
1

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Three Dimensional Viewing Part II

Slides adapted from F. Hill, J. Kelley, Computer Graphics

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projection

2

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Graphic Pipeline

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projections of 3-D Point

• A vertex located at P in eye coordinates is
projected to a certain point (x*, y*, z*) on the
View plane

This is a non-affine transformation!

3

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projections of Point

• (Px, Py, Pz) projects to P* ≡ (x*, y*, z*)

• x*/Px = N/(-Pz) , y*/Py = N/(-Pz) (similar triangles)

• P* = (x*, y*) = N/(-Pz) (Px, Py)

• What’s the value of z*?

(X*,y*)
y

x

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

What’s the value of z*?

• Lost info: P1 closer than P2 to View Plane. So what?

• Define pseudo depth, z*, increasing with -Pz

– z*(Pz) = (aPz + b)/(-Pz)

– So that z* = -1 for Pz = -N z* = 1 for Pz = -F

• define the 3-D projection point of (Px, Py, Pz)

– (x*, y*, z*) = [1/(-Pz)][NPx, NPy, (a + bPz)]

• Now we want to write the transformation via a matrix!

4

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

homogeneous coordinates representation (1)

• The homogeneous representation of a

Point P is given by a family of 4

components columns

• with arbitrary w, provided w ≠ 0

• All w ≠ 0 define same point 



















=

w

wP

wP

wP

P
z

y

x

• Before we display a point, we divide

all 4 coordinates by w.

• Affine transformations do not change w; why?
• last row of an affine matrix is (0, 0, 0, 1).

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Homogeneous coordinates representation (2)

• To convert a point from ordinary coordinates to

homogeneous coordinates, append a 1.

• To convert a point from homogeneous coordinates to

ordinary coordinates, divide all components by the last

component and discard the fourth component.

5

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

perspective transformation and division

• Operate on a point by the non-affine perspective

transformation matrix with the last row (0, 0, -1, 0)





















−

+
=









































− z

z

y

x

z

y

x

wP

baPw

wNP

wNP

w

wP

wP

wP

ba

N

N

)(

0100

00

000

000

�Divide by the fourth coordinate

�(Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b) ≡ (x*, y*, z*)

�This operation is called the perspective division

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective projection

• perspective transformation + perspective division transform

3D point to 3D point

– (Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)

– The third component is used for depth testing

– first 2 components used for mapping to viewport

• Projection is discarding the third dimension

– Also called orthographic (or trivial) projection

• (perspective projection) = (perspective transformation) +

(perspective division) + (orthographic/trivial projection)

6

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The transformed view volume

• Top, bottom & side walls map to planes parallel to z-axis.

• Near, Far planes map to planes at z = -1, +1.

• view volume is now a rectangular parallelepiped

• Left as an exercise

• Can we simplify clipping by transforming the view

volume once more?

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Facilitating Clipping: Canonical View volume

• CVV, a cube bounded by -1 1 in each dimension

• Translate by –(right+left)/2 in x, –(top+bott)/2 in y

• Scale by 2/(right – left) in x, 2/(top – bott) in y

• The combined perspective transformation and this

scaling is the Projection Matrix

• The distortion (due to uneven scaling) will be

eliminated in the final viewport transformation

7

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The Projection Matrix



























−
−

−

−

+−
−

+

−

−

+

−

=

0100

2)(
00

0
2

0

00
2

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

leftright

N

R

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Applying Projection Matrix in OpenGL

• glMatrixMode(GL_Projection);

• glLoadIdentity(); // start with a unit matrix

• glFrustum(Left, Right, bott, top, N, F)

• Or gluPerspective(viewAngle, aspect, Near, Far)

– OpenGL calculates from the arguments:

– top = N*tan((π/180)*viewAngle) bott = -top

– right = top*aspect left = -right

8

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipping against the Canonical

Volume

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipper Against the View Volume: Example

• first clips edge v1v2, finding the

entire edge is inside CVV.

• Then clips edge v2v3, records

the new vertex a

• Finally clips edge v3v1 and

records the new vertex b

• A triangle has vertices v1, v2,v3.

• v3 is outside CVV

9

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipping in homogeneous coordinates

• Example: clipping segment AC

• points in homogeneous coordinates

• A = (ax, ay, az, aw), C = (cx, cy, cz, cw)

• If A, C lie on opposite sides of a wall

we need to compute intersection

– I = (Ix, Iy, Iz, Iw).

• When intersection calculation is

not required?

• If both A, C on same side of a wall

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The Inside /Outside Test of a point

• A point P = (x, y, z, w); True coordinates (x/w, y/w, z/w)

• We test whether P is inside the CVV

• When P lies to the right of X= -1 plane? (inside)

• if x/w > -1 � w + x > 0.

• When P lies to the left of plane X = 1 ? (inside)

• if x/w < 1 � w - x > 0.

• The 6 quantities w ± x, w ± y, w ± z are the “Boundary

Coordinates” of point P

– If all BCi >0, point is inside CVV; else outside

10

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Table: Boundary Coordinates & Clip Planes

�If all BCi > 0, point is inside CVV

�Else, a BCi < 0, the point is outside CVV

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clip a line segment

• What are the condition for trivial decisions?

• Trivial accept: both endpoints inside the CVV (all BCi >0)

• Trivial reject: both endpoints lie outside same plane of CVV

• Else Algorithm Similar to Cyrus-Beck clipper

– Line P(t) = A + (C-A)t 0 <= t <= 1

– Jump from wall to wall: intersect line with wall

– Maintain a Candidate Interval (CI) of t within which the

segment might still be inside the CVV.

11

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Enter/Exit test and Intersection

• segment AC (from A to C) ;

• P(t) = (ax+(cx-ax)t, ay+(cy-ay)t, az+(cz-az)t, aw+(cw-aw)t)

• Intersection relation to wall 1, X = 1

– Denote: BC1(A) = aw–ax BC1(C) = cw–cx (see table)

– If BC1(A) <0 then A is outside wall 1, line enters (why)

– If BC1(C) < 0 then C is outside wall 1, line exits

• Intersection is calculated in both these cases (only)

– [ax + (cx –ax)t]/[aw + (cw – aw)t] = 1

– thit = [aw–ax]/[(aw–ax) – (cw–cx)] =

– thit = BC1(A)/[BC1(A) – BC1(C)]

C

A

A

C

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clip against CVV: Liang Barski Algorithm

• CI = [tin = 0.0; tout = 1.0]

• We test the line segment against each wall i in turn.

• If BCi(A), BCi(C) have opposite signs, find thit

– If segment is entering update tin = max(old tin, thit)

– if segment is exiting, update tout = min(old tout, thit)

• If, at any time the CI is reduced to the empty

interval (tout > tin), the entire segment is clipped off

• an “early out”, of the algorithm.

12

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Steps in the path of a vertex P through the Pipeline

• P extended to a homogeneous 4-tuple point by appending 1

• P multiplied by the modelview matrix, producing its eye

coordinates, then

• Multiplied by the projection matrix, producing its clip

coordinates, then

• Clipping against CVV

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Steps in the path of a vertex P through the Pipeline

• Perspective division is performed, returning a 3-tuple point

in Normalized Device Coordinates, then

• Point multiplied by viewport matrix; result (sx, sy, dz)

• result used for depth calculations and drawing:

– dz is a measure relative of the depth of the original point

– (sx, sy) is the point in screen coordinates to be displayed

13

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Distortion and its removal

• Projection matrix transformed view volume to CVV

• If aspect ratio of the original view volume is not 1, say 1.5,

there is distortion

• viewport transformation can undo this how?

• Map window in view plane to viewport with original aspect

ratio (e.g. 1.5)

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Distortion and Its Removal in OpenGL

• glViewport(x, y, wid, ht) specifies viewport

– lower left corner (x,y) in screen coordinates

– wid pixels wide and ht pixels high.

– aspect ratio wid/ht

• User usually specifies these so that original aspect

ratio (specified in gluPerspective(viewAngle,

aspect, Near, Far) is kept

• Note: glViewport() also maps pseudodepth from the

range -1 to 1 into the range 0 to 1.

