
December 2007 Prof. R. Aviv: Rasterization
1

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Raster Operations

Slides adapted from F. Hill, S. Kelley Computer Graphics

Contents

• Pixmap Manipulation

• Line Drawing

• Polygon Filling

December 2007 Prof. R. Aviv: Rasterization 2

Pixmaps manipulations

December 2007 Prof. R. Aviv: Rasterization
3

Creating Images

• Image: arrays of pixels displayed on a raster device.

• how can we create images?

• Compute a value for each pixel procedurally.

• Scan and digitize an existing image.

• Image stored in a pixmap (color values) structure

December 2007 4Prof. R. Aviv: Rasterization

images from pipeline and other images

• Viewport transformation produces fragments

– color, depth, & texture coordinates (s,t)

– per vertex

• Several processing operations are performed on fragments

before they are written to the screen.

• these operations can also be done directly on images on the

screen, not part of the pipeline e.g. menus. More images?

• E.g. scrolling, moving cursor, adding text, menus

– copy/paste images, change colors, combine images,..

• Need data structure to hold images: pixmap

December 2007 5Prof. R. Aviv: Rasterization

Manipulating Pixmaps

• Where pixmaps are stored?
• main memory or frame buffer what's the diff?

• Pixmap in the frame buffer are visible on screen

• Other pixmaps will be put some time later in the

frame buffer

• What operations can be done on pixmaps

• read, write between frame buffer and memory

• Copy, scale, rotate, compare, combine,

• Define regions in pixmaps: circle, lines, text

• Fill regions, draw lines, …
December 2007 6Prof. R. Aviv: Rasterization

Example: Scrolling

• draw blank line at bottom

• move (copy/past) all lines up one

– Frame buffer to frame buffer operation

December 2007 7Prof. R. Aviv: Rasterization

Examples (2)

• Redrawing screen after menu use how?

• Read region of image to off-screen pixmap

• Copy menu pixmap to frame buffer

• Later write the off-screen pixmap to frame buffer

December 2007 8Prof. R. Aviv: Rasterization

Pixmap Operations: Copying

Frame Buffer

Memory

December 2007 9Prof. R. Aviv: Rasterization

Pixmap Operations in OpenGL: Copying

• glReadPixels () from frame buffer into memory.

• glCopyPixels() copies a region in one part of the

frame buffer into another region of the frame buffer.

• glDrawPixels() draws a pixmap into frame buffer.

December 2007 10Prof. R. Aviv: Rasterization

Pixmap Data Types

• A pixmap has rows & columns of pixels with data

• Types of pixmaps

– Bitmap: pixel = bit, 0 or 1 (black or white)

– Gray-scale bitmap: 1 byte, representing gray level

– RGB pixmap: 3 bytes for what?

– RGBA: 4 bytes, red, green, blue, alpha

(transparancy)

– Pixel contains an index into a lookup table (LUT);

• usually index is a byte

• it points to a color value
December 2007 11Prof. R. Aviv: Rasterization

Scaling Pixmaps

• Scale by integer s:

– New pixmap is larger

– Pixel replication

– 6 x 8 to 12 x 16

• What if s = 1/3?
• take every third row & column of pixmap.

– not satisfactory

• average the values of 9 pixels in each 3 x 3 array

– use that value for the pixel in the new pixmap

S=2

December 2007 12Prof. R. Aviv: Rasterization

Rotating Images

• Rotating through 90o, 180o, 270o is simple:

– copy pixels colors to new locations in new

pixmap

• Other rotations difficult.

– why not use same algorithm?

• several old pixels transform in part to new pixel

– bad results how to improve?

• find all pixels which transform (in part) to new pixel

– calculate average color
December 2007 13Prof. R. Aviv: Rasterization

Rotating Images (2)

December 2007 14Prof. R. Aviv: Rasterization

Need to find original pixels that transformed to P

Combining Pixmaps

• Pixmaps are usually combined pixel by pixel

– using corresponding pixels

• Weighted average: (1 – f)*A + f*B for some f < 1.0.

• Allows "dissolving" one image into another how?

• Prepare a series of pimaps with f varies 0 � 1

• Load pixmaps to frame buffer one after another

December 2007 15Prof. R. Aviv: Rasterization

Alpha and Image Blending

• Blending allows you to draw a partially transparent

image over another image.

• use the alpha value, “4th component of color”

– α = 0 transparent, α = 255 opaque

• Source: pixel [i][j] green color: S[i][j].g, α = 200

• Destination: pixel [i][j] green color: D[i][j].g, α = 10

• New Destination green color blends 2 values:

• D[i][j].g = u*S[i][j].g + (1-u)*D[i][j].g 0 < u < 1

• u = S[i][j]*α/255

• Note: u changes from pixel to pixel.
December 2007 16Prof. R. Aviv: Rasterization

Example: Forward backward images

• Background sea transparent, α = 0.

• mask semi-transparent. α = 128;

• Dragon opaque, α = 255

• Dragon is forward; Mask semi transparent.

December 2007 17Prof. R. Aviv: Rasterization

Example: Cursor Viewing

•Cursor consist of two regions:

•Black, opaque + thin transparent border. what's that for?

• cursor move, we see through the border the underlying image

•Makes the cursor “float” over the image

December 2007 18Prof. R. Aviv: Rasterization

Logical Combinations of Pixmaps

• combine pixmaps in various ways.

December 2007 19Prof. R. Aviv: Rasterization

Application: Rubber-banding Lines and Rectangles

• user draws a line or rectangle with the mouse, adjusts them

interactively

– Line/rectangle erased and redrawn continuously

– how?

• Write: XOR line or rectangle pixmap with frame buffer

• Erase: another XOR

December 2007 20Prof. R. Aviv: Rasterization

The general BitBlt Operation

• BitBlt (bit block-transfer): hardware operation

– combines the draw, read, and copy operations

• basic operation: source rect copied to dest rect

– Rect same size, either in memory or on the screen

• “copy” includes operation between the pixels

– Dest is clipped to the BitBlt's clipping rectangle.

– many other operations on blocks of bits
December 2007 21Prof. R. Aviv: Rasterization

Line Drawing

December 2007 Prof. R. Aviv: Rasterization
22

Line Drawing

• How line-drawing routine (e.g in OpenGL) works?

• need to calculate which pixels need to be colored

• line to draw: from A = (ax, ay) to B = (bx, by) (integers)

• ideal vs. actual line?

December 2007 23Prof. R. Aviv: Rasterization

Brute Force Line Drawing

• Equation for the line: y = m (x – ax) + ay

• What's the line slope m ?

• m = (by – ay)/(bx – ax) calculated once

• increment x, from ax to bx in steps of one pixel

• for each pixel

– calculate y = round (m (x – ax) + ay)

– color the resulting pixel (x,y)

• Requires a multiplication, a subtraction, an addition,

and a round for each pixel – Expensive! Slow!
December 2007 24Prof. R. Aviv: Rasterization

Differential approach

• y=m(x – ax) + ay what is ∆y when x --> x + ∆x

 ∆y = m*∆x, where ∆x =1 pixel

• Algorithm

• Start: x = ax, y = ay

• Repeat:

– Increment x by 1

– New y = round(previous y + m). Color (x, y)

• requires a floating addition and a round.

• The question was: what is y for a given x

• idea: replace the question by another one!
December 2007 25Prof. R. Aviv: Rasterization

Bresenham Approach

• What is the question?

• Which pixel (L or U) do we set next?

• uses no floating point arithmetic and no rounding.

• Incremental approach

December 2007 26Prof. R. Aviv: Rasterization

Bresenham Approach (2)

� Assume a line with 0 < slope < 1

� Define extents of the line segment in x and y:

� W = bx – ax, and H = by – ay.

� 0 < H < W. Why?

� Line equation: H/W = (y-ay)/(x-ax)

� –W*(y-ay) + H*(x – ax) = 0

� Define F(x, y) = –2 W*(y - ay) + 2 H*(x – ax)

� equation of line is F(x, y) = 0
December 2007 27Prof. R. Aviv: Rasterization

Bresenham Approach (3)

• if ideal line below M

– Set next pixel L

– (px+1, py)

• Else set next pixel U

– (px+1, py+1)

• how do decide?

• Grid: Points on the grid are centers of pixels

• Let P a pixel which is currently set (chosen)

• Next step pixel: Candidates L (low) and U (up)

• Midpoint between them M = (px+1, py+1/2)

December 2007 28Prof. R. Aviv: Rasterization

Bresenham Approach (4)

• if F (Mx, My) < 0, line below M, set L; else set U

• Need to calculate F(Mx, My). Or rather, changes in F

•Next M: M’ or M”?

• if ideal line below M, next

M will be M’

•M’ = (px+2, py+1/2);

• else M”

• M'' = (px+2, py+3/2).
December 2007 29Prof. R. Aviv: Rasterization

Bresenham Approach (5)

• Case 1: line below M F(Mx, My) < 0

• Next M is M’ (px+2, py+1/2)

• next F: F(px+2, py+1/2) = -2W(py+1/2 – ay) + 2H(px+2-ax)

• Calculate the change in F, from this step to next step:

 ∆F = F(px+2, py+1/2) - F(px+1, py+1/2) =

 ∆F = 2H(px+2-ax) - 2H(px+1-ax) = 2H

– F(M’x, M’y) = F(Mx,My) + 2H (constant integer)

December 2007 30Prof. R. Aviv: Rasterization

Bresenham Approach (6)

• Case 2: line above M F(Mx, My) > 0

• Next M is M” = (px+2, py+3/2)

• ∆F = F(px+2, py+3/2) - F(px+1, py+1/2) = -2(W-H)

• F(M”x, M”y) = F(Mx, My) – 2(W-H)

• In either case, F changes by a constant integer:

– 2H if y was not incremented (negative F)

– -2(W-H) if y was incremented (positive F)
December 2007 31Prof. R. Aviv: Rasterization

Bresenham Algorithm

• M = (ax+1, ay+1/2)

– F(ax, ay) = -2W(ay+1/2-ay) + 2H(ax+1-ax) = 2H-W

– Initial value: F = 2H-W

• For (i = ax; x <= bx; x++)

• {

– Set pixel (x, y)

– If F< 0 F += 2H; // no change in y

– Else { y++;

• F += 2(H-W)

• }

• } //end ForDecember 2007 32Prof. R. Aviv: Rasterization

Bresenham Algorithm (2)

• Until now: ax < bx and slope < 1

• Other cases: (slope >1; negative slopes) Exercises

– tricks: replace roles of X and Y, and W with –W

• Drawing Patterned lines:

• Patterned lines (dotted or dashed lines)

– store the desired line pattern in a bit mask

– When a pixel is selected, consult the bit mask to check

whether it should be drawn.
December 2007 33Prof. R. Aviv: Rasterization

Regions in a pixmap

Polygon filling

December 2007 Prof. R. Aviv: Rasterization
34

Regions in a pixmap

• Region: a collection of pixels

– lying next to one another in some fashion,

– or being associated by some common propert

December 2007 35Prof. R. Aviv: Rasterization

Defining Regions within pixmap

• A symbolic description:

• Via a property that all pixels in region R have:

• All pixels closer to a given point A than to any of the given

points B, C, or D

• All pixels lying within a circle of radius r centered at O

• All pixels inside the polygon with specified vertices

• Methods of definition: List of rectangles or boundary path
December 2007

36

Prof. R. Aviv: Rasterization

Rectangle-Defined Regions (shapes)

• Region (e.g. all black pixels): a list of rectangles in pixmap

• Algorithm: scan line

– Check every pixel if it has the property (e.g. black)

– Look for runs (series of pixels with the property)

– What happens if set of runs in scan line differs
from those in previous line?

– begin new set of rectangles

• Few rectangles if

– span coherence (similar lines)

– scan line coherence

December 2007

37

Prof. R. Aviv: Rasterization

Operations on regions

• Translation

• traverse the list of rectangles

• increment all (x,y) of vertices

• Scaling (e.g. by 2)

• First translate it so that the first run is at the origin (0,0)

• then double all values in the data structure.

• translate it so first run comes to a desired position.

December 2007 38Prof. R. Aviv: Rasterization

Path-Defined Regions

• Region defined by its boundary (a path).

• Path definitions:

– Mathematical formula: e.g., (x - 122)2 + (y - 36)2 = 25

– Polyline: sequence of pixel locations (x1, y1), (x2, y2),...,

(xn, yn);

• if closed ((x1, y1) = (xn, yn)), is a polygon.

– Sequence of adjacent pixels (chain code):

– a starting pixel, say (34, 67),

– and a sequence of moves from pixel to pixel, such as “go

up, go right, go down,...”.

December 2007 39Prof. R. Aviv: Rasterization

Path-Defined Regions (2)

• Example of chain codes:

0

1

2

3 110112232211223333030000

a).

b).

0

1

2
3

4

5
6

7

A

B

212433433466667601770December 2007 40Prof. R. Aviv: Rasterization

Filling Polygon-defined Regions

• polygon P: a set of vertices pixel addresses, pi = (xi, yi)

• Filling algorithm: Scanline

• We have to find the intersections of the scan line, say, y = 3,

with all the edges of P.

for(each scan line L)

{

Find intersections of L

sort intersections by x

Fill runs between pairs

of intersections

}
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

p1

p2

p3

p4

p5

p6

p7

e1

e2

e3
e4

e5

e6

e7

poly

X X X X

December 2007

41

Prof. R. Aviv: Rasterization

Example of Polygon Filling

• Scan line y = 3

• intersects edges e2, e3, e4, e5.

• intersection x-values are
rounded up or down to
integers, and sorted:

– {1, 2, 7, 9}.

• Two runs are filled:

– column 1 to 2 & column 7
to 9. 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

p1

p2

p3

p4

p5

p6

p7

e1

e2

e3
e4

e5

e6

e7

poly

X X X X

December 2007 42Prof. R. Aviv: Rasterization

Intersections with Vertex and Edge Points

• If a scan line intersects a vertex (e.g. E)

• Rule: ignore intersections with top ends of edges

• If scanline intersect horizontal edge (e.g. BC)

• ignore edge

• No intersections occur at A & I, one at B and at H.

A

B

C D

E

F

G

H

I

December 2007 43Prof. R. Aviv: Rasterization

Improving Algorithm Performance

• use edge coherence

– edges intersect scan line y likely to intersect next

scanline

– x-value of intersection migrates in uniform

increments from scan line to scan line.

• maintain Active Edge List (AEL)

• AEL contains:

– x-values of all the edge intersections for current
scanline

• in sorted order, so pairs of x-values define runs

– Data for updating AEL for the next scanline
December 2007

44

Prof. R. Aviv: Rasterization

Improving Algorithm Performance (2)

• Scan-line y = 50

• intersects four edges

• at x = 45, 56.66, 70, 100

• AEL linked list of items

• item (one per edge):

– xint

– inverse slope 1/m of edge

– ytop of edge why?

AELDecember 2007 45Prof. R. Aviv: Rasterization

Basic step of the improved algorithm:

• Assume scanline y intersect an edge e at xint

• Next consider scanline y + 1

– If y + 1 >= ytop(e)

• Then scanline y + 1 does not intersect edge e

– else scanline y+1 intersect edge e at xint+1/m (easy)

– If y+1= ybottom(f) scanline y+1 meets new edge f

– Then edge f is added to Active Edge List (update AEL)

• Entry added: (xbottom(f), 1/m(f), ytop(f))

– Might need to re-sort the entries of AEL why?
December 2007 46Prof. R. Aviv: Rasterization

Updating AEL via Edge Table (ET)

• Pre-prepared table ET

• For each y, a linked list

• Entries in list y: info about edges with ybottom = y

– which will be copied to AEL

– when scanline y starts

– (xbottom, 1/m, ytop)

December 2007 47Prof. R. Aviv: Rasterization

Skeleton Code for Polygon-Fill

Prepare ET when traversing polygon to eliminate horizontals

AEL = NULL; // AEL is initially empty

for (y = 0; y <= maxRow; y++) {

<add all edges in ET[y] to AEL>

if(AEL != NULL) { // any edges to process?

<sort AEL by xint value>

<fill runs, identified by AEL info, with pixel values>

<delete from AEL records where ytop == y>

<update each xint value by its inverse slope>

}// end if

} // end for()
December 2007

48

Prof. R. Aviv: Rasterization

