
доц. д-р Йордан Денев
denev@fmi.uni-sofia.bg

Мрежово програмиране

Архитектура на Web системи

Model View Controller (MVC)

 Contoller
 Declare special environment setting
 Start Session;
 Include configuration settings, database abstraction
class, and any other common class.
 Authenticate user, and assign user roles by calling
Model object.
 Verify HTTP Request; aggregate and assemble
execution parameters from HTTP Request.
 Code a control flow with the help of execution
parameters and call Model objects and View objects in
the order to facilitate data-flow.

Model
Model classes are written to manage and to

regulate the flow of data during the execution
of business logic in the application. These
classes are instantiated in the Controller file,
and are invoked by public methods therein.
There is a connection to the data base engine.

 View
View objects (set of files, and not object

technically) are basically HTML files containing
for example PHP/JSP print statements or
simple conditional and loop statements
spread within the HTML code.

Ruby on Rails
Ruby on Rails, often shortened to Rails or RoR, is an open

source web application framework for the Ruby programming
language.

Rails uses the Model-View-Controller (MVC) architecture pattern
to organize application programming.[5]

Ruby on Rails includes tools that make common development
tasks easier "out of the box", such as scaffolding that can
automatically construct some of the models and views
needed for a basic website.[6] Also included are (WEBrick), a
simple ruby web server and Rake, a build system. Together
with Rails these tools provide a basic development
environment.

 Akelos PHP Framework a Ruby on Rails port to PHP4/5.

 Barebonesmvc A one-file, no-configuration, PHP 5 MVC framework.

 CakePHP webapplication framework modeled after the concepts of Ruby
on Rails.

 CodeIgniter A PHP MVC framework.

 ash.MVC A Simple MVC Framework with PHP.

 FUSE A powerful but easy-to-use PHP 5 Framework for MVC development
modeled after the concepts of Ruby on Rails.

 Zend Framework A PHP 5-based MVC framework modeled after the
concepts of Ruby on Rails.

 Symfony Framework PHP 5 MVC Framework modeled after the concepts
of Ruby on Rails.

PHP MVC frameworks

The Akelos PHP Workflow

1. Akelos will break up your request into three parameters according to your
/config/routes.php file (more on this later)
 controller: book
 action: show
 id: 2

2. Once Akelos knows about this request it will look for the file
/app/controllers/book_controller.php and if found it will instantiate the class BookController

3. The controller will look for a model that matches the parameter controller from the request.
In this case it will look for /app/models/book.php. If found, it will create an instance of the
model on the controller $this->Book attribute. If an id is on the request, it will search into the
database for the Book with the id 2 and that will remain on $this->Book

4. Now it will call the action show from the BookController class if it's available.
5. Once the show action has been executed, the controller will look for the view file at

/app/views/book/show.tpl and will render the results into the $content_for_layout variable.
6. Now Akelos will look for a layout named like the controller at /app/views/layouts/book.tpl. If

found it will render the layout inserting $content_for_layout content and sending the output
to the browser.

Simfony framework

 The Model layer defines the business logic (the database
belongs to this layer). Symfony stores all the classes and files
related to the Model in the lib/model/ directory.

 The View is what the user interacts with (a template engine is
part of this layer). In symfony, the View layer is mainly made
of PHP templates. They are stored in various templates/
directories .

 The Controller is a piece of code that calls the Model to get
some data that it passes to the View for rendering to the
client. So, all requests are managed by front controllers
(index.php and frontend_dev.php). These front controllers
delegate the real work to actions. These actions are logically
grouped into modules.

MVC Java frameworks
 Induction
 JSF

 LongJump

 Oracle Application Framework

 PureMVC, a framework for Java

 Sofia

 Spring MVC Framework

 Struts

 Stripes

 Tapestry[6]

 WebObjects

 WebWork

Struts – a Java framework

 The Struts Controller Components:
Whenever a user request for something, then the request is handled
by the Struts Action Servlet. When the ActionServlet receives the
request, it intercepts the URL and based on the Struts Configuration
files, it gives the handling of the request to the Action class. Action
class is a part of the controller and is responsible for communicating
with the model layer.

• The Struts View Components:

They are responsible for displaying the information provided by the
model components. Mostly we use the Java Server Pages (JSP) for the
view presentation. To extend the capability of the view we can use the
Custom tags, java script etc.

• The Struts model component:

The model components provides a model of the business logic behind
a Struts program. It provides interfaces to databases or back- ends
systems. Model components are generally a java class. There is not
any such defined format for a Model component.

Multitier Architecture

PHP approach

Simple Java Approach

Java EE5 architecture

 JavaServer Faces Technology User Interface

The JSP page, myform.jsp, is a JavaServer Faces page, which is a JSP page
that includes JavaServer Faces tags. It expresses the user interface
components by using custom tags defined by JavaServer Faces technology.

Why Enterprise Java Beans (EJB)

It is a standard way of writing distributed
components. Here comes the features that
are not available with RMI.

1. Security.
2. Searching .
3. Transactions.
4. Persistence .

J2EE server and EJB container
The J2EE server provides an environment that supports the

execution of applications developed using Enterprise
JavaBeans™ (EJB) components. It manages and coordinates
the allocation of resources to the applications.

The J2EE server must provide one or more EJB containers. An
EJB container manages the enterprise beans contained within
it. For each enterprise bean, the container is responsible for
registering the object, providing a remote interface for the
object, creating and destroying object instances, checking
security for the object, managing the active state for the
object, and coordinating distributed transactions. Optionally,
the container can also manage all persistent data within the
object.

Commercial J2EE servers
• BEA WebLogic Server (BEA Systems)

It is the industry's most comprehensive Java platform for developing,
deploying, and integrating enterprise applications. It provides the
foundation for application grid, which is an architecture that enables
enterprises to outperform their competitors while minimizing operational
costs

• WebSphere Application Server (IBM)

Java EE 5 certification, EJB 3.0 support and Java Persistence API (JPA) and
Java Development Kit (JDK) 6.0, deliver simplified programming models
for building reusable persistent object

• Netscape Application Server (Netscape)

• Oracle Application Server

Oracle has acquired BEA Systems, Inc., a leading provider of enterprise
application infrastructure solutions.

Open source J2EE servers
• Apache Geronimo is a new effort coordinated by the Apache Software Foundation

to make a J2EE compatible container.

• JBoss is advanced middleware with a full J2EE based personality that IT
departments look for. But that is not all, the OEM and ISV community embraced
JBoss as a highly flexible service oriented architecture on which to build their own
products.

• JFox is an Open Source, standards-compliant, J2EE based application server
implemented in 100% Pure Java.

• JOnAS is the Open Source implementation by ObjectWeb of the J2EETM
specification. JOnAS is a pure JavaTM implementation of this specification that
relies on the JDK. JOnAS is part of the ObjectWeb Open Source initiative, which
was launched in collaboration with several partners including Bull, the France
Telecom R&D division and INRIA.

• OpenEJB is an open source, modular, configurable, and extendable EJB Container
System and EJB Server. It comes with fast, lightweight EJB Servers for both Local
and Remote access. That's right, deploy your EJBs into the container system, then
just start the Remote EJB Server from the command line! Or, put OpenEJB in your
class path and use it as an embedded library through the Local EJB Server.

 Java Enterprise Beans
(according http://download.oracle.com/javaee/5/tutorial/doc)
Types
• Session Beans

– Stateful beans - they keep track of which calling program they are
dealing with throughout a session

– Stateless Beans - are distributed objects that do not have state
associated with them thus allowing concurrent access to the bean

• Entity Beans that managed persistence.

• Message Driven Beans - entirely new type of bean designed to handle
asynchronous JMS messages

 A remote access in EE5
A remote client of an enterprise bean has the

following traits:
 It can run on a different machine and a different

Java virtual machine (JVM) than the enterprise
bean it accesses. (It is not required to run on a
different JVM.)
 It can be a web component, an application client,

or another enterprise bean.
 To a remote client, the location of the enterprise

bean is transparent.

To create an enterprise bean that allows remote
access, you must do one of the following:
 Decorate the business interface of the enterprise

bean with the @Remote annotation:
@Remote

public interface InterfaceName { ... }

 Decorate the bean class with @Remote,
specifying the business interface or interfaces:

@Remote(InterfaceName.class)

public class BeanName implements InterfaceName {
... }

The remote interface defines the business and
life cycle methods that are specific to the
bean.

 Local Clients in EE5
A local client has these characteristics:

 It must run in the same JVM as the enterprise
bean it accesses.
 It can be a web component or another enterprise

bean.
 To the local client, the location of the enterprise

bean it accesses is not transparent.

• The local business interface defines the bean’s
business and life cycle methods. If the bean’s
business interface is not decorated with @Local or
@Remote, and the bean class does not specify the
interface using @Local or @Remote, the business
interface is by default a local interface. To build an
enterprise bean that allows only local access, you
may, but are not required to do one of the following:
 Annotate the business interface of the enterprise

bean as a @Local interface.
 Specify the interface by decorating the bean class

with @Local and specify the interface name.

Deciding on Remote or Local Access

 Tight or loose coupling of related beans:. Tightly
coupled beans are good candidates for local
access.
 Type of client: If an enterprise bean is accessed by

application clients, then it should allow remote
access.
 Component distribution: In a distributed scenario,

the enterprise beans should allow remote access.
 Performance.

 The life cycle of stateless bean

The life cycle of stateful bean

 An example of a stateless bean
The purpose of converter is to calculate currency conversions
between Japanese yen and Eurodollars.

package com.sun.tutorial.javaee.ejb;
import java.math.BigDecimal;
import javax.ejb.Remote;
@Remote
public interface Converter {

public BigDecimal dollarToYen(BigDecimal dollars);
public BigDecimal yenToEuro(BigDecimal yen);

}

package com.sun.tutorial.javaee.ejb;
import java.math.BigDecimal;
import javax.ejb.*;
@Stateless
public class ConverterBean implements Converter {

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_UP);
}

public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal.ROUND_UP);
}

}

 For an application client look in
http://download.oracle.com/javaee/5/tutorial/doc/bnbnj.html

 For a Web client look in
http://download.oracle.com/javaee/5/tutorial/doc/bnbnp.html

 How to compile look in
http://download.oracle.com/javaee/5/tutorial/doc/bnbnc.html

