

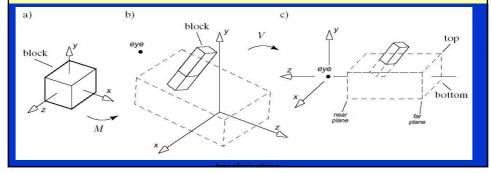
Graphics Pipeline Revisited (2)

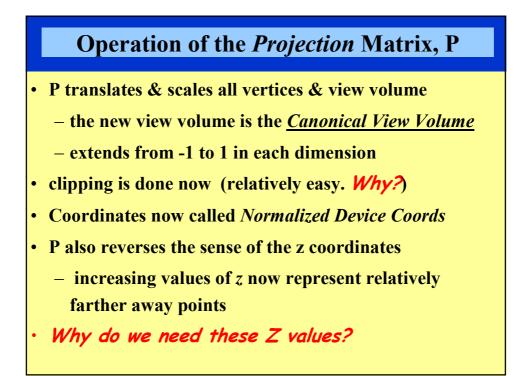
• Input vertices in World Coordinates

– using glVertex3d(x, y, z)

- Each vertex is multiplied by the various matrices, clipped if necessary, and if it survives, it is mapped onto the viewport.
- Each vertex encounters three matrices:
 - The *modelview* matrix
 - The *projection* matrix (orthogonal or perspective)
 - The viewport matrix

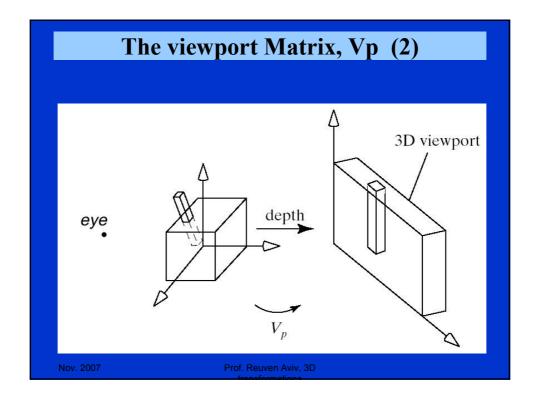
- *M* scales, rotates, & translates the cube into some block
- eye with its view volume is positioned somewhere
- V rotates and translates the block into a new position
 so that Eye and view volume in the standard position
- All objects' coordinates are now called *eye coordinates*

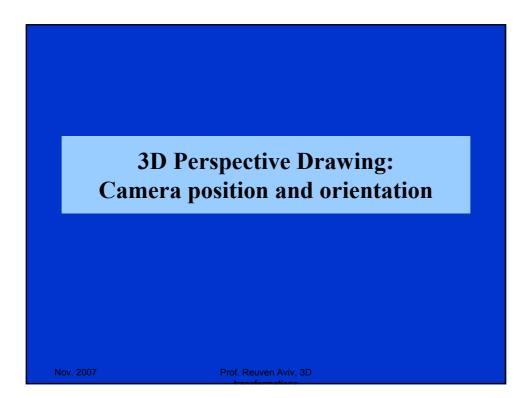


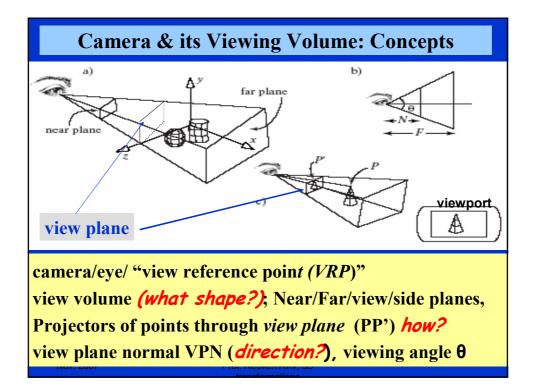


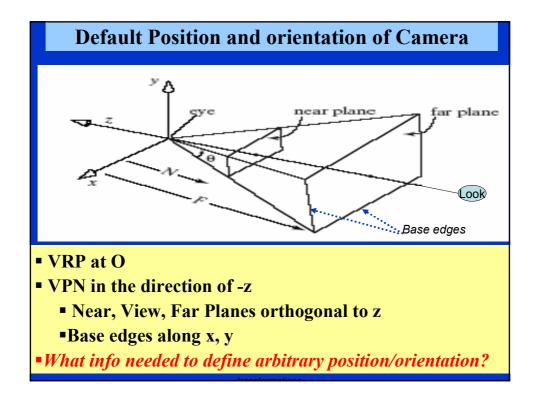
The Viewport Matrix, Vp (1)

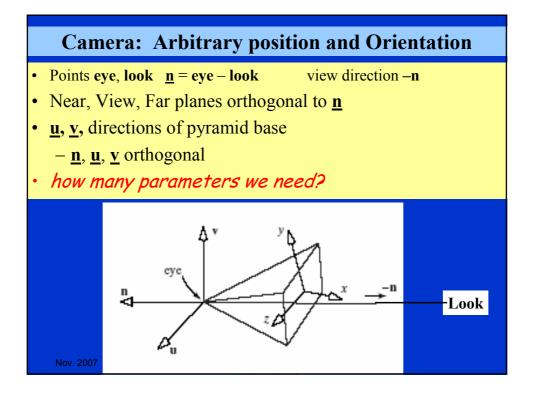
- Vp Transforms all (now clipped) objects once more!
- CVV → the <u>3D viewport</u>:
 - x, y coordinate values extend across the viewport
 - rectangular area that we will be drawn on the screen
 - Coordinates are now called screen coordinates
 - *z*-component extends from 0 to 1
- a measure of the relative depth of each point
- Helps easy identification of hidden surfaces and lines

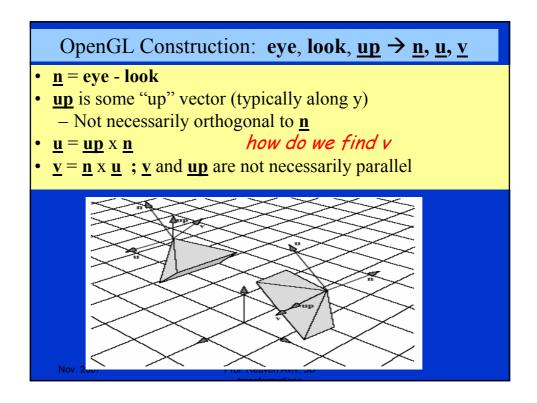


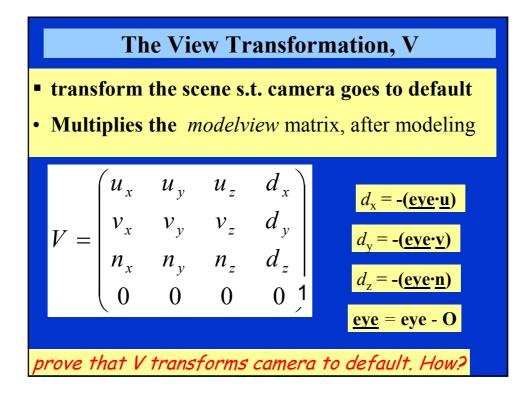


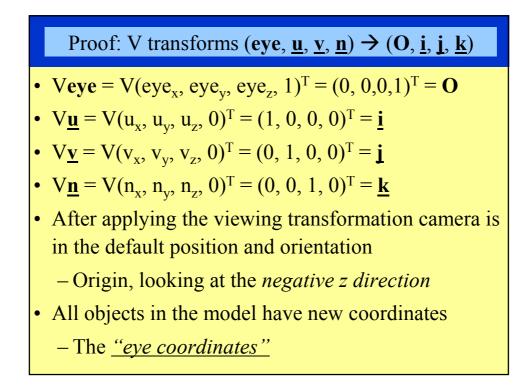


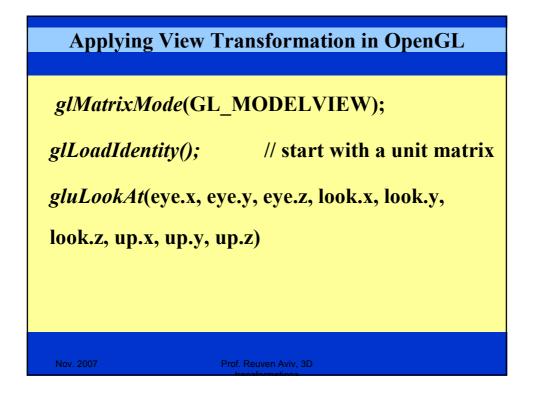


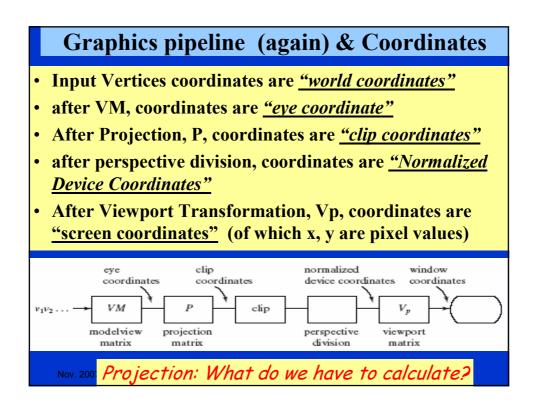


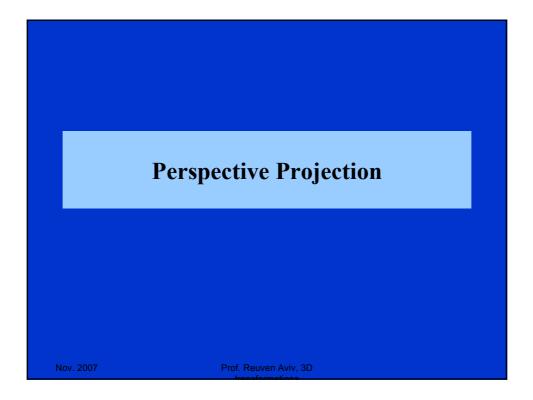


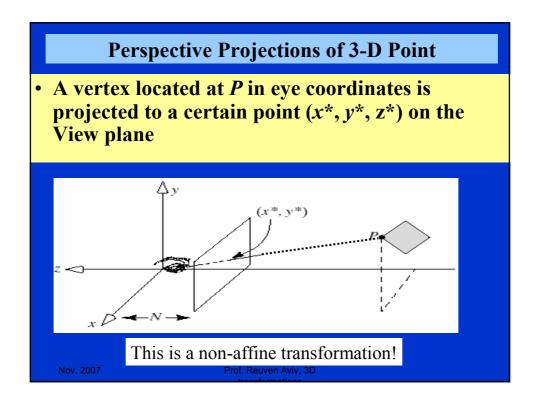


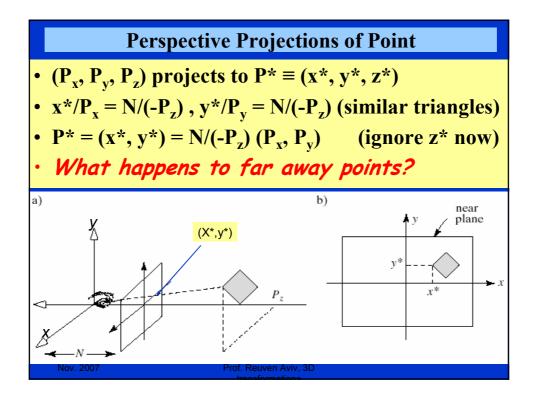


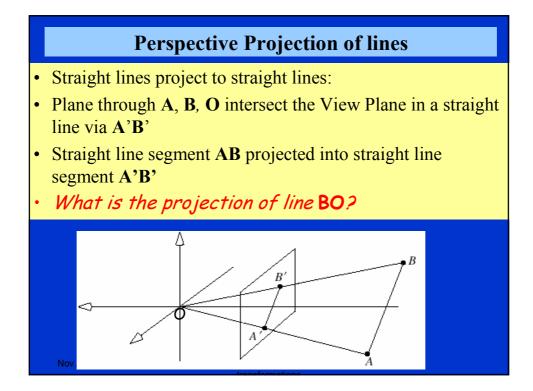












Perspective Projection of lines (2)

• Line points: $\mathbf{P} = (P_x(t), P_y(t), P_z(t)) =$

$$= \mathbf{A} + \mathbf{\underline{c}}t = (\mathbf{A}_{x} + \mathbf{c}_{x}t, \mathbf{A}_{y} + \mathbf{c}_{y}t, \mathbf{A}_{z} + \mathbf{c}_{z}t)$$

- <u>c</u> determines direction of the line
- A determines its location: $\mathbf{A} = \mathbf{P}(0)$
- N is the distance from the eye to the Projection Plane
- **P***(t) projection of **P**(t)

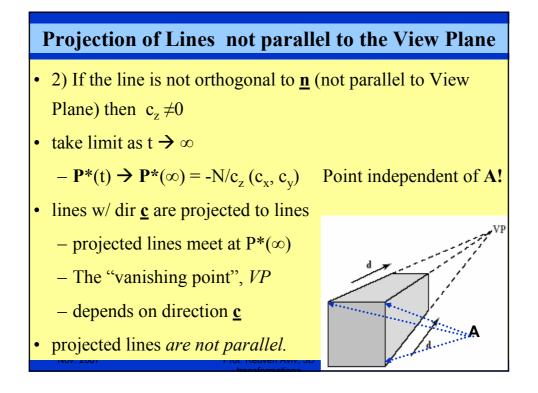
•
$$\mathbf{P}^{*}(t) = -(N/[A_{z} + c_{z}t])(A_{x} + c_{x}t, A_{y} + c_{y}t)$$

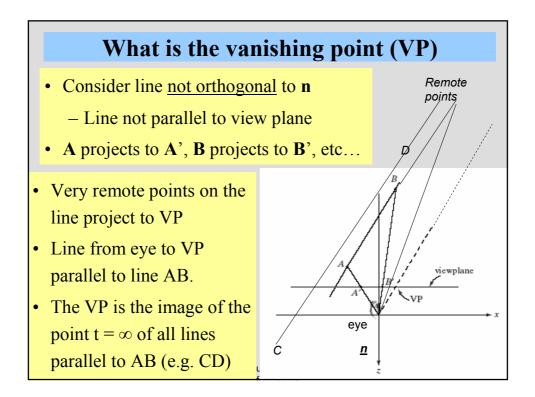
- Is this a straight line? Prove it.
- How parallel lines are projected?

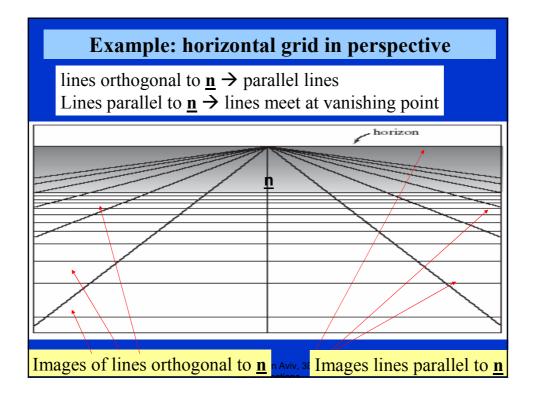
Projection of Lines orthogonal to <u>n</u>

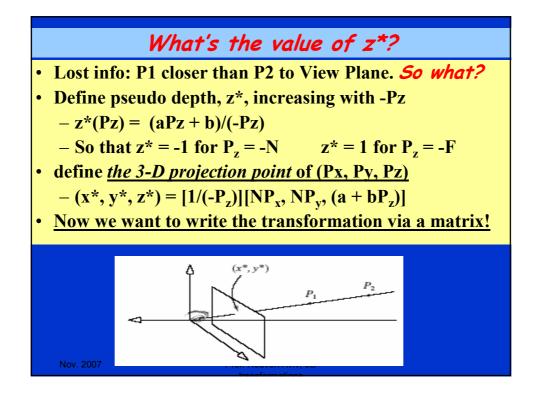
• $\mathbf{A} \equiv \mathbf{P}(\mathbf{0}) \rightarrow \mathbf{P}^*(\mathbf{0}) = -(N/A_z)(A_x, A_y)$

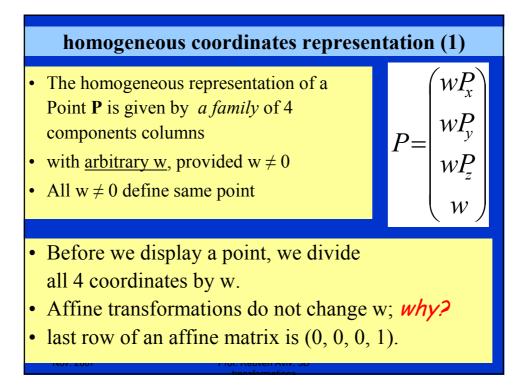
- 1) If the line orthogonal to <u>**n**</u> (parallel to the View Plane)
 - $c_z = 0$, $P_z = A_z$
 - $\mathbf{P}^{*}(t) = N/A_z (A_x + c_x t, A_y + c_y t).$
 - This is a line in View Plane, with slope c_y/c_x
 - lines with same <u>c</u> projected to a line with same slope
- if two lines are parallel to each other and orthogonal to <u>n</u> (they are parallel to the View Plane), they project to two parallel lines

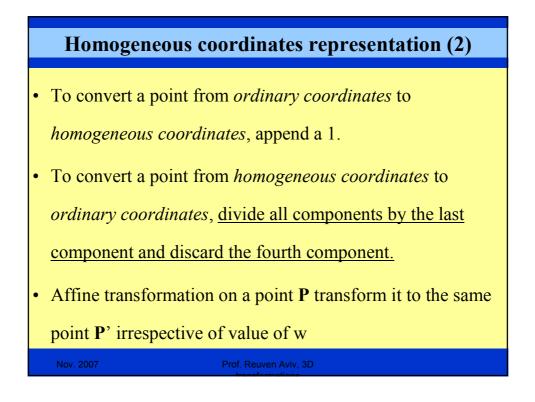


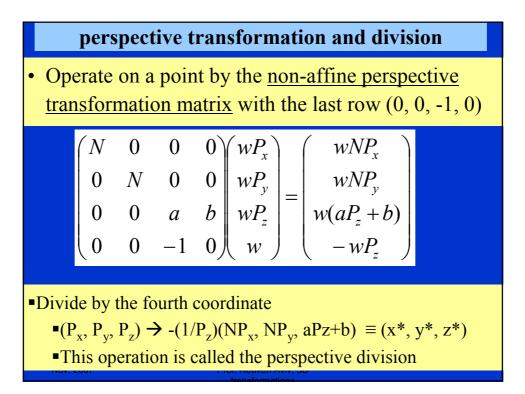






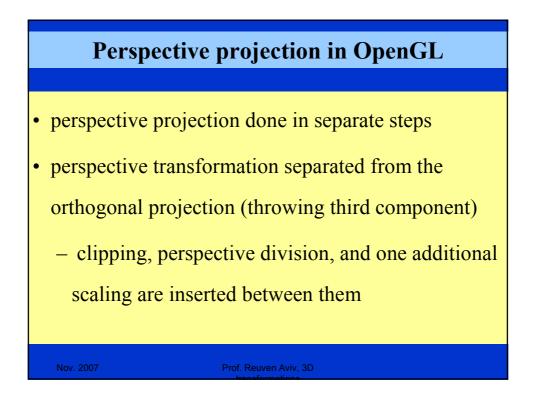


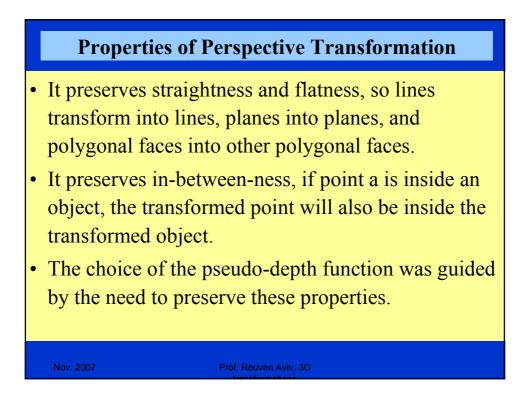


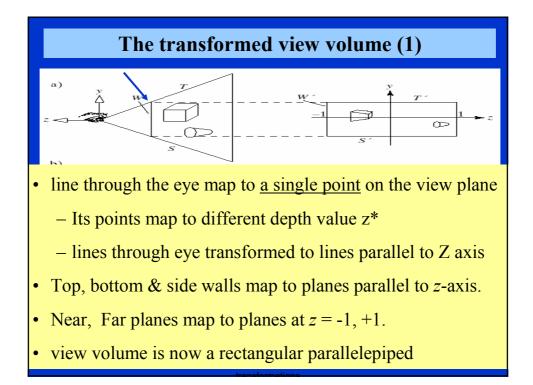


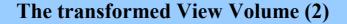
Perspective projection

- perspective transformation + perspective division transform
 3D point to 3D point
 - (P_x , P_y , P_z) → -(1/ P_z)(NP_x, NP_y, aP_z+b)
 - The third component is used for depth testing
 - first 2 components used for mapping to viewport
- Projection is discarding the third dimension
 - Also called orthographic (or trivial) projection
- (perspective projection) = (perspective transformation) +
- (perspective division) + (orthographic/trivial projection)









• After the perspective transformation the view volume is bounded by the 6 planes

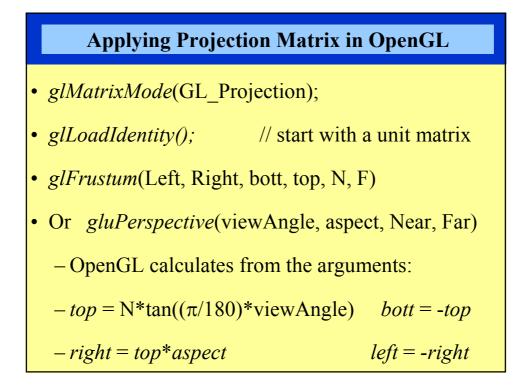
$$-y = bott$$
, $y = top$, $x = left$, $x = right$, $z = -1$, $z = +1$

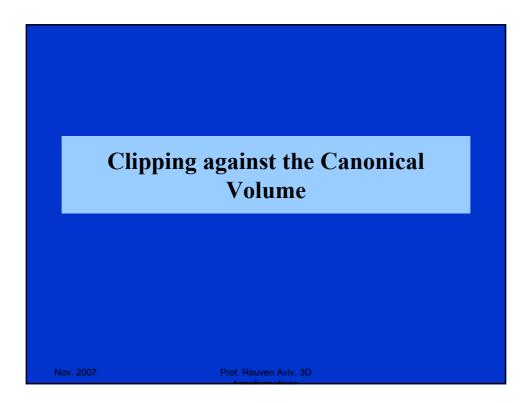
- $top = N*tan((\pi/180)*viewAngle)$ bott = -top
- right = top*aspect left = -right
- Clipping is done relative to this view volume
- Can we simplify clipping by transforming the view volume?

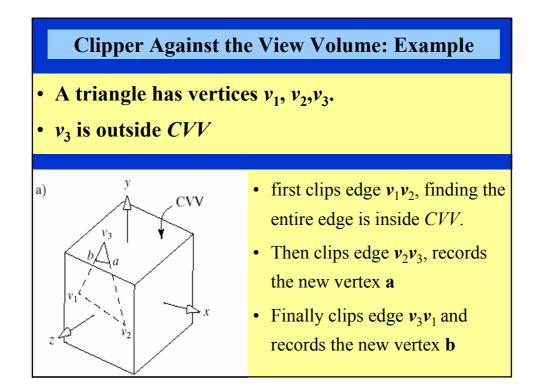
Facilitating Clipping: Canonical View volume

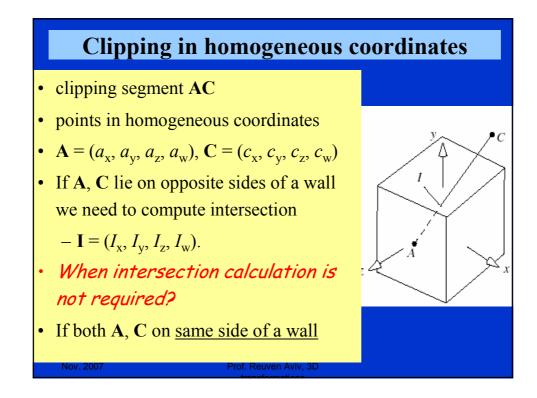
- *CVV*, a cube bounded by -1 1 in each dimension
- Translate by –(*right+left*)/2 in x, –(*top+bott*)/2 in y
- Scale by 2/(right left) in x, 2/(top bott) in y
- The combined perspective transformation and this scaling is the *Projection Matrix*
- The distortion (due to uneven scaling) will be eliminated in the final viewport transformation

	Т	he Projection	Matrix	
	$\left(\frac{2N}{right-left}\right)$	0	right+left right–left	0
R =	0	$\frac{2N}{top-bottom}$	$\frac{top + bottom}{top - bottom}$	0
	0	0	$\frac{-(F+N)}{F-N}$	$\frac{-2FN}{F-N}$
	0	0	-1	$\begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix}$
No	v. 2007	Prof. Reuven Aviv,	3D	









The Inside /Outside Test of a point

- A point $\mathbf{P} = (x, y, z, w)$; True coordinates (x/w, y/w, z/w)
- We test whether P is inside the CVV
- When does P lies to the right of X= -1 plane?
- if $x/w > -1 \rightarrow w + x > 0$.
- When does P lies to the left of plane X = 1?
- if $x/w < 1 \rightarrow w x > 0$.
- The 6 quantities w ± x, w ± y, w ± z are the "Boundary Coordinates" of point P
 - If all BCi >0, point is inside CVV; else outside

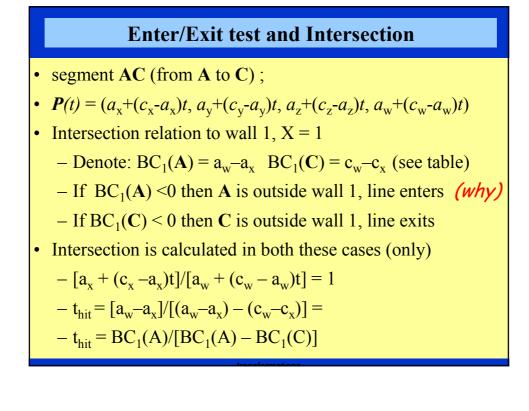
boundary coordinate	homogeneous value	clip plant
BC ₀	w + x	x = -1
BC_1	w - x	x = 1
BC_2	w + y	y = -1
BC_3	w – y	y = 1
BC_4	w + z	z = -1
BC ₅	w = z	z = 1

Clip a line segment

- What are the condition for trivial decisions?
- Trivial accept: both endpoints inside the CVV (all BCi >0)
- Trivial reject: both endpoints lie outside same plane of CVV
- Else Algorithm Similar to Cyrus-Beck clipper

- Line P(t) = A + (C-A)t 0 <= t <= 1

- Jump from wall to wall: intersect line with wall
- Maintain a Candidate Interval (*CI*) of t within which the segment might still be inside the *CVV*.

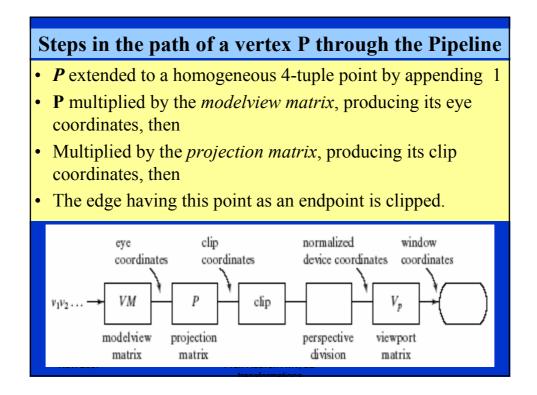


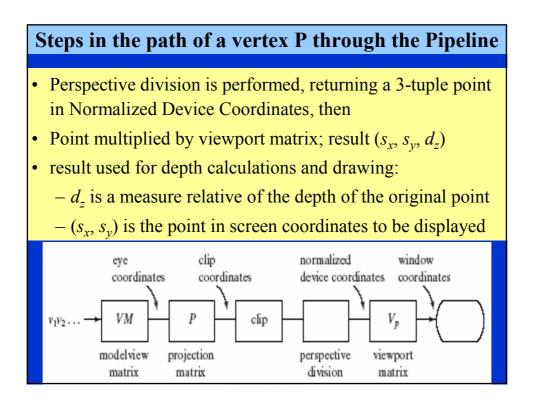
Clip against CVV: Liang Barski Algorithm

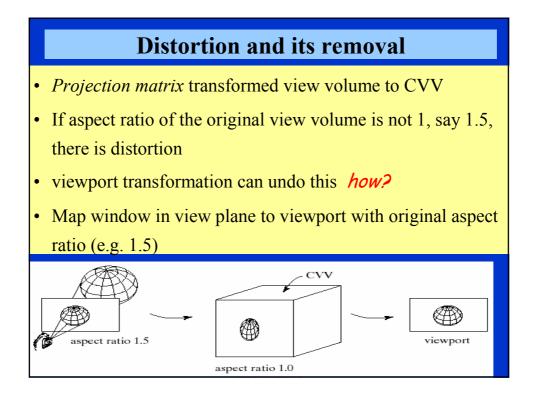
- $CI = [t_{in} = 0.0; t_{out} = 1.0]$
- We test the line segment against each wall i in turn.
- If BCi(A), BCi(C) have opposite signs, find t_{hit}
 - If segment is entering update $t_{in} = max(old t_{in}, t_{hit})$
 - if segment is exiting, update $t_{out} = min(old t_{out}, t_{hit})$
- If, at any time the *CI* is reduced to the empty interval $(t_{out} > t_{in})$, the entire segment is clipped off
- an "early out", of the algorithm.

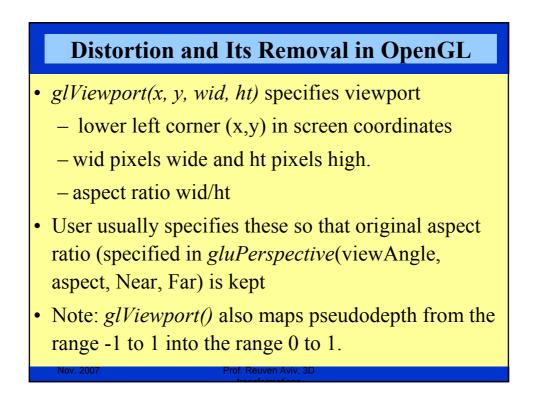
Why Use the CVV?

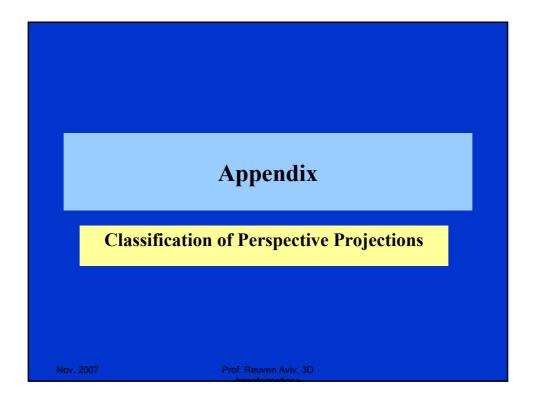
- It is parameter-free: the algorithm needs no extra information to describe the clipping volume.
- It uses only the values -1 and 1. So the code itself can be highly tuned for maximum efficiency.
- Its planes are aligned with the coordinate axes (after the perspective transformation is performed).
- we can determine which side of a plane a point lies on using a single coordinate, as in $a_x > -1$.
- If the planes were not aligned, an expensive dot product would be needed.

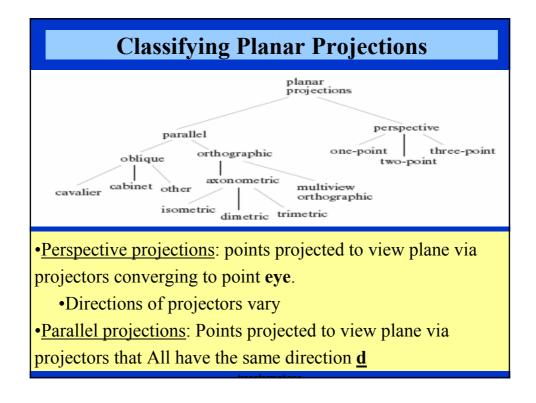


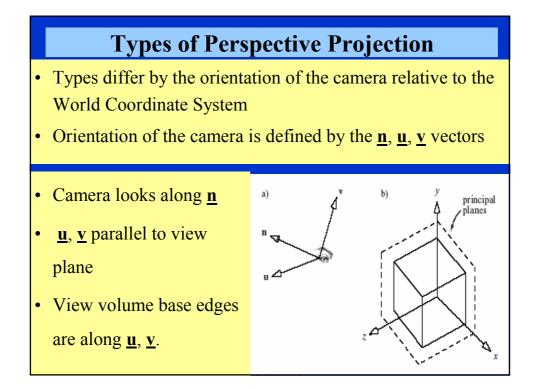












Principal axes and their vanishing points

- Principal axes: x, y, z ; Principal planes: (x,y), (y,z), (z,x)
- Reminder: If a principal axis is orthogonal to <u>**n**</u>, (parallel to view plane) it does not have a vanishing point
- lines parallel to such axis will be projected to parallel lines
- Otherwise, if a principal axis is not orthogonal to n, it has a vanishing point
- All lines parallel to such axis will be projected as lines in the view plane, which meet at the vanishing point

