
JAVA Web Components

доц. д-р Йордан Денев
denev@fmi.uni-sofia.bg

Мрежово програмиране

Web container

 Servlets are Java programming language classes that
dynamically process requests and construct responses.

JSP pages are text-based documents that execute as servlets
but allow a more natural approach to creating static content.

Web container– includes
a basic web server;
a request/response translator ;
 a runtime environment for the web components;
 supports specific objects and methods;

Servlets

The life cycle
1. If an instance of the servlet does not exist, the Web container

 Loads the servlet class.

 Creates an instance of the servlet class.
 Initializes the servlet instance by calling the init method.

2. When the request is received it invokes the service method.

3.service calls doMethod according the Method specified in
the HTTP request and passes to it a request and response object.

4. When the servlet is removed or reloaded invokes destroy
method.

 The Servlet Structure
The servlet is an Java class, which extends the
base class HttpServlet.
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class <ServletName> extends HttpServlet {

//servlet methods

}

Initializing a Servlet
 After the Web container loads and instantiates the

servlet class and before it delivers requests from
clients, the Web container initializes the servlet.

 You can customize this process to allow the servlet to
read persistent configuration data, initialize
resources, and perform any other one-time activities
by overriding the init method of the Servlet interface.

 A servlet that cannot complete its initialization
process should throw UnavailableException.

 An example
public class CatalogServlet extends HttpServlet {

private BookDB bookDB;

public void init() throws ServletException {

bookDB = OpenDB(“Book DB”);

if (bookDB == null)

throw new UnavailableException("Couldn't get
database.");

}

}

The service and doMethod Methods
 The service provided by a servlet is implemented in the
service method of a GenericServlet. It invokes the
doMethod methods (where Method can take the value Get,
Delete, Options, Post, Put, Trace).

 An example:
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

………………………………………………………….

}

Getting Information from Requests
Parameters, which are typically used to
conveyinformation between clients and
servlets:

String bookId = request.getParameter("Add");

if (bookId != null) {

………………………………………………………………………

}

Constructing Responses
 Retrieve an output stream to use to send data to the

client. To send character data, use the PrintWriter
object returned by the response's getWriter method.

 Indicate the content type (for example, text/html) being
returned by the response with the
setContentType(String) method.

 Indicate whether to buffer output with the
setBufferSize(int) method.

An example:
public class BookDetailsServlet extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// set headers before accessing the Writer

response.setContentType("text/html");

response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the response

out.println("<html>" +"<head><title>+
"TitleBookDescription"+</title></head>");

………

JSP

JSP page is a text document that contains two
types of text: static data, which can be
expressed in any text-based format (such as
HTML, SVG, WML, and XML), and JSP elements,
which construct dynamic content.

JSP elements
JSP Element Syntax Interpretation

JSP Expression <%= expression %> Expression is evaluated and
placed in output.

JSP Scriptlet <% code %>
Code is inserted in service
method

SP Comment <%-- comment --%>
Comment; ignored when JSP page
is translated into servlet.

SP include
Directive

<%@ include
file="url" %>

A file on the local system to be
included when the JSP page is
translated into a servlet.

 Predefined objects
 request, the HttpServletRequest;
 response, the HttpServletResponse;
 session, the HttpSession associated with the

request (if any);
 out, the PrintWriter (a buffered version of type

JspWriter) used to send output to the client.

• An example:
Your hostname: <%= request.getRemoteHost() %>

Your name: <%= request.getParameter(“Name”) %>

 Access to CGI variables

"AUTH_TYPE", request.getAuthType() ,
"CONTENT_LENGTH",

String.valueOf(request.getContentLength())
"CONTENT_TYPE", request.getContentType()

"DOCUMENT_ROOT", getServletContext().getRealPath("/")
"PATH_INFO", request.getPathInfo()

"PATH_TRANSLATED", request.getPathTranslated()
"QUERY_STRING", request.getQueryString()

"REMOTE_ADDR", request.getRemoteAddr()
"REMOTE_HOST", request.getRemoteHost()
"REMOTE_USER", request.getRemoteUser()
"REQUEST_METHOD", request.getMethod()
"SCRIPT_NAME", request.getServletPath()
"SERVER_NAME", request.getServerName()
"SERVER_PORT", String.valueOf(request.getServerPort())

"SERVER_PROTOCOL", request.getProtocol()
"SERVER_SOFTWARE", getServletContext().getServerInfo()

An example:

<html>
<head>
<title>Sample Application JSP Page</title>
</head>
<body bgcolor=white>

<CENTER>

<%= new String("
Tomcat salutes you!
") %>
</CENTER>
<%= "The request is sent from " +request.getRemoteHost() %>
<%

String queryData = request.getQueryString();
if (queryData == null)

out.println("
 No parameters were sent!");
else

out.println("
Parameters are:" + queryData);
%>
</body>
</html>

