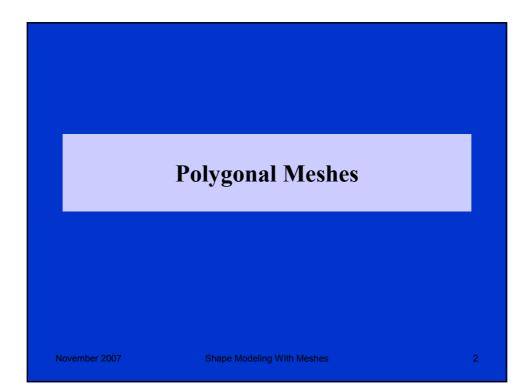
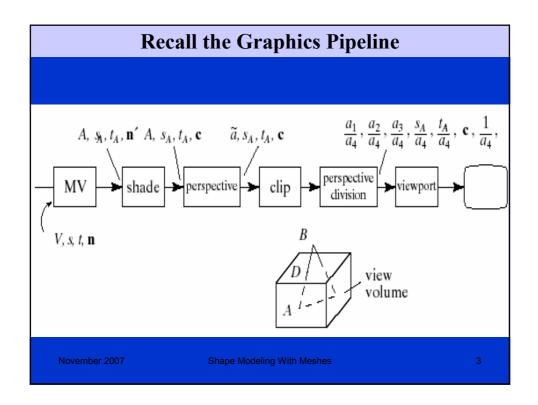
Prof. Reuven Aviv Department of Computer Science Tel Hai Academic College

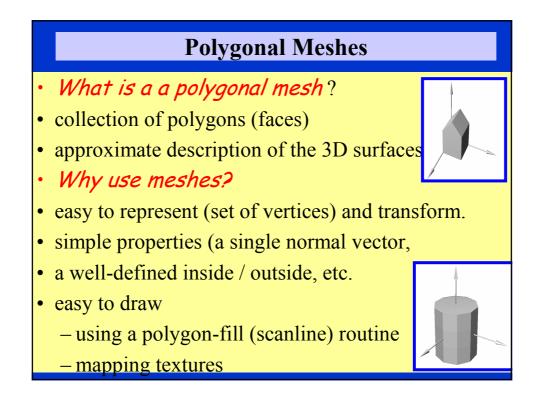
Computer Graphics

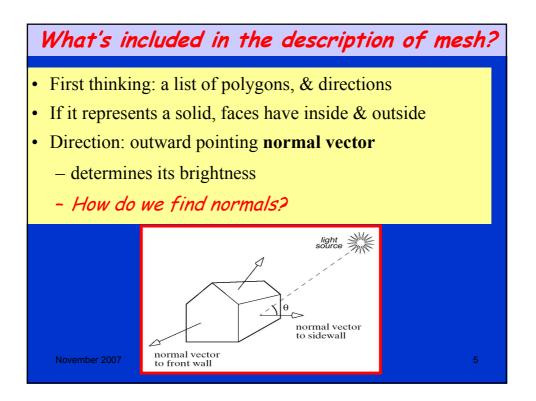
Modeling Shapes with Meshes

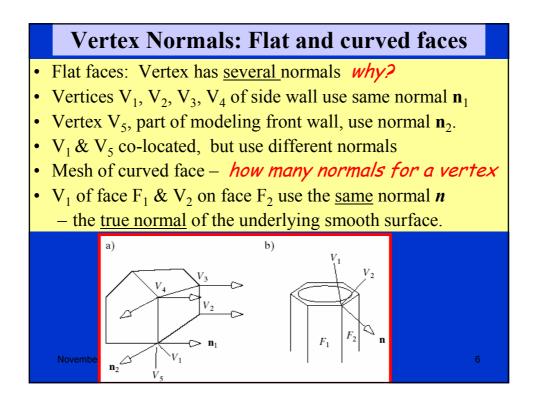
Slides adapted from F. Hill, S. Kelley Computer Graphics November 2007 Shape Modeling With Meshes

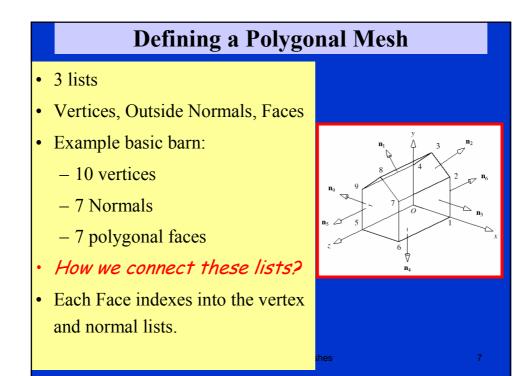








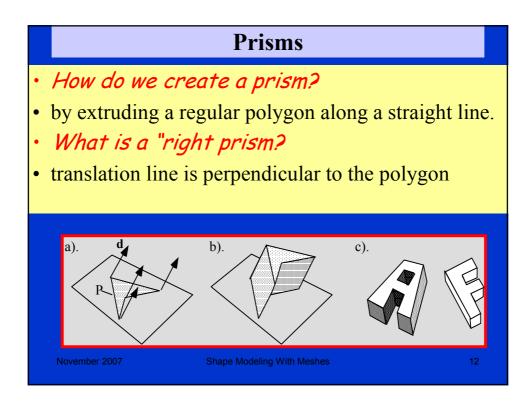


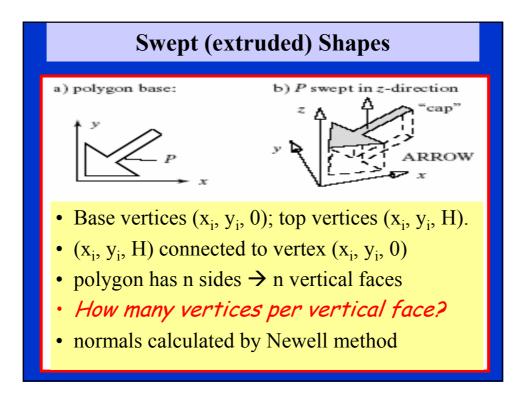


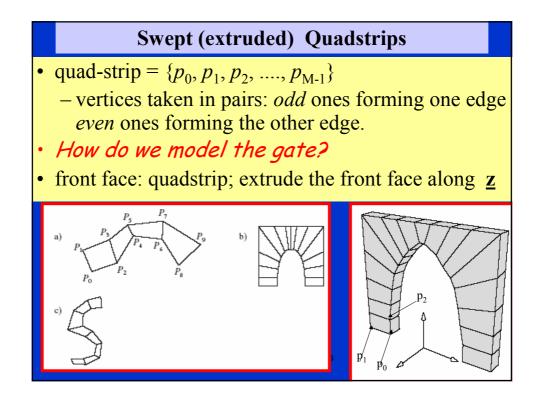
Vertex and Normal Lists for the Barn								
Normals List				Vertex List				
normal	n _x	n _v	nz		vertex	X	У	Z
0	-1	0	0		0	0	0	0
1	-0.707	0.707	0		$\frac{1}{2}$	1	0	0
2	0.707	0.707	0		2	0.5	1	0
3	1	0	0		4	0.5	1.5	0
4	0	-1	0		5	0	0	1
5	0	0	1		6	1	0	1
6	0	0	-1		7	1	1	1
					8	0.5	1.5	10
November 2007 Shape Modeling			9	0	1	1		

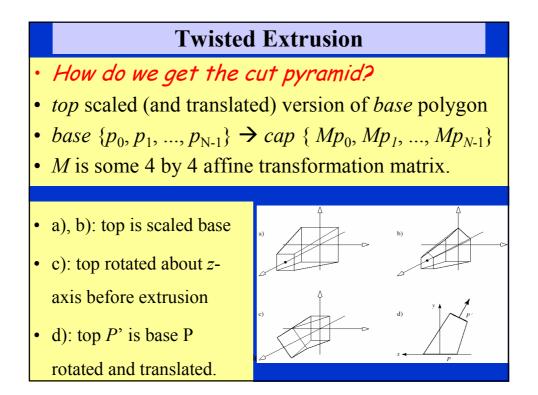
Face List for the Barn						
Face	Vertices	Normal				
0 (left)	0, 5, 9, 4	0,0,0,0				
1 (roof left)	3, 4, 9, 8	1,1,1,1				
2 (roof right)	2, 3, 8, 7	2, 2, 2,2				
3 (right)	1, 2, 7, 6	3, 3, 3, 3				
4 (bottom)	0, 1, 6, 5	4, 4, 4, 4				
5 (front)	5, 6, 7, 8, 9	5, 5, 5, 5, 5				
6 (back)	0, 4, 3, 2, 1	6, 6, 6, 6, 6				
Vertex list of a face: begins with any vertex Traverse the polygon counterclockwise as seen from outside <i>How these normals are calculated?</i>						

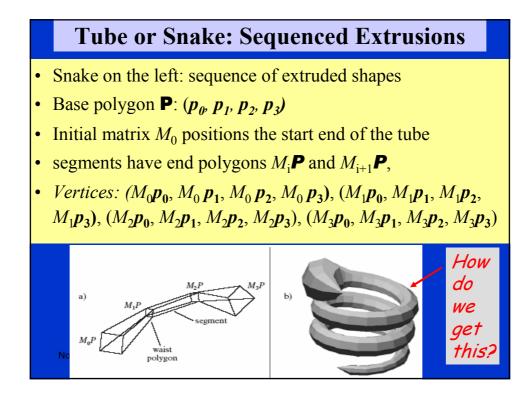
Calculating Normals: Newell Algorithm • Cross product method: V_1, V_2, V_3 vertices of the face $-\underline{m} = (V_1 - V_2) \times (V_3 - V_2)$; then normalize \underline{m} • But a given a list of vertices might not be on a plane! • Newell: Traverse the face vertices in CC order - Given vertex n, define next vertex: ni = (i+1) mod N. - Calculate normal by the Newell Algorithm $n_x = \sum_{i=0}^{N-1} (y_i - y_{ni})(z_i + z_{ni})$ $n_y = \sum_{i=0}^{N-1} (z_i - z_{ni})(x_i + x_{ni})$ $n_z = \sum_{i=0}^{N-1} (x_i - x_{ni})(y_i + y_{ni})$

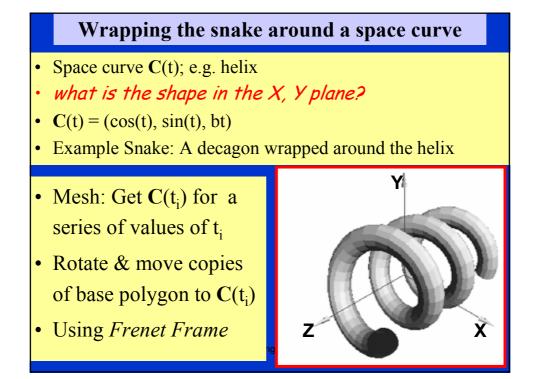


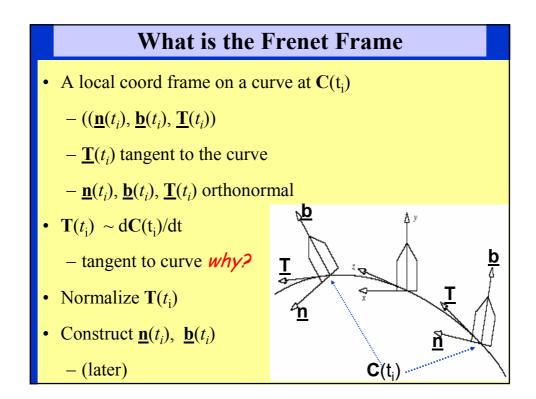


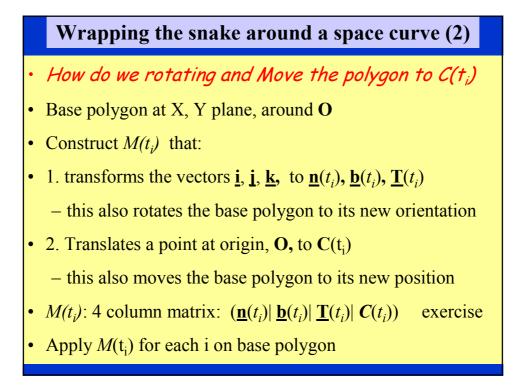


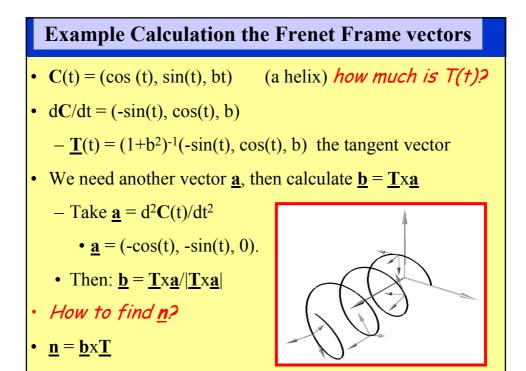


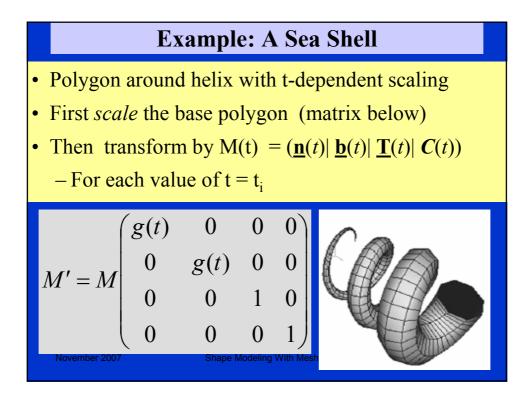


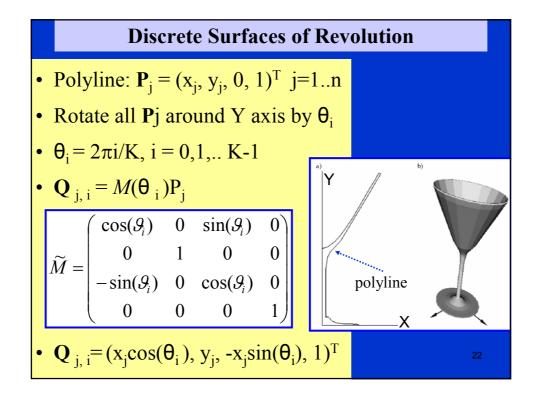


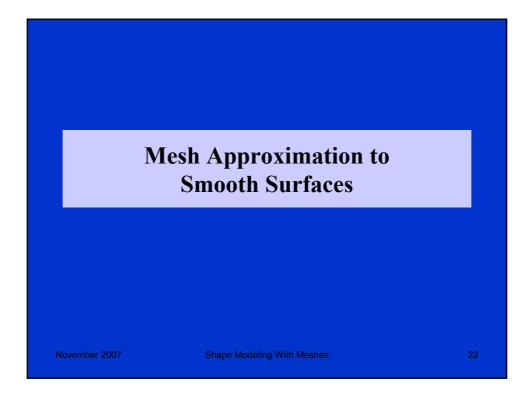


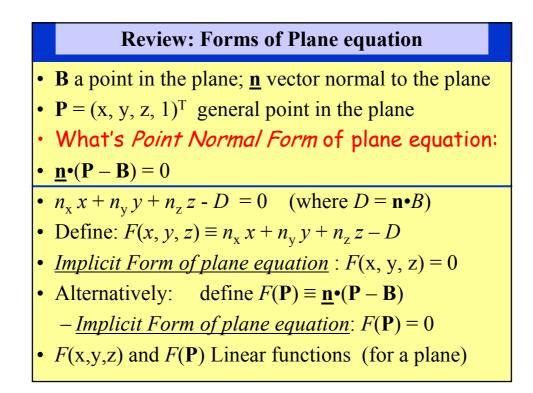


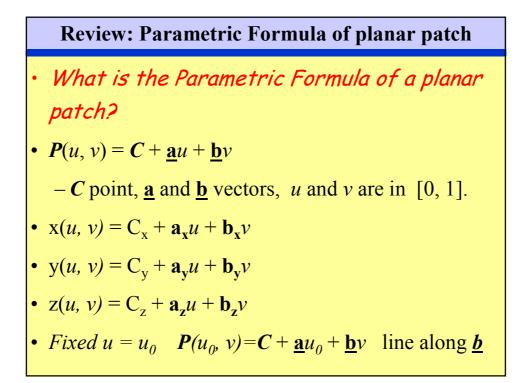












General Smooth <u>Surfaces</u>

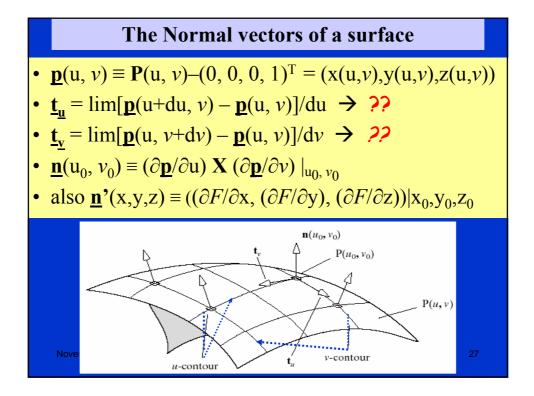
What is the Implicit Form of the equation of a <u>surface</u>?

For some F(): F(x, y, z) = 0 or F(P) = 0

If inside/outside to surface is meaningful, then for point Q:
F(Q) < 0 Q is inside the object
F(Q) = 0 Q is in (or on) the surface
F(Q) > 0 Q is outside
<u>Parametric Formula</u> P(u, v) = (X(u, v), Y(u, v), Z(u, v))

with u and v restricted to suitable intervals.

u-contour lines: constant u = u₀ varying v
v-contour lines: constant v = v₀, varying u



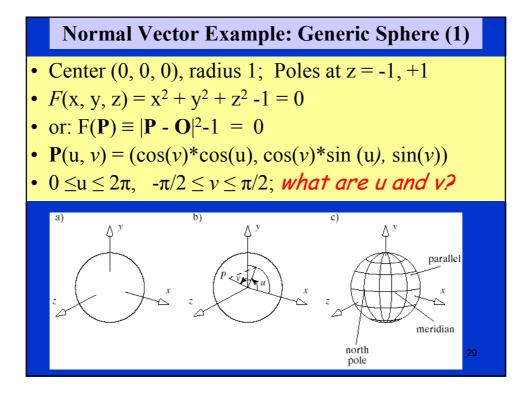
Applying affine transformation to a surface

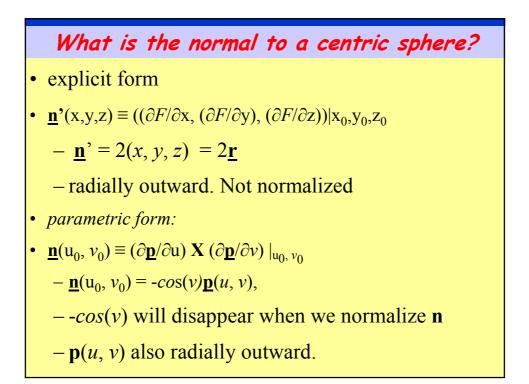
- Surface points are given by the parametric formulae
- $\mathbf{P}(u,v) = (x(u,v), y(u,v), z(u,v))$
- or by the implicit form equation $F(\mathbf{P}) = 0$
- Under a transformation M

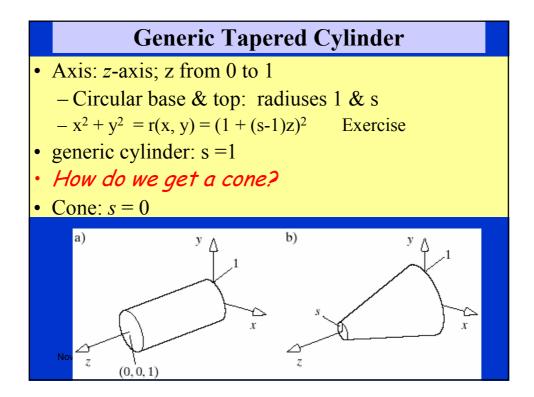
$$-\mathbf{P}(\mathbf{u}, \mathbf{v}) \rightarrow \mathbf{M}\mathbf{P}(\mathbf{u}, \mathbf{v})$$

$$-F(\mathbf{P}) \rightarrow F(\mathbf{M}^{-1}\mathbf{P})$$
 exercise

$$-\underline{\mathbf{n}}(\mathbf{u},v) \rightarrow \mathbf{M}^{-1}(\underline{\mathbf{n}}(\mathbf{u},v)).$$
 exercise





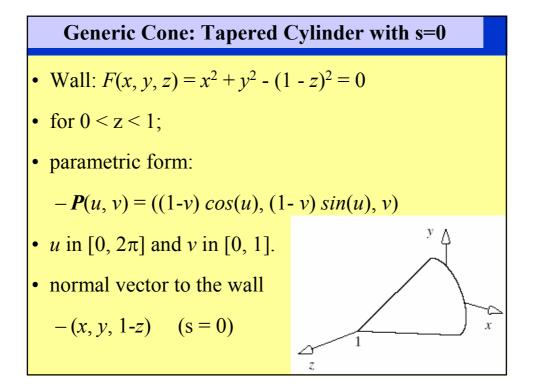


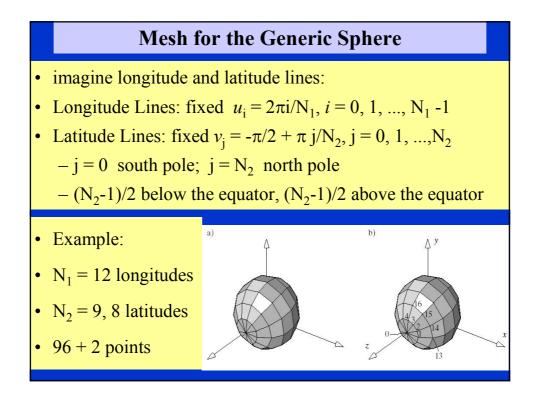
Generic Tapered Cylinder (2)

Implicit form of the equation of wall *F*(x, y, z) ≡ x² + y² -(1 + (s-1)z)² = 0 0 < z < 1

Parametric form: **P**(u, v) = ((1 + (s-1)v)cos(u), (1+(s-1)v)sin(u), v) Exercise
normal vector to wall **n**(x, y, z) = (x, y, -(s - 1)(1+(s - 1)z))
parametric form **n**(u, v) = (cos(u), sin(v), 1 - s) Exercise
generic cylinder normal: (cos(u), sin(u), 0)

Cap: z = 1, x² + y² < s² *P*(u, v) = (ρ cos(α), β sin(α), 1)
for ρ in [0, s]





Mesh for the Generic Sphere (2)

• vertex list - enumeration of all $P(u_i, v_j)$ from south pole up

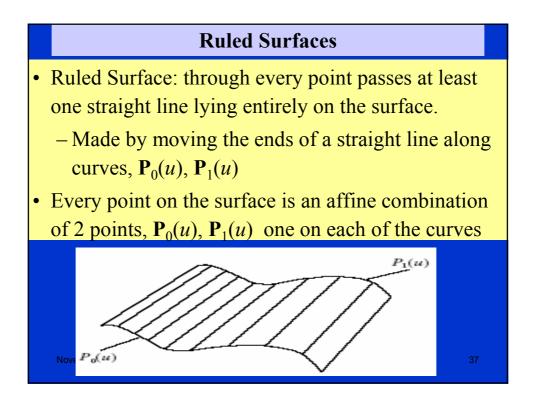
• **P**₀ south pole **P**(
$$u_0, v_0 = -\pi/2$$
)

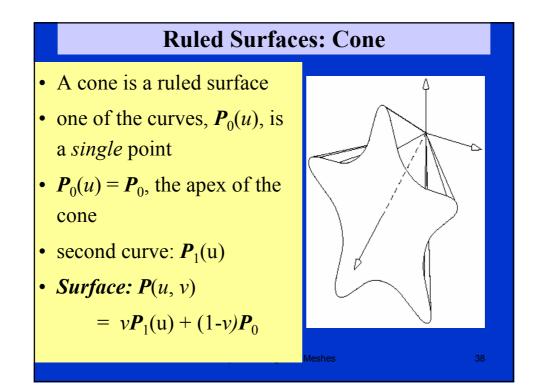
- Then { $\mathbf{P}(u, v) \mid u_i i = 1, 12$; $v_1 = -\pi/2 + \pi/9$ } latitude 1
- Then { $\mathbf{P}(\mathbf{u}, \mathbf{v}) | u_i i = 1, 12; v_2 = -\pi/2 + 2\pi/9$ } latitude 2
- ... Then $\{P(u, v) | u_i i = 1, 12; v_8 = -\pi/2 + 8\pi/9\}...$
- Then P_{97} north pole: $P(u_0, v_9 = +\pi/2)$
- Normal list:
 - -<u>**n**</u>_k, the normal for the sphere at P_k
 - For a sphere $\underline{\mathbf{n}}_k = \mathbf{P}_k \mathbf{O}$

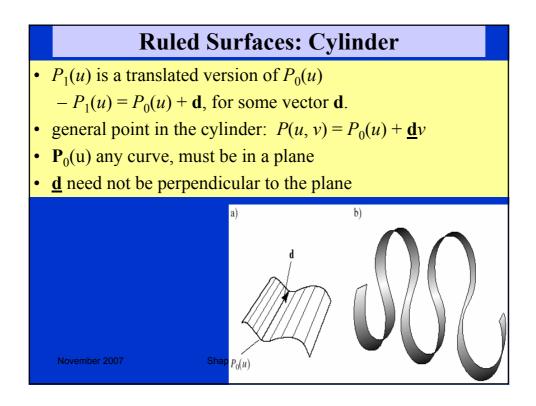
Mesh for the Generic Sphere (3)

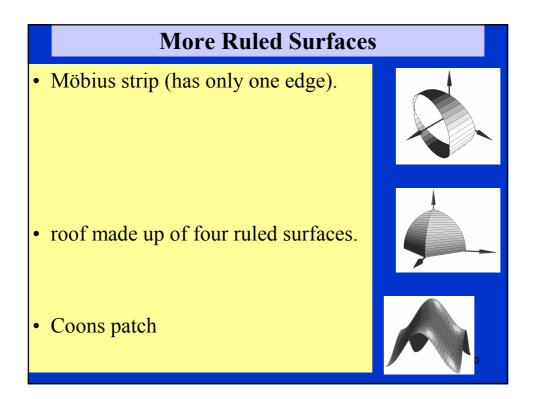
- Face list:
- first 12 faces: bottom triangles (near south pole)
- Next 12 quadrilaterals above the triangles
- Next 12 quadrilaterls, etc.
- The first 3 entries (triangles) in the face list:

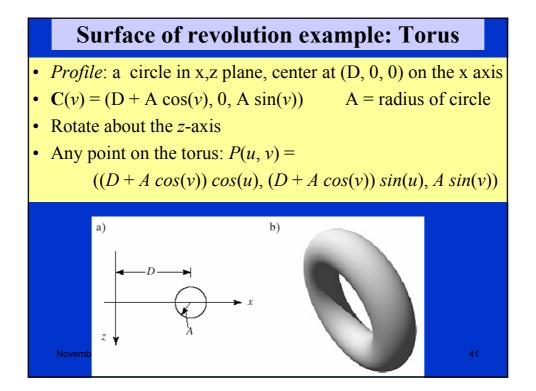
number of vertic	es:	3	3	3	
vertex indices:	01	2	023	034	
normal indices:	01	2	023	034	
vertex 0 is the	e soi	uth pole			











Surfaces of Revolution

- *profile curve* C(v) rotate around an axis.
- example C(v) in the x, z plane C(v)=(x(v), 0, z(v))
 - Rotate around the z axis.
- Rotate point (x(v), 0, z(v)) by angle u
 - \rightarrow ((x(v)cos(u), x(v)sin(u), z(v)).
- $P(u, v) = (x(v)\cos(u), x(v)\sin(u), z(v))$
- $\underline{\mathbf{n}}(\mathbf{u}, \mathbf{v}) \equiv (\partial \underline{\mathbf{p}} / \partial \mathbf{u}) \mathbf{x} (\partial \underline{\mathbf{p}} / \partial \mathbf{v}) \mid$
 - $-\left(\partial \underline{\mathbf{p}}/\partial \mathbf{u} = (-\mathbf{x}(v)\sin(\mathbf{u}), \mathbf{x}(v)\cos(\mathbf{u}), 0\right)$
 - $-(\partial \underline{\mathbf{p}}/\partial v) = (\mathbf{x}'(v)\cos(\mathbf{u}), \mathbf{x}'(v)\sin(\mathbf{u}), \mathbf{z}'(v)$
 - $\mathbf{n} (\mathbf{u}, v) = \mathbf{x}(v) [\mathbf{z}'(v)\cos(\mathbf{u}), \mathbf{z}'(v)\sin(\mathbf{u}), -\mathbf{x}'(v)].$

