
 Разпределени системи
Отдалечено извикване

на методи

доц. д-р Йордан Денев
denev@fmi.uni-sofia.bg

Мрежово програмиране

Исползван; http://www.comp.hkbu.edu.hk/~jng/comp3320/rmi.html

Java Remote Object Invocation (RMI)

RMI applications often comprise two separate
programs, a server and a client. A typical server
program creates some remote objects, makes
references to these objects accessible, and waits
for clients to invoke methods on these objects.

A typical client program obtains a remote reference
to one or more remote objects on a server and then
invokes methods on them. RMI provides the
mechanism by which the server and the client
communicate and pass information back and forth.

Local Machine (Client)

SampleServer remoteObject;
int s;
…

s = remoteObject.sum(1,2);

System.out.println(s);

Remote Machine (Server)

public int sum(int a,int b)
{
 return a + b;
}

1,2

3

• Locate remote objects. Applications can use various
mechanisms to obtain references to remote objects. For
example, an application can register its remote objects
with RMI's simple naming facility, the RMI registry.
Alternatively, an application can pass and return remote
object references as part of other remote invocations.

• Communicate with remote objects. Details of
communication between remote objects are handled by
RMI. To the programmer, remote communication looks
similar to regular Java method invocations.

• Load class definitions for objects that are passed
around. Because RMI enables objects to be passed back
and forth, it provides mechanisms for loading an object's
class definitions as well as for transmitting an object's data.

The General RMI Architecture

• The server must first bind
its name to the registry

• The client lookup the server
name in the registry to
establish remote references.

• The Stub serializing the
parameters to skeleton, the
skeleton invoking the
remote method and
serializing the result back to
the stub.

RMI Server

skeleton

stub

RMI Client

Registry

bind

lookupreturn call

Local Machine

Remote Machine

The Stub and Skeleton

• A client invokes a remote method, the call is first
forwarded to stub.

• The stub is responsible for sending the remote call over to
the server-side skeleton

• The stub opening a socket to the remote server,
marshaling the object parameters and forwarding the data
stream to the skeleton.

• A skeleton contains a method that receives the remote
calls, unmarshals the parameters, and invokes the actual
remote object implementation.

St
ubRMI Client RMI Server

skeleton

return

call

Steps for Developing an RMI System
1. Define the remote interface

A remote interface specifies the methods that can be
invoked remotely by a client. Clients program to remote
interfaces, not to the implementation classes of those
interfaces. The design of such interfaces includes the
determination of the types of objects that will be used as
the parameters and return values for these methods.

2. Develop the remote object by implementing the remote
interface.
Remote objects must implement one or more remote
interfaces. The remote object class may include
implementations of other interfaces and methods that
are available only locally. If any local classes are to be
used for parameters or return values of any of these
methods, they must be implemented as well.

3. Develop the client program.
Clients that use remote objects can be implemented at
any time after the remote interfaces are defined,
including after the remote objects have been deployed.

4. Compile the Java source files.
5. Generate the client stubs and server skeletons.
6. Start the RMI registry.
7. Start the remote server objects.
8. Run the client

Step 1: Defining the Remote Interface

• To create an RMI application, the first step is the defining
of a remote interface between the client and server
objects.

/* SampleServer.java */
import java.rmi.*;

public interface SampleServer extends Remote
{
 public int sum(int a,int b) throws RemoteException;
}

Step 2: Develop the remote object and its interface

• The server is a simple unicast remote server.
• Create server by extending java.rmi.server.UnicastRemoteObject.
• The server uses the RMISecurityManager to protect its resources

while engaging in remote communication.

/* SampleServerImpl.java */
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class SampleServerImpl extends UnicastRemoteObject
 implements SampleServer
{
 SampleServerImpl() throws RemoteException
 {
 super();
 }

• Implement the remote methods
/* SampleServerImpl.java */
 public int sum(int a,int b) throws RemoteException
 {
 return a + b;
 }
}
• The server must bind its name to the registry, the client

will look up the server name.
• Use java.rmi.Naming class to bind the server name

to registry. In this example the name call “SAMPLE-
SERVER”.

• In the main method of your server object, the RMI
security manager is created and installed.

/* SampleServerImpl.java */
 public static void main(String args[])
 {
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 //set the security manager
 //create a local instance of the object
 SampleServerImpl Server = new SampleServerImpl();
 //put the local instance in the registry
 Naming.rebind(“//localhost/SAMPLE-SERVER" , Server);

 System.out.println("Server waiting.....");
 }
 catch (java.net.MalformedURLException me) {
 System.out.println("Malformed URL: " +

me.toString()); }
 catch (RemoteException re) {
 System.out.println("Remote exception: " +

re.toString()); }
 }

Step 3: Develop the client program

• In order for the client object to invoke methods on the
server, it must first look up the name of server in the
registry. You use the java.rmi.Naming class to
lookup the server name.

• The server name is specified as URL in the from
(rmi://host:port/name)

• Default RMI port is 1099.
• The name specified in the URL must exactly match the

name that the server has bound to the registry. In this
example, the name is “SAMPLE-SERVER”

• The remote method invocation is programmed using the
remote interface name (remoteObject) as prefix and
the remote method name (sum) as suffix.

Step 3: Develop the client program

import java.rmi.*;
import java.rmi.server.*;
public class SampleClient
{
 public static void main(String[] args)
 {
 // set the security manager for the client
 System.setSecurityManager(new RMISecurityManager());
 //get the remote object from the registry
 try
 {
 System.out.println("Security Manager loaded");
 String url = "//localhost/SAMPLE-SERVER";
 SampleServer remoteObject = (SampleServer)Naming.lookup(url);
 System.out.println("Got remote object");
 System.out.println(" 1 + 2 = " + remoteObject.sum(1,2));
 }

catch (RemoteException exc) {
 System.out.println("Error in lookup: " + exc.toString()); }
 catch (java.net.MalformedURLException exc) {
 System.out.println("Malformed URL: " + exc.toString()); }
 catch (java.rmi.NotBoundException exc) {
 System.out.println("NotBound: " + exc.toString());
 }
 }
}

Step 4 & 5: Compile the Java source files &
Generate the client stubs and server skeletons

• Assume the program compile and executing at elpis on
~/rmi

• Once the interface is completed, you need to generate
stubs and skeleton code. The RMI system provides an RMI
compiler (rmic) that takes your generated interface class
and procedures stub code on its self.

elpis:~/rmi> set CLASSPATH=”~/rmi”
elpis:~/rmi> javac SampleServer.java
elpis:~/rmi> javac SampleServerImpl.java
elpis:~/rmi> rmic SampleServerImpl

elpis:~/rmi> javac SampleClient.java

Step 6: Start the RMI registry

• The RMI applications need install to Registry. And the
Registry must start manual by call rmiregisty.

• The rmiregistry us uses port 1099 by default. You can
also bind rmiregistry to a different port by indicating the
new port number as : rmiregistry <new port>

 elpis:~/rmi> rmiregistry

• Remark: On Windows, you have to type in from the
command line:
> start rmiregistry

Steps 7 & 8: Start the remote server objects & Run
the client

• Once the Registry is started, the server can be started and
will be able to store itself in the Registry.

• Because of the grained security model in Java 2.0, you
must setup a security policy for RMI by set
java.security.policy to the file policy.all

elpis:~/rmi> java –Djava.security.policy=policy.all
SampleServerImpl

elpis:~/rmi> java –Djava.security.policy=policy.all
SampleClient

Java Policy File

• In Java 2, the java application must first obtain information regarding its
privileges. It can obtain the security policy through a policy file. In above
example, we allow Java code to have all permissions, the contains of the
policy file policy.all is:

 grant {
permission java.security.AllPermission;

 };
• Now, we given an example for assigning resource permissions:
 grant {

permission java.io.filePermission “/tmp/*”, “read”,
“write”;
permission java.net.SocketPermission
“somehost.somedomain.com:999”,”connect”;
permission java.net.SocketPermission “*:1024-
65535”,”connect,request”;
permission java.net.SocketPermission “*:80”,”connect”;

 };

Comment for the Java Policy File

1. allow the Java code to read/write any files only under the
/tmp directory, includes any subdirectories

2. allow all java classes to establish a network connection
with the host “somehost.somedomain.com” on port 999

3. allows classes to connection to or accept connections on
unprivileged ports greater than 1024 , on any host

4. allows all classes to connect to the HTTP port 80 on any
host.

• You can obtain complete details by following links:
http://java.sun.com/products//jdk/1.2/docs/guide/security/spec

/security-spec.doc3.html

	Slide 1
	Java Remote Object Invocation (RMI)
	Slide 3
	Slide 4
	The General RMI Architecture
	The Stub and Skeleton
	Steps for Developing an RMI System
	Slide 8
	Step 1: Defining the Remote Interface
	Step 2: Develop the remote object and its interface
	Slide 11
	Slide 12
	Step 3: Develop the client program
	Slide 14
	Slide 15
	Step 4 & 5: Compile the Java source files & Generate the client stubs and server skeletons
	Step 6: Start the RMI registry
	Steps 7 & 8: Start the remote server objects & Run the client
	Java Policy File
	Comment for the Java Policy File

