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Visual Realism Requirements

• Light Sources

• Materials (e.g., plastic, metal)

• Shading Models

• Depth Buffer Hidden Surface Removal

• Textures

• The Graphics pipeline revisited
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Rendering

• Rendering: deciding how a pixel should look

• Example: compare wireframe (left) to wire-frame 

with hidden surface removal (right)
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Rendering (2)

• wire-frame (left)

• flat shading (middle)

• smooth (Gouraud) shading (right)
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Rendering (3)

• specular highlights

• Shadows

• textures
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Shading: Determination of the color of 

every point in the model
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Shading Models: Introduction 

• Basic Modeling Assumptions (for now):

• 1. light has no color, R = G = B; it has intensity (brightness)

• 2.  point source of light  (we’ll add another source later)

• what happens when light hits an object?

• absorbed, reflected, refracted

• what's the color of an object absorbs all the light?

• reflected light that reaches the eye is the sum of 

– Diffuse reflection: reflected from inside, uniformly in all 

directions. in what color?

– Specular (miror like) reflection: reflected from surface, 

approximately the same color as source. Shiny surface
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Reflected Light

• Light from Source, reflected at Point P, reaches eye

• Depends on 2 directions from P: s to Source,  v to Eye

– Intensity depends on (v·m),  (s·m) m normal at P

– (v·m),  (s·m) must be positive, else reflected is 0

• Normally eye sees outside surface, not always
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Diffuse Light (reflected in all directions)

• Id assumed to be independent of eye direction v

• Id proportional to cos of the angle between s and m

– Lambert Law: Id = Isρd (s·m)/(|s||m|)         why?

• ρd diffuse reflection coefficient of material

• s·m < 0 � Id = 0. 

• Id = Isρd max 

[(s·m)/(|s||m|), 0]. 

• Note: distance from 

source ignored!
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Example: Spheres modeled with Diffuse Light.

• ρd = 0 to 1 by 0.2 from top 

left to bottom right

• Source intensity Is = 1.0 

• Background ρd 0.4. 

• Top left sphere ρd = 0.0

– Id = 0  (Black)

• bottom half of all spheres:

– (s·m) < 0) 

– Also Id = 0  (black)
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Specular Light

• light reflects at all angles, highest intensity at direction r

– max at (r·m) = (s·m) equal incident & reflection angles

• Isp decreases as φ between r and v increases.  

• Phong Model: intensity decreases as cosf φ    f = 1…200

• cos φ = r·v/(|r||v|)                    require  (r·v) > 0

– Isp = Is ρs (r·v/(|r||v|))
f what’s the effect of large f
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Speeding up Calculations for Specular Light

• Need to calculate r = -s + 2 m (s·m)/(|m|2)       (lecture 2)

– For each point on each surface. Lengthy calculation

• Alternative: use the halfway vector h = s + v.

• Replace φ   by β   (they are not the same)

Isp = Is ρs max[(h·m/(|h||m|))
f, 0] 
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Example Reflected light

• From top to bottom, ρs = 0.25, 0.5, 0.75 

• From left to right, f = 3, 6, 9, 25, 200.  

• ρa= 0.1

• ρd= 0.4
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Ambient Light

• Point source light is not sufficient

– E.g., generated shadows unrealistically sharp 

• Scenes always bathed in some non-directional light. 

– Generated by multiple reflections & many light source

• We model this by ambient light, not situated at any 

particular place, spreads in all directions uniformly

• The source is assigned an intensity, Ia. 

• Each point P at face reflects ambient light, Ia ρa

– ρa ambient reflection coefficient of material at P

• The total reflected light reaching the eye is the sum of 

diffuse, specular and ambient light
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Example

• Diffuse and ambient sources have intensities 1.0

• ρd = 0.4. 

• ρa = 0, 0.1, 0.3, 0.5, 0.7 (left to right). 

• Modest ambient light softens shadows; too much 

ambient light washes out shadows.
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Combining Light Contributions;  Color

• I = Ia ρa + Id ρd x lambert + Isp ρs x phong
f

• lambert ≡ max[(s·m)/(|s||m|), 0]

• phong ≡ max[(h·m/(|h||m|), 0]

• Color: combine 3 separate  intensities like above

– one each for Red, Green, and Blue

• light sources have three color intensities: 

• ambient = (Iar, Iag, Iab), 

• diffuse = (Idr, Idg, Idb),  specular = (Ispr, Ispg, Ispb )

– For each source; usually Idi = Ispi for i = r, g, b
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The 9 Reflection coefficients

• Ambient:  ρar, ρag, and ρab;

• Diffuse:  ρdr, ρdg, and ρdb

• Specular:  ρsr, ρsg, and ρsb

– Ambient & diffuse coefficients usually the same

– They determine the color of the surface in white light

• Example: modeling sphere 30% red, 45% green, 25% blue

– diffuse reflection: (ρdr, ρdg, ρdb) = (0.3K, 0.45K, 0.25K) 

• model white light:   Id = Is = (1, 1, 1)

– � diffused light: (0.3 K, 0.45 K, 0.25 K)* lambert

– �Surface color is 30% red, 45% green, and 25% blue

– (ignoring specular reflection: phong = 0)
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Modeling red object in green light

• sphere ambient/diffuse reflection coefficients (0.8, 0.2, 0.1), 

– mostly red when bathed in white light. 

• Assume greenish light souce Is = Id = (0.15, 0.7, 0.15)

• 0.15 x 0.8 = 0.12

• 0.7 x 0.2 = 0.14

• 0.15 x 0.1 = 0.015

• Reflected diffuse light: (0.12, 0.14, 0.015)* lambert

• a fairly even mix of red and green 

• and would appear yellowish  (from color theory)
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Specular reflection of colored light

• specular reflection is mirror-like

– Its color is often the same as that of the light source. 

– the specular highlight seen on a glossy red apple when 

illuminated by a yellow light is yellow, not red.

• Same phenomena on most surfaces

• set the specular reflection coefficients ρsr= ρsg = ρsb= ρs

– specular reflection coefficients are “neutral”

– do not alter the color of the incident light. 

• choose ρs = 0.5 for a slightly shiny plastic surface, 

• ρs = 0.9 for a highly shiny surface.
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Shading and the Graphics Pipeline (1)

• after modeling each vertex has its position and its normal, n

• The modelview matrix M now transforms vertices, light 

sources and normals (n)  

– n�M-Tn M-T = transpose of the inverse matrix M-1

• All coordinates are “eye coordinates”

• Color (shading) calculated at this point, for each vertex

• Results (color values) are kept 
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Shading and the Graphics Pipeline (2)

• Next perspective transformation, then clipping 

– Clipping may create vertices which need to have colors, 

calculated by weighted average of initial vertex colors. 

– E.g. if the new vertex A is 40% of the way from V0 to 

V1, the color (A) is a weighted average: 

– 60% of (r0, g0, b0) and 40% of (r1, g1, b1)

• Next: viewport transformation � vertices map to screen 

coordinates 

– Each having pseudodepth, between 0 and 1

• Next hidden surface are removed (later)

• Next: 2-D objects scanlined to a buffer (next topic) 
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Normal vectors of vertices

• Flat faces in a model are realy flat (e.g. house) or a mesh 

approximation for a surface

• For a flat face we attach same normal to all its vertices.

• If a face approximates an underlying surface (e.g sphere or a 

torus), each vertex gets the real normal to the underlying 

surface  

• in later lecture we talk about calculating normals to surfaces
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coloring a convex face: scanline

• faces are scanlined, putting colors into frame buffer

• What are the colors of intermediate pixels?

– Flat shading: all have same color (of first vertex)

– Smooth shading: colors are weighted averages 

(interpolation) of vertex colors
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Shading Models: Flat Shading

• Edges appear pronounced (sharpened)

• Specular highlights

• It appears in all points of the face or none at all

depending if first vertex has specular component

• Flat shading usually do not include specular light
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Smooth Shading: Gouraud

• colors of left edge point C5 interpolate between colors of 

edge vertices C1 C4  (linear interpolation)

– C5 = c1 + (c4 - c1)f,    where f (y5) = (y5 – y1)/(y4-y1)

• Similarly c6 = c1 + (c2-c1)g where  g(y6) = (y6-y1)/(y2-y1)

• then: c7 = c5 + (c6-c5)h h(x7) = (x7-x5)/(x6 –x5)

• Color transition across edges is smooth

5555

1111

4444

3333

7 6666
2222
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Phong Shading: Interpolating normals

• normal vectors on face are interpolation between normal 

vectors of vertices. Then calculate colors 

• Accurate, but very time-consuming!  Takes 6 to 8 times 

longer than Gouraud shading.

• Good with specular light

phongGouraud
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Hidden Surface Removal
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Hidden Face removals

• Frame buffer: for each pixel [i,j] it has its color c[i, j]

• Depth buffer: for each pixel it has its pseudodepth, d[i, j]

• When scanning a face, at point [i,j]:

– Checks if pseudodepth of [i,j]  is smaller than d[i][j]  

– If so, the color of [i,j] replaces c[i][j] and the psudodepth

of [i,j] replaces the old value in d[i][j].   Else nothing

What are the 
Initial values
Of the 
buffers? 
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Hidden Face removals (2)

• Recall: Pseudodepth is the 3rd component of the [i, j] point: 

– d(Pz) = (aPz + b)/(-Pz); a, b were chosen so that 0 ≤ d ≤ 1.

– pseudodepth of vertices are known

– pseudodepths of internal points are calculated by 

interpolation – like colors.  (not precise; d non-linear)

• Faces can be scanned in any order

– If remote face is scanned first, color of some of its pixels 

might later be replaced by colors of a nearer face pixels

• Algorithm works for objects of any shape including curved 

surfaces, because it test for closenes by point-by-point test

• The content of the frame buffer is copied into the screen

– Either synchronously in real time or asynchronously
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Painter algorithm: summary

• uses depth buffer to remove hidden surfaces

• Also called z-buffer algorithm

• Principal limitations: 

– It requires a large amount of memory.

– It often renders an object that is later obscured by a 

nearer object (so time spent rendering the first object is 

wasted)

– If interpolation is used, it is not precise
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Adding Texture

December 2007 Prof. R. Aviv Visual Realism 32

Adding Texture to Faces

• Makes surfaces look more realistic: e.g., brick, wood, or 

simply pictures are painted on or wrapped around surfaces.

• Texture uses tex(s, t) which sets a color or intensity value 

between 0 and 1, for each value of s and t between 0 and 1

• The (s,t) points are attached to surfaces of the model
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How to generate texture

• tex(s,t) is a function on points in texture space (s,t)

– Each point (s,t) is called texel

• digitizing image � bitmap tex[i, j] � tex(s,t)

• Mathematical procedure � tex(s,t)
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Procedural and image textures 

• mathematical procedural texture

• tex ( s,  t) { 

r = sqrt((s - 0.5)*(s - 0.5) + (t - 0.5)*(t - 0.5));

if (r < 0.3) return 1 - r/0.3;  else return 0.2; }

– tex varies: white at center to black at edges of sphere.

• Image texture 

• Digitizing image � Bitmap of color values 

– col[x][y]   x, y integers

• Define s = x/xmax and t = y/ymax.

• Divide values of col by its max values to get tex
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Usages of Textures

• tex(s,t) can be used as the color of the face itself 

– e.g. the face will be glowing at certain points

• tex(s,t) can be the ambient, diffuse, or specular reflection 

coefficients

– to modulate the amount of light reflected from the face 

• tex(s,t) can be used to alter the normal vector to the surface 

to give the object a bumpy appearance. 
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Using Texture with Mesh Objects

• Mesh objects are list of faces  (later lecture)

• Data structure of a mesh: 3 lists: 

– Vertex list, face list, normal list

– Face points to vertices, vertex points to a normal

• Now add a list of texture coordinates, (si, ti) 

– Each vertex points to its (si, ti)  - during modeling phase

• Usage 1: flat faces

– each face points to 1 normal, and to a texture 

• Usage 2: flat faces that approximate underlying surface.

– Each vertex points to 1 normal (of the underlying 

surface)

– Each vertex points to its (si, ti)
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Rendering texture (flat faces)

• Goal: calculate (s*,t*) for each screen point (xs,ys) of face

• Basic idea: scan lines of the face 

– (s*,t*) of edge points interpolate (s*,t*) of vertices

– (s*,t*) of internal points interpolate (s*,t*) of edge points

• Same as calculating colors  and pseudodepths of points  
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Rendering texture: a problem

• The face on the screen is a projection of the real face

• Consider equispaced points on the screen 

• are corresponding points on real face equispaced?

• in general, NO

• Linear interpolation assumes that they are
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Rendering texture: a problem (2)

• Example: object is rotated checkerboard, projected to screen

• Linear interpolation (left): 

– equispaced, same size squares on screen

– Farther away squares are not smaller

– annoying, wrong
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Analysis of the problem (1)

• We attach texel points to points in eye coordinates

– Line segment of texels, Lt attached to line segment Le  
• But objects are transformed to screen coordinates

– Affine & projective transformations: Lines � lines

– Le in eye space projects to line segment Ls in screen space

• Consider equispaced pixels on line segment Ls  (on screen)

• Where are the corresponding points on Le  (or Lt)? 
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Solving the problem

• 3D segment AB transformed into segment ab, by matrix M

• A maps to a,    B maps to b,    R(g) maps to r(f)

• R(g) = A + (B – A)g ≡ lerp(A, B, g)    0<= g <= 1

• r(f)  = a + (b – a)f ≡ lerp(a, b, f)        0 <= f <= 1

• fractions f and g are not the same.    g nonlinear funcion of f

• The problem: Find the function g = g(f)

• At edge points: f = 0 � g = 0;    f = 1  � g = 1
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Solving the problem (1)

• Homogeneous coordinates of A, R are the quartets 

– A = (A1, A2, A3,1)     R = (R1, R2, R3,1) 

• homogeneous coordinates of a are the quartet

 α = (α1, α2, α3, α4)    note that α4 not necessarily 1

– a = (α1/α4, α2/α4, α3/α4)

• Similarly

• b = (β1/β4, β2/β4, β3/β4)

• r = (ρ1/ρ4, ρ2/ρ4, ρ3/ρ4)
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Solving the problem (2)

• The transformation maps A to α, B to β, R to ρ  

 α = MAT β = ΜBΤ        ρ(f) = ΜR(g)T

• But: R(g) = A + (B-A)g ≡ lerp(A, B, g)   check this

– (note: ρρρρ(f)  ≠ αααα + (ββββ – αααα)f check this)

 ρ(f)  = M*lerp(A, B, g)T lerp(MAT, MBT, g)

 ρ(f)  =  lerp(α, β, g)       (four components equation)
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Solving the problem (3)

• The four components of ρ(f)  = lerp(α, β, g) are:

• lerp(α1, β1, g), lerp(α2, β2, g), lerp(α3, β3, g), lerp(α4, β4, g)

• Do perspective division to get actual coordinates of r

– r1(f) = lerp(α1, β1, g)/ lerp(α4, β4, g)

• But r(f) = a + (b - a)f = lerp(a, b, f)

– r1(f ) = lerp(α1/α4, β1/β4, f)

• Compare two expressions to get 

• g = f/[β4/α4 + (1 – β4/α4)f]  

• g =  f/lerp(β4/α4, 1, f)
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What determines ββββ4/αααα4 ?

• 1) If M is affine (not a perspective projection)

 α4 = β4 = 1     � g = f check this

• 2)  M is a perspective transformation

 α4 = -A3 check this

 β4 = -B3

– These are the Z coordinates of points A, B

• The relative depth of A, B determine the relation between f 

and g
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The hyperbolic interpolation

• Given a point r(f) in the screen coordinates, what is the 

corresponding point that was transformed to it, R

– in real 3D coordinates R = (R1(f), R2(f), R3(f))

• Starting point: R1(f) = A1+ (B1 – A1)g(f) 

• Plug in the formula for g to get

– R1(f) = lerp(A1/α4, B1/β4, f)/lerp(1/α4, 1/β4, f)  check this

– Similar expressions for R2(f) , R3(f)

• This is the hyperbolic interpolation.
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Example: attaching texture to a barn

• we want to attach a line segment [(sleft, tleft) , (sright, tright)] in 

texture plane to line segment [(xleft , y), (xright, y)] in the 

screen (frame) buffer

• left edge of the face in the screen has endpoints a and b. 

• First find the texture coordinates (sleft, tleft)  (sright, tright)

• then interpolate across the scan-line. 
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Example: attaching texture to a barn (2)

• Assume (SA , TA) (SB , TB) were attached to vertices A, B 

– during modeling phase

– they were passed down the pipeline along with A and B

– they are now attached to projected vertices a and b

– no transformation were done on them

• Now scanline is done

• scan line at y is a fraction f of the way between ybott and ytop

– f(y) = (y –ybott)/(ytop – ybott)

– sleft(y) = lerp(SA/α4, SB/β4, f(y))/lerp(1/α4, 1/β4,f(y))

• similar expression for sright dependence on SA', SB', y
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Example: attaching texture to a barn (3)

• similar expression for tleft and tright dependence on TA, TB, y

• then s(x) are calculated  for the fixed y 

– by hyperbolic interpolations between sleft, sright

• similarly t(x) is calculated by hyperbolic interpolation 

between tleft, tright

• Repeat for next y
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Graphics Pipeline: Sart

• The pipeline: Various points in the pipeline are labeled with the 

information available at that point. 

• Start: Each vertex V is associated with a texture pair (s, t) and a 

vertex normal, n
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Graphics Pipeline: Modeling, shading

• vertices V transformed by the modelview matrix M

• normals multiplied by the inverse transpose of M

– giving vertex A = (A1, A2, A3) and a normal n’ in eye 
coordinates. 

• Shading calculations are done using this normal, producing 
the color c = (cr, cg, cb). 

• The texture coordinates (sA, tA) (same as (s, t)) are still 
attached to A. 
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Graphics Pipeline: Perspective Transformation

• Perspective Transformation: 

– Vertex A transformed into  α = (α1, α2, α3, α4)

– colors and texture points unchanged

• information is now α, SA, TA, c
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Graphics Pipeline: Clipping

• Clipping: 

– some vertices disappear others created

• position of new vertex D (d1, d2, d3, d4)  by linear 
interpolation   di = lerp(ai, bi, t), for i = 1,.., 4

– color and texture points are also calculated by 
linear interpolation, and attached 

• information is in the array (α1, α2, α3, α4, sA, tA, c, 1).
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The Graphics Pipeline: perspective division

• hyperbolic interpolation need terms such as sA/α4, 1/α4, ...

• we divide every item in the array that we wish to interpolate 

hyperbolically by α4
• result (α1/α4, α2/α4, a3/a4, 1, sA/α4, tA/α4, c, 1/α4)

• first three are position in Normalized Device Coordinates

– third is pseudodepth



28

December 2007 Prof. R. Aviv Visual Realism 55

The Graphics Pipeline: Viewport transformation

• first two components scaled and shifted by the viewport
transformation

• we call the position now x, y, z 

• information per vertex: (x, y, z, 1, sA/a4, tA/a4, c, 1/a4) 

• It is simple to render texture using hyperbolic interpolation, 
since the required values sA/a4 and 1/a4 are available for each 
vertex.
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The Graphics Pipeline: Scanline

• information per vertex: (x, y, z, 1, sA/a4, tA/a4, c, 1/a4) 

• Scanline: determine properties of internal points

– hide back surfaces:  use z (depth) buffer

– shading (calculate colors): can use color buffer)

– add texture: use the texture function

• Push color buffer to the screen


