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Polygonal Meshes
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Recall the Graphics Pipeline
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Polygonal Meshes

• What is a a polygonal mesh ?

• collection of polygons (faces) 

• approximate description of the 3D surfaces

• Why use meshes?

• easy to represent (set of vertices) and transform.

• simple properties (a single normal vector, 

• a well-defined inside / outside, etc.

• easy to draw 

– using a polygon-fill (scanline) routine

– mapping textures
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What’s included in the description of mesh?

• First thinking: a list of polygons, & directions

• If it represents a solid, faces have inside & outside

• Direction: outward pointing normal vector

– determines its brightness

– How do we find normals?

November 2007 Shape Modeling With Meshes 6

Vertex Normals: Flat and curved faces

• Flat faces:  Vertex has several normals why?
• Vertices V1, V2, V3, V4 of side wall use same normal n1

• Vertex V5, part of modeling front wall, use normal n2. 

• V1 & V5 co-located,  but use different normals

• Mesh of curved face – how many normals for a vertex
• V1 of face F1 & V2 on face F2 use the same normal n

– the true normal of the underlying smooth surface.
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Defining a Polygonal Mesh

• 3 lists 

• Vertices, Outside Normals, Faces

• Example basic barn: 

– 10 vertices

– 7 Normals

– 7 polygonal faces

• How we connect these lists?

• Each Face indexes into the vertex 

and normal lists.
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Vertex and Normal Lists for the Barn

Vertex List

1109

101.50.58

1117

1016

1005

0104

01.50.53

0112

0011

0000

zyxvertex
Normals List

-1006

1005

0-104

0013

00.7070.7072

00.707-0.7071

00-10

nznynxnormal
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Face List for the Barn

6, 6, 6, 6, 60, 4, 3, 2, 16 (back)

5, 5, 5, 5, 55, 6, 7, 8, 95 (front)

4, 4, 4, 40, 1, 6, 54 (bottom)

3, 3, 3, 31, 2, 7, 63 (right)

2, 2, 2,22, 3, 8, 72 (roof right)

1,1,1,13, 4, 9, 81 (roof left)

0,0,0,00, 5, 9, 4 0 (left)

NormalVerticesFace

Vertex list of a face: begins with any vertex

Traverse the polygon counterclockwise as seen from outside

How these normals are calculated?
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Calculating Normals: Newell Algorithm

• Cross product method: V1, V2,V3 vertices of the face

– m = (V1 - V2) × (V3 - V2);  then normalize m

• But a given a list of vertices might not be on a plane!

• Newell: Traverse the face vertices in CC order

– Given vertex n, define next vertex:  ni = (i+1) mod N.  

– Calculate  normal by the Newell Algorithm 

( )( )nii

N

i

niix zzyyn +−= ∑
−

=

1

0

( )( )nii

N

i

niiy xxzzn +−= ∑
−

=

1

0

( )( )nii

N

i

niiz yyxxn +−= ∑
−

=

1

0



6

November 2007 Shape Modeling With Meshes 11

Swept (Extruded) Objects
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Prisms

• How do we create a prism?

• by extruding a regular polygon along a straight line.

• What is a “right prism?

• translation line is perpendicular to the polygon

P

da). b). c).
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Swept (extruded) Shapes

• Base vertices (xi, yi, 0); top vertices (xi, yi, H).

• (xi, yi, H) connected to vertex (xi, yi, 0)

• polygon has n sides � n vertical faces 

• How many vertices per vertical face?

• normals calculated by Newell method
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Swept (extruded)  Quadstrips

• quad-strip = {p0, p1, p2, ...., pM-1}

– vertices taken in pairs: odd ones forming one edge 
even ones forming the other edge. 

• How do we model the gate?
• front face: quadstrip; extrude the front face along  z

p0

p1

p2
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Twisted Extrusion

• How do we get the cut pyramid?

• top scaled (and translated) version of base polygon

• base {p0, p1, ..., pN-1} � cap { Mp0, Mp1, ..., MpN-1} 

• M is some 4 by 4 affine transformation matrix. 

• a), b): top is scaled base

• c): top rotated about z-

axis before extrusion 

• d): top P’ is base P 

rotated and translated. 
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Tube or Snake: Sequenced Extrusions

• Snake on the left: sequence of extruded shapes

• Base polygon P: (p0, p1, p2, p3)

• Initial matrix M0 positions the start end of the tube

• segments have end polygons MiP and Mi+1P, 

• Vertices: (M0p0, M0 p1, M0 p2, M0 p3), (M1p0, M1p1, M1p2, 

M1p3), (M2p0, M2p1, M2p2, M2p3), (M3p0, M3p1, M3p2, M3p3)

How
do 
we 
get
this?
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Wrapping the snake around a space curve

• Space curve C(t); e.g. helix

• what is the shape in the X, Y plane?

• C(t) = (cos(t), sin(t), bt)

• Example Snake: A decagon wrapped around the helix

• Mesh: Get C(ti) for  a 

series of values of ti

• Rotate & move copies 

of base polygon to C(ti)

• Using Frenet Frame X

Y

Z
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What is the Frenet Frame 

• A local coord frame on a curve at C(ti)

– ((n(ti), b(ti), T(ti))

– T(ti) tangent to the curve

– n(ti), b(ti), T(ti) orthonormal

• T(ti)  ~ dC(ti)/dt

– tangent to curve why?

• Normalize T(ti)

• Construct n(ti),  b(ti)

– (later)

T

n

b
T

n

b

C(ti)
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Wrapping the snake around a space curve (2)

• How do we rotating and Move the polygon to C(ti)

• Base polygon at X, Y plane, around O

• Construct M(ti) that:

• 1. transforms the vectors i, j, k,  to n(ti), b(ti), T(ti)

– this also rotates the base polygon to its new orientation

• 2. Translates a point at origin, O, to C(ti)

– this also moves the base polygon to its new position

• M(ti): 4 column matrix:  (n(ti)| b(ti)| T(ti)| C(ti))     exercise

• Apply M(ti) for each i on base polygon

November 2007 Shape Modeling With Meshes 20

Example Calculation the Frenet Frame vectors

• C(t) = (cos (t), sin(t), bt)       (a helix) how much is T(t)?

• dC/dt = (-sin(t), cos(t), b)

– T(t) = (1+b2)-1(-sin(t), cos(t), b)  the tangent vector

• We need another vector a, then calculate b = Txa

– Take a = d2C(t)/dt2

• a = (-cos(t), -sin(t), 0). 

• Then: b = Txa/|Txa|

• How to find n?

• n = bxT
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Example: A Sea Shell  

• Polygon around helix with t-dependent scaling 

• First scale the base polygon  (matrix below)

• Then  transform by M(t)  = (n(t)| b(t)| T(t)| C(t))

– For each value of t = ti












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000)(
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Discrete Surfaces of Revolution

• Polyline: Pj = (xj, yj, 0, 1)T j=1..n

• Rotate all Pj around Y axis by θi 

• θi = 2πi/K, i = 0,1,.. K-1

• Q j, i = M(θ i )Pj

• Q j, i= (xjcos(θi ), yj, -xjsin(θi), 1)T
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Y
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Mesh Approximation to

Smooth Surfaces
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Review: Forms of Plane equation

• B a point in the plane; n vector normal to the plane

• P = (x, y, z, 1)T general point in the plane

• What’s Point Normal Form of plane equation:

• n•(P – B) = 0

• nx x + ny y + nz z - D = 0    (where D = n•B)

• Define: F(x, y, z) ≡ nx x + ny y + nz z – D

• Implicit Form of plane equation : F(x, y, z) = 0

• Alternatively:     define F(P) ≡ n•(P – B)

– Implicit Form of plane equation: F(P) = 0

• F(x,y,z) and F(P) Linear functions  (for a plane)
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Review: Parametric Formula of planar patch

• What is the Parametric Formula of a planar 

patch?

• P(u, v) = C + au + bv

– C point, a and b vectors,  u and v are in  [0, 1].

• x(u, v) = Cx + axu + bxv

• y(u, v) = Cy + ayu + byv

• z(u, v) = Cz + azu + bzv

• Fixed u = u0 P(u0, v)=C + au0 + bv line along b
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General Smooth Surfaces

• What is the Implicit Form of the equation of a 
surface ?

– For some F():    F(x, y, z) = 0            or F(P) = 0

• If inside/outside to surface is meaningful, then for point Q: 

• F(Q) < 0    Q is inside the object

• F(Q) = 0    Q is in (or on) the surface

• F(Q) > 0    Q is outside 

• Parametric Formula P(u, v) =  (X(u, v), Y(u, v), Z(u, v)) 

– with u and v restricted to suitable intervals.

• u-contour lines: constant u = u0 varying v

• v-contour lines: constant v = v0, varying u  
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The Normal vectors of a surface

• p(u, v) ≡ P(u, v)–(0, 0, 0, 1)T  = (x(u,v),y(u,v),z(u,v))

• tu = lim[p(u+du, v) – p(u, v)]/du � ??

• tv = lim[p(u, v+dv) – p(u, v)]/dv � ??

• n(u0, v0) ≡ (∂p/∂u) X (∂p/∂v) |u0, v0

• also n’(x,y,z) ≡ ((∂F/∂x, (∂F/∂y), (∂F/∂z))|x0,y0,z0
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Applying affine transformation to a surface

• Surface points are given by the parametric formulae

• P(u,v) = (x(u,v), y(u,v), z(u,v))

• or by the implicit form equation F(P) = 0

• Under a transformation M 

– P(u, v) → MP(u, v)

– F(P) → F(M-1P)                  exercise 

– n(u,v) → M-1(n(u,v)).          exercise
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Normal Vector Example: Generic Sphere (1)

• Center (0, 0, 0), radius 1;  Poles at z = -1, +1

• F(x, y, z) = x2 + y2 + z2 -1 = 0   

• or: F(P) ≡ |P - O|2-1  =  0

• P(u, v) = (cos(v)*cos(u), cos(v)*sin (u), sin(v))

• 0 ≤u ≤ 2π,   -π/2 ≤ v ≤ π/2; what are u and v?
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What is the normal to a centric sphere?

• explicit form

• n’(x,y,z) ≡ ((∂F/∂x, (∂F/∂y), (∂F/∂z))|x0,y0,z0

– n’ = 2(x, y, z)  = 2r

– radially outward. Not normalized 

• parametric form:

• n(u0, v0) ≡ (∂p/∂u) X (∂p/∂v) |u0, v0

– n(u0, v0) = -cos(v)p(u, v),

– -cos(v) will disappear when we normalize n

– p(u, v) also radially outward. 
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Generic Tapered Cylinder

• Axis: z-axis; z from 0 to 1 

– Circular base & top:  radiuses 1 & s

– x2 + y2 = r(x, y) = (1 + (s-1)z)2           Exercise

• generic cylinder: s =1

• How do we get a cone?
• Cone: s = 0
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Generic Tapered Cylinder (2)

• Implicit form of the equation of wall

• F(x, y, z) ≡ x2 + y2 –(1 + (s-1)z)2 = 0    0 < z < 1 

• Parametric form:

• P(u, v) = ((1 +(s-1)v)cos(u) , (1+(s-1)v)sin(u), v)    Exercise

• normal vector to wall n(x, y, z) = (x, y, -(s - 1)(1+ (s - 1)z)) 

– parametric form n(u, v) = (cos(u), sin(v), 1 – s)   Exercise

– generic cylinder normal: (cos(u), sin(u), 0)

• Cap:  z = 1,  x2 + y2 < s2

– P(u, v) = (ρ cos(α), β sin(α), 1)            for ρ in [0, s]
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Generic Cone: Tapered Cylinder with s=0

• Wall: F(x, y, z) = x2 + y2 - (1 - z)2 = 0   

• for 0 < z < 1; 

• parametric form: 

– P(u, v) = ((1-v) cos(u), (1- v) sin(u), v) 

• u in [0, 2π] and v in [0, 1].  

• normal vector to the wall 

– (x, y, 1-z)     (s = 0)
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Mesh for the Generic Sphere

• imagine longitude and latitude lines: 

• Longitude Lines: fixed ui = 2πi/N1, i = 0, 1, ..., N1 -1

• Latitude Lines: fixed vj = -π/2 + π j/N2, j = 0, 1, ...,N2

– j = 0  south pole;  j = N2 north pole

– (N2-1)/2 below the equator, (N2-1)/2 above the equator

• Example:

• N1 = 12 longitudes

• N2 = 9, 8 latitudes

• 96 + 2 points
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Mesh for the Generic Sphere (2)

• vertex list  - enumeration of all P(ui, vj) from south pole up

• P0 south pole   P(u0, v0 = -π/2) 

• Then {P(u, v) | ui i = 1, 12 ; v1 = -π/2 +  π/9}  latitude 1

• Then {P(u, v) | ui i = 1, 12 ; v2 = -π/2 +  2π/9} latitude 2

• … Then {P(u, v) | ui i = 1, 12 ; v8 = -π/2 +  8π/9}...

• Then P97 north pole:  P(u0, v9 = +π/2)

• Normal list:

– nk, the normal for the sphere at Pk

– For a sphere nk = Pk - O
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Mesh for the Generic Sphere (3)

• Face list: 

• first 12 faces: bottom triangles (near south pole)

• Next 12 quadrilaterals above the triangles

• Next 12 quadrilaterls, etc. 

• The first 3 entries (triangles) in the face list:

number of vertices:  3 3 3 ...

vertex indices: 0 1 2 0 2 3 0 3 4 ...

normal indices: 0 1 2   0 2 3 0 3 4 ...

vertex 0 is the south pole
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Ruled Surfaces

• Ruled Surface: through every point passes at least 

one straight line lying entirely on the surface.

– Made by moving the ends of a straight line along 

curves, P0(u), P1(u)

• Every point on the surface is an affine combination 

of 2 points, P0(u), P1(u)  one on each of the curves 
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Ruled Surfaces: Cone

• A cone is a ruled surface

• one of the curves, P0(u), is 

a single point

• P0(u) = P0, the apex of the 

cone

• second curve: P1(u)

• Surface: P(u, v)                                  

=  vP1(u) + (1-v)P0
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Ruled Surfaces: Cylinder

• P1(u) is a translated version of P0(u) 

– P1(u) = P0(u) + d, for some vector d.

• general point in the cylinder:  P(u, v) = P0(u) + dv

• P0(u) any curve, must be in a plane

• d need not be perpendicular to the plane
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More Ruled Surfaces

• Möbius strip (has only one edge). 

• roof made up of four ruled surfaces. 

• Coons patch
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Surface of revolution example: Torus

• Profile: a  circle in x,z plane, center at (D, 0, 0) on the x axis 

• C(v) = (D + A cos(v), 0, A sin(v))         A = radius of circle

• Rotate about the z-axis 

• Any point on the torus: P(u, v) =                                                             

((D + A cos(v)) cos(u), (D + A cos(v)) sin(u), A sin(v))
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Surfaces of Revolution

• profile curve C(v)  - rotate around an axis.

• example C(v) in the x, z plane      C(v)= (x(v), 0, z(v)) 

• Rotate around the z axis.

• Rotate point (x(v), 0, z(v)) by angle u

• � ((x(v)cos(u), x(v)sin(u), z(v)).

• P(u, v) = (x(v)cos(u), x(v)sin(u), z(v))

• n(u, v) ≡ (∂p/∂u) x (∂p/∂v) |

– (∂p/∂u = (-x(v)sin(u), x(v)cos(u), 0)

– (∂p/∂v) = (x’(v)cos(u), x’(v)sin(u), z’(v)

– n (u, v) = x(v) [z’(v)cos(u), z’(v)sin(u), -x’(v)].
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Constructing a mesh for surface of revolution

• choose a set of u and v values, {ui} and {vj}, 

• and compute a vertex at each pair P(ui, vj)

• compute a normal direction n(ui, vj). 

• Build polygonal faces by joining four adjacent 

vertices with straight lines. 
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Example

• A model of the dome of the Taj Mahal in Agra, India

• Profile is given as a set of points

• We'll later replace the points by Bezier curve 
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Surfaces which are Functions of Two Variables

• Single valued height function y = f(x, z)

• Define parameters: u = x , v = z,  y(u,v) = f(u,v)

• Parametric formula:  P(u,v) = (u, f(u, v), v)

• n(u, v) = (1,∂f/∂u, 0) X (0,∂f/∂v,1) = (∂f/∂u,-1, ∂f/∂v) 
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Example

• y = sync(x,z) ≡ sin(sqrt(x2 + z2))/sqrt(x2 + z2)

• P(u, v) = (u, sin(sqrt(u2 + v2))/sqrt(u2 + v2), v)


