The C programming Language

The C programming Language
By Brian W. Kernighan and Dennis M. Ritchie.

Published by Prentice-Hall in 1988

ISBN 0-13-110362-8 (paperback)
ISBN 0-13-110370-9

Contents

. Preface
. Prefaceto thefirst edition
. Introduction

1. Chapter 1: A Tutorial Introduction
1. Getting Started

Variables and Arithmetic Expressions
The for statement
Symbolic Constants
Character |nput and Output

1. File Copying

2. Character Counting

3. Line Counting

4. Word Counting
Arrays
Functions
Arguments - Call by Value
Character Arrays
10. External Variables and Scope

g s wDN

© ® N O

2. Chapter 2: Types, Operators and Expressions
1. Variable Names
2. DataTypes and Sizes
3. Constants
4. Declarations

http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (1 of 5) [9/6/2002 12:20:42]

The C programming Language

© ® N O

10.
11.
12.

Arithmetic Operators

Relationa and Logical Operators

Type Conversions

I ncrement and Decrement Operators
Bitwise Operators

Assignment Operators and Expressions
Conditional Expressions

Precedence and Order of Evaluation

3. Chapter 3: Control Flow

1.

© N O WLWDN

Statements and Blocks
If-Else

Else-If

Switch

L oops - While and For
L oops - Do-While
Break and Continue
Goto and labels

4. Chapter 4: Functions and Program Structure

1.

el
= o

© N O WDN

Basics of Functions

Functions Returning Non-integers
External Variables

Scope Rules

Header Files

Static Variables

Register Variables

Block Structure

[nitialization

Recursion

. The C Preprocessor

1. FilelInclusion
2. Macro Substitution
3. Conditional Inclusion

5. Chapter 5: Pointers and Arrays

1.
2.

Pointers and Addresses
Pointers and Function Arguments

http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (2 of 5) [9/6/2002 12:20:42]

The C programming Language

© o N Ok

10.
11.
12.

Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointer Arrays, Pointers to Pointers
Multi-dimensional Arrays
Initialization of Pointer Arrays
Pointers vs. Multi-dimensional Arrays
Command-line Arguments

Pointers to Functions

Complicated Declarations

6. Chapter 6: Structures

1.

©OoNOOrWD

Basics of Structures
Structures and Functions
Arrays of Structures
Pointersto Structures
Self-referential Structures
Table Lookup

Typedef

Unions

Bit-fields

7. Chapter 7: Input and Output

1.

© N O~ OWDN

Standard Input and Output
Formatted Output - printf
Variable-length Argument Lists
Formatted I nput - Scanf

File Access

Error Handling - Stderr and Exit
Line Input and Output
Miscellaneous Functions

String Operations

Character Class Testing and Conversion
Ungetc

Command Execution
Storage Management
Mathematical Functions
Random Number generation

No ok owbdrE

http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (3 of 5) [9/6/2002 12:20:42]

The C programming Language

8. Chapter 8: The UNIX System Interface
1. File Descriptors
Low Level 1/O - Read and Write
Open, Creat, Close, Unlink
Random Access - Lseek
Example - An implementation of Fopen and Getc
Example - Listing Directories
Example - A Storage Allocator

N O~

. Appendix A: Reference Manual
[ntroduction

Lexical Conventions
Syntax Notation
Meaning of Identifiers
Objects and Lvalues
Conversions
Expressions
Declarations
Statements

External Declarations
. Scope and Linkage

. Preprocessor

. Grammar

©ooN Ok~ owDdDPRE

=
©

=
=

=
N

=
w

. Appendix B: Standard Library

1. Input and Output: <stdio.h>

1. File Operations

Formatted Output
Formatted I nput
Character Input and Output Functions
Direct Input and Output Functions
File Positioning Functions
. Error Functions
Character Class Tests. <ctype.h>
String Functions: <string.h>
Mathematical Functions. <math.h>
Utility Functions: <stdlib.h>
Diagnostics: <assert.h>

NOoO Ok~ owDd

o0k wbd

http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (4 of 5) [9/6/2002 12:20:42]

The C programming Language

7. Variable Argument Lists: <stdarg.h>
8. Non-local Jumps: <setjmp.h>
9. Signals. <signal.h>
10. Date and Time Functions: <time.h>
11. Implementation-defined Limits: <limits.h> and <float.h>

. Appendix C: Summary of Changes

http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (5 of 5) [9/6/2002 12:20:42]

Preface

Index -- Prefaceto thefirst edition

Preface

The computing world has undergone a revolution since the publication of The C Programming Language
in 1978. Big computers are much bigger, and personal computers have capabilities that rival mainframes
of a decade ago. During thistime, C has changed too, although only modestly, and it has spread far
beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years, and the creation of compilers
by groups not involved in its design, combined to demonstrate a need for a more precise and more
contemporary definition of the language than the first edition of this book provided. In 1983, the
American National Standards Institute (ANSI) established a committee whose goal was to produce ""an
unambiguous and machine-independent definition of the language C", while still retaining its spirit. The
result isthe ANSI standard for C.

The standard formalizes constructions that were hinted but not described in the first edition, particularly
structure assignment and enumerations. It provides a new form of function declaration that permits cross-
checking of definition with use. It specifies a standard library, with an extensive set of functions for
performing input and output, memory management, string manipulation, and similar tasks. It makes
precise the behavior of features that were not spelled out in the original definition, and at the same time
states explicitly which aspects of the language remain machine-dependent.

This Second Edition of The C Programming Language describes C as defined by the ANSI standard.
Although we have noted the places where the language has evolved, we have chosen to write exclusively
in the new form. For the most part, this makes no significant difference; the most visible change is the
new form of function declaration and definition. Modern compilers already support most features of the
standard.

We have tried to retain the brevity of the first edition. C is not a big language, and it is not well served by
abig book. We have improved the exposition of critical features, such as pointers, that are central to C
programming. We have refined the original examples, and have added new examplesin several chapters.
For instance, the treatment of complicated declarations is augmented by programs that convert
declarations into words and vice versa. As before, all examples have been tested directly from the text,
which isin machine-readable form.

Appendix A, the reference manual, is not the standard, but our attempt to convey the essentials of the

http://freebooks.by.ru/view/CProgrammingLanguage/preface.html (1 of 2) [9/6/2002 12:20:46]

Preface

standard in asmaller space. It is meant for easy comprehension by programmers, but not as a definition
for compiler writers -- that role properly belongs to the standard itself. Appendix B is asummary of the
facilities of the standard library. It too is meant for reference by programmers, not implementers.
Appendix C isaconcise summary of the changes from the original version.

Aswe said in the preface to the first edition, C ““wears well as one's experience with it grows". With a
decade more experience, we still feel that way. We hope that this book will help you learn C and use it
well.

We are deeply indebted to friends who helped us to produce this second edition. Jon Bently, Doug Gwyn,
Doug Mcllroy, Peter Nelson, and Rob Pike gave us perceptive comments on almost every page of draft
manuscripts. We are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G.R. Emlin,
Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John Linderman, Dave Prosser, Gene
Spafford, and Chris van Wyk. We also received helpful suggestions from Bill Cheswick, Mark
Kernighan, Andy Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Weinberger.
Dave Prosser answered many detailed questions about the ANSI standard. We used Bjarne Stroustrup's
C++ trandator extensively for local testing of our programs, and Dave Kristol provided us with an ANSI
C compiler for final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanksto all.

Brian W. Kernighan
Dennis M. Ritchie

Index -- Preface to thefirst edition

http://freebooks.by.ru/view/CProgrammingLanguage/preface.html (2 of 2) [9/6/2002 12:20:46]

Preface to the first edition

Back to the Preface -- Index -- Introduction

Preface to the first edition

C is a genera -purpose programming language with features economy of expression, modern flow control
and data structures, and arich set of operators. Cisnot a very high level" language, nor a "big" one,
and is not specialized to any particular area of application. But its absence of restrictions and its
generality make it more convenient and effective for many tasks than supposedly more powerful
languages.

C was originally designed for and implemented on the UNIX operating system on the DEC PDP-11, by
Dennis Ritchie. The operating system, the C compiler, and essentially all UNIX applications programs
(including all of the software used to prepare this book) are written in C. Production compilers also exist
for several other machines, including the IBM System/370, the Honeywell 6000, and the Interdata 8/32.
C isnot tied to any particular hardware or system, however, and it is easy to write programs that will run
without change on any machine that supports C.

Thisbook is meant to help the reader learn how to program in C. It contains atutorial introduction to get
new users started as soon as possible, separate chapters on each major feature, and a reference manual.
Most of the treatment is based on reading, writing and revising examples, rather than on mere statements
of rules. For the most part, the examples are complete, real programs rather than isolated fragments. All
examples have been tested directly from the text, which isin machine-readable form. Besides showing
how to make effective use of the language, we have also tried where possible to illustrate useful
algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some familiarity with basic
programming concepts like variables, assignment statements, loops, and functions. Nonetheless, a novice
programmer should be able to read along and pick up the language, although access to more
knowledgeable colleague will help.

In our experience, C has proven to be a pleasant, expressive and versatile language for a wide variety of
programs. It is easy to learn, and it wears well as on's experience with it grows. We hope that this book
will help you to use it well.

The thoughtful criticisms and suggestions of many friends and colleagues have added greatly to this book
and to our pleasure in writing it. In particular, Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy Bill
Roome, Bob Rosin and Larry Rosler all read multiple volumes with care. We are also indebted to Al

http://freebooks.by.ru/view/CProgrammingLanguage/prefacel.html (1 of 2) [9/6/2002 12:20:48]

Preface to the first edition

Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion Harris, Rick Holt, Steve Johnson,
John Mashey, Bob Mitze, Ralph Muha, Peter Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken
Thompson, and Peter Weinberger for helpful comments at various stages, and to Mile Lesk and Joe
Ossannafor invaluabl e assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie

Back to the Preface -- Index -- Introduction

http://freebooks.by.ru/view/CProgrammingLanguage/prefacel.html (2 of 2) [9/6/2002 12:20:48]

Introduction

Back to the Preface to the First Edition -- Index -- Chapter 1

Introduction

C isagenera-purpose programming language. It has been closely associated with the UNIX operating
system where it was devel oped, since both the system and most of the programs that run on it are written
in C. The language, however, is not tied to any one operating system or machine; and although it has
been called a " system programming language" because it is useful for writing compilers and operating
systems, it has been used equally well to write major programs in many different domains.

Many of the important ideas of C stem from the language BCPL, developed by Martin Richards. The
influence of BCPL on C proceeded indirectly through the language B, which was written by Ken
Thompson in 1970 for the first UNIX system on the DEC PDP-7.

BCPL and B are ""typeless’ languages. By contrast, C provides a variety of datatypes. The fundamental
types are characters, and integers and floating point numbers of several sizes. In addition, thereisa
hierarchy of derived data types created with pointers, arrays, structures and unions. Expressions are
formed from operators and operands; any expression, including an assignment or a function call, can be a
statement. Pointers provide for machine-independent address arithmetic.

C provides the fundamental control-flow constructions required for well-structured programs: statement
grouping, decision making (i f - el se), selecting one of a set of possible values (swi t ch), looping with
the termination test at thetop (whi | e, f or) or at the bottom (do), and early loop exit (br eak).

Functions may return values of basic types, structures, unions, or pointers. Any function may be called
recursively. Local variables are typically “automatic”, or created anew with each invocation. Function
definitions may not be nested but variables may be declared in a block-structured fashion. The functions
of aC program may exist in separate source files that are compiled separately. Variables may be internal
to afunction, external but known only within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion of other source files, and
conditional compilation.

Cisardatively low-level" language. This characterization is not peorative; it ssimply meansthat C
deals with the same sort of objects that most computers do, namely characters, numbers, and addresses.
These may be combined and moved about with the arithmetic and logical operators implemented by real
machines.

http://freebooks.by.ru/view/CProgrammingLanguage/intro.html (1 of 4) [9/6/2002 12:20:53]

Introduction

C provides no operations to deal directly with composite objects such as character strings, sets, lists or
arrays. There are no operations that manipulate an entire array or string, although structures may be
copied as aunit. The language does not define any storage allocation facility other than static definition
and the stack discipline provided by the local variables of functions; there is no heap or garbage
collection. Finally, C itself provides no input/output facilities; there are no READ or WRITE statements,
and no built-in file access methods. All of these higher-level mechanisms must be provided by explicitly
called functions. Most C implementations have included a reasonably standard collection of such
functions.

Similarly, C offers only straightforward, single-thread control flow: tests, loops, grouping, and
subprograms, but not multiprogramming, parallel operations, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave deficiency, (Y ou mean | have to
call afunction to compare two character strings?"), keeping the language down to modest size has real
benefits. Since C isrelatively small, it can be described in small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regularly use the entire language.

For many years, the definition of C was the reference manual in the first edition of The C Programming
Language. In 1983, the American National Standards Institute (ANSI) established a committee to
provide a modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI
C", was completed in late 1988. Most of the features of the standard are already supported by modern
compilers.

The standard is based on the original reference manual. The language isrelatively little changed; one of
the goals of the standard was to make sure that most existing programs would remain valid, or, failing
that, that compilers could produce warnings of new behavior.

For most programmers, the most important change is the new syntax for declaring and defining
functions. A function declaration can now include a description of the arguments of the function; the
definition syntax changes to match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it isavery useful addition to the language.

There are other small-scale language changes. Structure assignment and enumerations, which had been
widely available, are now officially part of the language. Floating-point computations may now be done
in single precision. The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor effects on most
programmers.

A second significant contribution of the standard is the definition of alibrary to accompany C. It
specifies functions for accessing the operating system (for instance, to read and write files), formatted
input and output, memory allocation, string manipulation, and the like. A collection of standard headers

http://freebooks.by.ru/view/CProgrammingLanguage/intro.html (2 of 4) [9/6/2002 12:20:53]

Introduction

provides uniform access to declarations of functions in data types. Programs that use this library to
interact with a host system are assured of compatible behavior. Most of the library is closely modeled on
the ““standard 1/0 library" of the UNIX system. Thislibrary was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not see much change.

Because the data types and control structures provided by C are supported directly by most computers,
the run-time library required to implement self-contained programsistiny. The standard library functions
are only called explicitly, so they can be avoided if they are not needed. Most can be writtenin C, and
except for the operating system details they conceal, are themselves portable.

Although C matches the capabilities of many computers, it isindependent of any particular machine
architecture. With alittle careit is easy to write portable programs, that is, programs that can be run
without change on a variety of hardware. The standard makes portability issues explicit, and prescribes a
set of constants that characterize the machine on which the program is run.

C isnot astrongly-typed language, but as it has evolved, its type-checking has been strengthened. The
original definition of C frowned on, but permitted, the interchange of pointers and integers; this haslong
since been eliminated, and the standard now requires the proper declarations and explicit conversions
that had already been enforced by good compilers. The new function declarations are another step in this
direction. Compilers will warn of most type errors, and there is no automatic conversion of incompatible
datatypes. Nevertheless, C retains the basic philosophy that programmers know what they are doing; it
only requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have the wrong precedence; some
parts of the syntax could be better. Nonetheless, C has proven to ben an extremely effective and
expressive language for awide variety of programming applications.

The book is organized as follows. Chapter 1 isatutorial on the central part of C. The purposeisto get the
reader started as quickly as possible, since we believe strongly that the way to learn anew language isto
write programsin it. The tutorial does assume a working knowledge of the basic e ements of
programming; there is no explanation of computers, of compilation, nor of the meaning of an expression
like n=n+1. Although we have tried where possible to show useful programming techniques, the book is
not intended to be areference work on data structures and algorithms; when forced to make a choice, we
have concentrated on the language.

Chapters 2 through 6 discuss various aspects of C in more detail, and rather more formally, than does
Chapter 1, although the emphasisis still on examples of complete programs, rather than isolated
fragments. Chapter 2 deals with the basic data types, operators and expressions. Chapter 3 threats control
flow:i f-el se,sw tch,whil e, for, etc. Chapter 4 covers functions and program structure -
external variables, scope rules, multiple source files, and so on - and also touches on the preprocessor.
Chapter 5 discusses pointers and address arithmetic. Chapter 6 covers structures and unions.

http://freebooks.by.ru/view/CProgrammingLanguage/intro.html (3 of 4) [9/6/2002 12:20:53]

Introduction

Chapter 7 describes the standard library, which provides a common interface to the operating system.
Thislibrary is defined by the ANSI standard and is meant to be supported on all machines that support C,
so programs that use it for input, output, and other operating system access can be moved from one
system to another without change.

Chapter 8 describes an interface between C programs and the UNIX operating system, concentrating on
input/output, the file system, and storage allocation. Although some of this chapter is specific to UNIX
systems, programmers who use other systems should still find useful material here, including some
insight into how one version of the standard library isimplemented, and suggestions on portability.

Appendix A contains alanguage reference manual. The official statement of the syntax and semantics of
the C language isthe ANSI standard itself. That document, however, isintended foremost for compiler
writers. The reference manual here conveys the definition of the language more concisely and without
the same legalistic style. Appendix B is asummary of the standard library, again for users rather than
implementers. Appendix C is ashort summary of changes from the original language. In cases of doubt,
however, the standard and one's own compiler remain the final authorities on the language.

Back to the Preface to the First Edition -- Index -- Chapter 1

http://freebooks.by.ru/view/CProgrammingLanguage/intro.html (4 of 4) [9/6/2002 12:20:53]

Chapter 1 - A Tutorial Introduction

Back to Introduction -- Index -- Chapter 2

Chapter 1 - A Tutorial Introduction

Let us begin with a quick introduction in C. Our aim is to show the essential elements of the language in real
programs, but without getting bogged down in details, rules, and exceptions. At this point, we are not trying to be
complete or even precise (save that the examples are meant to be correct). We want to get you as quickly as
possible to the point where you can write useful programs, and to do that we have to concentrate on the basics:
variables and constants, arithmetic, control flow, functions, and the rudiments of input and output. We are
intentionally leaving out of this chapter features of C that are important for writing bigger programs. These include
pointers, structures, most of C'srich set of operators, severa control-flow statements, and the standard library.

This approach and its drawbacks. Most notable is that the compl ete story on any particular feature is not found
here, and the tutorial, by being brief, may also be misleading. And because the examples do not use the full power
of C, they are not as concise and elegant as they might be. We have tried to minimize these effects, but be warned.
Another drawback is that later chapters will necessarily repeat some of this chapter. We hope that the repetition
will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from the material in this chapter to their own
programming needs. Beginners should supplement it by writing small, ssmilar programs of their own. Both groups
can use it as aframework on which to hang the more detailed descriptions that begin in Chapter 2.

1.1 Getting Started

The only way to learn anew programming language is by writing programsin it. The first program to write isthe
same for all languages:

Print the words

hell o, world

Thisisabig hurdle; to leap over it you have to be able to create the program text somewhere, compile it
successfully, load it, run it, and find out where your output went. With these mechanical details mastered,
everything else is comparatively easy.

In C, the programto print “"hel | o, worl d"is

#1 ncl ude <stdi o. h>
mai n()

{
printf("hello, world\n");

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (1 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

}

Just how to run this program depends on the system you are using. As a specific example, on the UNIX operating
system you must create the program in afile whose name endsin . ¢", such ashel | 0. ¢, then compileit with
the command

cc hello.c

If you haven't botched anything, such as omitting a character or misspelling something, the compilation will
proceed silently, and make an executable file called a. out . If you run a. out by typing the command

a. out
it will print
hell o, world
On other systems, the rules will be different; check with alocal expert.

Now, for some explanations about the program itself. A C program, whatever its size, consists of functions and
variables. A function contains statements that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and functions in Fortran or the procedures
and functions of Pascal. Our example is afunction named mai n. Normally you are at liberty to give functions
whatever names you like, but ““mai n" is specia - your program begins executing at the beginning of main. This
means that every program must have amai n somewhere.

mai n will usually call other functions to help perform its job, some that you wrote, and others from libraries that
are provided for you. Thefirst line of the program,

#i ncl ude <stdi o. h>

tells the compiler to include information about the standard input/output library; the line appears at the beginning
of many C source files. The standard library is described in Chapter 7 and Appendix B.

One method of communicating data between functionsis for the calling function to provide alist of values, called
arguments, to the function it calls. The parentheses after the function name surround the argument list. In this
example, mai n is defined to be afunction that expects no arguments, which isindicated by the empty list () .

#i ncl ude <stdio. h> i ncl ude i nformati on about standard |ibrary
mai n() define a function called main
t hat received no argunent val ues

{ statenents of main are enclosed in braces
printf("hello, world\n"); main calls library function printf

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (2 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

to print this sequence of characters
} \n represents the newline character

Thefirst C program

The statements of afunction are enclosed in braces{ }. Thefunction nmai n contains only one statement,
printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of arguments, so this calls the function pri nt f
withtheargument " hel | o, worl d\ n".pri ntf isalibrary function that prints output, in this case the string
of characters between the quotes.

A sequence of charactersin double quotes, like" hel | o, wor | d\ n", iscalled acharacter string or string
constant. For the moment our only use of character strings will be as argumentsfor pri nt f and other functions.

The sequence\ n in the string is C notation for the newline character, which when printed advances the output to
the left margin on the next line. If you leave out the \ n (a worthwhile experiment), you will find that there is no
line advance after the output is printed. Y ou must use\ n to include a newline character inthe pri nt f argument;
If you try something like

printf("hello, world
")

the C compiler will produce an error message.

pri nt f never supplies anewline character automatically, so several calls may be used to build up an output line
in stages. Our first program could just as well have been written

#i ncl ude <stdi o. h>

mai n()

{
printf("hello, ");
printf("world");
printf("\n");

}

to produce identical output.

Notice that \ n represents only a single character. An escape sequence like\ n provides agenera and extensible
mechanism for representing hard-to-type or invisible characters. Among the others that C providesare\ t for tab,
\ b for backspace, \ " for the double quote and \ \ for the backslash itself. Thereisacomplete list in Section 2.3.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (3 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

Exercise 1-1. Runthe "hel | o, wor | d" program on your system. Experiment with leaving out parts of the
program, to see what error messages you get.

Exercise 1-2. Experiment to find out what happens when pr i nt s'sargument string contains \c, where c is some
character not listed above.

1.2 Variables and Arithmetic Expressions

The next program uses the formula °C=(5/9)(°F-32) to print the following table of Fahrenheit temperatures and
their centigrade or Celsius equivalents:

1 -17
20 -6
40 4
60 15
80 26
100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named mai n. It islonger than the one that
printed “"hel | o, wor | d", but not complicated. It introduces several new ideas, including comments,
declarations, variables, arithmetic expressions, loops, and formatted output.

#i ncl ude <stdi o. h>

/* print Fahrenheit-Cel sius table
for fahr = 0, 20, ..., 300 */
mai n()
{
int fahr, celsius;
int |ower, upper, step;

| oner = 0; /* lower limt of tenperature scale */
upper = 300; /* upper limt */

step = 20; /* step size */

fahr = | ower;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (4 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

whil e (fahr <= upper) {
celsius =5 * (fahr-32) / 9;
printf("%\t%\n", fahr, celsius);
fahr = fahr + step;

}
}

Thetwo lines

/* print Fahrenheit-Cel sius table
for fahr = 0, 20, ..., 300 */

are acomment, which in this case explains briefly what the program does. Any characters between/ * and */ are
ignored by the compiler; they may be used freely to make a program easier to understand. Comments may appear
anywhere where a blank, tab or newline can.

In C, all variables must be declared before they are used, usually at the beginning of the function before any
executable statements. A declaration announces the properties of variables; it consists of aname and alist of
variables, such as

int fahr, celsius;
int | ower, upper, step;

Thetypei nt meansthat the variables listed are integers; by contrast with f | oat , which means floating point,
I.e., numbers that may have afractional part. The range of bothi nt andf | oat depends on the machine you are
using; 16-bitsi nt s, which lie between -32768 and +32767, are common, as are 32-biti nt s. A f | oat number is
typically a 32-bit quantity, with at least six significant digits and magnitude generally between about 10-38 and
1038,

C provides several other datatypesbesidesi nt and f | oat , including:

char character - asingle byte
short short integer

| ong long integer

doubl e | double-precision floating point

The size of these objects is also machine-dependent. There are also arrays, structures and unions of these basic
types, pointers to them, and functions that return them, all of which we will meet in due course.

Computation in the temperature conversion program begins with the assignment statements

| ower = O;
upper = 300;
step = 20;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (5 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

which set the variables to their initial values. Individual statements are terminated by semicolons.

Each line of the table is computed the same way, so we use aloop that repeats once per output line; thisis the
purpose of thewhi | e loop

whil e (fahr <= upper) {
}

Thewhi | e loop operates as follows: The condition in parenthesesistested. If it istrue (f ahr islessthan or equal
to upper), the body of the loop (the three statements enclosed in braces) is executed. Then the conditionisre-
tested, and if true, the body is executed again. When the test becomes false (f ahr exceeds upper) the loop ends,
and execution continues at the statement that follows the loop. There are no further statements in this program, so
it terminates.

The body of awhi | e can be one or more statements enclosed in braces, as in the temperature converter, or a
single statement without braces, asin

while (i <j)
i =2 * i;

In either case, we will always indent the statements controlled by the whi | e by one tab stop (which we have
shown as four spaces) so you can see at a glance which statements are inside the loop. The indentation emphasizes
the logical structure of the program. Although C compilers do not care about how a program looks, proper
indentation and spacing are critical in making programs easy for people to read. We recommend writing only one
statement per line, and using blanks around operators to clarify grouping. The position of braces is less important,
although people hold passionate beliefs. We have chosen one of several popular styles. Pick a style that suits you,
then use it consistently.

Most of the work gets done in the body of the loop. The Celsius temperature is computed and assigned to the
variable cel si us by the statement

celsius =5 * (fahr-32) / 9;
The reason for multiplying by 5 and dividing by 9 instead of just multiplying by 5/ 9 isthat in C, asin many other

languages, integer division truncates. any fractional part is discarded. Since 5 and 9 are integers. 5/ 9 would be
truncated to zero and so all the Celsius temperatures would be reported as zero.

This example also shows a bit more of how pri nt f works. pri nt f isageneral-purpose output formatting
function, which we will describe in detail in Chapter 7. Itsfirst argument is a string of characters to be printed,
with each %indicating where one of the other (second, third, ...) argumentsis to be substituted, and in what form it
Isto be printed. For instance, %@ specifies an integer argument, so the statement

printf("%l\t%\n", fahr, celsius);

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (6 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

causes the values of the two integersf ahr and cel si us to be printed, with atab (\ t) between them.

Each %construction in the first argument of pri nt f is paired with the corresponding second argument, third
argument, etc.; they must match up properly by number and type, or you will get wrong answers.

By theway, pri nt f isnot part of the C language; there is no input or output defined in Citself. pri nt f isjusta
useful function from the standard library of functions that are normally accessible to C programs. The behaviour of
pri ntf isdefinedinthe ANSI standard, however, so its properties should be the same with any compiler and
library that conformsto the standard.

In order to concentrate on C itself, we don't talk much about input and output until chapter 7. In particular, we will

defer formatted input until then. If you have to input numbers, read the discussion of the function scanf in
Section 7.4. scanf islikepri nt f, except that it reads input instead of writing outpuit.

There are a couple of problems with the temperature conversion program. The simpler one is that the output isn't

very pretty because the numbers are not right-justified. That's easy to fix; if we augment each %@ inthepri nt f

statement with awidth, the numbers printed will be right-justified in their fields. For instance, we might say
printf("%3d %%d\n", fahr, celsius);

to print the first number of each line in afield three digits wide, and the second in afield six digitswide, like this:

0 -17
20 -6
40 4
60 15
80 26

100 37

The more serious problem is that because we have used integer arithmetic, the Celsius temperatures are not very

accurate; for instance, 0°F is actually about -17.89C, not -17. To get more accurate answers, we should use floating-
point arithmetic instead of integer. This requires some changes in the program. Here is the second version:

#i ncl ude <stdi o. h>

/* print Fahrenheit-Cel sius table
for fahr = 0, 20, ..., 300; floating-point version */
mai n()
{
fl oat fahr, cel sius;
fl oat |ower, upper, step;

| ower = O; /* lower limt of tenperatuire scale */
upper = 300; /[* upper limt */
step = 20; /* step size */

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (7 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

fahr = | ower;
while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("93.0f %. 1f\n", fahr, celsius);
fahr = fahr + step;
}
}

Thisis much the same as before, except that f ahr and cel si us aredeclared to bef | oat and the formulafor
conversion iswritten in amore natural way. We were unable to use 5/ 9 in the previous version because integer
division would truncate it to zero. A decimal point in a constant indicates that it is floating point, however, so

5. 0/ 9. 0 isnot truncated because it is the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is performed. If an arithmetic operator has one
floating-point operand and one integer operand, however, the integer will be converted to floating point before the
operation isdone. If we had written (f ahr - 32) , the 32 would be automatically converted to floating point.
Nevertheless, writing floating-point constants with explicit decimal points even when they have integral values
emphasizes their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2. For now, notice that the
assignment

fahr = | ower;
and the test
whil e (fahr <= upper)
also work in the natural way - thei nt isconvertedtof | oat before the operation is done.

Thepri ntf conversion specification 3. Of saysthat afloating-point number (heref ahr) isto be printed at
least three characters wide, with no decimal point and no fraction digits. 6. 1f describes another number

(cel si us) that isto be printed at least six characters wide, with 1 digit after the decimal point. The output looks
like this:

0 -17.8
20 6.7
40 4.4

Width and precision may be omitted from a specification: ¥%6f says that the number isto be at least six characters
wide; % 2f specifiestwo characters after the decimal point, but the width is not constrained; and % merely says
to print the number as floating point.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (8 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

%l print as decimal integer

%6d print as decimal integer, at least 6 characters wide
% print as floating point

Y6t print as floating point, at least 6 characters wide

% 2f print as floating point, 2 characters after decimal point
%. 2f | print asfloating point, at least 6 wide and 2 after decimal point

Among others, pri nt f aso recognizes %o for octal, % for hexadecimal, % for character, %s for character
string and 9%®xofor itself.

Exercise 1-3. Modify the temperature conversion program to print a heading above the table.

Exer cise 1-4. Write a program to print the corresponding Celsius to Fahrenheit table.

1.3 The for statement

There are plenty of different waysto write a program for a particular task. Let's try a variation on the temperature
converter.

#i ncl ude <stdi o. h>

/* print Fahrenheit-Cel sius table */
mai n()
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%38d %. 1f\n", fahr, (5.0/9.0)*(fahr-32));
}

This produces the same answers, but it certainly looks different. One major change is the elimination of most of the
variables; only f ahr remains, and we have madeit ani nt . The lower and upper limits and the step size appear
only as constantsin thef or statement, itself a new construction, and the expression that computes the Celsius
temperature now appears as the third argument of pri nt f instead of a separate assignment statement.

Thislast change is an instance of ageneral rule - in any context where it is permissible to use the value of some
type, you can use a more complicated expression of that type. Since the third argument of pri nt f must bea
floating-point value to match the %6. 1f , any floating-point expression can occur here.

Thef or statement isaloop, ageneraization of thewhi | e. If you compareit to the earlier whi | e, its operation
should be clear. Within the parentheses, there are three parts, separated by semicolons. The first part, the
initialization

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (9 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

fahr = 0
Is done once, before the loop proper is entered. The second part is the test or condition that controls the loop:
fahr <= 300

This condition is evaluated; if it istrue, the body of the loop (hereasingle pt i nt f) isexecuted. Then the
increment step

fahr = fahr + 20

Is executed, and the condition re-evaluated. The loop terminates if the condition has become false. As with the
whi | e, the body of the loop can be a single statement or a group of statements enclosed in braces. The
initialization, condition and increment can be any expressions.

The choice between whi | e and f or isarbitrary, based on which seems clearer. Thef or isusually appropriate
for loops in which the initialization and increment are single statements and logically related, since it is more
compact than whi | e and it keeps the loop control statements together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in reverse order, that is, from 300
degreesto O.

1.4 Symbolic Constants

A final observation before we leave temperature conversion forever. It's bad practice to bury “~“magic numbers' like
300 and 20 in a program; they convey little information to someone who might have to read the program later, and
they are hard to change in a systematic way. One way to deal with magic numbersis to give them meaningful
names. A #def i ne line defines a symbolic name or symbolic constant to be a particular string of characters:

#def i ne name replacement list

Thereafter, any occurrence of name (not in quotes and not part of another name) will be replaced by the
corresponding replacement text. The name has the same form as a variable name: a sequence of letters and digits
that begins with aletter. The replacement text can be any sequence of characters; it is not limited to numbers.

#i ncl ude <stdi o. h>

#define LONER O [* lower limt of table */
#define UPPER 300 [* upper limt */
#define STEP 20 /[* step size */

/* print Fahrenheit-Celsius table */
mai n()

{

int fahr;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (10 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

for (fahr = LOAER, fahr <= UPPER;, fahr = fahr + STEP)
printf("%3d %. 1f\n", fahr, (5.0/9.0)*(fahr-32));

}
The quantities LONER, UPPER and STEP are symbolic constants, not variables, so they do not appear in

declarations. Symbolic constant names are conventionally written in upper case so they can ber readily
distinguished from lower case variable names. Notice that there is no semicolon at the end of a#def i ne line.

1.5 Character Input and Output

We are going to consider afamily of related programs for processing character data. Y ou will find that many
programs are just expanded versions of the prototypes that we discuss here.

The model of input and output supported by the standard library is very simple. Text input or output, regardless of
where it originates or where it goes to, is dealt with as streams of characters. A text streamis a sequence of
characters divided into lines; each line consists of zero or more characters followed by a newline character. It isthe
responsibility of the library to make each input or output stream confirm this model; the C programmer using the
library need not worry about how lines are represented outside the program.

The standard library provides several functions for reading or writing one character at atime, of which get char
and put char arethesimplest. Eachtimeit iscalled, get char readsthe next input character from atext stream
and returns that asitsvalue. That is, after

c = getchar();

the variable ¢ contains the next character of input. The characters normally come from the keyboard; input from
filesisdiscussed in Chapter 7.

The function put char prints acharacter each timeit is called:
put char(c);

prints the contents of the integer variable ¢ as a character, usually on the screen. Callsto put char and pri nt f
may be interleaved; the output will appear in the order in which the calls are made.

1.5.1 File Copying

Given get char and put char , you can write a surprising amount of useful code without knowing anything
more about input and output. The simplest example is a program that copies its input to its output one character at
atime:

read a character
while (charater is not end-of-file indicator)

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (11 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

out put the character just read
read a character

Converting thisinto C gives:

#i ncl ude <stdi o. h>

/* copy input to output; 1st version */
mai n()
{

int c;

c = getchar();
while (c !'= EOF) {
put char (c);

c = getchar();

}

Therelational operator ! = means " not equal to".

What appears to be a character on the keyboard or screen is of course, like everything else, stored internally just as
abit pattern. The type char is specifically meant for storing such character data, but any integer type can be used.
Weusedi nt for asubtle but important reason.

The problem is distinguishing the end of input from valid data. The solution isthat get char returnsadistinctive
value when there is no more input, a value that cannot be confused with any real character. Thisvalueiscalled
ECF, for “"end of file". We must declare ¢ to be atype big enough to hold any value that get char returns. We
can't usechar since ¢ must be big enough to hold EOF in addition to any possible char . Thereforewe usei nt .

ECF isan integer defined in <stdio.h>, but the specific numeric value doesn't matter aslong asit is not the same as
any char vaue. By using the symbolic constant, we are assured that nothing in the program depends on the
specific numeric value.

The program for copying would be written more concisely by experienced C programmers. In C, any assignment,
such as

c = getchar();

Is an expression and has avalue, which isthe value of the left hand side after the assignment. This meansthat a
assignment can appear as part of alarger expression. If the assignment of a character to ¢ is put inside the test part
of awhi | e loop, the copy program can be written this way:

#i ncl ude <stdi o. h>

/* copy input to output; 2nd version */

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (12 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

mai n()
{ .
int c;
while ((c = getchar()) !'= EOF)

put char(c);
}

Thewhi | e getsacharacter, assignsit to ¢, and then tests whether the character was the end-of-file signdl. If it
was not, the body of thewhi | e isexecuted, printing the character. Thewhi | e then repeats. When the end of the
input isfinally reached, the whi | e terminates and so does nai n.

This version centralizes the input - thereis now only one reference to get char - and shrinks the program. The
resulting program is more compact, and, once the idiom is mastered, easier to read. Y ou'll see this style often. (It's
possible to get carried away and create impenetrable code, however, atendency that we will try to curb.)

The parentheses around the assignment, within the condition are necessary. The precedence of ! = is higher than
that of =, which means that in the absence of parentheses the relational test ! = would be done before the
assignment =. So the statement

c = getchar() !'= EOF
isequivalent to
c = (getchar() !'= EOF)

This has the undesired effect of setting ¢ to 0 or 1, depending on whether or not the call of get char returned end
of file. (More on thisin Chapter 2.)

Exercsise 1-6. Verify that the expression get char () ! = EOFisOor 1.
Exercise 1-7. Write a program to print the value of ECF.
1.5.2 Character Counting

The next program counts characters; it is similar to the copy program.

#i ncl ude <stdi o. h>

/* count characters in input; 1st version */

mai n()

{
| ong nc;
nc = 0;

while (getchar() != EOF)

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (13 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

++NncC,
printf("%d\n", nc);
}
The statement
++nc;

presents a new operator, ++, which means increment by one. You could instead writenc = nc + 1 but++nc is
more concise and often more efficient. There is a corresponding operator - - to decrement by 1. The operators ++
and - - can be either prefix operators (++nc) or postfix operators (nc++); these two forms have different valuesin
expressions, as will be shown in Chapter 2, but ++nc and nc++ both increment nc. For the moment we will will

stick to the prefix form.

The character counting program accumulatesits count in al ong variableinstead of anint. | ong integers are at
least 32 bits. Although on some machines, i nt and | ong are the same size, on othersan i nt is 16 bits, with a
maximum value of 32767, and it would take relatively little input to overflow ani nt counter. The conversion
specification % d tellspri nt f that the corresponding argument isal ong integer.

It may be possible to cope with even bigger numbers by using adoubl e (double precision f | oat). We will also
useaf or statement instead of awhi | e, to illustrate another way to write the loop.

#i ncl ude <stdi o. h>

/* count characters in input; 2nd version */
mai n()
{

doubl e nc;
for (nc = 0; gechar() !'= ECF, ++nc)

printf("%O0f\n", nc);
}

printf uses% for bothfl oat and doubl e; % Of suppresses the printing of the decimal point and the
fraction part, which is zero.

The body of thisf or loop is empty, because all the work is donein the test and increment parts. But the
grammatical rules of C requirethat af or statement have abody. The isolated semicolon, called anull statement,
isthere to satisfy that requirement. We put it on a separate line to make it visible.

Before we leave the character counting program, observe that if the input contains no characters, thewhi | e or

f or test failsonthevery first call to get char , and the program produces zero, the right answer. Thisis
important. One of the nice things about whi | e and f or isthat they test at the top of the loop, before proceeding
with the body. If there is nothing to do, nothing is done, even if that means never going through the loop body.
Programs should act intelligently when given zero-length input. Thewhi | e and f or statements help ensure that

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (14 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

programs do reasonabl e things with boundary conditions.

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard library ensures that an input text stream
appears as a sequence of lines, each terminated by a newline. Hence, counting linesisjust counting newlines:

#i ncl ude <stdi o. h>

/* count lines in input */

mai n()
{
int ¢, nl;
nl = 0;
while ((c = getchar()) !'= EOF)
if (c =="'\n")
++nl ;

printf("%l\n", nl);
}

The body of thewhi | e now consistsof ani f , which in turn controls the increment ++nl . Thei f statement tests
the parenthesized condition, and if the condition is true, executes the statement (or group of statements in braces)
that follows. We have again indented to show what is controlled by what.

The double equals sign == isthe C notation for "is equal to" (like Pascal's single = or Fortran's. EQ.). This
symbol is used to distinguish the equality test from the single = that C uses for assignment. A word of caution:
newcomersto C occasionally write = when they mean ==. Aswe will seein Chapter 2, the result isusually alegal
expression, so you will get no warning.

A character written between single quotes represents an integer value equal to the numerical value of the character
in the machine's character set. Thisis called a character constant, although it is just another way to write a small
integer. So, for example, ' A’ isacharacter constant; in the ASCII character set its valueis 65, the internal
representation of the character A. Of course,' A" isto be preferred over 65: its meaning is obvious, and it is
independent of a particular character set.

The escape sequences used in string constants are also legal in character constants, so' \ n' stands for the value of
the newline character, which is 10 in ASCII. Y ou should note carefully that ' \ n' isasingle character, and in
expressionsisjust an integer; on the other hand, ' \ n' isastring constant that happens to contain only one
character. Thetopic of strings versus characters is discussed further in Chapter 2.

Exer cise 1-8. Write a program to count blanks, tabs, and newlines.

Exercise 1-9. Write a program to copy itsinput to its output, replacing each string of one or more blanks by a
single blank.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (15 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

Exercise 1-10. Write a program to copy itsinput to its output, replacing each tab by \ t , each backspace by \ b,
and each backslash by \ \ . This makes tabs and backspaces visible in an unambiguous way.

1.5.4 Word Counting

The fourth in our series of useful programs counts lines, words, and characters, with the loose definition that a
word is any sequence of characters that does not contain a blank, tab or newline. Thisis a bare-bones version of the

UNIX programwc.

#i ncl ude <stdi o. h>

#define IN 1 /* inside a word */
#define OQUT O /* outside a word */

/* count lines, words, and characters in input */

mai n()
{
int ¢, nl, nw nc, state;
state = QUT,;
nl = nw=nc = 0;
while ((c = getchar()) !'= EOF) {
++nc;
if (c =="'\n")
++nl ;
if (c =" " || == '\n" || ¢ ="\t")
state = QUT,
else if (state == QUT) {
state = I N,
++nw,
}
}

printf("% % %\n", nl, nw, nc);
}

Every time the program encounters the first character of aword, it counts one more word. The variable st at e
records whether the program is currently in aword or not; initialy it is " "not in aword", which is assigned the
value QUT. We prefer the symbolic constants | Nand OUT to the literal values 1 and O because they make the
program more readable. In a program astiny asthis, it makesllittle difference, but in larger programs, the increase
in clarity iswell worth the modest extra effort to write it this way from the beginning. Y ou'll also find that it's
easier to make extensive changes in programs where magic numbers appear only as symbolic constants.

Theline

nl = nw=nc = 0;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (16 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

sets all three variablesto zero. Thisis not a special case, but a consequence of the fact that an assignment is an
expression with the value and assignments associated from right to left. It's as if we had written

nl = (nw=(nc = 0));
The operator | | means OR, so theline
if (c="" 1] ¢c="\n" |[] ¢ ="\t")

says if c isablank or c isanewlineor c isatab". (Recall that the escape sequence\ t isavisible representation
of the tab character.) Thereis a corresponding operator && for AND; its precedence isjust higher than | | .
Expressions connected by && or | | are evaluated left to right, and it is guaranteed that evaluation will stop as soon
asthetruth or falsehood is known. If ¢ isablank, thereisno need to test whether it is anewline or tab, so these
tests are not made. Thisisn't particularly important here, but is significant in more complicated situations, as we
will soon see.

The example aso shows an el se, which specifies an aternative action if the condition part of ani f statement is
false. The general formis

i f (expression)

st at ement 4

el se
st at enment ,

One and only one of the two statements associated with ani f - el se isperformed. If the expression is true,
statement is executed; if not, statement, is executed. Each statement can be a single statement or several in braces.
In the word count program, the one after theel se isani f that controls two statementsin braces.

Exercise 1-11. How would you test the word count program? What kinds of input are most likely to uncover bugs
if there are any?

Exercise 1-12. Write a program that prints itsinput one word per line.

1.6 Arrays

Let iswrite a program to count the number of occurrences of each digit, of white space characters (blank, tab,
newline), and of all other characters. Thisis artificial, but it permits usto illustrate several aspects of Cin one
program.

There are twelve categories of input, so it is convenient to use an array to hold the number of occurrences of each
digit, rather than ten individual variables. Here is one version of the program:

#i ncl ude <stdi o. h>

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (17 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

/* count digits, white space, others */
mai n()
{

int ¢, i, nwhite, nother;

int ndigit[10];

nwhite = nother = O;
for (i =0; i < 10; ++i)
ndigit[i] = O;
while ((c = getchar()) !'= EOF)
if (c >"'0" && c <="'9")
++ndigit[c-'0'];
elseif (c ==" " || == '\n" || == "\t")
++nwhi t e;
el se
++not her;
printf("digits =");
for (i =0; i < 10; ++i)
printf(" %", ndigit[i]);
printf(", white space = %, other = %l\n",
nwhite, nother);
}

The output of this program on itself is
digits =9 300000001, white space = 123, other = 345
The declaration
int ndigit[10];
declaresndi gi t to bean array of 10 integers. Array subscripts always start at zero in C, so the elements are
ndigit[0], ndigit[1], ..., ndigit[9].Thisisreflectedinthef or loopsthat initialize and print
the array.
A subscript can be any integer expression, which includes integer variableslikei , and integer constants.
This particular program relies on the properties of the character representation of the digits. For example, the test
if (c >="'0" && c <="'9")
determines whether the character in c isadigit. If it is, the numeric value of that digit is

c - '0

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (18 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

Thisworksonlyif* 0", "1', ..., "9 haveconsecutiveincreasing values. Fortunately, thisistrue for all
character sets.

By definition, char sare just small integers, so char variables and constants are identical to i nt sin arithmetic
expressions. Thisis natural and convenient; for examplec-' Q' isan integer expression with a value between 0
and 9 corresponding to the character ' 0' to' 9" stored in ¢, and thus avalid subscript for the array ndi gi t .

The decision as to whether a character isadigit, white space, or something else is made with the sequence

if (c >>"'0" && c <= '9")
++ndigit[c-'0"];

elseif (c=="'"" || c ==
++nwhi t e;

el se
++not her;

\n' || ¢ = "\t")

The pattern

i f (conditiong)
st at enent 4

else if (condition,)
st at enent ,

el se
st at enent

occurs frequently in programs as a way to express a multi-way decision. The conditions are evaluated in order
from the top until some condition is satisfied; at that point the corresponding statement part is executed, and the
entire construction is finished. (Any statement can be several statements enclosed in braces.) If none of the
conditionsis satisfied, the statement after thefinal el se isexecuted if it is present. If thefinal el se and
statement are omitted, as in the word count program, no action takes place. There can be any number of

el se i f (condition)
statement

groups between the initial i f and thefinal el se.

Asamatter of style, it is advisable to format this construction as we have shown; if eachi f were indented past the

previous el se, along sequence of decisions would march off the right side of the page.
Thesw t ch statement, to be discussed in Chapter 4, provides another way to write a multi-way branch that is

particulary suitable when the condition is whether some integer or character expression matches one of a set of
constants. For contrast, we will present aswi t ch version of this program in Section 3.4.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (19 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

Exercise 1-13. Write a program to print a histogram of the lengths of words in itsinput. It is easy to draw the
histogram with the bars horizontal; avertical orientation is more challenging.

Exercise 1-14. Write a program to print a histogram of the frequencies of different charactersin itsinput.

1.7 Functions

In C, afunction is equivalent to a subroutine or function in Fortran, or a procedure or function in Pascal. A
function provides a convenient way to encapsulate some computation, which can then be used without worrying
about itsimplementation. With properly designed functions, it is possible to ignore how ajob is done; knowing
what is done is sufficient. C makes the sue of functions easy, convinient and efficient; you will often see a short
function defined and called only once, just because it clarifies some piece of code.

So far we have used only functions like pri nt f , get char and put char that have been provided for us, now
it'stime to write afew of our own. Since C has no exponentiation operator like the * * of Fortran, let usillustrate
the mechanics of function definition by writing afunction power (m n) to raise an integer mto a positive integer
power n. That is, the value of power (2, 5) is32. Thisfunction is not a practical exponentiation routine, since it
handles only positive powers of small integers, but it's good enough for illustration.(The standard library contains a
function pow(X, y) that computes xY.)

Hereisthe function power and amain program to exercise it, so you can see the whole structure at once.

#i ncl ude <stdi o. h>

i nt

power (int m int n);

/* test power function */
mai n()

{

}
/*
i nt

{

int i:

for (i =0; i < 10; ++i)
printf("%l % %\n", i, power(2,i), power(-3,i));
return O;

power: raise base to n-th power; n >= 0 */

power (i nt base, int n)

int i, p;

p =1

for (i =1; I <= n; ++i)
p =p * base;

return p;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (20 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

A function definition has this form:;

return-type function-nane(paraneter declarations, if any)

{

decl arati ons
st at enent s

}

Function definitions can appear in any order, and in one source file or several, although no function can be split
between files. If the source program appearsin several files, you may have to say more to compile and load it than
if it all appearsin one, but that is an operating system matter, not a language attribute. For the moment, we will

assume that both functions are in the same file, so whatever you have learned about running C programs will still
work.

The function power iscalled twice by mai n, intheline
printf("%l % %\n", i, power(2,i), power(-3,i));
Each call passes two arguments to power , which each time returns an integer to be formatted and printed. In an

expression, power (2, 1) isaninteger justas2 andi are. (Not al functions produce an integer value; we will
take this up in Chapter 4.)

Thefirst line of power itself,
int power(int base, int n)

declares the parameter types and names, and the type of the result that the function returns. The names used by
power for its parameters are local to power , and are not visible to any other function: other routines can use the
same names without conflict. Thisisalso true of the variablesi and p: thei inpower isunrelatedtothei in
mai n.

We will generally use parameter for avariable named in the parenthesized list in afunction. The terms formal
argument and actual argument are sometimes used for the same distinction.

The value that power computesisreturned to mai n by ther et ur n: statement. Any expression may follow
return:

return expression;

A function need not return avalue; areturn statement with no expression causes control, but no useful value, to be
returned to the caller, as does "“falling off the end" of a function by reaching the terminating right brace. And the
calling function can ignore a value returned by a function.

Y ou may have noticed that thereisar et ur n statement at the end of mai n. Since mai n isafunction like any

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (21 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

other, it may return avalueto its caller, which isin effect the environment in which the program was executed.
Typically, areturn value of zero implies normal termination; non-zero values signal unusual or erroneous
termination conditions. In the interests of simplicity, we have omitted r et ur n statements from our mai n
functions up to this point, but we will include them hereafter, as areminder that programs should return status to
their environment.

The declaration
int power(int base, int n);

just before mai n saysthat power isafunction that expectstwo i nt argumentsand returnsani nt . This
declaration, which is called a function prototype, has to agree with the definition and uses of power . It isan error
If the definition of afunction or any uses of it do not agree with its prototype.

parameter names need not agree. Indeed, parameter names are optional in afunction prototype, so for the prototype
we could have written

int power(int, int);
Well-chosen names are good documentation however, so we will often use them.

A note of history: the biggest change between ANSI C and earlier versionsis how functions are declared and
defined. In the original definition of C, the power function would have been written like this:

/* power: raise base to n-th power; n >= 0 */
/* (ol d-style version) */

power (base, n)

i nt base, n;

{ . .
int i, p;
p = 1;
for (i =1; i <= n; ++i)
p =p * base;
return p;
}

The parameters are named between the parentheses, and their types are declared before opening the left brace;
undeclared parameters are taken asi nt . (The body of the function is the same as before.)

The declaration of power at the beginning of the program would have looked like this:
i nt power();

No parameter list was permitted, so the compiler could not readily check that power was being called correctly.
Indeed, since by default power would have been assumed to return ani nt , the entire declaration might well have

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (22 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

been omitted.

The new syntax of function prototypes makes it much easier for a compiler to detect errors in the number of
arguments or their types. The old style of declaration and definition still worksin ANSI C, at least for atransition
period, but we strongly recommend that you use the new form when you have a compiler that supportsit.

Exercise 1.15. Rewrite the temperature conversion program of Section 1.2 to use a function for conversion.

1.8 Arguments - Call by Value

One aspect of C functions may be unfamiliar to programmers who are used to some other languages, particulary
Fortran. In C, all function arguments are passed " by value." This means that the called function is given the values
of its arguments in temporary variables rather than the originals. This leads to some different properties than are
seen with ""call by reference” languages like Fortran or with var parametersin Pascal, in which the called routine
has access to the original argument, not alocal copy.

Call by valueis an asset, however, not aliability. It usually leads to more compact programs with fewer extraneous
variables, because parameters can be treated as conveniently initialized local variables in the called routine. For
example, hereisaversion of power that makes use of this property.

/* power: raise base to n-th power; n >= 0; version 2 */
i nt power(int base, int n)

{ .
int p;
for (p=1; n>20; --n)
p =p * base;
return p;
}

The parameter n isused as atemporary variable, and is counted down (af or loop that runs backwards) until it
becomes zero; there is no longer aneed for the variable i . Whatever isdone to n inside power has no effect on
the argument that power was originally called with.

When necessary, it is possible to arrange for a function to modify avariable in acalling routine. The caller must
provide the address of the variable to be set (technically a pointer to the variable), and the called function must
declare the parameter to be a pointer and access the variable indirectly through it. We will cover pointersin

Chapter 5.

The story is different for arrays. When the name of an array is used as an argument, the value passed to the
function is the location or address of the beginning of the array - there is no copying of array elements. By
subscripting this value, the function can access and alter any argument of the array. Thisis the topic of the next
section.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (23 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

1.9 Character Arrays

The most common type of array in C isthe array of characters. To illustrate the use of character arrays and
functions to manipulate them, let's write a program that reads a set of text lines and prints the longest. The outline
Is simple enough:

while (there's another |ine)
if (it's longer than the previous |ongest)
(save it)
(save its length)
print |ongest line

This outline makes it clear that the program divides naturally into pieces. One piece gets anew line, another saves
it, and the rest controls the process.

Since things divide so nicely, it would be well to write them that way too. Accordingly, let usfirst write a separate
function get | i ne to fetch the next line of input. We will try to make the function useful in other contexts. At the
minimum, get | i ne hasto return asignal about possible end of file; a more useful design would be to return the
length of the line, or zero if end of file is encountered. Zero is an acceptable end-of-file return because it is never a
valid line length. Every text line has at least one character; even aline containing only a newline has length 1.

When we find aline that is longer than the previous longest ling, it must be saved somewhere. This suggests a
second function, copy, to copy the new line to a safe place.

Finally, we need amain program to control get | i ne and copy. Hereisthe result.

#i ncl ude <stdi o. h>
#defi ne MAXLI NE 1000 /* maxi muminput line length */

int getline(char line[], int maxline);
voi d copy(char to[], char froni]);

/* print the | ongest input line */

mai n()
{
int |en; /* current line length */
i nt max; /* maxi mum | ength seen so far */
char | i ne[MAXLI NE] ; /[* current input line */
char |l ongest[MAXLINE]; /* longest |ine saved here */
max = O,
while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {
max = | en;
copy(l ongest, line);
}

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (24 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

if (max >0) /* there was a line */
printf("%", |ongest);
return O;

}

/* getline: read aline intos, return length */
int getline(char s[],int Iim

{ . .
int c, i;
for (i=0; i <liml &k (c=getchar())!=EOF && c!="\n"; ++i)
s[i] = c;
if (c =="'\n") {
s[i] = c;
++i ;
}
s[i] ="'"\0";
return i
}

/* copy: <copy 'from into "to'; assune to is big enough */
voi d copy(char to[], char froni])

{ . .
Int 1I;
I = 0;
while ((to[i] = fronfi]) !'="\0")
++i ;
}

Thefunctionsget | i ne and copy are declared at the beginning of the program, which we assumeis contained in
onefile.

mai n and get | i ne communicate through a pair of arguments and areturned value. Inget | i ne, the arguments
are declared by theline

int getline(char s[], int |im;

which specifies that the first argument, s, isan array, and the second, | i m isan integer. The purpose of supplying
the size of an array in adeclaration isto set aside storage. The length of an array s isnot necessary inget | i ne

sinceitssizeissetinmai n.get | i ne usesr et ur n to send avalue back to the caller, just as the function power
did. Thisline aso declaresthat get | i ne returnsani nt ; sincei nt isthe default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for their effect and return no value. The
return type of copy isvoi d, which states explicitly that no value is returned.

get |l i ne putsthe character ' \ 0" (the null character, whose value is zero) at the end of the array it is creating, to

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (25 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

mark the end of the string of characters. This conversion is also used by the C language: when a string constant
like

"hel | o\ n"

appearsin aC program, it is stored as an array of characters containing the charactersin the string and terminated
witha'\ 0" to mark the end.

h|e |1l |1 |o|\n|\O

The % format specificationinpri nt f expects the corresponding argument to be a string represented in this
form. copy aso relies on the fact that its input argument is terminated witha' \ 0" , and copies this character into
the output.

It isworth mentioning in passing that even a program as small as this one presents some sticky design problems.
For example, what should mai n do if it encounters aline which is bigger than itslimit? get | i ne works safely,
In that it stops collecting when the array isfull, even if no newline has been seen. By testing the length and the last
character returned, mai n can determine whether the line was too long, and then cope as it wishes. In the interests
of brevity, we have ignored thisissue.

Thereisno way for auser of get | i ne to know in advance how long an input line might be, so get | i ne checks
for overflow. On the other hand, the user of copy aready knows (or can find out) how big the strings are, so we
have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it will correctly print the length of arbitrary
long input lines, and as much as possible of the text.

Exercise 1-17. Write aprogram to print all input lines that are longer than 80 characters.

Exercise 1-18. Write a program to remove trailing blanks and tabs from each line of input, and to delete entirely
blank lines.

Exercise 1-19. Writeafunctionr ever se(s) that reversesthe character string s. Useit to write a program that
reversesitsinput aline at atime.

1.10 External Variables and Scope

Thevariablesin mai n, suchasl i ne, | ongest, etc., are private or local to mai n. Because they are declared
within mai n, no other function can have direct access to them. The same is true of the variables in other functions;
for example, thevariablei inget | i ne isunrelated to thei in copy. Each local variable in afunction comesinto
existence only when the function is called, and disappears when the function is exited. Thisiswhy such variables
are usually known as automatic variables, following terminology in other languages. We will use the term

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (26 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

automatic henceforth to refer to these local variables. (Chapter 4 discussesthe st at i ¢ storage class, in which
local variables do retain their values between calls.)

Because automatic variables come and go with function invocation, they do not retain their values from one call to
the next, and must be explicitly set upon each entry. If they are not set, they will contain garbage.

As an dternative to automatic variables, it is possible to define variables that are external to all functions, that is,
variables that can be accessed by name by any function. (This mechanismis rather like Fortran COMMON or
Pascal variables declared in the outermost block.) Because externa variables are globally accessible, they can be
used instead of argument lists to communicate data between functions. Furthermore, because external variables
remain in existence permanently, rather than appearing and disappearing as functions are called and exited, they
retain their values even after the functions that set them have returned.

An external variable must be defined, exactly once, outside of any function; this sets aside storage for it. The
variable must also be declared in each function that wants to access it; this states the type of the variable. The
declaration may be an explicit ext er n statement or may be implicit from context. To make the discussion
concrete, let us rewrite the longest-line program with | i ne, | ongest , and nax as external variables. This
requires changing the calls, declarations, and bodies of all three functions.

#i ncl ude <stdi o. h>
#defi ne MAXLI NE 1000 /* maxi muminput |ine size */

i nt max; /* maxi mum | ength seen so far */
char |ine[MAXLI NE] ; /* current input line */
char longest[MAXLINE]; /* longest |ine saved here */

int getline(void);
voi d copy(void);

/* print |longest input |line; specialized version */
mai n()
{

int |en;

extern int max;

extern char |ongest[];

max = O;
while ((len = getline()) > 0)
if (len > max) {
max = | en;
} copy();

if (max >0) /* there was a line */
printf("%", |ongest);
return O;

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (27 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

/* getline: specialized version */
int getline(void)

{ . .
int ¢, i1;
extern char line[];
for (i =0; i < MAXLINE - 1
&% (c=getchar)) !'= EOF & c !'= "\n"; ++i)
line[i] = c;
if (c =="'\n") {
line[i] = c;
++i
}
line[i] = "\0";
return i;
}

/| * copy: specialized version */
voi d copy(void)

{
int i;
extern char line[], longest[];
I = 0;
while ((longest[i] =1line[i]) !'="\0")
++i
}

The external variablesinmai n, get | i ne and copy are defined by the first lines of the example above, which
state their type and cause storage to be alocated for them. Syntactically, external definitions are just like
definitions of local variables, but since they occur outside of functions, the variables are external. Before afunction
can use an external variable, the name of the variable must be made known to the function; the declaration is the
same as before except for the added keyword ext er n.

In certain circumstances, the ext er n declaration can be omitted. If the definition of the external variable occurs
in the source file before its use in a particular function, then there is no need for an ext er n declaration in the
function. Theext er n declarationsin mai n, get | i ne and copy are thus redundant. In fact, common practiceis
to place definitions of all external variables at the beginning of the source file, and then omit all extern
declarations.

If the program isin several sourcefiles, and avariableisdefined in filel and used in file2 and file3, then ext er n
declarations are needed in file2 and file3 to connect the occurrences of the variable. The usual practice isto collect
ext er n declarations of variables and functionsin a separate file, historically called a header, that isincluded by
#i ncl ude at the front of each sourcefile. The suffix . h is conventional for header names. The functions of the
standard library, for example, are declared in headerslike <st di 0. h>. Thistopic isdiscussed at length in
Chapter 4, and the library itself in Chapter 7 and Appendix B.

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (28 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

Since the specialized versions of get | i ne and copy have no arguments, logic would suggest that their
prototypes at the beginning of thefile shouldbeget | i ne() and copy() . But for compatibility with older C
programs the standard takes an empty list as an old-style declaration, and turns off all argument list checking; the
word voi d must be used for an explicitly empty list. We will discuss this further in Chapter 4.

Y ou should note that we are using the words definition and declaration carefully when we refer to external
variables in this section.” Definition” refers to the place where the variable is created or assigned storage;
““declaration” refers to places where the nature of the variableis stated but no storage is all ocated.

By the way, there is atendency to make everything in sight an ext er n variable because it appearsto simplify
communications - argument lists are short and variables are always there when you want them. But external
variables are always there even when you don't want them. Relying too heavily on external variablesis fraught
with peril since it leads to programs whose data connections are not all obvious - variables can be changed in
unexpected and even inadvertent ways, and the program is hard to modify. The second version of the longest-line
program isinferior to the first, partly for these reasons, and partly because it destroys the generality of two useful
functions by writing into them the names of the variables they manipulate.

At this point we have covered what might be called the conventional core of C. With this handful of building
blocks, it's possible to write useful programs of considerable size, and it would probably be a good idea if you
paused long enough to do so. These exercises suggest programs of somewhat greater complexity than the ones
earlier in this chapter.

Exercise 1-20. Write aprogram det ab that replaces tabs in the input with the proper number of blanks to space to
the next tab stop. Assume a fixed set of tab stops, say every n columns. Should n be avariable or a symbolic
parameter?

Exercise 1-21. Write aprogram ent ab that replaces strings of blanks by the minimum number of tabs and blanks
to achieve the same spacing. Use the same tab stops as for det ab. When either atab or a single blank would
suffice to reach atab stop, which should be given preference?

Exercise 1-22. Write aprogram to " fold" long input lines into two or more shorter lines after the last non-blank
character that occurs before the n-th column of input. Make sure your program does something intelligent with
very long lines, and if there are no blanks or tabs before the specified column.

Exercise 1-23. Write a program to remove al comments from a C program. Don't forget to handle quoted strings
and character constants properly. C comments don't nest.

Exercise 1-24. Write a program to check a C program for rudimentary syntax errors like unmatched parentheses,
brackets and braces. Don't forget about quotes, both single and double, escape sequences, and comments. (This
program is hard if you do it in full generality.)

Back to Introduction -- Index -- Chapter 2

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (29 of 30) [9/6/2002 12:21:11]

Chapter 1 - A Tutorial Introduction

http://freebooks.by.ru/view/CProgrammingLanguage/chapterl.html (30 of 30) [9/6/2002 12:21:11]

Chapter 2 - Types, Operators and Expressions

Back to Chapter 1 -- Index -- Chapter 3

Chapter 2 - Types, Operators and
Expressions

Variables and constants are the basic data objects manipulated in a program. Declarations list the
variables to be used, and state what type they have and perhaps what their initial values are. Operators
specify what is to be done to them. Expressions combine variables and constants to produce new values.
The type of an object determines the set of values it can have and what operations can be performed on it.
These building blocks are the topics of this chapter.

The ANSI standard has made many small changes and additions to basic types and expressions. There are
now si gned and unsi gned forms of al integer types, and notations for unsigned constants and
hexadecimal character constants. Floating-point operations may be done in single precision; thereis also
al ong double type for extended precision. String constants may be concatenated at compile time.
Enumerations have become part of the language, formalizing a feature of long standing. Objects may be
declared const , which prevents them from being changed. The rules for automatic coercions among
arithmetic types have been augmented to handle the richer set of types.

2.1 Variable Names

Although we didn't say so in Chapter 1, there are some restrictions on the names of variables and

symbolic constants. Names are made up of letters and digits; the first character must be aletter. The
underscore =" counts as a letter; it is sometimes useful for improving the readability of long variable
names. Don't begin variable names with underscore, however, since library routines often use such
names. Upper and lower case letters are distinct, so x and X are two different names. Traditional C
practice isto use lower case for variable names, and all upper case for symbolic constants.

At least the first 31 characters of an internal name are significant. For function names and external
variables, the number may be less than 31, because external names may be used by assemblers and
loaders over which the language has no control. For external names, the standard guarantees uniqueness
only for 6 characters and asingle case. Keywordslikei f , el se,i nt,fl oat, etc., are reserved: you
can't use them as variable names. They must be in lower case.

It's wise to choose variable names that are related to the purpose of the variable, and that are unlikely to

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (1 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

get mixed up typographically. We tend to use short names for local variables, especially loop indices, and
longer names for external variables.

2.2 Data Types and Sizes

There are only afew basic datatypesin C:

char asingle byte, capable of holding one character in the local character set

I nt an integer, typically reflecting the natural size of integers on the host machine
fl oat single-precision floating point

doubl e double-precision floating point

In addition, there are a number of qualifiersthat can be applied to these basic types. short and| ong
apply to integers:

short int sh;
| ong int counter;

Thewordi nt can be omitted in such declarations, and typically itis.

Theintent isthat shor t and | ong should provide different lengths of integers where practical; i nt will
normally be the natural size for a particular machine. shor t isoften 16 bitslong, and i nt either 16 or
32 hits. Each compiler is free to choose appropriate sizes for its own hardware, subject only to the the
restriction that shor t sand intsare at least 16 bits, | ongsare at least 32 bits, and shor t isno longer
thani nt , whichisno longer than | ong.

The qualifier si gned or unsi gned may be applied to char or any integer. unsi gned numbers are
always positive or zero, and obey the laws of arithmetic modulo 2", where n is the number of bitsin the
type. So, for instance, if char sare 8 bits, unsi gned char variables have values between 0 and 255,
whilesi gned char shave values between -128 and 127 (in atwo's complement machine.) Whether
plain char sare signed or unsigned is machine-dependent, but printable characters are always positive.

Thetypel ong doubl e specifies extended-precision floating point. As with integers, the sizes of
floating-point objects are implementation-defined; f | oat , doubl e andl ong doubl e could
represent one, two or three distinct sizes.

The standard headers<!l i m t s. h> and <f | oat . h> contain symbolic constants for all of these sizes,
along with other properties of the machine and compiler. These are discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char , short ,i nt, and| ong variables, both

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (2 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

si gned and unsi gned, by printing appropriate values from standard headers and by direct
computation. Harder if you compute them: determine the ranges of the various floating-point types.

2.3 Constants

Aninteger constant like 1234 isani nt . A | ong constant iswritten with atermina | (ell) or L, asin
123456789L; an integer constant too big to fit into ani nt will also be taken as along. Unsigned
constants are written with aterminal u or U, and the suffix ul or UL indicatesunsi gned | ong.

Floating-point constants contain adecimal point (123. 4) or an exponent (1e- 2) or both; their typeis
doubl e, unless suffixed. The suffixesf or Findicateaf | oat constant; | or L indicateal ong
doubl e.

The value of an integer can be specified in octal or hexadecimal instead of decimal. A leading O (zero) on
an integer constant means octal; aleading Ox or 0X means hexadecimal. For example, decimal 31 can be
written as 037 in octal and Ox1f or Ox1F in hex. Octal and hexadecimal constants may also be
followed by L to makethem | ong and U to make them unsi gned: OXFUL is an unsigned long constant
with value 15 decimal.

A char act er const ant isaninteger, written as one character within single quotes, suchas' x' .
The value of a character constant is the numeric value of the character in the machine's character set. For
example, in the ASCII character set the character constant' 0' has the value 48, which is unrelated to the
numeric value 0. If wewrite' O' instead of a numeric value like 48 that depends on the character set, the
program is independent of the particular value and easier to read. Character constants participate in
numeric operations just as any other integers, although they are most often used in comparisons with
other characters.

Certain characters can be represented in character and string constants by escape sequenceslike\ n
(newline); these sequences ook like two characters, but represent only one. In addition, an arbitrary byte-
sized bit pattern can be specified by

"\ 000
where 000 is one to three octal digits (0...7) or by
"\ xhh'
where hh is one or more hexadecimal digits (0. . . 9, a...f, A. ..F).Sowemightwrite

#defi ne VTAB '\ 013’ /[* ASCI| vertical tab */
#defi ne BELL '\ 007" [* ASCI| bell character */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (3 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

or, in hexadecimal,

#defi ne VTAB '\ xb' [* ASCI| vertical tab */
#defi ne BELL '\ x7' [* ASClI| bell character */

The compl ete set of escape sequencesis

\ a | dert (bell) character |\ \ backslash

\ b | backspace \ ? question mark

\ f | formfeed \' single quote

\'n | newline \ " double quote

\r | carriage return \ 000 | octal number

\'t | horizonta tab \ xhh | hexadecimal number
\'v | vertical tab

The character constant ' \ 0" represents the character with value zero, the null character. ' \ 0" is often
written instead of O to emphasize the character nature of some expression, but the numeric valueisjust O.

A constant expression is an expression that involves only constants. Such expressions may be evaluated
at during compilation rather than run-time, and accordingly may be used in any place that a constant can

occur, asin

#defi ne MAXLI NE 1000
char |ine[MAXLI NE+1];

or

#define LEAP 1 /* in |l eap years */
I nt days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31] ;

A string constant, or string literal, is a sequence of zero or more characters surrounded by double quotes,
asin

"I ama string"
or

/* the enpty string */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (4 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

The quotes are not part of the string, but serve only to delimit it. The same escape sequences used in
character constants apply in strings; \ " represents the double-quote character. String constants can be
concatenated at compile time:

"hel | o, "wor | d"

ISequivalent to
"hell o, world"
Thisisuseful for splitting up long strings across several source lines.

Technically, a string constant is an array of characters. The internal representation of a string has anull
character ' \ 0' at the end, so the physical storage required is one more than the number of characters
written between the quotes. This representation means that there is no limit to how long a string can be,
but programs must scan a string completely to determine its length. The standard library function

strl en(s) returnsthe length of its character string argument s, excluding theterminal ' \ 0' . Hereis
our version:

[* strlen: return length of s */
int strlen(char s[])

{
int i;
while (s[i] !'="'"\0")
++i ;
return i;
}

st r | en and other string functions are declared in the standard header <st ri ng. h>.
Be careful to distinguish between a character constant and a string that contains a single character: ' x' is
not the sameas" x" . The former is an integer, used to produce the numeric value of the letter x in the

machine's character set. The latter is an array of characters that contains one character (the letter x) and a
"\0".

Thereis one other kind of constant, the enumeration constant. An enumeration isalist of constant integer
values, asin

enum bool ean { NO, VYES };

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (5 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

Thefirst name in an enumhas value 0, the next 1, and so on, unless explicit values are specified. If not
all values are specified, unspecified values continue the progression from the last specified value, as the
second of these examples:

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = "\t',
NEWLINE = "\n', VIAB = "\v', RETURN = "\r' };

enum nonths { JAN = 1, FEB, MAR, APR, MNAY, JUN,
JUL, AUG SEP, OCT, NOvV, DEC };
/* FEB = 2, MAR = 3, etc. */

Names in different enumerations must be distinct. Values need not be distinct in the same enumeration.

Enumerations provide a convenient way to associate constant values with names, an alternative to

#def i ne with the advantage that the values can be generated for you. Although variables of enumtypes
may be declared, compilers need not check that what you store in such avariableis avalid value for the
enumeration. Nevertheless, enumeration variables offer the chance of checking and so are often better
than #def i nes. In addition, a debugger may be able to print values of enumeration variablesin their
symbolic form.

2.4 Declarations

All variables must be declared before use, although certain declarations can be made implicitly by
content. A declaration specifies atype, and contains alist of one or more variables of that type, asin

int |ower, upper, step;
char ¢, Iine[1000];

Variables can be distributed among declarations in any fashion; the lists above could well be written as

int |ower,;
I nt upper;
I nt step;
char c;

char |ine[1000];

The latter form takes more space, but is convenient for adding a comment to each declaration for
subsequent modifications.

A variable may also be initialized in its declaration. If the nameis followed by an equals sign and an
expression, the expression serves as an initializer, asin

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (6 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

char esc = "\\"';

i nt i = 0;

I nt [imt = MAXLI NE+1;
float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once only, conceptionally before the
program starts executing, and the initializer must be a constant expression. An explicitly initialized
automatic variable isinitialized each time the function or block it isin is entered; the initializer may be
any expression. External and static variables are initialized to zero by default. Automatic variables for
which is no explicit initializer have undefined (i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to specify that its value will not be
changed. For an array, theconst qualifier says that the elements will not be altered.

const double e = 2.71828182845905:

const char nsq[] “warning: ";

Theconst declaration can also be used with array arguments, to indicate that the function does not
change that array:

int strlen(const char[]);

The result isimplementation-defined if an attempt is made to changeaconst .

2.5 Arithmetic Operators

The binary arithmetic operatorsare +, - , *, / , and the modulus operator % Integer division truncates any
fractional part. The expression

X %y
produces the remainder when x is divided by y, and thusis zero when y divides x exactly. For example,

ayear isaleap year if itisdivisible by 4 but not by 100, except that years divisible by 400 are leap years.
Therefore

If ((year %4 == 0 && year %100 '=0) || year % 400 == 0)
printf("%l is a |l eap year\n", year);

el se
printf("%l is not a | eap year\n", year);

The %operator cannot be appliedto af | oat or doubl e. The direction of truncation for / and the sign

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (7 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

of the result for %are machine-dependent for negative operands, as is the action taken on overflow or
underflow.

The binary + and - operators have the same precedence, which islower than the precedence of *,/ and
% whichisin turn lower than unary + and - . Arithmetic operators associate |eft to right.

Table 2.1 at the end of this chapter summarizes precedence and associativity for all operators.

2.6 Relational and Logical Operators

The relational operators are
> >= < <=

They all have the same precedence. Just below them in precedence are the equality operators:

Relational operators have lower precedence than arithmetic operators, so an expressionlikei < lim1
istakenasi < (lim1),aswould beexpected.

More interesting are the logical operators && and | | . Expressions connected by && or | | are evaluated
left to right, and evaluation stops as soon as the truth or falsehood of the result is known. Most C
programs rely on these properties. For example, hereis aloop from the input function get | i ne that we
wrote in Chapter 1.

for (i=0; I <liml &k (c=getchar()) '="\n" && c != EOF;, ++i)
s[i] = c;
Before reading a new character it is necessary to check that there isroom to storeit inthe array s, so the
testi < |i m 1 must be madefirst. Moreover, if thistest fails, we must not go on and read another
character.

Similarly, it would be unfortunate if ¢ were tested against ECF before get char iscalled; therefore the
call and assignment must occur before the character in ¢ istested.

The precedence of && is higher than that of | | , and both are lower than relational and equality operators,
SO expressions like

I <liml & (c=getchar()) '="'\n" && c != EOF

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (8 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

need no extra parentheses. But since the precedence of ! = is higher than assignment, parentheses are
needed in

(c=getchar()) !'="\n

to achieve the desired result of assignment to ¢ and then comparison with' \ n' .

By definition, the numeric value of arelational or logical expressionisl if therelationistrue, and O if the
relation isfalse.

The unary negation operator ! converts a non-zero operand into O, and a zero operand in 1. A common
useof ! isin constructionslike

if (!valid)
rather than
if (valid == 0)

It's hard to generalize about which form is better. Constructionslike! val i d read nicely ("if not valid"),
but more complicated ones can be hard to understand.

Exercise 2-2. Write aloop equivalent to thef or loop above without using && or | | .

2.7 Type Conversions

When an operator has operands of different types, they are converted to a common type according to a
small number of rules. In general, the only automatic conversions are those that convert a " narrower”
operand into a "wider" one without losing information, such as converting an integer into floating point
inan expression likef + i . Expressionsthat don't make sense, likeusing af | oat asasubscript, are
disallowed. Expressions that might lose information, like assigning a longer integer type to a shorter, or a
floating-point type to an integer, may draw awarning, but they are not illegal.

A char isjust asmall integer, so char s may be freely used in arithmetic expressions. This permits
considerable flexibility in certain kinds of character transformations. One is exemplified by this naive
implementation of the function at oi , which converts a string of digits into its numeric equivalent.

/* atoi: convert s to integer */
I nt atoi(char s[])
{

int i, n;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (9 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

n = 0;

for (i =0; s[i] >="0" && s[i] <="'9"; ++i)
n =10 * n + (s[i] - "0");

return n;

}
Aswe discussed in Chapter 1, the expression
s[i] - 'O

gives the numeric value of the character storedins[i], becausethevaluesof ' 0' ," 1' , etc., forma
contiguous increasing sequence.

Another example of char toi nt conversionisthe function| ower , which maps a single character to
lower case for the ASCII character set. If the character is not an upper case letter, | ower returnsit
unchanged.

/* lower: convert c to |ower case; ASCII only */
int |ower(int c)

{
if (c >"A & c <="'2Z")
returnc + 'a" - '"A';
el se
return c;
}

Thisworks for ASCII because corresponding upper case and lower case letters are a fixed distance apart
as numeric values and each alphabet is contiguous -- there is nothing but letters between A and Z. This
latter observation is not true of the EBCDIC character set, however, so this code would convert more than
just lettersin EBCDIC.

The standard header <ct ype. h>, described in Appendix B, defines afamily of functions that provide
tests and conversions that are independent of character set. For example, the functiont ol ower isa
portable replacement for the function | ower shown above. Similarly, the test

c > '0 && c <="'9

can be replaced by

I sdigit(c)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (10 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

We will usethe <ct ype. h> functions from now on.

There is one subtle point about the conversion of charactersto integers. The language does not specify
whether variables of type char are signed or unsigned quantities. When achar isconvertedtoani nt,
can it ever produce a negative integer? The answer varies from machine to machine, reflecting
differencesin architecture. On some machinesachar whose leftmost bit is 1 will be converted to a
negative integer (" sign extension"). On others, achar ispromoted to an int by adding zeros at the left
end, and thus is always positive.

The definition of C guarantees that any character in the machine's standard printing character set will
never be negative, so these characters will always be positive quantities in expressions. But arbitrary bit
patterns stored in character variables may appear to be negative on some machines, yet positive on others.
For portability, specify si gned or unsi gned if non-character dataisto be stored in char variables.

Relational expressionslikei > | and logical expressions connected by && and | | are defined to have
value 1 if true, and O if false. Thus the assignment

d=c>"'0 && c <="'9

setsd to 1if c isadigit, and O if not. However, functionslikei sdi gi t may return any non-zero value
for true. Inthetest part of i f,whi | e, f or, etc., "true" just means " "non-zero", so this makes no
difference.

Implicit arithmetic conversions work much as expected. In general, if an operator like + or * that takes
two operands (a binary operator) has operands of different types, the "lower" typeis promoted to the
““higher" type before the operation proceeds. The result is of the integer type. Section 6 of Appendix A
states the conversion rules precisaly. If there are no unsi gned operands, however, the following
informal set of rules will suffice:

. If either operandis|l ong doubl e, convert the other tol ong doubl e.
. Otherwisg, if either operand isdoubl e, convert the other to doubl e.

. Otherwisg, if either operand isf | oat , convert the other tof | oat .

. Otherwise, convert char andshort toi nt.

. Then, if either operand is| ong, convert the other to | ong.

Noticethat f | oat sin an expression are not automatically converted to doubl e; thisisachange from
the original definition. In general, mathematical functionslike those in <mat h. h> will use double
precision. The main reason for using f | oat isto save storagein large arrays, or, less often, to save time
on machines where double-precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsi gned operands are involved. The problem is that
comparisons between signed and unsigned values are machine-dependent, because they depend on the

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (11 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

sizes of the various integer types. For example, supposethat i nt is16 bitsand | ong is 32 bits. Then -
1L < 1U, because 1U, whichisanunsi gned i nt,ispromotedtoasi gned | ong.But- 1L >
1UL because- 1L ispromoted to unsi gned | ong and thus appears to be alarge positive number.

Conversions take place across assignments; the value of the right side is converted to the type of the left,
which is the type of the result.

A character is converted to an integer, either by sign extension or not, as described above.
Longer integers are converted to shorter ones or to char s by dropping the excess high-order bits. Thusin

int i;
char c;

I = c;
cC =i;

the value of ¢ isunchanged. Thisistrue whether or not sign extension is involved. Reversing the order of
assignments might lose information, however.

If x isfl oat andi isint,thenx = i andi = X both cause conversions, f | oat toi nt causes
truncation of any fractional part. When adoubl e isconvertedtof | oat , whether the value is rounded
or truncated is implementation dependent.

Since an argument of afunction call is an expression, type conversion also takes place when arguments
are passed to functions. In the absence of afunction prototype, char and short becomeint, and

f 1 oat becomesdoubl e. Thisiswhy we have declared function argumentsto bei nt and doubl e
even when the function is called withchar and f | oat .

Finally, explicit type conversions can be forced (" coerced") in any expression, with a unary operator
called acast . In the construction

(type name) expression
the expression is converted to the named type by the conversion rules above. The precise meaning of a
cast isasif the expression were assigned to a variable of the specified type, which is then used in place of
the whole construction. For example, the library routinesqrt expectsadoubl e argument, and will

produce nonsense if inadvertently handled something else. (sqrt isdeclared in <mat h. h>.) Soif nis
an integer, we can use

sqgrt((double) n)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (12 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

to convert the value of n to doubl e before passing it to sqr t . Note that the cast produces the value of n
in the proper type; n itself is not altered. The cast operator has the same high precedence as other unary
operators, as summarized in the table at the end of this chapter.

If arguments are declared by a function prototype, as the normally should be, the declaration causes
automatic coercion of any arguments when the function is called. Thus, given afunction prototype for
sqrt:

doubl e sqgrt (doubl e)
the call
root2 = sqrt(2)
coercesthe integer 2 into the doubl e value 2. 0 without any need for a cast.

The standard library includes a portable implementation of a pseudo-random number generator and a
function for initializing the seed; the former illustrates a cast:

unsi gned long int next = 1;

/* rand: return pseudo-randominteger on 0..32767 */
I nt rand(voi d)
{

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
voi d srand(unsigned int seed)

{
}

next = seed;

Exercise 2-3. Write afunction ht oi (' s) , which converts a string of hexadecimal digits (including an
optional Ox or 0X) into its equivalent integer value. The allowable digits are O through 9, a through f ,
and A through F.

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing variables. The increment operator
++ adds 1 to its operand, while the decrement operator - - subtracts 1. We have frequently used ++ to

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (13 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

increment variables, asin

If (c =="'\n")
++nl ;

The unusual aspect isthat ++ and - - may be used either as prefix operators (before the variable, asin
++n), or postfix operators (after the variable: n++). In both cases, the effect is to increment n. But the
expression ++n increments n beforeits value is used, while n++ increments n after its value has been
used. This means that in a context where the value is being used, not just the effect, ++n and n++ are
different. If n is5, then

X = Nn++;
setsx to 5, but
X = ++n;

sets x to 6. In both cases, n becomes 6. The increment and decrement operators can only be applied to
variables; an expression like (i +j) ++ isillegal.

In a context where no value is wanted, just the incrementing effect, asin

if (c =="'\n")
nl ++;

prefix and postfix are the same. But there are situations where one or the other is specifically called for.
For instance, consider the function squeeze(s, c¢) , which removes all occurrences of the character ¢
fromthestring s.

/* squeeze: delete all ¢ froms */
voi d squeeze(char s[], int c)

int i, j;
for (i =) =0; s[i] !'="\0"; i++)
1f (s[i] !'= c)
s[j++] = s[i];
s[j] ="\0;
}

Each time anon-c occurs, it is copied into the current j position, and only then isj incremented to be
ready for the next character. Thisis exactly equivaent to

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (14 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

if (s[i] !'=¢) {
s[j] = s[i];
] ++;

}

Another example of asimilar construction comes from theget | i ne function that we wrote in Chapter
1, where we can replace

If (c =="'\n") {
s[i] = c;
++i ;

}

by the more compact

if (c =="'\n")
s[i++] = c;

As athird example, consider the standard function st r cat (s, t), which concatenates the string t to
theend of string s. st r cat assumes that there is enough spacein s to hold the combination. Aswe

have written it, st r cat returns no value; the standard library version returns a pointer to the resulting
string.

/* strcat: concatenate t to end of s; s nust be big enough */
void strcat(char s[], char t[])

{
int i, j;
i:j = 0;
while (s[i] !'="\0") /* find end of s */
| ++;
while ((s[i++] = t[j++]) !'="\0") /* copy t */
}

As each member is copied fromt tos, the postfix ++ isapplied to bothi andj to make sure that they
are in position for the next pass through the loop.

Exercise 2-4. Write an alternative version of squeeze(sl, s2) that deletes each character ins1 that
matches any character in the string s2.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (15 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

Exercise 2-5. Write the function any(s1, s2) , which returns the first location in astring s1 where any
character from the string s2 occurs, or - 1 if s1 contains no charactersfrom s2. (The standard library
function st r pbr k does the same job but returns a pointer to the location.)

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral operands, that is,
char,short,int,andl ong, whether signed or unsigned.

& bitwise AND

| bitwiseinclusive OR

A hitwise exclusive OR

<< |€ft shift

>> right shift

~ one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits, for example
n =n & 0177;

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator | isused to turn bits on:
X = X | SET_ON,

setsto onein x the bitsthat are set to onein SET_ON.

The bitwise exclusive OR operator M sets aone in each bit position where its operands have different bits,
and zero where they are the same.

One must distinguish the bitwise operators & and | from the logical operators && and | | , which imply
left-to-right evaluation of atruth value. For example, if x islandy is2,thenx & y iszerowhilex &&
y isone.

The shift operators << and >> perform left and right shifts of their left operand by the number of bit
positions given by the right operand, which must be non-negative. Thusx << 2 shiftsthe value of x by
two positions, filling vacated bits with zero; thisis equivalent to multiplication by 4. Right shifting an
unsi gned quantity awaysfits the vacated bits with zero. Right shifting a signed quantity will fill with

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (16 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

bit signs (" arithmetic shift") on some machines and with O-bits (" "logical shift") on others.

The unary operator ~ yields the one's complement of an integer; that is, it converts each 1-bit into a O-bit
and vice versa. For example

X = x & ~077

setsthe last six bits of x to zero. Notethat x & ~077 isindependent of word length, and is thus
preferable to, for example, x & 0177700, which assumesthat x isa 16-bit quantity. The portable form
involves no extra cost, since ~077 is aconstant expression that can be evaluated at compile time.

Asan illustration of some of the bit operators, consider the function get bi t s(x, p, n) that returnsthe
(right adjusted) n-bit field of x that begins at position p. We assume that bit position O is at the right end
and that n and p are sensible positive values. For example, get bi t s(x, 4, 3) returnsthe three bitsin

positions 4, 3 and 2, right-adjusted.

/* getbits: get n bits fromposition p */
unsi gned getbits(unsigned x, int p, int n)

{
}

return (x >> (p+1-n)) & ~(~0 << n);

Theexpressionx >> (p+1-n) movesthe desired field to the right end of the word. ~0 isall 1-bits;
shifting it left n positions with ~0<<n places zeros in the rightmost n bits; complementing that with ~
makes a mask with onesin the rightmost n bits.

Exercise 2-6. Writeafunctionset bi t s(x, p, n, y) that returns x with the n bits that begin at position
p set to the rightmost n bits of y, leaving the other bits unchanged.

Exercise 2-7. Writeafunctioni nvert (x, p, n) that returnsx with the n bits that begin at position p
inverted (i.e., 1 changed into 0 and vice versa), leaving the others unchanged.

Exercise 2-8. Writeafunctionr i ght r ot (X, n) that returns the value of the integer x rotated to the
right by n positions.

2.10 Assignment Operators and Expressions

An expression such as

I =1 + 2

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (17 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

in which the variable on the left side is repeated immediately on the right, can be written in the
compressed form

i += 2
The operator += is called an assignment operator.

Most binary operators (operators like + that have aleft and right operand) have a corresponding
assignment operator op=, where op is one of

+ - * / % << >> & N |
If expr4, and expr, are expressions, then
expr, op= expr,
iIsequivalent to
expry = (expri) op (expry)
except that expr4 is computed only once. Notice the parentheses around expr »:

X *=y +1

x =x* (y +1)
rather than
X =x*y +1
As an example, the function bi t count counts the number of 1-bitsin itsinteger argument.

/* bitcount: count 1 bits in x */
I nt bitcount (unsigned x)

{
int b;

for (b =0; x !'=0; x >>= 1)
if (x & 01)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (18 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

b++;
return b;

}

Declaring the argument x to be an unsi gned ensures that when it is right-shifted, vacated bits will be
filled with zeros, not sign bits, regardless of the machine the program is run on.

Quite apart from conciseness, assignment operators have the advantage that they correspond better to the
way peoplethink. Wesay "add 2toi " or incrementi by 2", not “takei , add 2, then put the result

back ini ". Thusthe expressioni += 2 ispreferabletoi = i +2.Inaddition, for acomplicated
expression like

yyval [yypv[p3+p4] + yypv[pl]] += 2
the assignment operator makes the code easier to understand, since the reader doesn't have to check
painstakingly that two long expressions are indeed the same, or to wonder why they're not. And an
assignment operator may even help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can occur in expressions; the most
common exampleis

while ((c = getchar()) != EOF)

The other assignment operators (+=, - =, etc.) can also occur in expressions, although thisis less frequent.

In all such expressions, the type of an assignment expression is the type of itsleft operand, and the value
isthe value after the assignment.

Exercise 2-9. In atwo's complement number system, x &= (x-1) deletesthe rightmost 1-bitin x.
Explain why. Use this observation to write afaster version of bi t count .

2.11 Conditional Expressions

The statements

if (a > b)
Z = a;
el se
z = b;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (19 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions
compute in z the maximum of a and b. The conditional expression, written with the ternary operator
2. ", provides an alternate way to write this and similar constructions. In the expression

exprq, ? expr, @ exprg

the expression expr 4 is evaluated first. If it is non-zero (true), then the expression expr,, is evaluated, and
that is the value of the conditional expression. Otherwise exprs is evaluated, and that is the value. Only
one of expr, and exprs isevaluated. Thusto set z to the maximum of a and b,

z =(a>Db) ? a: b; /* z = max(a, b) */

It should be noted that the conditional expression isindeed an expression, and it can be used wherever
any other expression can be. If expr, and expr5 are of different types, the type of the result is determined

by the conversion rules discussed earlier in this chapter. For example, if f isafl oat andn ani nt,
then the expression

(n>0) ?2f : n
isof typef | oat regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional expression, since the
precedence of ?: isvery low, just above assignment. They are advisable anyway, however, since they
make the condition part of the expression easier to see.

The conditional expression often leads to succinct code. For example, this loop prints n elements of an
array, 10 per line, with each column separated by one blank, and with each line (including the | ast)
terminated by a newline.

for (i =0; i <n; i++)
printf("%d%", a[i], (i%d0==9 || i==n-1) ? '\n" : ' ');

A newlineis printed after every tenth element, and after the n-th. All other elements are followed by one
blank. This might look tricky, but it's more compact than the equivalent i f - el se. Another good
exampleis

printf("You have % itens%.\n", n, n==1 2?2 "" . "s");

Exercise 2-10. Rewrite the function | ower , which converts upper case letters to lower case, with a
conditional expressioninstead of i f - el se.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (20 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

2.12 Precedence and Order of Evaluation

Table 2.1 summarizes the rules for precedence and associativity of all operators, including those that we
have not yet discussed. Operators on the same line have the same precedence; rows are in order of
decreasing precedence, so, for example, *, / , and %all have the same precedence, which is higher than
that of binary + and - . The ““operator” () refersto function call. The operators- > and . are used to
access members of structures; they will be covered in Chapter 6, along with si zeof (size of an object).

Chapter 5 discusses* (indirection through a pointer) and & (address of an object), and Chapter 3
discusses the comma operator.

Operators Associativity
O [1 ->. left to right
I~ ++ -- + - * (type) si zeof right to left
* | % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== | = left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
?: right to left
= 4= -=*=[= % & "= | = <<= >>=|right toleft
, left to right

Unary & +, -, and * have higher precedence than the binary forms.
Table 2.1: Precedence and Associativity of Operators

Note that the precedence of the bitwise operators &, ~, and | fallsbelow == and! =. Thisimplies that bit-
testing expressions like

if ((x & MASK) == 0)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (21 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of an operator are evaluated.
(The exceptionsare &&, | | , ?: ,and ', '.) For example, in a statement like

x =f() +49();

f may be evaluated before g or vice versa; thusif either f or g alters avariable on which the other
depends, x can depend on the order of evaluation. Intermediate results can be stored in temporary
variables to ensure a particular sequence.

Similarly, the order in which function arguments are evaluated is not specified, so the statement
printf("% %\ n", ++n, power(2, n)); [* WWRONG */

can produce different results with different compilers, depending on whether n isincremented before
power iscalled. The solution, of course, isto write

++n:

printf("%l %\n", n, power(2, n));

Function calls, nested assignment statements, and increment and decrement operators cause = side
effects” - some variable is changed as a by-product of the evaluation of an expression. In any expression
involving side effects, there can be subtle dependencies on the order in which variables taking part in the
expression are updated. One unhappy situation is typified by the statement

a[i] = i++

The question is whether the subscript isthe old value of i or the new. Compilers can interpret thisin
different ways, and generate different answers depending on their interpretation. The standard
intentionally leaves most such matters unspecified. When side effects (assignment to variables) take place
within an expression is |eft to the discretion of the compiler, since the best order depends strongly on
machine architecture. (The standard does specify that all side effects on arguments take effect before a
function is called, but that would not help in the call to pri nt f above.)

The moral isthat writing code that depends on order of evaluation is a bad programming practice in any
language. Naturally, it is necessary to know what things to avoid, but if you don't know how they are
done on various machines, you won't be tempted to take advantage of a particular implementation.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (22 of 23) [9/6/2002 12:21:23]

Chapter 2 - Types, Operators and Expressions

Back to Chapter 1 -- Index -- Chapter 3

http://freebooks.by.ru/view/CProgrammingLanguage/chapter2.html (23 of 23) [9/6/2002 12:21:23]

Chapter 3 - Control Flow

Back to Chapter 2 -- Index -- Chapter 4

Chapter 3 - Control Flow

The control-flow of alanguage specify the order in which computations are performed. We have aready
met the most common control-flow constructionsin earlier examples; here we will complete the set, and
be more precise about the ones discussed before.

3.1 Statements and Blocks

Anexpressonsuchasx = Qori++orprintf(...) becomesastatement whenitisfollowed by a
semicolon, asin

X = 0;
| ++:

printf(...);
In C, the semicolon is a statement terminator, rather than a separator asit isin languages like Pascal.

Braces{ and} areused to group declarations and statements together into a compound statement, or
block, so that they are syntactically equivalent to a single statement. The braces that surround the
statements of a function are one obvious example; braces around multiple statements after ani f , el se,
whi | e, or f or are another. (Variables can be declared inside any block; we will talk about thisin
Chapter 4.) There is no semicolon after the right brace that ends a block.

3.2 If-Else

Thei f - el se statement is used to express decisions. Formally the syntax is

I f (expression)
st at enent 4

el se
st at enent ,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (1 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

wherethe el se partisoptional. The expression is evaluated; if it istrue (that is, if expression has a non-
zero value), statement, is executed. If it isfalse (expression is zero) and if thereisan el se part,

statement, is executed instead.

Sinceani f teststhe numeric value of an expression, certain coding shortcuts are possible. The most
obviousiswriting

I f (expression)
instead of
I f (expression !'= 0)
Sometimes thisis natural and clear; at other times it can be cryptic.

Becausetheel se partof ani f - el se isoptional,there is an ambiguity when an elseif omitted from a
nested i f sequence. Thisisresolved by associating the el se with the closest previous el se-lessi f .
For example, in

if (n > 0)
if (a > b)
Z = a;
el se
Z = b;

theel se goestotheinneri f , aswe have shown by indentation. If that isn't what you want, braces must
be used to force the proper association:

if (n>0) {
if (a > b)
Z = a;
}
el se
Z = b;

The ambiguity is especially pernicious in situations like this:

if (n > 0)
for (i =0; 1 < n; i++)
if (s[i] > 0) {
printf("...");

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (2 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

return i;
}
el se /* WRONG */
printf("error -- n is negative\n");

The indentation shows unequivocally what you want, but the compiler doesn't get the message, and
associatesthe el se withtheinneri f . Thiskind of bug can be hard to find; it's a good idea to use braces
when there are nested i f s.

By the way, notice that thereisasemicolon after z = ain

if (a > b)
Z = a;
el se
Z = b;

Thisis because grammatically, a statement followsthei f , and an expression statement like 'z = a; "
Is always terminated by a semicolon.

3.3 Else-If

The construction

I f (expression)
st at enent

el se i f (expression)
st at enent

el se i f (expression)
st at enent

el se i f (expression)
st at enent

el se
st at enent

occurs so often that it is worth a brief separate discussion. This sequenceof i f statements is the most
general way of writing a multi-way decision. The expressions are evaluated in order; if an expression is
true, the statement associated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group of them in braces.

Thelast el se part handlesthe ""none of the above" or default case where none of the other conditionsis
satisfied. Sometimes there is no explicit action for the default; in that case the trailing

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (3 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

el se
st at enent

can be omitted, or it may be used for error checking to catch an ““impossible" condition.

To illustrate a three-way decision, here is abinary search function that decides if a particular value x
occursin the sorted array v. The elements of v must be in increasing order. The function returns the
position (a number between O and n- 1) if x occursinv, and -1 if not.

Binary search first compares the input value x to the middle element of the array v. If x isless than the
middle value, searching focuses on the lower half of the table, otherwise on the upper half. In either case,
the next step isto compare x to the middle element of the selected half. This process of dividing the
range in two continues until the value is found or the range is empty.

/* binsearch: find x in v[0] <=v[l] <= ... <=v[n-1] */
i nt binsearch(int x, int v[], int n)
{

int low, high, md;

| ow = O;

high = n - 1;

while (low <= high) {

md = (|l owt+high)/2;

if (x <v[md])
high = md + 1;

else if (x > v[md])
low = md + 1;

el se /[* found match */
return md;

}

return -1; /* no match */

}

The fundamental decision iswhether x isless than, greater than, or equal to the middle element v[m d]
at each step; thisisanatural for el se-i f.

Exercise 3-1. Our binary search makes two tests inside the loop, when one would suffice (at the price of
more tests outside.) Write a version with only one test inside the loop and measure the difference in run-
time.

3.4 Switch

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (4 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

Thesw t ch statement is a multi-way decision that tests whether an expression matches one of a
number of constant integer values, and branches accordingly.

switch (expression) {
case const-expr: statements
case const-expr: statements
default: statenents

}

Each case is |abeled by one or more integer-valued constants or constant expressions. If a case matches
the expression value, execution starts at that case. All case expressions must be different. The case
labeled def aul t isexecuted if none of the other cases are satisfied. A def aul t isoptional; if it isn't
there and if none of the cases match, no action at all takes place. Cases and the default clause can occur
in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit, white space, and all other

characters, using asequenceofif ... else if ... el se.Hereisthesame programwitha
SW t ch:

#i ncl ude <stdi o. h>

main() /* count digits, white space, others */

{
int ¢, i, nwhite, nother, ndigit[10];

nwhite = nother = 0;
for (i =0; 1 < 10; |i++)
ndigit[i] = O;
while ((c = getchar()) !'= EOF) {
swtch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8 : case '9':
ndigit[c-'0"]++;
br eak;
case ' ':
case '\n':
case '\t':
nwhi t e++;
br eak;
defaul t:
not her ++;
br eak;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (5 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow
}
}
printf("digits =");
for (i =0; 1 < 10; i++4)
printf(" %", ndigit[i]);
printf(", white space = %, other = %l\n",

nwhi te, nother);
return O;

}

The br eak statement causes an immediate exit from the swi t ch. Because cases serve just as labels,
after the code for one case is done, execution falls through to the next unless you take explicit action to
escape. br eak andr et ur n are the most common waysto leaveasw t ch. A br eak statement can
also be used to force an immediate exit fromwhi | e, f or , and do loops, as will be discussed later in
this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows several casesto be attached to a
single action, as with the digits in this example. But it al'so implies that normally each case must end with
abr eak to prevent falling through to the next. Falling through from one case to another is not robust,
being prone to disintegration when the program is modified. With the exception of multiple labels for a
single computation, fall-throughs should be used sparingly, and commented.

Asamatter of good form, put abr eak after the last case (the def aul t here) even though it's logically
unnecessary. Some day when another case gets added at the end, this bit of defensive programming will
save you.

Exercise 3-2. Write afunction escape(s, t) that converts characters like newline and tab into visible
escape sequences like\ n and\ t asit copiesthestringt tos. Useasw t ch. Write afunction for the
other direction as well, converting escape sequences into the real characters.

3.5 Loops - While and For

We have already encountered thewhi | e and f or loops. In

whi | e (expression)
st at ement

the expression is evaluated. If it is non-zero, statement is executed and expression is re-evaluated. This
cycle continues until expression becomes zero, at which point execution resumes after statement.

Thef or statement

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (6 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

for (exprq; expro;, exprs)
st at enent

Isequivalent to

expr q;

whil e (exprjy) {
st at enment
expr z;

}

except for the behaviour of cont i nue, which isdescribed in Section 3.7.

Grammatically, the three components of af or loop are expressions. Most commonly, expr, and exprs
are assignments or function calls and expr, isarelational expression. Any of the three parts can be
omitted, although the semicolons must remain. If expr, or exprz isomitted, it issimply dropped from the
expansion. If the test, expr,, isnot present, it is taken as permanently true, so

for (;;) {
}

isan “infinite" loop, presumably to be broken by other means, such asabr eak or r et ur n.
Whether to usewhi | e or f or islargely a matter of personal preference. For example, in

while ((c = getchar()) ==" " |] ¢ =="\n" || ¢ ="\t")
; /* skip white space characters */

thereisnoinitialization or re-initialization, so the whi | e ismost natural.

Thef or ispreferable when there isasimple initialization and increment since it keeps the loop control
statements close together and visible at the top of the loop. Thisis most obviousin

for (i =0; i < n; |++)

which isthe C idiom for processing the first n elements of an array, the analog of the Fortran DO loop or
the Pascal f or . The analogy is not perfect, however, since theindex variablei retainsits value when the

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (7 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

loop terminates for any reason. Because the components of thef or are arbitrary expressions, f or loops
are not restricted to arithmetic progressions. Nonetheless, it is bad style to force unrelated computations
into the initialization and increment of af or , which are better reserved for loop control operations.

Asalarger example, hereis another version of at oi for converting a string to its numeric equivalent.
This oneis dightly more general than the one in Chapter 2; it copes with optional leading white space

and an optional + or - sign. (Chapter 4 shows at of , which does the same conversion for floating-point
numbers.)

The structure of the program reflects the form of the input:
skip white space, if any
get sign, if any

get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The whole process terminates on
the first character that could not be part of a number.

#i ncl ude <ctype. h>

/* atoi: convert s to integer; version 2 */
Int atoi(char s[])
{

int i, n, sign;

for (i = 0; isspace(s[i]); i++) [* skip white space */

sign = (s[i] =="'-") 2 -1: 1,

I f (s[i] =="+" || s[i] =="-") [* skip sign */
| ++:

for (n =0; isdigit(s[i]); 1++)
n =10 * n + (s[i] - "0");

return sign * n;

}

The standard library provides a more elaborate function st r t ol for conversion of stringsto long
integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious when there are several nested
loops. The following function is a Shell sort for sorting an array of integers. The basic idea of this sorting
algorithm, which was invented in 1959 by D. L. Shell, isthat in early stages, far-apart elements are
compared, rather than adjacent ones as in ssimpler interchange sorts. This tends to eliminate large

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (8 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

amounts of disorder quickly, so later stages have less work to do. Theinterval between compared
elementsis gradually decreased to one, at which point the sort effectively becomes an adjacent
interchange method.

/* shellsort: sort v[O]...v[n-1] into increasing order */
void shellsort(int v[], int n)

{
int gap, i, J, tenp;
for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; I < n; i++)
for (j=i-gap; j>=0 && v[j]>Vv[]j+gap]; j-=gap) {
temp = v[j];
v[j] = v[j+gap];
v[j +gap] = tenp;
}
}

There are three nested loops. The outermost controls the gap between compared elements, shrinking it
fromn/ 2 by afactor of two each pass until it becomes zero. The middle loop steps along the elements.
The innermost loop compares each pair of elementsthat is separated by gap and reverses any that are
out of order. Since gap is eventually reduced to one, all elements are eventually ordered correctly.
Notice how the generality of thef or makes the outer loop fit in the same form as the others, even
though it is not an arithmetic progression.

Onefina C operator isthecomma ", ", which most often findsusein thef or statement. A pair of
expressions separated by a commais evaluated left to right, and the type and value of the result are the
type and value of the right operand. Thusin afor statement, it is possible to place multiple expressionsin
the various parts, for example to process two indicesin parallel. Thisisillustrated in the function
reverse(s),whichreversesthe string s in place.

#i ncl ude <string. h>

/* reverse: reverse string s in place */
voi d reverse(char s[])

int ¢, i, j;

for (i =0, J =strlen(s)-1; i < j; i++, J--) {
c =s[i];
s[i] = s[]];
s[i] = c;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (9 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

}

The commas that separate function arguments, variables in declarations, etc., are not comma operators,
and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for constructs strongly related to
each other, asinthef or loopinr ever se, and in macros where a multistep computation hasto be a
single expression. A comma expression might also be appropriate for the exchange of elementsin
r ever se, where the exchange can be thought of a single operation:

for (i strlen(s)-1; i < j; i++, j--)

0, j =
=s[i], s[i] =s[j], s[i]l =¢;

o 1l

Exercise 3-3. Write afunction expand(s1, s2) that expands shorthand notationslike a- z in the
string s 1 into the equivalent complete list abc. . . Xxyz ins2. Allow for letters of either case and digits,
and be prepared to handle caseslike a- b- ¢ and a- z0- 9 and - a- z. Arrange that aleading or trailing -
istaken literaly.

3.6 Loops - Do-While

Aswe discussed in Chapter 1, thewhi | e and f or loops test the termination condition at the top. By

contrast, the third loop in C, the do- whi | e, tests at the bottom after making each pass through the loop
body; the body is always executed at |east once.

The syntax of thedo is

do
st at enent
whi |l e (expression);

The statement is executed, then expression is evaluated. If it istrue, statement is evaluated again, and so
on. When the expression becomes fal se, the loop terminates. Except for the sense of the test, do- whi | e
Isequivalent to the Pascal r epeat - unt i | statement.

Experience shows that do- whi | e ismuch less used than whi | e and f or . Nonetheless, from timeto
timeitisvaluable, asin the following functioni t oa, which converts a number to a character string (the
inverse of at oi). Thejob is dlightly more complicated than might be thought at first, because the easy
methods of generating the digits generate them in the wrong order. We have chosen to generate the string
backwards, then reverseit.

/* itoa: convert n to characters in s */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (10 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

void itoa(int n, char s[])

{

}

int i, sign;

If ((sigh = n) <0) /* record sign */

n = -n; /* make n positive */
I = 0;
do { /* generate digits in reverse order */
s[i++] = n %10 + "0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
I f (sign < 0)
sfi++] ="-";
s[i] ="\0";

reverse(s);

Thedo- whi | e isnecessary, or at least convenient, since at least one character must be installed in the
array s, evenif n iszero. We aso used braces around the single statement that makes up the body of the
do- whi | e, even though they are unnecessary, so the hasty reader will not mistake the whi | e part for
the beginning of awhi | e loop.

Exercise 3-4. In atwo's complement number representation, our version of i t oa does not handle the
largest negative number, that is, the value of n equal to -(2wordsize-1), Explain why not. Modify it to print
that value correctly, regardless of the machine on which it runs.

Exercise 3-5. Write the functioni t ob(n, s, b) that convertsthe integer n into abase b character
representation inthe string s. In particular, i t ob(n, s, 16) formatss as ahexadecimal integer in s.

Exercise 3-6. Writeaversion of i t oa that accepts three arguments instead of two. The third argument is
aminimum field width; the converted number must be padded with blanks on the left if necessary to
make it wide enough.

3.7 Break and Continue

It is sometimes convenient to be able to exit from aloop other than by testing at the top or bottom. The
br eak statement provides an early exit fromf or , whi | e, and do, just asfromswi t ch. A br eak
causes the innermost enclosing loop or swi t ch to be exited immediately.

The following function, t r i m removes trailing blanks, tabs and newlines from the end of a string, using
abr eak to exit from aloop when the rightmost non-blank, non-tab, non-newline is found.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (11 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

/* trim renove trailing blanks, tabs, newlines */
int trimchar s[])

{ .
int n;
for (n = strlen(s)-1; n >= 0; n--)
I f (s[n] '=" " && s[n] I'="\t' && s[n] !'="\n")
br eak;
s[n+tl] = "\0";
return n;
}

st r | en returnsthe length of the string. The f or loop starts at the end and scans backwards looking for
the first character that is not a blank or tab or newline. The loop is broken when one is found, or when n
becomes negative (that is, when the entire string has been scanned). Y ou should verify that thisis correct
behavior even when the string is empty or contains only white space characters.

Thecont i nue statement isrelated to br eak, but less often used; it causes the next iteration of the
enclosing f or , whi | e, or do loop to begin. In thewhi | e and do, this means that the test part is
executed immediately; in thef or , control passes to the increment step. Thecont i nue statement
appliesonly to loops, nottoswi t ch. A cont i nue insideaswi t ch inside aloop causes the next loop
iteration.

As an example, this fragment processes only the non-negative elementsin the array a; negative values
are skipped.

for (i =0; 1 < n; i++)
if (a[i] < 0) /* skip negative elenents */
conti nue;

/* do positive elenents */

Thecont i nue statement is often used when the part of the loop that follows is complicated, so that
reversing atest and indenting another level would nest the program too deeply.

3.8 Goto and labels

C provides the infinitely-abusable got o statement, and labels to branch to. Formally, the got o
statement is never necessary, and in practice it is almost always easy to write code without it. We have
not used got o in this book.

Nevertheless, there are afew situations where got os may find a place. The most common is to abandon

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (12 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

processing in some deeply nested structure, such as breaking out of two or more loops at once. The
br eak statement cannot be used directly since it only exits from the innermost loop. Thus:

for (...)
for (...) {

I f (disaster)
goto error;

error:
/* clean up the ness */

This organization is handy if the error-handling code is non-trivial, and if errors can occur in several
places.

A label has the same form as a variable name, and is followed by a colon. It can be attached to any
statement in the same function as the got o. The scope of alabel isthe entire function.

As another example, consider the problem of determining whether two arrays a and b have an element in
common. One possibility is

for (i =0; 1 < n; i++)
for (j =0; J <m j+4)
it (a[i] ==D[]j])
goto found;
/[* didn't find any common el enent */

f ound:
/* got one: a[i] == b[j] */

Code involving agot o can aways be written without one, though perhaps at the price of some repeated
tests or an extra variable. For example, the array search becomes

found = 0
for (i = I < n && !found; i ++)
for (] =0;,] <mé&& !found; |++)
it (a[i] ==Db[]])
found = 1;

I f (found)
/* got one: a[i-1] == b[j-1] */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (13 of 14) [9/6/2002 12:21:31]

Chapter 3 - Control Flow

el se
/* didn't find any common el enent */

With afew exceptions like those cited here, code that relies on got o statementsis generally harder to
understand and to maintain than code without got os. Although we are not dogmatic about the matter, it
does seem that got o statements should be used rarely, if at all.

Back to Chapter 2 -- Index -- Chapter 4

http://freebooks.by.ru/view/CProgrammingLanguage/chapter3.html (14 of 14) [9/6/2002 12:21:31]

Chapter 4 - Functions and Program Structure

Back to Chapter 3 -- Index -- Chapter 5

Chapter 4 - Functions and Program Structure

Functions break large computing tasks into smaller ones, and enable people to build on what others have done instead of starting over from
scratch. Appropriate functions hide details of operation from parts of the program that don't need to know about them, thus clarifying the whole,
and easing the pain of making changes.

C has been designed to make functions efficient and easy to use; C programs generally consist of many small functions rather than afew big ones.
A program may reside in one or more source files. Source files may be compiled separately and loaded together, along with previously compiled
functions from libraries. We will not go into that process here, however, since the details vary from system to system.

Function declaration and definition is the area where the ANSI standard has made the most changesto C. Aswe saw first in Chapter 1, it is now

possible to declare the type of arguments when afunction is declared. The syntax of function declaration also changes, so that declarations and
definitions match. This makes it possible for a compiler to detect many more errors than it could before. Furthermore, when arguments are
properly declared, appropriate type coercions are performed automatically.

The standard clarifies the rules on the scope of names; in particular, it requires that there be only one definition of each external object.
Initialization is more general: automatic arrays and structures may now be initialized.

The C preprocessor has also been enhanced. New preprocessor facilities include a more complete set of conditional compilation directives, away
to create quoted strings from macro arguments, and better control over the macro expansion process.

4.1 Basics of Functions

To begin with, let us design and write a program to print each line of itsinput that contains a particular " pattern” or string of characters. (Thisisa
special case of the UNIX program gr ep.) For example, searching for the pattern of letters “oul d" in the set of lines

Ah Love! could you and | with Fate conspire
To grasp this sorry Schenme of Things entire,
Wul d not we shatter it to bits -- and then
Re-moul d it nearer to the Heart's Desire!

will produce the output

Ah Love! could you and | with Fate conspire
Woul d not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire!

The job falls neatly into three pieces:
while (there's another line)

if (the line contains the pattern)

print it

Although it's certainly possible to put the code for al of thisin mai n, abetter way isto use the structure to advantage by making each part a
separate function. Three small pieces are better to deal with than one big one, because irrelevant details can be buried in the functions, and the
chance of unwanted interactions is minimized. And the pieces may even be useful in other programs.
“While there's another line" isget | i ne, afunction that we wrotein Chapter 1, and “print it" ispr i nt f , which someone has already provided

for us. This means we need only write a routine to decide whether the line contains an occurrence of the pattern.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (1 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

We can solve that problem by writing afunction st ri ndex('s, t) that returnsthe position or index in the string s where the stringt begins, or
- 1if s doesnot containt . Because C arrays begin at position zero, indexes will be zero or positive, and so a negative value like - 1 is convenient
for signaling failure. When we later need more sophisticated pattern matching, we only have to replace st r i ndex; the rest of the code can
remain the same. (The standard library provides afunction st r st r that issimilar to st r i ndex, except that it returns a pointer instead of an
index.)

Given this much design, filling in the details of the program is straightforward. Here is the whole thing, so you can see how the pieces fit together.
For now, the pattern to be searched for is aliteral string, which is not the most general of mechanisms. We will return shortly to a discussion of
how to initialize character arrays, and in Chapter 5 will show how to make the pattern a parameter that is set when the program isrun. Thereis
aso adlightly different version of get | i ne; you might find it instructive to compare it to the one in Chapter 1.

#i ncl ude <stdio. h>
#def i ne MAXLI NE 1000 /* maxi muminput line length */

int getline(char line[], int nax)
int strindex(char source[], char searchfor[]);

char pattern[] = "ould"; /* pattern to search for */
/* find all lines matching pattern */

mai n()

{

char |ine[MAXLI NE] ;
int found = O;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {
printf("9%", |ine);
f ound++;

}

return found;

}

/* getline: get lineinto s, return length */
int getline(char s[], int lim

{ . .
int c, i;
i = 0;
while (--1im> 0 & (c=getchar()) !'= EOF & c != '\n")
s[i++] = ¢c;
if (c =="'\n")
s[i++] = ¢c;
s[i] = "\0';
return i;
}

/* strindex: return index of t ins, -1 if none */
int strindex(char s[], char t[])

{
int i, j, k;
for (i =0; s[i] !'="\0",; i++) {
for (j=i, k=0; t[k]!'="\0" && s[j]==t[k]; j++, k++)
it (k>0 & t[k] == '\0')
return i;
}
return -1,
}

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (2 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure
Each function definition has the form

return-type function-nane(argunment decl arations)

{
}

decl arati ons and statenents

Various parts may be absent; aminimal functionis

dummy() {}

which does nothing and returns nothing. A do-nothing function like thisis sometimes useful as a place holder during program development. If the
return type is omitted, i nt isassumed.

A program isjust a set of definitions of variables and functions. Communication between the functions is by arguments and val ues returned by
the functions, and through external variables. The functions can occur in any order in the source file, and the source program can be split into
multiplefiles, so long as no function is split.

Ther et ur n statement is the mechanism for returning a value from the called function to its caller. Any expression can follow r et ur n:
return expression;

The expression will be converted to the return type of the function if necessary. Parentheses are often used around the expression, but they are
optional.

The calling function is free to ignore the returned value. Furthermore, there need to be no expression after r et ur n; inthat case, no valueis
returned to the caller. Control also returns to the caller with no value when execution ™ falls off the end" of the function by reaching the closing
right brace. It isnot illegal, but probably a sign of trouble, if afunction returns a value from one place and no value from another. In any case, if a
function failsto return avalue, its ““value" is certain to be garbage.

The pattern-searching program returns a status from mai n, the number of matches found. This value is available for use by the environment that
called the program

The mechanics of how to compile and load a C program that resides on multiple source files vary from one system to the next. On the UNIX
system, for example, the cc command mentioned in Chapter 1 does the job. Suppose that the three functions are stored in threefiles called

mai n. c,getline.c,andstrindex. c. Thenthe command

cc main.c getline.c strindex.c
compiles the three files, placing the resulting object code in filesmai n. o, get | i ne. o, and st ri ndex. o, then loads them all into an
executablefilecalled a. out . If thereisan error, say in mai n. c, thefile can be recompiled by itself and the result loaded with the previous
object files, with the command

cc main.c getline.o strindex.o

The cc command usesthe ™. ¢" versus ™. 0" naming convention to distinguish source files from object files.

Exercise 4-1. Write the function st ri ndex (s, t) which returns the position of the rightmost occurrenceof t ins, or - 1 if thereis none.

4.2 Functions Returning Non-integers

So far our examples of functions have returned either no value (voi d) or ani nt . What if afunction must return some other type? many
numerical functionslikesqrt, si n, and cos return doubl e; other specialized functions return other types. To illustrate how to deal with this,
let us write and use the function at of ('s) , which converts the string s to its double-precision floating-point equivalent. at of if an extension of
at oi , which we showed versions of in Chapters 2 and 3. It handles an optional sign and decimal point, and the presence or absence of either part
or fractional part. Our version is not a high-quality input conversion routine; that would take more space than we care to use. The standard library

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (3 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

includes an at of ; the header <st dl i b. h> declaresit.
First, at of itself must declare the type of valueit returns, sinceitisnoti nt . The type name precedes the function name:

#i ncl ude <ctype. h>

/* atof: convert string s to double */
doubl e atof (char s[])

{
doubl e val, power;
int i, sign;
for (i = 0; isspace(s[i]); i++) [/* skip white space */
sign = (s[i] =="-") ? -1: 1,
it (sfi] =="+ || s[i] =="-")
i ++;
for (val = 0.0; isdigit(s[i]); i++)
val = 10.0 * val + (s[i] - '0");
if (s[i] ==".")
i ++;
for (power = 1.0; isdigit(s[i]); i++) {
val = 10.0 * val + (s[i] - '0");
power *= 10;
}
return sign * val / power;
}

Second, and just as important, the calling routine must know that at of returns anon-int value. One way to ensure thisis to declare at of
explicitly in the calling routine. The declaration is shown in this primitive calculator (barely adequate for check-book balancing), which reads one
number per line, optionally preceded with asign, and adds them up, printing the running sum after each input:

#i ncl ude <stdi o. h>
#def i ne MAXLI NE 100

/* rudinmentary cal cul ator */
mai n()
{

doubl e sum atof (char []);

char |ine[MAXLI NE] ;
int getline(char line[], int max);

sum = 0;

while (getline(line, MAXLINE) > 0)
printf("\t%\n", sum += atof(line));

return O;

}

The declaration
doubl e sum atof(char []);
saysthat sumisadoubl e variable, and that at of isafunction that takesonechar[] argument and returnsadoubl e.
The function at of must be declared and defined consistently. If at of itself and the call to it in mai n have inconsistent types in the same source
file, the error will be detected by the compiler. But if (asis more likely) at of were compiled separately, the mismatch would not be detected,

at of would return adoubl e that mai n would treat asan i nt , and meaningless answers would result.

In the light of what we have said about how declarations must match definitions, this might seem surprising. The reason a mismatch can happenis

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (4 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

that if there is no function prototype, afunctionisimplicitly declared by its first appearance in an expression, such as
sum += atof (I i ne)

If aname that has not been previously declared occurs in an expression and is followed by aleft parentheses, it is declared by context to be a
function name, the function is assumed to return an i nt , and nothing is assumed about its arguments. Furthermore, if afunction declaration does
not include arguments, asin

doubl e atof ();

that too is taken to mean that nothing isto be assumed about the arguments of at of ; all parameter checking is turned off. This special meaning
of the empty argument list isintended to permit older C programs to compile with new compilers. But it's abad ideato useit with new C
programs. If the function takes arguments, declare them; if it takes no arguments, use voi d.

Given at of , properly declared, we could write at oi (convert astringtoi nt) intermsof it:

/[* atoi: convert string s to integer using atof */
int atoi(char s[])

{
doubl e atof (char s[]);

return (int) atof(s);

}

Notice the structure of the declarations and the return statement. The value of the expression in
return expression;

is converted to the type of the function before the return is taken. Therefore, the value of at of , adoubl e, isconverted automatically to i nt
when it appearsinthisr et ur n, since the function at oi returnsani nt . This operation does potentionally discard information, however, so
some compilers warn of it. The cast states explicitly that the operation is intended, and suppresses any warning.

Exercise 4-2. Extend at of to handle scientific notation of the form
123. 45e-6

where a floating-point number may be followed by e or E and an optionally signed exponent.

4.3 External Variables

A C program consists of a set of external objects, which are either variables or functions. The adjective ~“external" is used in contrast to
“internal”, which describes the arguments and variables defined inside functions. External variables are defined outside of any function, and are
thus potentionally available to many functions. Functions themselves are always external, because C does not alow functions to be defined inside
other functions. By default, external variables and functions have the property that all references to them by the same name, even from functions
compiled separately, are references to the same thing. (The standard calls this property external linkage.) In this sense, external variables are
analogous to Fortran COMMON blocks or variables in the outermost block in Pascal. We will see later how to define external variables and
functions that are visible only within a single source file. Because external variables are globally accessible, they provide an dternative to
function arguments and return values for communicating data between functions. Any function may access an external variable by referring to it
by name, if the name has been declared somehow.

If alarge number of variables must be shared among functions, external variables are more convenient and efficient than long argument lists. As
pointed out in Chapter 1, however, this reasoning should be applied with some caution, for it can have a bad effect on program structure, and lead

to programs with too many data connections between functions.

External variables are also useful because of their greater scope and lifetime. Automatic variables are internal to afunction; they come into
existence when the function is entered, and disappear when it is left. Externa variables, on the other hand, are permanent, so they can retain
values from one function invocation to the next. Thus if two functions must share some data, yet neither calls the other, it is often most

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (5 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

convenient if the shared datais kept in external variables rather than being passed in and out via arguments.

Let us examine thisissue with alarger example. The problem isto write a calculator program that provides the operators +, - , * and/ . Because it
is easier to implement, the calculator will use reverse Polish notation instead of infix. (Reverse Polish notation is used by some pocket calculators,
and in languages like Forth and Postscript.)

In reverse Polish notation, each operator follows its operands; an infix expression like
(1-2) * (4 +5)
isentered as
12-45+*
Parentheses are not needed; the notation is unambiguous as long as we know how many operands each operator expects.

The implementation is simple. Each operand is pushed onto a stack; when an operator arrives, the proper number of operands (two for binary
operators) is popped, the operator is applied to them, and the result is pushed back onto the stack. In the example above, for instance, 1 and 2 are
pushed, then replaced by their difference, -1. Next, 4 and 5 are pushed and then replaced by their sum, 9. The product of -1 and 9, which is -9,
replaces them on the stack. The value on the top of the stack is popped and printed when the end of the input line is encountered.

The structure of the program is thus aloop that performs the proper operation on each operator and operand as it appears:

whil e (next operator or operand is not end-of-file indicator)
i f (nunber)
push it
else if (operator)
pop oper ands
do operation
push result
else if (newine)
pop and print top of stack
el se
error

The operation of pushing and popping astack are trivial, but by the time error detection and recovery are added, they are long enough that it is
better to put each in a separate function than to repeat the code throughout the whole program. And there should be a separate function for
fetching the next input operator or operand.

The main design decision that has not yet been discussed is where the stack is, that is, which routines access it directly. On possibility isto keep it
inmai n, and pass the stack and the current stack position to the routines that push and pop it. But mai n doesn't need to know about the variables

that control the stack; it only does push and pop operations. So we have decided to store the stack and its associated information in external
variables accessible to the push and pop functions but not to mai n.

Tranglating this outline into code is easy enough. If for now we think of the program as existing in one sourcefile, it will look like this:

#i ncl udes
#def i nes

function declarations for mai n

main() { ...}

external variables for push and pop
void push(double f) { ... }

doubl e pop(void) { ... }

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (6 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

int getop(char s[]) { ... }
routines called by get op
Later we will discuss how this might be split into two or more sourcefiles.

The function mai n isaloop containing abig swi t ch on the type of operator or operand; thisis amoretypical use of swi t ch than the one
shown in Section 3.4.

#i ncl ude <stdi o. h>
#i nclude <stdlib.h> /* for atof() */

#define MAXOP 100 /* nmax size of operand or operator */
#define NUMBER '0' /* signal that a nunber was found */

int getop(char []):
voi d push(doubl e);
doubl e pop(void);

/* reverse Polish cal culator */

mai n()

{
int type;
doubl e op2;

char s[MAXOP] ;

while ((type = getop(s)) !'= EOF) {
switch (type) {
case NUMBER:
push(atof (s));
br eak;
case ' +':
push(pop() + pop());
br eak;
case '*':
push(pop() * pop());
br eak;
case '-'
op2 = pop();
push(pop() - op2);
br eak;
case '/':
op2 = pop();
if (op2 !'=0.0)
push(pop() / op2);

el se
printf("error: zero divisor\n");
br eak;
case '\n':
printf("\t%8g\n", pop());
br eak;
defaul t:
printf("error: unknown conmand %s\n", s);
br eak;
}
}
return O;

}

Because + and * are commutative operators, the order in which the popped operands are combined isirrelevant, but for - and/ the left and right

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (7 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure
operand must be distinguished. In
push(pop() - pop()): /* VRONG */

the order in which the two calls of pop are evaluated is not defined. To guarantee the right order, it is necessary to pop the first valueinto a
temporary variable aswe did in mai n.

#define MAXVAL 100 /* maxi num depth of val stack */

int sp = 0; /* next free stack position */
doubl e val [MAXVAL]; [/* value stack */

/* push: push f onto val ue stack */
voi d push(doubl e f)

{
if (sp < MAXVAL)
val [sp++] = f;
el se
printf("error: stack full, can't push %\n", f);
}

/* pop: pop and return top value fromstack */
doubl e pop(voi d)

{
if (sp > 0)
return val[--sp];
el se {
printf("error: stack enpty\n");
return 0.0;
}
}

A variableis externa if it is defined outside of any function. Thus the stack and stack index that must be shared by push and pop are defined
outside these functions. But mai n itself does not refer to the stack or stack position - the representation can be hidden.

Let us now turn to the implementation of get op, the function that fetches the next operator or operand. The task is easy. Skip blanks and tabs. If
the next character is not adigit or a hexadecimal point, return it. Otherwise, collect astring of digits (which might include a decimal point), and
return NUMBER, the signal that a number has been collected.

#i ncl ude <ctype. h>

int getch(void);
voi d unget ch(int);

/* getop: get next character or nuneric operand */
int getop(char s[])

int i, c;
while ((s[0] = ¢ = getch()) =" " || == "\t")
s[1] = '\0':
if (lisdigit(c) & c !'=".")
return c; /* not a nunber */
i = 0;
if (isdigit(c)) /* collect integer part */

while (isdigit(s[++i] = c = getch()))
if (c =,=‘.‘) /* collect fraction part */
while (isdigit(s[++i] = c = getch()))

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (8 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

s[i] ="\0";
if (c !'= ECF)
unget ch(c);
return NUMVBER
}

What areget ch and unget ch? It is often the case that a program cannot determine that it has read enough input until it has read too much. One
instance is collecting characters that make up a number: until the first non-digit is seen, the number is not complete. But then the program has
read one character too far, a character that it is not prepared for.

The problem would be solved if it were possible to ““un-read" the unwanted character. Then, every time the program reads one character too
many, it could push it back on the input, so the rest of the code could behave asif it had never been read. Fortunatdly, it's easy to simulate un-
getting a character, by writing apair of cooperating functions. get ch deliversthe next input character to be considered; unget ch will return
them before reading new input.

How they work together is simple. unget ch puts the pushed-back charactersinto a shared buffer -- a character array. get ch reads from the
buffer if thereis anything else, and callsget char if the buffer is empty. There must also be an index variable that records the position of the
current character in the buffer.

Since the buffer and the index are shared by get ch and unget ch and must retain their values between calls, they must be external to both
routines. Thus we can write get ch, unget ch, and their shared variables as:

#defi ne BUFSI ZE 100

char buf [BUFSI ZE] ; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

int getch(void) /* get a (possibly pushed-back) character */

{
return (bufp > 0) ? buf[--bufp] : getchar();
}
voi d ungetch(int c) /* push character back on input */
{
if (bufp >= BUFSI ZE)
printf("ungetch: too many characters\n");
el se
buf [buf p++] = c;
}

The standard library includes afunction unget ch that provides one character of pushback; we will discussit in Chapter 7. We have used an
array for the pushback, rather than a single character, to illustrate a more general approach.

Exer cise 4-3. Given the basic framework, it's straightforward to extend the calculator. Add the modulus (%) operator and provisions for negative
numbers.

Exer cise 4-4. Add the commands to print the top elements of the stack without popping, to duplicate it, and to swap the top two elements. Add a
command to clear the stack.

Exercise 4-5. Add accessto library functionslike si n, exp, and pow. See <math.h> in Appendix B, Section 4.

Exer cise 4-6. Add commands for handling variables. (It's easy to provide twenty-six variables with single-letter names.) Add a variable for the
most recently printed value.

Exercise 4-7. Write aroutine unget s('s) that will push back an entire string onto the input. Should unget s know about buf and buf p, or
should it just useunget ch?

Exer cise 4-8. Suppose that there will never be more than one character of pushback. Modify get ch and unget ch accordingly.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (9 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

Exercise 4-9. Our get ch and unget ch do not handle a pushed-back EOF correctly. Decide what their properties ought to be if an ECF is
pushed back, then implement your design.

Exercise 4-10. An alternate organization uses get | i ne to read an entire input line; this makes get ch and unget ch unnecessary. Revise the
calculator to use this approach.

4.4 Scope Rules

The functions and external variables that make up a C program need not all be compiled at the same time; the source text of the program may be
kept in several files, and previously compiled routines may be loaded from libraries. Among the questions of interest are

. How are declarations written so that variables are properly declared during compilation?

. How are declarations arranged so that all the pieces will be properly connected when the program is loaded?
. How are declarations organized so there is only one copy?

. How are external variablesinitialized?

Let us discuss these topics by reorganizing the calculator program into several files. As a practical matter, the calculator istoo small to be worth
splitting, but it isafineillustration of the issuesthat arise in larger programs.

The scope of aname isthe part of the program within which the name can be used. For an automatic variable declared at the beginning of a
function, the scope is the function in which the name is declared. Local variables of the same name in different functions are unrelated. The same
istrue of the parameters of the function, which are in effect local variables.

The scope of an external variable or afunction lasts from the point at which it is declared to the end of the file being compiled. For example, if
mai n, sp, val , push, and pop are defined in onefile, in the order shown above, that is,

main() { ...}

int sp = 0;
doubl e val [MAXVAL] ;

void push(double f) { ... }

doubl e pop(void) { ... }

then the variablessp and val may be used in push and pop simply by naming them; no further declarations are needed. But these names are
not visible in mai n, nor are push and pop themselves.

On the other hand, if an external variable isto be referred to before it is defined, or if it is defined in adifferent source file from the one where it
is being used, then an ext er n declaration is mandatory.

It isimportant to distinguish between the declaration of an external variable and its definition. A declaration announces the properties of a
variable (primarily itstype); adefinition also causes storage to be set aside. If the lines

int sp;
doubl e val [MAXVAL] ;

appear outside of any function, they define the external variablessp and val , cause storage to be set aside, and aso serve as the declarations for
the rest of that source file. On the other hand, the lines

extern int sp;
extern double val[];

declarefor the rest of the sourcefilethat sp isani nt and that val isadoubl e array (whose size is determined el sewhere), but they do not
create the variables or reserve storage for them.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (10 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

There must be only one definition of an external variable among al the files that make up the source program; other files may contain ext er n
declarations to accessit. (There may aso be ext er n declarationsin the file containing the definition.) Array sizes must be specified with the
definition, but are optional with an ext er n declaration.

Initialization of an external variable goes only with the definition.

Although it is not alikely organization for this program, the functions push and pop could be defined in onefile, and the variablesval and sp
defined and initialized in another. Then these definitions and declarations would be necessary to tie them together:

infilel:

extern int sp;
extern double val[];

void push(double f) { ... }

doubl e pop(void) { ... }
infile2:

int sp = 0;

doubl e val [MAXVAL] ;

Because the ext er n declarationsin filel lie ahead of and outside the function definitions, they apply to all functions; one set of declarations
suffices for all of filel. This same organization would also bee needed if the definition of sp and val followed their usein onefile.

4.5 Header Files

Let isnow consider dividing the calculator program into several source files, asit might be is each of the components were substantially bigger.
The mai n function would go in one file, which we will call mai n. ¢; push, pop, and their variables go into a second file, st ack. c; get op
goesinto athird, get op. c. Findly, get ch and unget ch go into afourth file, get ch. c; we separate them from the others because they
would come from a separately-compiled library in arealistic program.

There is one more thing to worry about - the definitions and declarations shared among files. As much as possible, we want to centralize this, so

that there is only one copy to get and keep right as the program evolves. Accordingly, we will place this common material in a header file,
cal c. h, which will beincluded as necessary. (The #i ncl ude lineis described in Section 4.11.) The resulting program then looks like this:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (11 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

main.c

calc.h

#define NUMBER ’'0°
void push(double);
double pop(void);
int getop(char []1};
int getch(void);
void ungetch(int);

getop.c

stack.c

#include <stdic.h>
#include <stdlib.h>
#include "“calc.h"

#include <stdioc.h>
#include <ctype.h>
#include "“calc.h"

#include <stdic.h>
#inclunde "“calc.h"
#idefine MAXVAL 100

#define MAJXOP 100 getop() { int sp = 0;
main() { - double val [MAXVAL];
e } void push(double) {

! }

double pop(void)} {

getch.c

#include <stdic.h> }
#define BUFSIZE 100
char buf [BUFSIZE];
int bufp = 0;

int getch(void) {

}

void ungetch(int) {

}

There is atradeoff between the desire that each file have access only to the information it needs for its job and the practical reality that it is harder
to maintain more header files. Up to some moderate program size, it is probably best to have one header file that contains everything that isto be
shared between any two parts of the program; that is the decision we made here. For amuch larger program, more organization and more headers
would be needed.

4.6 Static Variables

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (12 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

Thevariablessp and val inst ack. ¢, and buf and buf pinget ch. c, arefor the private use of the functions in their respective source files,
and are not meant to be accessed by anything else. The st at i ¢ declaration, applied to an external variable or function, limits the scope of that
object to the rest of the source file being compiled. External st at i ¢ thus provides away to hide names like buf and buf p intheget ch-
unget ch combination, which must be external so they can be shared, yet which should not be visible to users of get ch and unget ch.

Static storage is specified by prefixing the normal declaration with theword st at i c. If the two routines and the two variables are compiled in
onefile asin

static char buf[BUFSIZE]; /* buffer for ungetch */

static int bufp = 0; /* next free position in buf */
int getch(void) { ... }
voi d ungetch(int ¢c) { ... }

then no other routine will be able to accessbuf and buf p, and those names will not conflict with the same names in other files of the same
program. In the same way, the variables that push and pop use for stack manipulation can be hidden, by declaring sp andval tobestati c.

The external st at i ¢ declaration is most often used for variables, but it can be applied to functions as well. Normally, function names are global,
visible to any part of the entire program. If afunction isdeclared st at i ¢, however, itsname isinvisible outside of thefilein whichitis
declared.

Thest at i ¢ declaration can aso be applied to internal variables. Interna st at i ¢ variables are local to a particular function just as automatic
variables are, but unlike automatics, they remain in existence rather than coming and going each time the function is activated. This means that
internal st at i ¢ variables provide private, permanent storage within a single function.

Exercise 4-11. Modify get op so that it doesn't need to use unget ch. Hint: useaninterna st at i ¢ variable.

4.7 Register Variables

A regi st er declaration advises the compiler that the variable in question will be heavily used. Theideaisthat r egi st er variablesareto be
placed in machine registers, which may result in smaller and faster programs. But compilers are free to ignore the advice.

Ther egi st er declaration looks like

register int x;
regi ster char c;

and soon. Ther egi st er declaration can only be applied to automatic variables and to the formal parameters of afunction. In thislater case, it
looks like

f(register unsigned m register |ong n)

{
register int i;

}

In practice, there are restrictions on register variables, reflecting the realities of underlying hardware. Only a few variables in each function may
be kept in registers, and only certain types are allowed. Excess register declarations are harmless, however, since theword r egi st er isignored
for excess or disallowed declarations. And it is not possible to take the address of aregister variable (atopic covered in Chapter 5), regardless of

whether the variable is actually placed in aregister. The specific restrictions on number and types of register variables vary from machine to
machine.

4.8 Block Structure

C isnot ablock-structured language in the sense of Pascal or similar languages, because functions may not be defined within other functions. On

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (13 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

the other hand, variables can be defined in a block-structured fashion within a function. Declarations of variables (including initializations) may
follow the left brace that introduces any compound statement, not just the one that begins afunction. Variables declared in this way hide any
identically named variablesin outer blocks, and remain in existence until the matching right brace. For example, in

if (n>0) {
int i; /* declare a newi */
for (i =0; i <n; i++)

}

the scope of the variablei isthe “"true" branch of thei f ; thisi isunrelatedto any i outside the block. An automatic variable declared and
initialized in ablock isinitialized each time the block is entered.

Automatic variables, including formal parameters, also hide external variables and functions of the same name. Given the declarations

int x;
int vy;

f (doubl e x)
{

}

doubl e v;

then within the function f , occurrences of x refer to the parameter, whichisadoubl e; outsidef , they refer to the external i nt . The sameis
true of the variabley.

Asamatter of style, it's best to avoid variable names that conceal namesin an outer scope; the potential for confusion and error istoo great.

4.9 Initialization

Initialization has been mentioned in passing many times so far, but always peripherally to some other topic. This section summarizes some of the
rules, now that we have discussed the various storage classes.

In the absence of explicit initialization, external and static variables are guaranteed to be initialized to zero; automatic and register variables have
undefined (i.e., garbage) initia values.

Scalar variables may be initialized when they are defined, by following the name with an equals sign and an expression:
int x = 1;
char squota = "\"";

long day = 1000L * 60L * 60L * 24L; /* mlliseconds/day */

For external and static variables, the initializer must be a constant expression; the initialization is done once, conceptionally before the program
begins execution. For automatic and register variables, theinitializer is not restricted to being a constant: it may be any expression involving
previously defined values, even function calls. For example, the initialization of the binary search program in Section 3.3 could be written as

int binsearch(int x, int v[], int n)

{
int low = 0;
int high =n - 1;
int md;
}
instead of

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (14 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure
int low, high, md;

| ow = O;
high = n - 1;

In effect, initialization of automatic variables are just shorthand for assignment statements. Which form to prefer islargely a matter of taste. We
have generally used explicit assignments, because initializersin declarations are harder to see and further away from the point of use.

An array may be initialized by following its declaration with alist of initializers enclosed in braces and separated by commas. For example, to
initialize an array days with the number of days in each month:

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
When the size of the array is omitted, the compiler will compute the length by counting the initializers, of which there are 12 in this case.
If there are fewer initidizers for an array than the specified size, the others will be zero for external, static and automatic variables. It isan error to
have too many initializers. Thereis no way to specify repetition of an initializer, nor to initialize an element in the middle of an array without
supplying al the preceding values as well.
Character arrays are a special case of initialization; a string may be used instead of the braces and commas notation:

char pattern = "oul d";
isashorthand for the longer but equivalent

char pattern[] ={ "o, "u, "I', "d, "\0 };

In this case, the array sizeisfive (four characters plusthe terminating' \ 0").

4.10 Recursion

C functions may be used recursively; that is, afunction may call itself either directly or indirectly. Consider printing a number as a character
string. As we mentioned before, the digits are generated in the wrong order: low-order digits are available before high-order digits, but they have
to be printed the other way around.

There are two solutions to this problem. On is to store the digits in an array asthey are generated, then print them in the reverse order, aswe did
withi t oa in section 3.6. The dternative is arecursive solution, in which pri nt d first callsitself to cope with any leading digits, then prints the
trailing digit. Again, this version can fail on the largest negative number.

#i ncl ude <stdi o. h>

[* printd: print nin deciml */
void printd(int n)

{
if (n<0) {
putchar('-");
n =-n;
}
if (n/ 10)
printd(n / 10);
putchar(n % 10 + '0");
}

When afunction callsitself recursively, each invocation gets a fresh set of all the automatic variables, independent of the previous set. Thisin
printd(123) thefirstpri ntd receivestheargumentn = 123. It passes 12 to asecond pri nt d, which in turn passes 1 to athird. The
third-level pri nt d prints 1, then returnsto the second level. That pri nt d prints 2, then returns to the first level. That one prints 3 and
terminates.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (15 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure
Another good example of recursion is quicksort, a sorting algorithm developed by C.A.R. Hoare in 1962. Given an array, one element is chosen
and the others partitioned in two subsets - those less than the partition element and those greater than or equal to it. The same processis then
applied recursively to the two subsets. When a subset has fewer than two elements, it doesn't need any sorting; this stops the recursion.

Our version of quicksort is not the fastest possible, but it's one of the simplest. We use the middle element of each subarray for partitioning.

/* qgsort: sort v[left]...v[right] into increasing order */
void qgsort(int v[], int left, int right)

{
int i, last;
void swap(int v[], int i, int j);
if (left >>right) /* do nothing if array contains */
return; /* fewer than two el enents */
swap(v, left, (left + right)/2); /* nmove partition elem*/
last = left; /* to v[0O] */
for (i =1left +1; i <=right; i++) /[* partition */
if (v[i] < v[left])
swap(v, ++last, i);
swap(v, left, last); /* restore partition elem?*/
gsort(v, left, last-1);
gsort(v, last+1, right);
}

We moved the swapping operation into a separate function swap because it occursthreetimesingsort .

/* swap: interchange v[i] and v[j] */
void swap(int v[], int i, int j)
{
int tenp;
tenmp = v[i];
vii] = vIjl;
v[j] = tenp;
}

The standard library includes aversion of gsor t that can sort objects of any type.

Recursion may provide no saving in storage, since somewhere a stack of the values being processed must be maintained. Nor will it be faster. But
recursive code is more compact, and often much easier to write and understand than the non-recursive equivalent. Recursion is especially
convenient for recursively defined data structures like trees, we will see a nice example in Section 6.6.

Exercise 4-12. Adapt theideas of pri nt d to writearecursiveversion of i t 0a; that is, convert an integer into a string by calling arecursive
routine.

Exercise 4-13. Write arecursive version of the functionr ever se('s) , which reversesthe string s in place.

4.11 The C Preprocessor

C provides certain language facilities by means of a preprocessor, which is conceptionally a separate first step in compilation. The two most
frequently used features are #i ncl ude, to include the contents of afile during compilation, and #def i ne, to replace atoken by an arbitrary
sequence of characters. Other features described in this section include conditional compilation and macros with arguments.

4.11.1 File Inclusion

File inclusion makes it easy to handle collections of #def i nesand declarations (among other things). Any source line of the form

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (16 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

#i ncl ude "fil enane"
or
#i ncl ude <fil enane>

is replaced by the contents of the file filename. If the filename is quoted, searching for the file typically begins where the source program was
found; if it is not found there, or if the nameis enclosed in < and >, searching follows an implementation-defined rule to find the file. An included
file may itself contain #i ncl ude lines.

There are often severa #i ncl ude lines at the beginning of a sourcefile, to include common #def i ne statements and ext er n declarations, or
to access the function prototype declarations for library functions from headerslike <st di 0. h>. (Strictly speaking, these need not be files; the
details of how headers are accessed are implementation-dependent.)

#i ncl ude isthe preferred way to tie the declarations together for alarge program. It guarantees that all the source files will be supplied with the
same definitions and variable declarations, and thus eliminates a particularly nasty kind of bug. Naturally, when an included fileis changed, all
files that depend on it must be recompiled.

4.11.2 Macro Substitution
A definition has the form
#def i ne name repl acenment text

It calls for amacro substitution of the simplest kind - subsequent occurrences of the token nane will be replaced by the replacement text. The
namein a#def i ne hasthe same form as a variable name; the replacement text is arbitrary. Normally the replacement text is the rest of the line,
but along definition may be continued onto severa lines by placing a\ at the end of each line to be continued. The scope of a name defined with
#def i ne isfromits point of definition to the end of the source file being compiled. A definition may use previous definitions. Substitutions are
made only for tokens, and do not take place within quoted strings. For example, if YES is a defined name, there would be no substitution in
printf("YES") orin YESMAN.
Any name may be defined with any replacement text. For example

#define forever for (;;) /[* infinite | oop */

defines anew word, f or ever , for an infinite loop.

It is also possible to define macros with arguments, so the replacement text can be different for different calls of the macro. As an example, define
amacro called max:

#define max(A, B) ((A) > (B) ? (A : (B)

Although it looks like a function call, a use of max expands into in-line code. Each occurrence of aformal parameter (here A or B) will be
replaced by the corresponding actual argument. Thus the line

X = max(p+q, r+s);
will be replaced by the line
x = ((p+tq) > (r+s) ? (p+tq) : (r+s));

So long as the arguments are treated consistently, this macro will serve for any data type; there is no need for different kinds of max for different
data types, as there would be with functions.

If you examine the expansion of max, you will notice some pitfalls. The expressions are evaluated twice; thisis bad if they involve side effects
like increment operators or input and output. For instance

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (17 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

max(i ++, j++) /* W\RONG */

will increment the larger twice. Some care also has to be taken with parentheses to make sure the order of evaluation is preserved; consider what
happens when the macro

#define square(x) x * x [/* WRONG */
isinvoked assquar e(z+1).
Nonetheless, macros are valuable. One practical example comesfrom <st di 0. h>, inwhich get char and put char are often defined as
macros to avoid the run-time overhead of afunction call per character processed. The functionsin <ct ype. h> are also usually implemented as
Macros.

Names may be undefined with #undef , usually to ensure that aroutine is really afunction, not a macro:

#undef getchar

int getchar(void) { ... }

Formal parameters are not replaced within quoted strings. If, however, a parameter name is preceded by a# in the replacement text, the
combination will be expanded into a quoted string with the parameter replaced by the actual argument. This can be combined with string
concatenation to make, for example, a debugging print macro:

#def i ne dprint (expr) printf(#expr " = %g\n", expr)
When thisisinvoked, asin
dprint (x/y)
the macro is expanded into
printf("x/y" " = &\n", x/y);
and the strings are concatenated, so the effect is
printf("x/y = &\n", x/y);
Within the actual argument, each " isreplaced by \ " and each\ by \\, sotheresultisalega string constant.

The preprocessor operator ## provides away to concatenate actual arguments during macro expansion. If a parameter in the replacement text is
adjacent to a##, the parameter is replaced by the actual argument, the ## and surrounding white space are removed, and the result is re-scanned.
For example, the macro past e concatenates its two arguments:

#defi ne paste(front, back) front ## back
sopast e(nhane, 1) createsthetokennanel.
Therules for nested uses of ## are arcane; further details may be found in Appendix A.
Exercise 4-14. Defineamacro swap(t, x, y) that interchanges two arguments of typet . (Block structure will help.)
4.11.3 Conditional Inclusion

It is possible to control preprocessing itself with conditional statements that are evaluated during preprocessing. This provides away to include
caode selectively, depending on the value of conditions evaluated during compilation.

The#i f line evaluates a constant integer expression (which may not include si zeof , casts, or enumconstants). If the expression is non-zero,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (18 of 19) [9/6/2002 12:21:59]

Chapter 4 - Functions and Program Structure

subsequent lines until an#endi f or #el i f or #el se areincluded. (The preprocessor statement #el i f islikeel se-i f.) The expression
def i ned(name) ina#i f is1if the name has been defined, and 0 otherwise.

For example, to make sure that the contents of afile hdr . h areincluded only once, the contents of the file are surrounded with a conditional like
this:

#if !defi ned(HDR)
#defi ne HDR

/* contents of hdr.h go here */

#endi f

Thefirst inclusion of hdr . h defines the name HDR; subsequent inclusions will find the name defined and skip down to the#endi f . A similar
style can be used to avoid including files multiple times. If this style is used consistently, then each header can itself include any other headers on
which it depends, without the user of the header having to deal with the interdependence.

This sequence tests the name SYSTEMto decide which version of a header to include:

#if SYSTEM == SYSV

#def i ne HDR "sysv. h"
#el i f SYSTEM == BSD

#def i ne HDR "bsd. h"
#el i f SYSTEM == MSDOS

#def i ne HDR "nmsdos. h"
#el se

#defi ne HDR "default. h"
#endi f
#i ncl ude HDR

The#i f def and #i f ndef linesare specialized forms that test whether a name is defined. The first example of #i f above could have been
written

#i f ndef HDR
#defi ne HDR

/* contents of hdr.h go here */

#endi f

Back to Chapter 3 -- Index -- Chapter 5

http://freebooks.by.ru/view/CProgrammingLanguage/chapter4.html (19 of 19) [9/6/2002 12:21:59]

Chapter 5 - Pointers and Arrays

Back to Chapter 4 -- Index -- Chapter 6

Chapter 5 - Pointers and Arrays

A pointer is avariable that contains the address of a variable. Pointers are much used in C, partly because they are sometimes the only way to express a computation, and
partly because they usually lead to more compact and efficient code than can be obtained in other ways. Pointers and arrays are closely related; this chapter also explores
this relationship and shows how to exploit it.

Pointers have been lumped with the got o statement as a marvelous way to create impossible-to-understand programs. Thisis certainly true when they are used carelesdly,

and it is easy to create pointers that point somewhere unexpected. With discipline, however, pointers can also be used to achieve clarity and simplicity. Thisis the aspect
that we will try to illustrate.

The main changein ANSI C isto make explicit the rules about how pointers can be manipulated, in effect mandating what good programmers already practice and good
compilers aready enforce. In addition, thetypevoi d * (pointer to voi d) replaceschar * asthe proper type for ageneric pointer.

5.1 Pointers and Addresses

Let us begin with asimplified picture of how memory is organized. A typical machine has an array of consecutively numbered or addressed memory cells that may be
manipulated individually or in contiguous groups. One common situation is that any byte can beachar , apair of one-byte cells can be treated asashor t integer, and
four adjacent bytesform al ong. A pointer isagroup of cells (often two or four) that can hold an address. So if ¢ isachar and p isapointer that pointsto it, we could
represent the situation this way:

P: c:

The unary operator & gives the address of an object, so the statement
p = &c;

assigns the address of ¢ to the variable p, and p is said to “"point to" ¢. The & operator only appliesto objectsin memory: variables and array elements. It cannot be
applied to expressions, constants, or r egi st er variables.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (1 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

The unary operator * istheindirection or dereferencing operator; when applied to a pointer, it accesses the object the pointer points to. Suppose that x and y are integers
andi p isapointer toi nt . Thisartificial sequence shows how to declare a pointer and how to use & and * :

int x =1, y =2, z[10];

int *ip; /[* ipis a pointer to int */
ip = &; /[* ip now points to x */

y = *ip; [* yis now 1l */

ip = 0; /[x is now O */

ip = &[0]; [* ip now points to z[0] */

The declaration of X, y, and z are what we've seen al along. The declaration of the pointer i p,
int *ip;

isintended as amnemonic; it saysthat the expression *i p isani nt . The syntax of the declaration for a variable mimics the syntax of expressions in which the variable
might appear. This reasoning applies to function declarations as well. For example,

doubl e *dp, atof(char *);
saysthat in an expression * dp and at of (s) havevaues of doubl e, and that the argument of at of isapointer tochar .

Y ou should also note the implication that a pointer is constrained to point to a particular kind of object: every pointer points to a specific datatype. (Thereis one
exception: a “pointer to voi d" isused to hold any type of pointer but cannot be dereferenced itself. We'll come back to it in Section 5.11.)

If i p pointsto theinteger x, then*i p can occur in any context where x could, so
*ip=*ip + 10;

increments*i p by 10.

The unary operators* and & bind more tightly than arithmetic operators, so the assignment
y =*ip+1

takes whatever i p points at, adds 1, and assigns the result to y, while
*ip +=1

incrementswhat i p pointsto, asdo

++*ip
http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (2 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
and
(*ip)++

The parentheses are necessary in this last example; without them, the expression would increment i p instead of what it points to, because unary operators like* and ++
associate right to left.

Finally, since pointers are variables, they can be used without dereferencing. For example, if i g isanother pointer toi nt ,
ig=1ip

copiesthe contentsof i p intoi g, thusmaking i g point to whatever i p pointed to.

5.2 Pointers and Function Arguments

Since C passes arguments to functions by value, thereis no direct way for the called function to alter avariable in the calling function. For instance, a sorting routine
might exchange two out-of-order arguments with afunction called swap. It is not enough to write

swap(a, b);
where the swap function is defined as

void swap(int x, int y) /* WRONG */

{ .
int tenp;
tenmp = x;
X =y;
y = tenp;
}

Because of call by value, swap can't affect the arguments a and b in the routine that called it. The function above swaps copies of a and b.
The way to obtain the desired effect is for the calling program to pass pointers to the values to be changed:
swap(&, &b);

Since the operator & produces the address of avariable, &a isapointer to a. In swap itself, the parameters are declared as pointers, and the operands are accessed
indirectly through them.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (3 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
void swap(int *px, int *py) /[/* interchange *px and *py */

{
int tenp;
tenmp = *px;
*px = *py;
*py = tenp;
}
Pictorialy:
1n caller:
b: ..
AN
a: ..
N
I sWap:
PX: | o1 |

Pointer arguments enable a function to access and change objects in the function that called it. As an example, consider afunction get i nt that performs free-format
input conversion by breaking a stream of characters into integer values, one integer per cal. get i nt hasto return the value it found and also signal end of file when there
is no more input. These values have to be passed back by separate paths, for no matter what value is used for EOF, that could also be the value of an input integer.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (4 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
One solutionisto have get i nt return the end of file status as its function value, while using a pointer argument to store the converted integer back in the calling
function. Thisisthe scheme used by scanf aswell; see Section 7.4.

The following loop fills an array with integers by callstoget i nt :

int n, array[SIZE], getint(int *);

for (n =0; n < SIZE & getint(&array[n]) != EOF n++)

Each call setsar r ay[n] tothe next integer found in the input and increments n. Notice that it is essential to pass the address of ar r ay[n] toget i nt . Otherwise there
isnoway for get i nt to communicate the converted integer back to the caller.

Our version of get i nt returns ECF for end of file, zero if the next input is not a number, and a positive value if the input contains a valid number.

#i ncl ude <ctype. h>

i nt getch(void);
voi d ungetch(int);

/* getint: get next integer frominput into *pn */
int getint(int *pn)

{ . .
int c, sign;
while (isspace(c = getch())) /* skip white space */
if (lisdigit(c) & c !'= EOF & c !="+ && c !="-") {
ungetch(c); /* it is not a nunber */
return O;
}
sigh = (¢c =="'-") ? -1: 1,
if (C::'+'||C::'-')
c = getch();
for (*pn = 0; isdigit(c), ¢ = getch())
*pn = 10 * *pn + (¢ - '0");
*pn *= sign;
if (c !'= EOF)
unget ch(c);
return c;
}

Throughout get i nt , * pn isused asan ordinary i nt variable. We have also used get ch and unget ch (described in Section 4.3) so the one extra character that must

be read can be pushed back onto the input.
http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (5 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

Exercise 5-1. Aswritten, get i nt treatsa+ or - not followed by adigit asavalid representation of zero. Fix it to push such a character back on the input.

Exercise 5-2. Writeget f | oat , the floating-point analog of get i nt . What type doesget f | oat return asits function value?

5.3 Pointers and Arrays

In C, thereis astrong relationship between pointers and arrays, strong enough that pointers and arrays should be discussed simultaneously. Any operation that can be
achieved by array subscripting can also be done with pointers. The pointer version will in general be faster but, at least to the uninitiated, somewhat harder to understand.

The declaration
int a[10];

defines an array of size 10, that is, a block of 10 consecutive objectsnamed a[0] , a[1] , ...,.a[9] .

alo] a[1] al[9]

Thenotationa[i] referstothei -th element of the array. If pa isa pointer to an integer, declared as
int *pa;

then the assignment
pa = &a[0];

sets pa to point to element zero of a; that is, pa contains the address of a[0] .

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (6 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

pa:

alo]

Now the assignment
X = *pa;

will copy the contents of a[0] into x.

If pa pointsto aparticular element of an array, then by definition pa+1 points to the next element, pa+i pointsi elements after pa, and pa-i pointsi elements before.
Thus, if pa pointstoa[0] ,

*(pa+l)

refersto the contents of a[1] , pa+i istheaddressof a[i], and* (pa+i) isthecontentsof a[i] .

pa: patl: pat2:

N

ale]

r—

These remarks are true regardless of the type or size of the variables in the array a. The meaning of ““adding 1 to a pointer," and by extension, all pointer arithmetic, is that
pa+1 pointsto the next object, and pa+i pointsto thei -th object beyond pa.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (7 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

The correspondence between indexing and pointer arithmetic is very close. By definition, the value of avariable or expression of type array is the address of element zero
of the array. Thus after the assignment

pa = &a[0];
pa and a haveidentical values. Since the name of an array is a synonym for the location of the initial element, the assignment pa=&a[0] can aso be written as

pa = a;
Rather more surprising, at first sight, isthe fact that areferencetoa[i | canaso bewrittenas* (a+i). Inevauatinga[i], Cconvertsitto* (a+i) immediately; the
two forms are equivalent. Applying the operator & to both parts of this equivalence, it followsthat &a[i] and a+i areasoidentical: a+i isthe address of thei -th
element beyond a. Asthe other side of thiscoin, if pa isa pointer, expressions might use it with a subscript; pa[i] isidentical to* (pa+i) . In short, an array-and-index

expression is equivalent to one written as a pointer and offset.

There is one difference between an array name and a pointer that must be kept in mind. A pointer isavariable, so pa=a and pa++ arelegal. But an array hameisnot a
variable; constructions like a=pa and a++ areillegal.

When an array name is passed to a function, what is passed is the location of the initial element. Within the called function, this argument isalocal variable, and so an
array name parameter is a pointer, that is, avariable containing an address. We can use this fact to write another version of st r | en, which computes the length of a
string.

[* strlen: return length of string s */
int strlen(char *s)

{
int n;
for (n =0; *s !="\0", s++)
n++;
return n;
}

Since s isapointer, incrementing it is perfectly legal; s++ has no effect on the character string in the function that called st r | en, but merely incrementsstrl en's
private copy of the pointer. That meansthat callslike

strlen("hello, world"); /* string constant */
strlen(array); [* char array[100]; */
strlien(ptr); [* char *ptr; */

al work.

Asformal parametersin afunction definition,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (8 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
char s[];

and
char *s;

are equivaent; we prefer the latter because it says more explicitly that the variable is a pointer. When an array name is passed to afunction, the function can at its
convenience believe that it has been handed either an array or a pointer, and manipulate it accordingly. It can even use both notations if it seems appropriate and clear.

It is possible to pass part of an array to afunction, by passing a pointer to the beginning of the subarray. For example, if a isan array,
f(&a[2])
and
f(a+2)
both passto the function f the address of the subarray that startsat a[2] . Within f , the parameter declaration can read
f(int arr[]) { ... }
or
f(int *arr) { ... }
So asfar asf isconcerned, the fact that the parameter refersto part of alarger array is of ho consequence.

If oneissurethat the elements exigt, it is also possible to index backwardsin an array; p[- 1] , p[- 2] , and so on are syntactically legal, and refer to the elements that
immediately precede p[0] . Of coursg, itisillegal to refer to objects that are not within the array bounds.

5.4 Address Arithmetic

If p isapointer to some element of an array, then p++ increments p to point to the next element, and p+=i incrementsit to pointi elements beyond whereit currently
does. These and similar constructions are the simples forms of pointer or address arithmetic.

Cisconsistent and regular in its approach to address arithmetic; itsintegration of pointers, arrays, and address arithmetic is one of the strengths of the language. Let us
illustrate by writing a rudimentary storage allocator. There are two routines. Thefirst, al | oc(n) , returns a pointer to n consecutive character positions, which can be
used by the caler of al | oc for storing characters. The second, af r ee(p) , releases the storage thus acquired so it can be re-used later. The routines are ™ rudimentary”
because the callsto af r ee must be made in the opposite order to the callsmadeon al | oc. That is, the storage managed by al | oc and af r ee isastack, or last-in, first-
out. The standard library provides analogous functions called mal | oc and f r ee that have no such restrictions; in Section 8.7 we will show how they can be
implemented.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (9 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

The easiest implementation isto have al | oc hand out pieces of alarge character array that we will call al | ocbuf . Thisarray isprivateto al | oc and af r ee. Since
they deal in pointers, not array indices, no other routine need know the name of the array, which can be declared st at i ¢ inthe sourcefile containing al | oc and
af r ee, and thus be invisible outside it. In practical implementations, the array may well not even have a name; it might instead be obtained by calling mal | oc or by

asking the operating system for a pointer to some unnamed block of storage.

The other information needed is how much of al | ocbuf has been used. We use apointer, called al | ocp, that pointsto the next free element. When al | oc is asked
for n characters, it checksto seeif thereisenough room left inal | ocbuf . If so, al | oc returns the current value of al | ocp (i.e., the beginning of the free block), then
increments it by n to point to the next free area. If thereisno room, al | oc returns zero. af r ee(p) merely setsal | ocp top if pisinsideal | ocbuf .

before call to alloc:
allocp: ~

allocbutf:

-~ 171 1Se ——» =

after call to alloc:
allocp: ~

free

L

allocbntf:

L]
&

1N use

&

#define ALLOCSI ZE 10000 /* size of avail abl e space */

static char allocbuf[ALLOCSI ZE]; /* storage for alloc */
static char *allocp = allocbuf; /* next free position */

char *alloc(int n) /* return pointer to n characters */
{
if (allocbuf + ALLCCSIZE - allocp >=n) { [/* it fits */
all ocp += n;
return allocp - n; /* old p */
} else /* not enough room */
return O;

}

void afree(char *p) /* free storage pointed to by p */

{

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (10 of 37) [9/6/2002 12:22:23]

free —

Chapter 5 - Pointers and Arrays

if (p >= allocbuf & p < allocbuf + ALLOCSI ZE)
all ocp = p;

}

In general a pointer can beinitialized just as any other variable can, though normally the only meaningful values are zero or an expression involving the address of
previously defined data of appropriate type. The declaration

static char *allocp = all ochuf;

definesal | ocp to be acharacter pointer and initializes it to point to the beginning of al | ocbuf , which isthe next free position when the program starts. This could
also have been written

static char *allocp = &allocbuf[0];
since the array name is the address of the zeroth element.
The test
if (allocbuf + ALLOCSIZE - allocp >=n) { [/* it fits */

checks if there's enough room to satisfy arequest for n characters. If thereis, the new value of al | ocp would be at most one beyond the end of al | ocbuf . If the
request can be satisfied, al | oc returns a pointer to the beginning of ablock of characters (notice the declaration of the function itself). If not, al | oc must return some
signal that there is no space left. C guarantees that zero is never avalid address for data, so areturn value of zero can be used to signal an abnormal event, in this case no
space.

Pointers and integers are not interchangeable. Zero is the sole exception: the constant zero may be assigned to a pointer, and a pointer may be compared with the constant
zero. The symbolic constant NULL is often used in place of zero, as amnemonic to indicate more clearly that thisis a special value for a pointer. NULL isdefined in
<st di 0. h>. Wewill use NULL henceforth.

Testslike

if (allocbuf + ALLOCSIZE - allocp >=n) { [/* it fits */
and

if (p >= allocbuf & p < allocbuf + ALLOCSI ZE)

show severa important facets of pointer arithmetic. First, pointers may be compared under certain circumstances. If p and g point to members of the same array, then
relationslike==, ! =, <, >=, etc., work properly. For example,

P<q

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (11 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
istrueif p pointsto an earlier element of the array than g does. Any pointer can be meaningfully compared for equality or inequality with zero. But the behavior is

undefined for arithmetic or comparisons with pointers that do not point to members of the same array. (There is one exception: the address of the first element past the end
of an array can be used in pointer arithmetic.)
Second, we have already observed that a pointer and an integer may be added or subtracted. The construction

p +n

means the address of the n-th object beyond the one p currently pointsto. Thisis true regardiess of the kind of object p pointsto; n is scaled according to the size of the
objects p points to, which is determined by the declaration of p. If ani nt isfour bytes, for example, thei nt will be scaled by four.

Pointer subtraction isaso valid: if p and g point to el ements of the same array, and p<q, then g- p+1 isthe number of elements from p to g inclusive. Thisfact can be
used to write yet another version of st r | en:

/* strlen: return length of string s */
int strlen(char *s)

{
char *p = s;
while (*p !'='"\0")
p++;
return p - s;
}

Initsdeclaration, p isinitidlizedto s, that is, to point to the first character of the string. In thewhi | e loop, each character in turn is examined until the' \ 0" attheendis
seen. Because p pointsto characters, p++ advances p to the next character each time, and p- s gives the number of characters advanced over, that is, the string length.
(The number of charactersin the string could betoo largeto storeinani nt . The header <st ddef . h> definesatypept rdi f f _t that islarge enough to hold the
signed difference of two pointer values. If we were being cautious, however, wewould use si ze_t for thereturn value of st r | en, to match the standard library
version. si ze_t isthe unsigned integer type returned by the si zeof operator.

Pointer arithmetic is consistent: if we had been dealing with f | oat s, which occupy more storage that char s, and if p wereapointer to f | oat , p++ would advance to
the next f | oat . Thus we could write another version of al | oc that maintainsf | oat sinstead of char s, merely by changing char tof | oat throughout al | oc and
af r ee. All the pointer manipul ations automatically take into account the size of the objects pointed to.

The valid pointer operations are assignment of pointers of the same type, adding or subtracting a pointer and an integer, subtracting or comparing two pointers to members

of the same array, and assigning or comparing to zero. All other pointer arithmetic isillegal. It is not legal to add two pointers, or to multiply or divide or shift or mask
them, ortoadd f | oat or doubl e to them, or even, except for voi d *, to assign a pointer of one type to a pointer of another type without a cast.

5.5 Character Pointers and Functions

A string constant, written as

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (12 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
"I ama string"

isan array of characters. In the internal representation, the array is terminated with the null character ' \ 0' so that programs can find the end. The length in storage is thus
one more than the number of characters between the double quotes.

Perhaps the most common occurrence of string constantsis as arguments to functions, asin
printf("hello, world\n");

When a character string like this appearsin a program, accessto it is through a character pointer; pri nt f receives a pointer to the beginning of the character array. That
is, astring constant is accessed by a pointer to its first element.

String constants need not be function arguments. If pressage isdeclared as
char *pnessage;

then the statement
pressage = "now is the tine";

assignsto pnessage apointer to the character array. Thisis not a string copy; only pointers are involved. C does not provide any operators for processing an entire string
of characters as a unit.

There is an important difference between these definitions:

char anmessage[] = "now is the time"; /* an array */
char *pnessage = "nowis the tine"; /* a pointer */

anessage isan array, just big enough to hold the sequence of charactersand' \ 0" that initializesit. Individual characters within the array may be changed but
anessage will awaysrefer to the same storage. On the other hand, pnmessage isapointer, initialized to point to a string constant; the pointer may subsequently be
modified to point elsewhere, but the result is undefined if you try to modify the string contents.

amessage!: ot now is the time\0

pmessage: | now is the time\0

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (13 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

We will illustrate more aspects of pointers and arrays by studying versions of two useful functions adapted from the standard library. The first functionisstrcpy(s,t),
which copiesthe stringt to the string s. It would be nice just to say s=t but this copies the pointer, not the characters. To copy the characters, we need aloop. The array
version first:

[* strcpy: <copy t to s; array subscript version */
void strcpy(char *s, char *t)

{ . .
int i1;
i = 0;
while ((s[i] =t[i]) !'="\0")
i ++;

}

For contrast, hereisaversion of st r cpy with pointers:

[* strcpy: copy t to s; pointer version */
void strcpy(char *s, char *t)

{ - .
Int 1;
i = 0;
while ((*s = *t) 1= '\0") {
S++;
t++;
}
}

Because arguments are passed by value, st r cpy can use the parameterss and t in any way it pleases. Here they are conveniently initialized pointers, which are marched
aong the arrays a character at atime, until the' \ 0" that terminatest has been copiedinto s.

In practice, st r cpy would not be written as we showed it above. Experienced C programmers would prefer

/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)
{

while ((*s++ = *t++) = "'\0")

}

Thismovestheincrement of s andt into the test part of the loop. The value of *t ++ isthe character that t pointed to beforet was incremented; the postfix ++ doesn't
changet until after this character has been fetched. In the same way, the character is stored into the old s position before s isincremented. This character is also the value
that is compared against ' \ 0" to control the loop. The net effect is that characters are copied fromt to s, up and including the terminating' \ 0" .

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (14 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

Asthefinal abbreviation, observe that a comparison against' \ 0" isredundant, since the question is merely whether the expression is zero. So the function would likely
be written as

[* strcpy: <copy t to s; pointer version 3 */
void strcpy(char *s, char *t)

{

while (*s++ = *t+4+)

}

Although this may seem cryptic at first sight, the notational convenience is considerable, and the idiom should be mastered, because you will seeit frequently in C
programs.

Thest r cpy inthe standard library (<st ri ng. h>) returnsthe target string asits function value.

The second routine that we will examineisst r cnp(s, t) , which compares the character stringss and t , and returns negative, zero or positiveif s islexicographically
less than, equal to, or greater than t . The value is obtained by subtracting the characters at the first position wheres andt disagree.

/* strcnp: return <0 if s<t, O if s==t, >0 if s>t */
int strcnp(char *s, char *t)
{

int i;

for (i = 0; s[i] ==t[i]; i++)
if (s[i] == "\0")
return O;
return s[i] - t[i];

}

The pointer version of st r cnp:

[* strcnp: return <0 if s<t, O if s==t, >0 if s>t */
int strcnp(char *s, char *t)

{
for (; *s == *t; s++, t++4)
if (*s == "'\0")
return O;
return *s - *t;
}

Since ++ and - - are either prefix or postfix operators, other combinations of * and ++ and - - occur, although less frequently. For example,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (15 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
*--p

decrements p before fetching the character that p pointsto. In fact, the pair of expressions

p++ = val; [push val onto stack */
val = *--p; [/* pop top of stack into val */

are the standard idiom for pushing and popping a stack; see Section 4.3.

The header <st ri ng. h> contains declarations for the functions mentioned in this section, plus avariety of other string-handling functions from the standard library.
Exer cise 5-3. Write a pointer version of the function st r cat that we showed in Chapter 2: st rcat (s, t) copiesthestringt totheend of s.

Exercise 5-4. Writethe function st r end(s, t) , which returns 1 if the stringt occurs at the end of the string s, and zero otherwise.

Exer cise 5-5. Write versions of the library functionsst r ncpy, st rncat , and st r ncnp, which operate on at most the first n characters of their argument strings. For
example, st rncpy(s, t, n) copiesat most n charactersof t tos. Full descriptions are in Appendix B.

Exer cise 5-6. Rewrite appropriate programs from earlier chapters and exercises with pointersinstead of array indexing. Good possibilitiesincludeget | i ne (Chapters 1
and 4), at oi , i t oa, and their variants (Chapters 2, 3, and 4), r ever se (Chapter 3), and st r i ndex and get op (Chapter 4).

5.6 Pointer Arrays; Pointers to Pointers

Since pointers are variables themselves, they can be stored in arrays just as other variables can. Let usillustrate by writing a program that will sort a set of text linesinto
aphabetic order, a stripped-down version of the UNIX program sort .

In Chapter 3, we presented a Shell sort function that would sort an array of integers, and in Chapter 4 we improved on it with a quicksort. The same agorithms will work,

except that now we have to deal with lines of text, which are of different lengths, and which, unlike integers, can't be compared or moved in asingle operation. We need a
data representation that will cope efficiently and conveniently with variable-length text lines.

Thisiswhere the array of pointers enters. If the lines to be sorted are stored end-to-end in one long character array, then each line can be accessed by a pointer to itsfirst
character. The pointers themselves can bee stored in an array. Two lines can be compared by passing their pointersto st r cnp. When two out-of-order lines have to be
exchanged, the pointersin the pointer array are exchanged, not the text lines themselves.

. » defghi - defghi
. » jklmnopgrst > jklmnopgrst
. » abc o] abc

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (16 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

This eliminates the twin problems of complicated storage management and high overhead that would go with moving the lines themselves.
The sorting process has three steps:

read all the lines of input
sort them
print themin order

Asusual, it's best to divide the program into functions that match this natural division, with the main routine controlling the other functions. Let us defer the sorting step
for amoment, and concentrate on the data structure and the input and output.

The input routine has to collect and save the characters of each line, and build an array of pointersto the lines. It will also have to count the number of input lines, since
that information is needed for sorting and printing. Since the input function can only cope with afinite number of input lines, it can return someillega count like - 1 if too
much input is presented.

The output routine only has to print the linesin the order in which they appear in the array of pointers.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#def i ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void gsort(char *lineptr[], int left, int right);

/[* sort input lines */
mai n()
{

int nlines; /* nunber of input lines read */

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort(lineptr, O, nlines-1);
witelines(lineptr, nlines);
return O;

} else {
printf("error: input too big to sort\n");
return 1,

}

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (17 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

#defi ne MAXLEN 1000 /* max length of any input line */
int getline(char *, int);
char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr[], int naxlines)

{
int len, nlines;
char *p, |ine[MAXLEN;
nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)
if (nlines >= maxlines || p = alloc(len) == NULL)
return -1;
el se {
line[len-1] = "'\0"; [* delete newine */
strcpy(p, line);
lineptr[nlines++] = p;
}
return nlines;
}

[* witelines: wite output lines */
void witelines(char *lineptr[], int nlines)
{ . .
int i;
for (i = 0; i < nlines; i++)
printf("%\n", lineptr[i]);
}

Thefunctionget | i ne isfrom Section 1.9.
The main new thing is the declaration for | i neptr :
char *1ineptr[MAXLI NES]

saysthat | i nept r isanarray of MAXLI NES elements, each element of whichisapointertoachar . Thatis, | i neptr[i] isacharacter pointer,and*| i neptr[i]
isthe character it points to, the first character of thei -th saved text line.

Sincel i nept r isitself the name of an array, it can be treated as a pointer in the same manner asin our earlier examples, andwr i t el i nes can be written instead as

[* witelines: wite output lines */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (18 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
void witelines(char *lineptr[], int nlines)

{
while (nlines-- > 0)
printf("%\n", *lineptr++);

}

Initialy, *1 i nept r pointsto thefirst line; each element advancesit to the next line pointer while nl i nes is counted down.

With input and output under control, we can proceed to sorting. The quicksort from Chapter 4 needs minor changes: the declarations have to be modified, and the
comparison operation must be done by calling st r cnp. The agorithm remains the same, which gives us some confidence that it will still work.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(char *v[], int left, int right)

{
int i, |ast;
voi d swap(char *v[], int i, int j);
if (left >=right) /* do nothing if array contains */
return; /* fewer than two el enents */
swap(v, left, (left + right)/2);
last = left;
for (i =left+l;, i <= right; i++)
if (strenp(v[i], v[left]) < 0)
swap(v, ++last, i);
swap(v, left, last);
gsort(v, left, last-1);
gsort(v, last+1, right);
}

Similarly, the swap routine needs only trivial changes:

/* swap: interchange v[i] and v[j] */
void swap(char *v[], int i, int j)
{
char *tenp;
temp = v[i];
vii] = vIjl;
v[j] = tenp;
}

Since any individual element of v (alias| i nept r) isacharacter pointer, t enp must be aso, so one can be copied to the other.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (19 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
Exercise 5-7. Rewriter eadl i nes to storelinesin an array supplied by mai n, rather than calling al | oc to maintain storage. How much faster is the program?

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are much less used than arrays of pointers. In this section, we will show some of their
properties.

Consider the problem of date conversion, from day of the month to day of the year and vice versa. For example, March 1 is the 60th day of a non-leap year, and the 61st
day of aleap year. Let us define two functions to do the conversions: day_of _year converts the month and day into the day of the year, and mont h_day convertsthe
day of the year into the month and day. Since this latter function computes two values, the month and day arguments will be pointers:

nont h_day(1988, 60, &m &d)
sets mto 2 and d to 29 (February 29th).

These functions both need the same information, atable of the number of daysin each month ("“thirty days hath September ..."). Since the number of days per month
differsfor leap years and non-leap years, it's easier to separate them into two rows of atwo-dimensional array than to keep track of what happens to February during
computation. The array and the functions for performing the transformations are as follows:

static char daytab[2][13] = {
{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
b

/* day_of year: set day of year fromnonth & day */
int day_of _year(int year, int nonth, int day)

{
int i, |eap;
leap = year%l == 0 && year%d00 != 0 || year%00 == O;
for (i = 1; i < nonth; i++)
day += daytab[leap][i];
return day;
}

[* month_day: set nonth, day fromday of year */
void nmont h_day(int year, int yearday, int *pnonth,

{

nt *pday)
int i, leap;

leap = year% == 0 && year%l00 != 0 || year %00 == O;
for (i = 1; yearday > daytab[leap][i]; i++)

yearday -= daytab[leap][i];
*pmonth = i;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (20 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
*pday = yearday;
}

Recall that the arithmetic value of alogical expression, such asthe onefor | eap, iseither zero (false) or one (true), so it can be used as a subscript of the array dayt ab.

The array dayt ab hasto be external to bothday_of _year and nont h_day, so they can both use it. We madeit char to illustrate alegitimate use of char for
storing small non-character integers.

dayt ab isthefirst two-dimensional array we have dealt with. In C, atwo-dimensional array is really a one-dimensional array, each of whose elementsis an array. Hence
subscripts are written as

daytab[i][]] [* [row[col] */
rather than
daytab[i,j] /* WWRONG */

Other than this notational distinction, atwo-dimensional array can be treated in much the same way asin other languages. Elements are stored by rows, so the rightmost
subscript, or column, varies fastest as elements are accessed in storage order.

An array isinitialized by alist of initializersin braces; each row of atwo-dimensional array isinitialized by a corresponding sub-list. We started the array dayt ab witha
column of zero so that month numbers can run from the natural 1 to 12 instead of 0 to 11. Since space is not at a premium here, thisis clearer than adjusting the indices.

If atwo-dimensional array isto be passed to a function, the parameter declaration in the function must include the number of columns; the number of rowsis irrelevant,
since what is passed is, as before, a pointer to an array of rows, where each row isan array of 131 nt s. In this particular case, it is a pointer to objects that are arrays of 13
i nts. Thusif thearray dayt ab isto be passed to afunction f , the declaration of f would be:

f(int daytab[2][13]) { ... }
It could also be

f(int daytab[][13]) { ... }
since the number of rowsisirrelevant, or it could be

f(int (*daytab)[213]) { ... }

which says that the parameter is a pointer to an array of 13 integers. The parentheses are necessary since brackets[] have higher precedence than * . Without parentheses,
the declaration

int *daytab[13]

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (21 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
isan array of 13 pointersto integers. More generally, only the first dimension (subscript) of an array isfree; al the others have to be specified.

Section 5.12 has a further discussion of complicated declarations.

Exercise 5-8. Thereisno error checkinginday_of _year or nont h_day. Remedy this defect.

5.8 Initialization of Pointer Arrays

Consider the prablem of writing afunction nont h_name(n) , which returns a pointer to a character string containing the name of the n-th month. Thisis an ideal
application for aninternal st at i ¢ array. nont h_nane contains aprivate array of character strings, and returns a pointer to the proper one when called. This section
shows how that array of namesisinitialized.

The syntax is similar to previous initializations:

[* month_name: return name of n-th nonth */
char *nont h_name(int n)

{
static char *nane[] = {
"I'l'l egal nonth",
"January", "February", "March",
“April", "May", "June",
"July", "August", "Septenber”,
"Cct ober”, "Novenber", "Decenber"
1
return (n <1 || n>12) ? name[0] : name[n];
}

The declaration of nane, which isan array of character pointers, isthe sameas| i nept r inthe sorting example. The initializer isalist of character strings; each is
assigned to the corresponding position in the array. The characters of thei -th string are placed somewhere, and a pointer to them is stored in nane[i] . Since the size of
the array name is not specified, the compiler counts the initializers and fills in the correct number.

5.9 Pointers vs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between atwo-dimensiona array and an array of pointers, such as namne in the example above. Given the
definitions

int a[10][20];
int *b[10];

thena[3] [4] and b[3] [4] are both syntactically legal referencesto asinglei nt . But a isatrue two-dimensional array: 200 i nt -sized |locations have been set aside,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (22 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
and the conventional rectangular subscript calculation 20 * row +col is used to find the element a[r ow, col] . For b, however, the definition only allocates 10 pointers
and does not initialize them; initialization must be done explicitly, either statically or with code. Assuming that each element of b does point to a twenty-element array,
then there will be 200 i nt s set aside, plusten cells for the pointers. The important advantage of the pointer array is that the rows of the array may be of different lengths.
That is, each element of b need not point to a twenty-element vector; some may point to two elements, some to fifty, and someto none at al.

Although we have phrased this discussion in terms of integers, by far the most frequent use of arrays of pointersisto store character strings of diverse lengths, asin the
function nront h_name. Compare the declaration and picture for an array of pointers:

char *name[] = { "lllegal nonth", "Jan", "Feb", "Mar" };
name:
. » Illegal month\0
. » JEIIL\D
. > Feb\ﬂ
. > HEI\O
with those for atwo-dimensional array:
char ananme[][15] = { "Illegal nmonth", "Jan", "Feb", "Mar" };
anamea:
Illegal month\0 Jan\0 Feb\0 Mar\0
o 156 30 45

Exercise 5-9. Rewrite theroutinesday_of _year and nont h_day with pointers instead of indexing.

5.10 Command-line Arguments

In environments that support C, thereis away to pass command-line arguments or parameters to a program when it begins executing. When mai n iscaled, itiscaled
with two arguments. The first (conventionally called ar gc, for argument count) is the number of command-line arguments the program was invoked with; the second
(ar gv, for argument vector) is a pointer to an array of character strings that contain the arguments, one per string. We customarily use multiple levels of pointersto
manipul ate these character strings.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (23 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

The simplest illustration is the program echo, which echoes its command-line arguments on a single line, separated by blanks. That is, the command
echo hello, world
prints the output
hell o, world
By convention, ar gv[0] isthe name by which the program was invoked, so ar gc isat least 1. If ar gc is 1, there are no command-line arguments after the program

name. In the example above, ar gc is3,andar gv[0] ,argv[1] ,andar gv[2] are" echo","hel | o, ",and " wor | d" respectively. Thefirst optional argument is
argv[1] andthelastisar gv[ar gc- 1] ; additionally, the standard requiresthat ar gv[ar gc] beanull pointer.

argv:
. " » echo\0
. » hello,\0
. » world\0
Thefirst version of echo treatsar gv asan array of character pointers:
#i ncl ude <stdi o. h>
/* echo conmand-|ine argunments; 1st version */
mai n(i nt argc, char *argv[])
{
int i;
for (i =1; i < argc; i++)
printf("%%", argv[i], (i <argc-1) 2" " : "");
printf("\n");
return O;
}

Since ar gv isapointer to an array of pointers, we can manipulate the pointer rather than index the array. This next variant is based on incrementing ar gv, whichisa
pointer to pointer to char , whilear gc is counted down:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (24 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
#i ncl ude <stdi o. h>

/* echo conmand-|ine argunents; 2nd version */
mai n(int argc, char *argv[])

{
while (--argc > 0)
printf("%%", *++argv, (argc > 1) 2" " . "");
printf("\n");
return O;
}

Since ar gv isapointer to the beginning of the array of argument strings, incrementing it by 1 (++ar gv) makesit point at the origina ar gv[1] instead of ar gv[0] .
Each successive increment movesit along to the next argument; * ar gv isthen the pointer to that argument. At the sametime, ar gc is decremented; when it becomes
zero, there are no arguments left to print.

Alternatively, we could writethe pri nt f statement as
printf((argc > 1) ? "% " : "%", *++argv);
This shows that the format argument of pri nt f can be an expression too.

As a second example, let us make some enhancements to the pattern-finding program from Section 4.1. If you recall, we wired the search pattern deep into the program, an

obviously unsatisfactory arrangement. Following the lead of the UNIX program gr ep, let us enhance the program so the pattern to be matched is specified by the first
argument on the command line.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#defi ne MAXLI NE 1000

int getline(char *line, int max);

[* find: print lines that match pattern from 1st arg */
mai n(int argc, char *argv[])
{

char | ine[MAXLI NE] ;

int found = O;

if (argc !'= 2)
printf("Usage: find pattern\n");
el se
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1]) != NULL) {
printf("%", |ine);
found++;
http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (25 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

}

return found;

}

The standard library functionst rstr (s, t) returnsapointer to the first occurrence of the stringt inthestring s, or NULL if thereisnone. It is declared in
<string. h>.

The model can now be elaborated to illustrate further pointer constructions. Suppose we want to allow two optional arguments. One says ~“print al the lines except those
that match the pattern;" the second says " precede each printed line by its line number."

A common convention for C programs on UNIX systemsisthat an argument that begins with a minus sign introduces an optional flag or parameter. If we choose - x (for
“except") to signal theinversion, and - n (" number") to request line numbering, then the command

find -x -npattern
will print each line that doesn't match the pattern, preceded by its line number.

Optional arguments should be permitted in any order, and the rest of the program should be independent of the number of arguments that we present. Furthermore, it is
convenient for usersif option arguments can be combined, asin

find -nx pattern
Hereisthe program:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#def i ne MAXLI NE 1000

int getline(char *line, int max);

/* find: print lines that match pattern from 1st arg */
mai n(int argc, char *argv[])
{

char |ine[MAXLI NE] ;

long l'ineno = O;

int ¢, except = 0, nunber = 0, found = O;

while (--argc > 0 && (*++argv)[0] == "'-")
while (c = *++argv[0])
switch (c¢) {
case 'Xx':
except = 1;
br eak;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (26 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
case

n':
nunber = 1;
br eak;
defaul t:
printf("find: illegal option %\n", c);
argc = 0;
found = -1;
br eak;
}
if (argc !'= 1)
printf("Usage: find -x -n pattern\n");

el se
while (getline(line, MAXLINE) > 0) {
| i neno++;
if ((strstr(line, *argv) != NULL) != except) {
i f (nunber)
printf("%d:", |ineno);
printf("9%", |ine);
found++;
}
}

return found;

}
ar gc isdecremented and ar gv isincremented before each optional argument. At the end of the loop, if there are no errors, ar gc tells how many arguments remain
unprocessed and ar gv pointsto the first of these. Thusar gc should be 1 and * ar gv should point at the pattern. Notice that * ++ar gv isa pointer to an argument string,
so (*++ar gv) [0] isitsfirst character. (An aternate valid form would be * * ++ar gv.) Because[] bindstighter than * and ++, the parentheses are necessary; without
them the expression would betaken as* ++(ar gv[0]) . In fact, that iswhat we have used in the inner loop, where the task isto walk along a specific argument string. In
the inner loop, the expression * ++ar gv[0] increments the pointer ar gv[0] !

It israre that one uses pointer expressions more complicated than these; in such cases, breaking them into two or three steps will be more intuitive.

Exer cise 5-10. Write the program expr , which evaluates a reverse Polish expression from the command line, where each operator or operand is a separate argument. For
example,

expr 2 34 + *
evaluates 2 * (3+4).

Exercise 5-11. Modify the program ent ab and det ab (written as exercises in Chapter 1) to accept alist of tab stops as arguments. Use the default tab settings if there
are no arguments.

Exercise 5-12. Extend ent ab and det ab to accept the shorthand
http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (27 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
entab -m +n
to mean tab stops every n columns, starting at column m. Choose convenient (for the user) default behavior.

Exer cise 5-13. Write the program t ai | , which printsthe last n lines of itsinput. By default, nis set to 10, let us say, but it can be changed by an optional argument so
that

tail -n

prints the last n lines. The program should behave rationally no matter how unreasonabl e the input or the value of n. Write the program so it makes the best use of
available storage; lines should be stored as in the sorting program of Section 5.6, not in atwo-dimensional array of fixed size.

5.11 Pointers to Functions

In C, afunction itself isnot avariable, but it is possible to define pointers to functions, which can be assigned, placed in arrays, passed to functions, returned by functions,
and so on. We will illustrate this by modifying the sorting procedure written earlier in this chapter so that if the optional argument - n is given, it will sort the input lines
numerically instead of lexicographically.

A sort often consists of three parts - a comparison that determines the ordering of any pair of objects, an exchange that reverses their order, and a sorting algorithm that
makes comparisons and exchanges until the objects are in order. The sorting algorithm is independent of the comparison and exchange operations, so by passing different
comparison and exchange functions to it, we can arrange to sort by different criteria. Thisis the approach taken in our new sort.

L exicographic comparison of two linesisdone by st r cnp, as before; we will also need aroutine nunt np that compares two lines on the basis of numeric value and
returns the same kind of condition indication as st r cnp does. These functions are declared ahead of mai n and a pointer to the appropriate one is passed to qsor t . We
have skimped on error processing for arguments, so as to concentrate on the main issues.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

#defi ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void qgsort(void *lineptr[], int left, int right,
int (*comp)(void *, void *));
int nuncnp(char *, char *);

[* sort input |ines */
mai n(i nt argc, char *argv[])
{

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (28 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

i nt nlines; /* nunber of input |ines read */
int numeric = O; [* 1 if nuneric sort */
if (argc > 1 && strcnp(argv[1], "-n") == 0)

nuneric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort((void**) lineptr, O, nlines-1,
(int (*)(void*,void*))(nuneric ? nunctnp : strcnp));
witelines(lineptr, nlines);
return O;
} else {
printf("input too big to sort\n");
return 1;

}

Inthecal togsort, strcnp and nuntnp are addresses of functions. Since they are known to be functions, the & is not necessary, in the same way that it is not needed
before an array name.

We have written gsort so it can process any datatype, not just character strings. Asindicated by the function prototype, gsort expects an array of pointers, two
integers, and a function with two pointer arguments. The generic pointer typevoi d * isused for the pointer arguments. Any pointer can be cast tovoi d * and back
again without loss of information, so we can call gsor t by casting argumentstovoi d *. The elaborate cast of the function argument casts the arguments of the
comparison function. These will generally have no effect on actual representation, but assure the compiler that all iswell.

/* qsort: sort v[left]...v[right] into increasing order */
void gsort(void *v[], int left, int right,
int (*comp)(void *, void *))

{
int i, last;
voi d swap(void *v[], int, int);
if (left >= right) /* do nothing if array contains */
return; /* fewer than two el enents */
swap(v, left, (left + right)/2);
| ast = left;
for (i =1left+l; i <=right; i++)
if ((*conp)(v[i], v[left]) < 0)
swap(v, ++last, i);
swap(v, left, last);
gsort(v, left, last-1, conp);
gsort(v, last+1, right, conp);
}

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (29 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
The declarations should be studied with some care. The fourth parameter of gsort is

int (*comp)(void *, void *)
which saysthat conp isapointer to afunction that hastwo voi d * argumentsand returnsani nt .
The use of conp intheline
if ((*conmp)(v[i], v[left]) < 0)
is consistent with the declaration: conp isapointer to afunction, * conp isthe function, and
(*comp) (v[i], v[left])
isthe cal to it. The parentheses are needed so the components are correctly associated; without them,
int *conmp(void *, void *) /* WRONG */
saysthat conp isafunction returning a pointer to ani nt , which isvery different.
We have already shown st r cnp, which compares two strings. Here is nunt np, which compares two strings on aleading numeric value, computed by calling at of :

#i ncl ude <stdlib. h>

[* nuncnp: conpare s1 and s2 nunerically */
i nt nuncnp(char *sl1, char *s2)

{
doubl e v1, v2;
vl = atof (sl);
v2 = atof(s2);
if (vl <v2)
return -1;
else if (vl > v2)
return 1;
el se
return O;
}

The swap function, which exchanges two pointers, isidentical to what we presented earlier in the chapter, except that the declarations are changedtovoi d *.

void swap(void *v[], int i, int j;)
{

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (30 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
void *tenp;
v[i];

viil;
t enp;

tenp
v[i]
vijl

}

A variety of other options can be added to the sorting program; some make challenging exercises.

Exercise 5-14. Modify the sort program to handle a- r flag, which indicates sorting in reverse (decreasing) order. Be surethat - r workswith - n.

Exercise 5-15. Add the option - f to fold upper and lower case together, so that case distinctions are not made during sorting; for example, a and A compare equal.
Exercise 5-16. Add the - d ("directory order") option, which makes comparisons only on letters, numbers and blanks. Make sure it works in conjunction with - f .

Exercise 5-17. Add afield-searching capahility, so sorting may bee done on fields within lines, each field sorted according to an independent set of options. (The index for
this book was sorted with - df for theindex category and - n for the page numbers.)

5.12 Complicated Declarations

C is sometimes castigated for the syntax of its declarations, particularly ones that involve pointers to functions. The syntax is an attempt to make the declaration and the
use agree; it works well for simple cases, but it can be confusing for the harder ones, because declarations cannot be read left to right, and because parentheses are over-
used. The difference between

int *f(); [* f: function returning pointer to int */
and

int (*pf)(); /* pf: pointer to function returning int */
illustrates the problem: * isaprefix operator and it has lower precedence than () , so parentheses are necessary to force the proper association.
Although truly complicated declarationsrarely arise in practice, it isimportant to know how to understand them, and, if necessary, how to create them. One good way to
synthesize declarationsisin small stepswitht ypedef , which isdiscussed in Section 6.7. As an alternative, in this section we will present a pair of programs that convert
from valid C to aword description and back again. The word description reads left to right.
Thefirgt, dcl , isthe more complex. It converts a C declaration into aword description, asin these examples:
char **argv

argv: pointer to char
int (*daytab)[13]

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (31 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

daytab: pointer to array[13] of int
i nt *daytab[13]
daytab: array[13] of pointer to int
voi d *conp()
conp: function returning pointer to void
void (*conp) ()
conmp: pointer to function returning void
char (*(*x())[1)()
x: function returning pointer to array[] of
poi nter to function returning char
char (*(*x[3])())[5]
x: array[3] of pointer to function returning
pointer to array[5] of char

dcl isbased on the grammar that specifies a declarator, which is spelled out precisely in Appendix A, Section 8.5; thisisasimplified form:

dcl : optional *'s direct-dcl
di rect-dcl nane

(dcl)

di rect-dcl ()

di rect-dcl [optional size]

Inwords, adcl isadirect-dcl, perhaps preceded by *'s. A direct-dcl is aname, or a parenthesized dcl, or a direct-dcl followed by parentheses, or a direct-dcl followed by
brackets with an optional size.

This grammar can be used to parse functions. For instance, consider this declarator:

(*pfal])()

pf a will beidentified as a name and thus as adirect-dcl. Then pf a[] isaso adirect-dcl. Then* pf a[] isrecognized asadcl, so (*pfa[]) isadirect-dcl. Then
(*pfal[]) () isadirect-dcl and thusadcl. We can also illustrate the parse with atree like this (where direct-dcl has been abbreviated to dir-dcl):

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (32 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

(* pta []) 0O
|

namec

dir-del
|

dz’r|—dcf

di::f

dir|—dcf

dir|—dcf

del

The heart of thedcl programisapair of functions, dcl and di r dcl , that parse a declaration according to this grammar. Because the grammar is recursively defined,
the functions call each other recursively as they recognize pieces of a declaration; the program is called arecursive-descent parser.

/* dcl: parse a declarator */
voi d dcl (voi d)
{
i nt ns;
for (ns = 0; gettoken() =="*";) /* count *'s */
ns++;
di rdcl ();

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (33 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
while (ns-- > 0)
strcat (out,

poi nter to");

}
[* dirdcl: parse a direct declarator */
voi d dirdcl (void)
{ .
int type;
if (tokentype == "(") { [* (dcl) */
dcl ();
if (tokentype !'=")")
printf("error: missing)\n");
} else if (tokentype == NAME) /* variable nane */
strcpy(name, token);
el se
printf("error: expected nanme or (dcl)\n");
while ((type=gettoken()) == PARENS || type == BRACKETYS)
if (type == PARENS)
strcat(out, " function returning");
el se {
strcat(out, " array");
strcat (out, token);
strcat(out, " of");
}
}

Since the programs are intended to be illustrative, not bullet-proof, there are significant restrictionson dcl . It can only handle asimple datatypelinechar ori nt . It
does not handle argument typesin functions, or qualifierslike const . Spurious blanks confuse it. It doesn't do much error recovery, so invalid declarations will also
confuseit. These improvements are left as exercises.

Here are the global variables and the main routine:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>

#defi ne MAXTOKEN 100
enum { NAME, PARENS, BRACKETS };

voi d dcl (void);
voi d dirdcl (void);

int gettoken(void);
http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (34 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays

i nt tokentype; /* type of last token */
char token[MAXTOKEN] ; /* last token string */
char nane[MAXTCKEN] ; /* identifier name */

char datatype[MAXTOCKEN]; /* data type = char, int, etc. */
char out[1000];

main() /* convert declaration to words */

{
while (gettoken() !'= EOF) { /[* 1st token on line */
strcpy(dat atype, token); /* is the datatype */
out[0] = "'\0";
dcl (); /* parse rest of line */
if (tokentype !'="'\n")
printf("syntax error\n");
printf("%: % %\n", nanme, out, datatype);
}
return O;
}

The function get t oken skips blanks and tabs, then finds the next token in the input; a ““token" isaname, a pair of parentheses, a pair of brackets perhapsincluding a
number, or any other single character.

int gettoken(void) /* return next token */
{

int c, getch(void);

voi d ungetch(int);

char *p = token;

while ((c = getch()) ==" " || ¢c == "\t")

if (c=="(){
if ((c =getch()) ==")") {
strcpy(token, "()");
return tokentype = PARENS;
} else {
unget ch(c);

return tokentype = "'(';
}
} elseif (c =="[") {
for (*p++ = c; (*p++ = getch()) !="]";)

*p ='\0";
return tokentype = BRACKETS;
} else if (isalpha(c)) {

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (35 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
for (*p++ = c; isalnum(c = getch());)
*p++ = C;
*p = '\0';
unget ch(c);

return tokentype = NAME;
} else
return tokentype = c;

}

get ch and unget ch are discussed in Chapter 4.

Going in the other direction is easier, especialy if we do not worry about generating redundant parentheses. The program undc| converts aword description like “"x isa
function returning a pointer to an array of pointers to functions returning char ," which we will express as

x () * [1 * () char

to

char (*(*x())[1)()

The abbreviated input syntax lets us reuse the get t oken function. undcl also uses the same external variablesasdcl does.

/* undcl: convert word descriptions to declarations */
mai n()
{

int type;

char tenp[MAXTOKEN] ;

while (gettoken() !'= EOF) {
strcpy(out, token);
while ((type = gettoken()) !'="'\n")

if (type == PARENS || type == BRACKETS)
strcat (out, token);

else if (type == "'"*") {
sprintf(tenmp, "(*%)", out);
strcpy(out, tenp);

} else if (type == NAME) {
sprintf(temp, "% %", token, out);
strcpy(out, tenp);

} else
printf("invalid input at %\n", token);

}

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (36 of 37) [9/6/2002 12:22:23]

Chapter 5 - Pointers and Arrays
return O;

}

Exercise 5-18. Make dcl recover from input errors.
Exercise 5-19. Modify undcl so that it does not add redundant parentheses to declarations.

Exercise 5-20. Expand dcl to handle declarations with function argument types, quaifierslike const , and so on.

Back to Chapter 4 -- Index -- Chapter 6

http://freebooks.by.ru/view/CProgrammingLanguage/chapter5.html (37 of 37) [9/6/2002 12:22:23]

Chapter 6 - Structures

Back to Chapter 5 -- Index -- Chapter 7

Chapter 6 - Structures

A structure is a collection of one or more variables, possibly of different types, grouped together under a
single name for convenient handling. (Structures are called " "records' in some languages, notably
Pascal.) Structures help to organize complicated data, particularly in large programs, because they permit
agroup of related variables to be treated as a unit instead of as separate entities.

One traditional example of a structure is the payroll record: an employee is described by a set of
attributes such as name, address, social security number, salary, etc. Some of these in turn could be
structures: a name has several components, as does an address and even a salary. Another example, more
typical for C, comes from graphics: apoint isapair of coordinate, arectangleisapair of points, and so
on.

The main change made by the ANSI standard is to define structure assignment - structures may be copied
and assigned to, passed to functions, and returned by functions. This has been supported by most
compilers for many years, but the properties are now precisely defined. Automatic structures and arrays
may now also be initialized.

6.1 Basics of Structures

Let us create afew structures suitable for graphics. The basic object is a point, which we will assume has
an x coordinate and ay coordinate, both integers.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (1 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

(0,0)

The two components can be placed in a structure declared like this:

struct point {
int Xx;
int vy;
b
The keyword st r uct introduces a structure declaration, which isalist of declarations enclosed in
braces. An optional name called a structure tag may follow theword st r uct (aswith poi nt here).
The tag names this kind of structure, and can be used subsequently as a shorthand for the part of the
declaration in braces.
The variables named in a structure are called members. A structure member or tag and an ordinary (i.e.,
non-member) variable can have the same name without conflict, since they can always be distinguished
by context. Furthermore, the same member names may occur in different structures, although as a matter
of style one would normally use the same names only for closely related objects.

A st ruct declaration defines atype. The right brace that terminates the list of members may be
followed by alist of variables, just as for any basic type. That is,

struct { ... } X, vy, z;
Is syntactically analogous to
int x, vy, z;

in the sense that each statement declares x, y and z to be variables of the named type and causes space to
be set aside for them.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (2 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

A structure declaration that is not followed by alist of variables reserves no storage; it merely describes a
template or shape of a structure. If the declaration is tagged, however, the tag can be used later in
definitions of instances of the structure. For example, given the declaration of poi nt above,

struct point pt;

defines avariable pt which isastructure of typest r uct poi nt . A structure can be initialized by
following its definition with alist of initializers, each a constant expression, for the members:

struct maxpt = { 320, 200 };

An automatic structure may also be initialized by assignment or by calling afunction that returns a
structure of the right type.

A member of aparticular structure is referred to in an expression by a construction of the form
structure-name.member

AR NT]

The structure member operator ~." connects the structure name and the member name. To print the
coordinates of the point pt , for instance,

printf("%, %", pt.x, pt.y);
or to compute the distance from the origin (0,0) to pt ,

doubl e dist, sqrt(double);

dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y);

Structures can be nested. One representation of arectangleisapair of points that denote the diagonally
opposite corners:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (3 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

pt2

pti

struct rect {
struct point ptl;
struct point pt2;

b

Ther ect structure containstwo poi nt structures. If we declarescr een as
struct rect screen;

then
screen. ptl.x

refers to the x coordinate of the pt 1 member of scr een.

6.2 Structures and Functions

The only legal operations on a structure are copying it or assigning to it as a unit, taking its address with
&, and accessing its members. Copy and assignment include passing arguments to functions and
returning values from functions as well. Structures may not be compared. A structure may be initialized
by alist of constant member values; an automatic structure may also be initialized by an assignment.

Let usinvestigate structures by writing some functions to manipulate points and rectangles. There are at
least three possible approaches. pass components separately, pass an entire structure, or pass a pointer to
it. Each hasits good points and bad points.

Thefirst function, makepoi nt , will take two integers and return apoi nt structure:

/* makepoint: make a point fromx and y conponents */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (4 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

struct point nmakepoint(int x, int y)

{
struct point tenp;
tenp. x = Xx;
tenp.y =Y,
return tenp;

}

Notice that there is no conflict between the argument name and the member with the same name; indeed
the re-use of the names stresses the relationship.

makepoi nt can now be used to initialize any structure dynamically, or to provide structure arguments
to afunction:

struct rect screen;
struct point mddle;
struct point makepoint(int, int);

screen. pt1l = makepoint (0, 0);

screen. pt 2 = makepoi nt (XMAX, YMAX) ;

m ddl e = makepoi nt((screen.ptl.x + screen.pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);

The next step isa set of functions to do arithmetic on points. For instance,

/* addpoints: add two points */
struct addpoint(struct point pl, struct point p2)

{
pl.x += p2.Xx;
pl.y += p2.y;
return pl;

}

Here both the arguments and the return value are structures. We incremented the componentsin pl
rather than using an explicit temporary variable to emphasize that structure parameters are passed by
value like any others.

As another example, the function pt i nr ect tests whether a point isinside arectangle, where we have
adopted the convention that a rectangle includes its left and bottom sides but not its top and right sides:

/* ptinrect: return 1 if pinr, O0if not */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (5 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

int ptinrect(struct point p, struct rect r)

{
return p.x >=r.ptl.x &&

P-
&& p.y >=r.ptl.y && p.

‘<><

}

This assumes that the rectangle is presented in a standard form where the pt 1 coordinates are less than
the pt 2 coordinates. The following function returns a rectangle guaranteed to be in canonical form:

#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

/* canonrect: canonicalize coordi nates of rectangle */
struct rect canonrect(struct rect r)

{
struct rect tenp;
tenp.ptl.x = mn(r.ptl.x, r.pt2.x);
tenp.ptl.y = min(r.ptl.y, r.pt2.y);
tenp.pt2.x = max(r.ptl.x, r.pt2.x);
tenp.pt2.y = max(r.ptl.y, r.pt2.y);
return tenp;

}

If alarge structure isto be passed to afunction, it is generally more efficient to pass a pointer than to
copy the whole structure. Structure pointers are just like pointers to ordinary variables. The declaration

struct point *pp;

saysthat pp isapointer to astructure of typest ruct poi nt . If pp pointsto apoi nt structure, * pp
Isthe structure, and (* pp) . x and (* pp) . y arethe members. To use pp, we might write, for example,

struct point origin, *pp;

pp = &origin;
printf("originis (%, %)\n", (*pp).x, (*pp).VY);

The parentheses are necessary in (* pp) . X because the precedence of the structure member operator .

is higher then * . The expression * pp. x means* (pp. X) , whichisillegal here because x isnot a
pointer.

Pointers to structures are so frequently used that an alternative notation is provided as a shorthand. If p is
apointer to a structure, then

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (6 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

p- >nenber - of -structure
refers to the particular member. So we could write instead
printf("originis (%, %d)\n", pp->X, pp->Y);
Both . and - > associate from left to right, so if we have
struct rect r, *rp = &r;
then these four expressions are equivalent:
r.ptl.x
rp->pt 1. x
(r.ptl).x
(rp->ptl).x

The structure operators . and - >, together with () for function callsand [] for subscripts, are at the top
of the precedence hierarchy and thus bind very tightly. For example, given the declaration

struct {
int |en;
char *str;

| I o

++p- >l en

increments| en, not p, because the implied parenthesization is ++(p- >l en) . Parentheses can be used
to alter binding: (++p) - >l en increments p before accessing | en, and (p++) - >l en increments p
afterward. (This last set of parentheses is unnecessary.)

In the same way, * p- >st r fetcheswhatever st r pointsto; * p- >st r ++ incrementsst r after
accessing whatever it pointsto (just like* s++); (* p- >st r) ++ increments whatever st r pointsto;
and * p++- >st r increments p after accessing whatever st r points to.

6.3 Arrays of Structures

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (7 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

Consider writing a program to count the occurrences of each C keyword. We need an array of character
strings to hold the names, and an array of integers for the counts. One possibility isto use two parallel
arrays, keywor d and keycount , asin

char *keywor d[NKEYS] ;
I nt keycount [NKEYS] ;

But the very fact that the arrays are parallel suggests a different organization, an array of structures. Each
keyword isapair:

char *word;
I nt cout ;

and thereisan array of pairs. The structure declaration

struct key {
char *word;
I nt count;

} keyt ab[NKEYS] ;

declares a structure type key, defines an array keyt ab of structures of thistype, and sets aside storage
for them. Each element of the array is a structure. This could also be written

struct key {
char *word;
I nt count;

b
struct key keytab[NKEYS];

Since the structure keyt ab contains a constant set of names, it is easiest to make it an external variable
and initialize it once and for all when it is defined. The structure initialization is analogous to earlier ones
- the definition is followed by alist of initializers enclosed in braces:

struct key {
char *word;

I nt count;
} keytab[] = {
"auto", O,
"break", 0,
"case", O,
"char", 0,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (8 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

"const", O,
"conti nue", O,
"default", O,
[* ... *]
"unsi gned”, O,
"voi d", O,
"volatile", O,
"while", O
¥

Theinitializers are listed in pairs corresponding to the structure members. It would be more precise to
enclose the initializers for each "row" or structure in braces, asin

{ "auto", 0 },
{ "break", 0 },
{ "case", 0 },

but inner braces are not necessary when the initializers are ssmple variables or character strings, and
when all are present. As usual, the number of entriesin the array keyt ab will be computed if the
initializers are present and the [| isleft empty.

The keyword counting program begins with the definition of keyt ab. The main routine reads the input
by repeatedly calling afunction get wor d that fetches one word at atime. Each word islooked up in
keyt ab with aversion of the binary search function that we wrote in Chapter 3. The list of keywords
must be sorted in increasing order in the table.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#def i ne MAXWORD 100

I nt getword(char *, int);
I nt bi nsearch(char *, struct key *, int);

/* count C keywords */
mai n()
{ .

int n;

char wor d[MAXWORD ;

whil e (getword(word, MAXWORD) != ECF)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (9 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

}

i f (isal pha(word[0]))
If ((n = binsearch(word, keytab, NKEYS)) >= 0)
keyt ab[n] . count ++;
for (n = 0; n < NKEYS;, n++)
I f (keytab[n].count > 0)
printf("%d %\n",
keyt ab[n] . count, keytab[n].word);
return O;

/* binsearch: find word in tab[O0]...tab[n-1] */
i nt bi nsearch(char *word, struct key tab[], int n)

{

}

I nt cond;
int |ow, high, md;

| ow = O;
high = n - 1;
while (low <= high) {
md = (lowthigh) / 2;
If ((cond = strcnp(word, tab[md].word)) < 0)
high = md - 1;
else if (cond > 0)
low = md + 1;
el se
return md;

}

return -1;

We will show the function get wor d in amoment; for now it sufficesto say that each call to get wor d
finds aword, which is copied into the array named as its first argument.

The quantity NKEYS is the number of keywordsin keyt ab. Although we could count thisby hand, it'sa
lot easier and safer to do it by machine, especially if thelist is subject to change. One possibility would
be to terminate the list of initializers with anull pointer, then loop along keyt ab until the end is found.

But thisis more than is needed, since the size of the array is completely determined at compile time. The
size of the array is the size of one entry times the number of entries, so the number of entriesis just

sizeof keytab / sizeofstruct key

C provides a compile-time unary operator called si zeof that can be used to compute the size of any

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (10 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

object. The expressions
si zeof obj ect
and
si zeof (type nane)

yield an integer equal to the size of the specified object or type in bytes. (Strictly, si zeof produces an
unsigned integer value whose type, si ze_t , isdefined in the header <st ddef . h>.) An object can be
avariable or array or structure. A type name can be the name of abasic typelikei nt or doubl e, ora
derived type like a structure or a pointer.

In our case, the number of keywords isthe size of the array divided by the size of one element. This
computation isused in a#def i ne statement to set the value of NKEYS:

#defi ne NKEYS (sizeof keytab / sizeof(struct key))
Another way to write thisisto divide the array size by the size of a specific element:
#defi ne NKEYS (sizeof keytab / sizeof(keytab[O0]))
This has the advantage that it does not need to be changed if the type changes.

A si zeof cannotbeusedina#i f line, because the preprocessor does not parse type names. But the
expression in the#def i ne isnot evaluated by the preprocessor, so the code hereislegal.

Now for the function get wor d. We have written a more general get wor d than is necessary for this
program, but it is not complicated. get wor d fetches the next ““word" from the input, where aword is
either a string of letters and digits beginning with aletter, or a single non-white space character. The
function value is the first character of the word, or ECF for end of file, or the character itself if it isnot
alphabetic.

/* getword: get next word or character frominput */
i nt getword(char *word, int lim

{
int ¢, getch(void);
voi d ungetch(int);
char *w = word;

whil e (isspace(c = getch()))

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (11 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

if (c !'= EOF)
*WH+ = C;
I f (!'isal pha(c)) {
*w="\0";
return c;
}
for (; --1im> 0; wt+)
if (lisalnum(*w = getch())) {
unget ch(*w) ;
br eak;
}
*w="\0";

return word[0];

}

get wor d usestheget ch and unget ch that we wrote in Chapter 4. When the collection of an
alphanumeric token stops, get wor d has gone one character too far. The call to unget ch pushes that
character back on the input for the next call. get wor d also usesi sspace to skip whitespace,

| sal pha toidentify letters, and i sal numto identify letters and digits; all are from the standard header
<ctype. h>.

Exercise 6-1. Our version of get wor d does not properly handle underscores, string constants,
comments, or preprocessor control lines. Write a better version.

6.4 Pointers to Structures

To illustrate some of the considerations involved with pointers to and arrays of structures, let us write the
keyword-counting program again, this time using pointers instead of array indices.

The external declaration of keyt ab need not change, but mai n and bi nsear ch do need modification.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#defi ne MAXWORD 100

I nt getword(char *, int);
struct key *binsearch(char *, struct key *, int);

/* count C keywords; pointer version */
mai n()

{

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (12 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

char wor d[MAXWORD ;
struct key *p;

whil e (getword(word, MAXWORD) ! = EOF)
I f (isal pha(word[0]))
I f ((p=binsearch(word, keytab, NKEYS)) != NULL)
p- >count ++;
for (p = keytab; p < keytab + NKEYS; p++)
I f (p->count > 0)
printf("%ld %\n", p->count, p->word);
return O;

}

/* binsearch: find word in tab[O]...tab[n-1] */
struct key *binsearch(char *word, struck key *tab, int n)
{

I nt cond,

struct key *low = & ab[O0];

struct key *high = & ab[n];

struct key *md,

while (low < high) {

md = low+ (high-low) / 2;

If ((cond = strcnp(word, md->word)) < 0)
hi gh = m d;

else if (cond > 0)
low = md + 1;

el se
return md,

}
return NULL;

}

There are severa things worthy of note here. First, the declaration of bi nsear ch must indicate that it
returnsapointer tost r uct key instead of an integer; thisis declared both in the function prototype
andin bi nsear ch. If bi nsear ch findsthe word, it returns a pointer to it; if it fails, it returns NULL.

Second, the elements of keyt ab are now accessed by pointers. This requires significant changesin
bi nsear ch.

Theinitializersfor | owand hi gh are now pointers to the beginning and just past the end of the table.

The computation of the middle element can no longer be simply

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (13 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures
mid = (| owhigh) / 2 [* WRONG */

because the addition of pointersisillegal. Subtraction islegal, however, so hi gh- | owisthe number of
elements, and thus

md =low+ (high-low) / 2
setsm d to the element halfway between | owand hi gh.

The most important change is to adjust the algorithm to make sure that it does not generate an illegal
pointer or attempt to access an element outside the array. The problem isthat & ab[- 1] and &t ab[n]
are both outside the limits of the array t ab. The former is strictly illegal, and it isillegal to dereference
the latter. The language definition does guarantee, however, that pointer arithmetic that involves the first
element beyond the end of an array (that is, & ab[n]) will work correctly.

In mai n wewrote
for (p = keytab; p < keytab + NKEYS; p++)

If p isapointer to a structure, arithmetic on p takes into account the size of the structure, so p++
increments p by the correct amount to get the next element of the array of structures, and the test stops
the loop at the right time.

Don't assume, however, that the size of a structure is the sum of the sizes of its members. Because of
alignment requirements for different objects, there may be unnamed ""holes" in a structure. Thus, for
instance, if achar isonebyteand ani nt four bytes, the structure

struct {
char c;
int i;
¥

might well require eight bytes, not five. The si zeof operator returns the proper value.

Finally, an aside on program format: when a function returns a complicated type like a structure pointer,
asin

struct key *binsearch(char *word, struct key *tab, int n)

the function name can be hard to see, and to find with atext editor. Accordingly an alternate styleis
sometimes used:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (14 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

struct key *
bi nsearch(char *word, struct key *tab, int n)

Thisisamatter of personal taste; pick the form you like and hold to it.

6.5 Self-referential Structures

Suppose we want to handle the more general problem of counting the occurrences of all the wordsin
some input. Since the list of wordsisn't known in advance, we can't conveniently sort it and use a binary
search. Yet we can't do alinear search for each word as it arrives, to seeif it's already been seen; the
program would take too long. (More precisely, its running time is likely to grow quadratically with the
number of input words.) How can we organize the datato copy efficiently with alist or arbitrary words?

One solution isto keep the set of words seen so far sorted at al times, by placing each word into its
proper position in the order asit arrives. This shouldn't be done by shifting wordsin alinear array,
though - that also takes too long. Instead we will use adata structure called a binary tree.

The tree contains one " "node" per distinct word; each node contains

« A pointer to the text of the word,

. A count of the number of occurrences,
« A pointer to the left child node,

. A pointer to the right child node.

No node may have more than two children; it might have only zero or one.

The nodes are maintained so that at any node the left subtree contains only words that are
lexicographically less than the word at the node, and the right subtree contains only words that are
greater. Thisisthe tree for the sentence " "now is the time for all good men to come to the aid of their
party", as built by inserting each word as it is encountered:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (15 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

/HGW\th
/ ;n Df/ \ time

/\ N 7N\

all good party their to

N

COINE

To find out whether a new word is already in the tree, start at the root and compare the new word to the
word stored at that node. If they match, the question is answered affirmatively. If the new record isless
than the tree word, continue searching at the left child, otherwise at the right child. If thereisno child in
the required direction, the new word is not in the tree, and in fact the empty slot is the proper place to add
the new word. This process is recursive, since the search from any node uses a search from one of its
children. Accordingly, recursive routines for insertion and printing will be most natural.

Going back to the description of anode, it is most conveniently represented as a structure with four
components:

struct tnode { /* the tree node: */
char *word; /* points to the text */
i nt count; /* nunber of occurrences */
struct tnode *left; [* left child */

struct tnode *right; /* right child */
b

Thisrecursive declaration of anode might look chancy, but it's correct. It isillegal for a structure to
contain an instance of itself, but

struct tnode *left;
declares| ef t to beapointer toat node, not at node itself.

Occasionally, one needs a variation of self-referential structures. two structures that refer to each other.
The way to handle thisis:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (16 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

struct t {

struct s *p; /* p points to an s */
b

struct s {

struct t *q; /* q points to at */

};

The code for the whole program is surprisingly small, given a handful of supporting routineslike
get wor d that we have already written. The main routine reads words with get wor d and installs them
in the tree with addt r ee.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#defi ne MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);

I nt getword(char *, int);

/* word frequency count */
mai n()
{
struct tnode *root;
char wor d[MAXVWORD ;

root = NULL,
whil e (getword(word, MAXWORD) != EOCF)
I f (isal pha(word[0]))
root = addtree(root, word);
treeprint(root);
return O;

}

Thefunction addt r ee isrecursive. A word is presented by nai n to thetop level (the root) of the tree.
At each stage, that word is compared to the word already stored at the node, and is percolated down to
either the left or right subtree by arecursive call to adt r ee. Eventually, the word either matches
something already in the tree (in which case the count is incremented), or anull pointer is encountered,
indicating that a node must be created and added to the tree. If anew nodeis created, addt r ee returns a
pointer to it, which isinstalled in the parent node.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (17 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct treenode *addtree(struct tnode *p, char *w

{

}

I nt cond;

If (p == NULL) { /* a new word has arrived */
p =talloc(); /* make a new node */
p->word = strdup(w);
p- >count = 1,
p->left = p->right = NULL;
} else if ((cond = strcnp(w, p->word)) == 0)
p- >count ++; /* repeated word */
else if (cond < 0) /* less than into left subtree */
p->left = addtree(p->left, w;
el se /* greater than into right subtree */
p->right = addtree(p->right, w;
return p;

Storage for the new node is fetched by aroutinet al | oc, which returns a pointer to a free space suitable
for holding atree node, and the new word is copied into a hidden space by st r dup. (We will discuss
these routines in amoment.) The count isinitialized, and the two children are made null. This part of the
code is executed only at the leaves of the tree, when a new node is being added. We have (unwisely)
omitted error checking on the valuesreturned by st r dup andt al | oc.

t reepri nt printsthetreein sorted order; at each node, it prints the left subtree (all the words less than
thisword), then the word itself, then the right subtree (all the words greater). If you feel shaky about how
recursion works, simulatet r eepr i nt asit operates on the tree shown above.

/* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)
{
if (p !'= NULL) {
treeprint(p->left);
printf("%d %\n", p->count, p->word);
treeprint(p->right);
}
}

A practical note: if the tree becomes “"unbalanced" because the words don't arrive in random order, the

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (18 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

running time of the program can grow too much. Asaworst case, if the words are already in order, this
program does an expensive simulation of linear search. There are generalizations of the binary tree that
do not suffer from this worst-case behavior, but we will not describe them here.

Before leaving this example, it is also worth a brief digression on a problem related to storage allocators.
Clearly it's desirable that there be only one storage allocator in a program, even though it alocates
different kinds of objects. But if one allocator isto process requests for, say, pointersto char sand
pointersto st ruct t nodes, two questions arise. First, how does it meet the requirement of most real
machines that objects of certain types must satisfy alignment restrictions (for example, integers often
must be located at even addresses)? Second, what declarations can cope with the fact that an allocator
must necessarily return different kinds of pointers?

Alignment requirements can generally be satisfied easily, at the cost of some wasted space, by ensuring
that the allocator aways returns a pointer that meets all alignment restrictions. Theal | oc of Chapter 5
does not guarantee any particular alignment, so we will use the standard library function mal | oc, which
does. In Chapter 8 we will show one way to implement nal | oc.

The question of the type declaration for afunction like mal | oc isavexing one for any language that
takes its type-checking serioudly. In C, the proper method isto declare that mal | oc returns a pointer to
voi d, then explicitly coerce the pointer into the desired type with acast. mal | oc and related routines
are declared in the standard header <st dl i b. h>. Thust al | oc can be written as

#i ncl ude <stdlib. h>

[* talloc: nmake a tnode */
struct tnode *tall oc(void)

{
}

return (struct tnode *) mall oc(sizeof (struct tnode));

st r dup merely copies the string given by its argument into a safe place, obtained by acall onmal | oc:

char *strdup(char *s) /* make a duplicate of s */

{

char *p;

p = (char *) malloc(strlen(s)+1); /* +1 for '\0" */
if (p !'= NULL)

strcpy(p, S);
return p;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (19 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

mal | oc returns NULL if no spaceisavailable; st r dup passes that value on, leaving error-handling to
its caller.

Storage obtained by calling mal | oc may be freed for re-use by calling f r ee; see Chapters 8 and 7.

Exercise 6-2. Write a program that reads a C program and prints in al phabetical order each group of
variable names that are identical in the first 6 characters, but different somewhere thereafter. Don't count
words within strings and comments. Make 6 a parameter that can be set from the command line.

Exer cise 6-3. Write a cross-referencer that printsalist of al wordsin a document, and for each word, a
list of the line numbers on which it occurs. Remove noise words like “"the,” ““and,"” and so on.

Exer cise 6-4. Write a program that prints the distinct words in its input sorted into decreasing order of
frequency of occurrence. Precede each word by its count.

6.6 Table Lookup

In this section we will write the innards of a table-lookup package, to illustrate more aspects of
structures. This code istypical of what might be found in the symbol table management routines of a
macro processor or acompiler. For example, consider the #def i ne statement. When aline like

#define IN 1

Is encountered, the name | N and the replacement text 1 are stored in atable. Later, when the name | N
appears in a statement like

state = I N;
it must be replaced by 1.

There are two routines that manipulate the names and replacement texts. i nstal | (s, t) recordsthe
name s and the replacement textt inatable; s andt arejust character strings. | ookup('s) searches
for s in the table, and returns a pointer to the place where it was found, or NULL if it wasn't there.

The algorithm is a hash-search - the incoming name is converted into a small non-negative integer, which
IS then used to index into an array of pointers. An array element points to the beginning of alinked list of
blocks describing names that have that hash value. It isNULL if no names have hashed to that value.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (20 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

. > @ = (
; o~ o—1— TAInNe
0 T . defn
- = (]

o — TAaIne
0 o

A block inthelist is a structure containing pointers to the name, the replacement text, and the next block
inthelist. A null next-pointer marks the end of thelist.

struct nlist { /* table entry: */
struct nlist *next; /* next entry in chain */
char *nane; /| * defined nane */
char *defn; /* replacenent text */

b

The pointer array isjust

#defi ne HASHSI ZE 101

static struct nlist *hashtab[HASHSI ZE]; /* pointer table */

The hashing function, which is used by both | ookup andi nst al | , adds each character value in the
string to a scrambled combination of the previous ones and returns the remainder modulo the array size.
Thisis not the best possible hash function, but it is short and effective.

/* hash: formhash value for string s */
unsi gned hash(char *s)

{
unsi gned hashval ;
for (hashval = 0; *s !'="\0"; s++)
hashval = *s + 31 * hashval;
return hashval % HASHSI ZE;
}

Unsigned arithmetic ensures that the hash value is non-negative.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (21 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

The hashing process produces a starting index in the array hasht ab; if the string is to be found
anywhere, it will bein thelist of blocks beginning there. The search is performed by | ookup. If
| ookup findsthe entry already present, it returns a pointer to it; if not, it returns NULL.

/* lookup: look for s in hashtab */
struct nlist *lookup(char *s)
{

struct nlist *np;

for (np = hashtab[hash(s)]; np !'= NULL; np = np->next)
I f (strcnp(s, np->nane) == 0)
return np; /* found */
return NULL; /* not found */

}

Thef or loopin| ookup isthe standard idiom for walking along alinked list:
for (ptr = head; ptr !'= NULL; ptr = ptr->next)
I nstal | usesl ookup to determine whether the name being installed is already present; if so, the new

definition will supersede the old one. Otherwise, anew entry iscreated. i nst al | returns NULL if for
any reason there is no room for a new entry.

struct nlist *lookup(char *);
char *strdup(char *);

/* install: put (nanme, defn) in hashtab */
struct nlist *install (char *nanme, char *defn)
{

struct nlist *np;
unsi gned hashval ;

i f ((np = |l ookup(nane)) == NULL) { /* not found */
np = (struct nlist *) malloc(sizeof (*np));

I f (np == NULL || (np->nane = strdup(nane)) == NULL)
return NULL,
hashval = hash(nane);

np- >next = hasht ab[hashval];
hasht ab[hashval] = np;
} else /* already there */
free((void *) np->defn); /*free previous defn */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (22 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

I f ((np->defn = strdup(defn)) == NULL)
return NULL;
return np;

}

Exercise 6-5. Write afunction undef that will remove a name and definition from the table maintained
by | ookup andi nstall .

Exer cise 6-6. Implement asimple version of the #def i ne processor (i.e., no arguments) suitable for
use with C programs, based on the routines of this section. Y ou may also find get ch and unget ch
helpful.

6.7 Typedef

C provides afacility called t ypedef for creating new data type names. For example, the declaration
t ypedef int Length,;

makes the name Lengt h asynonym for i nt . The type Lengt h can be used in declarations, casts, €tc.,
in exactly the same ways that thei nt type can be:

Length | en, maxlen;
Length *lengths[];

Similarly, the declaration
t ypedef char *String;

makes St r i ng asynonym for char * or character pointer, which may then be used in declarations
and casts:

String p, lineptr[MAXLINES], alloc(int);
int strcnmp(String, String);
p = (String) malloc(100);

Notice that the type being declared in at ypedef appearsin the position of avariable name, not right
after thewordt ypedef . Syntactically, t ypedef islikethe storage classesext er n, st ati c, etc.
We have used capitalized namesfor t ypedef s, to make them stand oui.

As amore complicated example, we could maket ypedef sfor the tree nodes shown earlier in this
chapter:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (23 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

t ypedef struct tnode *Treeptr;

t ypedef struct tnode { /* the tree node: */

char *word; /* points to the text */
I nt count: /[* nunber of occurrences */
struct tnode *|eft; [* left child */

struct tnode *right; /* right child */
} Treenode;

This creates two new type keywords called Tr eenode (astructure) and Tr eept r (apointer to the
structure). Thentheroutinet al | oc could become

Treeptr tall oc(void)

{
}

return (Treeptr) malloc(sizeof (Treenode));

It must be emphasized that at ypedef declaration does not create a new typein any sense; it merely
adds a new name for some existing type. Nor are there any new semantics: variables declared this way
have exactly the same properties as variables whose declarations are spelled out explicitly. In effect,

t ypedef islike#def i ne, except that sinceit isinterpreted by the compiler, it can cope with textual
substitutions that are beyond the capabilities of the preprocessor. For example,

typedef int (*PFl)(char *, char *);

creates the type PFI , for ““pointer to function (of two char * arguments) returning i nt ," which can be
used in contexts like

PFl strcnp, nuncnp;

in the sort program of Chapter 5.

Besides purely aesthetic issues, there are two main reasons for using t ypedef s. Thefirstisto
parameterize a program against portability problems. If t ypedef s are used for data types that may be
machine-dependent, only thet ypedef s need change when the program is moved. One common
situation isto uset ypedef namesfor various integer quantities, then make an appropriate set of
choicesof short ,i nt,and| ong for each host machine. Typeslikesi ze_t andptrdi ff _t from
the standard library are examples.

The second purpose of t ypedef sisto provide better documentation for a program - atype called
Tr eept r may be easier to understand than one declared only as a pointer to a complicated structure.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (24 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

6.8 Unions

A union isavariable that may hold (at different times) objects of different types and sizes, with the
compiler keeping track of size and alignment requirements. Unions provide away to manipulate different
kinds of datain asingle area of storage, without embedding any machine-dependent information in the
program. They are analogous to variant records in pascal.

As an example such as might be found in a compiler symbol table manager, suppose that a constant may
beani nt,af | oat, or acharacter pointer. The value of a particular constant must be stored in a
variable of the proper type, yet it is most convenient for table management if the value occupies the same
amount of storage and is stored in the same place regardiess of itstype. Thisisthe purpose of aunion - a
single variable that can legitimately hold any of one of several types. The syntax is based on structures:

union u_tag {
int ival;
fl oat fval;
char *sval;

}ou;
The variable u will be large enough to hold the largest of the three types; the specific sizeis
implementation-dependent. Any of these types may be assigned to u and then used in expressions, so
long as the usage is consistent: the type retrieved must be the type most recently stored. It isthe

programmer's responsibility to keep track of which typeis currently stored in a union; the results are
mplementation-dependent if something is stored as one type and extracted as another.

Syntactically, members of a union are accessed as
union-name. member

or
union-pointer- >member

just asfor structures. If the variable ut ype is used to keep track of the current type stored in u, then one
might see code such as

I f (utype == I NT)
printf("%\n", u.ival);

I f (utype == FLOAT)
printf("%\n", u.fval);

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (25 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

I f (utype == STRI NG
printf("%\n", u.sval);
el se
printf("bad type % in utype\n", utype);

Unions may occur within structures and arrays, and vice versa. The notation for accessing a member of a
union in a structure (or vice versa) isidentical to that for nested structures. For example, in the structure
array defined by

struct {
char *name;
i nt flags;
I nt utype;
uni on {
Int ival;
fl oat fval;
char *sval;
}ou;
} synt ab[NSYM ;

the member i val isreferred to as
symtab[i].u.ival
and the first character of the string sval by either of

*syntab[i]. u.sval

symtab[i].u.sval[O0]

In effect, aunion is a structure in which all members have offset zero from the base, the structure is big
enough to hold the ““widest" member, and the alignment is appropriate for all of the typesin the union.
The same operations are permitted on unions as on structures. assignment to or copying as a unit, taking
the address, and accessing a member.

A union may only beinitialized with avalue of the type of its first member; thus union u described
above can only be initialized with an integer value.

The storage allocator in Chapter 8 shows how a union can be used to force avariable to be aligned on a
particular kind of storage boundary.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (26 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

6.9 Bit-fields

When storage spaceis at a premium, it may be necessary to pack several objectsinto a single machine
word; one common useis a set of single-bit flags in applications like compiler symbol tables. Externally-
imposed data formats, such as interfaces to hardware devices, also often require the ability to get at
pieces of aword.

Imagine afragment of a compiler that manipulates a symbol table. Each identifier in a program has
certain information associated with it, for example, whether or not it is akeyword, whether or not it is
external and/or static, and so on. The most compact way to encode such information is a set of one-bit
flagsinasinglechar ori nt.

The usual way thisis doneisto define aset of “"masks" corresponding to the relevant bit positions, asin

#defi ne KEYWORD 01
#defi ne EXTRENAL 02
#def i ne STATIC 04

or
enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };

The numbers must be powers of two. Then accessing the bits becomes a matter of " bit-fiddling" with the
shifting, masking, and complementing operators that were described in Chapter 2.

Certain idioms appear frequently:
flags | = EXTERNAL | STATI G
turns on the EXTERNAL and STATI Chitsinf | ags, while
flags & ~(EXTERNAL | STATIO);
turns them off, and
if ((flags & (EXTERNAL | STATIC)) == 0)
Istrueif both bits are off.

Although these idioms are readily mastered, as an aternative C offers the capability of defining and

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (27 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

accessing fields within aword directly rather than by bitwise logical operators. A bit-field, or field for
short, isa set of adjacent bits within a single implementation-defined storage unit that we will call a
“word." For example, the symbol table #def i nesabove could be replaced by the definition of three
fields:

struct {
unsigned int is_keywrd : 1;
unsigned int is_extern : 1;
unsigned int is static : 1;
} flags;

Thisdefinesavariabletable called f | ags that contains three 1-bit fields. The number following the
colon represents the field width in bits. The fields are declared unsi gned i nt to ensure that they are
unsigned quantities.

Individual fields are referenced in the same way as other structure members: f | ags. i s_keyword,
fl ags. i s_extern, etc. Fields behave like small integers, and may participate in arithmetic
expressions just like other integers. Thus the previous examples may be written more naturally as

flags.is_extern flags.is _static = 1;

to turn the bits on;

flags.is_extern = flags.is_static

I
e

to turn them off; and

If (flags.is_extern == 0 && flags.is_static == 0)

to test them.

Almost everything about fields is implementation-dependent. Whether afield may overlap aword
boundary is implementation-defined. Fields need not be names; unnamed fields (a colon and width only)
are used for padding. The special width 0 may be used to force alignment at the next word boundary.

Fields are assigned left to right on some machines and right to left on others. This means that although
fields are useful for maintaining internally-defined data structures, the question of which end comes first
has to be carefully considered when picking apart externally-defined data; programs that depend on such
things are not portable. Fields may be declared only asi nt s; for portability, specify si gned or

unsi gned explicitly. They are not arrays and they do not have addresses, so the & operator cannot be
applied on them.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (28 of 29) [9/6/2002 12:22:39]

Chapter 6 - Structures

Back to Chapter 5 -- Index -- Chapter 7

http://freebooks.by.ru/view/CProgrammingLanguage/chapter6.html (29 of 29) [9/6/2002 12:22:39]

Chapter 7 - Input and Output

Back to Chapter 6 -- Index -- Chapter 8

Chapter 7 - Input and Output

Input and output are not part of the C language itself, so we have not emphasized them in our
presentation thus far. Nonetheless, programs interact with their environment in much more complicated
ways than those we have shown before. In this chapter we will describe the standard library, a set of
functions that provide input and output, string handling, storage management, mathematical routines, and
avariety of other servicesfor C programs. We will concentrate on input and output

The ANSI standard defines these library functions precisely, so that they can exist in compatible form on
any system where C exists. Programs that confine their system interactions to facilities provided by the
standard library can be moved from one system to another without change.

The properties of library functions are specified in more than a dozen headers,; we have already seen
severa of these, including <st di 0. h>, <st ri ng. h>, and <ct ype. h>. We will not present the
entire library here, since we are more interested in writing C programs that use it. The library is described
in detail in Appendix B.

7.1 Standard Input and Output

Aswe said in Chapter 1, the library implements a simple model of text input and output. A text stream

consists of a sequence of lines; each line ends with a newline character. If the system doesn't operate that
way, the library does whatever necessary to make it appear asif it does. For instance, the library might
convert carriage return and linefeed to newline on input and back again on output.

The simplest input mechanism is to read one character at atime from the standard input, normally the
keyboard, with get char :

I nt getchar(voi d)

get char returnsthe next input character each timeit is called, or EOF when it encounters end of file.
The symbolic constant ECF is defined in <st di 0. h>. Thevaueistypically -1, bus tests should be
written in terms of EOF so as to be independent of the specific value.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (1 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

In many environments, afile may be substituted for the keyboard by using the < convention for input
redirection: if aprogram pr og usesget char , then the command line

prog <infile

causes pr og to read charactersfromi nf i | e instead. The switching of the input is done in such away
that pr og itself is oblivious to the change; in particular, the string “"<i nfi | e" isnot included in the
command-line argumentsin ar gv. Input switching isalso invisible if the input comes from another
program via a pipe mechanism: on some systems, the command line

ot herprog | prog

runs the two programs ot her pr og and pr og, and pipes the standard output of ot her pr og into the
standard input for pr og.

The function
I nt putchar(int)

isused for output: put char (¢) putsthe character c onthest andar d out put, whichis by default
the screen. put char returns the character written, or EOF is an error occurs. Again, output can usually
be directed to afile with >filename: if pr og uses put char,

prog >outfile

will write the standard output to out f i | e instead. If pipes are supported,
prog | anot her prog

puts the standard output of pr og into the standard input of anot her pr og.

Output produced by pri nt f also findsits way to the standard output. Callsto put char and pri nt f
may be interleaved - output happens in the order in which the calls are made.

Each source file that refers to an input/output library function must contain the line
#i ncl ude <stdio. h>

before the first reference. When the name is bracketed by < and > a search is made for the header in a
standard set of places (for example, on UNIX systems, typically inthe directory / usr /i ncl ude).

http://freebooks.by.ru/view/CProgrammingLanguage/chapter?7.html (2 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

Many programs read only one input stream and write only one output stream,; for such programs, input
and output with get char , put char ,and pri nt f may be entirely adequate, and is certainly enough
to get started. Thisis particularly trueif redirection is used to connect the output of one program to the
input of the next. For example, consider the program | ower , which convertsitsinput to lower case:

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

main() /* lower: convert input to | ower case*/

{ .
int c
while ((c = getchar()) !'= EOF)
put char (t ol ower (c));
return O;
}

Thefunctiont ol ower isdefined in<ct ype. h>; it converts an upper case letter to lower case, and
returns other characters untouched. Aswe mentioned earlier, * functions" like get char and put char
in<st di 0. h>andt ol ower in<ct ype. h> are often macros, thus avoiding the overhead of a
function call per character. We will show how thisis done in Section 8.5. Regardless of how the

<ct ype. h> functions are implemented on a given machine, programs that use them are shielded from
knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case to upper, depending on the
name it isinvoked with, asfound inar gv[0] .

7.2 Formatted Output - printf

The output function pri nt f translatesinternal values to characters. We have used pri nt f informally
in previous chapters. The description here covers most typical uses but is not complete; for the full story,

see Appendix B.

int printf(char *format, argl, arg2, ...);

pri ntf converts, formats, and prints its arguments on the standard output under control of the
f or mat . It returns the number of characters printed.

The format string contains two types of objects: ordinary characters, which are copied to the output
stream, and conversion specifications, each of which causes conversion and printing of the next
successive argument to pr i nt f . Each conversion specification begins with a % and ends with a

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (3 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

conversion character. Between the % and the conversion character there may be, in order:

« A minus sign, which specifies |eft adjustment of the converted argument.

« A number that specifies the minimum field width. The converted argument will be printed in a
field at least thiswide. If necessary it will be padded on the left (or right, if left adjustment is
called for) to make up the field width.

« A period, which separates the field width from the precision.

« A number, the precision, that specifies the maximum number of characters to be printed from a
string, or the number of digits after the decimal point of afloating-point value, or the minimum
number of digits for an integer.

. Anhif theintegeristo beprintedasashort,orl (letter ell) if asal ong.

Conversion characters are shown in Table 7.1. If the character after the % is not a conversion
specification, the behavior is undefined.

Table 7.1 Basic Printf Conversions

Character Argument type; Printed As

d, i I nt ; decima number

o] I nt ; unsigned octal number (without a leading zero)

« X I nt ; unsigned hexadecimal number (without aleading Ox or 0X), using abcdef or
’ ABCDEF for 10, ...,15.

u I nt ; unsigned decimal number

C I nt ; single character

char *; print characters from the string until a' \ 0' or the number of characters given

S .
by the precision.

f doubl e; [-] m.dddddd, where the number of d'sis given by the precision (default 6).
doubl e; [-] m.dddddde+/ - xx or [-] m.ddddddE+/ - xx, where the number of d'sis

e, E . .
given by the precision (default 6).

G doubl e; use % or %t if the exponent is less than -4 or greater than or equal to the

g, precision; otherwise use %6 . Trailing zeros and atrailing decimal point are not printed.

p voi d *; pointer (implementation-dependent representation).

% no argument is converted; print a %

A width or precision may be specified as *, in which case the value is computed by converting the next
argument (which must bean i nt). For example, to print at most max charactersfrom astring s,

printf("%*s", nmax, S);

http://freebooks.by.ru/view/CProgrammingLanguage/chapter?7.html (4 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

Most of the format conversions have been illustrated in earlier chapters. One exception is the precision as
it relates to strings. The following table shows the effect of avariety of specificationsin printing " hello,
world" (12 characters). We have put colons around each field so you can see it extent.

' Us: :hello, world:

1 9d0s: :hell o, world:

: 9% 10s: - hell o, wor:

1 9% 10s: :hell o, world:

: % 15s: :hell o, world:

: 9% 15s: hello, world :
1 9d5. 10s: : hel | o, wor:
1% 15. 10s: - hel l o, wor :

A warning: pri nt f usesitsfirst argument to decide how many arguments follow and what their typeis.
It will get confused, and you will get wrong answers, if there are not enough arguments of if they are the
wrong type. Y ou should also be aware of the difference between these two calls:

printf(s); /* FAILS if s contains % */
printf("%", s); | * SAFE */

Thefunctionspri nt f doesthe same conversionsaspri nt f does, but stores the output in a string:
int sprintf(char *string, char *format, argl, arg2, ...);

spri ntf formatsthe argumentsinar g1, ar g2, etc., according tof or mat as before, but places the
resultinst ri ng instead of the standard output; st r i ng must be big enough to receive the resuilt.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. Asaminimum, it should
print non-graphic charactersin octal or hexadecimal according to local custom, and break long text lines.

7.3 Variable-length Argument Lists

This section contains an implementation of aminimal version of pri nt f , to show how to write a
function that processes a variable-length argument list in a portable way. Since we are mainly interested
in the argument processing, m npri nt f will process the format string and arguments but will call the
real pri ntf todotheformat conversions.

The proper declaration for pri ntf is

int printf(char *fnt, ...)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (5 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

where the declaration . . . means that the number and types of these arguments may vary. The
declaration. . . can only appear at the end of an argument list. Our m npri nt f isdeclared as

void mnprintf(char *fnt, ...)
since we will not return the character count that pri nt f does.

The tricky bitishow m npri nt f walksaong the argument list when the list doesn't even have a name.
The standard header <st dar g. h> contains a set of macro definitions that define how to step through an
argument list. The implementation of this header will vary from machine to machine, but the interface it
presentsis uniform.

Thetypeva | i st isusedto declare avariable that will refer to each argument in turn; inm npri nt f,
thisvariableis called ap, for ““argument pointer.” Themacrova_st art initializes ap to point to the
first unnamed argument. It must be called once before ap is used. There must be at |east one named
argument; the final named argument isused by va_st art to get started.

Each call of va_ar g returns one argument and steps ap to the next; va_ar g uses atype nameto
determine what type to return and how big a step to take. Finally, va_end does whatever cleanup is
necessary. It must be called before the program returns.

These properties form the basis of our simplified pri nt f :

#i ncl ude <stdarg. h>

[* mnprintf: mnimal printf wth variable argunent list */
void mnprintf(char *fm, ...)
{
va list ap; /* points to each unnaned arg in turn */
char *p, *sval;
Int ival;
doubl e dval;

va start(ap, fnm); /* make ap point to 1st unnaned arg */
for (p=fm; *p; p+t+) {
if ("pI="%) {
put char (*p);
conti nue;
}
swtch (*++p) {
case 'd':
Ival = va_arg(ap, int);

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (6 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

printf("%", ival);
br eak;
case 'f':
dval = va_arg(ap, double);
printf("%", dval);
br eak;

s':
for (sval = va_ arg(ap, char *); *sval; sval ++)
put char (*sval);
br eak;
def aul t:
put char (*p);
br eak;

case

}
}

va_end(ap); /* clean up when done */

}

Exercise 7-3. Revisem npri nt f to handle more of the other facilitiesof pri nt f .

7.4 Formatted Input - Scanf

The function scanf istheinput analog of pri nt f, providing many of the same conversion facilitiesin
the opposite direction.

I nt scanf(char *format, ...)

scanf reads characters from the standard input, interprets them according to the specification in

f or mat , and stores the results through the remaining arguments. The format argument is described
below; the other arguments, each of which must be a pointer, indicate where the corresponding converted
input should be stored. Aswith pri nt f , this section is a summary of the most useful features, not an
exhaustive list.

scanf stopswhen it exhaustsits format string, or when some input fails to match the control
specification. It returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many items were found. On the end of file, EOF is returned; note that thisis
different from O, which means that the next input character does not match the first specification in the
format string. The next call to scanf resumes searching immediately after the last character already
converted.

Thereisaso afunction sscanf that reads from a string instead of the standard input:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (7 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

I nt sscanf(char *string, char *format, argl, arg2, ...)

It scansthe st r i ng according to the format in f or mat and stores the resulting values through ar g1,
ar g2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to control conversion of
input. The format string may contain:

. Blanks or tabs, which are not ignored.

. Ordinary characters (not %), which are expected to match the next non-white space character of
the input stream.

. Conversion specifications, consisting of the character % an optiona assignment suppression
character * , an optional number specifying a maximum field width, an optional h, | or L
indicating the width of the target, and a conversion character.

A conversion specification directs the conversion of the next input field. Normally the result is placesin
the variable pointed to by the corresponding argument. If assignment suppression isindicated by the *
character, however, the input field is skipped; no assignment is made. An input field is defined as a string
of non-white space characters; it extends either to the next white space character or until the field width,
Is specified, is exhausted. Thisimpliesthat scanf will read across boundaries to find itsinput, since
newlines are white space. (White space characters are blank, tab, newline, carriage return, vertical tab,
and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding argument must
be a pointer, as required by the call-by-value semantics of C. Conversion characters are shown in Table
7.2.

Table 7.2: Basic Scanf Conversions

Character Input Data; Argument type

d decimal integer; i nt *

i integer; i nt *. Theinteger may bein octal (leading 0) or hexadecimal (Ileading Ox or
0X).

o] octal integer (with or without leading zero); i nt *

u unsigned decimal integer; unsi gned i nt *

X hexadecimal integer (with or without leading Ox or 0X); i nt *

characters, char *. The next input characters (default 1) are placed at the indicated spot.
C The normal skip-over white space is suppressed; to read the next non-white space
character, use %d. s

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (8 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

S character string (not quoted); char *, pointing to an array of characters long enough for
the string and aterminating ' \ 0" that will be added.
o f floating-point number with optional sign, optional decimal point and optional exponent;
9 i oat *
% literal %; no assignment is made.

The conversion charactersd, i , 0, u, and x may be preceded by h to indicate that a pointer to shor t
rather thani nt appearsin the argument list, or by | (letter ell) to indicate that a pointer to | ong appears
in the argument list.

Asafirst example, the rudimentary calculator of Chapter 4 can be written with scanf to do the input
conversion:

#i ncl ude <stdi o. h>

main() /* rudinentary cal culator */

{
doubl e sum v;
sum = O;
while (scanf("%f", &) == 1)
printf("\t%2f\n", sum += v);
return O;
}

Suppose we want to read input lines that contain dates of the form
25 Dec 1988
Thescanf statementis

I nt day, year;
char nont hnane[20] ;

scanf ("% % %", &day, nonthnane, &year);
No & is used with nont hnane, since an array name is a pointer.

Literal characters can appear inthe scanf format string; they must match the same charactersin the
input. So we could read dates of the form nm1 dd/ yy withthe scanf statement:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (9 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

I nt day, nonth, year;

scanf ("%l/ %/ %d", &nonth, &day, &year);

scanf ignores blanks and tabs in its format string. Furthermore, it skips over white space (blanks, tabs,
newlines, etc.) asit looks for input values. To read input whose format is not fixed, it is often best to read
aline at atime, then pick it apart with scanf . For example, suppose we want to read lines that might
contain adate in either of the forms above. Then we could write

while (getline(line, sizeof(line)) > 0) {

I f (sscanf(line, "% % %", &day, nonthnane, &year) == 3)
printf("valid: %\n", line); /* 25 Dec 1988 form */
else if (sscanf(line, "%/ %/ %", &onth, &day, &year) == 3)

printf("valid: %\n", line); /* mdd/yy form?*/
el se
printf("invalid: %\n", line); /* invalid form?*/

}

Calstoscanf can be mixed with callsto other input functions. The next call to any input function will
begin by reading the first character not read by scanf .

A final warning: the argumentsto scanf and sscanf must be pointers. By far the most common error
Iswriting

scanf (" %", n);
instead of
scanf ("%", &n);
This error is not generally detected at compile time.
Exercise 7-4. Write a private version of scanf analogousto m npri nt f from the previous section.

Exer cise 5-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or sscanf to do the input
and number conversion.

7.5 File Access

The examples so far have all read the standard input and written the standard output, which are
automatically defined for a program by the local operating system.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (10 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

The next step isto write a program that accesses afile that is not already connected to the program. One
program that illustrates the need for such operationsis cat , which concatenates a set of named filesinto
the standard output. cat isused for printing files on the screen, and as a general-purpose input collector
for programs that do not have the capability of accessing files by name. For example, the command

cat x.c y.c
prints the contents of thefilesx. ¢ andy. ¢ (and nothing else) on the standard output.

The question is how to arrange for the named files to be read - that is, how to connect the external names
that a user thinks of to the statements that read the data.

Therules are simple. Before it can be read or written, afile has to be opened by the library function

f open. f open takes an external namelikex. ¢ ory. c, does some housekeeping and negotiation with
the operating system (details of which needn't concern us), and returns a pointer to be used in subsequent
reads or writes of thefile.

This pointer, called the file pointer, points to a structure that contains information about the file, such as
the location of a buffer, the current character position in the buffer, whether the file is being read or
written, and whether errors or end of file have occurred. Users don't need to know the details, because the
definitions obtained from <st di 0. h> include a structure declaration called FI LE. The only declaration
needed for afile pointer is exemplified by

FI LE *fp;
FI LE *fopen(char *nanme, char *node);

Thissaysthat f p isapointer to aFl LE, and f open returnsapointer to aFl LE. Noticethat FI LEisa

type name, likei nt , not astructure tag; it is defined with at ypedef . (Details of how f open can be
implemented on the UNIX system are given in Section 8.5.)

Thecal tof open inaprogramis

fp = fopen(nane, node);
Thefirst argument of f open isacharacter string containing the name of the file. The second argument
Is the mode, also a character string, which indicates how one intends to use the file. Allowable modes

includeread (" r "), write (" wW"), and append (" a"). Some systems distinguish between text and binary
files; for the latter, a" b" must be appended to the mode string.

If afilethat does not exist is opened for writing or appending, it is created if possible. Opening an
existing file for writing causes the old contents to be discarded, while opening for appending preserves

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (11 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

them. Trying to read afile that does not exist is an error, and there may be other causes of error as well,
like trying to read a file when you don't have permission. If thereis any error, f open will return NULL.
(The error can be identified more precisely; see the discussion of error-handling functions at the end of
Section 1 in Appendix B.)

The next thing needed is away to read or write the file once it is open. get ¢ returns the next character
from afile; it needs the file pointer to tell it which file.

I nt getc(FILE *fp)
get c returnsthe next character from the stream referred to by f p; it returns EOF for end of file or error.
put c isan output function:

int putc(int ¢, FILE *fp)

put c writesthe character ¢ to thefilef p and returns the character written, or EOF if an error occurs.
Likeget char and put char, get ¢ and put ¢ may be macrosinstead of functions.

When a C program is started, the operating system environment is responsible for opening three files and
providing pointers for them. These files are the standard input, the standard output, and the standard
error; the corresponding file pointers are called st di n, st dout , and st der r , and are declared in

<st di 0. h>. Normally st di n isconnected to the keyboard and st dout and st der r are connected
to the screen, but st di n and st dout may be redirected to files or pipes as described in Section 7.1.

get char and put char canbedefined intermsof get ¢, put ¢, st di n, and st dout asfollows:

#defi ne getchar () getc(stdin)
#defi ne putchar(c) putc((c), stdout)

For formatted input or output of files, the functionsf scanf andf pri nt f may be used. These are
identical toscanf and pri nt f, except that the first argument is afile pointer that specifiesthefileto
be read or written; the format string is the second argument.

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

With these preliminaries out of the way, we are now in a position to write the program cat to
concatenate files. The design is one that has been found convenient for many programs. If there are
command-line arguments, they are interpreted as filenames, and processed in order. If there are no
arguments, the standard input is processed.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (12 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

#i ncl ude <stdi o. h>

/[* cat: concatenate files, version 1 */
mai n(int argc, char *argv[])
{

FILE *fp;

void filecopy(FILE *, FILE *)

If (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
whi l e(--argc > 0)
I f ((fp = fopen(*++argv, "r")) == NULL) {
printf("cat: can't open %\n, *argv);
return 1;
} else {
filecopy(fp, stdout);
fclose(fp);
}

return O;

/* filecopy: <copy fileifp to file ofp */
void filecopy(FILE *ifp, FILE *of p)

{ .
I nt c;
while ((c = getc(ifp)) !'= EOF)
putc(c, ofp);
}

Thefile pointersst di n and st dout are objects of type FI LE *. They are constants, however, not
variables, so it is not possible to assign to them.

The function

int fclose(FlILE *fp)
istheinverse of f open, it breaks the connection between the file pointer and the external name that was
established by f open, freeing the file pointer for another file. Since most operating systems have some
limit on the number of files that a program may have open simultaneousdly, it's a good ideato free the file
pointers when they are no longer needed, aswedid in cat . Thereis also another reason for f cl ose on

an output file - it flushes the buffer in which put c¢ iscollecting output. f cl ose is called automatically

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (13 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

for each open file when a program terminates normally. (You can close st di n and st dout if they are
not needed. They can also be reassigned by the library function f r eopen.)

7.6 Error Handling - Stderr and Exit

The treatment of errorsincat isnot idea. Thetroubleisthat if one of the files can't be accessed for
some reason, the diagnostic is printed at the end of the concatenated output. That might be acceptable if
the output is going to a screen, but not if it's going into afile or into another program via a pipeline.

To handle this situation better, a second output stream, called st der r , isassigned to a program in the
same way that st di n and st dout are. Output written on st der r normally appears on the screen even
iIf the standard output is redirected.

Let usrevisecat towriteits error messages on the standard error.

#i ncl ude <stdi o. h>

[* cat: concatenate files, version 2 */
mai n(i nt argc, char *argv[])

{
FI LE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[0]; [/* program nane for errors */
If (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
while (--argc > 0)
If ((fp = fopen(*++argv, "r")) == NULL) {
fprintf(stderr, "%: can't open %\n",
prog, *argv);
exit(l);
} else {
filecopy(fp, stdout);
fcl ose(fp);
}
If (ferror(stdout)) {
fprintf(stderr, "%: error witing stdout\n", prog);
exit(2);
}
exit(0);
}

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (14 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

The program signals errors in two ways. First, the diagnostic output produced by f pri nt f goesto

st derr, soit findsitsway to the screen instead of disappearing down a pipeline or into an output file.
We included the program name, from ar gv|[0] , in the message, so if this program is used with others,
the source of an error isidentified.

Second, the program uses the standard library function exi t , which terminates program execution when
itiscaled. Theargument of exi t isavailable to whatever process called this one, so the success or
failure of the program can be tested by another program that uses this one as a sub-process.
Conventionally, areturn value of 0 signalsthat al iswell; non-zero values usually signal abnormal
situations. exi t callsf cl ose for each open output file, to flush out any buffered output.

Withinmai n, r et ur n expr isequivalent to exi t (expr). exi t hasthe advantage that it can be called
from other functions, and that callsto it can be found with a pattern-searching program like those in
Chapter 5.

Thefunctionf er r or returns non-zero if an error occurred on the stream f p.

int ferror(FILE *fp)

Although output errors are rare, they do occur (for example, if adisk fills up), so a production program
should check this as well.

Thefunctionf eof (FI LE *) isanalogoustof er r or; it returns non-zero if end of file has occurred
on the specified file.

I nt feof (FILE *fp)

We have generally not worried about exit status in our small illustrative programs, but any serious
program should take care to return sensible, useful status values.

7.7 Line Input and Output

The standard library provides an input and output routine f get s that issimilar totheget | i ne
function that we have used in earlier chapters:

char *fgets(char *line, int nmaxline, FILE *fp)

f get s reads the next input line (including the newline) from file f p into the character array | i ne; at
most max| i ne- 1 characterswill beread. The resulting lineisterminated with' \ 0' . Normally f get s
returns| i ne; on end of fileor error it returns NULL. (Our get | i ne returnsthe line length, whichisa

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (15 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

more useful value; zero means end of file.)

For output, the function f put s writes a string (which need not contain a newline) to afile;
int fputs(char *line, FILE *fp)

It returns ECF if an error occurs, and non-negative otherwise.

Thelibrary functionsget s and put s aresimilar tof get s and f put s, but operate on st di n and
st dout . Confusingly, get s deletestheterminating' \ n' , and put s addsit.

To show that there is nothing special about functionslikef get s and f put s, here they are, copied from
the standard library on our system:

/* fgets: get at nost n chars fromiop */
char *fgets(char *s, int n, FILE *iop)

{

regi ster int c;

regi ster char *cs;

CS = s;

while (--n >0 & & (c = getc(iop)) !'= EOF)

if ((*cs++ =¢) == '\n")
br eak;

*¢cs = "\0';

return (¢ == ECF & cs == s) ? NULL : s;
}

/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)

{
i nt c;
while (c = *s++)
putc(c, iop);
return ferror(iop) ? EOF : O;
}

For no obvious reason, the standard specifies different return valuesfor f er r or andf put s.

It iseasy to implement our get | i ne fromf get s:

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (16 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

/* getline: read a line, return length */
int getline(char *line, int max)

{
i f (fgets(line, max, stdin) == NULL)
return O;
el se
return strlen(line);
}

Exercise 7-6. Write a program to compare two files, printing the first line where they differ.
Exercise 7-7. Modify the pattern finding program of Chapter 5 to take itsinput from a set of named files
or, if no files are named as arguments, from the standard input. Should the file name be printed when a

matching lineis found?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new page, with atitle and
arunning page count for each file.

7.8 Miscellaneous Functions

The standard library provides awide variety of functions. This section isabrief synopsis of the most
useful. More details and many other functions can be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functionsst r | en, strcpy, strcat,and st r cnp, foundin
<string. h>. Inthefollowing, s andt arechar *'s,andc andn arei nts.

strcat(s,t) concatenatet toend of s
strncat (s, t, n) concatenate n charactersof t toend of s
strcnp(s,t) return negative, zero, or positivefors < t,s ==t,s >t

strncnp(s,t,n) sameasstrcnp but only infirst n characters
strcpy(s,t) copyt tos

strncpy(s,t,n) copya mostn charactersof t tos

strlen(s) return length of s

strchr(s,c) return pointer to first c in's, or NULL if not present
strrchr(s,c) returnpointertolastc ins, or NULL if not present

http://freebooks.by.ru/view/CProgrammingLanguage/chapter?7.html (17 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

7.8.2 Character Class Testing and Conversion

Several functions from <ct ype. h> perform character tests and conversions. In the following, ¢ isan
| nt that can be represented asan unsi gned char or EOF. The function returnsi nt .

I sal pha(c) non-zeroif c isaphabetic, Oif not

I supper (c) non-zeroif c isupper case, O if not

I sl ower (c) non-zeroif c islower case, O if not

I sdi git(c) non-zeroif c isdigit, Oif not

I sal num(c) non-zeroifi sal pha(c) orisdigit(c),Oif not

I sspace(c) non-zeroif c isblank, tab, newline, return, formfeed, vertical tab
t oupper (c) returnc converted to upper case

t ol ower (¢) return c converted to lower case

7.8.3 Ungetc

The standard library provides arather restricted version of the function unget ch that we wrotein
Chapter 4; itiscaled unget c.

i nt ungetc(int c, FILE *fp)

pushes the character ¢ back onto file f p, and returns either ¢, or EOF for an error. Only one character of
pushback is guaranteed per file. unget ¢ may be used with any of the input functions like scanf ,
getc,orget char.

7.8.4 Command Execution

Thefunctionsyst en{ char *s) executesthe command contained in the character string s, then
resumes execution of the current program. The contents of s depend strongly on the local operating
system. As atrivial example, on UNIX systems, the statement

systen("date");

causes the program dat e to be run; it prints the date and time of day on the standard output. syst em
returns a system-dependent integer status from the command executed. In the UNIX system, the status
return is the value returned by exi t .

7.8.5 Storage Management

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (18 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output
The functionsmal | oc and cal | oc obtain blocks of memory dynamically.
void *mal | oc(size t n)
returns a pointer to n bytes of uninitialized storage, or NULL if the request cannot be satisfied.
void *calloc(size t n, size t size)

returns a pointer to enough free space for an array of n objects of the specified size, or NULL if the
request cannot be satisfied. The storageisinitialized to zero.

The pointer returned by mal | oc or cal | oc hasthe proper alignment for the object in question, but it
must be cast into the appropriate type, asin

int *ip;
ip =(int *) calloc(n, sizeof(int));
free(p) freesthe space pointed to by p, where p was originally obtained by acall tomal | oc or

cal | oc. There are no restrictions on the order in which space isfreed, but it is aghastly error to free
something not obtained by callingmal | oc or cal | oc.

It isalso an error to use something after it has been freed. A typical but incorrect piece of codeisthis
loop that frees items from allist:

for (p = head; p != NULL; p = p->next) /* WRONG */
free(p);

Theright way isto save whatever is needed before freeing:

for (p = head; p !'= NULL; p = q) {
q = p->next:
free(p);

}

Section 8.7 shows the implementation of a storage allocator like mal | oc, in which allocated blocks may
be freed in any order.

7.8.6 Mathematical Functions

There are more than twenty mathematical functions declared in <mat h. h>; here are some of the more

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (19 of 20) [9/6/2002 12:22:51]

Chapter 7 - Input and Output

frequently used. Each takes one or two doubl e arguments and returnsadoubl e.

si n(x) sine of x, X in radians

cos(x) cosine of X, x in radians

at an2(y, x) arctangent of y/x, in radians

exp(x) exponential function ex

| og(x) natural (base €) logarithm of x (x>0)

| 0g10(x) common (base 10) logarithm of x (x>0)
powm x,y) XY

sgrt (x) square root of x (x>0)

f abs(x) absolute value of x

7.8.7 Random Number generation

Thefunctionr and() computes a sequence of pseudo-random integers in the range zero to RAND _MAX,
which isdefinedin<st dl i b. h>. One way to produce random floating-point numbers greater than or
equal to zero but lessthan oneis

#define frand() ((double) rand() / (RAND MAX+1.0))

(If your library already provides afunction for floating-point random numbers, it islikely to have better
statistical properties than this one.)

Thefunction sr and(unsi gned) setsthe seed for r and. The portable implementation of r and and
sr and suggested by the standard appears in Section 2.7.

Exercise 7-9. Functions likei supper can be implemented to save space or to save time. Explore both
possibilities.

Back to Chapter 6 -- Index -- Chapter 8

http://freebooks.by.ru/view/CProgrammingLanguage/chapter7.html (20 of 20) [9/6/2002 12:22:51]

Chapter 8 - The UNIX System Interface

Back to Chapter 7 -- Index -- Appendix A

Chapter 8 - The UNIX System Interface

The UNIX operating system providesits services through a set of system calls, which are in effect functions within the operating system that may be called by user
programs. This chapter describes how to use some of the most important system calls from C programs. If you use UNIX, this should be directly helpful, for it is
sometimes necessary to employ system calls for maximum efficiency, or to access some facility that is not in the library. Even if you use C on a different operating
system, however, you should be able to glean insight into C programming from studying these examples; although details vary, similar code will be found on any
system. Sincethe ANSI C library isin many cases modeled on UNIX facilities, this code may help your understanding of the library as well.

This chapter is divided into three mgjor parts. input/output, file system, and storage allocation. The first two parts assume a modest familiarity with the externa
characteristics of UNIX systems.

Chapter 7 was concerned with an input/output interface that is uniform across operating systems. On any particular system the routines of the standard library have to

be written in terms of the facilities provided by the host system. In the next few sections we will describe the UNIX system calls for input and output, and show how
parts of the standard library can be implemented with them.

8.1 File Descriptors

Inthe UNIX operating system, all input and output is done by reading or writing files, because al peripheral devices, even keyboard and screen, arefilesin thefile
system. This means that a single homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before you read and write afile, you must inform the system of your intent to do so, a process called opening thefile. If you are going to
write on afile it may aso be necessary to create it or to discard its previous contents. The system checks your right to do so (Does the file exist? Do you have
permission to accessit?) and if all iswell, returns to the program a small non-negative integer called afile descriptor. Whenever input or output is to be done on the
file, the file descriptor is used instead of the name to identify thefile. (A file descriptor is analogous to the file pointer used by the standard library, or to the file
handle of MS-DOS.) All information about an open file is maintained by the system; the user program refers to the file only by the file descriptor.

Since input and output involving keyboard and screen is so common, special arrangements exist to make this convenient. When the command interpreter (the ““shell™)
runs a program, three files are open, with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error. If a program reads 0 and
writes 1 and 2, it can do input and output without worrying about opening files.

The user of aprogram can redirect 1/0 to and from files with < and >:

prog <infile >outfile

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (1 of 21) [9/6/2002 12:23:05]

Chapter 8 - The UNIX System Interface

In this case, the shell changes the default assignments for the file descriptors 0 and 1 to the named files. Normally file descriptor 2 remains attached to the screen, so
error messages can go there. Similar observations hold for input or output associated with apipe. In al cases, the file assignments are changed by the shell, not by the
program. The program does not know where its input comes from nor where its output goes, so long asit usesfile O for input and 1 and 2 for output.

8.2 Low Level I/O - Read and Write

Input and output usesther ead andwr i t e system calls, which are accessed from C programs through two functions called r ead and wr i t e. For both, the first
argument is afile descriptor. The second argument is a character array in your program where the datais to go to or to come from. The third argument is the number
is the number of bytesto be transferred.

int nread = read(int fd, char *buf, int n);
int nwitten = wite(int fd, char *buf, int n);

Each call returns a count of the number of bytes transferred. On reading, the number of bytes returned may be less than the number requested. A return value of zero

bytesimplies end of file, and - 1 indicates an error of some sort. For writing, the return value is the number of bytes written; an error has occurred if thisisn't equal to
the number requested.

Any number of bytes can be read or written in one call. The most common values are 1, which means one character at atime (" unbuffered"), and a number like 1024
or 4096 that corresponds to a physical block size on a peripheral device. Larger sizes will be more efficient because fewer system calls will be made.

Putting these facts together, we can write a simple program to copy its input to its output, the equivalent of the file copying program written for Chapter 1. This
program will copy anything to anything, since the input and output can be redirected to any file or device.

#i ncl ude "syscalls. h"

mai n() /* copy input to output */

{
char buf [BUFSI Z] ;
int n;
while ((n = read(0, buf, BUFSIZ)) > 0)
wite(l, buf, n);
return O;
}

We have collected function prototypes for the system callsinto afile called syscal | s. h so we can include it in the programs of this chapter. This hameis not
standard, however.

The parameter BUFSI Z isaso definedinsyscal | s. h; itsvalueisagood size for the local system. If the file size is not amultiple of BUFSI Z, somer ead will
return asmaller number of bytesto be written by wr i t e; the next call tor ead after that will return zero.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (2 of 21) [9/6/2002 12:23:05]

Chapter 8 - The UNIX System Interface

Itisinstructiveto seehow r ead and wr i t e can be used to construct higher-level routineslike get char , put char , etc. For example, hereisaversion of
get char that does unbuffered input, by reading the standard input one character at atime.

#i ncl ude "syscalls. h"

/* getchar: wunbuffered single character input */
i nt getchar(void)
{

char c;

return (read(0, &c, 1) == 1) ? (unsigned char) c : EOF;
}

¢ must beachar , becauser ead needs a character pointer. Casting ¢ tounsi gned char inthe return statement eliminates any problem of sign extension.
The second version of get char doesinput in big chunks, and hands out the characters one at atime.

#i ncl ude "syscalls.h"

/* getchar: sinple buffered version */
i nt getchar(void)

{
static char buf[BUFSI Z];
static char *bufp = buf;
static int n = 0;
if (n==20) { /* buffer is enpty */
n = read(0, buf, sizeof buf);
buf p = buf;
}
return (--n >= 0) ? (unsigned char) *bufp++ : ECF;
}

If these versions of get char were to be compiled with <st di 0. h> included, it would be necessary to #undef the nameget char in caseit isimplemented asa
macro.

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error, you must explicitly open filesin order to read or write them. There are two system calls for this, open and
creat [sc].

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (3 of 21) [9/6/2002 12:23:05]

Chapter 8 - The UNIX System Interface
open israther likethe f open discussed in Chapter 7, except that instead of returning afile pointer, it returns a file descriptor, which isjust ani nt . open returns -
1 if any error occurs.

#i ncl ude <fcntl. h>

int fd,
int open(char *nanme, int flags, int perns);

fd = open(nane, flags, perns);

Aswith f open, the name argument is a character string containing the filename. The second argument, f | ags, isani nt that specifies how thefileisto be
opened; the main values are

O _RDONLY open for reading only
O _VIRONLY open for writing only
O RDWR open for both reading and writing

These constants are defined in <f cnt | . h>on System V UNIX systems, andin<sys/ fi | e. h> on Berkeley (BSD) versions.
To open an existing file for reading,
fd = open(nanme, O RDONLY, 0);
The per ns argument is always zero for the uses of open that we will discuss.
It isan error to try to open afile that does not exist. The system call cr eat isprovided to create new files, or to re-write old ones.

int creat(char *name, int perns);

fd = creat(name, permns);

returns afile descriptor if it was able to create thefile, and - 1 if not. If thefile already exists, cr eat will truncate it to zero length, thereby discarding its previous
contents; it isnot an error to cr eat afilethat already exists.

If the file does not aready exist, cr eat createsit with the permissions specified by the per s argument. In the UNIX file system, there are nine bits of permission
information associated with afile that control read, write and execute access for the owner of thefile, for the owner's group, and for all others. Thus athree-digit octal
number is convenient for specifying the permissions. For example, 0775 specifies read, write and execute permission for the owner, and read and execute permission
for the group and everyone else.

Toillustrate, hereis asimplified version of the UNIX program cp, which copies one file to another. Our version copies only onefile, it does not permit the second
argument to be adirectory, and it invents permissions instead of copying them.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (4 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

#i ncl ude <stdi o. h>

#include <fentl. h>

#i ncl ude "syscalls.h"

#def i ne PERMS 0666 /* RWfor owner, group, others */

void error(char *, ...);

/* cp: copy fl to f2 */
mai n(int argc, char *argv[])

{
int f1, 2, n;
char buf [BUFSI Z] ;
if (argc '= 3)
error("Usage: cp fromto");
if ((f1 = open(argv[1l], O RDONLY, 0)) == -1)
error("cp: can't open %", argv[1]);
if ((f2 = creat(argv[2], PERMS)) == -1)
error("cp: can't create %, node %®30",
argv[2], PERM);
while ((n = read(f1, buf, BUFSIZ)) > 0)
if (wite(f2, buf, n) '=n)
error("cp: wite error on file %", argv[2]);
return O,
}

This program creates the output file with fixed permissions of 0666. With the st at system call, described in Section 8.6, we can determine the mode of an existing
file and thus give the same mode to the copy.

Notice that the function er r or is called with variable argument lists much like pr i nt f . The implementation of error illustrates how to use another member of the
printf family. The standard library function vpri nt f islikepri nt f except that the variable argument list is replaced by a single argument that has been
initialized by callingtheva_st art macro. Smilarly, vf printf andvspri ntf matchfprintf andsprintf.

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

/* error: print an error nessage and die */
void error(char *fnt, ...)

{

va_list args;

va_start(args, fm);
http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (5 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

fprintf(stderr, "error: ");
vprintf(stderr, fnt, args);
fprintf(stderr, "\n");
va_end(args);
exit(1);

}

Thereisalimit (often about 20) on the number of files that a program may open simultaneously. Accordingly, any program that intends to process many files must be
prepared to re-use file descriptors. The function cl ose(i nt f d) breaksthe connection between afile descriptor and an open file, and frees the file descriptor for
use with some other file; it correspondsto f cl ose in the standard library except that there is no buffer to flush. Termination of a program viaexi t or return from
the main program closes all open files.

Thefunctionunl i nk(char *nane) removesthefile name from the file system. It corresponds to the standard library functionr enove.

Exercise 8-1. Rewrite the program cat from Chapter 7 usingr ead, wri t e, open, and cl ose instead of their standard library equivalents. Perform experiments
to determine the rel ative speeds of the two versions.

8.4 Random Access - Lseek

Input and output are normally sequential: eachr ead or wr i t e takes place at a position in the file right after the previous one. When necessary, however, afile can
be read or written in any arbitrary order. The system call | seek provides away to move around in afile without reading or writing any data:

long | seek(int fd, long offset, int origin);

sets the current position in the file whose descriptor isf d to of f set , which istaken relative to the location specified by or i gi n. Subsequent reading or writing
will begin at that position. or i gi n canbe0, 1, or 2 to specify that of f set isto be measured from the beginning, from the current position, or from the end of the
file respectively. For example, to append to afile (the redirection >> in the UNIX shell, or " a" for f open), seek to the end before writing:

| seek(fd, OL, 2);
To get back to the beginning (" rewind"),
| seek(fd, OL, 0);
Notice the OL argument; it could also bewrittenas(1 ong) 0 orjustasO if | seek isproperly declared.

With | seek, itispossibleto treat files more or less like arrays, at the price of slower access. For example, the following function reads any number of bytes from
any arbitrary placein afile. It returns the number read, or - 1 on error.

#i ncl ude "syscalls. h"

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (6 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX

System Interface

read n bytes from position pos */

int get(int fd, long pos, char *buf, int n)

if (lseek(fd, pos, 0) >=0) /* get to pos */

/*get :
{

el se
}

Thereturn value from | seek isalong that gives the new position in thefile, or - 1 if an error occurs. The standard library function f seek issimilar to| seek
except that the first argument isaFl LE * and the return is non-zero if an error occurred.

8.5 Example - An implementation of Fopen and Getc

Let usillustrate how some of these pieces fit together by showing an implementation of the standard library routinesf open and get c.

Recall that files in the standard library are described by file pointers rather than file descriptors. A file pointer is a pointer to a structure that contains several pieces of
information about the file: a pointer to a buffer, so the file can be read in large chunks; a count of the number of characters |eft in the buffer; a pointer to the next
character position in the buffer; the file descriptor; and flags describing read/write mode, error status, etc.

The data structure that describes afileis contained in <st di 0. h>, which must be included (by #i ncl ude) in any source file that uses routines from the standard
input/output library. It isaso included by functionsin that library. In the following excerpt from atypical <st di 0. h>, namesthat are intended for use only by
functions of the library begin with an underscore so they are less likely to collide with names in a user's program. This convention is used by al standard library

routines.

#def i ne
#def i ne
#defi ne
#def i ne

t ypedef
i nt
char
char
i nt
i nt
} FILE;

return read(fd, buf, n);

return -1;

NUL L 0

ECF (-1)

BUFSI Z 1024

OPEN_MAX 20 /* max #files open at once */

struct _iobuf {

cnt; /* characters left */

ptr; / next character position */
pbase; / |l ocation of buffer */
flag; /* node of file access */

fd; /* file descriptor */

extern FILE _iob[OPEN MAX] ;

#def i ne
#defi ne

stdin (& iob[0])
stdout (&_.iob[1])

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (7 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

#define stderr (&_.iob[2])

enum _flags {
_READ = 01, /*
_WRITE = 02, /*
_UNBUF = 04, /*
_ECOF = 010, [/*
_ERR =020 /*

}s
int fillbuf(FILE *);

file open for reading */

file open for witing */

file is unbuffered */

ECF has occurred on this file */
error occurred on this file */

int _flushbuf(int, FILE *);

#def i ne feof (p) ((p)->flag & _ECF) !
#define ferror(p) ((p)->flag & _ERR) !

0)
0)

#define fileno(p) ((p)->fd)

#define getc(p) (--(p)->cnt >= 0\

? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (--(p)->cnt >= 0\

? *(p)->ptr++ = (x) : _flushbuf((x),p))

#defi ne getchar () getc(stdin)
#define putcher(x) putc((x), stdout)

The get ¢ macro normally decrements the count, advances the pointer, and returns the character. (Recall that along #def i ne is continued with a backslash.) If the
count goes negative, however, get ¢ calsthefunction _fi | | buf to replenish the buffer, re-initialize the structure contents, and return a character. The characters
arereturned unsi gned, which ensures that all characters will be positive.

Although we will not discuss any details, we have included the definition of put ¢ to show that it operates in much the same way as get ¢, calling afunction
_fl ushbuf whenitsbuffer isfull. We have also included macros for accessing the error and end-of-file status and the file descriptor.

The function f open can now be written. Most of f open is concerned with getting the file opened and positioned at the right place, and setting the flag bitsto
indicate the proper state. f open does not allocate any buffer space; thisisdoneby fi | | buf whenthefileisfirst read.

#i nclude <fcntl. h>
#i ncl ude "syscalls. h"

#defi ne PERMS 0666 /* RWfor owner, group, others */

FI LE *fopen(char *nane,
{

int fd;

FI LE *fp;

char *node)

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (8 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

if (*node !'="r" && *node !'='WwW && *node !'="a")
return NULL;
for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
if ((fp->flag & (_READ | _MRITE)) == 0)
br eak; /* found free slot */

if (fp >= _iob + OPEN_MAX) /* no free slots */
return NULL;

if (*node == "W)
fd = creat (nane, PERM5);
else if (*nmode == "a') {
if ((fd = open(nanme, O WRONLY, 0)) == -1)
fd = creat (nane, PERMS);
| seek(fd, OL, 2);

} else
fd = open(nane, O _RDONLY, 0);

if (fd == -1) /* couldn't access nane */
return NULL,;

fp->fd = fd;

fp->cnt = 0;

f p- >base = NULL,;

fp->flag = (*nobde == 'r') ? READ : WRITE;

return fp;

}

Thisversion of f open does not handle al of the access mode possibilities of the standard, though adding them would not take much code. In particular, our f open
does not recognize the “"b" that signals binary access, since that is meaningless on UNIX systems, nor the *"+" that permits both reading and writing.

Thefirst call to get ¢ for aparticular file finds a count of zero, which forcesacall of _fi | | buf.If _fill buf findsthat thefileisnot open for reading, it returns
ECF immediately. Otherwise, it triesto allocate a buffer (if reading isto be buffered).

Once the buffer isestablished, _fi |l | buf calsread tofill it, sets the count and pointers, and returns the character at the beginning of the buffer. Subsequent calls
to_fill buf will find abuffer allocated.

#i ncl ude "syscalls. h"

/* fillbuf: allocate and fill input buffer */
int _fillbuf(FILE *fp)
{

i nt bufsize;

if ((fp->flag& READ| _EOF ERR)) != _READ)
http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (9 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

return EOCF;
bufsize = (fp->flag & _UNBUF) ? 1 : BUFSI Z
if (fp->base == NULL) /* no buffer yet */
if ((fp->base = (char *) malloc(bufsize)) == NULL)
return ECF; [* can't get buffer */
fp->ptr = fp->base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {
if (fp->cnt == -1)
fp->flag | = _ECF;
el se
fp->flag | = _ERR;
fp->cnt = 0;
return EOCF;

}

return (unsigned char) *fp->ptr++;

}

The only remaining loose end is how everything gets started. The array _i ob must be defined and initialized for st di n, st dout and st derr:
FILE _iob[OPEN MAX] = { /* stdin, stdout, stderr */
{ 0, (char *) 0, (char *) 0, _READ, 0 },
{ 0, (char *) 0, (char *) 0, _"WRITE, 1},
{ 0, (char *) 0, (char *) 0, WRITE, | _UNBUF, 2}
3
Theinitialization of thef | ag part of the structure showsthat st di n isto beread, st dout isto bewritten, and st der r isto be written unbuffered.
Exercise 8-2. Rewritef openand _fi | | buf with fieldsinstead of explicit bit operations. Compare code size and execution speed.
Exercise 8-3. Design and write_f | ushbuf ,ffl ush,andf cl ose.
Exercise 8-4. The standard library function

int fseek(FILE *fp, long offset, int origin)

isidentical to| seek except that f p isafile pointer instead of afile descriptor and return valueisani nt status, not a position. Writef seek. Make sure that your
f seek coordinates properly with the buffering done for the other functions of the library.

8.6 Example - Listing Directories

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (10 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

A different kind of file system interaction is sometimes called for - determining information about afile, not what it contains. A directory-listing program such as the
UNIX command | s isan example - it prints the names of filesin a directory, and, optionally, other information, such as sizes, permissions, and so on. The MS-DOS
di r command is analogous.

Since aUNIX directory isjust afile, | s need only read it to retrieve the filenames. But is is necessary to use a system call to access other information about afile,
such asits size. On other systems, a system call may be needed even to access filenames; thisis the case on MS-DOS for instance. What we want is provide access to
theinformation in arelatively system-independent way, even though the implementation may be highly system-dependent.

We will illustrate some of this by writing aprogram caled f si ze. f si ze isaspecia form of | s that prints the sizes of al files named in its commandline
argument list. If one of thefilesisadirectory, f si ze appliesitself recursively to that directory. If there are no arguments at all, it processes the current directory.

Let us begin with a short review of UNIX file system structure. A directory isafilethat contains alist of filenames and some indication of where they are located.
The ““location” is an index into another table called the ““inode list." The inode for afile is where all information about the file except its nameis kept. A directory
entry generally consists of only two items, the filename and an inode number.

Regrettably, the format and precise contents of a directory are not the same on all versions of the system. So we will divide the task into two pieces to try to isolate
the non-portable parts. The outer level defines astructure called aDi r ent and three routinesopendi r, r eaddi r, and cl osedi r to provide system-independent
access to the name and inode number in a directory entry. We will writef si ze with thisinterface. Then we will show how to implement these on systems that use
the same directory structure as Version 7 and System V UNIX; variants are | eft as exercises.

The Di r ent structure contains the inode number and the name. The maximum length of a filename component is NAME MAX, which is a system-dependent value.
opendi r returns a pointer to astructure called DI R, analogousto FI LE, whichisused by r eaddi r and cl osedi r. Thisinformation is collected into afile called
dirent. h.

#define NAME MAX 14 [/* longest filename conponent; */
/* system dependent */

typedef struct ({ /* portable directory entry */
| ong i no; /* inode nunber */
char name[NAME_MAX+1] ; [* name + '\0" term nator */
} Dirent;
typedef struct { /[* mnimal DR no buffering, etc. */
int fd; /* file descriptor for the directory */
Dirent d; /* the directory entry */
} DR

DI R *opendir(char *dirname);
Dirent *readdir(D R *dfd);
voi d closedir(D R *df d);

The system call st at takes afilename and returns all of the information in the inode for that file, or - 1 if thereisan error. That is,

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (11 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

char *nane;
struct stat stbuf;
int stat(char *, struct stat *);

st at (name, &stbuf);

fillsthe structure st buf with the inode information for the file name. The structure describing the value returned by st at isin<sys/ st at . h>, and typically
looks like this:

struct stat /* inode information returned by stat */

{
dev_t st _dev; /* device of inode */
i no_t st _ino; /* inode nunber */
short st _node; /* mode bits */
short st _nlink; /* nunber of links to file */
short st _uid; /* owners user id */
short st_gid; /* owners group id */
dev t st _rdev; /* for special files */
of f t st _si ze; /* file size in characters */
tine_t st _atine; /* time |ast accessed */
tinme_t st_ntine; /* time last nodified */
time_t st _ctineg; /[* time originally created */
1

Most of these values are explained by the comment fields. Thetypeslikedev_t andi no_t aredefinedin<sys/t ypes. h>, which must be included too.

The st _node entry contains a set of flags describing the file. The flag definitions are also included in <sys/ t ypes. h>; we need only the part that deals with file
type:

#define S | FMI 0160000 /* type of file: */
#define S IFDIR 0040000 /* directory */

#define S IFCHR 0020000 /* character special */
#define S _IFBLK 0060000 /* block special */
#define S IFREG 0010000 /* regular */

[* ... *]

Now we are ready to write the program f si ze. If the mode obtained from st at indicates that afile is not a directory, then the sizeis at hand and can be printed

directly. If the nameis adirectory, however, then we have to process that directory onefile at atime; it may in turn contain sub-directories, so the processis
recursive.

The main routine deals with command-line arguments; it hands each argument to the function f si ze.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (12 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "syscalls. h"

#i nclude <fcntl. h> /* flags for read and wite */
#i ncl ude <sys/types. h> /* typedefs */

#include <sys/stat.h> /* structure returned by stat */
#include "dirent.h"

void fsize(char *)

[* print file name */
mai n(int argc, char **argv)

{
if (argc == 1) [/* default: current directory */
fsize(".");
el se
while (--argc > 0)
fsize(*++argv);
return O;
}

Thefunction f si ze printsthe size of thefile. If thefileisadirectory, however, f si ze first callsdi r wal k to handle al thefilesin it. Note how the flag names
S | FMIand S_| FDI Rare used to decide if the file is a directory. Parenthesi zation matters, because the precedence of & is lower than that of ==.

int stat(char *, struct stat *);
void dirwal k(char *, void (*fcn)(char *));

[* fsize: print the nane of file "name" */
void fsize(char *nane)

{
struct stat stbuf;
if (stat(nane, &stbuf) == -1) {
fprintf(stderr, "fsize: can't access %\n", nane);
return;
}
if ((stbuf.st_nobde & S IFMIN == S | FDI R)
di rwal k(nane, fsize);
printf("9ld %\n", stbuf.st_size, nane);
}

The function di r wal k isagenera routine that applies a function to each file in adirectory. It opens the directory, loops through the filesinit, calling the function
on each, then closes the directory and returns. Sincef si ze calsdi r wal k on each directory, the two functions call each other recursively.
http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (13 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

#defi ne MAX_PATH 1024

/* dirwal k: apply fcn to all files in dir */
void dirwal k(char *dir, void (*fcn)(char *))

{
char name[MAX_PATH] ;
Dirent *dp;
DI R *dfd;
if ((dfd = opendir(dir)) == NULL) {
fprintf(stderr, "dirwal k: can't open %\n", dir);
return;
}
while ((dp = readdir(dfd)) !'= NULL) {
if (strcnp(dp->nane, ".") ==
|| strcnp(dp->nane, ".."))
conti nue; /* skip self and parent */
if (strlen(dir)+strlen(dp->nane)+2 > sizeof (nane))
fprintf(stderr, "dirwalk: name % % too |ong\n",
dir, dp->nane);
el se {
sprintf(nane, "%/ %", dir, dp->name);
(*fcn) (name);
}
}
cl osedir (dfd);
}

Each call tor eaddi r returns a pointer to information for the next file, or NULL when there are no files left. Each directory always contains entries for itself, called
", ", anditsparent," . . " ; these must be skipped, or the program will loop forever.

Down to thislast level, the code is independent of how directories are formatted. The next step isto present minimal versions of opendi r, r eaddi r, and
cl osedi r for aspecific system. The following routines are for Version 7 and System V UNIX systems; they use the directory information in the header
<sys/ di r. h>, which lookslikethis:

#i f ndef DI RSI Z
#define DIRSIZ 14

#endi f
struct direct { /* directory entry */
ino_t d_ino; /* inode nunber */

char d_nange[DIRSIZ]; [/* |long nane does not have '\0' */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (14 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

1
Some versions of the system permit much longer names and have a more complicated directory structure.

Thetypei no_t isat ypedef that describestheindex into the inode list. It happensto be unsi gned short on the systemswe use regularly, but thisis not the
sort of information to embed in a program,; it might be different on adifferent system, sothet ypedef isbetter. A complete set of ~"system" typesisfound in
<sys/types. h>.

opendi r opensthe directory, verifies that the file isadirectory (thistime by the system call f st at , whichislikest at except that it appliesto afile descriptor),
alocates adirectory structure, and records the information:

int fstat(int fd, struct stat *);

/* opendir: open a directory for readdir calls */
DI R *opendir(char *dirnane)

{
int fd;
struct stat stbuf;
DI R *dp;
if ((fd = open(dirname, O RDONLY, 0)) == -
|| fstat(fd, &stbuf) == -1
|| (stbuf.st_node & S IFMIN !'= S IFDR
|| (dp = (DIR *) mall oc(sizeof (DIR))) == NULL)
return NULL;
dp->fd = fd;
return dp;
}

cl osedi r closesthe directory file and frees the space:

/* closedir: <close directory opened by opendir */
voi d cl osedi r(DI R *dp)

{
if (dp) {
cl ose(dp->fd);
free(dp);
}
}

Finaly, r eaddi r usesr ead to read each directory entry. If adirectory slot is not currently in use (because a file has been removed), the inode number is zero, and
this position is skipped. Otherwise, the inode number and name are placed inast at i ¢ structure and a pointer to that is returned to the user. Each call overwrites the

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (15 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface
information from the previous one.

#include <sys/dir.h> /* local directory structure */

/* readdir: read directory entries in sequence */
Dirent *readdir(D R *dp)

{
struct direct dirbuf; /* local directory structure */
static Dirent d; /* return: portable structure */
while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
== si zeof (dirbuf)) {
if (dirbuf.d_ino == 0) /* slot not in use */
conti nue;
d.ino = dirbuf.d_ino;
strncpy(d. name, dirbuf.d _nanme, DI RSIZ);
d.nane[DIRSI Z] = '\0"; [/* ensure termnation */
return &d;
}
return NULL;
}

Although thef si ze program is rather specialized, it doesillustrate a couple of important ideas. First, many programs are not = system programs'; they merely use
information that is maintained by the operating system. For such programs, it is crucial that the representation of the information appear only in standard headers, and
that programs include those headers instead of embedding the declarations in themselves. The second observation is that with care it is possible to create an interface
to system-dependent objects that isitself relatively system-independent. The functions of the standard library are good examples.

Exercise 8-5. Maodify thef si ze program to print the other information contained in the inode entry.

8.7 Example - A Storage Allocator

In Chapter 5, we presented a vary limited stack-oriented storage allocator. The version that we will now writeis unrestricted. Callsto mal | oc and f r ee may occur

inany order; mal | oc calls upon the operating system to obtain more memory as necessary. These routines illustrate some of the considerations involved in writing
machine-dependent code in arelatively machine-independent way, and also show areal-life application of structures, unionsandt ypedef .

Rather than allocating from a compiled-in fixed-size array, mal | oc will request space from the operating system as needed. Since other activitiesin the program
may also request space without calling this allocator, the space that mal | oc manages may not be contiguous. Thusits free storage is kept as alist of free blocks.
Each block contains a size, a pointer to the next block, and the space itself. The blocks are kept in order of increasing storage address, and the last block (highest
address) pointsto the first.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (16 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

free list.

. s T . . — A —
111 111 111

....... nse nse nse N R Eo =

free, owned by malloc

1n use| in use, owned by malloc

........ not owned by malloc

When arequest is made, the free list is scanned until a big-enough block isfound. Thisalgorithmiscalled "first fit," by contrast with “"best fit," which looks for the
smallest block that will satisfy the request. If the block is exactly the size requested it is unlinked from the list and returned to the user. If the block istoo big, it is
split, and the proper amount is returned to the user while the residue remains on the free list. If no big-enough block is found, another large chunk is obtained by the
operating system and linked into the free list.

Freeing also causes a search of the freelist, to find the proper place to insert the block being freed. If the block being freed is adjacent to a free block on either side, it

is coalesced with it into asingle bigger block, so storage does not become too fragmented. Determining the adjacency is easy because the freelist ismaintained in
order of decreasing address.

One problem, which we alluded to in Chapter 5, is to ensure that the storage returned by mal | oc isaligned properly for the objects that will be stored in it. Although

machines vary, for each machine there is amost restrictive type: if the most restrictive type can be stored at a particular address, all other types may be also. On some
machines, the most restrictive typeisadoubl e; on others, i nt or | ong suffices.

A free block contains a pointer to the next block in the chain, arecord of the size of the block, and then the free space itself; the control information at the beginning
is called the "header.” To simplify alignment, all blocks are multiples of the header size, and the header is aligned properly. Thisis achieved by a union that contains
the desired header structure and an instance of the most restrictive alignment type, which we have arbitrarily made al ong:

typedef long Align; /* for alignnent to | ong boundary */

uni on header { /* bl ock header */

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (17 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

struct {
uni on header *ptr; /* next block if on free list */
unsi gned si ze; /* size of this block */

} s,

Align Xx; /* force alignnment of blocks */

}s

t ypedef uni on header Header;
The Al i gn field is never used; it just forces each header to be aligned on a worst-case boundary.

Inmal | oc, the requested size in characters is rounded up to the proper number of header-sized units; the block that will be allocated contains one more unit, for the
header itself, and thisis the value recorded in the si ze field of the header. The pointer returned by mal | oc points at the free space, not at the header itself. The user
can do anything with the space requested, but if anything is written outside of the allocated space the list islikely to be scrambled.

/r points to next free block

/ sl1ze

N~

A block returned by malloc

address returned to user

The sizefield is necessary because the blocks controlled by mal | oc need not be contiguous - it is not possible to compute sizes by pointer arithmetic.

Thevariablebase isused to get started. If f r eep isNULL, asitisat thefirst cal of mal | oc, then adegenerate freelist is created; it contains one block of size
zero, and pointsto itself. In any case, the freelist is then searched. The search for afree block of adequate size begins at the point (f r eep) where the last block was
found; this strategy helps keep the list homogeneous. If atoo-big block isfound, the tail end is returned to the user; in this way the header of the original needs only
to have its size adjusted. In al cases, the pointer returned to the user points to the free space within the block, which begins one unit beyond the header.

stati c Header base; /* enpty list to get started */
static Header *freep = NULL; /* start of free list */

/* malloc: general -purpose storage allocator */
void *mal | oc(unsi gned nbytes)

{
Header *p, *prevp;

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (18 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

Header *noreroce(unsigned);
unsi gned nunits;

nunits = (nbytes+si zeof (Header)-1)/si zeof (header) + 1;
if ((prevp = freep) == NULL) { /* no free list yet */
base.s.ptr = freeptr = prevptr = &base;
base.s.size = 0;

}
for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) { /* big enough */
if (p->s.size == nunits) [/* exactly */
prevp->s.ptr = p->s.ptr;
el se { /* allocate tail end */
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p+l);
}
if (p ==freep) [/* wapped around free list */
if ((p = norecore(nunits)) == NULL)
return NULL; [* none |eft */
}

}

The function nor ecor e obtains storage from the operating system. The details of how it does this vary from system to system. Since asking the system for memory
isacomparatively expensive operation. we don't want to do that on every call tomal | oc, so nor ecor e requests a least NALL OC units; this larger block will be
chopped up as needed. After setting the sizefield, mor ecor e inserts the additional memory into the arena by calling f r ee.

The UNIX system call sbr k(n) returnsa pointer to n more bytes of storage. sbr k returns - 1 if there was no space, even though NULL could have been a better
design. The- 1 must becast tochar * soit can be compared with the return value. Again, casts make the function relatively immune to the details of pointer
representation on different machines. Thereis still one assumption, however, that pointers to different blocks returned by sbr k can be meaningfully compared. This
is not guaranteed by the standard, which permits pointer comparisons only within an array. Thusthisversion of mal | oc is portable only among machines for which
general pointer comparison is meaningful.

#define NALLOC 1024 /* mninmum#units to request */

/* nmorecore: ask systemfor nore nenory */
static Header *norecore(unsigned nu)

{
char *cp, *sbrk(int);
Header *up;
http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (19 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

if (nu < NALLOQC)

nu = NALLOC;
cp = sbrk(nu * sizeof (Header));
if (cp == (char *) -1) /* no space at all */

return NULL;
up = (Header *) cp;
up->s. si ze = nu;
free((void *)(up+l));
return freep;

}

f r ee itself isthelast thing. It scansthe freelist, starting at f r eep, looking for the place to insert the free block. Thisis either between two existing blocks or at the
end of thelist. In any case, if the block being freed is adjacent to either neighbor, the adjacent blocks are combined. The only troubles are keeping the pointers
pointing to the right things and the sizes correct.

[* free: put block ap in free list */
void free(void *ap)

{
Header *bp, *p
bp = (Header *)ap - 1, /* point to block header */
for (p = freep; !(bp >p & bp < p->s.ptr); p = p->s.ptr)
if (p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break; /* freed block at start or end of arena */
if (bp + bp->size == p->s.ptr) { /[* join to upper nbr */
bp->s.size += p->s.ptr->s. si ze;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if (p + p->size == bp) { [* join to | ower nbr */
p->s.size += bp->s.si ze;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}

Although storage allocation is intrinsically machine-dependent, the code above illustrates how the machine dependencies can be controlled and confined to a very
small part of the program. The use of t ypedef and uni on handles aignment (given that sbr k supplies an appropriate pointer). Casts arrange that pointer
conversions are made explicit, and even cope with a badly-designed system interface. Even though the details here are related to storage allocation, the genera
approach is applicable to other situations as well.

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (20 of 21) [9/6/2002 12:23:06]

Chapter 8 - The UNIX System Interface

Exercise 8-6. The standard library functioncal | oc(n, si ze) returns a pointer to n objects of sizesi ze, with the storage initialized to zero. Writecal | oc, by
caling mal | oc or by modifying it.

Exercise 8-7. mal | oc accepts a size request without checking its plausibility; f r ee believesthat the block it is asked to free contains avalid size field. Improve
these routines so they make more pains with error checking.

Exercise 8-8. Writearoutine bf r ee(p, n) that will free any arbitrary block p of n charactersinto the free list maintained by mal | oc and f r ee. By using
bf r ee, auser can add a static or external array to the freelist at any time.

Back to Chapter 7 -- Index -- Appendix A

http://freebooks.by.ru/view/CProgrammingLanguage/chapter8.html (21 of 21) [9/6/2002 12:23:06]

Appendix A - Reference Manual

Back to Chapter 8 -- Index -- Appendix B

Appendix A - Reference Manual

A.l Introduction

This manual describes the C language specified by the draft submitted to ANSI on 31 October, 1988, for
approval as “American Standard for Information Systems - programming Language C, X3.159-1989."
The manual is an interpretation of the proposed standard, not the standard itself, although care has been
taken to make it areliable guide to the language.

For the most part, this document follows the broad outline of the standard, which in turn follows that of
the first edition of this book, although the organization differsin detail. Except for renaming afew
productions, and not formalizing the definitions of the lexical tokens or the preprocessor, the grammar
given here for the language proper is equivalent to that of the standard.

Throughout this manual, commentary material isindented and written in smaller type, asthisis. Most often these
comments highlight ways in which ANSI Standard C differs from the language defined by the first edition of this
book, or from refinements subsequently introduced in various compilers.

A.2 Lexical Conventions

A program consists of one or more translation units stored in files. It istrandlated in several phases,
which are described in Par.A.12. Thefirst phases do low-level lexical transformations, carry out

directives introduced by the lines beginning with the # character, and perform macro definition and
expansion. When the preprocessing of Par.A.12 is complete, the program has been reduced to a sequence
of tokens.

A.2.1 Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds and comments as described below
(collectively, ““white space”) are ignored except as they separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (1 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

If the input stream has been separated into tokens up to a given character, the next token is the longest
string of characters that could constitute a token.

A.2.2 Comments

The characters/ * introduce a comment, which terminates with the characters* / . Comments do not
nest, and they do not occur within a string or character literals.

A.2.3 Ildentifiers

Anidentifier is a sequence of letters and digits. The first character must be aletter; the underscore
counts as aletter. Upper and lower case letters are different. Identifiers may have any length, and for
internal identifiers, at least the first 31 characters are significant; some implementations may take more
characters significant. Internal identifiers include preprocessor macro names and all other names that do
not have external linkage (Par.A.11.2). Identifiers with external linkage are more restricted:
implementations may make as few as the first six characters significant, and may ignore case
distinctions.

A.2.4 Keywords

The following identifiers are reserved for the use as keywords, and may not be used otherwise:

aut o doubl e I nt struct

br eak el se | ong SwW tch
case enum regi ster t ypedef
char extern return uni on
const fl oat short unsi gned
conti nue for si gned voi d

def aul t got o si zeof vol atile
do | f static whi | e

Some implementations also reserve thewordsf or t r an and asm

The keywordsconst, si gned, andvol at i | e are new with the ANSI standard; enumand voi d are new
since the first edition, but in common use; ent r y, formerly reserved but never used, is no longer reserved.

A.2.5 Constants

There are severa kinds of constants. Each has a data type; Par.A.4.2 discusses the basic types:

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (2 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

constant:
Integer -constant
character-constant
floating-constant
enumer ation-constant

A.2.5.1 Integer Constants

An integer constant consisting of a sequence of digitsistaken to be octal if it beginswith O (digit zero),
decimal otherwise. Octal constants do not contain the digits 8 or 9. A sequence of digits preceded by 0x
or 0X (digit zero) is taken to be a hexadecimal integer. The hexadecimal digitsinclude a or A through f
or F with values 10 through 15.

An integer constant may be suffixed by the letter u or U, to specify that it is unsigned. It may also be
suffixed by theletter | or L to specify that it islong.

The type of an integer constant depends on its form, value and suffix. (See Par.A.4 for adiscussion of

types). If it is unsuffixed and decimal, it hasthe first of these types in which its value can be represented:
i nt,long int,unsigned | ong int.Ifitisunsuffixed, octal or hexadecimal, it has the first
possible of thesetypes: i nt,unsi gned i nt,l ong int,unsigned | ong int.Ifitissuffixed
by u or U, thenunsi gned i nt,unsigned | ong int.Ifitissuffixedby! orL,thenl ong int,
unsi gned | ong i nt.If aninteger constant is suffixed by UL, itisunsi gned | ong.

The elaboration of the types of integer constants goes considerably beyond the first edition, which merely caused
large integer constantsto bel ong. The U suffixes are new.

A.2.5.2 Character Constants

A character constant is a sequence of one or more characters enclosed in single quotesasin' x' . The
value of a character constant with only one character is the numeric value of the character in the
machine's character set at execution time. The value of a multi-character constant is implementation-
defined.

Character constants do not contain the' character or newlines; in order to represent them, and certain
other characters, the following escape sequences may be used:

newline NL (LF) \'n |backslash \ \\
horizontal tab |[HT \t |questionmark|? |\ ?
verticaltab VT \v |singlequote ' \'
backspace BS \'b |double quote |" \ "

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (3 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

carriage return | CR \r |octal number |0o0 |\ 000
formfeed FF \f |hexnumber |hh |\ xhh
audibleaert |BEL \a

The escape\ 000 consists of the backslash followed by 1, 2, or 3 octal digits, which are taken to specify
the value of the desired character. A common example of this construction is\ O (not followed by a
digit), which specifies the character NUL. The escape \ xhh consists of the backslash, followed by X,
followed by hexadecimal digits, which are taken to specify the value of the desired character. Thereisno
limit on the number of digits, but the behavior is undefined if the resulting character value exceeds that

of the largest character. For either octal or hexadecimal escape characters, if the implementation treats
the char type assigned, the valueis sign-extended asif cast to char type. If the character following the
\ is not one of those specified, the behavior is undefined.

In some implementations, there is an extended set of characters that cannot be represented in the char
type. A constant in this extended set is written with apreceding L, for example L' x' , andiscaled a
wide character constant. Such a constant hastypewchar _t, anintegral type defined in the standard
header <st ddef . h>. Aswith ordinary character constants, hexadecimal escapes may be used; the
effect is undefined if the specified value exceeds that representable withwchar _t .

Some of these escape sequences are new, in particular the hexadecimal character representation. Extended
characters are also new. The character sets commonly used in the Americas and western Europe can be encoded to
fitinthechar type; the main intent in adding wchar _t was to accommodate Asian languages.

A.2.5.3 Floating Constants

A floating constant consists of an integer part, adecimal part, afraction part, an e or E, an optionally
signed integer exponent and an optional type suffix, oneof f , F, | , or L. Theinteger and fraction parts
both consist of a sequence of digits. Either the integer part, or the fraction part (not both) may be
missing; either the decimal point or the e and the exponent (not both) may be missing. Thetypeis
determined by the suffix; F or f makesitf| oat,L orl makesitl ong doubl e, otherwiseitis
doubl e.

A2.5.4 Enumeration Constants

|dentifiers declared as enumerators (see Par.A.8.4) are constants of typei nt .

A.2.6 String Literals

A stri ng I|tera| also called a string constant, is a sequence of characters surrounded by double quotes as
in" . A string has type ““array of characters" and storage classst at i ¢ (see Par.A.3 below) andis

in|t|al |zed with the given characters. Whether identical string literals are distinct is implementation-

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (4 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

defined, and the behavior of a program that attemptsto alter a string literal is undefined.

Adjacent string literals are concatenated into a single string. After any concatenation, anull byte\ O is
appended to the string so that programs that scan the string can find its end. String literals do not contain
newline or double-quote characters; in order to represent them, the same escape sequences as for
character constants are available.

Aswith character constants, string literals in an extended character set are written with apreceding L, as
inL"...".Wide-character string literals have type "array of wchar _t ." Concatenation of ordinary
and wide string literals is undefined.

The specification that string literals need not be distinct, and the prohibition against modifying them, are new in
the ANSI standard, asis the concatenation of adjacent string literals. Wide-character string literals are new.

A.3 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal
words and charactersint ypewr i t er style. Alternative categories are usually listed on separate lines;
in afew cases, along set of narrow aternatives is presented on one line, marked by the phrase “one of ."
An optional terminal or nonterminal symbol carries the subscript “opt," so that, for example,

{ expressiong }
means an optional expression, enclosed in braces. The syntax is summarized in Par.A.13.

Unlike the grammar given in thefirst edition of this book, the one given here makes precedence and associativity
of expression operators explicit.

A.4 Meaning of Identifiers

|dentifiers, or names, refer to avariety of things: functions; tags of structures, unions, and enumerations,
members of structures or unions; enumeration constants; typedef names; and objects. An object,
sometimes called avariable, isalocation in storage, and its interpretation depends on two main

attributes: its storage class and its type. The storage class determines the lifetime of the storage
associated with the identified object; the type determines the meaning of the values found in the
identified object. A name also has a scope, which is the region of the program in which it isknown, and a
linkage, which determines whether the same name in another scope refers to the same object or function.
Scope and linkage are discussed in Par.A.11.

A.4.1 Storage Class

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (5 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

There are two storage classes: automatic and static. Several keywords, together with the context of an
object's declaration, specify its storage class. Automatic objects are local to a block (Par.9.3), and are

discarded on exit from the block. Declarations within ablock create automatic objects if no storage class
specification is mentioned, or if the aut o specifier isused. Objects declared r egi st er are automatic,
and are (if possible) stored in fast registers of the machine.

Static objects may be local to ablock or external to all blocks, but in either case retain their values across
exit from and reentry to functions and blocks. Within a block, including a block that provides the code
for afunction, static objects are declared with the keyword st at i ¢. The objects declared outside all
blocks, at the same level as function definitions, are always static. They may be made local to a particular
translation unit by use of the st at i ¢ keyword; this gives them internal linkage. They become global to
an entire program by omitting an explicit storage class, or by using the keyword ext er n; thisgives
them external linkage.

A.4.2 Basic Types

There are several fundamental types. The standard header <l i m t s. h> described in Appendix B

defines the largest and smallest values of each typein the local implementation. The numbers givenin
Appendix B show the smallest acceptable magnitudes.

Objects declared as characters (char) are large enough to store any member of the execution character
set. If agenuine character from that set is stored inachar object, itsvalue is equivalent to the integer
code for the character, and is non-negative. Other quantities may be stored into char variables, but the
available range of values, and especially whether the value is signed, is implementation-dependent.

Unsigned characters declared unsi gned char consume the same amount of space as plain characters,
but always appear non-negative; explicitly signed characters declared si gned char likewise take the
same space as plain characters.

unsigned char type does not appear in the first edition of this book, but isin common use. si gned char is
new.

Besidesthe char types, up to three sizes of integer, declared short int,int,andl ong int,are
available. Plaini nt objects have the natural size suggested by the host machine architecture; the other
sizes are provided to meet special needs. Longer integers provide at least as much storage as shorter
ones, but the implementation may make plain integers equivalent to either short integers, or long
integers. Thei nt typesall represent signed values unless specified otherwise.

Unsigned integers, declared using the keyword unsi gned, obey the laws of arithmetic modulo 2"
where n is the number of bits in the representation, and thus arithmetic on unsigned quantities can never
overflow. The set of non-negative values that can be stored in a signed object is a subset of the values

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (6 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

that can be stored in the corresponding unsigned object, and the representation for the overlapping values
isthe same.

Any of single precision floating point (f | oat), double precision floating point (doubl e), and extra
precision floating point (I ong doubl e) may be synonymous, but the ones later in thelist are at least as
precise as those before.

| ong doubl e isnew. Thefirst edition madel ong f | oat equivalent to doubl e; the locution has been
withdrawn.

Enumerations are unique types that have integral values; associated with each enumeration is a set of
named constants (Par.A.8.4). Enumerations behave like integers, but it is common for a compiler to issue
awarning when an object of a particular enumeration is assigned something other than one of its
constants, or an expression of itstype.

Because objects of these types can be interpreted as numbers, they will be referred to as arithmetic types.
Typeschar ,andi nt of all sizes, each with or without sign, and also enumeration types, will
collectively be called integral types. Thetypesf | oat , doubl e, and| ong doubl e will be called
floating types.

Thevoi d type specifies an empty set of values. It is used as the type returned by functions that generate
no value.

A.4.3 Derived types

Beside the basic types, thereis a conceptually infinite class of derived types constructed from the
fundamental typesin the following ways:

arrays of objects of a given type;

functions returning objects of a given type;

pointers to objects of agiven type;

structures containing a sequence of objects of various types;

unions capable of containing any of one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

A.4.4 Type Qualifiers

An object's type may have additional qualifiers. Declaring an object const announces that its value will
not be changed; declaring it vol at i | e announcesthat it has special properties relevant to optimization.
Neither qualifier affects the range of values or arithmetic properties of the object. Qualifiers are

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (7 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

discussed in Par.A.8.2.

A.5 Objects and Lvalues

An Object is anamed region of storage; an Ivalue is an expression referring to an object. An obvious
example of an Ivalue expression is an identifier with suitable type and storage class. There are operators
that yield Ivalues, if E is an expression of pointer type, then * E is an lvalue expression referring to the
object to which E points. The name " Ivalue" comes from the assignment expression E1 = E2 inwhich
the left operand E1 must be an Ivalue expression. The discussion of each operator specifies whether it
expects lvalue operands and whether it yields an Ivalue.

A.6 Conversions

Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section explains the result to be expected from such conversions. Par.6.5
summarizes the conversions demanded by most ordinary operators; it will be supplemented as required
by the discussion of each operator.

A.6.1 Integral Promotion

A character, ashort integer, or an integer bit-field, all either signed or not, or an object of enumeration
type, may be used in an expression wherever an integer may be used. If ani nt can represent all the
values of the original type, then the value is converted to i nt ; otherwise the value is converted to
unsi gned i nt. Thisprocessiscalled integral promotion.

A.6.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non-negative value that is
congruent to that integer, modulo one more than the largest value that can be represented in the unsigned
type. In atwo's complement representation, thisis equivalent to left-truncation if the bit pattern of the
unsigned type is narrower, and to zero-filling unsigned values and sign-extending signed values if the
unsigned type iswider.

When any integer is converted to a signed type, the value is unchanged if it can be represented in the new
type and is implementation-defined otherwise.

A.6.3 Integer and Floating

When avalue of floating type is converted to integral type, the fractional part is discarded; if the

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (8 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

resulting value cannot be represented in the integral type, the behavior is undefined. In particular, the
result of converting negative floating values to unsigned integral typesis not specified.

When avalue of integral type is converted to floating, and the value is in the representable range but is
not exactly representable, then the result may be either the next higher or next lower representable value.
If the result is out of range, the behavior is undefined.

A.6.4 Floating Types

When aless precise floating value is converted to an equally or more precise floating type, the valueis
unchanged. When a more precise floating value is converted to aless precise floating type, and the value
IS within representable range, the result may be either the next higher or the next lower representable
value. If the result is out of range, the behavior is undefined.

A.6.5 Arithmetic Conversions

Many operators cause conversions and yield result typesin asimilar way. The effect isto bring operands
into a common type, which is also the type of the result. This pattern is called the usual arithmetic
conversions.

. Firg, if either operandis| ong doubl e, the other isconvertedto| ong doubl e.

. Otherwisg, if either operand isdoubl e, the other is converted to doubl e.

. Otherwisg, if either operand isf | oat , the other isconvertedto f | oat .

. Otherwise, the integral promotions are performed on both operands; then, if either operand is
unsi gned | ong i nt, theother isconvertedtounsi gned | ong int.

. Otherwise, if one operandisl ong i nt and theother isunsi gned i nt, the effect dependson
whether al ong i nt canrepresent all values of anunsi gned i nt ; if so, theunsi gned
I nt operandisconvertedtol ong i nt ;if not, both are converted tounsi gned | ong i nt.

. Otherwise, if oneoperandisl| ong i nt, theother isconvertedto!| ong i nt.

. Otherwisg, if either operand isunsi gned i nt, the other is converted to unsi gned i nt.

. Otherwise, both operands have typei nt .

There are two changes here. First, arithmeticon f | oat operands may be done in single precision, rather than
double; the first edition specified that all floating arithmetic was double precision. Second, shorter unsigned types,
when combined with alarger signed type, do not propagate the unsigned property to the result type; in the first
edition, the unsigned always dominated. The new rules are slightly more complicated, but reduce somewhat the
surprises that may occur when an unsigned quantity meets signed. Unexpected results may still occur when an
unsigned expression is compared to a signed expression of the same size.

A.6.6 Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case the integral

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (9 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

expression is converted as specified in the discussion of the addition operator (Par.A.7.7).

Two pointersto objects of the same type, in the same array, may be subtracted; the result is converted to
an integer as specified in the discussion of the subtraction operator (Par.A.7.7).

Anintegral constant expression with value 0, or such an expression cast to typevoi d *, may be
converted, by acast, by assignment, or by comparison, to a pointer of any type. This produces a null
pointer that is equal to another null pointer of the same type, but unequal to any pointer to a function or
object.

Certain other conversions involving pointers are permitted, but have implementation-defined aspects.
They must be specified by an explicit type-conversion operator, or cast (Pars.A.7.5 and A.8.8).

A pointer may be converted to an integral type large enough to hold it; the required sizeis
Implementati on-dependent. The mapping function is also implementati on-dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may cause
addressing exceptionsiif the subject pointer does not refer to an object suitably aligned in storage. It is
guaranteed that a pointer to an object may be converted to a pointer to an object whose type requires less
or equally strict storage alignment and back again without change; the notion of ~alignment” is
implementation-dependent, but objects of the char types have least strict alignment requirements. As
described in Par.A.6.8, a pointer may also be converted to typevoi d * and back again without change.

A pointer may be converted to another pointer whose type is the same except for the addition or removal
of qualifiers (Pars.A.4.4, A.8.2) of the object type to which the pointer refers. If qualifiers are added, the
new pointer is equivalent to the old except for restrictions implied by the new qualifiers. If qualifiersare
removed, operations on the underlying object remain subject to the qualifiersin its actual declaration.

Finally, apointer to afunction may be converted to a pointer to another function type. Calling the
function specified by the converted pointer isimplementati on-dependent; however, if the converted
pointer is reconverted to its original type, the result isidentical to the original pointer.

A.6.7 Void

The (nonexistent) value of avoi d object may not be used in any way, and neither explicit nor implicit
conversion to any non-void type may be applied. Because a void expression denotes a nonexistent value,
such an expression may be used only where the value is not required, for example as an expression
statement (Par.A.9.2) or asthe left operand of a comma operator (Par.A.7.18).

An expression may be converted to type voi d by acast. For example, avoid cast documents the
discarding of the value of afunction call used as an expression statement.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (10 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

voi d did not appear in the first edition of this book, but has become common since.

A.6.8 Pointers to Void

Any pointer to an object may be converted to typevoi d * without loss of information. If theresultis
converted back to the original pointer type, the original pointer is recovered. Unlike the pointer-to-
pointer conversions discussed in Par.A.6.6, which generally require an explicit cast, pointers may be

assigned to and from pointers of typevoi d *, and may be compared with them.

Thisinterpretation of voi d * pointersisnew; previously, char * pointers played the role of generic pointer.
The ANSI standard specifically blesses the meeting of voi d * pointers with object pointersin assignments and
relationals, while requiring explicit casts for other pointer mixtures.

A.7 Expressions

The precedence of expression operators is the same as the order of the major subsections of this section,
highest precedence first. Thus, for example, the expressions referred to as the operands of + (Par.A.7.7)

are those expressions defined in Pars.A.7.1-A.7.6. Within each subsection, the operators have the same

precedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The grammar given in Par.13 incorporates the precedence and associativity of the operators.

The precedence and associativity of operatorsis fully specified, but the order of evaluation of
expressionsis, with certain exceptions, undefined, even if the subexpressions involve side effects. That
IS, unless the definition of the operator guarantees that its operands are evaluated in a particular order, the
implementation is free to evaluate operands in any order, or even to interleave their evaluation. However,
each operator combines the values produced by its operands in away compatible with the parsing of the
expression in which it appears.

Thisrule revokes the previous freedom to reorder expressions with operators that are mathematically commutative
and associative, but can fail to be computationally associative. The change affects only floating-point
computations near the limits of their accuracy, and situations where overflow is possible.

The handling of overflow, divide check, and other exceptions in expression evaluation is not defined by
the language. Most existing implementations of C ignore overflow in evaluation of signed integral
expressions and assignments, but this behavior is not guaranteed. Treatment of division by 0O, and all
floating-point exceptions, varies among implementations; sometimesit is adjustable by a non-standard
library function.

A.7.1 Pointer Conversion

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (11 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

If the type of an expression or subexpression is array of T," for some type T, then the value of the
expression is a pointer to the first object in the array, and the type of the expression is altered to “"pointer
to T." This conversion does not take place if the expression is in the operand of the unary & operator, or
of ++, - -, si zeof , or asthe left operand of an assignment operator or the. operator. Similarly, an
expression of type " function returning T," except when used as the operand of the & operator, is
converted to " pointer to function returning T."

A.7.2 Primary Expressions
Primary expressions are identifiers, constants, strings, or expressions in parentheses.

primary-expression
identifier
constant
string
(expression)

Anidentifier isaprimary expression, provided it has been suitably declared as discussed below. Itstype
Is specified by its declaration. An identifier isan lvalue if it refersto an object (Par.A.5) and if itstypeis

arithmetic, structure, union, or pointer.

A constant is a primary expression. Its type depends on its form as discussed in Par.A.2.5.

A string literal isaprimary expression. Itstypeisoriginaly array of char " (for wide-char strings,
“array of wehar _t "), but following the rule given in Par.A.7.1, thisis usually modified to " pointer to

char " (wchar _t) and the result is a pointer to the first character in the string. The conversion also does
not occur in certain initializers; see Par.A.8.7.

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The precedence of parentheses does not affect whether the expression is an Ivalue.

A.7.3 Postfix Expressions
The operators in postfix expressions group left to right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(ar gument-expression-list)
postfix-expression.identifier
postfix-expression- >identifier

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (12 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

postfix-expression++
postfix-expression- -

argument-expression-list:
assi gnment-expression
assignment-expression-list, assignment-expression

A.7.3.1 Array References

A postfix expression followed by an expression in square brackets is a postfix expression denoting a
subscripted array reference. One of the two expressions must have type " pointer to T", where T is some
type, and the other must have integral type; the type of the subscript expression is T. The expression
E1[E2] isidentical (by definition) to* ((E1) +(E2)) . See Par.A.8.6.2 for further discussion.

A.7.3.2 Function Calls

A function call isa postfix expression, called the function designator, followed by parentheses containing
a possibly empty, comma-separated list of assignment expressions (Par.A7.17), which constitute the
arguments to the function. If the postfix expression consists of an identifier for which no declaration
exists in the current scope, the identifier isimplicitly declared as if the declaration

extern int identifier() ;

had been given in the innermost block containing the function call. The postfix expression (after possible
explicit declaration and pointer generation, Par.A7.1) must be of type " pointer to function returning T,"

for some type T, and the value of the function call hastypeT.

In thefirst edition, the type was restricted to ~ function,” and an explicit * operator was required to call through
pointers to functions. The ANSI standard blesses the practice of some existing compilers by permitting the same
syntax for calls to functions and to functions specified by pointers. The older syntax is till usable.

The term argument is used for an expression passed by afunction call; the term parameter is used for an
input object (or itsidentifier) received by afunction definition, or described in a function declaration.
The terms ""actual argument (parameter)” and * formal argument (parameter)” respectively are
sometimes used for the same distinction.

In preparing for the call to afunction, a copy is made of each argument; all argument-passing is strictly
by value. A function may change the values of its parameter objects, which are copies of the argument
expressions, but these changes cannot affect the values of the arguments. However, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (13 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

There are two styles in which functions may be declared. In the new style, the types of parameters are
explicit and are part of the type of the function; such a declaration os also called a function prototype. In
the old style, parameter types are not specified. Function declaration isissued in Pars.A.8.6.3 and A.10.1.

If the function declaration in scope for a call is old-style, then default argument promotion is applied to
each argument as follows: integral promotion (Par.A.6.1) is performed on each argument of integral type,

and each f | oat argument is converted to doubl e. The effect of the call is undefined if the number of
arguments disagrees with the number of parameters in the definition of the function, or if the type of an
argument after promotion disagrees with that of the corresponding parameter. Type agreement depends
on whether the function's definition is new-style or old-style. If it is old-style, then the comparison is
between the promoted type of the arguments of the call, and the promoted type of the parameter, if the
definition is new-style, the promoted type of the argument must be that of the parameter itself, without
promotion.

If the function declaration in scope for a call is new-style, then the arguments are converted, asif by
assignment, to the types of the corresponding parameters of the function's prototype. The number of
arguments must be the same as the number of explicitly described parameters, unless the declaration's
parameter list ends with the ellipsis notation (, ...). Inthat case, the number of arguments must
equal or exceed the number of parameters; trailing arguments beyond the explicitly typed parameters
suffer default argument promotion as described in the preceding paragraph. If the definition of the
function is old-style, then the type of each parameter in the definition, after the definition parameter's
type has undergone argument promotion.

These rules are especially complicated because they must cater to a mixture of old- and new-style functions.
Mixtures are to be avoided if possible.

The order of evaluation of arguments is unspecified; take note that various compilers differ. However,
the arguments and the function designator are completely evaluated, including all side effects, before the
function is entered. Recursive callsto any function are permitted.

A.7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expression. The first operand
expression must be a structure or aunion, and the identifier must name a member of the structure or
union. The value is the named member of the structure or union, and itstype is the type of the member.
The expressionisan lvalueif the first expression is an lvalue, and if the type of the second expression is
not an array type.

A postfix expression followed by an arrow (built from - and >) followed by an identifier is a postfix
expression. The first operand expression must be a pointer to a structure or union, and the identifier must
name a member of the structure or union. The result refers to the named member of the structure or union
to which the pointer expression points, and the type is the type of the member; theresult isan lvalue if

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (14 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

the type is not an array type.

Thus the expression E1- >MOS isthesame as (* E1) . MOS. Structures and unions are discussed in
Par.A.8.3.

In thefirst edition of thisbook, it was aready the rule that a member name in such an expression had to belong to
the structure or union mentioned in the postfix expression; however, a note admitted that this rule was not firmly
enforced. Recent compilers, and ANSI, do enforceit.

A.7.3.4 Postfix Incrementation

A postfix expression followed by a++ or - - operator is a postfix expression. The value of the
expression is the value of the operand. After the value is noted, the operand is incremented ++ or
decremented - - by 1. The operand must be an Ivalue; see the discussion of additive operators
(Par.A.7.7) and assignment (Par.A.7.17) for further constraints on the operand and details of the

operation. The result is not an [value.

A.7.4 Unary Operators
Expressions with unary operators group right-to-left.

unary-expression:
postfix expression
++unary expression
- - unary expression
unary-operator cast-expression
si zeof unary-expression
si zeof (type-name)

unary operator: one of
& * + - ~ |

A.7.4.1 Prefix Incrementation Operators

A unary expression followed by a++ or - - operator isaunary expression. The operand is incremented
++ or decremented - - by 1. The value of the expression is the value after the incrementation
(decrementation). The operand must be an Ivalue; see the discussion of additive operators (Par.A.7.7) and

assignment (Par.A.7.17) for further constraints on the operands and details of the operation. The result is
not an Ivalue.

A.7.4.2 Address Operator

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (15 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

The unary operator & takes the address of its operand. The operand must be an Ivalue referring neither to
abit-field nor to an object declared asr egi st er , or must be of function type. The result is a pointer to
the object or function referred to by the Ivalue. If the type of the operand is T, the type of theresult is
“pointerto T."

A.7.4.3 Indirection Operator
The unary * operator denotes indirection, and returns the object or function to which its operand points.

It isan lvalue if the operand is a pointer to an object of arithmetic, structure, union, or pointer type. If the
type of the expression is “"pointer to T," the type of theresult is T.

A.7.4.4 Unary Plus Operator
The operand of the unary + operator must have arithmetic type, and the result is the value of the operand.
Anintegral operand undergoes integral promotion. The type of the result is the type of the promoted
operand.

The unary + isnew with the ANSI standard. It was added for symmetry with the unary - .
A.7.4.5 Unary Minus Operator
The operand of the unary - operator must have arithmetic type, and the result is the negative of its
operand. An integral operand undergoes integral promotion. The negative of an unsigned quantity is

computed by subtracting the promoted value from the largest value of the promoted type and adding one;
but negative zero is zero. The type of the result is the type of the promoted operand.

A.7.4.6 One's Complement Operator

The operand of the ~ operator must have integral type, and the result is the one's complement of its
operand. The integral promotions are performed. If the operand is unsigned, the result is computed by
subtracting the value from the largest value of the promoted type. If the operand is signed, theresult is
computed by converting the promoted operand to the corresponding unsigned type, applying ~, and
converting back to the signed type. The type of the result is the type of the promoted operand.

A.7.4.7 Logical Negation Operator

The operand of the! operator must have arithmetic type or be a pointer, and the result is 1 if the value of
its operand compares equal to 0, and O otherwise. The type of theresultisi nt .

A.7.4.8 Sizeof Operator

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (16 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Thesi zeof operator yieldsthe number of bytes required to store an object of the type of its operand.
The operand is either an expression, which is not evaluated, or a parenthesized type name. When

si zeof isappliedtoachar, theresult is 1; when applied to an array, the result is the total number of
bytesin the array. When applied to a structure or union, the result is the number of bytesin the object,
including any padding required to make the object tile an array: the size of an array of n elementsisn
times the size of one element. The operator may not be applied to an operand of function type, or of
incomplete type, or to abit-field. The result is an unsigned integral constant; the particular typeis
implementation-defined. The standard header <st ddef . h> (See appendix B) defines thistype as

Si ze_t.
A.7.5 Casts

A unary expression preceded by the parenthesized name of atype causes conversion of the value of the
expression to the named type.

cast-expression:
unary expression
(type-name) cast-expression

This construction is called a cast. The names are described in Par.A.8.8. The effects of conversions are
described in Par.A.6. An expression with acast is not an lvalue.

A.7.6 Multiplicative Operators
The multiplicative operators * , / , and %group left-to-right.

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression/ cast-expression
multi plicative-expression %cast-expression

The operandsof * and/ must have arithmetic type; the operands of %omust have integral type. The usual
arithmetic conversions are performed on the operands, and predict the type of the result.

The binary * operator denotes multiplication.

Thebinary / operator yields the quotient, and the %operator the remainder, of the division of the first
operand by the second; if the second operand is O, the result is undefined. Otherwise, it is always true that
(a/b)*b + a%b isequal to a. If both operands are non-negative, then the remainder is non-negative
and smaller than the divisor, if not, it is guaranteed only that the absolute value of the remainder is
smaller than the absolute value of the divisor.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (17 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

A.7.7 Additive Operators

The additive operators + and - group left-to-right. If the operands have arithmetic type, the usual
arithmetic conversions are performed. There are some additional type possibilities for each operator.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is converted to an address offset by multiplying it by the size
of the object to which the pointer points. The sum is a pointer of the same type as the original pointer,
and points to another object in the same array, appropriately offset from the original object. Thusif Pisa
pointer to an object in an array, the expression P+1 is a pointer to the next object in the array. If the sum
pointer points outside the bounds of the array, except at the first location beyond the high end, the result
Is undefined.

The provision for pointers just beyond the end of an array is new. It legitimizes a common idiom for looping over
the elements of an array.

The result of the - operator is the difference of the operands. A value of any integral type may be
subtracted from a pointer, and then the same conversions and conditions as for addition apply.

If two pointers to objects of the same type are subtracted, the result isa signed integral value representing
the displacement between the pointed-to objects; pointers to successive objects differ by 1. The type of
theresult isdefined aspt rdi ff _t inthe standard header <st ddef . h>. The valueis undefined unless
the pointers point to objects within the same array; however, if P points to the last member of an array,
then (P+1) - P hasvaue 1.

A.7.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand must be integral, and
Is subject to integral the promotions. The type of the result is that of the promoted left operand. The
result is undefined if the right operand is negative, or greater than or equal to the number of bitsin the
left expression's type.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (18 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Thevalue of E1<<E2 isEL1 (interpreted as a bit pattern) left-shifted E2 bits; in the absence of overflow,
thisis equivalent to multiplication by 2E2. The value of E1>>E2 is E1 right-shifted E2 bit positions. The

right shift is equivalent to division by 2E2 if E1 isunsigned or it has a non-negative value; otherwise the
result is implementation-defined.

A.7.9 Relational Operators

The relational operators group left-to-right, but this fact is not useful; a<b<c isparsed as (a<b) <c, and
evaluatesto either O or 1.

rel ational -expression:
shift-expression
relational -expression < shift-expression
relational -expression > shift-expression
relational -expression <= shift-expression
relational -expression >= shift-expression

The operators < (less), > (greater), <= (less or equal) and >= (greater or equal) all yield O if the specified
relationisfalseand 1 if it istrue. The type of the result isi nt . The usual arithmetic conversions are
performed on arithmetic operands. Pointers to objects of the same type (ignoring any qualifiers) may be
compared; the result depends on the relative locations in the address space of the pointed-to objects.
Pointer comparison is defined only for parts of the same object; if two pointers point to the same simple
object, they compare equal; if the pointers are to members of the same structure, pointers to objects
declared later in the structure compare higher; if the pointers refer to members of an array, the
comparison is equivalent to comparison of the the corresponding subscripts. If P points to the last
member of an array, then P+1 compares higher than P, even though P+1 points outside the array.
Otherwise, pointer comparison is undefined.

These rules dlightly liberalize the restrictions stated in the first edition, by permitting comparison of pointersto
different members of a structure or union. They aso legalize comparison with a pointer just off the end of an

array.
A.7.10 Equality Operators

equality-expression:
relational -expression
eguality-expression == relational-expression
equality-expression ! = relational-expression

The == (equal to) and the! = (not equal to) operators are analogous to the relational operators except for
their lower precedence. (Thusa<b == c<d is1 whenever a<b and c<d have the same truth-value.)

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (19 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

The equality operators follow the same rules as the relational operators, but permit additional
possibilities: a pointer may be compared to a constant integral expression with value O, or to a pointer to
voi d. See Par.A.6.6.

A.7.11 Bitwise AND Operator

AND-expression:
equality-expression
AND-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands.
The operator applies only to integral operands.

A.7.12 Bitwise Exclusive OR Operator

exclusive-OR-expression:
AND-expression
exclusive-OR-expression AND-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral operands.

A.7.13 Bitwise Inclusive OR Operator
inclusive-OR-expression:
exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of the
operands. The operator applies only to integral operands.

A.7.14 Logical AND Operator

logical-AND-expression:
Inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

The && operator groups left-to-right. It returns 1 if both its operands compare unequal to zero, 0
otherwise. Unlike &, && guarantees | eft-to-right evaluation: the first operand is evaluated, including all

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (20 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

side effects; if it isequal to O, the value of the expression is 0. Otherwise, the right operand is eval uated,
and if it isequal to 0, the expression's value is 0, otherwise 1.

The operands need not have the same type, but each must have arithmetic type or be a pointer. The result
Isi nt .

A.7.15 Logical OR Operator

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

The| | operator groups left-to-right. It returns 1 if either of its operands compare unequal to zero, and O
otherwise. Unlike| , | | guarantees left-to-right evaluation: the first operand is evaluated, including all
side effects; if it isunequal to O, the value of the expression is 1. Otherwise, the right operand is
evaluated, and if it isunequal to O, the expression's valueis 1, otherwise 0.

The operands need not have the same type, but each must have arithmetic type or be a pointer. The result
isi nt.

A.7.16 Conditional Operator

conditional -expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Thefirst expression is evaluated, including all side effects; if it compares unequal to 0O, the result is the
value of the second expression, otherwise that of the third expression. Only one of the second and third
operandsis evaluated. If the second and third operands are arithmetic, the usual arithmetic conversions
are performed to bring them to a common type, and that type is the type of the result. If both arevoi d,
or structures or unions of the same type, or pointers to objects of the same type, the result has the
common type. If oneisa pointer and the other the constant O, the 0 is converted to the pointer type, and
the result has that type. If oneisapointer to voi d and the other is another pointer, the other pointer is
converted to apointer to voi d, and that is the type of the result.

In the type comparison for pointers, any type qualifiers (Par.A.8.2) in the type to which the pointer points
are insignificant, but the result type inherits qualifiers from both arms of the conditional.

A.7.17 Assighnment Expressions

There are several assignment operators; all group right-to-left.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (21 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

assignment-expression:
conditional -expression
unary-expression assignment-operator assignment-expression

assi gnment-operator: one of
= *= [= Uy 4= -= <<= >>= &{= A= |:

All require an Ivalue as |eft operand, and the Ivalue must be modifiable: it must not be an array, and must
not have an incomplete type, or be afunction. Also, itstype must not be qualified with const ; if itisa
structure or union, it must not have any member or, recursively, submember qualified with const . The
type of an assignment expression is that of its |eft operand, and the value is the value stored in the | eft
operand after the assignment has taken place.

In the ssimple assignment with =, the value of the expression replaces that of the object referred to by the
lvalue. One of the following must be true: both operands have arithmetic type, in which case the right
operand is converted to the type of the left by the assignment; or both operands are structures or unions
of the same type; or one operand is a pointer and the other is a pointer to voi d, or the left operand isa
pointer and the right operand is a constant expression with value O; or both operands are pointersto
functions or objects whose types are the same except for the possible absence of const orvol atil e
in the right operand.

An expression of theform E1 op= E2isequivaenttoE1l = E1 op (E2) exceptthat El is
evaluated only once.

A.7.18 Comma Operator

expression:
ass gnment-expression
expression, assignment-expression

A pair of expressions separated by acommais evaluated |eft-to-right, and the value of the left expression
Is discarded. The type and value of the result are the type and value of the right operand. All side effects
from the evaluation of the left-operand are completed before beginning the evaluation of the right
operand. In contexts where commalis given a special meaning, for examplein lists of function arguments
(Par.A.7.3.2) and lists of initializers (Par.A.8.7), the required syntactic unit is an assignment expression,

so the comma operator appears only in a parenthetical grouping, for example,
f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (22 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

A.7.19 Constant Expressions
Syntactically, a constant expression is an expression restricted to a subset of operators:

constant-expression:
conditional -expression

Expressions that evaluate to a constant are required in several contexts. after case, as array bounds and
bit-field lengths, as the value of an enumeration constant, in initializers, and in certain preprocessor
expressions.

Constant expressions may not contain assignments, increment or decrement operators, function calls, or
comma operators; except in an operand of si zeof . If the constant expression is required to be integral,
its operands must consist of integer, enumeration, character, and floating constants; casts must specify an
integral type, and any floating constants must be cast to integer. This necessarily rules out arrays,
indirection, address-of, and structure member operations. (However, any operand is permitted for

si zeof)

More latitude is permitted for the constant expressions of initializers; the operands may be any type of
constant, and the unary & operator may be applied to external or static objects, and to external and static
arrays subscripted with a constant expression. The unary & operator can also be applied implicitly by
appearance of unsubscripted arrays and functions. Initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

Less latitude is allowed for the integral constant expressions after #i f ; si zeof expressions,
enumeration constants, and casts are not permitted. See Par.A.12.5.

A.8 Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage
associated with the identifier. Declarations that reserve storage are called definitions. Declarations have
the form

declaration:
declaration-specifiers init-declarator-listyy;

The declarators in the init-declarator list contain the identifiers being declared; the declaration-specifiers
consist of a sequence of type and storage class specifiers.

declaration-specifiers:

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (23 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

storage-class-specifier declaration-specifier sy
type-specifier declaration-specifiersyy
type-qualifier declaration-specifiersyp

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Declarators will be discussed later (Par.A.8.5); they contain the names being declared. A declaration

must have at least one declarator, or its type specifier must declare a structure tag, a union tag, or the
members of an enumeration; empty declarations are not permitted.

A.8.1 Storage Class Specifiers
The storage class specifiers are:

storage-class specifier:
aut o
regi ster
static
extern
t ypedef

The meaning of the storage classes were discussed in Par.A.4.4.

Theaut o andr egi st er specifiers give the declared objects automatic storage class, and may be used
only within functions. Such declarations also serve as definitions and cause storage to be reserved. A

r egi st er declarationisequivalent to an aut o declaration, but hints that the declared objects will be
accessed frequently. Only afew objects are actually placed into registers, and only certain types are
eligible; the restrictions are implementation-dependent. However, if an object isdeclared r egi st er ,
the unary & operator may not be applied to it, explicitly or implicitly.

Therulethat it isillegal to calculate the address of an object declared r egi st er , but actually taken to be aut o,
IS new.

Thest at i ¢ specifier gives the declared objects static storage class, and may be used either inside or
outside functions. Inside afunction, this specifier causes storage to be allocated, and serves as a

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (24 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

definition; for its effect outside afunction, see Par.A.11.2.

A declaration with ext er n, used inside a function, specifies that the storage for the declared objectsis
defined elsewhere; for its effects outside afunction, see Par.A.11.2.

Thet ypedef specifier does not reserve storage and is called a storage class specifier only for syntactic
convenience; it isdiscussed in Par.A.8.9.

At most one storage class specifier may be given in adeclaration. If noneis given, these rules are used:
objects declared inside a function are taken to be aut o; functions declared within afunction are taken to
be ext er n; objects and functions declared outside a function are taken to be st at i ¢, with external
linkage. See Pars. A.10-A.11.

A.8.2 Type Specifiers
The type-specifiers are

type specifier:
voi d

char

short

I nt

| ong

f | oat
doubl e

si gned
unsi gned
struct-or-union-specifier
enum-specifier
typedef-name

At most one of thewords| ong or short may be specified together with i nt ; the meaning is the same
if i nt isnot mentioned. Theword | ong may be specified together with doubl e. At most one of

si gned or unsi gned may be specified together withi nt or any of itsshort orl ong varieties, or
with char . Either may appear alone in which casei nt isunderstood. The si gned specifier is useful
for forcing char objectsto carry asign; it is permissible but redundant with other integral types.

Otherwise, at most one type-specifier may be given in adeclaration. If the type-specifier is missing from
adeclaration, it istakento bei nt .

Types may also be qualified, to indicate special properties of the objects being declared.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (25 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

type-qualifier:
const
vol atile

Type qualifiers may appear with any type specifier. A const object may beinitialized, but not
thereafter assigned to. There are no implementation-dependent semanticsfor vol at i | e objects.

Theconst andvol ati | e properties are new with the ANSI standard. The purpose of const isto announce
objects that may be placed in read-only memory, and perhaps to increase opportunities for optimization. The
purpose of vol at i | e isto force an implementation to suppress optimization that could otherwise occur. For
example, for a machine with memory-mapped input/output, a pointer to a device register might be declared asa
pointer tovol ati | e, in order to prevent the compiler from removing apparently redundant references through
the pointer. Except that it should diagnose explicit attempts to change const objects, acompiler may ignore
these qualifiers.

A.8.3 Structure and Union Declarations

A structure is an object consisting of a sequence of named members of various types. A unionisan
object that contains, at different times, any of several members of various types. Structure and union
specifiers have the same form.

struct-or-union-specifier:
struct-or-union identifier o,{ struct-declaration-list }
struct-or-union identifier

struct-or-union:;
struct
uni on

A struct-declaration-list is a sequence of declarations for the members of the structure or union:

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:

type-specifier specifier-qualifier-listyg
type-qualifier specifier-qualifier-listyg

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (26 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

Usually, a struct-declarator isjust a declarator for a member of a structure or union. A structure member
may also consist of a specified number of bits. Such amember is also called abit-field; its length is set
off from the declarator for the field name by a colon.

struct-declarator:
declarator declaratoryy : constant-expression

A type specifier of the form
struct-or-union identifier { struct-declaration-list }

declares the identifier to be the tag of the structure or union specified by the list. A subsequent
declaration in the same or an inner scope may refer to the same type by using the tag in a specifier
without the list:

struct-or-union identifier

If aspecifier with atag but without alist appears when the tag is not declared, an incomplete typeis
specified. Objects with an incomplete structure or union type may be mentioned in contexts where their
sizeis not needed, for example in declarations (not definitions), for specifying a pointer, or for creating a
t ypedef , but not otherwise. The type becomes complete on occurrence of a subsequent specifier with
that tag, and containing a declaration list. Even in specifiers with alist, the structure or union type being
declared isincomplete within the list, and becomes complete only at the} terminating the specifier.

A structure may not contain a member of incomplete type. Therefore, it isimpossible to declare a
structure or union containing an instance of itself. However, besides giving a name to the structure or
union type, tags allow definition of self-referential structures; a structure or union may contain a pointer
to an instance of itself, because pointers to incomplete types may be declared.

A very special rule applies to declarations of the form
struct-or-union identifier:
that declare a structure or union, but have no declaration list and no declarators. Even if the identifier isa

structure or union tag already declared in an outer scope (Par.A.11.1), this declaration makes the
identifier the tag of a new, incompletely-typed structure or union in the current scope.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (27 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Thisrecondite is new with ANSI. It isintended to deal with mutually-recursive structures declared in an inner
scope, but whose tags might already be declared in the outer scope.

A structure or union specifier with alist but no tag creates a unique type; it can be referred to directly
only in the declaration of which it isa part.

The names of members and tags do not conflict with each other or with ordinary variables. A member
name may not appear twice in the same structure or union, but the same member name may be used in
different structures or unions.

In the first edition of this book, the names of structure and union members were not associated with their parent.
However, this association became common in compilers well before the ANSI standard.

A non-field member of a structure or union may have any object type. A field member (which need not
have a declarator and thus may be unnamed) hastypei nt , unsi gned i nt,orsi gned int,andis
interpreted as an object of integral type of the specified length in bits; whether ani nt field istreated as
signed is implementation-dependent. Adjacent field members of structures are packed into

Implementati on-dependent storage units in an implementati on-dependent direction. When afield
following another field will not fit into a partially-filled storage unit, it may be split between units, or the
unit may be padded. An unnamed field with width O forces this padding, so that the next field will begin
at the edge of the next allocation unit.

The ANSI standard makes fields even more implementati on-dependent than did the first edition. It is advisable to
read the language rules for storing bit-fields as *"implementation-dependent™ without qualification. Structures with
bit-fields may be used as a portable way of attempting to reduce the storage required for a structure (with the
probable cost of increasing the instruction space, and time, needed to access the fields), or as a non-portable way
to describe a storage layout known at the bit-level. In the second case, it is necessary to understand the rules of the
local implementation.

The members of a structure have addresses increasing in the order of their declarations. A non-field
member of astructure isaligned at an addressing boundary depending on its type; therefore, there may be
unnamed holesin a structure. If apointer to a structure is cast to the type of a pointer to its first member,
the result refers to the first member.

A union may be thought of as a structure al of whose members begin at offset 0 and whose sizeis
sufficient to contain any of its members. At most one of the members can be stored in aunion at any
time. If apointr to aunion is cast to the type of a pointer to a member, the result refers to that member.

A simple example of a structure declaration is

struct tnode {
char tword[20];
i nt count;

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (28 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

struct tnode *left;
struct tnode *right;

}

which contains an array of 20 characters, an integer, and two pointersto similar structures. Once this
declaration has bene given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort, and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp- >count
refersto the count field of the structure to which sp points;
s.left
refersto the left subtree pointer of the structure s, and
S. right->tword[0]
refersto the first character of thet wor d member of the right subtree of s.

In general, amember of a union may not be inspected unless the value of the union has been assigned
using the same member. However, one special guarantee ssimplifies the use of unions: if a union contains
several structures that share acommon initial sequence, and the union currently contains one of these
structures, it is permitted to refer to the common initial part of any of the contained structures. For
example, the following is alegal fragment:

uni on {

struct {

I nt type;
}on
struct {

I nt type;

i nt intnode;
}oni;
struct {

I nt type;

fl oat fl oatnode;
} nf;

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (29 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual
}ou

u.nf.type = FLQOAT,
u.nf.fl oatnode = 3. 14;

I f (u.n.type == FLOAT)
sin(u.nf.fl oat node)

A.8.4 Enumerations

Enumerations are unique types with values ranging over a set of named constants called enumerators.
The form of an enumeration specifier borrows from that of structures and unions.

enum-specifier:
enumidentifieryy { enumerator-list }
enumidentifier

enumer ator-list:
enumer ator
enumerator-list, enumerator

enumerator:
identifier
Identifier = constant-expression

Theidentifiersin an enumerator list are declared as constants of typei nt , and may appear wherever
constants are required. If no enumerations with = appear, then the values of the corresponding constants
begin at 0 and increase by 1 asthe declaration is read from left to right. An enumerator with = givesthe
associated identifier the value specified; subsequent identifiers continue the progression from the
assigned value.

Enumerator names in the same scope must all be distinct from each other and from ordinary variable
names, but the values need not be distinct.

Therole of the identifier in the enum-specifier is analogous to that of the structure tag in a struct-
specifier; it names a particular enumeration. The rules for enum-specifiers with and without tags and lists
are the same as those for structure or union specifiers, except that incomplete enumeration types do not
exist; the tag of an enum-specifier without an enumerator list must refer to an in-scope specifier with a
list.

Enumerations are new since the first edition of this book, but have been part of the language for some years.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (30 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

A.8.5 Declarators
Declarators have the syntax:

declarator:
pointer o direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressiong |
direct-declarator (parameter-type-list)
direct-declarator (identifier-listgy)

pointer:
* type-qualifier-I istOlot
* type-qualifier-listyn pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The structure of declarators resembles that of indirection, function, and array expressions; the grouping is
the same.

A.8.6 Meaning of Declarators

A list of declarators appears after a sequence of type and storage class specifiers. Each declarator
declares a unigue main identifier, the one that appears as the first alternative of the production for direct-
declarator. The storage class specifiers apply directly to thisidentifier, but its type depends on the form
of itsdeclarator. A declarator is read as an assertion that when itsidentifier appearsin an expression of
the same form as the declarator, it yields an object of the specified type.

Considering only the type parts of the declaration specifiers (Par. A.8.2) and a particular declarator, a
declaration hastheform =T D," where T isatype and Dis adeclarator. The type attributed to the
identifier in the various forms of declarator is described inductively using this notation.

Inadeclaration T Dwhere Disan unadored identifier, the type of the identifier isT.

In adeclaration T Dwhere D has the form

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (31 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

(D1)

then the type of the identifier in D1 isthe same as that of D. The parentheses do not alter the type, but
may change the binding of complex declarators.

A.8.6.1 Pointer Declarators
Inadeclaration T D where D hasthe form

* type-qualifier-listoy D1
and the type of the identifier in the declaration T D1 is type-modifier T," the type of the identifier of D
is type-modifier type-qualifier-list pointer to T." Qualifiersfollowing * apply to pointer itself, rather
than to the object to which the pointer points.
For example, consider the declaration

int *ap[];

Here, ap[] playstheroleof D1; adeclaration "'i nt ap[] " (below) would give ap thetype array of
int," the type-qualifier list is empty, and the type-modifier is "array of." Hence the actual declaration
givesap thetype array to pointerstoi nt ."

As other examples, the declarations

int i, *pi, *const cpi = & ;
const int ci =3, *pci;

declare an integer i and a pointer to an integer pi . The value of the constant pointer cpi may not be
changed; it will always point to the same location, although the value to which it refers may be altered.
Theinteger ci is constant, and may not be changed (though it may be initialized, as here.) The type of
pci is pointer toconst i nt,"andpci itself may be changed to point to another place, but the value
to which it points may not be altered by assigning through pci .

A.8.6.2 Array Declarators
In adeclaration T Dwhere D hasthe form

D1 [constant-expressiongy]

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (32 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

and the type of the identifier in the declaration T D1 is type-modifier T," the type of the identifier of D
is type-modifier array of T." If the constant-expression is present, it must have integral type, and value
greater than 0. If the constant expression specifying the bound is missing, the array has an incomplete

type.

An array may be constructed from an arithmetic type, from a pointer, from a structure or union, or from
another array (to generate a multi-dimensional array). Any type from which an array is constructed must
be complete; it must not be an array of structure of incomplete type. Thisimplies that for a multi-
dimensional array, only the first dimension may be missing. The type of an object of incomplete aray
type is completed by another, complete, declaration for the object (Par.A.10.2), or by initializing it

(Par.A.8.7). For example,
float fa[17], *afp[17];

declaresan array of f | oat numbers and an array of pointersto f | oat numbers. Also,
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3 X5 X 7. In complete detail, x3d isan
array of threeitems: each item is an array of five arrays; each of the latter arraysis an array of seven
integers. Any of the expressionsx3d, x3d[1],x3d[i][j],x3d[i][]]][k] may reasonably appear
in an expression. Thefirst three have type array,”, the last hastypei nt . More specifically,
x3d[i][]] isanarray of 7 integers, and x3d[i | isan array of 5 arrays of 7 integers.

The array subscripting operation is defined so that E1[E2] isidentical to* (EL+E2) . Therefore,
despite its asymmetric appearance, subscripting is a commutative operation. Because of the conversion
rules that apply to + and to arrays (Pars.A6.6, A.7.1, A.7.7), if E1 isan array and E2 an integer, then

E1[E2] refersto the E2-th member of E1.

Intheexample, x3d[i][]][K] isequivdentto*(x3d[i][]j] + k).Thefirst subexpression
x3d[1][]] isconverted by Par.A.7.1 to type "pointer to array of integers,” by Par.A.7.7, the addition

involves multiplication by the size of an integer. It follows from the rules that arrays are stored by rows
(last subscript varies fastest) and that the first subscript in the declaration hel ps determine the amount of
storage consumed by an array, but plays no other part in subscript calculations.

A.8.6.3 Function Declarators
In anew-style function declaration T D where D has the form

D1 (parameter-type-list)

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (33 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

and the type of the identifier in the declaration T D1 is type-modifier T," the type of the identifier of D
is type-modifier function with arguments parameter-type-list returning T."

The syntax of the parametersis

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
par ameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator

In the new-style declaration, the parameter list specifies the types of the parameters. As a special case,
the declarator for a new-style function with no parameters has a parameter list consisting soley of the
keyword voi d. If the parameter list endswith an ellipsis™, ... ", then the function may accept more
arguments than the number of parameters explicitly described, see Par.A.7.3.2.

The types of parameters that are arrays or functions are altered to pointers, in accordance with the rules
for parameter conversions; see Par.A.10.1. The only storage class specifier permitted in a parameter's
declarationisr egi st er, and this specifier isignored unless the function declarator heads a function
definition. Similarly, if the declarators in the parameter declarations contain identifiers and the function
declarator does not head a function definition, the identifiers go out of scope immediately. Abstract
declarators, which do not mention the identifiers, are discussed in Par.A.8.8.

In an old-style function declaration T D where D has the form
D1 (identifier-listqy)

and the type of the identifier in the declaration T D1 is type-modifier T," the type of the identifier of D
is " type-modifier function of unspecified arguments returning T." The parameters (if present) have the
form

identifier-list:
identifier
identifier-list, identifier

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (34 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

In the old-style declarator, the identifier list must be absent unless the declarator is used in the head of a
function definition (Par.A.10.1). No information about the types of the parametersis supplied by the

declaration.

For example, the declaration

int f(), *fpi(), (*pfi)();

declaresafunctionf returning an integer, afunction f pi returning a pointer to an integer, and a pointer
pfi toafunction returning an integer. In none of these are the parameter types specified; they are old-
style.

In the new-style declaration
i nt strcpy(char *dest, const char *source), rand(void);

st r cpy isafunction returning i nt , with two arguments, the first a character pointer, and the second a
pointer to constant characters. The parameter names are effectively comments. The second function
r and takes no arguments and returnsi nt .

Function declarators with parameter prototypes are, by far, the most important language change introduced by the
ANSI standard. They offer an advantage over the “"old-style" declarators of the first edition by providing error-
detection and coercion of arguments across function calls, but at a cost: turmoil and confusion during their
introduction, and the necessity of accomodating both forms. Some syntactic ugliness was required for the sake of
compatibility, namely voi d as an explicit marker of new-style functions without parameters.

Thedlipsisnotation **, ... " for variadic functionsis also new, and, together with the macrosin the standard
header <st dar g. h>, formalizes a mechanism that was officially forbidden but unofficially condoned in the first
edition.

These notations were adapted from the C++ language.

A.8.7 Initialization

When an object is declared, itsinit-declarator may specify an initial value for the identifier being
declared. Theinitializer is preceded by =, and is either an expression, or alist of initializers nested in
braces. A list may end with acomma, a nicety for neat formatting.

initializer:
assignment-expression
{ initializer-list }

{ initializer-list, }

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (35 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

initializer-list:
initializer
initializer-list , initializer

All the expressions in the initializer for a static object or array must be constant expressions as described
in Par.A.7.19. The expressionsin theinitializer for an aut o or r egi st er object or array must likewise
be constant expressions if the initializer is a brace-enclosed list. However, if theinitializer for an
automatic object is a single expression, it need not be a constant expression, but must merely have
appropriate type for assignment to the object.

Thefirst edition did not countenance initialization of automatic structures, unions, or arrays. The ANSI standard
allowsit, but only by constant constructions unless the initializer can be expressed by a smple expression.

A static object not explicitly initialized isinitialized asiif it (or its members) were assigned the constant
0. Theinitial value of an automatic object not explicitly intialized is undefined.

The initializer for apointer or an object of arithmetic type is a single expression, perhapsin braces. The
expression is assigned to the object.

The initializer for astructure is either an expression of the same type, or a brace-enclosed list of
initializers for its membersin order. Unnamed bit-field members are ignored, and are not initialized. If
there are fewer initializers in the list than members of the structure, the trailing members are initialized
with 0. There may not be more initializers than members. Unnamed bit-field members are ignored,and
arenot initialized.

Theinitializer for an array is abrace-enclosed list of initializers for its members. If the array has
unknown size, the number of initializers determines the size of the array, and its type becomes compl ete.
If the array has fixed size, the number of initializers may not exceed the number of members of the array;
If there are fewer, the trailing members are initialized with 0.

Asaspecial case, acharacter array may beinitialized by a string literal; successive characters of the
string initialize successive members of the array. Similarly, awide character literal (Par.A.2.6) may
initialize an array of typewchar _t . If the array has unknown size, the number of charactersin the
string, including the terminating null character, determinesits size; if its size is fixed, the number of
charactersin the string, not counting the terminating null character, must not exceed the size of the array.

Theinitializer for aunion is either a single expression of the same type, or a brace-enclosed initializer for
the first member of the union.

Thefirst edition did not allow initialization of unions. The " first-member" rule is clumsy, but is hard to generalize
without new syntax. Besides allowing unions to be explicitly initialized in at least a primitive way, this ANSI rule
makes definite the semantics of static unions not explicitly initialized.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (36 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

An aggregate isastructure or array. If an aggregate contains members of aggregate type, the
initialization rules apply recursively. Braces may be elided in the initialization as follows: if the
initializer for an aggregate's member that itself is an aggregate begins with aleft brace, then the
succeding comma-separated list of initializersinitializes the members of the subaggregate; it is erroneous
for there to be more initializers than members. If, however, the initializer for a subaggregate does not
begin with aleft brace, then only enough elements from the list are taken into account for the members of
the subaggregate; any remaining members are |eft to initialize the next member of the aggregate of which
the subaggregate is a part.

For example,
int x[] ={ 1, 3, 5}

declares and initializes x as a 1-dimensional array with three members, since no size was specified and
there are threeinitializers.

float y[4][3] = {
{1, 3, 51},
{ 2, 4, 6},
{ 3, 5 71},
};

Is a completely-bracketed initialization: 1, 3 and 5 initialize the first row of the array y[0] , namely
y[O0][O0],y[O][1],andy[O] [2] .Likewisethe nexttwo linesinitializey[1] andy[2] . The
initializer ends early, and therefore the elements of y[3] areinitialized with 0. Precisely the same effect
could have been achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7
}i

Theinitializer for y beginswith aleft brace, but that for y[0] does not; therefore three elements from
the list are used. Likewise the next three are taken successively for y[1] and for y[2] . Also,

float y[4][3] = {
. {1}, {2} {3} {4}

initializes the first column of y (regarded as atwo-dimensional array) and leaves the rest 0.

Finaly,

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (37 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

char nsg[] = "Syntax error on line %\n";

shows a character array whose members are initialized with a string; its size includes the terminating null
character.

A.8.8 Type names

In severa contexts (to specify type conversions explicitly with a cast, to declare parameter typesin
function declarators, and as argument of si zeof) it is necessary to supply the name of adatatype. This
Is accomplished using a type name, which is syntactically a declaration for an object of that type omitting
the name of the object.

type-name:
specifier-qualifier-list abstract-declarator o

abstract-declarator:
pointer
pointer o direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator y [constant-expressiongy]

direct-abstract-declarator y (parameter-type-list)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
iIf the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

nt

nt *

nt *[3]

nt (*)[]

nt *()

nt (*[]) (void)

TR

TR TR

name respectively the types ““integer,” ~“pointer to integer,” "array of 3 pointersto integers,” " pointer to
an unspecified number of integers,” ~function of unspecified parameters returning pointer to integer,"
and ""array, of unspecified size, of pointers to functions with no parameters each returning an integer."

A.8.9 Typedef

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (38 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Declarations whose storage class specifier ist ypedef do not declare objects; instead they define
identifiers that name types. These identifiers are called typedef names.

typedef-name:
identifier

A t ypedef declaration attributes a type to each name among its declarators in the usual way (see
Par.A.8.6). Thereafter, each such typedef name is syntactically equivalent to atype specifier keyword for
the associated type.

For example, after

t ypedef |ong Bl ockno, *Bl ockptr;
typedef struct { double r, theta; } Conplex;

the constructions

Bl ockno b;
extern Bl ockptr bp;
Conpl ex z, *zp;

are legal declarations. Thetypeof b is| ong, that of bp is “pointer to| ong," and that of z isthe
specified structure; zp is apointer to such a structure.

t ypedef does not introduce new types, only synonyms for types that could be specified in another way.
In the example, b has the same type asany | ong object.

Typedef names may be redeclared in an inner scope, but a non-empty set of type specifiers must be
given. For example,

extern Bl ockno;
does not redeclare Bl ockno, but
extern int Bl ockno;

does.

A.8.10 Type Equivalence

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (39 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Two type specifier lists are equivalent if they contain the same set of type specifiers, taking into account
that some specifiers can be implied by others (for example, | ong aoneimplies| ong i nt). Structures,
unions, and enumerations with different tags are distinct, and a tagless union, structure, or enumeration
specifies a unique type.

Two types are the same if their abstract declarators (Par.A.8.8), after expanding any t ypedef types,

and deleting any function parameter specifiers, are the same up to the equivalence of type specifier lists.
Array sizes and function parameter types are significant.

A.9 Statements

Except as described, statements are executed in sequence. Statements are executed for their effect, and do
not have values. They fall into severa groups.

statement:
|abel ed-statement
expr ession-statement
compound-statement
sel ection-statement
iter ation-statement
jump-statement

A.9.1 Labeled Statements

Statements may carry label prefixes.

|abel ed-statement:
identifier : statement
case constant-expression : statement
defaul t : statement

A label consisting of an identifier declares the identifier. The only use of an identifier label is as atarget
of got 0. The scope of the identifier is the current function. Because labels have their own name space,
they do not interfere with other identifiers and cannot be redeclared. See Par.A.11.1.

Case labels and default labels are used with the swi t ch statement (Par.A.9.4). The constant expression
of case must have integral type.

Labels themsalves do not alter the flow of control.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (40 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

A.9.2 Expression Statement
Most statements are expression statements, which have the form

expression-statement:
eXPressi ONgy;

Most expression statements are assignments or function calls. All side effects from the expression are
completed before the next statement is executed. If the expression is missing, the construction is called a
null statement; it is often used to supply an empty body to an iteration statement to place a label.

A.9.3 Compound Statement

So that several statements can be used where one is expected, the compound statement (also called
“"block™) is provided. The body of afunction definition is a compound statement.

compound-statement:
{ declaration-listy, statement-listyy }

declaration-list;
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

If an identifier in the declaration-list was in scope outside the block, the outer declaration is suspended
within the block (see Par.A.11.1), after which it resumesitsforce. An identifier may be declared only

once in the same block. These rules apply to identifiers in the same name space (Par.A.11); identifiersin
different name spaces are treated as distinct.

Initialization of automatic objectsis performed each time the block is entered at the top, and proceedsin
the order of the declarators. If ajump into the block is executed, these initializations are not performed.
Initialization of st at i ¢ objects are performed only once, before the program begins execution.

A.9.4 Selection Statements

Sel ection statements choose one of severa flows of control.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (41 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

sel ection-statement:
| f (expression) statement
I f (expression) statement el se statement
swW t ch (expression) statement

In both forms of thei f statement, the expression, which must have arithmetic or pointer type, is
evaluated, including all side effects, and if it compares unequal to 0, the first substatement is executed. In
the second form, the second substatement is executed if the expression is0. The el se ambiguity is
resolved by connecting an el se with the last encountered el se-lessi f at the same block nesting level.

Theswi t ch statement causes control to be transferred to one of several statements depending on the
value of an expression, which must have integral type. The substatement controlled by aswi t ch is
typically compound. Any statement within the substatement may be labeled with one or morecase
labels (Par.A.9.1). The controlling expression undergoes integral promotion (Par.A.6.1), and the case
constants are converted to the promoted type. No two of these case constants associated with the same
switch may have the same value after conversion. There may also be at most one def aul t |abel
associated with a switch. Switches may be nested; acase or def aul t label isassociated with the
smallest switch that containsiit.

When the swi t ch statement is executed, its expression is evaluated, including all side effects, and
compared with each case constant. If one of the case constants is equal to the value of the expression,
control passes to the statement of the matched case label. If no case constant matches the expression,
and if thereisadef aul t label, control passesto the labeled statement. If no case matches, and if there
isno def aul t, then none of the substatements of the swtich is executed.

In the first edition of this book, the controlling expression of swi t ch, and the case constants, were required to
havei nt type.

A.9.5 Iteration Statements
Iteration statements specify looping.

iteration-statement:

whi | e (expression) statement

do statement whi | e (expression);

for (expressiongy; expressiongy; expressiongy) statement

Inthewhi | e and do statements, the substatement is executed repeatedly so long as the value of the
expression remains unegual to 0; the expression must have arithmetic or pointer type. With whi | e, the
test, including all side effects from the expression, occurs before each execution of the statement; with
do, the test follows each iteration.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (42 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Inthef or statement, the first expression is evaluated once, and thus specifiesinitialization for the loop.
Thereisno restriction on itstype. The second expression must have arithmetic or pointer type; it is
evaluated before each iteration, and if it becomes equal to O, the f or isterminated. The third expression
Is evaluated after each iteration, and thus specifies are-initialization for the loop. There isno restriction
on itstype. Side-effects from each expression are completed immediately after its evaluation. If the
substatement does not contain cont i nue, a statement

f or (expressionl; expression2; expression3) statement
Isequivalent to

expressi onl;

whil e (expression2) {
st at enent
expressi on3;

}

Any of the three expressions may be dropped. A missing second expression makes the implied test
equivalent to testing a non-zero element.

A.9.6 Jump statements
Jump statements transfer control unconditionally.

jump-statement:
got o identifier;
conti nue;
br eak;
ret urn expressiongy;

In the got o statement, the identifier must be alabel (Par.A.9.1) located in the current function. Control
transfers to the labeled statement.

A cont i nue statement may appear only within an iteration statement. It causes control to passto the
loop-continuation portion of the smallest enclosing such statement. More precisely, within each of the
statements

while (...) { do { for (...) {
co.nii.n: ; co.nii.n: : co.nii.n: :
} Y while (...);)

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (43 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

acont i nue not contained in asmaller iteration statement isthe sameasgot o conti n.

A br eak statement may appear only in an iteration statement or aswi t ch statement, and terminates
execution of the smallest enclosing such statement; control passes to the statement following the
terminated statement.

A function returnsto its caller by ther et ur n statement. When r et ur n isfollowed by an expression,
the value is returned to the caller of the function. The expression is converted, as by assignment, to the
type returned by the function in which it appears.

Flowing off the end of afunction is equivalent to areturn with no expression. In either case, the returned
value is undefined.

A.10 External Declarations

The unit of input provided to the C compiler is called atrandation unit; it consists of a sequence of
external declarations, which are either declarations or function definitions.

translation-unit:
external-declaration
trand ation-unit exter nal-declaration

external-declaration:
function-definition
declaration

The scope of external declarations persists to the end of the translation unit in which they are declared,
just asthe effect of declarations within the blocks persists to the end of the block. The syntax of external
declarations is the same as that of all declarations, except that only at this level may the code for
functions be given.

A.10.1 Function Definitions

Function definitions have the form

function-definition:
declaration-specifiersy, declarator declaration-list,y compound-statement

The only storage-class specifiers allowed among the declaration specifiersareext ernorst ati c; see
Par.A.11.2 for the distinction between them.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (44 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

A function may return an arithmetic type, a structure, a union, a pointer, or voi d, but not afunction or
an array. The declarator in afunction declaration must specify explicitly that the declared identifier has
function type; that is, it must contain one of the forms (see Par.A.8.6.3).

direct-declarator (parameter-type-list)
direct-declarator (identifier-listyy)

where the direct-declarator is an identifier or a parenthesized identifier. In particular, it must not achieve
function type by means of at ypedef .

In the first form, the definition is a new-style function, and its parameters, together with their types, are
declared in its parameter type list; the declaration-list following the function's declarator must be absent.
Unless the parameter type list consists solely of voi d, showing that the function takes no parameters,
each declarator in the parameter type list must contain an identifier. If the parameter type list ends with
©, ... "then thefunction may be called with more arguments than parameters; theva_ar g macro
mechanism defined in the standard header <st dar g. h> and described in Appendix B must be used to

refer to the extra arguments. Variadic functions must have at least one named parameter.

In the second form, the definition is old-style: the identifier list names the parameters, while the
declaration list attributes typesto them. If no declaration is given for a parameter, itstypeis taken to be
I nt . The declaration list must declare only parameters named in the list, initialization is not permitted,
and the only storage-class specifier possibleisr egi st er .

In both styles of function definition, the parameters are understood to be declared just after the beginning
of the compound statement constituting the function's body, and thus the same identifiers must not be
redeclared there (although they may, like other identifiers, be redeclared in inner blocks). If a parameter
is declared to have type "array of type,” the declaration is adjusted to read " pointer to type;” similarly, if
a parameter is declared to have type " “function returning type,” the declaration is adjusted to read
““pointer to function returning type." During the call to a function, the arguments are converted as
necessary and assigned to the parameters; see Par.A.7.3.2.

New-style function definitions are new with the ANSI standard. Thereis aso asmall change in the details of
promotion; the first edition specified that the declarations of f | oat parameters were adjusted to read doubl e.
The difference becomes noticable when a pointer to a parameter is generated within a function.

A complete example of a new-style function definition is
int max(int a, int b, int c)

{
int m

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (45 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

m=(a >b) ? a: b;
return (m>c¢c) ? m: c;

}
Herei nt isthe declaration specifier; max(int a, int b, int c) isthefunction'sdeclarator,
and{ ... } istheblock giving the code for the function. The corresponding old-style definition
would be

int max(a, b, c)
int a, b, c;

{
}

[* ... *

wherenow i nt max(a, b, c) isthedeclarator,andi nt a, b, c; isthedeclaration listfor the
parameters.

A.10.2 External Declarations

External declarations specify the characteristics of objects, functions and other identifiers. The term
“external” refers to their location outside functions, and is not directly connected with the ext er n
keyword; the storage class for an externally-declared object may be left empty, or it may be specified as
externorstatic.

Several external declarations for the same identifier may exist within the same translation unit if they
agree in type and linkage, and if there is at most one definition for the identifier.

Two declarations for an object or function are deemed to agree in type under the rule discussed in
Par.A.8.10. In addition, if the declarations differ because one type is an incomplete structure, union, or

enumeration type (Par.A.8.3) and the other is the corresponding completed type with the same tag, the
types are taken to agree. Moreover, if one type is an incomplete array type (Par.A.8.6.2) and the other is

acompleted array type, the types, if otherwise identical, are also taken to agree. Findly, if one type
specifies an old-style function, and the other an otherwise identical new-style function, with parameter
declarations, the types are taken to agree.

If the first external declarator for afunction or object includesthe st at i ¢ specifier, the identifier has
internal linkage; otherwise it has external linkage. Linkage is discussed in Par.11.2.

An external declaration for an object isadefinition if it has an initializer. An external object declaration
that does not have an initializer, and does not contain the ext er n specifier, is atentative definition. If a
definition for an object appears in atransation unit, any tentative definitions are treated merely as

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (46 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

redundant declarations. If no definition for the object appears in the trandation unit, all its tentative
definitions become a single definition with initializer O.

Each object must have exactly one definition. For objects with internal linkage, this rule applies
separately to each trandation unit, because internally-linked objects are unique to atransation unit. For
objects with external linkage, it appliesto the entire program.

Although the one-definition rule is formulated somewhat differently in the first edition of this book, it isin effect
identical to the one stated here. Some implementations relax it by generalizing the notion of tentative definition. In
the alternate formulation, which isusual in UNIX systems and recognized as a common extension by the
Standard, all the tentative definitions for an externally linked object, throughout all the trandation units of the
program, are considered together instead of in each trandlation unit separately. If a definition occurs somewhere in
the program, then the tentative definitions become merely declarations, but if no definition appears, then all its
tentative definitions become a definition with initializer O.

A.11 Scope and Linkage

A program need not all be compiled at one time: the source text may be kept in several files containing
translation units, and precompiled routines may be loaded from libraries. Communication among the
functions of a program may be carried out both through calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, the lexical scope of an identifier which isthe
region of the program text within which the identifier's characteristics are understood; and second, the
scope associated with objects and functions with external linkage, which determines the connections
between identifiersin separately compiled translation units.

A.11.1 Lexical Scope

Identifiers fall into several name spaces that do not interfere with one another; the same identifier may be
used for different purposes, even in the same scope, if the uses are in different name spaces. These
classes are: objects, functions, typedef names, and enumconstants; labels; tags of structures or unions,
and enumerations; and members of each structure or union individually.

Theserules differ in several ways from those described in the first edition of this manual. Labels did not
previously have their own name space; tags of structures and unions each had a separate space, and in some
implementations enumerations tags did as well; putting different kinds of tags into the same spaceisanew
restriction. The most important departure from the first edition is that each structure or union creates a separate
name space for its members, so that the same name may appear in several different structures. This rule has been
common practice for several years.

The lexical scope of an object or function identifier in an external declaration begins at the end of its

declarator and persists to the end of the trandlation unit in which it appears. The scope of a parameter of a
function definition begins at the start of the block defining the function, and persists through the

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (47 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

function; the scope of a parameter in afunction declaration ends at the end of the declarator. The scope
of an identifier declared at the head of a block begins at the end of its declarator, and persists to the end
of the block. The scope of alabel isthe whole of the function in which it appears. The scope of a
structure, union, or enumeration tag, or an enumeration constant, begins at its appearance in atype
specifier, and persists to the end of atrandation unit (for declarations at the external level) or to the end
of the block (for declarations within a function).

If an identifier is explicitly declared at the head of a block, including the block constituting a function,
any declaration of the identifier outside the block is suspended until the end of the block.

A.11.2 Linkage

Within atranglation unit, all declarations of the same object or function identifier with internal linkage
refer to the same thing, and the object or function is unique to that translation unit. All declarations for
the same object or function identifier with external linkage refer to the same thing, and the object or
function is shared by the entire program.

Asdiscussed in Par.A.10.2, the first external declaration for an identifier gives the identifier internal
linkage if the st at i ¢ specifier isused, external linkage otherwise. If a declaration for an identifier
within a block does not include the ext er n specifier, then the identifier has no linkage and is unique to
the function. If it doesinclude ext er n, and an external declaration for is active in the scope
surrounding the block, then the identifier has the same linkage as the external declaration, and refersto
the same object or function; but if no external declaration isvisible, itslinkage is external.

A.12 Preprocessing

A preprocessor performs macro substitution, conditional compilation, and inclusion of named files. Lines
beginning with #, perhaps preceded by white space, communicate with this preprocessor. The syntax of
these linesis independent of the rest of the language; they may appear anywhere and have effect that
lasts (independent of scope) until the end of the trandation unit. Line boundaries are significant; each
lineis analyzed individually (bus see Par.A.12.2 for how to adjoin lines). To the preprocessor, atoken is
any language token, or a character sequence giving afile name asin the#i ncl ude directive
(Par.A.12.4); in addition, any character not otherwise defined is taken as a token. However, the effect of

white spaces other than space and horizontal tab is undefined within preprocessor lines.

Preprocessing itself takes place in several logically successive phases that may, in a particular
implementation, be condensed.

1. Firgt, trigraph sequences as described in Par.A.12.1 are replaced by their equivalents. Should the

operating system environment require it, newline characters are introduced between the lines of
the sourcefile.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (48 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

2. Each occurrence of a backslash character \ followed by a newline is deleted, this splicing lines
(Par.A.12.2).

3. The program is split into tokens separated by white-space characters; comments are replaced by a
single space. Then preprocessing directives are obeyed, and macros (Pars.A.12.3-A.12.10) are

expanded.
4. Escape sequences in character constants and string literals (Pars. A.2.5.2, A.2.6) are replaced by

their equivalents; then adjacent string literals are concatenated.

5. Theresult istrandated, then linked together with other programs and libraries, by collecting the
necessary programs and data, and connecting external functions and object references to their
definitions.

A.12.1 Trigraph Sequences

The character set of C source programs is contained within seven-bit ASCII, but is a superset of the ISO
646-1983 Invariant Code Set. In order to enable programs to be represented in the reduced set, all
occurrences of the following trigraph sequences are replaced by the corresponding single character. This
replacement occurs before any other processing.

7= # 220 [27< |
22/ \ 22)] 27>)

2?0 A 221 | ?27- ~

No other such replacements occur.

Trigraph sequences are new with the ANSI standard.

A.12.2 Line Splicing

Lines that end with the backslash character \ are folded by deleting the backslash and the following
newline character. This occurs before division into tokens.

A.12.3 Macro Definition and Expansion
A control line of the form
defi ne identifier token-sequence

causes the preprocessor to replace subsequent instances of the identifier with the given sequence of
tokens; leading and trailing white space around the token sequence is discarded. A second #def i ne for
the same identifier is erroneous unless the second token sequence isidentical to the first, where all white

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (49 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Space separations are taken to be equivalent.
A line of the form
def i ne identifier (identifier-list) token-sequence

where there is no space between the first identifier and the (, is amacro definition with parameters given
by the identifier list. Aswith the first form, leading and trailing white space arround the token sequence
Is discarded, and the macro may be redefined only with a definition in which the number and spelling of
parameters, and the token sequence, isidentical.

A control line of the form
undef identifier

causes the identifier's preprocessor definition to be forgotten. It is not erroneous to apply #undef to an
unknown identifier.

When a macro has been defined in the second form, subsequent textual instances of the macro identifier
followed by optional white space, and then by (, a sequence of tokens separated by commas, and a)
constitute a call of the macro. The arguments of the call are the comma-separated token sequences,
commas that are quoted or protected by nested parentheses do not separate arguments. During collection,
arguments are not macro-expanded. The number of argumentsin the call must match the number of
parameters in the definition. After the arguments are isolated, leading and trailing white space is removed
from them. Then the token sequence resulting from each argument is substituted for each unquoted
occurrence of the corresponding parameter's identifier in the replacement token sequence of the macro.
Unless the parameter in the replacement sequence is preceded by #, or preceded or followed by ##, the
argument tokens are examined for macro calls, and expanded as necessary, just before insertion.

Two special operators influence the replacement process. First, if an occurrence of a parameter in the
replacement token sequence isimmediately preceded by #, string quotes (") are placed around the
corresponding parameter, and then both the # and the parameter identifier are replaced by the quoted
argument. A\ character isinserted beforeeach™ or\ character that appears surrounding, or inside, a
string literal or character constant in the argument.

Second, if the definition token sequence for either kind of macro contains a## operator, then just after
replacement of the parameters, each ## is deleted, together with any white space on either side, so asto
concatenate the adjacent tokens and form a new token. The effect is undefined if invalid tokens are
produced, or if the result depends on the order of processing of the ## operators. Also, ## may not
appear at the beginning or end of a replacement token sequence.

In both kinds of macro, the replacement token sequence is repeatedly rescanned for more defined

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (50 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

identifiers. However, once a given identifier has been replaced in agiven expansion, it is not replaced if
it turns up again during rescanning; instead it is left unchanged.

Even if the final value of a macro expansion begins with with #, it is not taken to be a preprocessing
directive.

The details of the macro-expansion process are described more precisely in the ANSI standard than in the first
edition. The most important change is the addition of the # and ## operators, which make quotation and
concatenation admissible. Some of the new rules, especially those involving concatenation, are bizarre. (See
example below.)

For example, thisfacility may be used for *"manifest-constants,” asin

#defi ne TABSI ZE 100
I nt tabl e[TABSI ZE] ;

The definition
#define ABSDI FF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))

defines a macro to return the absolute value of the difference between its arguments. Unlike afunction to
do the same thing, the arguments and returned value may have any arithmetic type or even be pointers.
Also, the arguments, which might have side effects, are evaluated twice, once for the test and once to
produce the value.

Given the definition
#define tenpfile(dir) #dir "9

themacrocal t enpfil e(/usr/tnp) yieds
“lfusr/tnp" "9s"

which will subsequently be catenated into a single string. After
#define cat(x, Yy) X ## y

thecall cat (var, 123) yieldsvar 123. However, thecal cat (cat (1, 2), 3) isundefined: the
presence of ## prevents the arguments of the outer call from being expanded. Thus it produces the token
string

cat (1 , 2)3

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (51 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

and) 3 (the catenation of the last token of the first argument with the first token of the second) is not a
legal token. If asecond level of macro definition is introduced,

#define xcat (x, YY) cat (x,y)

things work more smoothly; xcat (xcat (1, 2), 3) doesproduce 123, because the expansion of
xcat itself does not involve the ## operator.

Likewise, ABSDI FF(ABSDI FF(a, b), c) produces the expected, fully-expanded result.

A.12.4 File Inclusion

A control line of theform
1 ncl ude <filename>

causes the replacement of that line by the entire contents of the file filename. The charactersin the name

filename must not include > or newline, and the effect is undefined if it containsany of ", ,\ ,or/ *.
The named file is searched for in a sequence of implementation-defined places.

Similarly, a control line of the form
i ncl ude "filename"

searches first in association with the original source file (a deliberately implementati on-dependent
phrase), and if that search fails, then asin the first form. The effect of using' ,\ , or / * in the filename
remains undefined, but > is permitted.

Finally, adirective of the form
i1 ncl ude token-sequence

not matching one of the previous formsis interpreted by expanding the token sequence as for normal
text; one of thetwo formswith<. .. >or"..." must result, and is then treated as previously
described.

#i ncl ude files may be nested.

A.12.5 Conditional Compilation

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (52 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Parts of a program may be compiled conditionally, according to the following schematic syntax.

preprocessor-conditional:
if-line text elif-parts else-partyy #endi f

if-line;

1 f constant-expression
i fdef identifier

i fndef identifier

eif-parts:
elif-line text
elif-partsyy

eif-line:
el i f constant-expression

else-part:
else-line text

ese-line;
t#el se

Each of the directives (if-line, elif-line, else-line, and #endi f) appears alone on aline. The constant
expressionsin #i f and subsequent #el i f lines are evaluated in order until an expression with a non-
zero valueis found; text following aline with a zero value is discarded. The text following the successful
directive lineistreated normally. ~"Text" here refers to any material, including preprocessor lines, that is
not part of the conditional structure; it may be empty. Once a successful #i f or #el i f line has been
found and its text processed, succeeding #el i f and #el se lines, together with their text, are discarded.
If al the expressions are zero, and there is an #el se, thetext following the #el se istreated normally.
Text controlled by inactive arms of the conditional isignored except for checking the nesting of
conditionals.

The constant expression in#i f and #el i f issubject to ordinary macro replacement. Moreover, any
expressions of the form

def i ned identifier
or

def i ned (identifier)

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (53 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

are replaced, before scanning for macros, by 1L if the identifier is defined in the preprocessor, and by OL
iIf not. Any identifiers remaining after macro expansion are replaced by OL. Finally, each integer constant
Is considered to be suffixed with L, so that all arithmetic is taken to be long or unsigned long.

The resulting constant expression (Par.A.7.19) is restricted: it must be integral, and may not contain
si zeof , acadt, or an enumeration constant.

The control lines

#i f def identifier
#i f ndef identifier

are equivalent to

i1 f defi ned identifier
1f | definedidentifier

respectively.

#el i f isnew since the first edition, although it has been available is some preprocessors. Thedef i ned
preprocessor operator is also new.

A.12.6 Line Control

For the benefit of other preprocessors that generate C programs, aline in one of the forms

|1 ne constant " filename"
| I ne constant

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
lineis given by the decimal integer constant and the current input file is named by the identifier. If the
guoted filename is absent, the remembered name does not change. Macros in the line are expanded
before it isinterpreted.

A.12.7 Error Generation

A preprocessor line of the form

error token-sequenceyy

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (54 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

causes the preprocessor to write a diagnostic message that includes the token sequence.

A.12.8 Pragmas

A control line of theform
pragnma token-sequenceopt

causes the preprocessor to perform an implementation-dependent action. An unrecognized pragmais
ignored.

A.12.9 Null directive
A control line of theform
#

has no effect.

A.12.10 Predefined names

Several identifiers are predefined, and expand to produce special information. They, and also the
preprocessor expansion operator def i ned, may not be undefined or redefined.

__LINE__ A decimal constant containing the current source line number.

__FILE__ A string literal containing the name of the file being compiled.

___DATE__ A string literal containing the date of compilation, in the form " Mmm dd yyyy"
__TIME__ A string literal containing the time of compilation, in the form " hh: nm ss”

STDC The constant 1. It isintended that thisidentifier be defined to be 1 only in standard-
— — conforming implementations.

#er ror and #pr agma are new with the ANSI standard; the predefined preprocessor macros are new, but some
of them have been available in some implementations.

A.13 Grammar

Below is arecapitulation of the grammar that was given throughout the earlier part of this appendix. It
has exactly the same content, but isin different order.

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (55 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

The grammar has undefined terminal symbols integer-constant, character-constant, floating-constant,
identifier, string, and enumeration-constant; thet ypewr i t er style words and symbols are terminals
given literally. This grammar can be transformed mechanically into input acceptable for an automatic
parser-generator. Besides adding whatever syntactic marking is used to indicate alternatives in
productions, it is necessary to expand the ““one of" constructions, and (depending on the rules of the
parser-generator) to duplicate each production with an opt symbol, once with the symbol and once
without. With one further change, namely deleting the production typedef-name: identifier and making
typedef-name a terminal symbol, this grammar is acceptable to the Y ACC parser-generator. It has only
one conflict, generated by thei f - el se ambiguity.

trand ation-unit:
external-declaration
trand ation-unit exter nal-declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiersy, declarator declaration-listyy compound-statement

declaration:
declaration-specifiers init-declarator-listyy;

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersyy
type-specifier declaration-specifiersyy
type-qualifier declaration-specifier sy

storage-class specifier: one of
auto register static extern typedef

type specifier: one of
void char short int long float doubl e signed
unsi gned struct-or-union-specifier enum-specifier typedef-name

type-qualifier: one of

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (56 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

const volatile

struct-or-union-specifier:
struct-or-union identifier o { struct-declaration-list }
struct-or-union identifier

struct-or-union: one of
struct union

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

init-declarator-list:
init-declarator
init-declarator-list, init-declarator

init-declarator:
declarator
declarator = initializer

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listyy
type-qualifier specifier-qualifier-listyp

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

struct-declarator:
declarator
declaratorqy : constant-expression

enum-specifier:
enumidentifieryy { enumerator-list }
enumidentifier

enumer ator -list;

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (57 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

enumer ator
enumerator-list, enumerator

enumer ator:
identifier
identifier = constant-expression

declarator:
pointer o direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressiong]

direct-declarator (parameter-type-list)
direct-declarator (identifier-listgy)

pointer:
* type-qualifier-| istOpt
* type-qualifier-listoy pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
par ameter-declaration
parameter-list, parameter-declaration

parameter-declar ation:
declaration-specifiers declarator
declaration-specifiers abstract-declarator

identifier-list:

identifier
identifier-list , identifier

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (58 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual
initializer:
assignment-expression
{ initializer-list }
{ initializer-list, }
initializer-list:
initializer

initializer-list, initializer

type-name:

specifier-qualifier-list abstract-declarator o

abstract-declarator:
pointer

pointer o direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)

direct-abstract-declarator y [constant-expressiongy]
direct-abstract-declarator y (parameter-type-list)

typedef-name:
identifier

Statement:
|abel ed-statement
expr ession-statement
compound-statement
sel ection-statement
iter ation-statement
jump-statement

|abel ed-statement:
identifier : statement

case constant—expr on:

def aul t : statement

expression-statement:
eXpressi ONgyy;

compound-statement:

statement

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (59 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

{ declaration-listy, statement-listy, }

statement-list:
statement
statement-list statement

sel ection-statement:
| f (expression) statement
| f (expression) statement el se statement
swW t ch (expression) statement

iteration-statement:

whi | e (expression) statement

do statement whi | e (expression);

for (expressiongy; expressiongy; expressiongyy) statement

jump-statement:
got o identifier;
conti nue;
br eak;
ret ur n expressiongy;

expression:
assi gnment-expression
expression, assignment-expression

assignment-expression:
conditional -expression

unary-expression assignment-operator assignment-expression

assignment-oper ator: one of
= *= [= O += -= <<= >>= :/\:|:

conditional -expression:
logical-OR-expression

logical-OR-expression ? expression : conditional-expression

constant-expression:
conditional -expression

logi cal-OR-expression:

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (60 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

logical-AND-expression
logical-OR-expression | | logical-AND-expression

logical-AND-expression:
Inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression AND-expression

AND-expression:
equality-expression
AND-expression & equality-expression

equality-expression:
relational -expression
equality-expression == relational-expression
equality-expression ! = relational-expression

relational-expression:
shift-expression
relational -expression < shift-expression
relational-expression > shift-expression
relational -expression <= shift-expression
relational -expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (61 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

multiplicative-expression * cast-expression
multiplicative-expression/ cast-expression
multiplicative-expression %cast-expression

cast-expression:
unary expression
(type-name) cast-expression

unary-expression:
postfix expression
++Unary expression
- - unary expression
unary-operator cast-expression
si zeof unary-expression
si zeof (type-name)

unary operator: one of
& * + - ~ I

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(ar gument-expression-list)
postfix-expression.identifier
postfix-expression- >+identifier
postfix-expression++
postfix-expression- -

primary-expression:
identifier
constant
string
(expression)

argument-expression-list:
ass gnment-expression
assignment-expression-list, assignment-expression

constant:
integer-constant
character-constant
floating-constant

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (62 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

enumer ation-constant

The following grammar for the preprocessor summarizes the structure of control lines, but is not suitable
for mechanized parsing. It includes the symbol text, which means ordinary program text, non-conditional
preprocessor control lines, or complete preprocessor conditional instructions.

control-line:

def i ne identifier token-sequence

def i ne identifier(identifier, ... , identifier) token-sequence
undef identifier

I ncl ude <filename>

I ncl ude " filename"

| i ne constant " filename"

| i ne constant

error token-sequenceyy

pragma token-sequence

O O R KR E RN

preprocessor-conditional

preprocessor-conditional:
if-line text elif-parts elsepartopt #endi f

if-line:

i f constant-expression
ifdef identifier

i fndef identifier

eif-parts:
elif-line text
elif-partsyy

eif-line:
el i f constant-expression

else-part:
else-line text

else-line;
#el se

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (63 of 64) [9/6/2002 12:23:40]

Appendix A - Reference Manual

Back to Chapter 8 -- Index -- Appendix B

http://freebooks.by.ru/view/CProgrammingLanguage/appa.html (64 of 64) [9/6/2002 12:23:40]

Appendix B - Standard Library

Back to Appendix A -- Index -- Appendix C

Appendix B - Standard Library

This appendix is asummary of the library defined by the ANSI standard. The standard library is not part
of the C language proper, but an environment that supports standard C will provide the function
declarations and type and macro definitions of thislibrary. We have omitted afew functions that are of
limited utility or easily synthesized from others; we have omitted multi-byte characters; and we have
omitted discussion of locale issues; that is, properties that depend on local language, nationality, or
culture.

The functions, types and macros of the standard library are declared in standard headers:
<assert.h> <float.h> <mat h. h> <stdarg. h> <stdlib.h>
<ctype.h> <limts.h> <setjnp.h> <stddef.h> <string.h>
<errno. h> <l ocal e. h> <signal.h> <stdio.h> <tinme. h>

A header can be accessed by

#i ncl ude <header>

Headers may be included in any order and any number of times. A header must be included outside of
any external declaration or definition and before any use of anything it declares. A header need not be a
sourcefile.

External identifiers that begin with an underscore are reserved for use by the library, asare all other
identifiers that begin with an underscore and an upper-case letter or another underscore.

B.1 Input and Output: <stdio.h>

The input and output functions, types, and macros defined in <st di 0. h> represent nearly one third of
thelibrary.

A streamis a source or destination of data that may be associated with a disk or other peripheral. The
library supports text streams and binary streams, although on some systems, notably UNIX, these are
identical. A text stream is a sequence of lines; each line has zero or more characters and is terminated by

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (1 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

"\ n' . An environment may need to convert atext stream to or from some other representation (such as
mapping ' \ n' to carriage return and linefeed). A binary stream is a sequence of unprocessed bytes that
record internal data, with the property that if it is written, then read back on the same system, it will
compare equal.

A stream is connected to afile or device by opening it; the connection is broken by closing the stream.
Opening afile returns a pointer to an object of type FI LE, which records whatever information is
necessary to control the stream. We will use "file pointer” and " stream™ interchangeably when thereis
no ambiguity.

When a program begins execution, the three streams st di n, st dout , and st der r are already open.

B.1.1 File Operations

The following functions deal with operations on files. Thetypesi ze t isthe unsigned integral type
produced by the si zeof operator.

FI LE *fopen(const char *fil ename, const char *node)
f open opens the named file, and returns a stream, or NULL if the attempt fails. Legal valuesfor
node include:

r" opentextfilefor reading

"w' create text file for writing; discard previous contents if any
"a" append; open or create text file for writing at end of file
"r+" open text file for update (i.e., reading and writing)

"wt" create text file for update, discard previous contents if any
"a+" append; open or create text file for update, writing at end

Update mode permits reading and writing the samefile; f f | ush or afile-positioning function
must be called between aread and awrite or vice versa. If the mode includes b after the initial
letter, asin" r b" or " w+b", that indicates abinary file. Filenames are limited to

FI LENAME MAX characters. At most FOPEN MAX files may be open at once.

FILE *freopen(const char *filenanme, const char *node, FILE *stream
f r eopen opensthe file with the specified mode and associates the stream with it. It returns
st ream or NULL if an error occurs. f r eopen isnormally used to change the files associated
with st di n, st dout, or st derr.

int fflush(FILE *stream
On an output stream, f f | ush causes any buffered but unwritten data to be written; on an input

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (2 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

stream, the effect is undefined. It returns EOF for awrite error, and zero otherwise.
ffl ush(NULL) flushesall output streams.

int fclose(FILE *stream
f cl ose flushes any unwritten datafor st r eam discards any unread buffered input, frees any
automatically allocated buffer, then closes the stream. It returns ECF if any errors occurred, and
zero otherwise.

i nt renove(const char *fil enane)
r enove removes the named file, so that a subsequent attempt to open it will fail. It returns non-
zero if the attempt fails.

I nt renane(const char *ol dnane, const char *newnane)
r enanme changes the name of afile; it returns non-zero if the attempt fails.

FILE *tnpfil e(void)
t npf i | e creates atemporary file of mode " wh+" that will be automatically removed when
closed or when the program terminates normally. t npf i | e returns a stream, or NULL if it could
not create thefile.

char *tnpnan(char s[L_tnpnam)
t mpnan(NULL) createsastring that is not the name of an existing file, and returns a pointer to
an internal static array. t npnani(s) storesthestringins aswell asreturning it as the function
value; s must have room for at least L_t npnamcharacters. t npnamgenerates a different name
each time it is called; at most TMP_MAX different names are guaranteed during execution of the
program. Note that t npnamcreates a name, not afile.

i nt setvbuf (FILE *stream char *buf, int node, size t size)
set vbuf controls buffering for the stream,; it must be called before reading, writing or any other
operation. A node of _| OFBF causes full buffering, | OLBF line buffering of text files, and
_ | ONBF no buffering. If buf isnot NULL, it will be used as the buffer, otherwise a buffer will be
allocated. si ze determines the buffer size. set vbuf returns non-zero for any error.

voi d set buf (FILE *stream char *buf)
If buf isNULL, buffering isturned off for the stream. Otherwise, set buf isequivalent to
(void) setvbuf(stream buf, _|OFBF, BUFSIZ2).

B.1.2 Formatted Output

Thepri ntf functions provide formatted output conversion.

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (3 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

int fprintf(FILE *stream const char *format, ...)

f printf convertsand writes output to st r eamunder the control of f or mat . The return valueisthe
number of characters written, or negative if an error occurred.

The format string contains two types of objects: ordinary characters, which are copied to the output
stream, and conversion specifications, each of which causes conversion and printing of the next
successive argument to f pr i nt f . Each conversion specification begins with the character %and ends
with a conversion character. Between the %and the conversion character there may be, in order:

« Flags (in any order), which modify the specification:

o -, which specifies |eft adjustment of the converted argument in itsfield.

o+, which specifies that the number will always be printed with asign.

o space: if the first character is not asign, a space will be prefixed.

o 0: for numeric conversions, specifies padding to the field width with leading zeros.

o #, which specifies an alternate output form. For o, the first digit will become zero. For x or
X, 0x or OX will be prefixed to anon-zero result. For e, E, f , g, and G the output will
aways have adecimal point; for g and G, trailing zeros will not be removed.

« A number specifying a minimum field width. The converted argument will be printed in afield at
least thiswide, and wider if necessary. If the converted argument has fewer characters than the
field width it will be padded on the left (or right, if left adjustment has been requested) to make up
the field width. The padding character is normally space, but is O if the zero padding flag is
present.

« A period, which separates the field width from the precision.

« A number, the precision, that specifies the maximum number of charactersto be printed from a
string, or the number of digits to be printed after the decimal point for e, E, or f conversions, or
the number of significant digitsfor g or Gconversion, or the number of digitsto be printed for an
integer (leading Oswill be added to make up the necessary width).

. A length modifier h, | (letter ell), or L. “"h" indicates that the corresponding argument isto be
printed asashort orunsi gned short; | "indicatesthat theargumentisal ong or
unsi gned | ong, "L"indicatesthat theargumentisal ong doubl e.

Width or precision or both may be specified as*, in which case the value is computed by converting the
next argument(s), which must bei nt .

The conversion characters and their meanings are shown in Table B.1. If the character after the %isnot a
conversion character, the behavior is undefined.

Table B.1 Printf Conversions

Character Argument type; Printed As

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (4 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

d, i I nt ; signed decimal notation.
0 I nt ; unsigned octal notation (without aleading zero).
% X unsi gned i nt ; unsigned hexadecimal notation (without aleading Ox or 0X), using
’ abcdef for Ox or ABCDEF for OX.
u I nt ; unsigned decimal notation.
C I nt ; single character, after conversionto unsi gned char
S char *; charactersfrom the string are printed until a' \ 0" isreached or until the number
of charactersindicated by the precision have been printed.
¢ doubl e; decimal notation of the form [-] mmm.ddd, where the number of d'sis given by
the precision. The default precision is 6; aprecision of O suppresses the decimal point.
doubl e; decimal notation of the form [-] m.dddddde+/ - xx or [-]| m.ddddddE+/ - xx,
e, E where the number of d'sis specified by the precision. The default precision is 6; a precision
of O suppresses the decimal point.
G doubl e; % or % is used if the exponent isless than -4 or greater than or equal to the
g, precision; otherwise % isused. Trailing zeros and atrailing decimal point are not printed.
p voi d *; print as apointer (implementati on-dependent representation).
n I nt *; the number of characterswritten so far by thiscall topri nt f iswritten into the
argument. No argument is converted.
% no argument is converted; print a %
int printf(const char *format, ...)
printf(...) isequivdenttofprintf(stdout, ...).
int sprintf(char *s, const char *format, ...)
sprintf isthesameaspri ntf except that the output iswritten into the string s, terminated
with' \ 0' . s must be big enough to hold the result. The return count does not includethe' \ 0" .
int vprintf(const char *format, va list argQ)
int viprintf(FILE *stream const char *format, va list argQ)
int vsprintf(char *s, const char *format, va |ist arg)

Thefunctionsvprintf,vfprintf,andvsprintf areequivaent to the corresponding
pri ntf functions, except that the variable argument list is replaced by ar g, which has been
initialized by theva_st art macro and perhapsva_ar g calls. See the discussion of

<st dar g. h>in Section B.7.

B.1.3 Formatted Input

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (5 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

Thescanf function deals with formatted input conversion.
i nt fscanf(FILE *stream const char *format, ...)

f scanf readsfrom st r eamunder control of f or mat , and assigns converted values through
subsequent arguments, each of which must be a pointer. It returnswhen f or mat is exhausted. f scanf
returns EOF if end of file or an error occurs before any conversion; otherwise it returns the number of
Input items converted and assigned.

The format string usually contains conversion specifications, which are used to direct interpretation of
input. The format string may contain:

. Blanks or tabs, which are not ignored.

. Ordinary characters (not %), which are expected to match the next non-white space character of
the input stream.

. Conversion specifications, consisting of a % an optional assignment suppression character * , an
optional number specifying a maximum field width, an optional h, | , or L indicating the width of
the target, and a conversion character.

A conversion specification determines the conversion of the next input field. Normally the result is
placed in the variable pointed to by the corresponding argument. If assignment suppression is indicated
by *, asin % s, however, the input field is simply skipped; no assignment is made. Aninput field is
defined as a string of non-white space characters; it extends either to the next white space character or
until the field width, if specified, is exhausted. Thisimpliesthat scanf will read across line boundaries
to find itsinput, since newlines are white space. (White space characters are blank, tab, newline, carriage
return, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The corresponding argument must
be a pointer. The legal conversion characters are shown in Table B.2.

The conversion charactersd, i , n, 0, u, and X may be preceded by h if the argument is a pointer to
short rather thanint, or by | (letter ell) if the argument isapointer to | ong. The conversion characters
e, f,and g may be preceded by | if apointer to doubl e rather thanf | oat isinthe argument list, and
by L if apointertoal ong doubl e.

Table B.2 Scanf Conversions

Character Input Data; Argument type
d decimal integer; i nt *
[integer; i nt *. Theinteger may bein octal (leading 0) or hexadecimal (leading Ox or 0X).

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (6 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

0 octal integer (with or without leading zero); i nt *.

u unsigned decimal integer; unsi gned int *.

X hexadecimal integer (with or without leading Ox or 0X); i nt *.
characters; char * . The next input characters are placed in the indicated array, up to the

c number given by the width field; the defaultis1. No' \ 0" isadded. The normal skip over
white space charactersis suppressed in this case; to read the next non-white space
character, use %4 s.

S string of non-white space characters (not quoted); char *, pointing to an array of
characters large enough to hold the string and aterminating ' \ 0" that will be added.
floating-point number; f | oat *. Theinput format for f | oat 'sisan optional sign, a

e,f,g string of numbers possibly containing a decimal point, and an optional exponent field
containing an E or e followed by a possibly signed integer.

p pointer valueasprinted by pri ntf (" %");,void *.

n writes into the argument the number of characters read so far by thiscall; i nt *. Noinput
Isread. The converted item count is not incremented.

[] matches the longest non-empty string of input characters from the set between brackets;

o char *.A'\0' isadded.[]...] includes] inthe set.
[matches the longest non-empty string of input characters not from the set between brackets;
' char *.A'\0' isadded.["] ...] includes] inthe set.
% literal %; no assignment is made.
I nt scanf(const char *format, ...)
scanf (...) isidentical tof scanf (stdin, ...).
I nt sscanf(const char *s, const char *format, ...)
sscanf (s, ...) isequivalenttoscanf (...) exceptthat theinput characters are taken

fromthestring s.

B.1.4 Character Input and Output Functions

int fgetc(FILE *strean)
f get c returnsthe next character of st r eamasanunsi gned char (convertedtoani nt), or
ECF if end of file or error occurs.

char *fgets(char *s, int n, FILE *stream
f get s reads at most the next n- 1 charactersinto the array s, stopping if anewlineis
encountered; the newline isincluded in the array, whichisterminated by ' \ 0' . f get s returnss,
or NULL if end of file or error occurs.

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (7 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

int fputc(int ¢, FILE *stream
f put ¢ writesthe character ¢ (convertedto anunsi gend char) onst r eam It returnsthe
character written, or EOF for error.

I nt fputs(const char *s, FILE *strean
f put s writesthe string s (which need not contain\ n) on st r eam it returns non-negative, or
ECF for an error.

I nt getc(FILE *stream
get c isequivalenttof get ¢ except that if it isamacro, it may evaluate st r eammore than
once.

I nt getchar (void)
get char isequivaenttoget c(stdin).

char *gets(char *s)
get s reads the next input line into the array s; it replaces the terminating newlinewith ' \ 0" . It
returns s, or NULL if end of file or error occurs.

int putc(int c, FILE *strean)
put c isequivalent to f put ¢ except that if it isamacro, it may evaluate st r eammore than
once.

I nt putchar(int c)
put char (c) isequivalenttoput c(c, stdout).

I nt puts(const char *s)
put s writesthe string s and anewlineto st dout . It returns ECF if an error occurs, non-
negative otherwise.

I nt ungetc(int c, FILE *strean)
unget c pushesc (converted to anunsi gned char) back onto st r eam whereit will be
returned on the next read. Only one character of pushback per stream is guaranteed. EOF may not
be pushed back. unget c returns the character pushed back, or EOF for error.

B.1.5 Direct Input and Output Functions

size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream
f r ead readsfrom st r eaminto thearray pt r at most nobj objectsof sizesi ze.fread
returns the number of objects read; this may be less than the number requested. f eof and
f er r or must be used to determine status.

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (8 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

size t fwite(const void *ptr, size t size, size_t nobj, FILE *stream
fwrite writes, fromthearray pt r, nobj objectsof sizesi ze onst r eam It returns the
number of objects written, whichislessthan nobj on error.

B.1.6 File Positioning Functions

i nt fseek(FILE *stream |ong offset, int origin)
f seek setsthefile position for st r eam a subsequent read or write will access data beginning at
the new position. For abinary file, the position is set to of f set charactersfromori gi n, which
may be SEEK SET (beginning), SEEK CUR (current position), or SEEK END (end of file). For a
text stream, of f set must be zero, or avaluereturned by ft el | (inwhich caseori gi n must
be SEEK SET). f seek returns non-zero on error.

|l ong ftell (FILE *stream
ftell returnsthe current file position for st r eam or - 1 on error.

void rew nd(FI LE *strean)
rew nd(fp) isequivalenttof seek(fp, OL, SEEK SET); clearerr(fp).

I nt fgetpos(FILE *stream fpos_t *ptr)

f get pos records the current positionin st r eamin * pt r , for subsequent use by f set pos.
Thetypef pos_t issuitable for recording such values. f get pos returns non-zero on error.

I nt fsetpos(FILE *stream const fpos t *ptr)
f set pos positionsst r eamat the position recorded by f get pos in*pt r.f set pos returns
Nnon-zero on error.

B.1.7 Error Functions

Many of the functionsin the library set status indicators when error or end of file occur. These indicators
may be set and tested explicitly. In addition, the integer expression er r no (declared in <er r no. h>)
may contain an error number that gives further information about the most recent error.

void clearerr(FILE *stream
cl ear err clearsthe end of file and error indicatorsfor st r eam

i nt feof (FILE *stream
f eof returnsnon-zero if the end of fileindicator for st r eamis set.

int ferror(FILE *stream

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (9 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

f err or returns non-zero if the error indicator for st r eamis set.

voi d perror(const char *s)
perror(s) printss and an implementation-defined error message corresponding to the integer
inerrno, asif by

fprintf(stderr, "%:. %\n", s, "eror message') ;

Seestrerror in Section B.3.

B.2 Character Class Tests: <ctype.h>

The header <ct ype. h> declares functions for testing characters. For each function, the argument list is
ani nt , whose value must be EOF or representable asan unsi gned char, and the return valueisan

| nt . The functions return non-zero (true) if the argument ¢ satisfies the condition described, and zero if
not.

I sal num(c) isal pha(c) orisdigit(c) istrue

I sal pha(c) isupper(c) orislower(c) istrue

i scntrl (c) control character

I sdigit(c) decimal digit

I sgraph(c) printing character except space

i sl ower (c) lower-case letter

I sprint(c) printing character including space

I spunct (c) printing character except space or letter or digit
| sspace(c) space, formfeed, newline, carriage return, tab, vertical tab
| supper (c) upper-case letter

I sxdi gi t (c) hexadecimal digit

In the seven-bit ASCII character set, the printing charactersare 0x20 (' ') toOx7E (' -');the
control charactersare O NUL to Ox1F (US), and Ox7F (DEL).

In addition, there are two functions that convert the case of letters:

I nt tol ower(c) convert c tolower case
I nt toupper(c) convert c to upper case

If ¢ isan upper-case letter, t ol ower (c) returnsthe corresponding lower-case letter, t oupper (¢)

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (10 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

returns the corresponding upper-case letter; otherwise it returnsc.

B.3 String Functions: <string.h>

There are two groups of string functions defined in the header <st r i ng. h>. Thefirst have names
beginning with st r ; the second have names beginning with mem Except for menmov e, the behavior is
undefined if copying takes place between overlapping objects. Comparison functions treat arguments as

unsi gned char arrays.

In the following table, variabless andt areof typechar *;cs andct areof typeconst char *;
nisof typesi ze _t;andc isani nt convertedtochar.

char *strcpy(s, ct)
char *strncpy(s, ct,n)
char *strcat(s,ct)

char *strncat(s,ct,n)
I nt strcnp(cs, ct)

I nt strncnp(cs, ct,n)

char *strchr(cs,c)
char *strrchr(cs,c)
size_ t strspn(cs,ct)
size_t strcspn(cs,ct)

char *strpbrk(cs,ct)

char *strstr(cs,ct)
size_t strlen(cs)

char *strerror(n)

char *strtok(s,ct)

A sequence of callsof st rt ok(s, ct) splitss into tokens, each delimited by a character from ct . The

copy string ct tostring s, including' \ 0" ; return s.

copy at most n charactersof stringct tos; returns. Pad with' \ Q' 's
if ct hasfewer than n characters.

concatenate string ct to end of string s; return s.

concatenate at most n characters of string ct to string s, terminate s
with' \ 0" ; returns.

compare string ¢s to string ct , return <0 if cs<ct, 0if cs==ct, or
>0if cs>ct.

compare at most n characters of string ¢s to string ct ; return <0 if
cs<ct,O0if cs==ct,or>0if cs>ct.

return pointer to first occurrence of ¢ incs or NULL if not present.
return pointer to last occurrence of ¢ incs or NULL if not present.
return length of prefix of cs consisting of charactersinct .

return length of prefix of cs consisting of charactersnotinct .

return pointer to first occurrence in string cs of any character string ct ,
or NULL if not present.

return pointer to first occurrence of stringct incs, or NULL if not
present.

return length of cs.

return pointer to implementation-defined string corresponding to error
n.

st rt ok searches s for tokens delimited by charactersfromct ; see
below.

first call in asequence hasanon-NULL s, it findsthefirst tokenin s consisting of charactersnotinct ;

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (11 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

it terminates that by overwriting the next character of s with' \ 0" and returns a pointer to the token.
Each subsequent call, indicated by aNULL value of s, returns the next such token, searching from just
past the end of the previousone. st r t ok returns NULL when no further token is found. The string ct
may be different on each call.

Thermem . . functions are meant for manipulating objects as character arrays; the intent is an interface
to efficient routines. In the following table, s andt are of typevoi d *;cs andct areof type const
void *;nisof typesi ze t;andc isani nt convertedtoanunsi gned char.

voi d *nmencpy(s, ct, n) copyn charactersfromct tos, andreturns.
voi d *nmenmove(s, ct, n) sameasnencpy except that it works even if the objects overlap.
I nt mencnp(cs, ct,n) comparethefirst n characters of cs with ct ; return aswith st r cnp.

return pointer to first occurrence of character ¢ incs, or NULL if not
present among the first n characters.

void *nmenset (s, c,n) placecharacter c intofirst n charactersof s, return s.

void *nmenchr(cs, c, n)

B.4 Mathematical Functions: <math.h>

The header <mat h. h> declares mathematical functions and macros.

The macros EDOMand ERANGE (found in <er r no. h>) are non-zero integral constants that are used to
signal domain and range errors for the functions; HUGE VAL isapositivedoubl e value. A domain
error occursif an argument is outside the domain over which the function is defined. On adomain error,
er r no isset to EDOM the return value is implementation-defined. A range error occurs if the result of
the function cannot be represented asadoubl e. If the result overflows, the function returns HUGE VAL
with the right sign, and er r no is set to ERANGE. If the result underflows, the function returns zero;
whether er r no is set to ERANGE is implementation-defined.

In the following table, x and y are of typedoubl e, nisani nt, and all functionsreturn doubl e.
Anglesfor trigonometric functions are expressed in radians.

si n(x) sine of X

cos(x) cosine of x

t an(x) tangent of x

asi n(x) sinl(x) in range [-pi/2,pi/2], x in [-1,1].
acos(x) cos1(x) inrange[O,pi], x in[-1,1].

at an(x) tan-1(x) in range [-pi/2,pi/2].

at an2(y, x) tan-1(y/x) in range [-pi,pi].

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (12 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

si nh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

t anh(x) hyperbolic tangent of x

exp(x) exponential function ex

| og(x) natural logarithm In(x), x>0.

| 0g10(x) base 10 logarithm log,o(x), X>0.

DOW(X,) ;(rﬁeAgecrlf)main error occursif x=0and y<=0, or if x<O and y is not an
sgrt (x) sgare root of x, x>=0.

ceil (x) smallest integer not lessthan x, asadoubl e.
fl oor (x) largest integer not greater than x, asadoubl e.
fabs(x) absolute value [X|

| dexp(x, n) X*2n

splits x into a normalized fraction in the interval [1/2,1) which is returned,
frexp(x, int *ip) andapowerof 2, whichisstoredin*exp. If xiszero, both parts of the
result are zero.

splits x into integral and fractional parts, each with the same sign asx. It
storestheintegral part in * i p, and returns the fractional part.

floating-point remainder of x/y, with the same sign as x. If y is zero, the
result is implementation-defined.

modf (x, doubl e *ip)

f mod(x, y)

B.5 Utility Functions: <stdlib.h>

The header <st dl i b. h> declares functions for number conversion, storage allocation, and similar
tasks.

doubl e atof (const char *s)
at of convertss todoubl e;itisequivalenttostrtod(s, (char**)NULL).

I nt atoi (const char *s)
convertss toi nt ;itisequivaentto(int)strtol (s, (char**)NULL, 10).

| ong atol (const char *s)
convertss tol ong; itisequivaenttostrtol (s, (char**)NULL, 10).

doubl e strtod(const char *s, char **endp)
st rt od convertsthe prefix of s to doubl e, ignoring leading white space; it stores a pointer to

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (13 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

| ong

any unconverted suffix in* endp unlessendp isNULL. If the answer would overflow,
HUGE VAL isreturned with the proper sign; if the answer would underflow, zero isreturned. In
either caseer r no is set to ERANGE.

strtol (const char *s, char **endp, int base)

strtol convertsthe prefix of s tol ong, ignoring leading white space; it stores a pointer to any
unconverted suffix in * endp unlessendp isNULL. If base isbetween 2 and 36, conversionis
done assuming that the input is written in that base. If base is zero, the base is 8, 10, or 16;
leading O implies octal and leading Ox or 0X hexadecimal. Letters in either case represent digits
from 10 to base- 1; aleading Ox or OX is permitted in base 16. If the answer would overflow,
LONG_MAX or LONG_M Nisreturned, depending on the sign of the result, and er r no is set to
ERANGE.

unsi gned | ong strtoul (const char *s, char **endp, int base)

I nt

voi d

voi d

voi d

voi d

voi d

strtoul isthesameasstrt ol exceptthat theresultisunsi gned | ong and the error value
isULONG_MAX.

rand(voi d)

r and returns a pseudo-random integer in the range 0 to RAND_MAX, whichis at least 32767.

srand(unsi gned i nt seed)
srand usesseed asthe seed for a new sequence of pseudo-random numbers. Theinitial seed is
1.

*cal l oc(size_t nobj, size t size)
cal | oc returns apointer to space for an array of nobj objects, each of sizesi ze, or NULL if
the request cannot be satisfied. The space isinitialized to zero bytes.

*mal | oc(size t size)
mal | oc returns a pointer to space for an object of sizesi ze, or NULL if the request cannot be
satisfied. The spaceis uninitialized.

*realloc(void *p, size_t size)

r eal | oc changesthe size of the object pointed to by p to si ze. The contents will be
unchanged up to the minimum of the old and new sizes. If the new sizeislarger, the new spaceis
uninitialized. r eal | oc returns a pointer to the new space, or NULL if the request cannot be
satisfied, in which case * p is unchanged.

free(void *p)
f r ee deallocates the space pointed to by p; it does nothing if p isNULL. p must be a pointer to
space previoudly alocated by cal | oc, mal | oc,orreal | oc.

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (14 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

voi d abort (void)
abor t causesthe program to terminate abnormally, asif by r ai se(SI GABRT) .

void exit(int status)
exi t causesnormal program termination. at exi t functions are called in reverse order of
registration, open files are flushed, open streams are closed, and control is returned to the
environment. How st at us isreturned to the environment is implementation-dependent, but zero
Is taken as successful termination. The values EXI T_SUCCESS and EXI T_FAI LURE may also
be used.

int atexit(void (*fcn)(void))
at exi t registersthe function f cn to be called when the program terminates normally; it returns
non-zero if the registration cannot be made.

I nt systen{const char *s)
syst empassesthe string s to the environment for execution. If s isNULL, syst emreturns non-
zero if there isacommand processor. If s isnot NULL, the return value isimplementation-
dependent.

char *getenv(const char *nane)
get env returns the environment string associated with namne, or NULL if no string exists.
Details are implementati on-dependent.

voi d *bsearch(const void *key, const void *base,
size t n, size_ t size,
int (*cnp)(const void *keyval, const void *datum)

bsear ch searchesbase[0] . . . base[n- 1] for anitem that matches* key. The function
cnp must return negative if itsfirst argument (the search key) isless than its second (atable
entry), zero if equal, and positive if greater. Itemsin the array base must be in ascending order.
bsear ch returns a pointer to a matching item, or NULL if none exists.

void gsort(void *base, size t n, size_t size,
int (*cnp)(const void *, const void *))

gsort sortsinto ascending order an array base[0] . . . base[n- 1] of objectsof sizesi ze.
The comparison function cnp isasinbsear ch.

i nt abs(int n)
abs returns the absolute value of itsi nt argument.

| ong | abs(l ong n)

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (15 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

| abs returnsthe absolute value of its| ong argument.

div_t div(int num int denom
di v computes the quotient and remainder of nuni denom Theresults are stored in thei nt
members quot and r emof astructure of typedi v_t .

ldiv_t Idiv(long num |ong denom

| di v computes the quotient and remainder of num denom The results are stored inthe | ong
members quot and r emof astructure of typel di v_t.

B.6 Diagnostics: <assert.h>

Theassert macroisused to add diagnostics to programs:

voi d assert(int expression)

If expression is zero when

assert (expression)

Is executed, theassert macro will print on st der r amessage, such as
Assertion fail ed: expression,fil e filename, | i ne nnn

It then callsabor t to terminate execution. The source filename and line number come from the
preprocessor macros __FILE _and LI NE__.

If NDEBUG s defined at thetime <asser t . h> isincluded, the assert macro isignored.

B.7 Variable Argument Lists: <stdarg.h>

The header <st dar g. h> provides facilities for stepping through alist of function arguments of
unknown number and type.

Suppose | ast ar g isthe last named parameter of afunction f with avariable number of arguments.
Then declare withinf avariable of typeva_| i st that will point to each argument in turn:

va | ist ap;

ap must beinitialized once with the macrova_st ar t before any unnamed argument is accessed:

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (16 of 22) [9/6/2002 12:23:54]

Appendix B - Standard Library

va_start(va_list ap, lastarg);

Thereafter, each execution of the macro va_ar g will produce a value that has the type and value of the
next unnamed argument, and will also modify ap so the next use of va_ar g returns the next argument:

typeva_arg(va_list ap, type;
The macro
void va_end(va_list ap);

must be called once after the arguments have been processed but beforef is exited.

B.8 Non-local Jumps: <setjmp.h>

The declarationsin <set j np. h> provide away to avoid the normal function call and return sequence,
typically to permit an immediate return from a deeply nested function call.

I nt setjnp(j np_buf env)
The macro set | np saves state information in env for use by | ongj np. Thereturniszero from
adirect cal of set j np, and non-zero from a subsequent call of | ongj np. A call toset j np
can only occur in certain contexts, basically thetest of i f, swi t ch, and loops, and only in
simple relational expressions.

I f (setjnmp(env) == 0)
/* get here on direct call */
el se
/* get here by calling longjnmp */

voi d | ongj mp(j np_buf env, int val)
| ongj np restores the state saved by the most recent call to set j np, using the information
saved in env, and execution resumes asif the set | np function had just executed and returned
the non-zero value val . The function containing the set j np must not have terminated.
Accessible objects have the values they had at thetime |l ongj np was called, except that non-
vol ati | e automatic variablesin the function calling set | np become undefined if they were
changed after theset j np call.

B.9 Signals: <signal.h>

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (17 of 22) [9/6/2002 12:23:55]

Appendix B - Standard Library

The header <si gnal . h> providesfacilities for handling exceptional conditions that arise during
execution, such as an interrupt signal from an external source or an error in execution.

void (*signal (int sig, void (*handler)(int)))(int)

si gnal determines how subsequent signalswill be handled. If handl er isSI G _DFL, the
implementation-defined default behavior isused, if itisSI G_| G\, the signal isignored; otherwise, the
function pointed to by handl er will be called, with the argument of the type of signal. Valid signals
include

SI GABRT abnormal termination, e.g., from abor t
SI GFPE arithmetic error, e.g., zero divide or overflow

SIALL illegal function image, e.g., illegal instruction
SI G NT Interactive attention, e.g., interrupt
SI GSEGV illegal storage access, e.g., access outside memory limits

SI GTERM termination request sent to this program

si gnal returnsthe previousvaue of handl er for the specific signal, or SI G_ERRif an error occurs.

When asignal si g subsequently occurs, the signal is restored to its default behavior; then the signal-
handler functioniscalled, asif by (* handl er) (si g) . If the handler returns, execution will resume
where it was when the signal occurred.

Theinitia state of signalsisimplementation-defined.
Int raise(int sig)

rai se sendsthe signal si g to the program; it returns non-zero if unsuccessful.

B.10 Date and Time Functions: <time.h>

The header <t i ne. h> declares types and functions for manipulating date and time. Some functions
process local time, which may differ from calendar time, for example because of time zone. cl ock _t
andti nme_t arearithmetic types representing times, and st r uct t mholds the components of a
calendar time:

I nt tm sec; seconds after the minute (0,61)
int tmmn; minutes after the hour (0,59)

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (18 of 22) [9/6/2002 12:23:55]

Appendix B - Standard Library

I nt tm hour; hourssince midnight (0,23)
i nt tm nday; day of the month (1,31)

I nt tm non; months since January (0,11)
I nt tmyear; yearssince 1900

i nt tm wday; dayssince Sunday (0,6)

I nt tmyday; dayssinceJanuary 1 (0,365)
I nt tm.isdst; Daylight Saving Timeflag

t m i sdst ispositiveif Daylight Saving Timeisin effect, zero if not, and negative if the information is
not available.

clock t clock(void)
cl ock returns the processor time used by the program since the beginning of execution, or - 1 if
unavailable. cl ock()/ CLK_PER_SECisatimein seconds.

time_ t tinme(tine_t *tp)
t i me returns the current calendar time or - 1 if thetimeisnot available. If t p isnot NULL, the
return value isalso assigned to * t p.

double difftine(tine_t tine2, tinme_t tinel)
di fftimereturnsti me2-ti mel expressed in seconds.

time_ t nktinme(struct tm *tp)
nmkt i me convertsthe local timein the structure* t p into calendar time in the same representation
used by t i me. The components will have values in the ranges shown. nkt i e returnsthe
calendar timeor - 1 if it cannot be represented.

The next four functions return pointers to static objects that may be overwritten by other calls.

char *asctinme(const struct tm *tp)
ascti me*t p into astring of the form

Sun Jan 3 15:14:13 1988\n\0

char *ctinme(const tine_t *tp)
ct i me convertsthe calendar time* t p tolocal time; it is equivalent to

asctinme(localtine(tp))
struct tm*gntine(const tine t *tp)

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (19 of 22) [9/6/2002 12:23:55]

Appendix B - Standard Library

gnt i me convertsthe calendar time * t p into Coordinated Universal Time (UTC). It returns
NULL if UTCisnot available. The name gnt i me has historical significance.

struct tm*localtinme(const tine_t *tp)
| ocal ti me convertsthe calendar time*t p into local time.

size t strftime(char *s, size t smax, const char *fnt, const struct tm

*tp)

st rftime formatsdate and timeinformation from*t p into s accordingtof nt , whichis
analogoustoapri nt f format. Ordinary characters (including the terminating' \ 0") are copied
into s. Each %c is replaced as described below, using values appropriate for the local
environment. No more than smax charactersare placed into s. st r f t i me returns the number of
characters, excluding the' \ O' , or zero if more than smax characters were produced.

%a
%A
%
0B
%
%
o4
%
%
%m
oM
%P
%S
%)
v
oV
U
X
%
%Y
L4
%%

abbreviated weekday name.

full weekday name.

abbreviated month name.

full month name.

local date and time representation.
day of the month (01- 31).

hour (24-hour clock) (00- 23) .
hour (12-hour clock) (01-12).
day of theyear (001- 366) .
month (01- 12).

minute (00- 59) .

local equivalent of AM or PM.
second (00- 61) .

week number of the year (Sunday as 1st day of week) (00- 53) .
weekday (0- 6, Sunday is0).
week number of the year (Monday as 1st day of week) (00- 53) .
local date representation.

local time representation.

year without century (00- 99) .
year with century.

time zone name, if any.

%

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (20 of 22) [9/6/2002 12:23:55]

Appendix B - Standard Library

B.11 Implementation-defined Limits: <limits.h> and
<float.h>

The header <l i m t s. h> defines constants for the sizes of integral types. The values below are
acceptable minimum magnitudes; larger values may be used.

CHAR BIT 8 bitsinachar

CHAR MAX UCHAR MAX or SCHAR MAX maximum value of char

CHAR M N 0Oor SCHAR M N maximum value of char

| NT_MAX 32767 maximum value of i nt

| NT_M N - 32767 minimum value of i nt

LONG MAX 2147483647 maximum value of | ong

LONG M N -2147483647 minimum value of | ong

SCHAR MAX +127 maximum value of si gned char
SCHAR_ M N -127 minimum value of si gned char
SHRT MAX +32767 maximum value of short

SHRT_ M N -32767 minimum value of shor t
UCHAR_MAX 255 maximum value of unsi gned char
U NT_MAX 65535 maximum value of unsi gned i nt
ULONG_MAX 4294967295 maximum value of unsi gned | ong
USHRT _MAX 65535 maximum value of unsi gned short

The names in the table below, a subset of <f | oat . h>, are constants related to floating-point arithmetic.
When avalue is given, it represents the minimum magnitude for the corresponding quantity. Each
implementation defines appropriate values.

FLT RADI X 2 radix of exponent, representation, e.g., 2, 16
FLT_ROUNDS floating-point rounding mode for addition

FLT D G 6 decimal digits of precision

FLT_EPSI LON 1E-5 smallest number x such that 1.0+x !'=1.0

FLT _MANT DI G number of base FLT RADI X in mantissa

FLT MAX 1E+37 maximum floating-point number

FLT_MAX_EXP maximum n such that FLT _RADI X1 isrepresentable
FLT_ M N 1E-37 minimum normalized floating-point number

FLT M N _EXP minimum n such that 10" is a normalized number

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (21 of 22) [9/6/2002 12:23:55]

Appendix B - Standard Library

DBL DI G 10
DBL_EPSILON 1E-9
DBL_MANT DI G

DBL_ MAX 1E+37
DBL_MAX_EXP
DBL_M N 1E- 37
DBL_M N_EXP

decimal digits of precision

smallest number x such that 1.0+x 1= 1.0

number of base FLT _RADI X in mantissa

maximum doubl e floating-point number

maximum n such that FLT _RADI X1 isrepresentable
minimum normalized doubl e floating-point number
minimum n such that 10" is a normalized number

Back to Appendix A -- Index -- Appendix C

http://freebooks.by.ru/view/CProgrammingLanguage/appb.html (22 of 22) [9/6/2002 12:23:55]

Appendix C - Summary of Changes

Back to Appendix B -- Index

Appendix C - Summary of Changes

Since the publication of the first edition of this book, the definition of the C language has undergone
changes. Almost all were extensions of the original language, and were carefully designed to remain
compatible with existing practice; some repaired ambiguities in the original description; and some
represent modifications that change existing practice. Many of the new facilities were announced in the
documents accompanying compilers available from AT& T, and have subsequently been adopted by
other suppliers of C compilers. More recently, the ANSI committee standardizing the language
incorporated most of the changes, and also introduced other significant modifications. Their report wasin
part participated by some commercial compilers even before issuance of the formal C standard.

This Appendix summarizes the differences between the language defined by the first edition of this book,
and that expected to be defined by the final standard. It treats only the language itself, not its
environment and library; although these are an important part of the standard, thereislittle to compare
with, because the first edition did not attempt to prescribe an environment or library.

. Preprocessing is more carefully defined in the Standard than in the first edition, and is extended: it
Is explicitly token based; there are new operators for concatenation of tokens (##), and creation of
strings (#); there are new control lineslike#el i f and #pr agna; redeclaration of macros by the
same token sequence is explicitly permitted; parametersinside strings are no longer replaced.
Splicing of lines by \ is permitted everywhere, not just in strings and macro definitions. See
Par.A.12.

. The minimum significance of all internal identifiers increased to 31 characters; the smallest
mandated significance of identifiers with external linkage remains 6 monocase letters. (Many
Implementations provide more.)

. Trigraph sequences introduced by ?? allow representation of characters lacking in some character
sets. Escapesfor #\ N[] { } | ~ are defined, see Par.A.12.1. Observe that the introduction of
trigraphs may change the meaning of strings containing the sequence ??.

. New keywords(voi d, const, volatile, signed, enum areintroduced. The
stillborn ent r y keyword is withdrawn.

. New escape sequences, for use within character constants and string literals, are defined. The
effect of following \ by a character not part of an approved escape sequence is undefined. See
Par.A.2.5.2.

. Everyone'sfavoritetrivial change: 8 and 9 are not octal digits.
. The standard introduces a larger set of suffixes to make the type of constants explicit: U or L for

http://freebooks.by.ru/view/CProgrammingLanguage/appc.html (1 of 3) [9/6/2002 12:24:05]

Appendix C - Summary of Changes

integers, F or L for floating. It also refines the rules for the type of unsiffixed constants
(Par.A.2.5).

. Adjacent string literals are concatenated.
. Thereisanotation for wide-character string literals and character constants; see Par.A.2.6.

. Characters aswell as other types, may be explicitly declared to carry, or not to carry, asign by
using the keywords si gned or unsi gned. Thelocution| ong f | oat asasynonym for
doubl e iswithdrawn, but | ong doubl e may be used to declare an extra-precision floating
quantity.

. For sometime, typeunsi gned char has been available. The standard introducesthe si gned
keyword to make signedness explicit for char and other integral objects.

. Thevoi d type has been available in most implementations for some years. The Standard
introduces the use of thevoi d * type asageneric pointer type; previously char * played this
role. At the same time, explicit rules are enacted against mixing pointers and integers, and
pointers of different type, without the use of casts.

. The Standard places explicit minima on the ranges of the arithmetic types, and mandates headers
(<l'imts. h>and<fl oat . h>) giving the characteristics of each particular implementation.

. Enumerations are new since the first edition of this book.

. The Standard adopts from C++ the notion of type qualifier, for example const (Par.A.8.2).

. Strings are no longer modifiable, and so may be placed in read-only memory.

. The usual arithmetic conversions' are changed, essentially from " “for integers, unsi gned
always wins; for floating point, always use doubl e" to "promote to the smallest capacious-
enough type." See Par.A.6.5.

. Theold assignment operators like =+ are truly gone. Also, assignment operators are now single
tokens; in the first edition, they were pairs, and could be separated by white space.

. A compiler'slicense to treat mathematically associative operators as computationally associative
isrevoked.

. A unary + operator isintroduced for symmetry with unary - .

« A pointer to afunction may be used as afunction designator without an explicit * operator. See
Par.A.7.3.2.

. Structures may be assigned, passed to functions, and returned by functions.

. Applying the address-of operator to arraysis permitted, and the result is a pointer to the array.

. Thesi zeof operator, inthefirst edition, yielded typei nt ; subsequently, many
implementations made it unsi gned. The Standard makes its type explicitly implementation-
dependent, but requiresthetype, si ze_t , to be defined in astandard header (<st ddef . h>). A
similar change occursinthetype (pt r di f f _t) of the difference between pointers. See
Par.A.7.4.8 and Par.A.7.7.

. The address-of operator & may not be applied to an object declared r egi st er, even if the
implementation chooses not to keep the object in aregister.

. Thetype of ashift expression isthat of the left operand; the right operand can't promote the resullt.
See Par.A.7.8.

. The Standard legalizes the creation of a pointer just beyond the end of an array, and allows
arithmetic and relations on it; see Par.A.7.7.

http://freebooks.by.ru/view/CProgrammingLanguage/appc.html (2 of 3) [9/6/2002 12:24:05]

Appendix C - Summary of Changes

The Standard introduces (borrowing from C++) the notion of afunction prototype declaration that
incorporates the types of the parameters, and includes an explicit recognition of variadic functions
together with an approved way of dealing with them. See Pars. A.7.3.2, A.8.6.3, B.7. The older

styleis still accepted, with restrictions,

Empty declarations, which have no declarators and don't declare at least a structure, union, or
enumeration, are forbidden by the Standard. On the other hand, a declaration with just a structure
or union tag redeclares that tag even if it was declared in an outer scope.

External data declarations without any specifiers or qualifiers (just a naked declarator) are
forbidden.

Some implementations, when presented with an ext er n declaration in an inner block, would
export the declaration to the rest of the file. The Standard makes it clear that the scope of such a
declaration isjust the block.

The scope of parametersisinjected into a function's compound statement, so that variable
declarations at the top level of the function cannot hide the parameters.

The name spaces of identifiers are somewhat different. The Standard puts all tags in a single name
space, and also introduces a separate name space for labels; see Par.A.11.1. Also, member names

are associated with the structure or union of which they are a part. (This has been common
practice from some time.)

Unions may beinitialized; the initializer refers to the first member.

Automatic structures, unions, and arrays may be initialized, albeit in arestricted way.

Character arrays with an explicit size may beinitialized by a string literal with exactly that many
characters (the\ 0 is quietly squeezed out).

The controlling expression, and the case labels, of a switch may have any integral type.

Back to Appendix B -- Index

http://freebooks.by.ru/view/CProgrammingLanguage/appc.html (3 of 3) [9/6/2002 12:24:05]

	freebooks.by.ru
	The C programming Language
	Preface
	Preface to the first edition
	Introduction
	Chapter 1 - A Tutorial Introduction
	Chapter 2 - Types, Operators and Expressions
	Chapter 3 - Control Flow
	Chapter 4 - Functions and Program Structure
	Chapter 5 - Pointers and Arrays
	Chapter 6 - Structures
	Chapter 7 - Input and Output
	Chapter 8 - The UNIX System Interface
	Appendix A - Reference Manual
	Appendix B - Standard Library
	Appendix C - Summary of Changes

