
January 2008 Prof. R. Aviv: Ray Tracing
1

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Introduction to Ray Tracing

Slides adapted from F. Hill, S. Kelley Computer Graphics

Overview of ray tracing

What is written to pixels in the frame buffer?

• frame buffer: an array of pixels positioned in space

• the eye looking through it into the scene

• For each pixel in the frame buffer we ask:

– What does the eye see through this pixel?

• a ray of light arriving

at the eye through

this pixel from some

point P in the scene.

• The color of the pixel

is the color of the

light from P along

this ray

Simple Ray Tracing

• follow a “ray” from the eye through a given pixel (r, c)

• Identify ray intersections with each object in scene

• the first surface hit by the ray is the closest object to the eye

– more remote surfaces are ignored (for now)

– Thus hidden surfaces automatically removed

• apply shading model to compute light from first hit point Ph

– ambient, diffuse, and specular components of the light

• Resulting color is then written to frame buffer at the pixel

Advanced Ray Tracing

• Trace the ray through the scene, identify paths created by

reflection and refraction. Create light tree

– root at the pixel, leaves are faces and light sources

– Internal nodes are intermediate surfaces emanating light

– light at pixel combined of all lights along tree paths

– Shadows and transparancies created

• Ray tracing can be applied not only to polygon meshes

– Also to Constructive Solid Geometry (CSG) Models

compound objects Models

• Solid objects constructed of standard primitive objects

– E.g. spheres, cubes, cylinders

– Primitives transformed to alter size and orientation

– Then combined by (e.g.) boolean operations

– Union, intersection, subtraction (holes)…

• more compound objects are constructed by same operations

• Ray tracing applied to compound objects actually applied to

the primitives

• Intersections and light tree construction is feasible

Mechanics of Ray tracing

eye and window

• Eye (camera) at point eye.

• Define 3 vectors u, v, and n.

• Near plane orthogonal to n, at distance N in front of the eye

• frame buffer in the near plane. Center at (0, 0, -N)

• two ways:

• Frame buffer

• Nc columns, Nr rows

• window

• width 2W, height 2H

a ray from eye through pixel Prc

• Pixel at column c, row r is located at point Prc

• Prc = (uc, vr, -N) (location in the u, v, n coordinate frame)

– uc = W(2c/NC – 1); vr = H(2r/NR – 1) (easy to show)

• direction of ray from origin (eye) to Prc

– dirrc = ucu + vrv –Nn

• Parametric representation of ray from eye in direction dirrc

– rrc(t) = eye + dirrc t

Pseudocode for Ray Tracing

<define objects, light sources and camera in the scene >

for (int r = 0; r < NR; r++)

for (int c = 0; c < NC; c++)

{ < 1. Build the rc-th ray >

< 2. Find all intersections of rc-th ray with objects >

< 3. Sort intersections. Find intersection that lies closest to
and in front of the eye >

< 4. Compute the hit point where the ray hits this object,
and the normal vector at that point >

< 5. Find the color of the light returning to the eye along the
ray from the point of intersection >

< 6. write the color in the rc-th pixel into frame buffer > }

Intersections

Intersection with generic objects

• generic sphere (at the origin, radius1) : x2 + y2 + z2 = 1

– F(x, y, z) ≡ x2 + y2 + z2 – 1 � F(x, y, z) = 0

• generic objects have “standard” location, size, orientation

– With known implicit equation F(x, y, z) = 0

• to find intersection of general ray r(t) = S + dt with objects:

– F(Sx+dxt, Sy + dyt, Sz + dzt) = 0 � solution thit

Intersection of a Ray with a Sphere

• (Sx +dxt)
2 + (Sy +dyt)

2 + (Sz +dzt)
2 – 1 = 0

• |(S + dt)|2 -1 = 0

• |d|2t2 + 2(S · d)t + |S|2 – 1 = 0

• A = |d|2 B = (S · d) C = |S|2 – 1

– At2 + 2Bt + C = 0 (standard quadratic equation)

– thit = -(B/A) ± sqrt(B
2 – AC)/A

• If ∆ < 0 no solution, ray misses the sphere

• If ∆ = 0 ray tangent to the sphere

Numeric Example

• Ray r(t) = (3, 2, 3) + (-3, -2, -3)t

• A = |d|2 = 22, B = (S · d) = -22, C = |S|2 – 1 = 21.

• t1 = 0.7868 and t2 = 1.2132.

• Hit points:

• P1 = S + dt1 = (0.64, 0.43, 0.64)

• P2 = S + dt2 = (-0.64, -0.43, -0.64)

• Opposite points relative to the origin

Intersection of a Ray with Transformed Objects

• object in the scene: generic object transformed by affine M

– e.g: ellipsoid is a generic sphere transformed by some M

• Every point P of the ellipsoid object originated from a

generic pointM-1(P) on the generic object.

– Hence P satisfies F(M-1(P)) = 0

– Where F() is the implicit function of generic object

• In particular, hit points of ray S + dt with object satisfy

– F(M-1(S + dt)) = 0 r’(t) = M-1(S + dt) transformed ray

Example

Μ

F(P') = F(M-1(P)) = 0

PP'

Intersection of a Ray with Transformed Objects

• transformed ray: r’(t) = M-1(S + dt) = S’ + d’t

– S’ = M-1S d’ = M-1d

• Each object in object list has its own M

• To intersect a ray r(t) = S + dt with a transformed object:

– Inverse transform the ray (obtaining r’(t) = S’ + d’t)

– Find intersection th of r’(t) with generic object

– The same th in r(t) = S + dt is the actual hit point

Example: Intersecting an ellipsoid

• An ellipsoid W is formed from the generic sphere by

• First, scaling

– S(1, 4 ,4)

• Then, translation

– T(2, 4, 9)

• Combined transformation M and its inverse M-1 are:

−

−

−

=

= −

1000

4/94/100

104/10

2001

,

1000

9400

4040

2001

1MM

Example: Intersecting an ellipsoid (2)

• Ray: r(t) = (10, 20, 5) + (-8, -12, 4)t

• Finding intersection with ellipsoid W:

• inverse transformed ray:

– r’(t) = M-1 r = (8,4,-1) + (-8,-3,1)t

• Intersection: (S'x +d'xt)
2 + (S'y +d'yt)

2 + (S'z +d'zt)
2 – 1 = 0

• At2 + 2Bt + C = 0

• (A, B, C) = (74,-77,80) ∆ = 9

• th = 1.1621 ; 0.9189

• Intersection: r(0.9189) = (2.649, 8.97, 8.67)

• x = 2.649; y = 8.97; z = 8.67

extents

• a torus is expensive to intersect

• Hence it is virtually enclosed in a box-like extent

• 1. test intersections with the box

• 2. if no intersection then no intersection with torus

• else, test for intersection with torus

• sphere extents are also used (for other objects)

time saving by extent

• Assumes it takes T time units to test a ray against the extent

– and mT time units to test intersection against the torus.

• Assume that N rays are cast to create the image

– and only fraction f of them hit the box extent

• N tests are made against the extent, time = NT,

– fN tests are then made on the torus, time = fNmT

• If using extent, the total time is tE = NT(1 + fm)

• if extents are not used, total time of tN = NmT.

• Speedup ratio tE/tN = m/(1 + fm)

– Extent useful if m >> 1 and f<< 1 (small, tight extent)

Adding Shadows

Affect of Shadows

• Shadows are important

• Without shadows (right) it is difficult to see how far above
the platform the ball lies,

• With shadows (left) we can see this immediately.

• Ray tracing produces shadows easily. Unfortunately, it
slows down the ray tracing process.

How a shadow is created

• until now we fired a ray through a certain pixel Prc

– we found closest hit point Ph on some face F

• We assumed that light originated from all light sources
arrived to face F at Ph, reflected by F through the pixel

• But if another object lies between Ph and a light source L

– Ph does not get light from light source L

– Ph does not reflect light from L

– Intensity of light from Ph is lower than near by points

– Ph is in the shadow of that object relative to L

Shadowing situations

• Point P can see source L1

– P is not in shadow relative
to L1.

• P is in the shadow of the cube
relative to source L2.

• the hit object itself hides the
source L3 from P

– self-shadowing

Finding shadows

• Is Ph in some shadow relative to light source Li?

• spawn a shadow feeler ray from Ph at t = 0, to Li at t = 1

– parametric representation Ph + (Li - Ph)t

• Test for intersection of shadow feeler with all objects.

• If any intersection between t = 0 and t = 1, answer is yes

– ignore diffuse & specular light from Ph for light source Li

• Repeat for all light sources, Lk

• Ph emits ambient light, and

– diffuse & specular lights from visible light sources only

Reflections and Transparancy

Reflections and Transparency

• before reaching the eye

– light might bounce off several shiny surfaces

– Light might be refracted through transparent objects

– I = Iamb + Idiff + Ispec + Irefl + Itran (5 components of light)

• ray tracing is capable of adding these effects

Reflections and Transparency (2)

• Light that reaches the eye: I = Iamb + Idiff + Ispec + Irefl + Itran

– diffuse and specular parts arise from visible light sources

– Irefl is the reflected light component

– arising from light, IR, incident at Ph along direction -r.

– such that the angles of incidence and reflection are equal

– r = dir – 2 (dir·m) m, where m is normalized

Reflections and Transparency (3)

• I = Iamb + Idiff + Ispec + Irefl + Itran (5 components of light)

• Itran transmitted light component,

– arising from the light, IT, that is transmitted through the

transparent material to Ph along direction -t.

• A portion of this light passes through the surface and in so

doing is bent. It then continues its travel along -dir.

Reflections and Transparency (4)

• IR and IT are composed of

their own five components:

– ambient, diffuse, etc..

• IR emitted from P’ to Ph.

• find P’: spawn a ray from

Ph in the direction r

• find the first object it hits

– IR is a sum of its 5 light

components

• similarly for IT

The Tree of Reflected & Refracted light rays

• Note: local components of light at Ph

– Ambient at Ph

– diffuse & specular from light sources visible at Ph

• These are not shown here

Constructive Solid Geometry

Constructive Solid Geometry

• complex objects defined by set operations on simple objects

– compound, Boolean, or CSG objects

• E.g Primitives: solid spheres S1, S2, cone C

• Left: Lens constructed from intersection of the 2 spheres

– L = S1 ∩ S2 (every point in L is in both S1 or S2)

• Bowl constructed from difference of 2 spheres and cone

• B = (S1 – S2) – C (every point in B is in S1 but not in S2 , C)

More Compound Objects

• A point is in the union of sets A, B, if it is in A or in B or

in both (A and B are glued together)

• The rocket is a union of two cones and two cylinders

• R = C1 U C2 U C3 U C4

• Note: Cone C3 is partially embedded in C2

Ray Tracing CSG Objects: Example 1

• Left: ray intersect spheres at t1, t2, t3, t4
• Ray inside lens L from t3 to t2,

• hit point is t3
• First point which is in both S1 and in S2

Ray Tracing CSG Objects: Example 2

• Ray 1 first strikes the bowl at t1,

– smallest of times for which it is in S1 but not in S2 or C.

• Ray 2, first hits the bowl at t5.

– smallest time for which it is in S1, but in neither S2, C

• hits at earlier times are with component parts of the bowl,

but not the bowl itself.

Ray Tracing CSG Objects: general idea

• Consider two solid objects, A and B, and a ray.

• Build 2 sorted lists of intersection times with A, B

– objects are solid, so entry and exit times alternate.

• graphically:

– intervals inside object are solid. Outside they are dashed

Ray Tracing CSG Objects: general idea (2)

• T(A) Inside set for a ray with a compound object:

– set of t-values for which the ray is inside that object

– T(A) = (t1, t2 , . . .) t1 enter time, t2 is an exit time, etc..

– also called ray’s t-list.

• Given the inside sets T(A), T(B) with objects A, B

– what is the inside set (for the ray) with a compound

object built from A and B?

• inside set with a Union is the union of inside sets

• inside set with intersection is the intersection of inside sets

• in general: T(A op B) = T(A) op T(B)

Ray Tracing CSG Objects: general idea (3)

• A_list: (1.2, 1.5) (2.1, 2.5) (3.1, 3.8)

• B_list: (0.6, 1.1) (1.8, 2.6) (3.4, 4.0)

• Union: (0.6, 1.1) (1.2, 1.5) (1.8, 2.6) (3.1, 4.0)

• Intersection: (2.1, 2.5) (3.4, 3.8)

• A – B: (1.2, 1.5) (3.1, 3.4)

• B – A: (0.6, 1.1) (1.8, 2.1) (2.5, 2.6) (3.8, 4.0)

Ray Tracing CSG Objects: general idea (4)

• Ray trace component objects,

• building inside sets for each,

• combining inside sets according to the operation required

• The first positive hit time on the combined list yields the

point on the compound object that is hit first by the ray.

• The usual shading is then done, including the casting of

secondary rays if the surface is shiny or transparent.

Appendix: Intersections with Tapered

Cylinders and Cubes

Intersecting Rays with Tapered Cylinders

• (transformed) ray: r(t) = S + dt

• The ray can intersect the cylinder in many ways

Intersection with side of tapered cylinder

• part of an infinitely long wall; radius (1, s) at z = (0, 1)

• Implicit form: for 0 < z < 1

– F(x, y, z) = x2 + y2 + (1 + (s – 1)z)2 = 0

– s = 1 generic cylinder

– s = 0 generic cone.

• Intersection:

– Substitute (x, y, z) = (Sx, Sy, Sz) + (dx, dy, dz)t in F = 0

– Result: At2 + 2Bt + C = 0

– A = dx
2 + dy

2 – e2 B = Sxdx + Sydy – Fe

– C = Sx
2 + Sy

2 – F2

– Where e = (s - 1)dz F = 1 + (s - 1)Sz

Intersection with base/cap of tapered cylinder

• If B2 - AC is negative no intersection with infinite wall

• Else ray intersect the infinite wall

• find the z-component of the hit spot. The ray hits the actual

wall of cylinder only if the z(thit) lies between 0 and 1

• intersection with base:

• intersect ray with the plane z = 0. If intersection point is

(x, y, 0), then it is on the base if x2+y2 < 1.

• intersection with the cap:

• intersect ray with the plane z = 1. If intersection point is

(x, y, 1) then it is in the cap if x2+y2 < s2

Intersecting a Ray with a Cube

• generic cube: centered at O, corners at (±1, ±1, ±1)

• Six planes that define the generic cube & normals

Plane Name Eqn. Out Normal Spot

0 top y = 1 (0, 1, 0) (0, 1,0)

1 bottom y = -1 (0, -1, 0) (0, -1, 0)

2 right x = 1 (1, 0, 0) (1, 0, 0)

3 left x = -1 (-1, 0, 0) (-1, 0, 0)

4 front z = 1 (0, 0, 1) (0, 0, 1)

5 back z = -1 (0, 0, -1) (0, 0, -1)

Intersecting a Ray with a Cube (2)

• Scene contains many boxes

– Generated by transforming a generic cube

• cubes is used as a bounding box (extent) for other primitives

– E.g. bounding box surrounding a tapered cylinder

– If a ray skips the extent, it doesn’t intersect the primitive

• Intersection of a ray with generic cube is important

• basic idea

– each plane defines an inside & outside half spaces

– A point is inside a cube iff it is inside of all half-spaces

– intersecting a ray with a cube: find the interval of t in

which the ray lies inside all of the planes of the cube.

