
Chapter 4
The Roots of f(x)

4.1 Introduction

 Perhaps one of the most fundamental of all basic mathematical tasks is the seemingly
straight forward problem:  determine the value(s) of , say , which solves the equationB !

0ÐBÑ œ !.  Specific values of  are called the roots or zeros of the function or solutions of the!

equation, in either case, 0.  In the special cases of  or0Ð Ñ œ 0ÐBÑ œ +B � ,!

0ÐBÑ œ +B � ,B � -# , the roots are well known from algebra.  On the other hand, for many
simple functions, say , it is not possible to determine an algebraic expression for0ÐBÑ œ / � B�B

the solution of  ./ � B œ !�B

 The geometric interpretation of , with  real, should be clear.  The graph of0Ð Ñ œ !! !

0ÐBÑ B œ either crosses the horizontal axis at  or the graph just touches the horizontal axis at!

B œ !.  In the case of differentiable functions, the graph may have a horizontal tangent at the
point ,  on the horizontal axis.  This indicates a multiple root.Ð !Ñ!

 Many root finding situations arise from physical problems.  For example, consider a
sphere of radius R and density  lb/ft  floating at a depth H in water of density  lb/ft .  H is$ 3 3'#Þ%
the distance from the bottom of the sphere to the water line.  Archimedes' principle states that the
sphere will be submerged to a depth where the weight of the sphere is equal to the weight of the
water displaced.  Using calculus to find the displaced volume results in the equation

4
3 3

R (H R H ) . (4.1)1 $ 13 2 3œ � '#Þ%
"

Rearranging terms gives a cubic polynomial in H

H H R R /  ,  where H R. (4.2)3 2 3� $ � % '#Þ% œ ! ! � � #$

 There are formulas to find the roots of a cubic polynomial such as (4.2); however, the
actual use of these formulas is very cumbersome.
 Virtually all schemes to find the roots of a function begin with a good understanding of
the problem.  For cubic polynomials we expect three roots: either three real roots or one real root
and two complex values.  For this example, the relationship between the density of the sphere
and the density of water is a critical issue which will influence the roots of the cubic polynomial.
The physical implications are obvious  float or sink!�
 As a general rule, the first step of a root finding problem is to obtain qualitative data
suggesting possible values for the roots of a function.  A graph or a table of values will
frequently provide the data necessary to implement a particular numerical algorithm.
 In the following sections we will consider some basic methods.  Based on initial
estimates, all of the methods compute a finite sequence of numbers.  The last number in the
sequence is used as an approximate value for the root.  In an ideal case, the method produces an
accurate approximation within a few iterations.
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4.2 The Bisection Method

 One of the simplest root finding methods has its foundation in the properties of
continuous functions.  The bisection method assumes that  is continuous on a closed interval0ÐBÑ
Ò +ß , Ó and that

0Ð+Ñ0Ð,Ñ � ! . (4.3)

In other words, the graph of  must cross the x-axis an odd number of times within the0ÐBÑ
interval    to insure that the product  is negative.  A negative product guarantees atÒ +ß , Ó 0Ð+Ñ0Ð,Ñ
least one root in the interval.
 As the name suggests, the method begins by finding the midpoint of ,Ò +ß , Ó
- œ Ð+ � ,ÑÎ# Ò +ß , Ó M œ Ò +ß - Ó M œ Ò - ß , Ó" " ", which bisects   into two intervals  and .  IfL R
0Ð- Ñ œ 0Ð Ñ œ !" ! ! ! then we have found the true root, ; however, in most cases  will be in
either the left or right subinterval, or  .M ML R
 The basic premise of the bisection method, a sign change on a closed interval, is
employed to determine the location of the root as follows:

If     then  is in .0Ð+Ñ0Ð- Ñ � ! M œ Ò +ß - Ó" "! L 

If     then  is in .0Ð+Ñ0Ð- Ñ � ! M œ Ò - ß , Ó" "! R

 The midpoint value  is the first approximation to the root .  It is a simple task to-" !

bound the error in ,  |  |.  Observe that |  | is less than or equal to  or .- � - � - - � + , � -" " " " "! !

In other words, the error is bounded by one-half the length of the original interval . ForÒ +ß , Ó
example, the actual root, , could be very close to  and , thus! , , � - œ Ð, � +Ñ"

"

#

|  | . (4.4)!� - Ÿ Ð, � +Ñ
"

#
"

 To keep track of values, the new interval containing  may be identified as  .  We! Ò + ß , Ó# #

continue the process by finding a second midpoint value, , of either  or  , as appropriate.- M M# L R

The error bound becomes,  |  | .  The data generated by the!� - Ÿ Ð, � + Ñ Ÿ Ð, � +Ñ# # #
"

#

"
#2

bisection method is a sequence of midpoint values,  ,  with error bounds given byÖ- × 3 œ "ß #ßá3

| | . (4.5)!� - Ÿ Ð, � +Ñ
"

#
3 3

 A simple example will illustrate the steps in the bisection method.  By inspection it is
obvious that  has a root in the interval  and  .  The following table0ÐBÑ œ B � # Ò "ß # Ó œ ## ! È
provides data for three iterations of the bisection method.

3 + - , 0Ð+ Ñ 0Ð- Ñ 0Ð, Ñ I<<9<F9?8.
" " "Þ& # �" Þ#& # Þ&
# " "Þ#& "Þ& �" �Þ%$(& Þ#& Þ#&
$ "Þ#& "Þ$(& "Þ& �Þ%$(& �Þ"!*% Þ#& Þ"#&

3 3 3 3 3 3
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The last line shows  with .  In this case the error bound is a rather poor- œ "Þ$(& l �- l Ÿ !Þ"#&$ $!

estimate for the actual error, |È#�- l œ !Þ!$*Þ$

 The inequality, (4.5), may be employed to determine the number, , of midpoint5
computations or bisections needed to reach a specified error tolerance with the relationship

|  | TOL.!� - Ÿ Ð, � +Ñ Ÿ5

"

#5

Solving this inequality for  gives5

5  
Ð, � +Ñ � Ð

Ð#Ñ

ln ln TOL)
ln

. (4.6)

 For example, with  and TOL , we find, � + œ " œ "Þ!!!!/�!!'

5   ¸ "*Þ* ¸ #!
Ð"Ñ � ÐÞ!!!!!"Ñ

Ð#Ñ

ln ln
ln

.

With ,   will meet the error tolerance for an initial interval of length one.5   #! -#!
 From a mathematical point of view, the bisection method will always converge to .  On!

the other hand, from a computational viewpoint, an error tolerance should not be selected to
exceed the limitations of the machine implementing the method.  Although reliable, the bisection
method is rather slow with the error bound dropping by a factor of two for each iteration.  Other
methods will reduce the error bound or error estimate at a much faster rate.
 Construction of an M-file to perform the bisection computations is not difficult.  The
following M-file, bisect.m, will compute a specified number of bisections for a given function
and interval.  If there is no sign change on the interval, MATLAB's   command will displayerror 
an informational message and terminate computations.  The MATLAB help feature will provide
information on  error feval if,  and the two uses of the  command.

M-file bisect.m

 function bisect(n,fct1,a,b)
 %BISECT Bisection Method
 fa = feval(fct1,a);
 fb = feval(fct1,b);
 if fa*fb > 0
    error('Root not in interval provided.')
 end
 % display column headings, adjust for format
 disp('      i                      a(i)                c(i)                 b(i)             err bound')
 for i=1:n
    c  = (a+b)/2;
    fc = feval(fct1,c);
    disp([i,a,c,b,(b-a)/2])
  if fa*fc < 0
         b  = c;
         fb = fc;
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  else
         a  = c;
         fa = fc;
  end
 end

Example:  If the density of a sphere is  lb/ft , determine the depth H at which a sphere of$ œ "&Þ' 3

radius R  ft floats in water.  Substituting into (4.2) givesœ #

H H  0. (4.7)3 2� ' � ) œ
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Figure 4.1 The Cubic Polynomial  H H  3 2� ' � )

Figure 4.1 reveals a root in the interval .  With the polynomial (4.7) the active function inÒ "ß "Þ& Ó
the M-file fct1.m, the command

  >> bisect(10,'fct1',1,1.5);

will execute  iterations of the bisection method. The output of bisect.m is given in the"!
following table.  Note that  disp  can be used to display string data (the column headings).

      i                      a(i)                c(i)            b(i)           err bound
   1.0000e+000  1.0000e+000  1.2500e+000  1.5000e+000  2.5000e-001
   2.0000e+000  1.2500e+000  1.3750e+000  1.5000e+000  1.2500e-001
   3.0000e+000  1.2500e+000  1.3125e+000  1.3750e+000  6.2500e-002
   4.0000e+000  1.2500e+000  1.2813e+000  1.3125e+000  3.1250e-002
   5.0000e+000  1.2813e+000  1.2969e+000  1.3125e+000  1.5625e-002
   6.0000e+000  1.2969e+000  1.3047e+000  1.3125e+000  7.8125e-003
   7.0000e+000  1.3047e+000  1.3086e+000  1.3125e+000  3.9063e-003
   8.0000e+000  1.3047e+000  1.3066e+000  1.3086e+000  1.9531e-003
   9.0000e+000  1.3047e+000  1.3057e+000  1.3066e+000  9.7656e-004
   1.0000e+001  1.3047e+000  1.3052e+000  1.3057e+000  4.8828e-004
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Based on the data we can see that, | | | | .  In other words,! !� - œ � "Þ$!&# Ÿ !Þ!!!%))"!

! œ "Þ$!&# „ !Þ!!!%)) -   so that  has three decimal places of accuracy.  As you can see from"!

this example, the bisection method slowly produces a small interval containing the root.

4.3 Newton's Method

 Various methods to compute the roots of a function are based on approximating 0ÐBÑ
with a line.  For example, the so-called method of  requires, just like bisection, afalse position
closed interval with a sign change; however, instead of using a midpoint computation to estimate
the true root, false position computes the -intercept of a line joining the end points B Ð +ß 0Ð+ÑÑ
and .  The -intercept, , is used to approximate  and to define  andÐ ,ß 0Ð,ÑÑ B B M œ Ò +ß B Ó" "! L 
M œ Ò B ß , ÓR " .  At this point the method parallels bisection with computations to determine if  is!

in or , followed by construction of a new line joining endpoints.  A problem at the end ofM ML R
this chapter ask you to write an M-file to implement the method of false position.
 Isaac Newton (1642-1727) is credited with a simple yet elegant procedure to approximate
a root.   forgoes the need for a closed interval with a sign change and insteadNewton's method
approximates  by a tangent line.  All that is needed is a good initial estimate of , say .0ÐBÑ B! "

Newton's method begins by constructing a tangent line to the graph of  at the point0ÐBÑ
ÐB ß 0ÐB ÑÑ + œ B" " ".   Equation (3.1) with  provides the standard form

0ÐBÑ ¸ 0ÐB Ñ � 0 ÐB ÑÐB � B Ñ B B" " " "
w   for  close to . (4.8)

 The -intercept of the tangent line, , is defined withB C œ 0ÐB Ñ � 0 ÐB ÑÐB � B Ñ" " "
w

coordinates .  In other wordsÐ B ß ! Ñ#

! œ 0ÐB Ñ � 0 ÐB ÑÐB � B Ñ" " # "
w .

Solving for  gives the basic structure of Newton's methodB#

B œ B �
0ÐB Ñ

0 ÐB Ñ
# "

"

w
"

. (4.9)

Figure 4.2 is a graphical representation of the first iteration of Newton's method.
 The concept is easily replicated: construct a tangent line to the graph of  at the point0ÐBÑ
Ð B ß 0ÐB ÑÑ B Ð B ß ! Ñ# # $, define the  -intercept of the new tangent line as the point , and then solve
for ,B$

B œ B �
0ÐB Ñ

0 ÐB Ñ
$ #

#

w
#

.

 In general terms, Newton's method becomes

B œ B � 8 œ "ß #ß $ß
0ÐB Ñ

0 ÐB Ñ
8
" 8

8

w
8

  for  ... . (4.10)
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Figure 4.2 Newton's Method

 
Equation (4.10) produces a sequence of values  ...  that continues until terminatedÖB ß B ß B ß ×" # $

by a method chosen by the user.  Examples of termination criteria include:  stop at for some"Ñ B8

specified  stop when  meets a specified error tolerance; or  stop if an unanticipated8à #Ñ B $Ñ8

situation is encountered.  As a practical matter, computer codes to implement Newton's method
usually contain more than one termination criterion.
 One source of difficulty with Newton's method is found in the denominator of the
quotient . If   happens to be zero for some  ,  the quotient is undefined and the0ÐB Ñ

0 ÐB Ñ
8

w
8

0 ÐB Ñ 8w
8

procedure aborts.  Geometrically, the graph of  has a horizontal tangent line at 0ÐBÑ Ð B ß 0ÐB ÑÑ8 8

that will never intersect the -axis.B

Example:  Find the roots of the cubic polynomial, (4.7),  using Newton's method.

Recall , so that .  Substituting into (4.10) gives0ÐBÑ œ B � 'B � ) 0 ÐBÑ œ $B � "#B$ # w #

B œ B � 8 œ "ß #ß $ß
B � 'B � )

$B � "#B
8
" 8

$ #
8 8

8
#

8

’ “  
  for  ... . (4.11) 

Based on earlier computations with the bisection method we know that there is a root in the
interval .  Selecting  as a starting value, the first iteration becomesÒ "ß "Þ& Ó B œ "Þ#"

B œ B � œ "Þ# � ¸ "Þ$!(*
B � 'B � ) Ð"Þ#Ñ � 'Ð"Þ#Ñ � )

$B � "#B $Ð"Þ#Ñ � "#Ð"Þ#Ñ
# "

$ # $ #
" "

"
#

"
#

’ “ ’ “     
.

Likewise, the second iteration is

B œ B � ¸ "Þ$!(* � ¸ "Þ$!&%
B � 'B � ) Ð"Þ$!(*Ñ � 'Ð"Þ$!(*Ñ � )

$B � "#B $Ð"Þ$!(*Ñ � "#Ð"Þ$!(*Ñ
$ #

$ # $ #
# #

#
#

#
#

’ “ ’ “    
.
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 Although algebra may be used to simplify the right side of (4.11), further iterations with
manual computations become tedious.  An M-file to implement Newton's method will be
presented later in this section.  For the moment, symbolic computations with MATLAB may be
used to implement Newton's method.  The symbolic derivative of a function may be computed
using MATLAB's .  See .  The following MATLAB commands illustratediff  >> help sym/diff
how to reproduce the computations of  and  above.  The variable  represents the rightB B# $ newt
hand side of Newton's algorithm.  The  command will allow us to replace the symbolic  insubs B
newt with a numerical value.

 >> syms x
 >> f = x^3 - 6*x^2 + 8;
 >> df = diff(f);
 >> newt = x - f/df
 newt =
 x-(x^3-6*x^2+8)/(3*x^2-12*x)
 >> x2 = subs(newt,x,1.2)
 x2 =
   1.3079e+000
 >> x3=subs(newt,x,x2)
 x3 =
   1.3054e+000

 As we have seen, bounding the errors in the bisection method is a simple task.  Although
we cannot bound the errors in the case of Newton's method, it is possible to estimate the error at
each iteration.  Using Taylor's Theorem, see (3.7) and (3.8), with  gives8 œ !

0ÐBÑ œ 0Ð Ñ � 0 Ð-ÑÐB � Ñ - Ba a where  is between  and a.w

 Replacing  by the true root, , and  by  results inB + B! 8

0Ð Ñ œ ! œ 0ÐB Ñ � 0 Ð-ÑÐ � B Ñ - B! ! !8 8 8
w where  is between  and . (4.12)

This equation contains the error in : .  Solving (4.12) for B � B � B8 8 8! !

!� B œ �8

0ÐB Ñ

0 Ð-Ñ
8

w
. (4.13)

 If the sequence of Newton values is converging, the error  will be approaching!� B8

zero.  With  somewhere between    and  , we may assume that  is very close to .  (  is- B - B -! 8 8

also close to ; however,  is unknown.)  Using  in (4.13) gives, with (4.10),! ! - ¸ B8

!� B ¸ � œ B � B8 8
" 8 . (4.14)
0ÐB Ñ

0 ÐB Ñ
8

w
8

In other words, the error  is approximately equal to the difference  .!� B B � B8 8
" 8

 An M-file, newton.m, to implement Newton's method is given below.  The program will
terminate when the error estimate,  is less than a prescribed error tolerance.!� B ¸ B � B8 8
" 8 ,
Since the error estimate for  depends on the next iteration , we must use care in coding theB B8 8
"
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procedure by introducing vectors to save the data.  In addition, Newton's method requires the
derivative of  which should be entered in an M-file, say  fct1p.m.0ÐBÑ

M-file newton.m

 function  r = newton(tol,fun,funp,x1)
 %NEWTON Newton's algorithm
 %       Tolerance, function, derivative,
 % and initial value must be given.
 %       Maximum 20 iterations displayed.
 max = 21; x(1) = x1;
 y(1) = feval(fun,x(1));
 yp(1) = feval(funp,x(1));
 for i = 2:max
    x(i)  = x(i-1) - y(i-1)/yp(i-1);
    y(i)  = feval(fun,x(i));
    yp(i) = feval(funp,x(i));
    esterr(i-1) = abs(x(i)-x(i-1));
  if  esterr(i-1) < tol
   fprintf('Error tolerance met at i = %2.0f\n',i-1)
         imax = i; break;
    end
    imax = i;
 end
 disp('       i                  x(i)                 f(x(i))           x(i+1)-x(i)')
 for k = 1:imax - 1
  disp([k,x(k),y(k),esterr(k)])
 end
 r = x(imax);
 fprintf('Root is approximately  % 12.6e \n',r)

There are two new MATLAB commands in newton.m which should be explored using the help
feature. They are  break fprintf and  .  When the error tolerance is met the program terminates,
prints results and reports the next Newton iteration as the root.
 The previous example,  and , with  an error0ÐBÑ œ B � 'B � ) 0 ÐBÑ œ $B � "#B$ # w #

tolerance of   and an initial value to  gives!Þ!!!!" "Þ#

 >> r = newton(.00001,'fct1','fct1p',1.2);

 Error tolerance met at i = 3
        i                     x(i)               f(x(i))         x(i+1)-x(i)
   1.0000e+000  1.2000e+000  1.0880e+000  1.0794e-001
   2.0000e+000  1.3079e+000 -2.6703e-002  2.5280e-003
   3.0000e+000  1.3054e+000 -1.3284e-005  1.2589e-006
 Root is approximately  1.305407e+000
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The output data shows that  satisfies the prescribed error tolerance.  In other words,BÐ$Ñ
| | | | .!� B ¸ B � B ¸ !Þ!!!!!"#&)* Ÿ !Þ!!!!"$ % $

 Since the numerical value of  is available from the error computations,  isBÐ%Ñ BÐ%Ñ
reported as the approximate root with more accuracy expected.  The M-file displays six decimal
places for the final estimate.  The rapid decrease in the error estimates, , , , is"! "! "!�" �$ �'

indicative of the rate at which Newton's method converges.  We will investigate the rate of
convergence below.

Further Error Analysis

 A three term Taylor representation centered at  will allow us to see how errors inB8

Newton's algorithm are related .  Recall

0ÐBÑ œ 0ÐB Ñ � 0 ÐB ÑÐB � B Ñ � 0 Ð-ÑÐB � B Ñ
"

#
8 8 8 8

w ww #,

where again  is between  and .  Replacing  by  , the actual root, gives- B B B8 !

0Ð Ñ œ ! œ 0ÐB Ñ � 0 ÐB ÑÐ � B Ñ � 0 Ð-ÑÐ � B Ñ
"

#
! ! !8 8 8 8

w ww #

 Assuming that  is not zero we may divide by  to obtain0 Ð Ñ 0 ÐB Ñw w
8!

! œ � Ð � B Ñ � Ð � B Ñ
"

#

0ÐB Ñ 0 Ð-Ñ

0 ÐB Ñ 0 ÐB Ñ
8

w w
8 8

ww

  .! !8 8
#

The first term on the right hand side looks familiar.  Using Newton's method, (4.10), the previous
expression becomes

! œ B � B � Ð � B Ñ � Ð � B Ñ
"

#
8 8
" 8 8

#  ! !
0 Ð-Ñ

0 ÐB Ñ

ww

w
8

or  . (4.15)! œ � B � Ð � B Ñ
"

#
! !8
" 8

#0 Ð-Ñ

0 ÐB Ñ

ww

w
8

 Equation (4.15) contains two error terms,  and .  Solving for the latterÐ � B Ñ Ð � B Ñ! !8 8
"

we find

! !� B œ � Ð � B Ñ
"

#
8
" 8

#0 Ð-Ñ

0 ÐB Ñ

ww

w
8

 . (4.16)

This equation shows that the error term on the left, , is proportional to the square of the!� B8
"

error term .  For example, if the error  at step  is  we expect that the! !� B � B 8 "Þ!!!!/�!!$8 8

error at step , , will be approximately .  Recall our polynomial8 � " � B "Þ!!!!/�!!'! 8
"

example. Equation (4.16) is the source of the statement that Newton's method is quadratically
convergent.
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The Secant Method

 Another scheme, closely related to Newton's method, is the .  Instead ofsecant method
using the tangent line at , the secant method begins with two estimates for , say  and ,B B B" " #!

and constructs a line between the points  and .  Denoting the -interceptÐ B ß 0ÐB ÑÑ Ð B ß 0ÐB ÑÑ B" " # #

of the secant line as , it is an algebra task to show that the intercept isB$

B œ B � 0ÐB Ñ$ # # †
B � B

0ÐB Ñ � 0ÐB Ñ
’ “# "

# "

.

 In general terms, the secant method is defined by the formula

B œ B � 0ÐB Ñ8
" 8 8 † 8 œ #ß $ß %ß
B � B

0ÐB Ñ � 0ÐB Ñ
’ “8 8�"

8 8�"

  for ... . (4.17)

 The secant method does not converge as fast as Newton's method; however, the
derivative of is not needed.  With proper programming, only one new function evaluation0ÐBÑ
will be required at each iteration whereas Newton's method requires two function evaluations,
0ÐB Ñ 0 ÐB Ñ8 8

wand , per iteration.  Using newton.m as a model, you should be able to write an M-
file, say secant.m, to implement the secant method.

4.4 MATLAB Methods

 MATLAB contains two commands to compute the roots of functions.  The first, , isroots
specifically written to find the roots of a polynomial.  The actual method is beyond the scope of
an introductory text.  The second command,  , is designed to find the roots of  providedfzero 0ÐBÑ
the function actually crosses the -axis at the root.   uses a combination of methods:B fzero
bisection, the secant method and inverse quadratic interpolation.  Inverse linear interpolation will
be discussed in Chapter 6.

roots

 The coefficients of the various powers are the critical data in a polynomial.  For example,
the coefficients of the cubic polynomial   may be entered in a row vector&B � )B � ""$ #

c d& ) ! ""  where the coefficients are in descending order, beginning with the highest
power, with a zero included for the missing linear term.  This representation is a MATLAB
convention for polynomials.  The roots of this cubic polynomial  may be found as follows:

 >> roots([5,-8,0,11])
 ans =
   1.2661e+000 +8.7024e-001i
   1.2661e+000 -8.7024e-001i
  -9.3212e-001

The coefficients may be entered as either a row or column vector.  For a second example recall
the cubic polynomial from the floating sphere example, H H .$ #� ' � )
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 >> c = [1,-6,0,8];
 >> r = roots(c)
 r =
   5.7588e+000
   1.3054e+000
  -1.0642e+000

Acceptable solutions are in the interval H R or, with R , the interval H .! � � # œ # ! � � %
 To verify that the second value in the vector  is indeed the approximate root it isr
necessary to evaluate the polynomial defined by  .  Polynomials may be- œ Ò "ß � 'ß ! ß ) Ó
evaluated using the MATLAB command  the coefficient vectorpolyval polyval.  Inputs to  are  
and the value(s) of the independent variable.  Testing the second value, , in the solution"Þ$!&%
vector givesr 

 >> polyval(c,r(2))
 ans =
  -8.8818e-015

Within the accuracy of MATLAB, 5 decimal places, the value    is very close to" ¸ "Þ$!&%r(2)
the actual root.
 As an aside, the MATLAB command   will construct a polynomial coefficient vectorpoly 
from a vector of roots.  By default, the coefficient of the highest degree will be one.  Consider
Ð#B � $ÑÐB � &Ñ œ #B � (B � "&#  and observe the results of the MATLAB commands

 >> r = roots([2 7 -15])
 r =
  -5.0000e+000
   1.5000e+000
 >> poly(r)
 ans =
   1.0000e+000  3.5000e+000 -7.5000e+000

As expected,  returns the values  and .  Constructing a polynomial with the same roots $Î# � &
roots using   gives .  The roots of this polynomial are identical to the roots ofpoly B � $Þ&B � (Þ&#

#B � (B � "&# .
 Every student of calculus knows that derivatives of polynomials are easy to compute.
The command   will operate on a coefficient vector to produce a new vector containingpolyder 
the coefficients of the derivative of the polynomial.  For example, the leading term of the
polynomial represented by  is  with a derivative of   Convincec d& ) ! "" &B & † $ B Þ$ #

yourself that the following is correct.

 >> polyder([5,-8,0,11])
 ans =
     15   -16     0
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fzero

  MATLAB's root finding procedure,    fzero, may be used to compute the zeros of non-
polynomial functions.  The usual syntax is where the function, , ('fct1', initial value) fzero 0ÐBÑ
is entered in an M-file.  As an alternative, enter the function directly as a string.

 >> fzero('x^2-2',1)
 Zero found in the interval: [0.54745, 1.4525].
 ans =
   1.4142e+000

 Keep in mind that roots of even multiplicity, wherein the graph of  does not actually0ÐBÑ
cross the -axis, will cause problems for .  Multiple roots will be considered in the nextB fzero
section.
 As another example, the problem noted at the beginning of this chapter, ,0ÐBÑ œ / � B�B

may be solved with .  Visualize the graph of the decaying exponential function, ,fzero C œ /�B

and the graph of the line, .  A reasonable guess for the intersection of these two graphsC œ B
might be .   The MATLAB results areB œ !Þ&

 >> fzero('exp(-x)-x',.5)
 Zero found in the interval: [0.42, 0.58].
 ans =
   5.6714e-001

As an alternative, with , the active function in fct1.m/ � B�B

 >> fzero('fct1',.5)
 Zero found in the interval: [0.42, 0.58].
 ans =
   5.6714e-001

4.5 Root Finding Difficulties

 As noted earlier, the bisection method will converge slowly to the desired root within the
accuracy of the machine implementing the algorithm.  On the other hand, Newton's method may
generate non convergent or slowly convergent data as a result of the nature of the function and
the initial value.
 To illustrate a slowly convergent sequence of Newton iterates, consider the numerical
task of finding the root of sin  at zero.  If Newton's method is started with very close toÐBÑ B"

"Þ"'&&' B ¸ �"Þ"'&&', the first iteration will give a numerical value of   .  With symmetry, we#

should expect   ,   and so forth.  In other words, Newton's method isB ¸ "Þ"'&&' B ¸ �"Þ"'&&'$ %

in a loop which may eventually converge, albeit very slowly, or may never converge.  We have
previously seen how quickly Newton's method converged
 Using newton.m on sin  with an initial value close to gives0ÐBÑ œ ÐBÑ "Þ"'&&'
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 >> r = newton(.000000001,'fct1','fct1p',1.165561185);
 Error tolerance met at i = 17
        i                  x(i)               f(x(i))       x(i+1)-x(i)
   1.0000e+000  1.1656e+000  9.1901e-001  2.3311e+000
   2.0000e+000 -1.1656e+000 -9.1901e-001  2.3311e+000
   3.0000e+000  1.1656e+000  9.1901e-001  2.3311e+000
   4.0000e+000 -1.1656e+000 -9.1901e-001  2.3311e+000
   5.0000e+000  1.1656e+000  9.1901e-001  2.3311e+000
   6.0000e+000 -1.1656e+000 -9.1901e-001  2.3311e+000
   7.0000e+000  1.1656e+000  9.1901e-001  2.3311e+000

Although only the first seven values are shown, the procedure does converge eventually to meet
the error tolerance in  iterations.  Observe the alternating values of  in the output and the"( BÐ3Ñ
lack of quadratic convergence.
 Figure 4.3 illustrates the predicament described in the data and shows how Newton's
method may be trapped in a slowly convergent loop where the iterates change very little from
step to step.

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

x2 

x1, x3 

Figure 4.3 Newton's Method for sinÐBÑß B" œ +

 
 How did such an example occur?  The problem is a poor choice of an initial guess
resulting in a pair of parallel tangent lines around the symmetric function sin .  To see whereÐBÑ
the initial guess came from,  we construct the tangent line to the graph of sin  at a withB ÐBÑ B œ"

! � + � 1

#
 as follows:

C � Ð+Ñ œ Ð+ÑÐB � +Ñsin cos . (4.18)

Since the graph of sin  is symmetric to the origin, we attempt to find the -intercept of theÐBÑ B
tangent line (4.18) at the point .  In other wordsÐ�+ß ! Ñ

! � Ð+Ñ œ Ð+ÑÐ�+ � +Ñsin cos
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or tan . (4.19)Ð+Ñ œ #+

fzero may be used to solve this nonlinear equation.

 >> format long e
 >> fzero('tan(x)-2*x',1)
 Zero found in the interval: [0.77373, 1.2263].
 ans =
     1.165561185207211e+000

This is the initial guess that resulted in the slowly convergent sequence of Newton iteratesB"

shown in Figure 4.3.
 In this example we know the solution is zero; however, in a more complicated problem,
an unfortunate choice of an initial value may produce unexpected results.  The selection of an
initial value other than   gives dramatically different results as shown in theB œ "Þ"'&&'"")&"

following data.

 >> r = newton(.000000001,'fct1','fct1p',1)à

 Error tolerance met at i =  5
        i                  x(i)              f(x(i))        x(i+1)-x(i)
   1.0000e+000  1.0000e+000  8.4147e-001  1.5574e+000
   2.0000e+000 -5.5741e-001 -5.2899e-001  6.2334e-001
   3.0000e+000  6.5936e-002  6.5889e-002  6.6032e-002
   4.0000e+000 -9.5722e-005 -9.5722e-005  9.5722e-005
   5.0000e+000  2.9236e-013  2.9236e-013  2.9236e-013
 Root is approximately  0

Multiple Roots

 Another source of root finding difficulties occurs in the case of multiple roots.  We say
that  has a root of multiplicity    at  if  has the form0ÐBÑ 5 0ÐBÑ!

0ÐBÑ œ ÐB � Ñ 1ÐBÑ 1Ð Ñ Á ! 5! !5  ,   where   and  is a positive integer.

Functions with even multiplicity will not cross the -axis.  Without a sign change the bisectionB
method and MATLAB's   will be unable to locate the root.  Although Newton's algorithmfzero 
will usually converge, the rate will be slow.
 An example of multiplicity two will illustrate the difficulties.  Consider the simple
function, .  Since    attempts to find an interval with a sign change,0ÐBÑ œ ÐB � $Þ#Ñ /# �B fzero
values close to the root at  provide interesting results.$Þ#

 >> fzero('fct1', 5)
 Exiting fzero: aborting search for an interval containing a sign change
     because NaN or Inf function value encountered during search
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 (Function value at -814.2 is Inf)
 Check function or try again with a different starting value.
 ans =
    NaN

An inappropriate starting value will also give unexpected results.

 >> fzero('fct1', 100)
 Zero found in the interval: [-624.0773, 824.0773].
 ans =
   8.2408e+002

Clearly,  is not a root of  although MATLAB will confirm the result.  Why?)#%Þ!) 0ÐBÑ

 >> fct1(ans)
 ans =
      0

Both examples illustrate the need for good qualitative analysis when a multiple root is suspected.
 The following data illustrates what may occur when Newton's method is applied to a
function with a multiple root.  Consider cos .  Clearly  has a multiple root at0ÐBÑ œ B ÐB � Ñ 0#

#

1

zero.  Changing the maximum number of iterations in newton.m yields the following data.

 >> r = newton(.00001,'fct1','fct1p',.5);
 Error tolerance met at i = 25
        i                  x(i)                 f(x(i))           x(i+1)-x(i)
   1.0000e+000  5.0000e-001  1.1986e-001  1.7151e-001
   2.0000e+000  3.2849e-001  3.4811e-002  1.1083e-001
   3.0000e+000  2.1765e-001  1.0230e-002  7.2936e-002
  ã

   1.3000e+001  3.7565e-003  5.3011e-008  1.2522e-003
   1.4000e+001  2.5044e-003  1.5707e-008  8.3479e-004
   1.5000e+001  1.6696e-003  4.6539e-009  5.5652e-004
  ã

    2.3000e+001  6.5144e-005  2.7646e-013  2.1715e-005
   2.4000e+001  4.3429e-005  8.1913e-014  1.4476e-005
   2.5000e+001  2.8953e-005  2.4270e-014  9.6510e-006
 Root is approximately 1.930194e-005
 
 Based on the data, it appears that both  are converging to zero; however,x(i) f(x(i))and 
the normal quadratic rate of convergence is missing.  Slow convergence or lack of quadratic
convergence in Newton's method is a warning sign for the possibility of a multiple root.
 It is possible to show that the rate of change of  x  with respect to , in other words8
" 8B

the derivative,  , is related to the multiplicity of the root.  A useful relationship may be.B
.B
8�"

8

derived from Newton's method (4.10) and is given by
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.B 5 � "

.B 5
¸ " � "Î5 œ

8
"

8

. (4.20)

It is important to keep in mind that the approximation in (4.20) assumes that Newton's method is
converging.  The derivative on the right hand side may be approximated by a difference quotient
using three consecutive Newton iterates as follows

.B B � B 5 � "

.B B � B 5
¸ ¸

8
" 8
" 8

8 8 8�"

. (4.21)

Using and  from the example data, the ratio in (4.21) becomesB ß B ß B"$ "% "&

B � B "Þ''*' � #Þ&!%%

B � B #Þ&!%% � $Þ(&'&
¸ ¸ !Þ'(

"& "%

"% "$

.

With , the ratio  in (4.21) is ; thus, cos  has a root of multiplicity5 œ $ 0ÐBÑ œ B ÐB � Ñ5�"
5

#

$ #

# 1

three at zero.  Two of the roots come from  and the third from cos .B Ð� Ñ#

#

1

 If the multiplicity is unknown, the relationship (4.21) may be used to compute an estimate
of the multiplicity.  With an estimate of , we may differentiate the function  times to5 5 � "
obtain a new function with a simple root.  If    is small, perhaps  or , this may be a viable5 # $
approach.  As an example, recall  with .  The first derivative is0ÐBÑ œ ÐB � $Þ#Ñ / 5 œ ## �B

0 ÐBÑ œ #ÐB � $Þ#Ñ/ � ÐB � $Þ#Ñ / Þ 0 ÐBÑ œ ÐB � $Þ#Ñ/ Ð&Þ# � BÑw �B # �B w �B  Factoring gives .  In
other words,  has a simple zero at .0 ÐBÑ $Þ#w

  With the multiplicity, , known the so-called modified Newton's method, will5
demonstrate quadratic convergence.  The modified method includes the factor of  as shown in5
equation (4.22).

B œ B � 5 8 œ "ß #ß $ß
0ÐB Ñ

0 ÐB Ñ
8
" 8

8

w
8

  for  ... . (4.22)

4.4 Problems

4-1. Given  on the interval .0ÐBÑ œ / � B Ò !ß " Ó�B

 a. Use the bisection method to compute  by hand.  What is the error bound for ?- -% %

 b. Determine the number of bisections needed to result in an error of .Þ!!!!"
 c. Verify your solution of part b) with  bisect.m .

4-2. Repeat Problem 4-1 with tan   on the interval .  Use radians.0ÐBÑ œ ÐBÑ � B Ò !Þ&ß " ÓÈ

4-3. Consider tan0ÐBÑ œ " � B � ÐBÑÞ#

 a. Use ezplot >> help hold to graph and tan  in the same figure window. See  ." � B ÐBÑ#

 b. Select an interval containing the first positive root and use the bisection method to
     compute  by hand.-%
 c. For your choice of an interval what is the error bound for ?-%
 d. Determine the number of bisections needed to result in an error of .!Þ!!!!"
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 e. Verify your solution of part d with  bisect.m .

4-4. Repeat Problem 4-3 seeking the negative root closest to zero.

4-5. Show that the formula for the -intercept of a line joining the points  andB Ð +ß 0Ð+ÑÑ
  is given byÐ ,ß 0Ð,ÑÑ

  - œ
+0Ð,Ñ�,0Ð+Ñ
0Ð,Ñ�0Ð+Ñ .

4-6. The result given in Problem 4-5 is used in the method of false position .
 a. Use false position to compute  for  on the interval .- 0ÐBÑ œ B � # Ò !ß # Ó%

#

 b. Modify  bisect.m, call it falsep.m, to implement the method of false position.
     Delete the error bound term  in the output display.Ð, � +ÑÎ#
 c. Using your M-file, falsep.m, determine the root of  on the interval0ÐBÑ œ / � B�B

     .  Compute ten iterations.Ò !ß " Ó

4-7. Use Newton's method to estimate   by finding the root of .  Compute È5 $" B � $" œ ! B&
&

 using five decimal places beginning with  and hand computations.  Compare theB œ #Þ&"

 estimated error in , , with the actual error in ,  .B B � B B $" � B% & % % %
È5

4-8. Repeat Problem 4-7 using  the symbolic capability of MATLAB.

4-9. Consider tan   See Problem 4-3.0ÐBÑ œ " � B � ÐBÑÞ#

 a. Use Newton's method to approximate the first positive root.  Begin with B œ !Þ""

     and compute  using hand computations.  Estimate the error in .B B% %

 b. Repeat part a with .B œ ""

 c. Use newton.m to determine how many iterations are needed to approximate the
     root with an approximate error of  for the initial values of parts a and b.!Þ!!!"

4-10. Use ezplot to estimate the positive root of  sin .  You may wish to use# ÐBÑ � B œ !
 MATLAB's  Use newton.m with an error tolerancegrid to fine tune your initial estimate. 
 of  to compute the root.!Þ!!!!!&

4-11. Consider tan   See Problem 4-3.0ÐBÑ œ " � B � ÐBÑÞ#

 a. Use the secant method to approximate the first positive root with  andB œ !"

     .  Iterate three times to compute .B œ "Þ& B# &

 b. Repeat part a with  and .  Iterate three times to compute .B œ " B œ "Þ& B" # &

4-12. Modify newton.m to implement the secant method.  Test your M-file on Problem 4-11.

4-13. Derive Newton's method using the first two terms of a Taylor approximation centered at
 the value .B8

4-14. One half of the thickness of an airfoil is given by the equation
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 ,> œ #Þ*'* B � "Þ#'B � $Þ&"'B � #Þ)%B � "Þ!"&B Ò !ß " ÓÞÈ # $ %

 Use Newton's method with an error tolerance of , to locate the value of  where!Þ!!!" B
 the thickness is a maximum.  Hint:  To find the maximum value ...

4-15. Recall the equation for the floating sphere in equation (4.2).

  H H R R /  ,  where H R.3 2 3� $ � % '#Þ% œ ! ! � � #$

 Use roots fzero and then  to determine H for a sphere of radius  ft given&
 each of the densities $ œ #! %& (!,  and  lb/ft .  Are your answers3

 reasonable?  Explain.

4-16. In an effort to determine the optimum damping ratio of a spring-mass-damper system
 designed to minimize the transmitted force when an impact is applied to the mass the
 following equation must be solved for '

  cos       Ò % Ð" � Ñ Ó œ �" � ) � )' ' ' 'È 2 2 4

 Use a root finding method to compute the solution to this problem.
 To read more about this problem see the article by  Peters in SIAM Review, V.39, No. 1,
 pp 119-122, March 1997.

4-17. Use Newton's algorithm to estimate the multiplicity of the root at zero for the function
 sin tan .0ÐBÑ œ B ÐB Ñ ÐBÑ#

4-18. Using the results of the previous problem, verify quadratic convergence using the
 modified Newton algorithm, (4.22), on sin tan .0ÐBÑ œ B ÐB Ñ ÐBÑ#

4-19. Each of the following functions has a root or roots with multiplicity greater than one.
 Determine the multiplicity in each case.  Explain your reasoning.  Finally, use one of the
 methods of this chapter to approximate the root or roots.
 a. 0ÐBÑ œ / � B � "B

 b. 0ÐBÑ œ B � $Þ$B � $Þ'$B � "Þ$$"$ #

 c. 0ÐBÑ œ B � 'B � "#B � )' % #

 d. cos0ÐBÑ œ ÐB � #Ñ � BÐBÎ# � #ÑÈ È

4-20. Without thinking Newton's algorithm might be used on .  Find an initial0ÐBÑ œ B � "#

 value which will result in an alternating sequence of values.

4-21. Find a Taylor expansion of cos  centered at .  Use your result to showÐB � Ñ + œ !1

#

 that cos  has a root of multiplicity three at zero.0ÐBÑ œ B ÐB � Ñ#

#

1


