.44)

Equation (6.44) may be interpreted in two ways. First, with in the interval B T ÐBÑ� �Ò B ß B Ó" # , "

will provide an interpolated estimate of . Secondly, if we ask that , is the0ÐBÑ T ÐB Ñ œ ! B�
" $ $

value where the line intersects the -axis, in other words, an estimate of the root .B !

 Solving , may be viewed from the concept of inverse functions. AssumingT ÐB Ñ œ !" $

that has an inverse, , on the interval 0 0�" Ò B ß B Ó" # , we may construct a linear interpolating
polynomial for on the interval , as follows0 Ò C ß C Ó œ Ò 0ÐB Ñß 0ÐB Ñ Ó�"

" # " #

U" " #
"

" # # "

�" �"ÐCÑ œ 0 ÐC Ñ � 0 ÐC
C � C C � C

C � C C � C
Š ‹ Š ‹). (6.45)

With , (6.45) becomesC œ !

U Ð!Ñ œ 0 ÐC Ñ � 0 ÐC
�C �C

C � C C � C
" " #

"

" # # "

�" �"Š ‹ Š ‹). (6.46)

The numerical value of , say , may be used to estimate the root.U Ð!Ñ B" $

 Using the inverse relationships, (6.46) may be rewritten as

B œ B � B
�0ÐB Ñ �0ÐB Ñ

0ÐB Ñ � 0ÐB Ñ 0ÐB Ñ � 0ÐB Ñ
$ " #

"

" # # "
Š ‹ Š ‹ . (6.47)

Algebra will reveal the secant method, see (4.17),

B œ † Ò Ó
B � B

0ÐB Ñ � 0ÐB Ñ
$

"

"
B � 0ÐB Ñ# # . (6.48)

 This development shows how inverse linear interpolation may be used to compute an
estimate for the root of a function. Inverse quadratic interpolation implemented by MATLAB
uses quadratic rather than linear functions. The procedure is complicated by the possibility of two
estimates for the root. Details may be found in more advanced texts on numerical analysis.

6.10 Problems

6-1. Determine and so that interpolates the data and- - J ÐBÑ œ - B � - / Ð�"ß # Ñ" # " #
B

 . Use matrix methods.Ð #ß & Ñ

6- 2. Does sin / interpolate the data and (7, 5)?JÐBÑ œ $ � ÐB � &Ñ � # Ð B #Ñ Ð %ß %Ñß Ð&ß "Ñ#
1

 Explain your reasoning.

6-3. Construct the Lagrange interpolating polynomials through the points.
 a. Ð#ß�"Ñß Ð%ß &Ñ

Chapter 6 Page 95

 b. Ð#ß�"Ñß Ð%ß &Ñß Ð(ß #Ñ
 c. Ð"ß�#Ñß Ð$ß !Ñß Ð%ß $Ñ

6-4. Construct the Lagrange interpolating polynomial for the function and the given -values.B
 Graph the function and interpolating polynomial on the given interval.
 a. , 0ÐBÑ œ Bß B œ Î%ß Î$ Ò Î%ß Î$Ótan 1 1 1 1

 b. 0ÐBÑ œ ß B œ "ß $ß %ß Ò"ß %Ó"
B

6-5. Using the data of Problem 6-3 determine the Newton form of the interpolating
 polynomial. Construct the divided difference tables and verify the coefficients with the
 M-file divdif.m.

6-6. Convert the interpolating polynomial to the Newton formT ÐBÑ œ � B � B �)#
& "*
#

#

 .T ÐBÑ œ + � + ÐB � "Ñ � + ÐB � "ÑÐB � #Ñ# ! " #

6-7. Construct the cubic interpolating polynomial for the data (B ß C Ñß ÐB � 2ß C Ñß" " " #

 and Use the Lagrange form. Simplify the denominators ofÐB � #2ß C Ñ ÐB � $2ß C ÑÞ" $ " %

 each term and then compute the derivative of the cubic interpolating polynomial.
 Remember the product rule:
 ..

.B
w w wÒ0ÐBÑ1ÐBÑ2ÐBÑÓ œ 0 ÐBÑ1ÐBÑ2ÐBÑ � 0ÐBÑ1 ÐBÑ2ÐBÑ � 0ÐBÑ1ÐBÑ2 ÐBÑ

6-8. The error in linear interpolation is bounded. See equation (6.22). If you are using
 MATLAB's interp1q to estimate values using linear interpolation in data recorded from
 an experiment, what can you say about the interpolation errors?

6-9. Find bounds on the error of approximation for the two Lagrange interpolating
 polynomials in 6-4.

6-10. Suppose that we wish to construct a table of ln on the interval . Determine theÐBÑ Ò "ß # Ó
 spacing, , of -values in the table so that we can be sure that linear interpolation errors2 B
 are less than 0.0001.

6-11. Use MATLAB to approximate cos with using /2, , 3 /2, 2].ÐBÑ T ÐBÑ œ Ò !ß% B 1 1 1 1

 Graph cos , the approximation, , and the error cos .ÐBÑ T ÐBÑ ÐBÑ � T ÐBÑ% %

6-12. Given data points represented by the vectors and . State the MATLAB commands8 B C
 to compute the coefficients of an interpolating polynomial using all of the data and to
 evaluate the polynomial at .1

6-13. Determine which of the following piecewise functions are cubic splines. If the function
 is a spline, does it satisfy the conditions for a natural cubic spline?

 a. 0ÐBÑ œ
� B � "&B � B " Ÿ B Ÿ #

� B � #"B � B # Ÿ B Ÿ $� "*)" "$
% %

$

�((#!(""
% %

$

Chapter 6 Page 96

 b. 0ÐBÑ œ "" � #%B � ")B � %B " Ÿ B Ÿ #

�&% � (#B � $!B � %B # Ÿ B Ÿ $œ # $

$

 c 0ÐBÑ œ
") � B � #'B � B " Ÿ B Ÿ #

�(! � B � %!B � B # Ÿ B Ÿ $� (& ""
#

$

")* ""
#

$

 d. 0ÐBÑ œ "$ � $"B � #$B � &B " Ÿ B Ÿ #

�$& � &"B � ##B � $B # Ÿ B Ÿ $œ # $

$

6-14. A mysterious experiment produces the following data: B œ Ò !ß Þ!&ß Þ"&ß Þ#ß "Þ#ß "Þ&ß # Ó
 and .C œ Ò�"ß !ß Þ)ß "Þ"ß Þ)ß Þ&ß �Þ$Ó
 a. Interpolate at using , and .B œ " T ÐBÑ WÐBÑinterp1q '

 b. Plot a piecewise linear model for the data along with and .T ÐBÑ WÐBÑ'

6-15. The force needed to stretch a spring from its normal length is given in the table.

 B Ð-7Ñ $Þ! $Þ& %Þ! %Þ& &Þ! 'Þ! (Þ!)Þ!
J Ð.C8/=Ñ #Þ$()Þ#& "%Þ"! #!Þ!! ##Þ%& #%Þ)# #'Þ#(#)Þ'"

 a. Interpolate at and using and .B œ %Þ#& 'Þ(T ÐBÑ WÐBÑ(

 b. Estimate the spring constant at and using derivatives of.JÎ.B B œ %Þ#& 'Þ(
 and .T ÐBÑ WÐBÑ(

 c. Are the results of parts a) and b) reasonable? Explain your reasoning.

6-16. Calibration data for a thermocouple is

 °X Ð J Ñ %& &! && '! (!)! *! "!!
Z Ð7Z Ñ $Þ%* $Þ"(#Þ*$ #Þ($ "Þ(' "Þ'$ "Þ%" "Þ$'

 a. Interpolate at and using and .X œ '' (' T ÐX Ñ WÐX Ñ(

 b. Estimate at and using derivatives of and ..Z Î.X X œ '' (' T ÐX Ñ WÐX Ñ(

 c. Are the results of parts a) and b) reasonable? Explain your reasoning.

6-17. The thermocouple in Problem 6-16 was defective. Repeat Problem 6-16 with revised
 data.

 °X Ð J Ñ %& &! && '! (!)! *! "!!
Z Ð7Z Ñ $Þ%* $Þ"(#Þ*$ #Þ($ #Þ$(#Þ!) "Þ)& "Þ'&

6-18. Consider the data and . Construct the system ofB Cœ Ò "ß $ß &ß (ß * Ó œ Ò#ß %ß #ß $ß & Ó
 equations, (6.41), needed to solve for the spline coefficients. Solve the systemnot-a-knot
 using the usual backslash command and then compute the remaining coefficients for the
 spline. Verify your results by extracting the coefficient data from .spline(x,y)

Chapter 6 Page 97

6-19. A piecewise quadratic spline will consist of parabolas of the form
 , . For data points determineW ÐBÑ œ + ÐB � B Ñ � , ÐB � B Ñ � - B Ÿ B Ÿ B 84 4 4 4 4 4 4 4�"

2

 the total number of unknowns. Count the number of equations if each is requiredW ÐBÑ4

 to interpolate at both ends of and is continuous at all interiorB Ÿ B Ÿ B W ÐBÑ4 4�"
w

 nodes. How many additional requirements may be imposed?

6-20. A natural cubic spline requires that the second derivative of be zero at both ends.WÐBÑ
 Instead of zero at both endpoints other values may be chosen, for example, W ÐB Ñ œ Oww

" "

 and . Construct the tridiagonal system for this case showing how the valuesW ÐB Ñ œ Oww
8 8

 for and enter the computations.O O" 8

6-21. Show that the secant method (6.48) follows from (6.47).

6-22. Use equations (6.26), (6.27) and (6.28) with replaced by to derive an2 2 œ B � B4�" 4 4�"

 equation for unequally spaced data that may be used in place of (6.33).

