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Perspective Projection
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Graphic Pipeline
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Perspective Projections of 3-D Point

• A vertex located at P in eye coordinates is 
projected to a certain point (x*, y*, z*) on the 
View plane

This is a non-affine transformation!
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Perspective Projections of Point

• (Px, Py, Pz) projects to P* ≡ (x*, y*, z*)    

• x*/Px = N/(-Pz) , y*/Py = N/(-Pz) (similar triangles)  

• P* = (x*, y*) = N/(-Pz) (Px, Py)

• What’s the value of z*?

(X*,y*)
y

x
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What’s the value of z*?

• Lost info: P1 closer than P2 to View Plane. So what?

• Define pseudo depth, z*, increasing with -Pz

– z*(Pz) =  (aPz + b)/(-Pz)

– So that z* = -1 for Pz = -N         z* = 1 for Pz = -F

• define the 3-D projection point of (Px, Py, Pz)

– (x*, y*, z*) = [1/(-Pz)][NPx, NPy, (a + bPz)]

• Now we want to write the transformation via a matrix!
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homogeneous coordinates representation (1)

• The homogeneous representation of a 

Point P is given by  a family of 4 

components columns

• with arbitrary w, provided w ≠ 0

• All w ≠ 0 define same point 



















=

w

wP

wP

wP

P
z

y

x

• Before we display a point, we divide 

all 4 coordinates by w.

• Affine transformations do not change w; why?
• last row of an affine matrix is (0, 0, 0, 1).
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Homogeneous coordinates representation (2)

• To convert a point from ordinary coordinates to 

homogeneous coordinates, append a 1.

• To convert a point from homogeneous coordinates to 

ordinary coordinates, divide all components by the last 

component and discard the fourth component.
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perspective transformation and division

• Operate on a point by the non-affine perspective 

transformation matrix with the last row (0, 0, -1, 0)
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�Divide by the fourth coordinate

�(Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)  ≡ (x*, y*, z*)

�This operation is called the perspective division
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Perspective projection

• perspective transformation + perspective division transform 

3D point to 3D point 

– (Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)

– The third component is used for depth testing

– first 2 components used for mapping to viewport

• Projection is discarding the third dimension

– Also called orthographic (or trivial) projection

• (perspective projection) = (perspective transformation) + 

(perspective division) + (orthographic/trivial  projection)
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The transformed view volume

• Top, bottom & side walls map to planes parallel to z-axis. 

• Near,  Far planes map to planes at z = -1, +1.  

• view volume is now a rectangular parallelepiped

• Left as an exercise

• Can we simplify clipping by transforming the view 

volume once more?
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Facilitating Clipping: Canonical View volume

• CVV, a cube bounded by -1 1 in each dimension

• Translate by –(right+left)/2 in x, –(top+bott)/2 in y

• Scale by 2/(right – left) in x,  2/(top – bott) in y

• The combined perspective transformation and this 

scaling is the Projection Matrix

• The distortion (due to uneven scaling) will be 

eliminated in the final viewport transformation
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The Projection Matrix
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Applying Projection Matrix in OpenGL

• glMatrixMode(GL_Projection);  

• glLoadIdentity(); // start with a unit matrix

• glFrustum(Left, Right, bott, top, N, F)

• Or   gluPerspective(viewAngle, aspect, Near, Far)

– OpenGL calculates from the arguments:

– top = N*tan((π/180)*viewAngle)     bott = -top

– right = top*aspect left = -right
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Clipping against the Canonical 

Volume
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Clipper Against the View Volume: Example

• first clips edge v1v2, finding the 

entire edge is inside CVV. 

• Then clips edge v2v3, records 

the new vertex a

• Finally clips edge v3v1 and 

records the new vertex b

• A triangle has vertices v1, v2,v3. 

• v3 is outside CVV
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Clipping in homogeneous coordinates

• Example: clipping segment AC

• points in homogeneous coordinates 

• A = (ax, ay, az, aw), C = (cx, cy, cz, cw)

• If A, C lie on opposite sides of a wall  

we need to compute intersection 

– I = (Ix, Iy, Iz, Iw).

• When intersection calculation is 

not required?

• If both A, C on same side of a wall
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The Inside /Outside Test of a point

• A point P = (x, y, z, w); True coordinates (x/w, y/w, z/w)

• We test whether P is inside the CVV

• When P lies to the right of  X= -1 plane? (inside)

• if x/w > -1   � w + x > 0.

• When P lies to the left of plane X = 1 ?  (inside)

• if x/w < 1 � w - x > 0.

• The 6 quantities w ± x, w ± y, w ± z are the “Boundary 

Coordinates” of point P

– If all BCi >0, point is inside CVV; else outside
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Table: Boundary Coordinates &  Clip Planes

�If all BCi > 0, point is inside CVV

�Else, a BCi < 0, the point is outside CVV
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Clip a line segment 

• What are the condition for trivial decisions?

• Trivial accept: both endpoints inside the CVV (all BCi >0)

• Trivial reject: both endpoints lie outside same plane of CVV

• Else Algorithm Similar to Cyrus-Beck clipper

– Line P(t) = A + (C-A)t 0 <= t <= 1

– Jump from wall to wall: intersect line with wall

– Maintain a Candidate Interval (CI) of t within which the 

segment might still be inside the CVV. 
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Enter/Exit test and Intersection

• segment AC (from A to C) ;    

• P(t) = (ax+(cx-ax)t, ay+(cy-ay)t, az+(cz-az)t, aw+(cw-aw)t)

• Intersection relation to wall 1, X = 1

– Denote: BC1(A) = aw–ax    BC1(C) = cw–cx (see table)

– If  BC1(A) <0 then A is outside wall 1, line enters  (why)

– If BC1(C) < 0 then C is outside wall 1, line exits

• Intersection is calculated in both these cases (only)

– [ax + (cx –ax)t]/[aw + (cw – aw)t] = 1

– thit = [aw–ax]/[(aw–ax) – (cw–cx)] = 

– thit = BC1(A)/[BC1(A) – BC1(C)]

C

A

A

C
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Clip against CVV: Liang Barski Algorithm 

• CI = [tin = 0.0; tout = 1.0]

• We test the line segment against each wall i in turn. 

• If BCi(A), BCi(C) have opposite signs, find thit

– If segment is entering update tin = max(old tin, thit)

– if segment is exiting, update tout = min(old tout, thit)

• If, at any time the CI is reduced to the empty 

interval (tout > tin), the entire segment is clipped off 

• an “early out”, of the algorithm.
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Steps in the path of a vertex P through the Pipeline 

• P extended to a homogeneous 4-tuple point by appending  1

• P multiplied by the modelview matrix, producing its eye 

coordinates, then

• Multiplied by the projection matrix, producing its clip 

coordinates, then

• Clipping against CVV
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Steps in the path of a vertex P through the Pipeline

• Perspective division is performed, returning a 3-tuple point 

in Normalized Device Coordinates, then   

• Point multiplied by viewport matrix; result (sx, sy, dz) 

• result used for depth calculations and drawing:

– dz is a measure relative of the depth of the original point

– (sx, sy) is the point in screen coordinates to be displayed
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Distortion and its removal

• Projection matrix transformed view volume to CVV 

• If aspect ratio of the original view volume is not 1, say 1.5, 

there is distortion

• viewport transformation can undo this  how?

• Map window in view plane to viewport with original aspect 

ratio (e.g. 1.5)
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Distortion and Its Removal in OpenGL

• glViewport(x, y, wid, ht) specifies viewport

– lower left corner (x,y) in screen coordinates 

– wid pixels wide and ht pixels high. 

– aspect ratio wid/ht

• User usually specifies these so that original aspect 

ratio (specified in gluPerspective(viewAngle, 

aspect, Near, Far) is kept

• Note: glViewport() also maps pseudodepth from the 

range -1 to 1 into the range 0 to 1.


