
доц. д-р Йордан Денев
denev@fmi.uni-sofia.bg

Мрежово програмиране

Връзка към бази от данни

Data Base Access with a SQL
interface

 The direct link

The Data Base ServerA Web Application

PHP + MYSQL

 Connecting to the server
mysql_connect($host,$user,$password);

 Selecting the data base
mysql_select_db($database);

 Executing the SQL statements
$result=mysql_query($SQL_expresion);

An example:

<?php

$con = mysql_connect("localhost","root");

$res=mysql_select_db("student");

mysql_query("SELECT * FROM notes where
fn=1001");

echo mysql_affected_rows();

?>

 Affected rows:
echo mysql_affected_rows();

 Processing of the result:
 mysql_fetch_row ($result) – next row,

presented as an array;
 mysql_fetch_object ($result) – next row,

presented as an object;
 mysql_fetch_array ($result)- next row, presented

as an associative array;

An example:
$con = mysql_connect("localhost","root");

$res=mysql_select_db("student");

$result= mysql_query("SELECT * FROM notes
where fn=1001");

while ($row=mysql_fetch_array($result)) {

echo $row["fn"],":",$row["course_code"],

":",$row["note"],"
";

The output:
1001:M201:4

1001:CS203:4

 Drawbacks of the direct connection
PHP includes several specialized database-access

interfaces that take the form of separate sets of
functions for each database system. There is one set
for MySQL, another for InterBase, another for
PostgreSQL, and so forth. However, having a
different set of functions for each database makes
PHP scripts non-portable at the lexical (source code)
level. For example, the function for issuing an SQL
statement is named mysql_query(),
ibase_query(), or pg_exec(), depending on
whether you are using MySQL, InterBase, or
PostgreSQL.

Connect trough a connector

 Most popular connectors – PDO, ODBC, JDBC

DB server

Web application Connector

 PDO (PHP Data Objects)
PDO supports database access in an engine-independent

manner based on a two-level architecture:

 The top level provides an interface that consists of a set of
classes and methods that is the same for all database engines
supported by PDO. The interface hides engine-specific details
so that script writers need not think about which set of
functions to use.

 The lower level consists of individual drivers. Each driver
supports a particular database engine and translates between
the top-level interface seen by script writers and the
database-specific interface required by the engine. This
provides you the flexibility of using any database for which a
driver exists.

1. To establish a connection to a MySQL server, specify a data
source name (DSN) containing connection parameters, and
optionally the username and password of the MySQL
account that you want to use

$dbh = new PDO("mysql:host=localhost;dbname=test",
"testuser", "testpass");

2. For statements that modify rows and produce no result set,
pass the statement string to the database handle exec()
method:
$count = $dbh->exec ("some SQL statement");

3. For statements that select rows and produce a result set,
invoke the database handle query() method, which executes
the statement and returns an object of the PDOStatement
class:
$sth = $dbh->query ("some SQL statement");

4. Work with the result
 PDO::FETCH_NUM

Return each row of the result set as an array containing
elements that correspond to the columns named in the
SELECT statement and that are accessed by numeric indices
beginning at 0:
while ($row = $sth->fetch (PDO::FETCH_NUM))

 printf ("Name: %s, Category: %s\n", $row[0], $row[1]);

 PDO::FETCH_ASSOC

Return each row as an array containing elements that are
accessed by column name:
while ($row = $sth->fetch (PDO::FETCH_ASSOC))

printf ("Name: %s, Category: %s\n", $row["name"],
$row["category"]);

Java SQL interface

Connecting to the server
 register the RDBMS driver (connector) you plan

to use;
 invoke its getConnection() method.

JDBC – RDBMS Java Interface

An example
import java.sql.*;

……………………………

Connection conn = null;

try {

String userName = "testuser";

String password = "testpass";

String url = "jdbc:mysql://localhost/test";

Class.forName ("com.mysql.jdbc.Driver").newInstance ();

conn = DriverManager.getConnection (url, userName,
password);

System.out.println ("Database connection established");

} catch (Exception e) {

System.err.println ("Cannot connect to database
server");

}

Issuing queries that return no result set
 obtain a Statement object from the
Connection object;
 executeUpdate() is the appropriate method

for issuing SQL statements, that modify the
database.

An example
Statement s = conn.createStatement ();
int count;
s.executeUpdate ("DROP TABLE IF EXISTS animal");
s.executeUpdate

("CREATE TABLE animal (“
+ "id INT UNSIGNED NOT NULL AUTO_INCREMENT,"
+ "PRIMARY KEY (id),"
+ "name CHAR(40), category CHAR(40))");

count = s.executeUpdate (
"INSERT INTO animal (name, category)"

+ " VALUES"
+ "('snake', 'reptile'),"
+ "('frog', 'amphibian'),"
+ "('tuna', 'fish'),"
+ "('racoon', 'mammal')");

s.close ();
System.out.println (count + " rows were inserted");

Issuing queries that return a result set
 For statements such as SELECT queries that

retrieve information from the database, use
executeQuery().
 After calling this method, create a
ResultSet object and use it to iterate
through the rows returned by your query.
 To obtain the column values from each row,

invoke getXXX() methods that match the
column data types

An example

Statement s = conn.createStatement ();
s.executeQuery ("SELECT id, name, category FROM animal");
ResultSet rs = s.getResultSet ();
int count = 0;
while (rs.next ()) {

int idVal = rs.getInt ("id");
String nameVal = rs.getString ("name");
String catVal = rs.getString ("category");
System.out.println (

"id = " + idVal + ",
name = " + nameVal + ",
category = " + catVal);

++count;
}
rs.close ();
s.close ();
System.out.println (count + " rows were retrieved");

An Object approach to
the Data Base Access

Persistence refers to the characteristic of
data that outlives the execution of the
program that created it. Without this
capability, data only exists in RAM, and will be
lost when the memory loses power, such as
on computer shutdown.
This is achieved in practice by storing the data

in non-volatile storage such as a file system or
a relational database or an object database.

Persistance data in object systems

In object oriented systems,we represent
entities as objects and classes and use
database to persist those objects. Most of the
data-driven applications today,are written
using object oriented technologies. The idea
of representing entities as set of classes is to
re-use the classes and objects once written.

Object vs. Relational Model

 Objects usualy are not scalars.
 The object data are stored in several

instances.
 The granularity problem comes when the

number of classes mapping to number of
tables in the database do not match.

(more detailed in http://www.lalitbhatt.com/tiki-index.php?page=Introduction+to+ORM)

The Java Persistence API (JPA)

It is a Java programming language framework
that allows developers to manage relational
data in Java Platforms, Standard Edition..
Persistence consists of three areas:
 the API, defined in the javax.persistence package
 the Java Persistence Query Language
 object/relational metadata

Entities

An entity is a lightweight persistence domain
object.
Typically an entity represents a table in a

relational database, and each entity instance
corresponds to a row in that table.

An example
import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity // java annotation
@Table(name=“EMPLOYEE TABLE")
public class Employee {
@Id
private int id;
private String name;

public Employee() { }
public Employee(int id) {
this.id = id; }

public int getId() {
return id; }
public void setId(int id) {
this.id = id; }

public String getName() {
return name; }
public void setName(String name) {
this.name = name; }
}

 Entity manager
 If you want the JPA framework to manage a

particular entity instance, you have to put it
explicitly under the control of a JPA
component called entity manager.
 As long as the entity manager controls the

entity, you can expect that changes to the
entity will be synchronized with the database.
 Once this control ends, however, the entity is

again nothing but a regular Java object.

An example - persisting a new entity
EntityManager em;

// set up a new entity instance

Employee person = new Employee(10);

person.setName("Miller");

// put it under the management of the entity manager

em.persist(person);

An example - finding an entity by Its unique
identifier

EntityManager em;

// retrieve a managed entity instance

Employee person = em.find(Employee.class,
Integer.valueOf(10));

if (person != null) {

// schedule the entity for removal

em.remove(person);

}

