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Interactive Curve Design

• 1. Lay down a set of initial control points

• 2. Use an algorithm to generate curve points

• 3. If the curve is satisfactory, stop

• 4. Else, move some control points

• 5. Go to step 2;

P(t)

a). The curve interpolates
     the control points

b). The curve approximates
      the control points

R(t)

Example: a 3 control point Bezier Curve

• 3 control points: P0, P1, P2

• Let A be a fraction t along P0P1   (any t)

– A(t) = (1 - t)P0 + tP1

• Let B a fraction t along P1P2

– B(t) = (1 -t)P1 + tP2

• Let P(t) be a fraction t along AB

• P(t) = (1-t)A(t) + tB(t) =  (1-t)2P0 + 2t(1-t)P1 + t
2P2

P0

P1

P2
A

B

P at t = 0.3

a).

P0

P1

P2
P(t)

P(0.3)

b).



4 control points (P0, P1, P2, P3) Bezier Curve

• A, B, C are placed a fraction t along P0P1, P1P2, P2P3

– then D, E are placed fraction t along AB, BC

– Finally, point P(t)  is placed fraction t  along DE

• P(t) = P0(1-t)
3 + P13(1-t)

2t + P23(1-t)t
2 + P3t

3  0 <= t <=1

• Pi weighted by cubic Bernstein Polynomials 

P0

P1

P2

P
P3A

B

C

D

E

a). b).

Bernstein Polynomials

• 4 terms of the expansion of [(1 – t) + t]3 all ≥ 0

• The 4 Polynomials add to 1 

– P(t) is a convex combination of the control points
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Blending Points with Bernstein Polynomials

• vectors pi = Pi – O  (from the origin to Pi)

• calculate Bernstein polynomials for, say, t = 0.3

• p(0.3) = 0.343 p0 + 0.441 p1 + 0.189 p2 + 0.027 p3.

Bezier Curves: de Casteljau construction 

• L+1 control points:   P0, P1, P2, P3, … PL

• L iterations of replacing points by affine combinations

– (initial points are the control points)

– new point is affine combination of previous pair of points

– Number of points decreases by 1

• Repeat for every t value
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Upper Index K: Iteration Number. K = 1, …L

Lower index i: point number: i = 0, .. L-K



Result: General Bezier Curves 

• P(t) based on  P0, P1, . . ., PL always interpolates P0 , PL

• To apply affine transformation on P(t): Q(t) = TP(t)

– First transform control points: Pk� T(Pk)
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Example transforming Bezier Curve

• P(t) is controlled by four control points P0,..., P3. 

• Pk points are rotated, scaled, & translated to Qk. = T(Pk)

• The Bezier curve for Qk is drawn. 

– It is identical to the result of transforming the original 
Bezier curve P(t) to Q(t) = TP(t)  for each t

Q 0 Q 2

Q 1

P 2

P 0

Q 3

P 3

P 1



Weakness of Bezier Curves

• 1. A Bezier curve with L+1 control points is a combination 
of L-degree polynomials. 

– designer might need many control points e.g. 40 or more

– High degree polynomials are expensive to compute, and 
are vulnerable to numerical round-off errors. 

• 2. We need local control of curve

– Example:

– To fix fig. a move P2, P3, up

– This changes first half of curve

• Moving Pi changes entire curve

Analysis of the problem

• Bernstein polynomials are ≠ 0 over the entire interval [0, 1]. 

• Their support is over the entire interval [0, 1]    (left figure)

• Bezier curve is a blend of these functions

• each control point has an effect on the curve at all t-values

– Hence no local control

• We need blending functions with local support (right figure)
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Spline Functions
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Better Blending Functions

• support of R0(t) is [0, .25] 

• Support of R3(t) is [.25, 1.0]

• Consider a t value

– no more than three of 
the blending functions 
are active (≠ 0)

• Curve is given by:

• S(t) = ΣRk(t)Pk



Better Blending Functions (2)

• For any t, S(t) depends on 
no more than three Pk

• For all t in [0.75, 1.0] only 
P3, P4, P5 control the shape 
of the curve. 

• If P4 is moved to P’4, only 
the dashed portion of the 
curve will change. 

• These blending functions 
give some local control to 
the control points.

Wish List for Blending Functions

• be easy to compute and numerically stable

– Polynomials, with small degrees

• sum to one at every t in [a,b]:  ΣRk(t) = 1  

• have small support to offer local control

• interpolate certain control points, chosen by designer

• be smooth enough:  Have continuous derivative 

– Derivatives = 0 at t=0, 1  (no jumps of Rk there)

– Try cubic polynomial: R(t) = at3 + bt2 + ct +d 

– No solution for R(0) = R’(0) = R(1) = R’(1)



Quadratic spline function

• Construct g(t) via three 2nd order polynomial 

segments:  a(t), b(t), c(t)  

– piece-wise polynomial

1 2 3

t

g(t)

a(t)

.75

.50

b(t)

c(t)
span

knot

support

joint

• g(t) = a(t), span [0,1]

• g(t) = b(t) , span [1,2]

• g(t) = c(t) , span [2,3]

• first derivative continues at 
knot points  t = 0, 1, 2, 3

• Note: interval   ≠ [0,1]

Quadratic spline function (2)

• Knots: t = 0, 1, 2, 3

– a(1) = b(1) = ½ ; a’(1) = b’(1) = 1

– b(2) = c(2) = ½; b’(2) = c’(2) = -1

– a(0) = a’(0) = c(3) = c'(3) = 0

• Need L such functions (1 per Pk)!
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Spline Functions

• An nth-degree spline function is a piecewise 
polynomial of degree n

–With the (n-1) derivative is continuous at knots

• The example g(t) is a quadratic spline

– It is a piecewise polynomial of degree 2 and has a 
continuous first derivative everywhere

• From a spline function g(t) we build the blending 
functions, gk(t) 

Making Blending Functions from Splines

• use translated versions of g(t), gk(t)  as blending functions

• each gk(t) is formed by translating g(t) by a certain amount 

• Example: seven blending functions g0(t),..,g6(t) 

– formed by translating g(.) by integer amounts:  

– gk(t) = g(t-k) for k = 0, 1, 2, …

1 2 3 4 5 6 7 8 9

t

g 0 (t) g 1 (t) g 2 (t)

.5

.7 5
Σgk(t) = 1  2<= t <= 7



Generating a curve

• The designer chooses 7 control points Pk(t)

• the curve is generated from S(t) = Σ Pkg(t-k)

• Only values of t between 2 and 7 can be used. 

– In that range, exactly three of the blending functions are 
active at any value of t

– good local control of the curve’s shape. 

• at knots t = 2, 3, .., 7 only two of gk(t) are active, both = 1/2 

• S(2) = P0g(2-0) + P1g(2-1)  = (P0 + P1)/2

• S(3) = (P1 + P2)/2, ….S(7) = (P5 + P6)/2

Controlling the curve

@ t = 2

@ t = 3

@ t = 4

@ t = 5

@ t = 6

@ t = 7

P0

P1

P2

P3

P4

P5

P6



Properties of the Curve

• The designer has some local control of the curve shape

– since the support of the blending functions is length 3

• the curve pass through midpoints of the polygon edges 

– The curve has intuitive geometric properties.

• each blending function is 1-smooth, 

– whole curve is 1-smooth (1’st derivative is continuous) 

• No points on the curve are interpolated

• All polynomials are of degree two, 

• so they are fast and stable to compute. 

• The degree of the polynomials does not depend on the 
number of control points. 

– The technique works for any number of control points

More General Blending Functions

• We need more control of the curve shape

– it must bend more and be smoother than just 1-smooth. 

• This suggests moving to cubic polynomials 

• We also want the designer to be able to specify which 
control points are interpolated. 

• And we want a single algorithm that would encompass all 
of the design techniques described above — including 
Bezier curves. 

• So we want to develop more general families of blending 
functions that meet all the properties discussed in the earlier 
wish list. 



More General Blending Functions (2)

• L+1 control points, Pk,  k = 0, 1, 2, …L

• L+1 blending functions R0(t), ..., RL(t). 

• P(t) an affine sum of the control points:   S(t) = ΣPkRk(t)

• Blending functions are piecewise polynomials 

– defined on a more general sequence of knots 

– called the knot vector. T = [t0, t1, t2, …], with ti ≤ ti+1.

t

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

knot vector

R 0 (t)

R 1 (t)
R 2 (t) R 3 (t)

More General Blending Functions (3)

• Each blending function Rk(t) is a piecewise polynomial 

– zero up to time tk, then non-zero over several spans in 
the knot vector, and then returns to zero again. 

• each Rk(t) is a spline function 

• ensures a certain level of smoothness at all t in its support

t

t0 t1 t2 t3 t4 t5 t6 t7

knot vector

R0(t)

R1(t)
R2(t) R3(t)



B-spline (Basis) Functions

• B-spline functions of order n:  bi,n i = 0, 1, …

– pieces of polynomials of degree n-1

• Two most important cases 

• n = 3, underlying polynomials of degree 2

– quadratic B-splines. 

• n = 4, underlying polynomials of degree 3

– cubic B spline

• B-splines of any order can be constructed

B-spline Basis Functions (2)

• Define a knot vector:   

• T = (t0, t1, t2 . . .tm )                   tk ≤ tk+1

• A curve is defined by:

• a set of (m-n) B-spline functions of order n 

– bi,n(t), i = 0, 1, .. m-n-1

– and (m-n) control points Pi, i = 0, 1, …m-n-1

• P(t) = ΣPibi,n(t)      tn ≤ t ≤ tm-n m>= 2n

• sum over i = 0, 1, …m-n-1



B-spline Basis Functions (3)

• bi,n(t), begins at ti and ends at ti+n+1   

• Its support is [ti, ti+n+1]      "n+1 knot span"

– Pi controls S(t) in the interval [ti, ti+n+1]

• The support of the family of functions, bi,n(t), for i = 0, . . . , 

L is the interval [t0, tn+L]. 

B-splines: Usage and construction
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Lowest order B-splines

• n = 0  defined on one knot span, constant

• n = 1 defined on two consecutive knot spans, tent function

• n = 2 defined on 3 consecutive knot spans, tents & parabola
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Quadratic and Cubic B-spline curves

• quadratic B-spline curve

– Each triplet of control points define a segment

• Cubic B-spline curve

– Each quartet of control points define a segment
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Using Multiple Control Points

• triple point at D, 

• control polygon A, B, C, 
D, D, D, E, F, G, 

• the curve practically 
interpolates D.

• cubic B-spline curves, control points A, B, … G

• double control point at D:

• control polygon is A, B, C, D, D, E, F, G

• the curve is pulled toward D. 

Standard Knot Vector

• The standard knot vector for a B-spline of order n begins 

and ends with a knot of multiplicity n and uses unit spacing 

for the remaining knots. 

• Example

• 8 control points 

• and we want to use cubic (n = 4) B-splines.

• The standard knot vector turns out to be

• T = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)

– i.e 6 different knots

• those at the ends are multiple knots



Standard Knot Vector (2)

• b0,4(t) and b7,4(t)  

discontinuous and have support 

of one unit span. 

• Only b3,4(t) and b4,4(t) have the 

usual span of four units. 

• other functions have 2 or three 

unit spans

• shapes distorted as they 

approach the first and last 

knots. 

Standard Knot Vector (3)

• standard knot vector 

ensures interpolation of the 

first and last control points. 

• direction of the B-spline

curve at t = 0 is along the 

first segment of the control 

polygon, and similarly for 

the final direction.

• Note that a B-spline curve 

can cross itself when the 

control polygon does.



Standard Knot Vector (4)

• Standard knot vector for (L+1) control points and order-n B-

splines

• L+n+1 knots, denoted as t0, . . . ,tL+n. 

• The first n knots, t0, . . . , tn - 1, all share the value 0. 

• The first n blending functions start at t = 0

• Knots tn, . . . , tL increase in increments of 1, from value 1 

through value L - n+1. 

• The final n knots, tL+1, . . . , tL+n, all equal L - n + 2.

Appendix 1: 

NURBS



Non Uniform Rational B-splines (NURBS)

• blending functions Rk are weighted B-splines

• Weights: {w0, w1, … wL}

• Nk,m are m’th order, non-uniform knots, B-splines

• If all W are the same, we get the usual B-splines
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Advantages of NURBS

• NURBS are invariant under perspective transformation M

• M = (m1|m2|m3|m4)

• drawing a perspective projection of a NURB curve

• find the perspective projection of each of its control points 

• then draw the curve using the same blending functions 

– The weights must be adjusted as well
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Appendix 2: Interpolation
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Piecewise Cubic Polynomials 

• need to draw smooth curves that pass through given set of 

control points Pk = (Xk, Yk)  (here L = 4)

• use segments of cubic polynomials:

• Rk(t) = Akt
3 + Bkt

2 + Ckt + Dk k= 0, 1, …, L-1,  t in [0, 1]

• Ak, Bk, Ck, Dk have 2 components each.   4L unknowns.

• Given (Xk, Yk) & required derivatives at  Pk, (Uk, Vk) 



Hermite Interpolation

• Segment k: xk(t) = akt
3 + bkt

2 + ckt + dk (similar for yk(t))

• Require segments to pass through Xk Xk+1 at t = 0, 1

– t = 0: dk = Xk.

– t = 1: ak + bk + ck + dk = Xk+1

• Require derivative to equal given values Uk Uk+1at t = 0, 1

– t = 0: ck = Uk ,

– t = 1: 3ak + 2bk + ck = Uk+1

• These conditions hold for k = 0,.., L-1

• 4L conditions on the 4L unknown coefficients.

Piecewise Cubic Polynomials (4)

• For k = 0, 1, ..L-1 

ak = Uk+1 + Uk – 2(Xk+1 – Xk)

bk = 3(Xk+1 – Xk) - 2 Uk - Uk+1

ck = Uk

dk = Xk

• We need to be able to identify required slopes Uk



Example

• 3 control points: (1,1), (4, 3), (0,3)

• a curve consisting of two cubic segments, R0(t) and R1(t)

• Segments join at (4,3)

• R0(t) passes through (1,1) at t = 0 and through (4,3) at t = 1. 

– its slope is (1,0) at t = 0 and is (0, S) at t = 1

• R1(t) passes through (4, 3) at t = 0 and through (0,3) at t = 1. 

– Its slope is (0, S) at t = 0 and (0, 1) at t = 1

• S varies to see the effect of slope changes in the curve

Example (2)

• Segment 0:

• x0(t) = -5t
3 + 7t2 + T +1

• y0(t) = (S - 4)t
3 + (6 - S)t2 + 1

• Segment 1:

• x1(t) = 8t
3 -12t2 + 4

• y1(t) = (S + 1)t
3 -(2S + 1)t2 + St + 3

• Now change S, look near joint (4,3)

• Only y behavior changes
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Example (3)

• magnitude of the slope at the joint is changed

• Direction is not 

• S affects the coefficients of y0(t) and y1(t) 

• but has no effect on the x-component functions.

0 1 2 3 4
0

1

2

3

4

1

1

1

4

t t

4

3

y0(t) y1(t)

x

y

S = 0

S = 1

S = 5S = 10

3

2 2

1

Natural Cubic Splines

• Setting derivative values Uk, Vk

• Demand xk''(t) , yk''(t) to be continuous at joints

• Second derivative of segment: xk''(t) = 6akt + 2bk

• Require: xk-1''(1) = xk''(0)  = 0

– 6ak-1 + 2bk-1 = 2bk                                           k in [0, L-1]

–Uk-1 + 4 Uk + Uk+1 = 3(Xk+1 - Xk-1),   k in [1, L-1]

• at endpoints: Impose xk''(0)  = xL-1''(0)  = 0

• b0 = 0 ;     3aL-1 + bL-1 = 0

• 2U0 +U1 = 3(X1 – X0) ;    2UL + UL-1 = 3(XL – XL-1)



Example Natural Cubic spline interpolation 

• visually the curve is smooth everywhere; 

• at the ends it straightens so the second derivative vanishes. 

• effect of moving one of the control points. 

• The shape of the curve is affected everywhere. There is no 
local control with natural splines.

altered control
point

Simple Catmull-Rom Splines

• another method to fix the slopes at the joints. 

• 1. require curve to be 1-smooth at the joints (as before)

• 2. do not require that the curve will be 2-smooth there. 

– Hoping to get local control of the curve's shape.

• slopes at joints determined by positions of their neighbors

• Simplest approach: force slope vector at Pk , P’(tk), to be 
proportional to the vector from Pk-1 to Pk+1: 

– P’(tk) = m(Pk+1 – Pk-1)                 usually m = ½

• curve at Pk moves parallel to the direction Pk-1Pk+1



Simple Catmull-Rom Splines (2)

Pk+ 1

Pk

Pk-1

P '(tk)

• curve at Pk moves parallel to the direction Pk-1Pk+1

• Endpoints: zero second derivative (as before)

Catmull-Rom tension parameter

• Aim: greater control of the shape at each joint

• By parametrising m:           P’(tk) = ½(1 – vk)(Pk+1 – Pk-1) 

• adjusting magnitude of the slope P’(t) not its direction.

• Normally -1 ≤ vk ≤ 1, but it can have any value

• (a) v2 = 1, slope = 0 at the joint, curve straightens at joint

• (b) v2 =  -1; the curve is more “slack” at the joint 



Kochanek-Bartels Splines

• Giving a bias to one side of a joint

• Define the derivative at joint Pk by

– P’(tk) = ½ (1-bk)(Pk – Pk-1) + ½(1+bk)(Pk+1 – Pk)

– The bias parameter bk weighs sides of Pk

Kochanek-Bartels Splines (2)

• Direct Control of continuity, by specifying slopes  before 
and after joints

• R’k-1(1) = ½ (1-ck)(Pk – Pk-1) + ½(1+ck)(Pk+1 – Pk)

• R’k(0) = ½ (1+ck)(Pk – Pk-1) + ½(1-ck)(Pk+1 – Pk) 

– If ck ≠ 0, the curve is no longer 1-smooth at the joint.



Appendix 3:

Modeling Curved Surfaces
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Modeling Curved Surfaces

• Various surfaces can be design by using B-splines

• B-spline ruled surfaces

• B-spline surfaces of revolution

• Bezier surface patches

• B-spline patches

• NURBS surfaces

• Basic idea: Surfaces defined and  managed by a set 

of control points



Ruled Surfaces

• two end curves P0(u) and P1(u), 

– Surface points: Linear interpolation of the curves 

– P(u, v) =  (1 - v) P0(u) + v P1(u)

• Idea: let P0(u) and P1(u) be Bezier (or B-spline) curves

– managed by control points 

• 8 control points

• P0(u) control points

• P0
0, P1

0, P2
0, P3

0, 

• P1(u) control points

• P0
1, P1

1, P2
1, P3

1.

Bezier Ruled Surfaces

• P(u, v) =  (1 - v) P0(u) + v P1(u). 

• Recall Bezier curve

• Apply this to P0(u), P1(u),  (with L = 3, cubic Bezier curves)

• B-spline or NURBS curves could also be used
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B-spline Surfaces of Revolution

• a profile C(v) = (X(v), Z(v)) is revolved about the z-axis. 

• The resulting surface, P(u, v)

– P(u, v) = (X(v)cos(u), X(v)sin(u), Z(v))

• Select L+1 control points (Xk, Zk) 

• create the profile curve

– (X(v), Z(v)) = Σ (Xk, Zk)bk,n(v)       sum over k = 0,..L

• P(u,v) = Σ(Xkcos(u), Xksin(u), Zk)bk,n(v)  sum over k = 0..L

Example B-spline Surfaces of Revolution



Bezier Surface Patches

• Start with a Bezier curve, managed by control points 

Pk k = 0, 1, …L

• Now move each Pk along another Bezier curve, 

managed by control points Pi,k

• fixed u (“u contours”) are quadratic Bezier curves

• Fixed v (“v contours”) are cubic Bezier curves
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Example

• u contours (fixed u) managed by 3 control points

• v contours (fixed v) managed by 4 control points

• Control Polyhedron



Joining Bezier Patches

• Edges must meet with same control points

• each pair of polyhedron edges that meet at the 

boundary, such as E and E1, must be collinear.

B-spline, NURBS  Patches

• B-spline patches: greater control

• NURBS patches
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B-spline Surfaces

Example NURBS Patches


