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Overview of ray tracing



What is written to pixels in the frame buffer?

• frame buffer: an array of pixels positioned in space 

• the eye looking through it into the scene 

• For each pixel in the frame buffer we ask: 

– What does the eye see through this pixel? 

• a ray of light arriving 

at the eye through 

this pixel from some 

point P in the scene. 

• The color of the pixel 

is the color of the 

light from P along 

this ray

Simple Ray Tracing

• follow a “ray” from the eye through a given pixel  (r, c)

• Identify ray intersections with each object in scene

• the first surface hit by the ray is the closest object to the eye 

– more remote surfaces are ignored (for now)

– Thus hidden surfaces automatically removed

• apply shading model to compute light from first hit point Ph

– ambient, diffuse, and specular components of the light 

• Resulting color is then written to frame buffer at the pixel



Advanced Ray Tracing

• Trace the ray through the scene, identify paths created by 

reflection and refraction. Create light tree

– root at the pixel, leaves are faces and light sources

– Internal nodes are intermediate surfaces emanating light

– light at pixel combined of all lights along tree paths

– Shadows and transparancies created

• Ray tracing can be applied not only to polygon meshes

– Also to Constructive Solid Geometry (CSG) Models

compound objects Models

• Solid objects constructed of standard primitive objects

– E.g. spheres, cubes, cylinders

– Primitives transformed to alter size and orientation 

– Then combined  by (e.g.) boolean operations

– Union, intersection, subtraction (holes)…

• more compound objects are constructed by same operations 

• Ray tracing applied to compound objects actually applied to 

the primitives

• Intersections and light tree construction is feasible  



Mechanics of Ray tracing

eye and window

• Eye (camera) at point eye.

• Define 3 vectors u, v, and n.  

• Near plane orthogonal to n, at distance N in front of the eye 

• frame buffer in the near plane. Center at (0, 0, -N)

• two ways:

• Frame buffer

• Nc columns, Nr rows

• window

• width 2W, height 2H



a ray from eye through pixel Prc

• Pixel at column c, row r is located at point Prc

• Prc = (uc, vr, -N)   (location in the u, v, n coordinate frame)

– uc = W(2c/NC – 1); vr = H(2r/NR – 1)  (easy to show)

• direction of ray from origin (eye) to Prc

– dirrc = ucu + vrv –Nn

• Parametric representation of ray from eye in direction dirrc

– rrc(t) = eye + dirrc t

Pseudocode for Ray Tracing

<define objects, light sources and camera in the scene >

for (int r = 0; r < NR; r++)

for (int c = 0; c < NC; c++)

{ < 1. Build the rc-th ray >

< 2. Find all intersections of rc-th ray with objects >

< 3. Sort intersections. Find  intersection that lies closest to 
and in front of the eye >

< 4. Compute the hit point where the ray hits this object, 
and the normal vector at that point >

< 5. Find the color of the light returning to the eye along the 
ray from the point of intersection >

< 6. write the color in the rc-th pixel into frame buffer > }



Intersections

Intersection with generic objects

• generic sphere (at the origin, radius1) :      x2 + y2 + z2 = 1 

– F(x, y, z) ≡ x2 + y2 + z2 – 1   � F(x, y, z) = 0

• generic objects have “standard” location, size, orientation

– With known implicit equation F(x, y, z) = 0

• to find intersection of general ray r(t) = S + dt with objects:

– F(Sx+dxt, Sy + dyt, Sz + dzt) = 0    � solution thit



Intersection of a Ray with a Sphere

• (Sx +dxt)
2 + (Sy +dyt)

2 + (Sz +dzt)
2 – 1 = 0

• |(S + dt)|2 -1  = 0

• |d|2t2 + 2(S · d)t + |S|2 – 1 = 0

• A = |d|2 B = (S · d)   C = |S|2 – 1 

– At2 + 2Bt + C = 0    (standard quadratic equation)

– thit = -(B/A)  ± sqrt(B
2 – AC)/A

• If ∆ < 0 no solution, ray misses the sphere

• If ∆ = 0  ray tangent to the sphere

Numeric Example

• Ray r(t) = (3, 2, 3) + (-3, -2, -3)t

• A = |d|2 = 22, B = (S · d) = -22,  C = |S|2 – 1 = 21. 

• t1 = 0.7868 and t2 = 1.2132. 

• Hit points:

• P1 = S + dt1 = (0.64, 0.43, 0.64) 

• P2 = S + dt2 =  (-0.64, -0.43, -0.64)

• Opposite points relative to the origin



Intersection of a Ray with Transformed Objects

• object in the scene: generic object transformed by affine M

– e.g: ellipsoid is a generic sphere  transformed by some M

• Every point P of the ellipsoid object originated from a 

generic pointM-1(P) on the generic object.

– Hence P satisfies F(M-1(P)) = 0   

– Where F() is the implicit function of  generic object

• In particular, hit points of ray S + dt with object satisfy 

– F(M-1(S + dt)) = 0 r’(t) = M-1(S + dt)  transformed ray

Example

Μ

F(P') = F(M-1(P)) = 0

PP'



Intersection of a Ray with Transformed Objects

• transformed ray:   r’(t) = M-1(S + dt)  = S’ + d’t

– S’ = M-1S d’ = M-1d

• Each object in object list has its own M

• To intersect a ray r(t) = S + dt with a transformed object:

– Inverse transform the ray (obtaining r’(t) =  S’ + d’t)

– Find intersection th of r’(t)  with generic object 

– The same th in r(t) = S + dt is the actual hit point

Example: Intersecting an ellipsoid

• An ellipsoid W is formed from the generic sphere by

• First, scaling

– S(1, 4 ,4)

• Then, translation

– T(2, 4, 9)

• Combined transformation M and its inverse M-1 are:





















−

−

−

=





















= −

1000

4/94/100

104/10

2001

,

1000

9400

4040

2001

1MM



Example: Intersecting an ellipsoid (2)

• Ray:  r(t) = (10, 20, 5) + (-8, -12, 4)t 

• Finding intersection with ellipsoid W:

• inverse transformed ray: 

– r’(t) = M-1 r = (8,4,-1) + (-8,-3,1)t

• Intersection: (S'x +d'xt)
2 + (S'y +d'yt)

2 + (S'z +d'zt)
2 – 1 = 0

• At2 + 2Bt + C = 0

• (A, B, C)  = (74,-77,80)     ∆ = 9

• th = 1.1621 ; 0.9189

• Intersection: r(0.9189) = (2.649, 8.97, 8.67)

• x = 2.649;   y = 8.97;   z = 8.67 

extents

• a torus is expensive to intersect 

• Hence it is virtually enclosed in a box-like extent

• 1. test intersections with the box

• 2. if no intersection then no intersection with torus

• else, test for intersection with torus

• sphere extents are also used (for other objects)



time saving by extent

• Assumes it takes T time units to test a ray against the extent 

– and mT time units to test intersection against the torus. 

• Assume that N rays are cast to create the image 

– and only fraction f of them hit the box extent

• N tests are made against the extent, time = NT, 

– fN tests are then made on the torus, time = fNmT

• If using extent, the total time is tE = NT(1 + fm)

• if extents are not used, total time of  tN = NmT. 

• Speedup ratio  tE/tN =  m/(1 + fm) 

– Extent useful if  m >> 1  and  f<< 1  (small, tight extent)

Adding Shadows



Affect of Shadows

• Shadows are important

• Without shadows (right) it is difficult to see how far above 
the platform the ball lies, 

• With shadows (left) we can see this immediately. 

• Ray tracing produces shadows easily. Unfortunately, it 
slows down the ray tracing process. 

How a shadow is created

• until now we fired a ray through a certain pixel Prc

– we found closest hit point Ph on some face F

• We assumed that light originated from all light sources
arrived to face F at Ph, reflected by F through the pixel

• But if another object lies between Ph and a light source L

– Ph does not get light from light source L  

– Ph does not reflect light from L

– Intensity of light from Ph is lower than near by points

– Ph is in the shadow of that object relative to L



Shadowing situations

• Point P can see source L1

– P is not in shadow relative 
to L1. 

• P is in the shadow of the cube 
relative to source L2. 

• the hit object itself hides the 
source L3 from P

– self-shadowing 

Finding shadows

• Is Ph in some shadow relative to light source Li? 

• spawn a shadow feeler ray from Ph at t = 0, to Li at t = 1

– parametric representation Ph + (Li - Ph)t

• Test for intersection of shadow feeler with all objects. 

• If any intersection between t = 0 and t = 1, answer is yes

– ignore diffuse & specular light from Ph for light source Li

• Repeat for all light sources, Lk

• Ph emits ambient light, and

– diffuse & specular lights from visible light sources only



Reflections and Transparancy

Reflections and Transparency

• before reaching the eye 

– light might bounce off several shiny surfaces

– Light might be refracted through transparent objects

– I = Iamb + Idiff + Ispec + Irefl + Itran (5 components of light)

• ray tracing is capable of adding these effects



Reflections and Transparency (2)

• Light that reaches the eye:  I = Iamb + Idiff + Ispec + Irefl + Itran

– diffuse and specular parts arise from visible light sources

– Irefl is the reflected light component 

– arising from light, IR, incident at Ph along direction  -r. 

– such that the angles of incidence and reflection are equal

– r = dir – 2 (dir·m) m, where m is normalized

Reflections and Transparency (3)

• I = Iamb + Idiff + Ispec + Irefl + Itran (5 components of light)

• Itran transmitted light component, 

– arising from the light, IT, that is transmitted through the 

transparent material to Ph along direction -t. 

• A portion of this light passes through the surface and in so 

doing is bent. It then continues its travel along -dir. 



Reflections and Transparency (4)

• IR and IT are composed of 

their own five components: 

– ambient, diffuse, etc..

• IR emitted from P’ to Ph. 

• find P’: spawn a ray from 

Ph in the direction r

• find the first object it hits

– IR is a sum of its 5 light 

components

• similarly for IT

The Tree of Reflected & Refracted light rays

• Note: local components of light at Ph

– Ambient at Ph

– diffuse & specular from light sources visible at Ph

• These are not shown here



Constructive Solid Geometry

Constructive Solid Geometry

• complex objects defined by set operations on simple objects 

– compound, Boolean, or CSG objects

• E.g Primitives: solid spheres S1, S2, cone C

• Left: Lens constructed from intersection of the 2 spheres

– L = S1 ∩ S2 (every point in L is in both S1 or S2)

• Bowl constructed from difference of 2 spheres and cone

• B = (S1 – S2) – C (every point in B is in S1 but not in S2 , C)



More Compound Objects

• A point is in the union of sets A, B, if it is in A or in B or 

in both                       (A and B are glued together) 

• The rocket is a union of two cones and two cylinders

• R = C1 U C2 U C3 U C4

• Note: Cone C3 is partially embedded in C2

Ray Tracing CSG Objects: Example 1

• Left: ray intersect spheres at t1, t2, t3, t4
• Ray inside lens L from t3 to t2, 

• hit point is t3
• First point which is in both S1 and in S2



Ray Tracing CSG Objects: Example 2

• Ray 1 first strikes the bowl at t1, 

– smallest of times for which it is in S1 but not in S2 or C. 

• Ray 2, first hits the bowl at t5.

– smallest time for which it is in S1, but in neither S2, C 

• hits at earlier times are with component parts of the bowl, 

but not the bowl itself.

Ray Tracing CSG Objects: general idea

• Consider two solid objects, A and B, and a ray. 

• Build 2 sorted lists of intersection times with A, B

– objects are solid, so entry and exit times alternate. 

• graphically: 

– intervals inside object are solid. Outside they are dashed



Ray Tracing CSG Objects: general idea (2)

• T(A) Inside set for a ray with a compound object: 

– set of t-values for which the ray is inside that object

– T(A)  = (t1, t2 , . . .) t1 enter time, t2 is an exit time, etc..

– also called ray’s t-list.

• Given the inside sets T(A), T(B) with objects A, B

– what is the inside set (for the ray) with a compound 

object built from A and B?

• inside set with a Union is the union of inside sets

• inside set with intersection is the intersection of inside sets

• in general: T(A op B) = T(A) op  T(B)

Ray Tracing CSG Objects: general idea (3)

• A_list:   (1.2, 1.5)     (2.1,  2.5)     (3.1, 3.8)

• B_list:   (0.6,  1.1)     (1.8,  2.6)    (3.4,  4.0)

• Union:   (0.6, 1.1)   (1.2, 1.5)    (1.8, 2.6)    (3.1, 4.0)

• Intersection: (2.1, 2.5)  (3.4, 3.8) 

• A – B:    (1.2, 1.5)  ( 3.1, 3.4)

• B – A:    (0.6, 1.1)  (1.8, 2.1) (2.5, 2.6)   (3.8, 4.0) 



Ray Tracing CSG Objects: general idea (4)

• Ray trace component objects, 

• building inside sets for each, 

• combining inside sets according to the operation required

• The first positive hit time on the combined list yields the 

point on the compound object that is hit first by the ray. 

• The usual shading is then done, including the casting of 

secondary rays if the surface is shiny or transparent.

Appendix: Intersections with Tapered 

Cylinders and Cubes



Intersecting Rays with Tapered Cylinders

• (transformed) ray: r(t) = S + dt

• The ray can intersect the cylinder in many ways

Intersection with side of tapered cylinder

• part of an infinitely long wall; radius (1, s) at  z = (0, 1)  

• Implicit form: for 0 < z < 1

– F(x, y, z) = x2 + y2 + (1 + (s – 1)z)2 = 0

– s = 1 generic cylinder 

– s = 0  generic cone. 

• Intersection: 

– Substitute (x, y, z) = (Sx, Sy, Sz) + (dx, dy, dz)t in F = 0

– Result: At2 + 2Bt + C = 0

– A = dx
2 + dy

2 – e2 B = Sxdx + Sydy – Fe  

– C = Sx
2 + Sy

2 – F2

– Where e = (s - 1)dz F = 1 + (s - 1)Sz



Intersection with base/cap of tapered cylinder

• If B2 - AC is negative no intersection with infinite wall

• Else ray intersect the infinite wall

• find the z-component of the hit spot. The ray hits the actual 

wall of cylinder only if the z(thit) lies between 0 and 1

• intersection with base: 

• intersect ray with the plane z = 0. If intersection point  is    

(x, y, 0), then it is on the base if x2+y2 < 1.

• intersection with the cap: 

• intersect ray with the plane z = 1. If intersection point is   

(x, y, 1) then it is in the cap if x2+y2 < s2

Intersecting a Ray with a Cube

• generic cube: centered at O, corners at (±1, ±1, ±1)

• Six planes that define the generic cube & normals

Plane Name Eqn. Out Normal Spot

0 top y = 1 (0, 1, 0) (0, 1,0)

1 bottom y = -1 (0, -1, 0) (0, -1, 0)

2 right x = 1 (1, 0, 0) (1, 0, 0)

3 left x = -1 (-1, 0, 0) (-1, 0, 0)

4 front z = 1 (0, 0, 1) (0, 0, 1)

5 back z = -1 (0, 0, -1) (0, 0, -1)



Intersecting a Ray with a Cube (2)

• Scene contains many boxes

– Generated by transforming a generic cube

• cubes is used as a bounding box (extent) for other primitives

– E.g. bounding box surrounding a tapered cylinder

– If a ray skips the extent, it doesn’t intersect the primitive

• Intersection of a ray with generic cube is important

• basic idea

– each plane defines an inside & outside half spaces  

– A point is inside a cube iff it is inside of all half-spaces 

– intersecting a ray with a cube: find the interval of t in 

which the ray lies inside all of the planes of the cube.


