
December 2007 Prof. R. Aviv: Rasterization
1

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Curves And Surfaces

Slides adapted from F. Hill, S. Kelley Computer Graphics

Bezier Curves

December 2007 Prof. R. Aviv: Rasterization
2

Interactive Curve Design

• 1. Lay down a set of initial control points

• 2. Use an algorithm to generate curve points

• 3. If the curve is satisfactory, stop

• 4. Else, move some control points

• 5. Go to step 2;

P(t)

a). The curve interpolates
 the control points

b). The curve approximates
 the control points

R(t)

Example: a 3 control point Bezier Curve

• 3 control points: P0, P1, P2

• Let A be a fraction t along P0P1 (any t)

– A(t) = (1 - t)P0 + tP1

• Let B a fraction t along P1P2

– B(t) = (1 -t)P1 + tP2

• Let P(t) be a fraction t along AB

• P(t) = (1-t)A(t) + tB(t) = (1-t)2P0 + 2t(1-t)P1 + t
2P2

P0

P1

P2
A

B

P at t = 0.3

a).

P0

P1

P2
P(t)

P(0.3)

b).

4 control points (P0, P1, P2, P3) Bezier Curve

• A, B, C are placed a fraction t along P0P1, P1P2, P2P3

– then D, E are placed fraction t along AB, BC

– Finally, point P(t) is placed fraction t along DE

• P(t) = P0(1-t)
3 + P13(1-t)

2t + P23(1-t)t
2 + P3t

3 0 <= t <=1

• Pi weighted by cubic Bernstein Polynomials

P0

P1

P2

P
P3A

B

C

D

E

a). b).

Bernstein Polynomials

• 4 terms of the expansion of [(1 – t) + t]3 all ≥ 0

• The 4 Polynomials add to 1

– P(t) is a convex combination of the control points

()33

0 1 tB −= () ttB
23

1 13 −= () 23

2 13 ttB −=
33

3 tB =

t
1

1
B (t)
3

0 B (t)
3

1 B (t)
3

2

B (t)
3

3

Blending Points with Bernstein Polynomials

• vectors pi = Pi – O (from the origin to Pi)

• calculate Bernstein polynomials for, say, t = 0.3

• p(0.3) = 0.343 p0 + 0.441 p1 + 0.189 p2 + 0.027 p3.

Bezier Curves: de Casteljau construction

• L+1 control points: P0, P1, P2, P3, … PL

• L iterations of replacing points by affine combinations

– (initial points are the control points)

– new point is affine combination of previous pair of points

– Number of points decreases by 1

• Repeat for every t value

)(P)(P)1()(P

)(P)(P)1()(P

1

1

1

3

1

34

ttttt

ttttt

L

i

L

i

L

i

iii

−
+

−

+

+−=

+−=

…

Upper Index K: Iteration Number. K = 1, …L

Lower index i: point number: i = 0, .. L-K

Result: General Bezier Curves

• P(t) based on P0, P1, . . ., PL always interpolates P0 , PL

• To apply affine transformation on P(t): Q(t) = TP(t)

– First transform control points: Pk� T(Pk)

∑
=

=
L

k

L
kk tBPtP

0

)()(kkLL

k tt
k

L
tB −−

=)1()(

()!!

!

kLk

L

k

L

−
=

for L > K

)()()(
0

tBPTtQ
L

k

L

kk∑
=

=

Example transforming Bezier Curve

• P(t) is controlled by four control points P0,..., P3.

• Pk points are rotated, scaled, & translated to Qk. = T(Pk)

• The Bezier curve for Qk is drawn.

– It is identical to the result of transforming the original
Bezier curve P(t) to Q(t) = TP(t) for each t

Q 0 Q 2

Q 1

P 2

P 0

Q 3

P 3

P 1

Weakness of Bezier Curves

• 1. A Bezier curve with L+1 control points is a combination
of L-degree polynomials.

– designer might need many control points e.g. 40 or more

– High degree polynomials are expensive to compute, and
are vulnerable to numerical round-off errors.

• 2. We need local control of curve

– Example:

– To fix fig. a move P2, P3, up

– This changes first half of curve

• Moving Pi changes entire curve

Analysis of the problem

• Bernstein polynomials are ≠ 0 over the entire interval [0, 1].

• Their support is over the entire interval [0, 1] (left figure)

• Bezier curve is a blend of these functions

• each control point has an effect on the curve at all t-values

– Hence no local control

• We need blending functions with local support (right figure)

t
1

1
B (t)
3

0 B (t)
3

1 B (t)
3

2

B (t)
3

3

Spline Functions

December 2007 Prof. R. Aviv: Rasterization
13

Better Blending Functions

• support of R0(t) is [0, .25]

• Support of R3(t) is [.25, 1.0]

• Consider a t value

– no more than three of
the blending functions
are active (≠ 0)

• Curve is given by:

• S(t) = ΣRk(t)Pk

Better Blending Functions (2)

• For any t, S(t) depends on
no more than three Pk

• For all t in [0.75, 1.0] only
P3, P4, P5 control the shape
of the curve.

• If P4 is moved to P’4, only
the dashed portion of the
curve will change.

• These blending functions
give some local control to
the control points.

Wish List for Blending Functions

• be easy to compute and numerically stable

– Polynomials, with small degrees

• sum to one at every t in [a,b]: ΣRk(t) = 1

• have small support to offer local control

• interpolate certain control points, chosen by designer

• be smooth enough: Have continuous derivative

– Derivatives = 0 at t=0, 1 (no jumps of Rk there)

– Try cubic polynomial: R(t) = at3 + bt2 + ct +d

– No solution for R(0) = R’(0) = R(1) = R’(1)

Quadratic spline function

• Construct g(t) via three 2nd order polynomial

segments: a(t), b(t), c(t)

– piece-wise polynomial

1 2 3

t

g(t)

a(t)

.75

.50

b(t)

c(t)
span

knot

support

joint

• g(t) = a(t), span [0,1]

• g(t) = b(t) , span [1,2]

• g(t) = c(t) , span [2,3]

• first derivative continues at
knot points t = 0, 1, 2, 3

• Note: interval ≠ [0,1]

Quadratic spline function (2)

• Knots: t = 0, 1, 2, 3

– a(1) = b(1) = ½ ; a’(1) = b’(1) = 1

– b(2) = c(2) = ½; b’(2) = c’(2) = -1

– a(0) = a’(0) = c(3) = c'(3) = 0

• Need L such functions (1 per Pk)!

1 2 3

t

g(t)

a(t)

.75

.50

b(t)

c(t)
span

knot

support

joint2

2

2

)3(
2

1
)(

)
2

3
(

4

3
)(

2

1
)(

ttc

ttb

tta

−=

−−=

=

Spline Functions

• An nth-degree spline function is a piecewise
polynomial of degree n

–With the (n-1) derivative is continuous at knots

• The example g(t) is a quadratic spline

– It is a piecewise polynomial of degree 2 and has a
continuous first derivative everywhere

• From a spline function g(t) we build the blending
functions, gk(t)

Making Blending Functions from Splines

• use translated versions of g(t), gk(t) as blending functions

• each gk(t) is formed by translating g(t) by a certain amount

• Example: seven blending functions g0(t),..,g6(t)

– formed by translating g(.) by integer amounts:

– gk(t) = g(t-k) for k = 0, 1, 2, …

1 2 3 4 5 6 7 8 9

t

g 0 (t) g 1 (t) g 2 (t)

.5

.7 5
Σgk(t) = 1 2<= t <= 7

Generating a curve

• The designer chooses 7 control points Pk(t)

• the curve is generated from S(t) = Σ Pkg(t-k)

• Only values of t between 2 and 7 can be used.

– In that range, exactly three of the blending functions are
active at any value of t

– good local control of the curve’s shape.

• at knots t = 2, 3, .., 7 only two of gk(t) are active, both = 1/2

• S(2) = P0g(2-0) + P1g(2-1) = (P0 + P1)/2

• S(3) = (P1 + P2)/2, ….S(7) = (P5 + P6)/2

Controlling the curve

@ t = 2

@ t = 3

@ t = 4

@ t = 5

@ t = 6

@ t = 7

P0

P1

P2

P3

P4

P5

P6

Properties of the Curve

• The designer has some local control of the curve shape

– since the support of the blending functions is length 3

• the curve pass through midpoints of the polygon edges

– The curve has intuitive geometric properties.

• each blending function is 1-smooth,

– whole curve is 1-smooth (1’st derivative is continuous)

• No points on the curve are interpolated

• All polynomials are of degree two,

• so they are fast and stable to compute.

• The degree of the polynomials does not depend on the
number of control points.

– The technique works for any number of control points

More General Blending Functions

• We need more control of the curve shape

– it must bend more and be smoother than just 1-smooth.

• This suggests moving to cubic polynomials

• We also want the designer to be able to specify which
control points are interpolated.

• And we want a single algorithm that would encompass all
of the design techniques described above — including
Bezier curves.

• So we want to develop more general families of blending
functions that meet all the properties discussed in the earlier
wish list.

More General Blending Functions (2)

• L+1 control points, Pk, k = 0, 1, 2, …L

• L+1 blending functions R0(t), ..., RL(t).

• P(t) an affine sum of the control points: S(t) = ΣPkRk(t)

• Blending functions are piecewise polynomials

– defined on a more general sequence of knots

– called the knot vector. T = [t0, t1, t2, …], with ti ≤ ti+1.

t

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

knot vector

R 0 (t)

R 1 (t)
R 2 (t) R 3 (t)

More General Blending Functions (3)

• Each blending function Rk(t) is a piecewise polynomial

– zero up to time tk, then non-zero over several spans in
the knot vector, and then returns to zero again.

• each Rk(t) is a spline function

• ensures a certain level of smoothness at all t in its support

t

t0 t1 t2 t3 t4 t5 t6 t7

knot vector

R0(t)

R1(t)
R2(t) R3(t)

B-spline (Basis) Functions

• B-spline functions of order n: bi,n i = 0, 1, …

– pieces of polynomials of degree n-1

• Two most important cases

• n = 3, underlying polynomials of degree 2

– quadratic B-splines.

• n = 4, underlying polynomials of degree 3

– cubic B spline

• B-splines of any order can be constructed

B-spline Basis Functions (2)

• Define a knot vector:

• T = (t0, t1, t2 . . .tm) tk ≤ tk+1

• A curve is defined by:

• a set of (m-n) B-spline functions of order n

– bi,n(t), i = 0, 1, .. m-n-1

– and (m-n) control points Pi, i = 0, 1, …m-n-1

• P(t) = ΣPibi,n(t) tn ≤ t ≤ tm-n m>= 2n

• sum over i = 0, 1, …m-n-1

B-spline Basis Functions (3)

• bi,n(t), begins at ti and ends at ti+n+1

• Its support is [ti, ti+n+1] "n+1 knot span"

– Pi controls S(t) in the interval [ti, ti+n+1]

• The support of the family of functions, bi,n(t), for i = 0, . . . ,

L is the interval [t0, tn+L].

B-splines: Usage and construction

December 2007 Prof. R. Aviv: Rasterization 30

Lowest order B-splines

• n = 0 defined on one knot span, constant

• n = 1 defined on two consecutive knot spans, tent function

• n = 2 defined on 3 consecutive knot spans, tents & parabola

December 2007 Prof. R. Aviv: Rasterization 31

Quadratic and Cubic B-spline curves

• quadratic B-spline curve

– Each triplet of control points define a segment

• Cubic B-spline curve

– Each quartet of control points define a segment

December 2007 Prof. R. Aviv: Rasterization 32

Using Multiple Control Points

• triple point at D,

• control polygon A, B, C,
D, D, D, E, F, G,

• the curve practically
interpolates D.

• cubic B-spline curves, control points A, B, … G

• double control point at D:

• control polygon is A, B, C, D, D, E, F, G

• the curve is pulled toward D.

Standard Knot Vector

• The standard knot vector for a B-spline of order n begins

and ends with a knot of multiplicity n and uses unit spacing

for the remaining knots.

• Example

• 8 control points

• and we want to use cubic (n = 4) B-splines.

• The standard knot vector turns out to be

• T = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)

– i.e 6 different knots

• those at the ends are multiple knots

Standard Knot Vector (2)

• b0,4(t) and b7,4(t)

discontinuous and have support

of one unit span.

• Only b3,4(t) and b4,4(t) have the

usual span of four units.

• other functions have 2 or three

unit spans

• shapes distorted as they

approach the first and last

knots.

Standard Knot Vector (3)

• standard knot vector

ensures interpolation of the

first and last control points.

• direction of the B-spline

curve at t = 0 is along the

first segment of the control

polygon, and similarly for

the final direction.

• Note that a B-spline curve

can cross itself when the

control polygon does.

Standard Knot Vector (4)

• Standard knot vector for (L+1) control points and order-n B-

splines

• L+n+1 knots, denoted as t0, . . . ,tL+n.

• The first n knots, t0, . . . , tn - 1, all share the value 0.

• The first n blending functions start at t = 0

• Knots tn, . . . , tL increase in increments of 1, from value 1

through value L - n+1.

• The final n knots, tL+1, . . . , tL+n, all equal L - n + 2.

Appendix 1:

NURBS

Non Uniform Rational B-splines (NURBS)

• blending functions Rk are weighted B-splines

• Weights: {w0, w1, … wL}

• Nk,m are m’th order, non-uniform knots, B-splines

• If all W are the same, we get the usual B-splines

)()(
0

tRPtP k

L

k

k∑
=

=

∑

∑

=

==
L

k

mkk

L

k

mkkk

tNw

tNPw

tP

0

,

0

,

)(

)(

)(

Advantages of NURBS

• NURBS are invariant under perspective transformation M

• M = (m1|m2|m3|m4)

• drawing a perspective projection of a NURB curve

• find the perspective projection of each of its control points

• then draw the curve using the same blending functions

– The weights must be adjusted as well

∑

∑

=

==
L

k

mkk

L

k

mkkk

tNw

tNPTw

tPT

0

,

0

,

)('

)()('

))(()'(' 4mPww kkk ⋅=

Appendix 2: Interpolation

December 2007 Prof. R. Aviv: Rasterization
41

Piecewise Cubic Polynomials

• need to draw smooth curves that pass through given set of

control points Pk = (Xk, Yk) (here L = 4)

• use segments of cubic polynomials:

• Rk(t) = Akt
3 + Bkt

2 + Ckt + Dk k= 0, 1, …, L-1, t in [0, 1]

• Ak, Bk, Ck, Dk have 2 components each. 4L unknowns.

• Given (Xk, Yk) & required derivatives at Pk, (Uk, Vk)

Hermite Interpolation

• Segment k: xk(t) = akt
3 + bkt

2 + ckt + dk (similar for yk(t))

• Require segments to pass through Xk Xk+1 at t = 0, 1

– t = 0: dk = Xk.

– t = 1: ak + bk + ck + dk = Xk+1

• Require derivative to equal given values Uk Uk+1at t = 0, 1

– t = 0: ck = Uk ,

– t = 1: 3ak + 2bk + ck = Uk+1

• These conditions hold for k = 0,.., L-1

• 4L conditions on the 4L unknown coefficients.

Piecewise Cubic Polynomials (4)

• For k = 0, 1, ..L-1

ak = Uk+1 + Uk – 2(Xk+1 – Xk)

bk = 3(Xk+1 – Xk) - 2 Uk - Uk+1

ck = Uk

dk = Xk

• We need to be able to identify required slopes Uk

Example

• 3 control points: (1,1), (4, 3), (0,3)

• a curve consisting of two cubic segments, R0(t) and R1(t)

• Segments join at (4,3)

• R0(t) passes through (1,1) at t = 0 and through (4,3) at t = 1.

– its slope is (1,0) at t = 0 and is (0, S) at t = 1

• R1(t) passes through (4, 3) at t = 0 and through (0,3) at t = 1.

– Its slope is (0, S) at t = 0 and (0, 1) at t = 1

• S varies to see the effect of slope changes in the curve

Example (2)

• Segment 0:

• x0(t) = -5t
3 + 7t2 + T +1

• y0(t) = (S - 4)t
3 + (6 - S)t2 + 1

• Segment 1:

• x1(t) = 8t
3 -12t2 + 4

• y1(t) = (S + 1)t
3 -(2S + 1)t2 + St + 3

• Now change S, look near joint (4,3)

• Only y behavior changes

December 2007 Prof. R. Aviv: Rasterization 46

Example (3)

• magnitude of the slope at the joint is changed

• Direction is not

• S affects the coefficients of y0(t) and y1(t)

• but has no effect on the x-component functions.

0 1 2 3 4
0

1

2

3

4

1

1

1

4

t t

4

3

y0(t) y1(t)

x

y

S = 0

S = 1

S = 5S = 10

3

2 2

1

Natural Cubic Splines

• Setting derivative values Uk, Vk

• Demand xk''(t) , yk''(t) to be continuous at joints

• Second derivative of segment: xk''(t) = 6akt + 2bk

• Require: xk-1''(1) = xk''(0) = 0

– 6ak-1 + 2bk-1 = 2bk k in [0, L-1]

–Uk-1 + 4 Uk + Uk+1 = 3(Xk+1 - Xk-1), k in [1, L-1]

• at endpoints: Impose xk''(0) = xL-1''(0) = 0

• b0 = 0 ; 3aL-1 + bL-1 = 0

• 2U0 +U1 = 3(X1 – X0) ; 2UL + UL-1 = 3(XL – XL-1)

Example Natural Cubic spline interpolation

• visually the curve is smooth everywhere;

• at the ends it straightens so the second derivative vanishes.

• effect of moving one of the control points.

• The shape of the curve is affected everywhere. There is no
local control with natural splines.

altered control
point

Simple Catmull-Rom Splines

• another method to fix the slopes at the joints.

• 1. require curve to be 1-smooth at the joints (as before)

• 2. do not require that the curve will be 2-smooth there.

– Hoping to get local control of the curve's shape.

• slopes at joints determined by positions of their neighbors

• Simplest approach: force slope vector at Pk , P’(tk), to be
proportional to the vector from Pk-1 to Pk+1:

– P’(tk) = m(Pk+1 – Pk-1) usually m = ½

• curve at Pk moves parallel to the direction Pk-1Pk+1

Simple Catmull-Rom Splines (2)

Pk+ 1

Pk

Pk-1

P '(tk)

• curve at Pk moves parallel to the direction Pk-1Pk+1

• Endpoints: zero second derivative (as before)

Catmull-Rom tension parameter

• Aim: greater control of the shape at each joint

• By parametrising m: P’(tk) = ½(1 – vk)(Pk+1 – Pk-1)

• adjusting magnitude of the slope P’(t) not its direction.

• Normally -1 ≤ vk ≤ 1, but it can have any value

• (a) v2 = 1, slope = 0 at the joint, curve straightens at joint

• (b) v2 = -1; the curve is more “slack” at the joint

Kochanek-Bartels Splines

• Giving a bias to one side of a joint

• Define the derivative at joint Pk by

– P’(tk) = ½ (1-bk)(Pk – Pk-1) + ½(1+bk)(Pk+1 – Pk)

– The bias parameter bk weighs sides of Pk

Kochanek-Bartels Splines (2)

• Direct Control of continuity, by specifying slopes before
and after joints

• R’k-1(1) = ½ (1-ck)(Pk – Pk-1) + ½(1+ck)(Pk+1 – Pk)

• R’k(0) = ½ (1+ck)(Pk – Pk-1) + ½(1-ck)(Pk+1 – Pk)

– If ck ≠ 0, the curve is no longer 1-smooth at the joint.

Appendix 3:

Modeling Curved Surfaces

December 2007 Prof. R. Aviv: Rasterization
55

Modeling Curved Surfaces

• Various surfaces can be design by using B-splines

• B-spline ruled surfaces

• B-spline surfaces of revolution

• Bezier surface patches

• B-spline patches

• NURBS surfaces

• Basic idea: Surfaces defined and managed by a set

of control points

Ruled Surfaces

• two end curves P0(u) and P1(u),

– Surface points: Linear interpolation of the curves

– P(u, v) = (1 - v) P0(u) + v P1(u)

• Idea: let P0(u) and P1(u) be Bezier (or B-spline) curves

– managed by control points

• 8 control points

• P0(u) control points

• P0
0, P1

0, P2
0, P3

0,

• P1(u) control points

• P0
1, P1

1, P2
1, P3

1.

Bezier Ruled Surfaces

• P(u, v) = (1 - v) P0(u) + v P1(u).

• Recall Bezier curve

• Apply this to P0(u), P1(u), (with L = 3, cubic Bezier curves)

• B-spline or NURBS curves could also be used

)())1((),(31
3

0

0 uBvPPvvuP kk

k

k +−= ∑
=

∑
=

=
L

k

L
kk tBPtP

0

)()(

B-spline Surfaces of Revolution

• a profile C(v) = (X(v), Z(v)) is revolved about the z-axis.

• The resulting surface, P(u, v)

– P(u, v) = (X(v)cos(u), X(v)sin(u), Z(v))

• Select L+1 control points (Xk, Zk)

• create the profile curve

– (X(v), Z(v)) = Σ (Xk, Zk)bk,n(v) sum over k = 0,..L

• P(u,v) = Σ(Xkcos(u), Xksin(u), Zk)bk,n(v) sum over k = 0..L

Example B-spline Surfaces of Revolution

Bezier Surface Patches

• Start with a Bezier curve, managed by control points

Pk k = 0, 1, …L

• Now move each Pk along another Bezier curve,

managed by control points Pi,k

• fixed u (“u contours”) are quadratic Bezier curves

• Fixed v (“v contours”) are cubic Bezier curves

)()()()(),(3
3

0

2

0

3

,

3
3

0

uBvBPuBvPvuP k

k i

ikikk

k

∑ ∑∑
= ==

==

∑
=

=
L

k

L
kk tBPtP

0

)()(

Example

• u contours (fixed u) managed by 3 control points

• v contours (fixed v) managed by 4 control points

• Control Polyhedron

Joining Bezier Patches

• Edges must meet with same control points

• each pair of polyhedron edges that meet at the

boundary, such as E and E1, must be collinear.

B-spline, NURBS Patches

• B-spline patches: greater control

• NURBS patches

P u v P N u N vi k i m

k

L

i

M

k n(,) () (), , ,=
==
∑∑
00

)()(

)()(

),(

0 0

,,,

0 0

,,,,

vNuNw

vNuNPw

vuP
M

i

L

k

nkmiki

M

i

L

k

nkmikiki

∑∑

∑∑

= =

= ==

B-spline Surfaces

Example NURBS Patches

