
Chapter 2
Computer Numbers and MATLAB

2.1 Introduction

 In Section 1.2 on matrix inversion the differences between computation with numerical
algorithms and exact mathematical symbolic manipulation became clear.  Virtually all
mathematical computations suffer the same fate accumulated error  when executed on� �
computers.  On most computers, numerical algorithms are implemented using the  numberbinary
system, 's and 's, leading to results that are very accurate but not exact.  In this chapter we will! "
see how numbers are represented by computers.  In later chapters, we will see some of the
implications of the inaccuracies that accompany computer representation of numbers.
 Number systems are  with standard conventions.  For example, the decimal orpositional
base  number  means"! #( (&Þ

# † "! � ( † "! � ( † "! � & † "! œ # † "! � ( † " � �
( &

"! "!!
" ! �" �#  .

Positional number systems require a positive base and a set of symbols.  In the decimal system
the base is  with symbols .  The  number system uses a base of  with"! !ß "ß #ß á )ß * #binary
symbols  and .  Other common number systems are , base , and , base .  In! " ) "'octal hexadecimal
general terms, we may represent a base  number as,

+ , � + , � á � + , � + , � + , � + , � á8 8�" # " ! �"
8 8�" # " ! �"

œ Ð+ + á + + + + + á Ñ8 8�" # " ! �" �# ,.

where the  ,  , between  and , divides the number into integral and fractionalradix point . + +! �"

parts.  The 's are specified by the symbol set associated with the base .+ ,5

 Convince yourself that each of the following numbers represent the same value:

Ð"!!" !"Ñ Ð"" #Ñ Ð* #&Ñ Ð* %Ñ. . . .# ) "! "',    ,    ,    

In general, the binary representation of a real number will be the longest.

2.2 Binary Numbers

 A binary number will have the general form

+ # � + # � á � + # � + # � + # � + # � á8 8�" # " ! �"
8 8�" # " ! �"

œ Ð+ + á + + + + + á Ñ8 8�" # " ! �" �# #. ,
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where each  is either a zero or one.   Note that subscripts on the 's correspond to the powers+ +5 5

of .#
 Computations with binary numbers often involve two special binary integers.  The first is
a binary integer consisting of  bits ( 's or 's) with the form  , in other words, a7 ! " Ð"!!á !!!Ñ#
leading  followed by   zeros.  Convince yourself that the value of  is equal to" 7 � " Ð"!!á !!!Ñ#
" † # #7�" !.  Remember that the zero on the right is associated with .  The second binary number
is more involved representing an integer  bits long of the form , a row of  's.7 Ð"""á """Ñ 7 "#

In powers of ,  becomes# Ð"""á """Ñ#

" † # � " † # � á � " † # � " † # � " † #7�" 7�# # " !.

In reverse order we recognize a finite  series with a constant ratio of .geometric #

# � # � # � á � # � #! " # 7�# 7�".

 All calculus textbooks describe how to sum a geometric series.  In this case the sum of
the series is  .  This result is used often in computations with binary numbers.  For# � "7

example, the binary number Ð"""""Ñ œ " � # � % � ) � "' œ # � " œ $"Þ#
&

 A common task is to convert a decimal number to binary.  Suppose we have a decimal
value in the form  , for example , and wish to determine the binary equivalent.ÐB CÑ Ð#)Þ(&ÑÞ "! "!

The standard approach is to treat the integral and fractional parts separately.  We begin by
equating the integral part of both representations

B œ + # � + # � â � + # � + # � + #8 8�" # " !
8 8�" # " !. (2.1)

Dividing a decimal integer, , by  will result in a remainder of either zero or one.  In otherB #
words, either the integer is divisible by  (remainder is zero) or it is not divisible by  (remainder# #
is one).  Dividing equation (2.1) by  gives#

BÎ# œ + # � + # � â � + # � + � + Î# œ ; � <Î#8 8�" # !
8�" 8�# "

"
.

 The remainder term,  equals ; thus,  is equal to  which is either a zero or a<Î# + Î# < +! !

one.  This scheme may be repeated using the integral value .  Form the quotient   to; ;Î#
determine , and so forth.  The method terminates when the quotient becomes zero.  An+"

example will demonstrate the procedure.

Example:  Convert the decimal integer  to binary.#)

#)Î# œ "% � !Î# Ê + œ !

"%Î# œ ( � !Î# Ê + œ !

(Î# œ $ � "Î# Ê + œ "

$Î# œ " � "Î# Ê + œ "

"Î# œ ! � "Î# Ê + œ "

!

"

#

%

&

The results show that the binary form of   isÐ#)Ñ"!

Ð"""!!Ñ œ " † # � " † # � " † # � ! † # � ! † # œ "' � ) � %#
% $ # " ! .

A word of caution with this scheme. The binary coefficients are produced beginning with +!

followed by , , etc.  Convert  to binary and check your results with MATLAB's  .+ + %%" # dec2bin
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 >> dec2bin(44)
 ans =
 101100

 Representing the fractional part of the decimal value   calls for a differentÐB CÑÞ "!

approach.  Multiplying a decimal fraction, , by  will result in an integral part of either zero or.C #
one.  Multiply .  by  .  or .  by . .  Equating the fractional parts of the decimal and$ # œ ! ' ( # œ " %
binary representations gives

ÞC œ + # � + # � + # � á�" �" �$
�" �# �$ . (2.2)

Multiplying both sides of equation (2.2) by  gives#

#Ð CÑ œ #Ð+ # � + # � + # � á ÑÞ �" �" �$
�" �# �$

or . (2.3)#Ð CÑ œ + � + # � + # � áÞ �" �# �$
�" �#

Note that, if   , will be a one, otherwise a zero.  Now, subtract  from both sides ofÞC   !Þ& + +�" �"

(2.3) and again multiply by .#

#Ò#Ð CÑ � + Ó œ #Ð+ # � + # � á Ñ œ + � + # � áÞ �" �# �$ �# �$
�" �# �" .

+�# will be either zero or one.  The scheme continues until either it terminates with a finite
number of multiplications or else gives an endless sequence of zeros and ones.

Example:  Convert  to binary.Ð!Þ(&Ñ"!

#Ð!Þ(&Ñ œ "Þ& Ê + œ "

#Ð"Þ& � "Ñ œ "Þ! Ê + œ "

#Ð"Þ! � "Ñ œ !Þ! Ê + œ !

�"

�#

�$

At this point the scheme terminates as all further coefficients will be zero.  Thus,

ÐÞ(&Ñ œ Ð ""Ñ œ " † # � " † # œ !Þ& � !Þ#&"! #
�" �# .Þ

 As an alternative method, a decimal fraction such as  may be multiplied by a power!Þ(&
of  to produce an integer.  In this case , so that .  The binary# !Þ(& œ $Î% ÐÞ(&Ñ † # œ $#

representation of  is . We now multiply by  and shift the binary point.$ Ð""Ñ ##
�#

ÐÞ(&Ñ œ Ð$Ñ † # œ Ð""Ñ † # œ Ð ""Ñ"! "! # #
�# �# . .

This scheme will work only if the fractional part, .y, can be expressed as a rational number with a
denominator that is a power of two.  The method will not work on a fraction such as
!Þ* œ "Þ)Î# œ $Þ'Î% œ (Þ#Î), etc., since the numerator will never be an integer.
 To represent our example value  as a binary number, the integral and fractionalÐ#)Þ(&Ñ"!
parts may be combined to give .Ð#)Þ(&Ñ œ Ð"""!!Þ""Ñ"! #

 A minor change in our example number, from  to  , complicates theÐ#)Þ(&Ñ Ð#)Þ*Ñ"! "!

issue.  The integral part remains unchanged, ; however, converting the fractional part,Ð"""!!Ñ#
ÐÞ*Ñ"!, to binary reveals a never ending sequence.  Using the procedure developed earlier:
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#Ð!Þ*Ñ œ "Þ) Ê + œ "

#Ð"Þ) � "Ñ œ "Þ' Ê + œ "

#Ð"Þ' � "Ñ œ "Þ# Ê + œ "

#Ð"Þ# � "Ñ œ !Þ% Ê + œ !

#Ð!Þ% � !Ñ œ !Þ) Ê + œ !

#Ð!Þ) � !Ñ œ "Þ' Ê + œ "

   
   
   
   
   
   

�"

�#

�$

�%

�&

�'

At this point we observe that  is identical to , and so  will be identical to ,   will+ + + + +�' �# �( �$ �)

be identical to  and so forth resulting in a repeating, non-terminating binary fraction.  In other+�%

words,  has an infinite binary representation:Ð#)Þ*Ñ"!

Ð#)Þ*Ñ œ Ð"""!! " ""!! ""!! ""!! ""!!á Ñ"! #Þ .

Obviously, the non-terminating representation of   cannot be stored in a binary computer.Ð#)Þ*Ñ"!
 Although our efforts have been focused on converting decimal numbers to their
equivalent binary representations, it should be clear that the methods and procedures discussed
may be applied to other bases.  For example, a decimal integer may be converted to an octal
integer, base , by dividing by  and following the method described for binary numbers.  The) )
octal system uses the symbols  .!ß "ß #ß á ß (

Example:  Convert the decimal number  to octal.  We begin with the integral part."$&Þ%&

"$&Î) œ "' � (Î) Ê + œ (

"'Î) œ # � !Î) Ê + œ !

#Î) œ ! � #Î) Ê + œ #

!

"

#

Conversion of the fractional part will involve multiplication by .)

)Ð!Þ%&Ñ œ $Þ' Ê + œ $

)Ð$Þ' � $Ñ œ %Þ) Ê + œ %

)Ð%Þ) � %Ñ œ 'Þ% Ê + œ '

)Ð'Þ% � 'Ñ œ $Þ# Ê + œ $

)Ð$Þ# � $Ñ œ "Þ' Ê + œ "

)Ð"Þ' � "Ñ œ %Þ) Ê + œ %

   
   
   
   
   
   

�"

�#

�$

�%

�&

�'

The values in the table reveal a repeating sequence, .  Combining the integral and fractional%'$"
parts gives

Ð"$&Þ%&Ñ œ Ð#!( %'$" %'$" %'$" %'$" á Ñ"! )Þ$ .

2.3 Computer Representation

 Consider the task of approximating the binary equivalent of 8  within a computer.# Þ*
Aside from the problem of an infinite number of binary digits in the number there are other
issues.  The representation of , in the last section,Ð#)Þ*Ñ"!
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Ð"""!! " ""!! ""!! ""!! ""!! á ÑÞ #

may be written in  form by moving the binary point four places to the left so thatfloating-point
there is a leading one to the left of the binary point.

Ð" ""!!" ""!! ""!! ""!! ""!! á Ñ † #Þ #
%.

 The last form suggests a standard structure for a real binary floating-point number,

R (sign) .œ † Ð" , , , , , , á Ñ † #Þ " # $ % & ' #
(exponent data)

The term  is typically called the .  The smallest mantissa isÐ" , , , , , , á ÑÞ " # $ % & ' # mantissa
Ð" !!!!!á Ñ œ " Ð" """""á Ñ œ #Þ Þ# # and the largest is  .  To store the number R, a computer
must save information about the sign, the fractional part of the mantissa and the exponent data.
Clearly, only a finite number of zeros or ones is available to represent the number.  Standards in
the computer industry dictate the techniques and procedures used to store R.
 MATLAB uses the IEEE standard for double precision floating-point numbers.  In brief,
the standard calls for a  bit  to represent R with the following details:  one bit for the sign'% word
of R (usually zero indicates a positive value),   bits for the exponent data, and  bits for the"" &#
fractional part of the mantissa (the leading one is not stored).  With this  bit restriction the&#
fractional part of the mantissa is bounded by    and  Ð á !Ñ œ ! Ð """""á "Ñ œÞ Þ!!!!! # #

" � #�&#, a value very close to one.  We have

Ð á !Ñ Ÿ Ð , , , , , , á , Ñ Ÿ Ð """""á "ÑÞ Þ Þ!!!!! # " # $ % & ' &# # #

or .! Ÿ Ð , , , , , , á , Ñ Ÿ " � # ¸ "Þ " # $ % & ' &# #
�&#

 The method used to store the exponent data requires further explanation.  The  bits""
allocated for exponent data permit storage of eleven zeros and, at the other extreme, eleven ones,
Ð"""""""""""Ñ œ # � " œ #!%( !#

"" .  In other words, all non-negative integer values between 
and  may be stored in the  bits.  These  numbers are used to represent  positive#!%( "" #!%) both
and negative exponents.  This is accomplished by storing a signed exponent plus a constant in the
eleven bits assigned to the exponent data.  The constant, usually called the , is 1023 bias œ
Ð!""""""""""Ñ �%&#.  As an example, if the exponent is  we actually store the positive binary
integer equal to   or  in the eleven bits.  Since�%& � "!#$ *()

 >> dec2bin(978)
 ans =
 1111010010

the eleven bit string is stored to represent .!""""!"!!"! �%&

 To summarize our work so far consider an example  bit IEEE binary word usually'%
called a machine number

" !"""""""!!! """!!!"!!! !!!!!!!!!! !!!!!!!!!! !!!!!!!!!! !!!!!!!!!! !!.
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With proper interpretation, the machine number may be converted to a decimal value.   First, the
one in the leftmost position indicates that the number is negative.  Second, the exponent data is
specified by the next eleven bits  which corresponds to the decimal integer!"""""""!!!

 >> bin2dec('01111111000')
 ans =
         1016

Using a bias of , the actual base  exponent is .  Third, using the"!#$ # "!"' � "!#$ œ �(
remaining 52 bits with trailing zeros deleted, the mantissa is given by .  Recall, the"Þ"""!!!"
leading one is not stored.  Combining terms, the machine number becomes

�Ð"Þ"""!!!"Ñ † ##
�(

which equals ,�Ð" � # � # � # � # Ñ † #�" �# �$ �( �(

or .� Ð# � # � # � # � # Ñ�( �) �* �"! �"4

Finally, the exact decimal value of the machine number is

� !Þ!"%(!*%(#'&'#&.

 Continuing our analysis, we note that exponent data is bounded by the extreme values.

! Ÿ � Ÿ #!%(exponent bias

or exponent .! Ÿ � "!#$ Ÿ #!%(

Conventional use reserves the extreme values  and  for special cases leading to! #!%(

" Ÿ � "!#$ Ÿ #!%'exponent .

Thus the limits on the actual base 2 exponent become

�"!## Ÿ Ÿ "!#$exponent .

 In other words, the largest positive real number that can be represented using the IEEE
standard is  .  This equals MATLAB's .Ð"Þ""""á """"Ñ † ##

"!#$ realmax

 >> realmax
 ans =
   1.7977e+308

 To appreciate the magnitude of , recall that  number is realmax Avogadro's 'Þ!#$ † "!#$

molecules/mole.  Clearly,  is very close to .  If we attempt toÐ"Þ""""á """"Ñ † # ##
"!#$ "!#%

compute  with MATLAB we find#"!#%

 >> 2^1024
 ans =
    Inf
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where is the IEEE representation for positive infinity, an overflow in this case. In otherInf 
words,  cannot be represented by the  bit word described above.# '%"!#%

 To bring our discussion of computer numbers to a close, it is important to understand
how the IEEE standard influences accuracy.  The length of the fractional part of the mantissa, &#
bits, given by , is the critical item. Using the standard structure for binaryÐÞ, , , , , , á , Ñ" # $ % & ' &# #

floating-point numbers, it should be clear that all integers less than  can beÐ"Þ""""á """Ñ † ##
&#

stored exactly.  The exponent value of  will shift the binary point  places to the right giving a&# &#
binary integer with  ones which equals .  Actually, it is possible to store  exactly.&$ # � " #&$ &$

 >> format long e
 >> (2^53)-1
 ans =
     9.007199254740991e+015
 >> 2^53
 ans =
     9.007199254740992e+015

However, it is not possible to store   exactly.# � "&$

 >> (2^53) +1
 ans =
     9.007199254740992e+015

 The value of ,  ,  is a  digit integer.  This result indicates that all# *!!("**#&%(%!**# "'&$

"& "' &# digit decimal integers and most  digit decimal integers will store exactly in the  bits
allocated.  In summary, computations with the IEEE  bit word are accurate to  decimal'% "&
places.  Note that the  format displays  decimal places.long e "&

2.4 Problems

2-1. Convert the following numbers to binary, octal and hexadecimal.  The hexadecimal
 system, base uses the symbols , , , , , A, B, C, D, E, F where A corresponds to"'ß ! " # â *
 , B corresponds to 11 and so forth.  Show your work."!
 a) , b) ( 0 , c) Ð"#(Ñ !Þ '#&Ñ Ð%$Þ')Ñ"! "! "!

2-2. One octal digit corresponds to  binary digits and one hexadecimal digit corresponds to $ %
 binary digits.  Why?  Convert the binary number    to both octal"!"!"" "!"!"""!!!""Þ

 and hexadecimal by grouping the bits in threes,  and then in"!" !""Þ"!" !"" "!! !""ß
 fours  moving both ways from the binary point.ß !!"! "!""Þ"!"! """! !!""ß

2-3. Convert the decimal fraction    to binary.  Check your answers with!Þ!"%(!*%(#'&'#&
 the results in the text.
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2-4. Determine the  bit machine number that represents .'% Ð#)Þ(&Ñ œ Ð"""!!Þ""Ñ"! #

2-5. Consider a computer with a  bit word as follows: one bit for the sign of R,  bits to$# )
 represent exponent data, and  bits for the fractional part of the mantissa. The bias is#$
 .  See Section .Ð!"""""""Ñ #Þ$#

 a. What is the range of exponent data?
 b. Determine the largest positive integer that may be stored.
 c. Discuss the accuracy of this computer.

2-6. Consider the Ho-Hum computer with a  bit word as follows: bit number 1 stores the"'
 sign of R (  for positive); bits number  -  the exponent data, and bits  -   the! # ' ( "'
 fractional part of the mantissa. The bias is .  See Section .Ð!""""Ñ #Þ$#

 a. What is the range of exponent data?
 b. Determine the largest positive integer that may be stored.
 c. Discuss the accuracy of the Ho-Hum computer.
 d. Determine the decimal equivalent of the machine number
      ! ""!!! "!!!"!!!!"
 e. What is the next machine number after   ?! ""!!! "!!!"!!!!"

2-7. Use MATLAB's   to determine the smallest positive real numberrealmin 
 that can be expressed.  Explain the result using the IEEE  bit word.'%

2-8. The factorial function is a source of integers.  Verify the statement found in
  by computing the factorials of ,  and .  It will be>> help factorial #" ## #$
 necessary to look up the factorials in mathematical tables.

2-9. The value  is exact. Show that is not.>> 2^53 >> 2^54 


