Prof. Reuven Aviv
Department of Computer Science
Tel Hai Academic College

Computer Graphics

Curves And Surfaces

Slides adapted from F. Hill, S. Kelley Computer Graphics

Bezier Curves

. Interactive Curve Design l

1. Lay down a set of initial control points

2. Use an algorithm to generate curve points

3. If the curve is satisfactory, stop

4. Else, move some control points
* 5. Go to step 2;

a). The curve interpolates b). The curve approximates
the control points the control points

P(t)

. Example: a 3 control point Bezier Curve l

* 3 control points: Py, Py, P,

Let A be a fraction t along P)P, (any t)
—A(t)=(1-t)P, +tP,
Let B a fraction ¢ along P, P,
- B(t)=(1 -t)P, +tP,
Let P(t) be a fraction t along AB
P(t) = (1-t)A(t) + tB(t) = (1-t)°P, + 2t(1-t)P, + t°P,

4 control points (P, P,, P,, P;) Bezier Curve

* A, B, C are placed a fraction t along P,P,, P,P,, P,P,
— then D, E are placed fraction t along AB, BC
— Finally, point P(t) is placed fraction t along DE
o P(t) =Py(1-t) + P,3(1-t)’t + P,3(1-)t> + P2 0 <=t <=1

+ P, weighted by cubic Bernstein Polynomials

* 4 terms of the expansion of [(1 —t) + t]? all >0

The 4 Polynomials add to 1
— P(t) 1s a convex combination of the control points

Blending Points with Bernstein Polynomials

* vectors p; = P, — O (from the origin to P;)
 calculate Bernstein polynomials for, say, # = 0.3
* p(0.3)=0.343 p, + 0.441 p, + 0.189 p, + 0.027 p,.

(|
Bezier Curves: de Casteljau construction

* L+1 control points: P, P, P,, P, ... P
L iterations of replacing points by affine combinations

— (initial points are the control points)
— new point 1s affine combination of previous pair of points

— Number of points decreases by 1
* Repeat for every t value

Pi(1) = (1 - ()P}(t)+ (P2, (1)

PL(1)= (1 -)P (1) + (P17 (1)

Upper Index K: Iteration Number. K=1, ...L
Lower index i: point number: 1 =0, .. L-K

Result: General Bezier Curves

k=0

P(t)="P. Bi () B (1) - [’,;ja —

« P(¢) based on P, P,, ..., Py always interpolates P, , P,
» To apply affine transformation on P(t): Q(t) = TP(t)
— First transform control points: P, = T(P,)

o) = ZT (BB, (1)

Example transforming Bezier Curve

* P(t) is controlled by four control points Py,..., P5.

+ P, points are rotated, scaled, & translated to Q, = T(P})
* The Bezier curve for Q, is drawn.

— It is identical to the result of transforming the original
Bezier curve P(t) to Q(t) = TP(t) for eacht

Weakness of Bezier Curves

* 1. A Bezier curve with L+1 control points is a combination
of L-degree polynomials.

— designer might need many control points e.g. 40 or more

— High degree polynomials are expensive to compute, and
are vulnerable to numerical round-off errors.

a4,

e 2. We need local control of curve

— Example:
— To fix fig. a move P,, P5, up
— This changes first half of curve "

» Moving P, changes entire curve

. Analysis of the problem l

» Bernstein polynomials are # 0 over the entire interval [0, 1].
» Their support is over the entire interval [0, 1] (left figure)
» Bezier curve is a blend of these functions

 each control point has an effect on the curve at all #-values
— Hence no local control
We need blending functions with local support (right figure)

B0

/

; B
BO Bz) 3(<

\

_—— — — — — — —

Spline Functions

Better Blending Functions

support of R(?) is [0, .25]

Support of R4(¢) 1s [.25, 1.0]

Consider a ¢ value

— no more than three of
the blending functions
are active (# 0) b)

* Curve is given by:

S(t) = IR ()P,

Better Blending Functions (2)

For any t, S(t) depends on
no more than three P, a)

* Forall #in [0.75, 1.0] only
P;, P,, Ps control the shape
of the curve.

« If P, 1s moved to P’,, only
the dashed portion of the
curve will change.

* These blending functions
give some local control to
the control points.

I Wish List for Blending Functions I

* be easy to compute and numerically stable

— Polynomials, with small degrees

* sum to one at every ¢ in [a,b]: XR,(t) =1

have small support to offer local control

interpolate certain control points, chosen by designer

be smooth enough: Have continuous derivative

— Derivatives = 0 at t=0, 1 (no jumps of R, there)
— Try cubic polynomial: R(t) = at® + bt + ct +d

— No solution for R(0) =R’(0) = R(1) =R’(1)

Quadratic spline function

« Construct g(¢) via three 2" order polynomial
segments: a(t), b(t), c(t)

— piece-wise polynomial
*g(0) = a(0), span [0,1]

* g(t)=Db(t), span [1,2]
* g(t)=c(t), span [2,3]

» first derivative continues at
knot points t=0, 1,2, 3

* Note: interval # [0,1]

_—b(t)
— I/joint
a) [| |
I |
. Knots:t=0,1,2,3 I%I
t
—a(l)=b(1)=%;a()=b(1)=1 el
—b2)=c(2)=%; b’(2)=c’(2) =-1 1! \2! ' (N
o a(O) = a’(O) = 0(3) = C'(3) =0 support
* Need L such functions (1 per P,)!

. Spline Functions l

« An n'h-degree spline function is a piecewise
polynomial of degree n

— With the (n-1) derivative is continuous at knots
» The example g(7) is a quadratic spline

— It is a piecewise polynomial of degree 2 and has a
continuous first derivative everywhere

* From a spline function g(¢) we build the blending
functions, g, (7)

. Making Blending Functions from Splines l

« use translated versions of g(t), g,(t) as blending functions
* each g, (?) is formed by translating g(¢) by a certain amount
« Example: seven blending functions g(%),..,.(?)
— formed by translating g(.) by integer amounts:
—g(t)=g(t-k) fork=0,1,2, ...

go® g1® go(®

t N\ / Sgt) =1 2<=t<=7

.7 5

Generating a curve

» The designer chooses 7 control points P,(t)
* the curve is generated from S(t) = X P, g(t-k)
* Only values of ¢ between 2 and 7 can be used.

— In that range, exactly three of the blending functions are
active at any value of ¢

— good local control of the curve’s shape.

« atknots =2, 3, .., 7 only two of g,(t) are active, both = 1/2

. S(2)=P,g(2-0) + P,g(2-1) = (P, +P,)/2

. Properties of the Curve l

« The designer has some local control of the curve shape
— since the support of the blending functions is length 3

the curve pass through midpoints of the polygon edges
— The curve has intuitive geometric properties.

each blending function is 1-smooth,
— whole curve is 1-smooth (1’st derivative is continuous)
» No points on the curve are interpolated

All polynomials are of degree two,
* so they are fast and stable to compute.

The degree of the polynomials does not depend on the
number of control points.

— The technique works for any number of control points

. More General Blending Functions l

* We need more control of the curve shape
— it must bend more and be smoother than just 1-smooth.
 This suggests moving to cubic polynomials

* We also want the designer to be able to specify which
control points are interpolated.

* And we want a single algorithm that would encompass all
of the design techniques described above — including
Bezier curves.

* So we want to develop more general families of blending
functions that meet all the properties discussed in the earlier
wish list.

More General Blending Functions (2)

L+1 control points, P,, k=0,1,2,...L

L+1 blending functions R(?), ..., R (?).

P(t) an affine sum of the control points: S(t) = ZP,R,(t)

Blending functions are piecewise polynomials

— defined on a more general sequence of knots

— called the knot vector. T = [t, t;, t,, ...], with t; < t;,,.

knot vector

. More General Blending Functions (3) l

* Each blending function R,(¢) is a piecewise polynomial

— zero up to time ¢, then non-zero over several spans in
the knot vector, and then returns to zero again.

 each R, (?) is a spline function

 ensures a certain level of smoothness at all ¢ in its support

to t1 t£ 3 t4

knot vector

. B-spline (Basis) Functions l

B-spline functions of ordern: b;, 1=0, 1, ...

— pieces of polynomials of degree n-1

Two most important cases

» n =13, underlying polynomials of degree 2
— quadratic B-splines.

* n =4, underlying polynomials of degree 3

— cubic B spline

B-splines of any order can be constructed

. B-spline Basis Functions (2) l

 Define a knot vector:
c T=(ty, tpty.. t,) t <t
» A curve is defined by:
* aset of (m-n) B-spline functions of order n
—b,(1),1=0, 1, .. m-n-1
— and (m-n) control points P,,1=0, 1, ...m-n-1
* P()=2Pph () t,<t<t,, m>=2n

e sumoveri=0, 1, ...m-n-1

B-spline Basis Functions (3)
T E—————————.§

* b; (), begins at £; and ends at £,
 Itssupportis [#, #,,,;] "ntl knot span"
— P, controls S(t) in the interval [#, #,,,.]

* The support of the family of functions, b; (¢, fori =0, . . .,

L is the mterval [¢,, 7,].

B-splines: Usage and construction

1 f & <t<t,
0 otherwise

. Lowest order B-splines l

* n=0 defined on one knot span, constant
B (1 <t <t
0300) = Lty ty42) = {D otherwise

* n =1 defined on two consecutive knot spans, tent function

t—t; -
E-+|—Jf- if tj E f < tj_|_1

) z_f .
bj:ul(t) - EJ'::_E;I'+I if tj+1 <t < tj_|_2
0 otherwise

* n =2 defined on 3 consecutive knot spans, tents & parabola

1 2
=2

biz(t) = —t® +—t + %
(1 — #)=

. Quadratic and Cubic B-spline curves l

* quadratic B-spline curve
— Each triplet of control points define a segment

Ll
Si(t)=1[t* ¢ 1]5 -2 2 0f| ps

11 0] [pins
 Cubic B-spline curve

— Each quartet of control points define a segment

-1 3 -3 1 Pi-1

113 -6 3 0 ;

sy=1[f # t 1|5 5 g pf’ﬂ
14 1 0f[pite

Using Multiple Control Points .

* cubic B-spline curves, control points 4, B, ... G
 double control point at D:
 control polygonis 4,B,C, D, D, E, F, G
 the curve 1s pulled toward D.
* triple point at D, plepo s D o

double point a

* control polygon 4, B, C, single point at D
D,D,D,E F,G,

* the curve practically
interpolates D.

. Standard Knot Vector l

» The standard knot vector for a B-spline of order n begins
and ends with a knot of multiplicity » and uses unit spacing

for the remaining knots.
« Example
» 8 control points
» and we want to use cubic (n = 4) B-splines.
* The standard knot vector turns out to be
T=(0,0,0,0,1,2,3,4,5,5,5,5)
— 1.e 6 different knots

* those at the ends are multiple knots
e —

Standard Knot Vector (2)

b 4(t) and b; 4(7)
discontinuous and have support
of one unit span.

* Only b; 4(¢) and b4 4(?) have the

usual span of four units.

» other functions have 2 or three

unit spans

» shapes distorted as they
approach the first and last

knots.

Standard Knot Vector (3)

* standard knot vector
ensures interpolation of the
first and last control points.

* direction of the B-spline
curve at ¢ = 0 is along the
first segment of the control

polygon, and similarly for W..i% 7+ % i 0 b
the final direction.

» Note that a B-spline curve
can cross itself when the
control polygon does.

. Standard Knot Vector (4) l

 Standard knot vector for (L+1) control points and order-n B-

splines
* L+n+1 knots, denoted as ¢, . . . ,t;
* The first n knots, ¢y, . . ., ¢, _;, all share the value 0.

* The first n blending functions start at t =0

* Knotsz, ..., increase in increments of 1, from value 1

through value L - n+1.

* The final n knots, ¢, ,,, ..., #,,, allequal L - n + 2.

Appendix 1:
NURBS

Non Uniform Rational B-splines (NURBS)

P(t) = i})kRk(t)

blending functions R, are weighted B-splines
Weights: {w,, w,, ... W}

i w PN, ()
P(t) =+

Z wN, (1)

L
k=0

N, are m’th order, non-uniform knots, B-splines
If all W are the same, we get the usual B-splines

. Advantages of NURBS l

NURBS are invariant under perspective transformation M

M = (m1|m2|m3|m4)

drawing a perspective projection of a NURB curve

find the perspective projection of each of its control points

then draw the curve using the same blending functions

— The weights must be adjusted as well

iW'k T(BIN,, (1)
T(P(t) ="~

Zw'k Ny, (?)
=0

Appendix 2: Interpolation

. Piecewise Cubic Polynomials l

* need to draw smooth curves that pass through given set of
control points P, = (X,, Y,) (here L =4)

 use segments of cubic polynomials:

R () =AL +B2+Cit+D, k=0, 1,...,L-1, tin [0, 1]

* A, B, C,, D, have 2 components each. 4L unknowns.

Given (X, Y,) & required derivatives at Py, (U,, V,)

a))]

AP+ B P+Cu+ 0y
P 1 42 - o~
I m A+ B+ Cpt+ Dy

- AL+ B+ Car+ 10,

-
AP+ B+ Cat+ 1,

. Hermite Interpolation l

« Segment k: x,(t) =a,t* + b t? + ¢ t+d, (similar for y,(t))
* Require segments to pass through X, X, ,att=0, 1
-t=0: d,=X.
—t=1: a +b +c +d. =X
* Require derivative to equal given values U, U,,at#=0, 1
—t=0: a = U,
—t=1: 3a,+2b +c,=U,
* These conditions hold for k= 0,.., L-1

* 4] conditions on the 4L unknown coefficients.
e

. Piecewise Cubic Polynomials (4) l

e Fork=0,1, .L-1
= Upyy + U = 2(X — X))
b, = 3(Xe1 = Xp) - 2 Uy - Uy
¢ = Uy
d, = X,

* We need to be able to identify required slopes U,

. Example l

3 control points: (1,1), (4, 3), (0,3)

* a curve consisting of two cubic segments, R(¢) and R (?)

» Segments join at (4,3)

* R,(?) passes through (1,1) at # = 0 and through (4,3) at 7= 1.
— its slope is (1,0) at =0 and is (0, S) att=1

* R,(?) passes through (4, 3) at = 0 and through (0,3) at 7= 1.
— Its slope is (0, S) att=0and (0, 1) at =1

» §varies to see the effect of slope changes in the curve

. Example (2) l

« Segment 0:

* X)(H=-58+T72+ T+l

* o) = (S- 4P+ (6-HP+ 1

« Segment 1:

« x,()=88-12£2+4

* y(O=ES+1)E-2S+ 1)+ St+3

» Now change S, look near joint (4,3)

* Only y behavior changes

. Example (3) l

magnitude of the slope at the joint is changed

Direction is not
S affects the coefficients of y(¢) and y,(¢)
but has no effect on the x-component functions.

Ayo(t) y1(Oh

. Natural Cubic Splines l

Setting derivative values U, V,

Demand x,"(?) , y,"'(¢) to be continuous at joints

Second derivative of segment: x,"(¢) = 6a,t + 2b,
Require: x, ,"(1) =x,"(0) =0

—6a, + 2b,_, =2b, kin [0, L-1]
— Uy T4 U+ Uy =3(Xy - Xy), kin[l, L-1]
at endpoints: Impose x,"(0) =x; ,"(0) =0

b,=0; 3a,_,+b, =0

2Up +U; =3(X; = Xg) 52U+ U, =3(X - Xy)

Example Natural Cubic spline interpolation
« visually the curve is smooth everywhere;
* at the ends it straightens so the second derivative vanishes.
« effect of moving one of the control points.

» The shape of the curve is affected everywhere. There is no
local control with natural splines.

altered control
point

l Simple Catmull-Rom Splines .

« another method to fix the slopes at the joints.

1. require curve to be 1-smooth at the joints (as before)

2. do not require that the curve will be 2-smooth there.

— Hoping to get local control of the curve's shape.

slopes at joints determined by positions of their neighbors

Simplest approach: force slope vector at P, , P’(t,), to be
proportional to the vector from P, ; to P, :

- P(t) =m(P, - Py) usually m =’

* curve at P, moves parallel to the direction P,_, P,

Simple Catmull-Rom Splines (2)

* curve at P, moves parallel to the direction P,_, P,

» Endpoints: zero second derivative (as before)

m(Py—P)

. Catmull-Rom tension parameter l

» Aim: greater control of the shape at each joint

* By parametrising m: P(t)="(1-v)P, — Py
« adjusting magnitude of the slope P’(¢) not its direction.

* Normally -1 v, <1, but it can have any value

* (a) v, =1, slope = 0 at the joint, curve straightens at joint

* (b) v, = -1; the curve is more “slack™ at the joint

. Kochanek-Bartels Splines l

* Giving a bias to one side of a joint
* Define the derivative at joint P, by
—P’(t) = "2 (1-b)(P, — Py) + 2(1+b) (P — Py)

— The bias parameter b, weighs sides of P,

Kochanek-Bartels Splines (2)

* Direct Control of continuity, by specifying slopes before
and after joints

* R(1) =7 (1-c)(Py = Py y) + 72(1+¢)(Pyyy — Py)
* R'W(0) =" (I4¢,)(Py — Py) + Va(1-¢)(Pyyy — Py)
— If ¢, # 0, the curve is no longer 1-smooth at the joint.

Appendix 3:
Modeling Curved Surfaces

. Modeling Curved Surfaces l

» Various surfaces can be design by using B-splines
» B-spline ruled surfaces

» B-spline surfaces of revolution

 Bezier surface patches

* B-spline patches

« NURBS surfaces

 Basic idea: Surfaces defined and managed by a set
of control points

. Ruled Surfaces l

 two end curves Py(u) and P,(u),
— Surface points: Linear interpolation of the curves
— P(u,v) = (1-v) Py(u) +v P(u)
* Idea: let Py(u) and P,(u) be Bezier (or B-spline) curves

— managed by control points

8 control points
* P(u) control points
« PO, PO PN, P,

* P,(u) control points

. P,l, P, P, Pl

. Bezier Ruled Surfaces l

Pu,v)= (1-v)Pyu)+vP(u).
Recall Bezier curve

M-

P (t) = P, B (t)

0

>~
Il

Apply this to Py(u), P,(u), (with L =3, cubic Bezier curves)

P(u,v) = 23 (1=v)P) +vP)B; (u)

B-spline or NURBS curves could also be used

. B-spline Surfaces of Revolution l

« aprofile C(v) = (X(v), Z(v)) is revolved about the z-axis.

The resulting surface, P(u, v)

— P(u, v) = (X(v)cos(u), X(v)sin(u), Z(v))

Select L+1 control points (X, Z,)

create the profile curve

— (X(v), Z(v)) =X (X, Z)b, ,(v) sumoverk=0,.L

P(u,v) = Z(X,cos(u), X;sin(u), Z,)b, ,(v) sum over k =0..L

Example B-spline Surfaces of Revolution

a) profile: a B-spline curve b) the goblet surface of revolution

. Bezier Surface Patches l

 Start with a Bezier curve, managed by control points
P, k=0,1,...L

P (1) = PkBlf(t)

M-

k=0

* Now move each P, along another Bezier curve,
managed by control points P;

P(u,v) = Z P, (v)B; (u) = Z(ZPI B (V))B;f(u)

k=0 _i=0

» fixed u (“u contours”) are quadratic Bezier curves

» Fixed v (*v contours”) are cubic Bezier curves

. Example l

 u contours (fixed u) managed by 3 control points
v contours (fixed v) managed by 4 control points
 Control Polyhedron

W

, -fcsmﬁ ks

peanga

. Joining Bezier Patches l

* Edges must meet with same control points

* each pair of polyhedron edges that meet at the
boundary, such as E and E', must be collinear.

p:lt.;h\ifz]J'c‘l[(i]l #l

patch #1
!

. B-spline, NURBS Patches l

* B-spline patches: greater control

P(u,v) = fZL: Pi,kNi,m (u)Nkn (v)

i=0 k=0

» NURBS patches

Zzwzk lszm(u)Nkn(V)
P(u,v) = =240

z Z W N,)N, ,(v)

i=

B-spline Surfaces

