

Simple Ray Tracing

- follow a "ray" <u>from the eye</u> through a given pixel (r, c)
- Identify ray intersections with each object in scene
- the first surface hit by the ray is the closest object to the eye
 - more remote surfaces are ignored (for now)
 - Thus hidden surfaces automatically removed
- apply shading model to compute light from first hit point P_h
 - ambient, diffuse, and specular components of the light
- Resulting color is then written to frame buffer at the pixel

Advanced Ray Tracing

- Trace the ray through the scene, identify paths created by reflection and refraction. Create light tree
 - root at the pixel, leaves are faces and light sources
 - Internal nodes are intermediate surfaces emanating light
 - light at pixel combined of all lights along tree paths
 - Shadows and transparancies created
- Ray tracing can be applied not only to polygon meshes
 - Also to Constructive Solid Geometry (CSG) Models

compound objects Models

- Solid objects constructed of standard primitive objects
 - E.g. spheres, cubes, cylinders
 - Primitives transformed to alter size and orientation
 - Then combined by (e.g.) boolean operations
 - Union, intersection, subtraction (holes)...
- more compound objects are constructed by same operations
- Ray tracing applied to compound objects actually applied to the primitives
- Intersections and light tree construction is feasible

a ray from eye through pixel P_{rc}

- Pixel at column c, row r is located at point \mathbf{P}_{rc}
- $\mathbf{P}_{rc} = (\mathbf{u}_c, \mathbf{v}_r, -\mathbf{N})$ (location in the $\underline{\mathbf{u}}, \underline{\mathbf{v}}, \underline{\mathbf{n}}$ coordinate frame)

$$-u_{c} = W(2c/N_{C} - 1); v_{r} = H(2r/N_{R} - 1)$$
 (easy to show)

• direction of ray from origin (eye) to P_{rc}

$$- \underline{\mathbf{dir}}_{rc} = \mathbf{u}_{c}\underline{\mathbf{u}} + \mathbf{v}_{r}\underline{\mathbf{v}} - \mathbf{N}\underline{\mathbf{n}}$$

• Parametric representation of ray from eye in direction <u>dir_{rc}</u>

$$-\mathbf{r}_{rc}(t) = \mathbf{eye} + \mathbf{\underline{dir}}_{rc} t$$

Pseudocode for Ray Tracing

<define objects, light sources and camera in the scene > for (int r = 0; r < N_R; r++) for (int c = 0; c < N_C; c++) { <1. Build the rc-th ray > <2. Find all intersections of rc-th ray with objects > <3. Sort intersections. Find intersection that lies closest to and in front of the eye > <4. Compute the hit point where the ray hits this object, and the normal vector at that point > <5. Find the color of the light returning to the eye along the ray from the point of intersection > <6. write the color in the rc-th pixel into frame buffer > }

Intersection with generic objects

• *generic sphere* (at the origin, radius1) : $x^2 + y^2 + z^2 = 1$

$$-F(x, y, z) \equiv x^2 + y^2 + z^2 - 1 \rightarrow F(x, y, z) = 0$$

- generic objects have "standard" location, size, orientation
 - With known implicit equation F(x, y, z) = 0
- to find intersection of *general ray* $\mathbf{r}(t) = \mathbf{S} + \mathbf{d}t$ with objects:

$$-F(S_x+d_xt, S_v+d_vt, S_z+d_zt) = 0 \rightarrow \text{solution } t_{\text{hit}}$$

Numeric Example

- Ray r(t) = (3, 2, 3) + (-3, -2, -3)t
- $A = |\underline{\mathbf{d}}|^2 = 22, B = (\underline{\mathbf{S}} \cdot \underline{\mathbf{d}}) = -22, C = |\underline{\mathbf{S}}|^2 1 = 21.$
- $t_1 = 0.7868$ and $t_2 = 1.2132$.
- Hit points:
- $\mathbf{P}_1 = \mathbf{S} + \mathbf{d}t_1 = (0.64, 0.43, 0.64)$
- $\mathbf{P}_2 = \mathbf{S} + \mathbf{d}t_2 = (-0.64, -0.43, -0.64)$
- Opposite points relative to the origin

• transformed ray: $\mathbf{r}'(t) = \mathbf{M}^{-1}(\mathbf{S} + \mathbf{\underline{d}}t) = \mathbf{S}' + \mathbf{\underline{d}}'t$

 $-\mathbf{S'} = \mathbf{M}^{-1}\mathbf{S} \quad \underline{\mathbf{d'}} = \mathbf{M}^{-1}\underline{\mathbf{d}}$

- Each object in object list has its own M
- To intersect a ray $\mathbf{r}(t) = \mathbf{S} + \mathbf{d}t$ with a transformed object:
 - Inverse transform the ray (obtaining $\mathbf{r'}(t) = \mathbf{S'} + \mathbf{\underline{d'}}t$)
 - Find intersection t_h of **r'**(t) with generic object

- The same t_h in $\mathbf{r}(t) = \mathbf{S} + \mathbf{d}t$ is the actual hit point

Example: Intersecting an ellipsoid

- An ellipsoid *W* is formed from the generic sphere by First, scaling
 - -S(1, 4, 4)
- Then, translation

$$-T(2, 4, 9)$$

• Combined transformation M and its inverse M⁻¹ are:

$$M = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 4 & 9 \\ 0 & 0 & 0 & 1 \end{pmatrix}, M^{-1} = \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1/4 & 0 & -1 \\ 0 & 0 & 1/4 & -9/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

time saving by extent

- Assumes it takes *T* time units to test a ray against the extent

 and *mT* time units to test intersection against the torus.
- Assume that N rays are cast to create the image
 - and only fraction f of them hit the box extent
- N tests are made against the extent, time = NT,
 - fN tests are then made on the torus, time = fNmT
- If using extent, the total time is $t_E = NT(1 + fm)$
- if extents are not used, total time of $t_N = NmT$.
- Speedup ratio $t_E/t_N = m/(1 + fm)$
 - Extent useful if m >> 1 and f << 1 (small, tight extent)

Affect of Shadows

- Shadows are important
- Without shadows (right) it is difficult to see how far above the platform the ball lies,
- With shadows (left) we can see this immediately.
- Ray tracing produces shadows easily. Unfortunately, it slows down the ray tracing process.

How a shadow is created

• until now we fired a ray through a certain pixel P_{rc}

- we found closest hit point P_h on some face F

- We assumed that *light originated from all light sources* arrived to face F at P_{h} , reflected by F through the pixel
- But if another object lies between $P_{\rm h}$ and a light source L
 - $-P_{\rm h}$ does not get light from light source L
 - P_h does not reflect light from L
 - Intensity of light from P_h is lower than near by points
 - $-P_{h}$ is in the shadow of that object relative to L

Finding shadows

- Is $P_{\rm h}$ in some shadow relative to light source $L_{\rm i}$?
- spawn a *shadow feeler ray* from $P_{\rm h}$ at t = 0, to L_i at t = 1
 - parametric representation $P_{\rm h} + (L_i P_{\rm h})t$
- Test for intersection of shadow feeler with *all objects*.
- If any intersection between t = 0 and t = 1, answer is yes
 - ignore *diffuse* & *specular* light from P_h for light source L_i
- Repeat for all light sources, L_k
- P_h emits ambient light, and
 - diffuse & specular lights from visible light sources only

Ray Tracing CSG Objects: general idea

- Consider two *solid* objects, *A* and *B*, and a ray.
- Build 2 sorted lists of *intersection times* with A, B
 objects are solid, so entry and exit times alternate.
- graphically:

- intervals inside object are solid. Outside they are dashed

Ray Tracing CSG Objects: general idea (2)

- *T*(*A*) *Inside set for a ray with a compound object:*
 - set of *t*-values for which the ray is inside that object
 - $T(A) = (t_1, t_2, ...) t_1$ enter time, t_2 is an exit time, etc..
 - also called ray's *t*-list.
- Given the inside sets T(A), T(B) with objects A, B
 - what is the inside set (for the ray) with a compound object built from A and B?
- inside set with a Union is the union of inside sets
- inside set with intersection is the intersection of inside sets
- in general: T(A op B) = T(A) op T(B)

Ray Tracing CSG Objects: general idea (3)

- A_list: (1.2, 1.5) (2.1, 2.5) (3.1, 3.8)
- B_list: (0.6, 1.1) (1.8, 2.6) (3.4, 4.0)
- Union: (0.6, 1.1) (1.2, 1.5) (1.8, 2.6) (3.1, 4.0)
- Intersection: (2.1, 2.5) (3.4, 3.8)
- A B: (1.2, 1.5) (3.1, 3.4)
- B A: (0.6, 1.1) (1.8, 2.1) (2.5, 2.6) (3.8, 4.0)

Ray Tracing CSG Objects: general idea (4)

- Ray trace component objects,
- building inside sets for each,
- combining inside sets according to the operation required
- The first positive hit time on the combined list yields the point on the compound object that is hit first by the ray.
- The usual shading is then done, including the casting of secondary rays if the surface is shiny or transparent.

Appendix: Intersections with Tapered Cylinders and Cubes

Intersection with side of tapered cylinder • part of an infinitely long wall; radius (1, s) at z = (0, 1)• Implicit form: for 0 < z < 1 $-F(x, y, z) = x^2 + y^2 + (1 + (s - 1)z)^2 = 0$ -s = 1 generic cylinder -s = 0 generic cone. • Intersection: $-Substitute (x, y, z) = (S_x, S_y, S_z) + (d_x, d_y, d_z)t$ in F = 0 $-Result: At^2 + 2Bt + C = 0$ $-A = d_x^2 + d_y^2 - e^2$ $B = S_x d_x + S_y d_y - Fe$ $-C = S_x^2 + S_y^2 - F^2$ $-Where e = (s - 1)d_z$ $F = 1 + (s - 1)S_z$

Intersection with base/cap of tapered cylinder

- If B^2 AC is negative no intersection with infinite wall
- Else ray intersect the infinite wall
- find the *z*-component of the hit spot. The ray hits the actual wall of cylinder only if the $z(t_{hit})$ lies between 0 and 1
- intersection with base:
- intersect ray with the plane z = 0. If intersection point is (x, y, 0), then it is on the base if $x^2+y^2 < 1$.
- intersection with the cap:
- intersect ray with the plane z = 1. If intersection point is (x, y, 1) then it is in the cap if $x^2+y^2 < s^2$

		Intersecting a Ray with a Cube					
•	generic cube: centered at O , corners at $(\pm 1, \pm 1, \pm 1)$						
•	Six planes that define the generic cube & normals						
	Plane	Name	Eqn.	Out Normal	Spot		
	0	top	y = 1	(0, 1, 0)	(0, 1,0)		
	1	bottom	y = -1	(0, -1, 0)	(0, -1, 0)		
	2	right	x = 1	(1, 0, 0)	(1, 0, 0)		
	3	left	x = -1	(-1, 0, 0)	(-1, 0, 0)		
	4	front	z = 1	(0, 0, 1)	(0, 0, 1)		
	5	back	z = -1	(0, 0, -1)	(0, 0, -1)		
				•			

Intersecting a Ray with a Cube (2)

• Scene contains many boxes

- Generated by transforming a generic cube

- cubes is used as a bounding box (extent) for other primitives
 - E.g. bounding box surrounding a tapered cylinder
 - If a ray skips the extent, it doesn't intersect the primitive
- Intersection of a ray with generic cube is important
- basic idea
 - each plane defines an inside & outside half spaces
 - A point is inside a cube iff it is inside of all half-spaces
 - intersecting a ray with a cube: find the interval of t in
 - which the ray lies inside all of the planes of the cube.