Prof. Reuven Aviv
Department of Computer Science
Tel Hai Academic College

Computer Graphics

Visual Realism Techniques

Slides adapted from F. Hill, S. Kelley Computer Graphics

. Visual Realism Requirements l

Light Sources

Materials (e.g., plastic, metal)

Shading Models

Depth Buffer Hidden Surface Removal

Textures

The Graphics pipeline revisited




. Rendering l

* Rendering: deciding how a pixel should look

« Example: compare wireframe (left) to wire-frame
with hidden surface removal (right)

. Rendering (2) l

» wire-frame (left)
« flat shading (middle)
» smooth (Gouraud) shading (right)




Rendering (3)

* specular highlights
e Shadows
* textures

Shading: Determination of the color of
every point in the model




. Shading Models: Introduction l

» Basic Modeling Assumptions (for now):

1. light has no color, R = G = B; it has intensity (brightness)
2. point source of light (we’ll add another source later)

* what happens when light hits an object?

 absorbed, reflected, refracted

* what's the color of an object absorbs all the light?
» reflected light that reaches the eye is the sum of

— Diffuse reflection: reflected from inside, uniformly in all
directions. /n what color?

— Specular (miror like) reflection: reflected from surface,
approximately the same color as source. Shiny surface

. Reflected Light l

 Light from Source, reflected at Point P, reaches eye
» Depends on 2 directions from P: s to Source, v to Eye
— Intensity depends on (vvm), (ssm)  m normal at P

— (v'm), (s'm) must be positive, else reflected is 0

» Normally eye sees outside surface, not always




l Diffuse Light (reflected in all directions) .

« [, assumed to be independent of eye direction ¥
* [ proportional to cos of the angle between s and m
— Lambert Law: I; = I;p, (s'm)/(|s|\m)) why?

* p, diffuse reflection coefficient of material

« sm<0 > Id =0. a). E;j.-'.‘ b ':QE‘
e I;=Ip, max 5
[(sm)/(|s/|m]), O].

* Note: distance from

source ignored!

Example: Spheres modeled with Diffuse Light.

* pg=0to 1by0.2 from top
left to bottom right

* Source intensity I,= 1.0
 Background p4 0.4.

 Top left sphere p; = 0.0
—1; =0 (Black)

bottom half of all spheres:
—(s'm) <0)

— Also /; =0 (black)




. Specular Light l

light reflects at all angles, highest intensity at direction r

— max at (r-m) = (s'm) equal incident & reflection angles

I, decreases as ¢ between r and v increases.

Phong Model: intensity decreases as cosf ¢ f=1...200

* cos ¢ = rv/([r/[y]) require (r-v) >0
— I, =1 p, @Y/(rllv))f what's the effect of large f

a) ? b) ;), 1] ) Q,

. Speeding up Calculations for Specular Light l

* Need to calculate r=-s+2m (s'm)/(m|>)  (lecture 2)
— For each point on each surface. Lengthy calculation

 Alternative: use the halfway vectorh=s +v.

» Replace ¢ by (they are not the same)
L, = I p, max[(h-m/([h||m[))’, 0]




. Example Reflected light l

* From top to bottom, p, = 0.25, 0.5, 0.75
From left to right, f= 3, 6, 9, 25, 200.

p,=0.1
P~ 0.4

. Ambient Light l

 Point source light is not sufficient
— E.g., generated shadows unrealistically sharp
» Scenes always bathed in some non-directional light.
— Generated by multiple reflections & many light source

» We model this by ambient light, not situated at any
particular place, spreads in all directions uniformly

» The source 1s assigned an intensity, /.
 Each point P at face reflects ambient light, 7, p,

— p, ambient reflection coefficient of material at P
 The total reflected light reaching the eye is the sum of

diffuse, specular and ambient light




Example
|

» Diffuse and ambient sources have intensities 1.0

* pgs=04.
* p,=0,0.1,0.3, 0.5, 0.7 (left to right).

* Modest ambient light softens shadows; too much
ambient light washes out shadows.

Combining Light Contributions; Color

« 1=1, p, + 1y pg X lambert + 1, p, x phong'

* lambert = max[(s'm)/(|s|/m]), 0]

* phong = max[(h-m/(/h[|m]), 0]

» Color: combine 3 separate intensities like above
—one each for Red, Green, and Blue

* light sources have three color intensities:

* ambient = (I, [y, 1),

* diffuse = (Iy, Iy, 1gp), specular = (L, Lo, Ly, )

— For each source; usually [ ;; = Lo fori=r,g b




The 9 Reflection coefficients
. |

* Ambient: P, P,g, and Py,
Diffuse: Py, Pyg and Py,
Specular: P, Py, and Pg,

— Ambient & diffuse coefficients usually the same
— They determine the color of the surface in white light

Example: modeling sphere 30% red, 45% green, 25% blue
— diffuse reflection: (Py,, Pyg Pap) = (0.3K, 0.45K, 0.25K)
model white light: I;=1=(1,1,1)

— = diffused light: (0.3 K, 0.45 K, 0.25 K)* lambert

— =>Surface color is 30% red, 45% green, and 25% blue
— (ignoring specular reflection: phong = 0)

. Modeling red object in green light l

 sphere ambient/diffuse reflection coefficients (0.8, 0.2, 0.1),
— mostly red when bathed in white light.

» Assume greenish light souce I, =1, =(0.15, 0.7, 0.15)

* 0.15x0.8=0.12

« 0.7x0.2=0.14

* 0.15x0.1=0.015

» Reflected diffuse light: (0.12, 0.14, 0.015)* lambert

* a fairly even mix of red and green

» and would appear yellowish (from color theory)




. Specular reflection of colored light l

specular reflection is mirror-like
— Its color is often the same as that of the light source.

— the specular highlight seen on a glossy red apple when
illuminated by a yellow light is yellow, not red.

Same phenomena on most surfaces

set the specular reflection coefficients Py, = Py, = Psp= Ps
— specular reflection coefficients are “neutral”

— do not alter the color of the incident light.

choose p, = 0.5 for a slightly shiny plastic surface,

P, = 0.9 for a highly shiny surface.

. Shading and the Graphics Pipeline (1) l

after modeling each vertex has its position and its normal, n

The modelview matrix M now transforms vertices, light
sources and normals (n)

—n—> MTn M-T = transpose of the inverse matrix M-!
All coordinates are “eye coordinates”

Color (shading) calculated at this point, for each vertex
Results (color values) are kept

'1!'

V. Iy
3 M p|PrOgECtion clip p| VIEWPOTE 3
matrix matrix
Fal

shading is
applied here

10



l Shading and the Graphics Pipeline (2) .

 Next perspective transformation, then clipping

— Clipping may create vertices which need to have colors,
calculated by weighted average of initial vertex colors.

— E.g. if the new vertex A is 40% of the way from V,, to
V,, the color (A) is a weighted average:

— 60% of (ry, gy, by) and 40% of (r;, g, b))

* Next: viewport transformation = vertices map to screen
coordinates

— Each having pseudodepth, between 0 and 1
» Next hidden surface are removed (later)

» Next: 2-D objects scanlined to a buffer (next topic)

T
Normal vectors of vertices

 Flat faces in a model are realy flat (e.g. house) or a mesh

approximation for a surface

» For a flat face we attach same normal to all its vertices.

 [f a face approximates an underlying surface (e.g sphere or a
torus), each vertex gets the real normal to the underlying

surface

* in later lecture we talk about calculating normals to surfaces
e —

11



coloring a convex face: scanline

* faces are scanlined, putting colors into frame buffer
» What are the colors of intermediate pixels?
— Flat shading: all have same color (of first vertex)

— Smooth shading: colors are weighted averages
(interpolation) of vertex colors

Shading Models: Flat Shading

» Edges appear pronounced (sharpened)
* Specular highlights
« It appears in all points of the face or none at all

depending if first vertex has specular component

* Flat shading usually do not include specular light

12



l Smooth Shading: Gouraud .

* colors of left edge point C5 interpolate between colors of
edge vertices C1 C4 (linear interpolation)

—C5=cl +(c4-cl), wheref(ys)=(ys—y)(ysy;)
« Similarly c6 =cl + (c2-cl)g where g(vy) = (Y¢-y)/(¥5-Y;)
* then: c7=c5+(c6-c5h  h(x,) = (X;-X5)/(Xg —Xs)

 Color transition across edges is smooth

3 ool oy
Hop
) oo o,
g -
2 oo o

v | 5
Vet |
- 1 color

1 1
e Foghi

Phong Shading: Interpolating normals

» normal vectors on face are interpolation between normal

vectors of vertices. Then calculate colors

» Accurate, but very time-consuming! Takes 6 to 8 times
longer than Gouraud shading.

Good with specular light

13



Hidden Surface Removal

. Hidden Face removals l

» Frame buffer: for each pixel [1,j] it has its color c[i, j]
» Depth buffer: for each pixel it has its pseudodepth, d[1, j]
» When scanning a face, at point [i,j]:
— Checks if pseudodepth of [1,j] 1s smaller than d[7][/]
— If so, the color of [1,j] replaces c[7][j] and the psudodepth

of [1,j] replaces the old value in d[i][j]. Else nothing

: What are the

1 - 2 il w7 Initial values

OfF the
- bvis W by ffers?

frame buffer depth buffer




. Hidden Face removals (2) l

 Recall: Pseudodepth is the 3" component of the [i, j] point:
—d(P,) = (aP, + b)/(-P,); a, b were chosen so that 0 = d = 1.
— pseudodepth of vertices are known

— pseudodepths of internal points are calculated by
interpolation — like colors. (not precise; d non-linear)

» Faces can be scanned in any order

— If remote face is scanned first, color of some of its pixels
might later be replaced by colors of a nearer face pixels

» Algorithm works for objects of any shape including curved
surfaces, because it test for closenes by point-by-point test

» The content of the frame buffer is copied into the screen
— Either synchronously in real time or asynchronously

. Painter algorithm: summary l

* uses depth buffer to remove hidden surfaces
* Also called z-buffer algorithm
* Principal limitations:

— It requires a large amount of memory.

— It often renders an object that is later obscured by a
nearer object (so time spent rendering the first object is

wasted)

— If interpolation is used, it is not precise

15



Adding Texture

l Adding Texture to Faces .

» Makes surfaces look more realistic: e.g., brick, wood, or

simply pictures are painted on or wrapped around surfaces.

» Texture uses fex(s, t) which sets a color or intensity value

between 0 and 1, for each value of s and t between 0 and 1

» The (s,t) points are attached to surfaces of the model

16



. How to generate texture l

* tex(s,t) 1s a function on points in texture space (s,t)
— Each point (s,t) is called texel

* digitizing image > bitmap tex|[i, j] =2 tex(s,t)

» Mathematical procedure = fex(s,z)

b)

. Procedural and image textures l

« mathematical procedural texture

tex (s, t) {
r=sqrt((s - 0.5)*(s - 0.5) + (t - 0.5)*(t - 0.5));
if (r <0.3) return 1 - r/0.3; else return 0.2; }
— tex varies: white at center to black at edges of sphere.
« Image texture
* Digitizing image > Bitmap of color values
— col[x][y] x,y integers
* Define s = x/x,, and t=y/y_...

 Divide values of col by its max values to get tex

17



. Usages of Textures l

* tex(s,t) can be used as the color of the face itself
— e.g. the face will be glowing at certain points

* tex(s,t) can be the ambient, diffuse, or specular reflection

coefficients
— to modulate the amount of light reflected from the face

* tex(s,t) can be used to alter the normal vector to the surface

to give the object a bumpy appearance.

. Using Texture with Mesh Objects l

» Mesh objects are list of faces (later lecture)

Data structure of a mesh: 3 lists:
— Vertex list, face list, normal list

— Face points to vertices, vertex points to a normal

Now add a list of texture coordinates, (s;, #;)
— Each vertex points to its (s;, #,) - during modeling phase

1”71

Usage 1: flat faces
— each face points to 1 normal, and to a texture

Usage 2: flat faces that approximate underlying surface.

— Each vertex points to 1 normal (of the underlying
surface)

— Each vertex points to its (s, ¢,)

17 "1




. Rendering texture (flat faces) l

* Goal: calculate (s*,t*) for each screen point (x,,y) of face
 Basic idea: scan lines of the face
— (s*,t*) of edge points interpolate (s*,t*) of vertices

— (s*,t*) of internal points interpolate (s*,t*) of edge points

» Same as calculating colors and pseudodepths of points

. Rendering texture: a problem l

» The face on the screen is a projection of the real face
» Consider equispaced points on the screen

« are corresponding points on real face equispaced?

* in general, NO

 Linear interpolation assumes that they are

¥
al b F
170 F
\h'th-:r equispaced
from
closer to the cyve
the cye -

19



. Rendering texture: a problem (2) l

» Example: object is rotated checkerboard, projected to screen
 Linear interpolation (left):

— equispaced, same size squares on screen

— Farther away squares are not smaller

— annoying, wrong

a) lincar interpolation bl correct interpolation

l Analysis of the problem (1) .

» We attach texel points to points in eye coordinates
— Line segment of texels, L, attached to line segment L,
 But objects are transformed to screen coordinates

— Affine & projective transformations: Lines = lines
— L. 1n eye space projects to line segment L in screen space
 Consider equispaced pixels on line segment L, (on screen)

* Where are the corresponding points on Le (or Lt)?

a) texture space b) eye space €) screen space

F

20



Solving the problem

3D segment AB transformed into segment ab, by matrix M

A mapstoa, Bmapstob, R(g)maps to r(f)
R(@=A+(B-A)g=lerp(A,B,g) O0<=g<=1

r(f) =a+ (b—a)f =lerp(a, b, f) 0<=f<=1
fractions f'and g are not the same. g nonlinear funcion of f

The problem: Find the function g = g(f)
Atedgepoints: f=02>¢g=0; f=1 2>g=1

(f)* b
g

. Solving the problem (1) l

» Homogeneous coordinates of A, R are the quartets

B A:(Ala AZ: A3>1) R:(Rla R2a R351)
* homogeneous coordinates of a are the quartet
o= (o, a,, 03, 0,) note that o, not necessarily 1

— a = (0,/0y, 0,/0L,, 0;/0y)

Similarly

b= (By/Bss By/Bas By/Bo) o
1/Pa> P2/Pas P3/P4 Ryl oy /
r = (/P4 P2/Ps> P3/P2) [




. Solving the problem (2) l

* The transformation maps A to o, Bto 3, Rto p

0 a=MAT  B=MBT p(f)=MR(g)"

« But: R(g)=A + (B-A)g =lerp(A, B, g) check this
— (note: p(f) o+ (B—a)f check this)

1 p(f) =M*lerp(A, B, )T  lerp(MAT, MBT, g)

p(f) = lerp(a, B, g)  (four components equation)

A i
rif) b
;&Rm w7
B

. Solving the problem (3) l

The four components of p(f) = lerp(a, B, g) are:
¢ lerp(ala Bl: g)a 1erp(a2a BZ: g): lelp(a3> B39 g)a 1erp(a4a B4> g)

» Do perspective division to get actual coordinates of r
—1,(f) = lerp(ay, By, g)/ lerp(ay, By, g)

* Butr(f) =a+(b-a)f=lerp(a, b, /)
—1y(f) = lerp(a,/ouy, B1/Bys, /)

» Compare two expressions to get

« g=f[Byoy + (1 - By

* &= fllerp(By/oy, 1, /)

22



. What determines /o, ? l

» 1) If M is affine (not a perspective projection)
Oa,=B,=1 =2 g=f checkthis
* 2) M is a perspective transformation
la, =-A; check this
By=-B,
— These are the Z coordinates of points A, B

 The relative depth of A, B determine the relation between f

and g

. The hyperbolic interpolation l

» Given a point r(f) in the screen coordinates, what is the

corresponding point that was transformed to it, R

— in real 3D coordinates R = (R;(f), R,(f), R5(f))

Starting point: R,(f) = A+ (B, — A)g()

Plug in the formula for g to get
— R,(f) = lerp(A /oy, B/B4, f)/lerp(1/oy, 1/B,4, f) check this

— Similar expressions for R,(f) , R;(f)

This is the hyperbolic interpolation.

23



. Example: attaching texture to a barn l

* we want to attach a line segment [(Sye, fieq) > (Srignes frignd] 10

texture plane to line segment [(X.5 , ¥), (Xjione> Y)] 10 the

right»
screen (frame) buffer

« left edge of the face in the screen has endpoints a and b.

* First find the texture coordinates (Syep, fie) (Srights right)

« then interpolate across the scan-line.

. Example: attaching texture to a barn (2) l

Assume (S, , T,) (Sg , Tg) were attached to vertices A, B

— during modeling phase
— they were passed down the pipeline along with A and B
— they are now attached to projected vertices a and b

— no transformation were done on them

Now scanline is done

* scan line at y is a fraction f of the way between y,. and y,,,

—fY) = (Y ~Ypor)/ (Ytop = Ybott)
— 81er(Y) = lerp(S /oy, Sp/By, Ay))1erp(l/ay, 1/B4,Ay))

* similar expression for s

right dependence on S, Sy

24



. Example: attaching texture to a barn (3) l

* similar expression for t, . and t;,, dependence on Ty, Ty, y
* then s(x) are calculated for the fixed y

— by hyperbolic interpolations between s,.q, gign
 similarly t(x) is calculated by hyperbolic interpolation

between tg, tight

* Repeat for next y

. Graphics Pipeline: Sart l

* The pipeline: Various points in the pipeline are labeled with the
information available at that point.

» Start: Each vertex V is associated with a texture pair (s, ) and a
vertex normal, n

. — ty da fiy Sy Iy ¢ 1
A sotm A syt i, 54,1, € 0 a, Ay a0 U @
\ \ . / . nerspective / .
—{ MV |—m shade [perspective - clip ! di'-!'i'jinﬂ +l.r|cw|m|'l£
V,ern B
D view

foh volume




. Graphics Pipeline: Modeling, shading l

« vertices V transformed by the modelview matrix M
* normals multiplied by the inverse transpose of M
— giving vertex A = (4,, 4,, 4;) and a normal n’ in eye
coordinates.

 Shading calculations are done using this normal, producing
the color ¢ = (¢,, ¢,, €;,)-

 The texture coordinates (s, f,) (same as (s, ¢)) are still
attached to A.

. — ay  da dz Sy fy ]
.-"{...-',1.11 A Sa. r. < tﬂ,_\1,.f_1.t.‘ “4‘H‘E Ty s
. . perspective
4{ LAY }—b—|shqde |—)—||n,n|1ulw\,|—)-| c]Jp |—D—| ivision }—.—|v|;,“| Jll}—D
B
1 s 6Lmn a
[ (( view

- - volume

A7

Graphics Pipeline: Perspective Transformation
|

» Perspective Transformation:
— Vertex 4 transformed into o = (a;, .y, 03, O)
— colors and texture points unchanged

* information is now o, S,, T4, €

A . = B M2 M3 G4 A e, 2,
A s t.n” A sty d, Sq. 0. € @’ T “4 a, N
\ \ . / . nerspective / .
— MV w shade [ perspective a1 clip ! di-.lrisinn +'~"|u‘,‘\'|u]|‘[{
Vs tn B
D view
¢ o volume

26



. Graphics Pipeline: Clipping l

 Clipping:
— some vertices disappear others created
* position of new vertex D (d,, d,, d;, d,) by linear
interpolation d, = lerp(a,, b,, t), fori=1,.., 4
— color and texture points are also calculated by
linear interpolation, and attached

« information is in the array (o, @,, @3, a4, Sy, ts, €, 1).

— @y @z oz Sa fa
A o .f " AL s, N .14 dy Wy g H_;

—{ MW I—-—| shade |—)—|| erspecti vu|—)-| clip |—r—|' °"“'“‘f:'“‘ HWL“I lm
1 RN 1 1
dy’ view

volume

The Graphics Pipeline: perspective division

* hyperbolic interpolation need terms such as s /oy, 1/ay, ...

» we divide every item in the array that we wish to interpolate
hyperbolically by «,

» result (a/a,, oo, ay/a,, 1, s/ ay, tAloy, ¢, 1/ay)
« first three are position in Normalized Device Coordinates

— third is pseudodepth
5 = ay a2 dz S5 1
A s f.n” A _\-_.,\f_...c u.:-,;.f_,l.r: ”Lzmﬁﬁ "‘~E-
— MV - shade [ perspective -l clip | 'ﬂ?-.lr:if:.i:u —""'-'ib‘“'lml'lAP-D
( 7w B
V.stn a
& f( view
i - volume

27



The Graphics Pipeline: Viewport transformation
|

 first two components scaled and shifted by the viewport
transformation

» we call the position now X, y, z
 information per vertex: (x, y, z, 1, s /ay, t,/a,, ¢, 1/a,)
It is simple to render texture using hyperbolic interpolation,

since the required values s,/a, and 1/a, are available for each
vertex.

) . ) _ ay da dy 54 by oo
A s fy.mm A s, 0L i, 854,04, € m‘m‘mmm E
\ \ . / . herspective 'X .
— MV | shade [ perspective -3 clip [ I :i;\lfiw'itm _,.wu\.\'pul'lﬂ
P B
5
V.stm a
D /( view
s volume

i I

The Graphics Pipeline: Scanline

(S e e
 information per vertex: (x, y, z, 1, s /ay, t,/a,, ¢, 1/a,)

» Scanline: determine properties of internal points
— hide back surfaces: use z (depth) buffer
— shading (calculate colors): can use color buffer)
— add texture: use the texture function

* Push color buffer to the screen

A & ~ A ¥ i i e N S SR I
A s ty.nT A s L i, 54,18, C Ty Oy Ty s T
\ \ . / . herspective '/f .
— MV =l shade - perspective e C]JP - I L;i;\liﬂ:1|1 —p--.rlcwpurlﬂ
Vs tnm 3

Fi
r,

D f( view
¢ i volume
A7

28



