
Chapter 5
Linear Algebraic Systems

5.1 Introduction

 The problem of finding the solution of  linear equations in  unknowns is found in all8 7
areas of engineering, mathematics and science.  Recall that matrix multiplication was defined
with systems in mind; thus,  the equations
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(5.1)

may be written in concise matrix form  AB , Bœ .  Recall that  is a column vector containing the
7 B ß B ßá ß B unknown values.  A solution to (5.1) is a set of values  which substituted on the" # 7

left hand side will give the values , , ,  on the right hand side., , á ," # 8

 If (5.1) has one or more solutions we have a  system.  On the other hand (5.1)consistent
may not have a solution in which case we say that the system is .    For example, theinconsistent
system

B � #C œ $

#B � %C œ (

is inconsistent.  (Why?)  Although there are more equations than unknowns in

B  C œ #

#B  #C œ %

B � C œ #

we have a consistent system with the solution:  for any arbitrary value of .B œ # � C C
 In the simple case of two unknowns, each equation represents a line in the -planeBC
leading to a convenient geometric interpretation of the system.  It is an easy task to itemize the
possibilities: all lines may intersect at a common point providing a unique solution, two of the
lines may be parallel with different -intercepts no solution, or all of the lines are parallel withC 
identical -intercepts infinitely many solutions.  The second and third cases are represented inC 
the examples.  Equations with three unknowns may be interpreted in terms of planes in three
dimensional space.
 The numerous possibilities associated with the problem of 8 7 linear equations in 
unknowns are treated in most linear algebra texts.  We shall consider the standard situation of 8
linear equations in  unknowns.  In this case the coefficient matrix 8 A will be .8 ‚ 8
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5.2 Gaussian Elimination

 Frequently, students learn to solve linear systems by using .  The idea iselimination
simple.  Solve the first equation in (5.1) for , with ,B 8 œ 7"

B œ   
+ + +

+ + +
"

"# "$ "8

"" "" ""

B B á B �
,

+
# $ 8

"

""

.

Next, substitute for  in the remaining equations,  to , effectively eliminating  from theseB # 8 B" "

equations.  The process works as long as  is different from zero.  After eliminating , the+ B"" "

scheme continues by solving the updated second equation in (5. ) for  and then substituting for" B#

B $ 8# in equations  to , and so forth.  Eventually, we arrive at the last equation which contains
only the unknown   Without complications along the way, the system of equations will beB Þ8
reduced to the upper triangular form

"B � + B � + B �á � + B œ  

"B � + B �á � + B œ 

"B �á � + B œ

ã œ ã
"B œ

" "# # " $ "8 8 "

# #$ $ #8 8 #

$ $8 8 $

8 8

3 "

"

"

"

(5.2)

 The 's and 's are combinations of the original 's and 's.  With  known from the+ + , B
34 3 34 3 8"

last equation, we work our way back by finding, in order,  and eventually .B ß B ßá ß B B8�" 8�# # "

This process is called . In matrix form, (5.2) is back substitution Y œ YB "  where  is an upper
triangular matrix with ones on the main diagonal.  Consider a  example.$ ‚ $

"B � #B  $B œ $
#B  "B � &B œ "

$B  $B � "!B œ #

" # $

" # $

" # $

(5.3)

 Solving the first of equations (5.3) gives  .  Substituting into theB œ #B  $B  $" # $

second and third equations of (5.3) we find the system

"B  #B � $B œ $
$B  "B œ (
$B � "B œ ""

" # $

# $

# $

(5.4)

The second equation produces .  Substituting into the third equation in (5.4) givesB œ B �# $
" (
$ $

"B  #B � $B œ $

B  B œ

B œ

" # $

# $
"

$

1 (5.5)
2 4
3 3

7

Finally, dividing the last equation in (5.5) by  produces the desired form (5.2),    The# Y œB ".
back substitution phase is very simple showing , , and .B œ # B œ $ B œ $$ # "

 The  algorithm is a matrix method to implement the eliminationGaussian elimination
procedure.  It should be clear that the symbols used for the unknowns, the 's, are not critical.B3
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The important information is contained in the square matrix, A, and the column vector, .  The,
actual solution to the system depends on the known values: the 's and the 's.  As we shall see,+ ,34 3

the German mathematician Carl Friedrich Gauss (1777-1855) made many contributions to
numerical methods.
 Instead of working with equations, the Gaussian algorithm manipulates the rows of an
augmented matrix constructed from A Aand , by appending the column  to the right side of  , ,
giving  , a matrix with  rows and  columns.  Using  theÒ Ó 8 8 � " A | , elementary row operations
augmented matrix   is transformed to  where  is an upper triangular matrix and Ò Ó Ò Ó A |  U | U, " "

is a column matrix or vector, see (5.2). In most versions of Gaussian elimination the main
diagonal of  may contain values other than ones.  Elementary row operations are limited toU

 1.  Interchange any two rows, R R .3 4Ç
 2.  Multiply any row by a constant R R .3 3Ã -
 3.  Add to any row a multiple of another row, R R R .4 4 3Ã � -

It should be understood that the row operations are computed entry by entry within the row.
 The Gaussian algorithm will transform the original problem, , to the equivalent AB ,œ
system .  Back substitution begins with row  of  | , which will contain theU  U B œ 8 Ò Ó" "

coefficients of the last equation in , that is .UB œ ? B œ" 88 8 8"

 Implementing the algorithm is more complicated that it initially appears.  The sequence of
row operations transforming  to  will require logical tests to prevent division by zero along A U
the way plus considerable algebra.  To understand the issues, consider a  augmented matrix.$ ‚ %

 | (5.6)Ò Ó œ
+ + + ,
+ + + ,
+ + + ,

 A ,
Ô ×
Õ Ø
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#" ## #$ #
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 Assuming that  is not zero, the first step of the elimination scheme is designed to+""
eliminate  from the second and third equations.  In other words, the entries and shouldB + +" #" $"  
be replaced by zeros.  This may be accomplished by the row operations

R R R  and  R R R . (5.7)# # " $ $ "
#" $"

"" ""

Ã  Ã 
+ +

+ +

The ratios  and  are usually called the .+ +
+ +
#" $"

"" ""

œ 7 œ 7#" $" multipliers
 After the two row operations, we find

Ô ×Ö Ù
Õ Ø
+ + + ,

! + + ,s s s

! + + ,s s s

"" "# "$ "

## #$ #

$# $$ $

. (5.8)

The next step will replace the position occupied by with zero.  Assuming that   , the+ + Á !s s$# ##

row operation  R R R  will accomplish the task.  The multiplier is .$ $ # $#Ã  7 œ+ +s s
+ +s s
$# $#

## ##

Ô ×
Õ Ø
+ + + ,

! + + ,s s s

! ! + , 
œ Ò Ó

"" "# "$ "

## #$ #

$$ $

 U | . (5.9)"
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 Entries with identical row and column indices are usually called  elements. To arrivepivot
at (5.9) we have assumed that both pivot elements, and  , were different from zero.  If a+ +s"" ## 
pivot element happens to be zero the Gaussian algorithm calls for a row interchange with a row
below the pivot row according to a prescribed criterion.
 Consider the augmented matrix for the system given in (5.3)   As we shall see, pivoting isÞ
not necessary for this example.

Ô ×
Õ Ø
" # $ $
# " & "
$ $ "! #

Since  is not zero, the row operations in (5.7) become+ œ """

R R R  and  R R R . (5.10)# # " $ $ "Ã  Ã 
# $

Ð"Ñ Ð"Ñ

Ô ×
Õ Ø
" # $ $
! $ " (
! $ " ""

With   , a final row operation  R R R  will produce the |  form.+ œ $ Ã  Ò Ós## $ $ #
$
$  U "

Ô ×
Õ Ø
" # $ $
! $ " (
! ! # %

You should note the similarities between Gaussian elimination with equations and the use of row
operations on the augmented matrix.

Pivoting Criteria

 If a pivot element happens to be zero we must interchange rows of the augmented matrix.
Implementing the Gaussian algorithm via hand computations, allows for a simple approach.
Prior to any row operations, inspect the entries in the first column, the 's   Find the first non+ Þ3"

zero entry, say  and perform the row interchange  R R .  Keep in mind that  may be 3 œ 5 Ç 5 "" 5

so that an interchange is not necessary   We shall refer to this scheme as  pivoting.Þ basic
Following the row interchange the new  will be non zero and can be used in the row+""
operations  R R R , .3 3 "Ã  3 œ #ß $ßá ß 8+

+
3"

""

 The process may be repeated by inspecting the new entries in the second column below
the first row   for   Find the first non zero entry, say , and make the row + 3 œ #ß $ßá ß 8Þ 3 œ 4s3#
interchange R R .# 4Ç
 Basic pivoting is adequate for hand computation; however, Gaussian elimination is
usually implemented on computers with finite precision.  To improve numerical accuracy various
pivoting criteria have been developed.  One of the most common schemes is the so-called partial
pivoting algorithm.
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 Partial pivoting begins by finding the largest element in absolute value in the first
column.  In other words if  max | | occurs when , rows  and  are interchanged,+ 3 œ 5 " 53"

R R .  In the case of ties, select the smallest row index.  Following the Gaussian row" 5Ç
operations  R R R , , the process is repeated using column two.3 3 "Ã  3 œ #ß $ßá ß 8+

+
3"

""

Identify the row, starting with row , in which the absolute value of ,  , is the# + 3 œ #ß $ßá ß 8s3#
largest.  If the maximum occurs in row  ,  R R .  Continue until the procedure terminates.4 Ç# 4

 MATLAB includes a command to find the value and index of the largest entry in a
vector.  The command  will perform the task.  Consider the vector  and themax Ò "ß $ß &ß #ß ! Ó
MATLAB examples

 >> [value,index]=max([1,3,-5,2,0])
 value =
      3
 index =
      2
 >> [value,index]=max(abs([1,3,-5,2,0]))
 value =
      5
 index =
      3

 To illustrate the use of partial pivoting, consider the linear system represented by the
augmented matrix

Ò Ó A | , œ Þ
# ' "! !
" $ $ #
% "% #) )

Ô ×
Õ Ø (5.11)

The largest entry in the first column is the value | 4 | in row .  Thus  R R :$ Ç" $

M" œ
% "% #) )
" $ $ #
# ' "! !

Ô ×
Õ Ø. 

 Using the three row operations         gives
R R R
R R R
R R R

�
" " "

!
%

# # "
"
%

$ $ "
#
%

Ã 

Ã 

Ã 

M# œ
Ô ×
Õ Ø
% "% #) )
! !Þ& % %
! " % %

Þ

 The first row operation may seem unnecessary; however, we shall soon see why it is
included.  Matrix algebra and MATLAB may be used to perform the row operations.  The first
row of  is selected by the matrix product   .  In turn, this product may be multipliedM M" "Ò " ! ! Ó
by a column vector of multipliers  to produce a  matrixÒ Ó $ ‚ %! " #

% % %
X
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Ô × Ô × Ô ×Ö Ù Ö Ù Ö Ù
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 . (5.12)M œ

Since row one is unchanged, a multiplier of zero, , is used.  The MATLAB commands to!
%

subtract (5.12) from  are as follows:M"

 >> format short
 >> m1=[4 14 28 -8;1 3 3 2;2 6 10 0];
 >> m2=m1-[0;1/4;2/4]*[1,0,0]*m1

 m2 =
     4.0000   14.0000   28.0000   -8.0000
          0   -0.5000   -4.0000    4.0000
          0   -1.0000   -4.0000    4.0000

 Our next step is to locate the largest entry in absolute value using the entries in the second
column below row .  Row  is dominant resulting in the interchange R R ," $ Ç# $

Ô ×
Õ Ø
% "% #) )
! " % %
! !Þ& % %

Þ

One last row operation, , will giveR R R  $ $ #Ã 
Ð�!Þ&Ñ
Ð�"Ñ

Ô ×
Õ Ø
% "% #) )
! " % %
! ! # #

œ Ò Ó U | " . (5.13)

You should be able to produce the results given in (5.13) using MATLAB commands similar to
those used to compute m2.
 At this point the augmented matrix (5.11) has been transformed to the upper triangular
form Ò Ó U | "  shown in equation (5.13). The back substitution process now takes over to compute
the answer.  In upper triangular form, the actual equations are

%B � "%B � #)B œ )

"B  %B œ %

#B œ #

" # $

# $

$

It is a simple task to show that the solutions are   and .  Although notB œ "ß B œ ! B œ &$ # "

evident in this simple textbook example, keep in mind that the purpose of partial pivoting is to
improve the accuracy of the Gaussian elimination algorithm.
 This brief section has only considered some of the basic aspects of Gaussian elimination.
Many other details are needed before we have the complete picture.  Further explanation plus
information about other pivoting schemes may be found in many textbooks on numerical
analysis.
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5.3 Matrix Factorization

 MATLAB uses factoring methods, related to Gaussian elimination, to solve linear
systems.  The MATLAB command to solve a linear system, , is represented by a special AB ,œ
symbol, the backslash,  .  Using the example from the last section we find \

 >> a=[2,6,10;1,3,3;4,14,28];b=[0;2;-8];
 >> x=a\b
 x =
      5
      0
     -1
 
 To better understand factoring techniques, consider the problem of factoring a known
matrix into a product of a lower triangular matrix and an upper triangular matrix, , theA A LUœ
so-called  of . To reach this goal we will need to solve a matrix equation.LU-factorization A
Consider a  example,$ ‚ $

Ô × Ô ×Ô ×
Õ Ø Õ ØÕ Ø
+ + + 6 ! ! ? ? ?
+ + + 6 6 ! ! ? ?
+ + + 6 6 6 ! ! ?

œ
"" "# "$ "" "" "# "$

#" ## #$ #" ## ## #$

$" $# $$ $" $# $$ $$

where there are a total of  unknowns in and .  Since  has nine entries, there are only nine"# P U A  
equations.  To eliminate the difficulty, Doolittle suggested that the diagonal entries of  be setL
equal to ones reducing the number of unknowns to nine.  In other words

Ô × Ô ×Ô ×
Õ Ø Õ ØÕ Ø
+ + + " ! ! ? ? ?
+ + + 6 " ! ! ? ?
+ + + 6 6 " ! ! ?

œ
"" "# "$ "" "# "$

#" ## #$ #" ## #$

$" $# $$ $" $# $$

.

 In order to compute the 's and 's the symbolic product of  and  is needed.6 ?34 34 L U
MATLAB produces the following

 [                 U11,                 U12,                 U13]
 [             L21*U11,         L21*U12+U22,         L21*U13+U23]
 [             L31*U11,     L31*U12+L32*U22, L31*U13+L32*U23+U33]

 The structure of the product suggests a systematic way to compute the unknowns in  andL
U.  Keep in mind that the 's are known making the first step obvious, , .+ ? œ + 4 œ "ß #ß $34 "4 "4

The following sequence of steps insures that appropriate values of   and  are known at the6 ?34 34

proper time in the row-column procedure beginning with the first row of .U
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First row of  :            for
First column of :       /    for 
Second row of :      

U
L
U

? œ + 4 œ "ß #ß $

6 œ + ? 3 œ #ß $

? œ +  6 ?

"4 "4

3" 3" ""

#4 #4 #" "4

$# $# $" "# ##

$$ $$ $" "$ $# #$

   for 
Second column of :  
Third row of :        

4 œ #ß $

6 œ Ð+  6 ? ÑÎ?

? œ +  6 ?  6 ?

L
U

 This simple LU factorization procedure does not include a pivoting criteria.  For example,
if equals zero the procedure will fail as we attempt to compute the first column of .  The+"" L
following M-file will compute the Doolittle factorization without pivoting.  Note how  and L U
are initialized plus the extensive use of the colon operator.  For example, a term such as , :U( )5 5 8
with , ( , : ), refers to all entries in row  and columns , , , , n.  In other words, a5 œ # # # 8 # # $ % áU
single for loop operates on a given row and multiple columns without the need for a second for
loop.

M-file doolit.m

 function [L,U] = doolit(A)
 %DOOLIT Doolittle factorization w/o pivoting
 [m,n]=size(A);
 L=eye(n);
 U=zeros(n,n);
 for k = 1:n
  U(k,k:n) = A(k,k:n) - L(k,1:k-1)*U(1:k-1,k:n);
  L(k+1:n,k) = (A(k+1:n,k) - L(k+1:n,1:k-1)*U(1:k-1,k))/U(k,k);
 end

For example, the  matrix may be factored as follows: (5.14)$ ‚ $ œ
# ( "
% "' )
' "" #'

E
Ô ×
Õ Ø

 >> a=[-2,7,1;-4,16,8;6,-11,26];
 >> [L,U]=doolit(a)
 L =
      1     0     0
      2     1     0
     -3     5     1
 U =
     -2     7     1
      0     2     6
      0     0    -1

 If  can be factored without pivoting, the lower triangular matrix  will contain theA L
multipliers used in Gaussian elimination. A  example is$ ‚ $
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L œ
" ! !

7 " !
7 7 "

Ô ×
Õ Ø#"

$" $#

. (5.15)

Furthermore, the upper triangular matrix  will be given by the productU

U Aœ
Ô ×Ô ×
Õ ØÕ Ø
" ! ! " ! !
! " ! 7 " !
! 7 " 7 ! "$# $"

#" . (5.16)  

 MATLAB contains a command, , that will factor a matrix using a pivoting strategy.lu
Pivoting will permute the rows so that  where  is a matrix containing aLU PA Pœ permutation 
single one in each row and column with zeros elsewhere.  The following example shows that the
interchange of rows two and three (one of the elementary row operations) may be accomplished
by multiplying by a permutation matrix.

 a =
     -2     7     1
     -4    16     8
      6   -11    26
 >> p=[1,0,0;0,0,1;0,1,0]
 p =
      1     0     0
      0     0     1
      0     1     0
 >> p*a
 ans =
     -2     7     1
      6   -11    26
     -4    16     8

 Using MATLAB to factor the matrix given in (5.14) yields

 >> [la,ua,pa]=lu(a)
 la =
     1.0000         0         0
    -0.6667    1.0000         0
    -0.3333    0.3846    1.0000
 ua =
     6.0000  -11.0000   26.0000
          0    8.6667   25.3333
          0         0   -0.0769
 pa =
      0     0     1
      0     1     0
      1     0     0
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The permutation matrix reveals that the order of the rows has been inverted.  This may be
confirmed by the following products.

 >> la*ua
 ans =
      6   -11    26
     -4    16     8
     -2     7     1

 >> pa*a
 ans =
      6   -11    26
     -4    16     8
     -2     7     1

  Factoring the coefficient matrix of a linear system,  AB ,œ , leads to a different sequence
of operations to obtain the solution.  With the permutation matrix an outcome of the factoring
process, the original system may be pre-multiplied by  to give .  With  factored asP PA P A B ,œ
LU PAœ , the original system may be rewritten as

LUB œ ÞP, (5.17)

The matrix product is actually a column vector.  We define  so that (5.17) becomesU UB C B œ

LC œ ÞP, (5.18)

 The system in (5.18) contains the lower triangular matrix  and may easily be solved byL
forward substitution.  In other words, begin with the first equation to compute  followed by ,C C" #

C ßá C C Þ$ 8�" 8, and finally   With  known we may return toC

UB Cœ (5.19)

and compute the values for  using backward substitution.x
 In summary, the factor forward backward procedure is 

 1.   Factor  using pivoting gives ,  and  so that A L U P LU œ PA
 2.   Solve  for  using forward substitutionLC œ P, C
 3.   Solve  for  using backward substitutionUB C Bœ

 As an example, consider the system, , given at the beginning of this sectionAB ,œ  

Ô × Ô ×
Õ Ø Õ Ø
# ' "! !
" $ $ #
% "% #) )

œB .

The first step in the procedure is factoring.  An attempt to factor the coefficient matrix  withoutE
pivoting using the M-file doolit.m fails.
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 >> [La,Ua]=doolit(a)
 Warning: Divide by zero.

The warning message indicates that pivoting is needed.  MATLAB's  may be used to computelu
the factors and permutation matrix.  The results are as follows:

 , ,  .L U Pœ œ œ
" ! ! % "% #) ! ! "
!Þ& " ! ! " % " ! !
!Þ#& !Þ& " ! ! # ! " !

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø

 The second step calls for the solution of which is given byLC œ P, 

Ô × Ô ×Ô × Ô ×
Õ Ø Õ ØÕ Ø Õ Ø

" ! ! ! ! " ! )
!Þ& " ! " ! ! # !
!Þ#& !Þ& " ! " ! ) #

œ œC .

It is a simple task to show that the solution for  is .  The third and final stepC c d) % # X

makes use of backward substitution to solve ,UB Cœ

Ô × Ô ×
Õ Ø Õ Ø
% "% #) )
! " % %
! ! # #

œB ,

which gives .B œ & ! "c dX
 Although the procedure outlined above may seem unnecessarily complicated, the actual
number of arithmetic operations is exactly the same as the number of operations used in Gaussian
elimination.  For many linear systems the MATLAB backslash operator, , follows the three step\
procedure described above.  The exact procedure used by MATLAB depends on the form of .A
For example, if, by chance,  is lower or upper triangular there is no need for factoring and theA
system may be solved by simple forward or backward substitution although pivoting may be
necessary.
 The factor forward backward procedure is particularly economical if the system 
AB , ,œ  must be solved repeatedly for different 's.  One example is the numerical computation
of the inverse of a matrix.  Consider the special linear system   .A@ /" "

Xœ œ Ò " ! !â !! Ó
Symbolically, the solution vector  is given by the matrix product  .  With the@ @ /" " "œ A�"

special choice for  the vector  is identical to the first column of .  The process may be/ @" " A�"

repeated with the linear system  to compute the second column ofA@# #
Xœ œ Ò ! " !â !! Ó/

A A �".  If is an  matrix, the process will be repeated  times to compute the  's and thus8 ‚ 8 8 8 @3
the inverse matrix.  Those readers familiar with the complicated mathematical efforts to compute
an inverse will appreciate the direct numerical approach.
 MATLAB uses the factoring procedure to compute the determinant of a matrix with the
det command.  The equation LU œ PA A P LU leading to  is the key.  For example, usingœ �"

properties of determinants we have

det( ) det( ) det(  ) det(  ) det(  ).A P LU P  L Uœ œ † †�" �"
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The three determinants on the right hand side are easy to compute.  With ones on the main
diagonal, we may show that det( ) .  Further, det(  ) is simply the product of all entries onL Uœ "
the main diagonal of , .  Finally, since  is obtained by interchangingU P P? ? â? œ"" ## 88

�" X

rows of the identity matrix, det(  ) equals  or  depending on the number of interchanges.P�" " "

5.4 Tridiagonal Systems

 Tridiagonal matrices occur in various mathematical applications, such as the numerical
solution of partial differential equations and in the construction of cubic splines discussed in
Chapter 6.  The special structure of tridiagonal matrices leads to a simple factoring scheme that
results in an efficient solution method for tridiagonal systems.  In this section we study how to
factor a tridiagonal matrix.  A matrix  is said to be tridiagonal if it has the formT

T œ

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

. - ! ! !
+ . - ! !
! ä ä ä !
! ! + . -
! ! ! + .8

#!

" "

# # #

8�" 8�" 8�"

8

. (5. )

Non-zero entries may only be on the main diagonal (the 's) and the 'diagonals' above and below.3
(the 's and the 's).  Note that the entries have a single subscript corresponding to the row.  To- +3 3

save space the matrix  could be stored in three vectors.T
 Factoring a tridiagonal matrix without pivoting gives an interesting result.  Consider the
MATLAB example

 a =
      1     4     0     0     0
     -2     3     6     0     0
      0     1     1     1     0
      0     0     5     3     8
      0     0     0     1     4
 >> [L,U]=doolit(a)
 L =
     1.0000         0         0         0         0
    -2.0000    1.0000         0         0         0
          0    0.0909    1.0000         0         0
          0         0   11.0000    1.0000         0
          0         0         0   -0.1250    1.0000
 U =
     1.0000    4.0000         0         0         0
          0   11.0000    6.0000         0         0
          0         0    0.4545    1.0000         0
          0         0         0   -8.0000    8.0000
          0         0         0         0    5.0000
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Based on this example, both  and  are also special tridiagonal matrices and, moreover, theL U
non-zero upper diagonal of  is identical to the upper diagonal of .U A
 If we use Gaussian elimination without pivoting on the linear system TB ,œ many of the
multipliers will be zero.  In fact it can be shown that the Doolittle factorization of  will have theT
form

T œ LU œ

Ô ×Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ ØÕ Ø

" ! ! ! ! - ! ! !
" ! ! ! ! - ! !

! ä ä ä ! ! ä ä ä !
! ! " ! ! ! ! -
! ! ! " ! ! ! !

! $

! $

! $

$

# # #

8�" 8�" 8�"

8 8

" "

For example, with , the symbolic result for the  product is8 œ & LU

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

$

! $ ! $

! $ ! $

! $ ! $

! $ ! $

" "

# " # " # #

$ # $ # $ $

% $ % $ % %

& % & % &

c ! ! !
- � - ! !

! - � - !
! ! - � -
! ! ! - �

 Using the corresponding elements from the tridiagonal matrix , (5.20), we see thatT

. œ
+ œ 3 œ #ß $ß %ß &
. œ - � 3 œ #ß $ß %ß &

" "

3 3 3�"

3 3 3�" 3

$

! $

! $

for 
for 

(5.21)

Equation (5.21) may be solved for the unknown values, the 's and the 's.  In general terms! $3 3

$

! $

$ !

" "

3 3 3�"

3 3 3 3�"

œ .
œ + Î 3 œ #ß á ß 8
œ .  - 3 œ #ß á ß 8

for 
for  

(5.22)

 This simple result makes the factoring of a tridiagonal matrix very fast.  Only #8  #
divisions and multiplications are needed to compute the unknowns.  Consider the following
example.

Ô × Ô ×
Õ Ø Õ Ø
# " ! #
" # " &
! " # #

œB

We begin with factoring.  With , equations (5.22) will yield$" "œ . œ #

! $

$ !

! $

$ !

# # "

# "

$ $ #

$ $ $ #

œ + Î œ "Î#

œ .  - œ #  Ð"Î#Ñ" œ $Î#

œ + Î œ "ÎÐ$Î#Ñ œ #Î$

œ .  - œ #  Ð#Î$Ñ" œ %Î$

,
,

,
.

2 2
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Thus T LUœ œ œ
# " ! " ! ! # " !
" # " "Î# " ! ! $Î# "
! " # ! #Î$ " ! ! %Î$

Ô × Ô ×Ô ×
Õ Ø Õ ØÕ Ø

The second step is forward substitution, .LC œ Ò #ß &ß # ÓX

Solve for : .C
Ô ×Ô × Ô ×
Õ ØÕ Ø Õ Ø

" ! ! C #
"Î# " ! C &
! #Î$ " C #

œ
"

#

$

"C œ # C œ #

Ð"Î#ÑC � "C œ & C œ %

Ð#Î$ÑC � "C œ # C œ #Î$

" "

" # #

# $ $

          

The third, and final, step is backward substitution, .UB Cœ œ Ò #ß %ß #Î$ ÓX

Solve for : .B
Ô ×Ô × Ô ×
Õ ØÕ Ø Õ Ø
# " ! B #
! $Î# " B %
! ! %Î$ B #Î$

œ
"

#

$

Ð%Î$ÑB œ #Î$ B œ "Î#

Ð$Î#ÑB � "B œ % B œ $

#B � "B œ # B œ "Î#

$ $

# $ #

" # "

            

Symmetry in the solution,  , is a result of the symmetry in the exampleB œ Ò"Î# $ "Î# ÓX

problem.  MATLAB confirms our efforts with

 >> a = [2 1 0;1 2 1;0 1 2]; b = [2 5 2]';
 >> x=a\b
 x =
  -5.0000e-001 
   3.0000e+000
  -5.0000e-001

5.5 Iterative Methods

 Gaussian elimination and the related factoring procedures are often called direct methods
for the solution of linear systems.  In other words, after a finite number of arithmetic operations
we arrive at the solution to the problem.  In theory, there is no limit to the size of the problem;
however, available computer memory will place a practical restriction on the actual size.
 Iterative methods are frequently applied to very large systems where the coefficient
matrix, , contains a high percentage of zero entries, a so-called  matrix.  Beginning with A sparse
an initial estimate of the solution, usually a column of zeros, an iterative scheme generates a
sequence of vectors to approximate the solution.  If all goes as intended, the sequence will
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converge to the true solution.  As a practical issue, the sequence must be terminated at some
point.  (Recall the termination procedures for root finding methods.)
  The basic idea behind an iterative method begins with conversion of the original
problem, AB , Bœ , to an algebraically equivalent form with the unknown  on both sides of the
equation, say   .  Based on this equivalent form, we may define an iteration schemeB B .œ �C
as follows:

B B .s sœ � 3 œ !ß "ß #ß á3�" 3C   for  (5.23)

where the vector  is an approximation to the actual solution vector .  All iteration schemesB Bs3

require an initial vector, , specified by the user.  Lacking specific knowledge about theBs!

solution,  is usually set equal to the null matrix.Bs!

 To illustrate how an iteration scheme may be derived, consider the three equations

(B � #C � !D œ &

!B � "'C � )D œ (

'B  ""C � #'D œ $

(5.24)

Solving the first equation for , the second for  and the third for  givesB C D

B œ  Ð& � !B  #C  !DÑ
"

(

C œ Ð( � !B � !C  )DÑ
"

"'

D œ Ð$  'B � ""C � !DÑ
"

#'

These equations lead to the  iteration methodJacobi

B œ  Ð& � !B  #C  !D Ñs s s s
"

(

C œ Ð( � !B � !C  )D Ñs s s s
"

"'

D œ Ð$  'B � ""C � !D Ñs s s s
"

#'

3�" 3 33

3�" 33 3

3�" 3 33

(5.25)

 The example equations were chosen with care.  Note that none of the terms on the main
diagonal of the coefficient matrix are zero.  If a zero appears on the main diagonal the equations
should be rearranged to eliminate this difficulty.  In general terms (5.25) could be written as

B œ Ð,  !B  + #C  + D Ñs s s s
"

+

C œ Ð,  + B  !C  + D Ñs s s s
"

+

D œ Ð,  + B  + C  !D Ñs s s s
"

+

3�" " 3 "# "$ 3
""

3

3�" 3
##

# #" 3 #$ 3

3�" $ $" 3 $# 3
$$

3

(5.26)

Observe that the terms in parentheses on the right hand side of (5.26) may be written as
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Ô × Ô ×Ô ×
Õ Ø Õ ØÕ Ø
, ! + +
, + ! +
, + + ! s

 C
Bs
s

D

" "# "$

# #" #$

$ $" $#

3

3

3

.

 Using matrices, Jacobi's method begins by writing  as the sum of two terms: first theA
diagonal elements of  denoted , and, second, the off-diagonal elements denotedA DA
M D A D M   D Mœ E œ � œ � œA A A.  In other words  becomes ( ) or  .  MovingB , B , B B ,
M D MB B œ , to the right hand side of the equation produces .  The right hand side mirrorsA  B
the matrix expression just above.  Finally, multiplying by the inverse of  givesDA
B ,œ Ð  ÑD M�"

A B which leads to the Jacobi method

B , B Bs s sœ Ð  Ñ 3 œ !ß "ß #ß á ß3�" 3 !
�"D MA  for given . (5.27)

 Assuming that none of the diagonal elements of  are zero, , the inverse of  isE + Á !33 DA
very easy to compute.   is a diagonal matrix with elements on the main diagonal given byD�"

A
" + Þ/   You should be able to recognize the relationship between (5.26) and (5.27).33

 MATLAB contains linear algebra commands that make the computations of (5.27) an
easy programming task.  The command  will extract the main diagonal of a matrix as adiag
column vector and also construct a diagonal matrix given a vector.  For example

 a =
     -7     2     0
      0    16     8
      6   -11    26
 >> v=diag(a)
 v =
     -7
     16
     26
 >> D=diag(v)
 D =
     -7     0     0
      0    16     0
      0     0    26

Actually, the two commands may be nested as follows: .>> D=diag(diag(a))
 The following M-file will perform the computations of the Jacobi iteration scheme and
display the results.  In addition to the data vectors, a vector of initial values along with the
number of iterations must be specified.  The M-file jacobi.m implements the matrix
computations described in (5.27) and displays a row of solution values at each iteration.

M-file jacobi.m

 function xj = jacobi(a,b,x0,k)
 %JACOBI Jacobi iteration method
 % b and x0 must be column vectors
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 % k is the number of iterations
 b = b(:);xi = x0(:);
 D = diag(diag(a));
 M = a-D;
 Dinv = diag(1./diag(a));
 for i = 1:k
    xi = Dinv*(b-M*xi);
 disp([i,xi'])
 end
 xj = xi; 

 Using the example problem of this section, (5.24), and the initial vector  we findÒ ! ! ! ÓX

 >> xj =jacobi(a,b,[0 0 0],10);
     1.0000   -0.7143    0.4375   -0.1154
     2.0000   -0.5893    0.4952    0.2345
     3.0000   -0.5728    0.3202    0.2301
     4.0000   -0.6228    0.3224    0.1523
     5.0000   -0.6222    0.3614    0.1648
     6.0000   -0.6110    0.3551    0.1811
     7.0000   -0.6128    0.3470    0.1759
     8.0000   -0.6152    0.3496    0.1728
     9.0000   -0.6144    0.3511    0.1745
    10.0000   -0.6140    0.3503    0.1749

It does appear that the values are converging slowly to the solution given by

 >> x=a\b
 x =
    -0.6142
     0.3502
     0.1745

 The example Jacobi equations, (5.25), suggest another approach, usually called the
Gauss-Seidel  method.  As soon as an unknown has been updated, the updated value should be
used in subsequent computations.  In other words,

B œ  Ð& � !B  #C  !D Ñs s s s
"

(

C œ Ð( � !B � !C  )D Ñs s s s
"

"'

D œ Ð$  'B � ""C � !D Ñs s s s
"

#'

3�" 3 33

3�" 33�" 3

3�" 3�" 33�"

(5.28)

Intuitively, we expect the Gauss-Seidel method to produce better results.
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 For use in the Gauss-Seidel method, MATLAB contains two linear algebra commands,
tril triu and , which will extract the lower and upper triangular part of a matrix, respectively.  For 
example,

 a =
     -7     2     0
      0    16     8
      6   -11    26
 >> La=tril(a)
 La =
     -7     0     0
      0    16     0
      6   -11    26
 
 >> Ua=triu(a)
 Ua =
     -7     2     0
      0    16     8
      0     0    26

Note that the diagonal elements appear in both  and .tril(a) triu(a)
 The Gauss-Seidel method begins by expressing  as the sum of two matrices, first theA
lower triangular part of  denoted , and, second, the upper triangular part of  with theA L AA
diagonal elements set to zero denoted .  For our example,M

 >> M=Ua-diag(diag(a))
 M =
      0     2     0
      0     0     8
      0     0     0

Thus,  becomes ( ) or  .  Moving  to the right hand sideA L M   L M MB , B , B B , Bœ � œ � œA A
of the equation gives    This particular strategy will keep the appropriateLAB , Bœ  ÞQ

updated terms together.  See equation (5.28).  We may now multiply by the inverse of ,LA
B , Bœ Ð  ÑL M�"

A ,  which leads to the Gauss-Seidel method

B , B Bs s sœ Ð  Ñ 3 œ !ß "ß #ß á ß3�" 3 !
�"L MA  for given . (5.29)

 It is a simple task to modify the M-file jacobi.m to perform the Gauss-Seidel
computations.  Using the example problem, (5.24), the Gauss-Seidel results are as follows:

 >> xg = gseidel(a,b,[0 0 0]',10);
     1.0000   -0.7143    0.4375    0.2345
     2.0000   -0.5893    0.3202    0.1561
     3.0000   -0.6228    0.3595    0.1804
     4.0000   -0.6116    0.3473    0.1727
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     5.0000   -0.6151    0.3512    0.1751
     6.0000   -0.6140    0.3499    0.1743
     7.0000   -0.6143    0.3503    0.1746
     8.0000   -0.6142    0.3502    0.1745
     9.0000   -0.6142    0.3502    0.1745
    10.0000   -0.6142    0.3502    0.1745

Comparing the two sets of output, Jacobi and Gauss-Seidel, some improvement is noted in the
second method.
 If the coefficient matrix is small there is nothing to gain by using an iterative method;
however, if the system is large and also sparse, iteration may be an appropriate choice.  There are
a number of theorems which provide information on the convergence on iterative methods.  Most
advanced textbooks on numerical analysis contain the theorems along with proofs.

5.6 Error in Linear Systems

 Gaussian elimination, a factoring algorithm or an iteration scheme all lead to an
approximate solution influenced by the finite word length of a computer.  In many cases the
approximate solution is more than satisfactory; however, some information about the error is
often desirable.
 Let  be the exact solution to  .   The approximate solution, computed using theB B ,A œ
methods of this chapter, is denoted .  To assess the solution of most mathematical problems itB+

is standard practice to substitute back into the original problem.  In other words we hope that the
product   is very close to .  To measure the closeness of these two vectors, a  vectorAB ,+ residual
may be computed,  .< , Bœ  A +

 If  is , the residual vector  will contain  values.  In an effort to analyze theA 8 ‚ 8 8<
residual vector the concepts of a  and also a are needed.  A norm is avector norm matrix norm 
scalar value, somewhat similar to absolute value, that characterizes either a vector or a matrix.
There are various definitions for both norms; however, the following choices are satisfactory for
our purposes.

Vector norm of   max . (5.30)< <œ m m œ l < l
" Ÿ 3 Ÿ 8

3

Matrix norm of   max . (5.31)A œ m m œ l + l
" Ÿ 3 Ÿ 8

E "
4œ"

8

34

The matrix norm in (5.31) is often called the  norm in that  sums across row .row-sum !
4œ"

8

34l + l 3

 For example, with row sums of , , and , using absolute values, the matrix norm of"! #) %$

Ô ×
Õ Ø
# ( "
% "' )
' "" #'

%$ Ò "ß$ß # Óis .  The vector norm of  is simply 3.   will>> help norm

provide information on various norms that MATLAB can compute.  More advanced texts in
numerical analysis and linear algebra will provide further details on vector and matrix norms.
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 It seems very plausible that if the norm of the residual vector is small we should expect
that the norm  is also small.  For many linear systems this is indeed true; however,m mB� B+

depending on the coefficient matrix , there are situations where the prediction fails.A
 A very important theorem provides an upper bound for the  defined byrelative error
m m m m m m m mB B B B ,� + / .  Assuming that  and are both different from zero we have the
following inequality for relative error

m m m m

m m m m
Ÿ m mm m

B B <

B ,

�
E E

+ �" . (5.32)

 The product   in (5.31) is called the  of the matrix ,m mm mE E�" condition number A
cond( ) for short.  It is possible to show that cond( ) .  Rewriting (5.32) we haveA A   "

m m m m

m m m m
Ÿ

B B <

B ,

�
E

+ cond( ) . (5.33)

 This inequality (5.33) has interesting implications.  If cond( ) is small, a small residualA
norm, , shows that the relative error will be bounded by a small value.  We say that  ism m< A
well-conditioned implying confidence in the numerical results.  On the other hand, if cond( ) isA
very large, a small residual norm does not imply that the relative error will be small.  We also say
that  is  precluding any quick decisions on the accuracy of our results.  InA ill-conditioned
numerical computations with matrices, MATLAB will print a warning message about ill-
conditioned matrices and provide an approximate value for the reciprocal of the condition
number if such information is warranted. Recall .Wilkinson's matrix from Chapter 1

 >> inv(w)
 Warning: Matrix is close to singular or badly scaled.
          Results may be inaccurate. RCOND = 3.505136e-017.

RCOND, the reciprocal of the condition number, is very small indicating that cond( ) will beW
very large.  In other words  is an ill-conditioned matrix.W

5.7 Problems

5-1. Solve the following systems using Gaussian elimination without pivoting.  Use exact
 arithmetic in the computations.  Check your answers with MATLAB

 a. 
Ô × Ô ×
Õ Ø Õ Ø

$ # " "
" " ! "
& # % $

œB

 b. 
Ô × Ô ×
Õ Ø Õ Ø

& ' # "*
" # " '
$ # % (

œB
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5-2. Repeat Problem 5-1 using partial pivoting.

5-3  Solve the following linear system using Gaussian elimination without pivoting and thenÞ
 with partial pivoting.  Use exact arithmetic in the computations.  Check your answers
 with MATLAB

 .
Ô × Ô ×
Õ Ø Õ Ø

$ % & "&
' # % "!
# & ( '

œB

5-4. a. Without pivoting, find the Doolittle factorization of by hand.A œ
$ ' "#
" ! #
$ # "

Ô ×
Õ Ø

 Check your result with doolit.m.
 b. Use the factor forward backward scheme with exact arithmetic to solve the system 

     AB œ Þ& % &c dX

5-5. Without pivoting, find the Doolittle factorization of by hand.  Check your
Ô ×
Õ Ø

$ ' "#
" ! #
$ # "

 result with doolit.m.

5-6. Using the factor forward backward scheme with exact arithmetic, solve the 
 tridiagonal system

 .
Ô × Ô ×
Õ Ø Õ Ø
# " ! #
" # " %
! " # #

œB

5-7. Consider the tridiagonal system .  Factor  and then solve the system given% ‚ % œT TB ,

 below.  Use the factor forward backward scheme with exact arithmetic. 

 
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
$ # ! ! %
" " " ! %
! # # # '
! ! " $ )

œB

5-8. Given the  tridiagonal matrix  .% ‚ % œ

# " ! !
" # " !
! " # "
! ! " #

T
Ô ×Ö ÙÖ Ù
Õ Ø

 Factor  and then solve the system . Use exactT LU T LUœ œ œB B c d" # # " X

 arithmetic.  If is extended to an  form, generalize the factors.T 8 ‚ 8
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5-9. Given .  Using partial pivoting, compute , and  so that .A P  L  U PAœ
" "
$ %” • œ PY

5-10. Matrices may be factored in various ways to produce .   scheme placesA œ PY Crout's
 ones on the main diagonal of  and allows the main diagonal elements of  to take onU L
 other values.  In other words,

 .
Ô × Ô ×Ô ×
Õ Ø Õ ØÕ Ø
+ + + 6 ! ! " ? ?
+ + + 6 6 ! ! " ?
+ + + 6 6 6 ! ! "

œ
"" "# "$ "" "# "$

#" ## #$ #" ## #$

$" $# $$ $" $# $$

 Determine the Crout factorization of using exact arithmetic.
Ô ×
Õ Ø

$ " !
" $ "
! " $

5-11. Find the maximum number of non-zero entries in an  tridiagonal matrix.8 ‚ 8

5-12. Consider the  system .  Beginning with , use the# ‚ # œ
$ # ( !
 " & $ !

s” • ” • ” •B Bœ !

 Jacobi method to compute  .  Use hand computations and check your results withBs#

 jacobi.m.

5-13. Using the M-file jacobi.m as a guide, write an M-file to implement the Gauss-Seidel
 method.  Test your M-file by reproducing the data at the end of Section 5.5.

5-14. Repeat Problem 5-12 using the Gauss-Seidel method.

5-15. Using the Jacobi method compute two iterations for the linear system   Do theAB ,Þœ
 computations by hand and check your answers with jacobi.m.

  a. A œ ß œ ß œ
$ # " " !
" " ! " !
& # % $ !

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø, Bs!

  b.  A œ ß œ ß œ
& ' # "* "
" # " ' "
$ # % ( "

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø, Bs!

5-16. Repeat problem 5-15 use the Gauss-Seidel method.

5-17. With   as a beginning vector, determine the number of iterationsBs ! ! ! !!
X

œ c d
 required to give four decimal place accuracy using the Jacobi method.  Assume that the
 exact solution is given by MATLAB's backslash command.  Use the default  format.short
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 .
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
% " ! ! "
" % " ! $
! " % " $
! ! " % "

B œ

5-18. Repeat Problem 5-17 using the Gauss-Seidel method.

5-19. Consider the tridiagonal system

 
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

$ ( ! ! "Þ#&
"' & $ ! "$Þ#&
! " 'Þ& $ "%Þ$(&
! ! #Þ& % "#Þ"#&

ÞB œ

 Attempt to solve the system with either the Jacobi or Gauss-Seidel method.  Compare
 your results with those obtained using the backslash command.

5-20. Consider the tridiagonal system

 
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
( $ ! ! $Þ(&
& "' $ ! &
! " 'Þ& $ "%Þ$(&
! ! #Þ& % "#Þ"#&

ÞB œ

 Although not dramatically different than the previous problem, attempt to solve the
 system with either the Jacobi or Gauss-Seidel method.  The coefficient matrix in this
 problem is said to be  in which case the iterative methods willdiagonally dominant
 converge.  Compare your results with those obtained using the backslash command.
 After 10 iterations compute the accuracy of the computations.

5-21. Consider .  If the matrix  is ill-conditioned, small changes in  will frequentlyA AB , ,œ
 produce large changes in the solution vector .   matrix is a classic example.  See B Hilbert's
 Set (10).  Use MATLAB to solve the linear system when>> help hilb hilb.  A œ
   Replace the fifth entry of  with , a % decrease,, ,œ Ò * ) ( ' & % $ # " ! Ó Þ %Þ**& !Þ"X

 and solve the new system.  Compute the percent change in .  Percent change is theB"

 relative change times 100%.


