
1

December 2007 Prof. R. Aviv Visual Realism 1

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Visual Realism Techniques

Slides adapted from F. Hill, S. Kelley Computer Graphics

December 2007 Prof. R. Aviv Visual Realism 2

Visual Realism Requirements

• Light Sources

• Materials (e.g., plastic, metal)

• Shading Models

• Depth Buffer Hidden Surface Removal

• Textures

• The Graphics pipeline revisited

2

December 2007 Prof. R. Aviv Visual Realism 3

Rendering

• Rendering: deciding how a pixel should look

• Example: compare wireframe (left) to wire-frame

with hidden surface removal (right)

December 2007 Prof. R. Aviv Visual Realism 4

Rendering (2)

• wire-frame (left)

• flat shading (middle)

• smooth (Gouraud) shading (right)

3

December 2007 Prof. R. Aviv Visual Realism 5

Rendering (3)

• specular highlights

• Shadows

• textures

December 2007 Prof. R. Aviv Visual Realism 6

Shading: Determination of the color of

every point in the model

4

December 2007 Prof. R. Aviv Visual Realism 7

Shading Models: Introduction

• Basic Modeling Assumptions (for now):

• 1. light has no color, R = G = B; it has intensity (brightness)

• 2. point source of light (we’ll add another source later)

• what happens when light hits an object?

• absorbed, reflected, refracted

• what's the color of an object absorbs all the light?

• reflected light that reaches the eye is the sum of

– Diffuse reflection: reflected from inside, uniformly in all

directions. in what color?

– Specular (miror like) reflection: reflected from surface,

approximately the same color as source. Shiny surface

December 2007 Prof. R. Aviv Visual Realism 8

Reflected Light

• Light from Source, reflected at Point P, reaches eye

• Depends on 2 directions from P: s to Source, v to Eye

– Intensity depends on (v·m), (s·m) m normal at P

– (v·m), (s·m) must be positive, else reflected is 0

• Normally eye sees outside surface, not always

5

December 2007 Prof. R. Aviv Visual Realism 9

Diffuse Light (reflected in all directions)

• Id assumed to be independent of eye direction v

• Id proportional to cos of the angle between s and m

– Lambert Law: Id = Isρd (s·m)/(|s||m|) why?

• ρd diffuse reflection coefficient of material

• s·m < 0 � Id = 0.

• Id = Isρd max

[(s·m)/(|s||m|), 0].

• Note: distance from

source ignored!

December 2007 Prof. R. Aviv Visual Realism 10

Example: Spheres modeled with Diffuse Light.

• ρd = 0 to 1 by 0.2 from top

left to bottom right

• Source intensity Is = 1.0

• Background ρd 0.4.

• Top left sphere ρd = 0.0

– Id = 0 (Black)

• bottom half of all spheres:

– (s·m) < 0)

– Also Id = 0 (black)

6

December 2007 Prof. R. Aviv Visual Realism 11

Specular Light

• light reflects at all angles, highest intensity at direction r

– max at (r·m) = (s·m) equal incident & reflection angles

• Isp decreases as φ between r and v increases.

• Phong Model: intensity decreases as cosf φ f = 1…200

• cos φ = r·v/(|r||v|) require (r·v) > 0

– Isp = Is ρs (r·v/(|r||v|))
f what’s the effect of large f

December 2007 Prof. R. Aviv Visual Realism 12

Speeding up Calculations for Specular Light

• Need to calculate r = -s + 2 m (s·m)/(|m|2) (lecture 2)

– For each point on each surface. Lengthy calculation

• Alternative: use the halfway vector h = s + v.

• Replace φ by β (they are not the same)

Isp = Is ρs max[(h·m/(|h||m|))
f, 0]

7

December 2007 Prof. R. Aviv Visual Realism 13

Example Reflected light

• From top to bottom, ρs = 0.25, 0.5, 0.75

• From left to right, f = 3, 6, 9, 25, 200.

• ρa= 0.1

• ρd= 0.4

December 2007 Prof. R. Aviv Visual Realism 14

Ambient Light

• Point source light is not sufficient

– E.g., generated shadows unrealistically sharp

• Scenes always bathed in some non-directional light.

– Generated by multiple reflections & many light source

• We model this by ambient light, not situated at any

particular place, spreads in all directions uniformly

• The source is assigned an intensity, Ia.

• Each point P at face reflects ambient light, Ia ρa

– ρa ambient reflection coefficient of material at P

• The total reflected light reaching the eye is the sum of

diffuse, specular and ambient light

8

December 2007 Prof. R. Aviv Visual Realism 15

Example

• Diffuse and ambient sources have intensities 1.0

• ρd = 0.4.

• ρa = 0, 0.1, 0.3, 0.5, 0.7 (left to right).

• Modest ambient light softens shadows; too much

ambient light washes out shadows.

December 2007 Prof. R. Aviv Visual Realism 16

Combining Light Contributions; Color

• I = Ia ρa + Id ρd x lambert + Isp ρs x phong
f

• lambert ≡ max[(s·m)/(|s||m|), 0]

• phong ≡ max[(h·m/(|h||m|), 0]

• Color: combine 3 separate intensities like above

– one each for Red, Green, and Blue

• light sources have three color intensities:

• ambient = (Iar, Iag, Iab),

• diffuse = (Idr, Idg, Idb), specular = (Ispr, Ispg, Ispb)

– For each source; usually Idi = Ispi for i = r, g, b

9

December 2007 Prof. R. Aviv Visual Realism 17

The 9 Reflection coefficients

• Ambient: ρar, ρag, and ρab;

• Diffuse: ρdr, ρdg, and ρdb

• Specular: ρsr, ρsg, and ρsb

– Ambient & diffuse coefficients usually the same

– They determine the color of the surface in white light

• Example: modeling sphere 30% red, 45% green, 25% blue

– diffuse reflection: (ρdr, ρdg, ρdb) = (0.3K, 0.45K, 0.25K)

• model white light: Id = Is = (1, 1, 1)

– � diffused light: (0.3 K, 0.45 K, 0.25 K)* lambert

– �Surface color is 30% red, 45% green, and 25% blue

– (ignoring specular reflection: phong = 0)

December 2007 Prof. R. Aviv Visual Realism 18

Modeling red object in green light

• sphere ambient/diffuse reflection coefficients (0.8, 0.2, 0.1),

– mostly red when bathed in white light.

• Assume greenish light souce Is = Id = (0.15, 0.7, 0.15)

• 0.15 x 0.8 = 0.12

• 0.7 x 0.2 = 0.14

• 0.15 x 0.1 = 0.015

• Reflected diffuse light: (0.12, 0.14, 0.015)* lambert

• a fairly even mix of red and green

• and would appear yellowish (from color theory)

10

December 2007 Prof. R. Aviv Visual Realism 19

Specular reflection of colored light

• specular reflection is mirror-like

– Its color is often the same as that of the light source.

– the specular highlight seen on a glossy red apple when

illuminated by a yellow light is yellow, not red.

• Same phenomena on most surfaces

• set the specular reflection coefficients ρsr= ρsg = ρsb= ρs

– specular reflection coefficients are “neutral”

– do not alter the color of the incident light.

• choose ρs = 0.5 for a slightly shiny plastic surface,

• ρs = 0.9 for a highly shiny surface.

December 2007 Prof. R. Aviv Visual Realism 20

Shading and the Graphics Pipeline (1)

• after modeling each vertex has its position and its normal, n

• The modelview matrix M now transforms vertices, light

sources and normals (n)

– n�M-Tn M-T = transpose of the inverse matrix M-1

• All coordinates are “eye coordinates”

• Color (shading) calculated at this point, for each vertex

• Results (color values) are kept

11

December 2007 Prof. R. Aviv Visual Realism 21

Shading and the Graphics Pipeline (2)

• Next perspective transformation, then clipping

– Clipping may create vertices which need to have colors,

calculated by weighted average of initial vertex colors.

– E.g. if the new vertex A is 40% of the way from V0 to

V1, the color (A) is a weighted average:

– 60% of (r0, g0, b0) and 40% of (r1, g1, b1)

• Next: viewport transformation � vertices map to screen

coordinates

– Each having pseudodepth, between 0 and 1

• Next hidden surface are removed (later)

• Next: 2-D objects scanlined to a buffer (next topic)

December 2007 Prof. R. Aviv Visual Realism 22

Normal vectors of vertices

• Flat faces in a model are realy flat (e.g. house) or a mesh

approximation for a surface

• For a flat face we attach same normal to all its vertices.

• If a face approximates an underlying surface (e.g sphere or a

torus), each vertex gets the real normal to the underlying

surface

• in later lecture we talk about calculating normals to surfaces

12

December 2007 Prof. R. Aviv Visual Realism 23

coloring a convex face: scanline

• faces are scanlined, putting colors into frame buffer

• What are the colors of intermediate pixels?

– Flat shading: all have same color (of first vertex)

– Smooth shading: colors are weighted averages

(interpolation) of vertex colors

December 2007 Prof. R. Aviv Visual Realism 24

Shading Models: Flat Shading

• Edges appear pronounced (sharpened)

• Specular highlights

• It appears in all points of the face or none at all

depending if first vertex has specular component

• Flat shading usually do not include specular light

13

December 2007 Prof. R. Aviv Visual Realism 25

Smooth Shading: Gouraud

• colors of left edge point C5 interpolate between colors of

edge vertices C1 C4 (linear interpolation)

– C5 = c1 + (c4 - c1)f, where f (y5) = (y5 – y1)/(y4-y1)

• Similarly c6 = c1 + (c2-c1)g where g(y6) = (y6-y1)/(y2-y1)

• then: c7 = c5 + (c6-c5)h h(x7) = (x7-x5)/(x6 –x5)

• Color transition across edges is smooth

5555

1111

4444

3333

7 6666
2222

December 2007 Prof. R. Aviv Visual Realism 26

Phong Shading: Interpolating normals

• normal vectors on face are interpolation between normal

vectors of vertices. Then calculate colors

• Accurate, but very time-consuming! Takes 6 to 8 times

longer than Gouraud shading.

• Good with specular light

phongGouraud

14

December 2007 Prof. R. Aviv Visual Realism 27

Hidden Surface Removal

December 2007 Prof. R. Aviv Visual Realism 28

Hidden Face removals

• Frame buffer: for each pixel [i,j] it has its color c[i, j]

• Depth buffer: for each pixel it has its pseudodepth, d[i, j]

• When scanning a face, at point [i,j]:

– Checks if pseudodepth of [i,j] is smaller than d[i][j]

– If so, the color of [i,j] replaces c[i][j] and the psudodepth

of [i,j] replaces the old value in d[i][j]. Else nothing

What are the
Initial values
Of the
buffers?

15

December 2007 Prof. R. Aviv Visual Realism 29

Hidden Face removals (2)

• Recall: Pseudodepth is the 3rd component of the [i, j] point:

– d(Pz) = (aPz + b)/(-Pz); a, b were chosen so that 0 ≤ d ≤ 1.

– pseudodepth of vertices are known

– pseudodepths of internal points are calculated by

interpolation – like colors. (not precise; d non-linear)

• Faces can be scanned in any order

– If remote face is scanned first, color of some of its pixels

might later be replaced by colors of a nearer face pixels

• Algorithm works for objects of any shape including curved

surfaces, because it test for closenes by point-by-point test

• The content of the frame buffer is copied into the screen

– Either synchronously in real time or asynchronously

December 2007 Prof. R. Aviv Visual Realism 30

Painter algorithm: summary

• uses depth buffer to remove hidden surfaces

• Also called z-buffer algorithm

• Principal limitations:

– It requires a large amount of memory.

– It often renders an object that is later obscured by a

nearer object (so time spent rendering the first object is

wasted)

– If interpolation is used, it is not precise

16

December 2007 Prof. R. Aviv Visual Realism 31

Adding Texture

December 2007 Prof. R. Aviv Visual Realism 32

Adding Texture to Faces

• Makes surfaces look more realistic: e.g., brick, wood, or

simply pictures are painted on or wrapped around surfaces.

• Texture uses tex(s, t) which sets a color or intensity value

between 0 and 1, for each value of s and t between 0 and 1

• The (s,t) points are attached to surfaces of the model

17

December 2007 Prof. R. Aviv Visual Realism 33

How to generate texture

• tex(s,t) is a function on points in texture space (s,t)

– Each point (s,t) is called texel

• digitizing image � bitmap tex[i, j] � tex(s,t)

• Mathematical procedure � tex(s,t)

December 2007 Prof. R. Aviv Visual Realism 34

Procedural and image textures

• mathematical procedural texture

• tex (s, t) {

r = sqrt((s - 0.5)*(s - 0.5) + (t - 0.5)*(t - 0.5));

if (r < 0.3) return 1 - r/0.3; else return 0.2; }

– tex varies: white at center to black at edges of sphere.

• Image texture

• Digitizing image � Bitmap of color values

– col[x][y] x, y integers

• Define s = x/xmax and t = y/ymax.

• Divide values of col by its max values to get tex

18

December 2007 Prof. R. Aviv Visual Realism 35

Usages of Textures

• tex(s,t) can be used as the color of the face itself

– e.g. the face will be glowing at certain points

• tex(s,t) can be the ambient, diffuse, or specular reflection

coefficients

– to modulate the amount of light reflected from the face

• tex(s,t) can be used to alter the normal vector to the surface

to give the object a bumpy appearance.

December 2007 Prof. R. Aviv Visual Realism 36

Using Texture with Mesh Objects

• Mesh objects are list of faces (later lecture)

• Data structure of a mesh: 3 lists:

– Vertex list, face list, normal list

– Face points to vertices, vertex points to a normal

• Now add a list of texture coordinates, (si, ti)

– Each vertex points to its (si, ti) - during modeling phase

• Usage 1: flat faces

– each face points to 1 normal, and to a texture

• Usage 2: flat faces that approximate underlying surface.

– Each vertex points to 1 normal (of the underlying

surface)

– Each vertex points to its (si, ti)

19

December 2007 Prof. R. Aviv Visual Realism 37

Rendering texture (flat faces)

• Goal: calculate (s*,t*) for each screen point (xs,ys) of face

• Basic idea: scan lines of the face

– (s*,t*) of edge points interpolate (s*,t*) of vertices

– (s*,t*) of internal points interpolate (s*,t*) of edge points

• Same as calculating colors and pseudodepths of points

December 2007 Prof. R. Aviv Visual Realism 38

Rendering texture: a problem

• The face on the screen is a projection of the real face

• Consider equispaced points on the screen

• are corresponding points on real face equispaced?

• in general, NO

• Linear interpolation assumes that they are

20

December 2007 Prof. R. Aviv Visual Realism 39

Rendering texture: a problem (2)

• Example: object is rotated checkerboard, projected to screen

• Linear interpolation (left):

– equispaced, same size squares on screen

– Farther away squares are not smaller

– annoying, wrong

December 2007 Prof. R. Aviv Visual Realism 40

Analysis of the problem (1)

• We attach texel points to points in eye coordinates

– Line segment of texels, Lt attached to line segment Le
• But objects are transformed to screen coordinates

– Affine & projective transformations: Lines � lines

– Le in eye space projects to line segment Ls in screen space

• Consider equispaced pixels on line segment Ls (on screen)

• Where are the corresponding points on Le (or Lt)?

21

December 2007 Prof. R. Aviv Visual Realism 41

Solving the problem

• 3D segment AB transformed into segment ab, by matrix M

• A maps to a, B maps to b, R(g) maps to r(f)

• R(g) = A + (B – A)g ≡ lerp(A, B, g) 0<= g <= 1

• r(f) = a + (b – a)f ≡ lerp(a, b, f) 0 <= f <= 1

• fractions f and g are not the same. g nonlinear funcion of f

• The problem: Find the function g = g(f)

• At edge points: f = 0 � g = 0; f = 1 � g = 1

December 2007 Prof. R. Aviv Visual Realism 42

Solving the problem (1)

• Homogeneous coordinates of A, R are the quartets

– A = (A1, A2, A3,1) R = (R1, R2, R3,1)

• homogeneous coordinates of a are the quartet

 α = (α1, α2, α3, α4) note that α4 not necessarily 1

– a = (α1/α4, α2/α4, α3/α4)

• Similarly

• b = (β1/β4, β2/β4, β3/β4)

• r = (ρ1/ρ4, ρ2/ρ4, ρ3/ρ4)

22

December 2007 Prof. R. Aviv Visual Realism 43

Solving the problem (2)

• The transformation maps A to α, B to β, R to ρ

 α = MAT β = ΜBΤ ρ(f) = ΜR(g)T

• But: R(g) = A + (B-A)g ≡ lerp(A, B, g) check this

– (note: ρρρρ(f) ≠ αααα + (ββββ – αααα)f check this)

 ρ(f) = M*lerp(A, B, g)T lerp(MAT, MBT, g)

 ρ(f) = lerp(α, β, g) (four components equation)

December 2007 Prof. R. Aviv Visual Realism 44

Solving the problem (3)

• The four components of ρ(f) = lerp(α, β, g) are:

• lerp(α1, β1, g), lerp(α2, β2, g), lerp(α3, β3, g), lerp(α4, β4, g)

• Do perspective division to get actual coordinates of r

– r1(f) = lerp(α1, β1, g)/ lerp(α4, β4, g)

• But r(f) = a + (b - a)f = lerp(a, b, f)

– r1(f) = lerp(α1/α4, β1/β4, f)

• Compare two expressions to get

• g = f/[β4/α4 + (1 – β4/α4)f]

• g = f/lerp(β4/α4, 1, f)

23

December 2007 Prof. R. Aviv Visual Realism 45

What determines ββββ4/αααα4 ?

• 1) If M is affine (not a perspective projection)

 α4 = β4 = 1 � g = f check this

• 2) M is a perspective transformation

 α4 = -A3 check this

 β4 = -B3

– These are the Z coordinates of points A, B

• The relative depth of A, B determine the relation between f

and g

December 2007 Prof. R. Aviv Visual Realism 46

The hyperbolic interpolation

• Given a point r(f) in the screen coordinates, what is the

corresponding point that was transformed to it, R

– in real 3D coordinates R = (R1(f), R2(f), R3(f))

• Starting point: R1(f) = A1+ (B1 – A1)g(f)

• Plug in the formula for g to get

– R1(f) = lerp(A1/α4, B1/β4, f)/lerp(1/α4, 1/β4, f) check this

– Similar expressions for R2(f) , R3(f)

• This is the hyperbolic interpolation.

24

December 2007 Prof. R. Aviv Visual Realism 47

Example: attaching texture to a barn

• we want to attach a line segment [(sleft, tleft) , (sright, tright)] in

texture plane to line segment [(xleft , y), (xright, y)] in the

screen (frame) buffer

• left edge of the face in the screen has endpoints a and b.

• First find the texture coordinates (sleft, tleft) (sright, tright)

• then interpolate across the scan-line.

December 2007 Prof. R. Aviv Visual Realism 48

Example: attaching texture to a barn (2)

• Assume (SA , TA) (SB , TB) were attached to vertices A, B

– during modeling phase

– they were passed down the pipeline along with A and B

– they are now attached to projected vertices a and b

– no transformation were done on them

• Now scanline is done

• scan line at y is a fraction f of the way between ybott and ytop

– f(y) = (y –ybott)/(ytop – ybott)

– sleft(y) = lerp(SA/α4, SB/β4, f(y))/lerp(1/α4, 1/β4,f(y))

• similar expression for sright dependence on SA', SB', y

25

December 2007 Prof. R. Aviv Visual Realism 49

Example: attaching texture to a barn (3)

• similar expression for tleft and tright dependence on TA, TB, y

• then s(x) are calculated for the fixed y

– by hyperbolic interpolations between sleft, sright

• similarly t(x) is calculated by hyperbolic interpolation

between tleft, tright

• Repeat for next y

December 2007 Prof. R. Aviv Visual Realism 50

Graphics Pipeline: Sart

• The pipeline: Various points in the pipeline are labeled with the

information available at that point.

• Start: Each vertex V is associated with a texture pair (s, t) and a

vertex normal, n

26

December 2007 Prof. R. Aviv Visual Realism 51

Graphics Pipeline: Modeling, shading

• vertices V transformed by the modelview matrix M

• normals multiplied by the inverse transpose of M

– giving vertex A = (A1, A2, A3) and a normal n’ in eye
coordinates.

• Shading calculations are done using this normal, producing
the color c = (cr, cg, cb).

• The texture coordinates (sA, tA) (same as (s, t)) are still
attached to A.

December 2007 Prof. R. Aviv Visual Realism 52

Graphics Pipeline: Perspective Transformation

• Perspective Transformation:

– Vertex A transformed into α = (α1, α2, α3, α4)

– colors and texture points unchanged

• information is now α, SA, TA, c

27

December 2007 Prof. R. Aviv Visual Realism 53

Graphics Pipeline: Clipping

• Clipping:

– some vertices disappear others created

• position of new vertex D (d1, d2, d3, d4) by linear
interpolation di = lerp(ai, bi, t), for i = 1,.., 4

– color and texture points are also calculated by
linear interpolation, and attached

• information is in the array (α1, α2, α3, α4, sA, tA, c, 1).

December 2007 Prof. R. Aviv Visual Realism 54

The Graphics Pipeline: perspective division

• hyperbolic interpolation need terms such as sA/α4, 1/α4, ...

• we divide every item in the array that we wish to interpolate

hyperbolically by α4
• result (α1/α4, α2/α4, a3/a4, 1, sA/α4, tA/α4, c, 1/α4)

• first three are position in Normalized Device Coordinates

– third is pseudodepth

28

December 2007 Prof. R. Aviv Visual Realism 55

The Graphics Pipeline: Viewport transformation

• first two components scaled and shifted by the viewport
transformation

• we call the position now x, y, z

• information per vertex: (x, y, z, 1, sA/a4, tA/a4, c, 1/a4)

• It is simple to render texture using hyperbolic interpolation,
since the required values sA/a4 and 1/a4 are available for each
vertex.

December 2007 Prof. R. Aviv Visual Realism 56

The Graphics Pipeline: Scanline

• information per vertex: (x, y, z, 1, sA/a4, tA/a4, c, 1/a4)

• Scanline: determine properties of internal points

– hide back surfaces: use z (depth) buffer

– shading (calculate colors): can use color buffer)

– add texture: use the texture function

• Push color buffer to the screen

