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Orthogonal projection
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Eye and View Volume in orthogonal projection

• Eye by default looks along –z axis at the world window

– a rectangle in the xy-plane. 

• view volume of eye is a rectangular parallelepiped

• side walls fixed by window edges & by near/far planes

• everything outside view volume is clipped 

• Everything inside is projected to window plane  how?

• z ���� 0     (orthogonal  projection)
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Repositioning the eye and the View Matrix V

• eye (and its view volume) can be positioned somewhre in 

the World.  (OpenGL: use  glLookat())

• What happens to the View Volume

• View Volume (parallelpiped) is accordingly positioned

• all objects and eye are then transformed by V

– So that eye repositioned at the standard location

• The ModelView matrix multiplied by V:   M ���� VM
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Graphics Pipeline Revisited (1)

• VM includes all objects, eye, view volume 

transformations

• P is projection onto the World Window 

– Here we assume orthogonal transformation z���� 0

• What does the viewport transformation Vp

• World Window ���� viewport to be be drawn on screen
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Graphics Pipeline Revisited (2)

• Input vertices in World Coordinates

– using glVertex3d(x, y, z)

• Each vertex is multiplied by the various matrices, 

clipped if necessary, and if it survives, it is mapped onto 

the viewport.

• Each vertex encounters three matrices:

– The modelviewmatrix

– The projectionmatrix  (orthogonal or perspective)

– The viewport matrix
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Operation of the modelview matrix VM

• M scales, rotates, & translates the cube into some block

• eye with its view volume is positioned somewhere

• V rotates and translates the block into a new position

– so that Eye and view volume in the standard position

• All objects’ coordinates are now called eye coordinates

• Why do we put view volume along axes?
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Operation of the ProjectionMatrix, P

• P translates & scales all vertices & view volume

– the new view volume is the Canonical View Volume

– extends from -1 to 1 in each dimension 

• clipping is done now  (relatively easy. Why?)

• Coordinates now called Normalized Device Coords

• P also reverses the sense of the z coordinates

– increasing values of z now represent relatively 

farther away points

• Why do we need these Z values?
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The Viewport Matrix, Vp (1)

• Vp Transforms all (now clipped) objects once more!

• CVV ���� the 3D viewport: 

– x, y coordinate values extend across the viewport

– rectangular area that we will  be drawn on the screen

– Coordinates are now called screen coordinates

– z-component extends from 0 to 1 

• a measure of the relative depth of each point

• Helps easy identification of hidden surfaces and lines
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The viewport Matrix, Vp (2)
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3D Perspective Drawing:

Camera position and orientation
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Camera & its Viewing Volume: Concepts 

camera/eye/ “view reference point (VRP)”

view volume (what shape?); Near/Far/view/side planes,

Projectors of points through view plane (PP’) how?

view plane normal VPN (direction?), viewing angle θ

view plane

viewport
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Default Position and orientation of Camera

� VRP at O 

� VPN in the direction of -z 

� Near, View, Far Planes orthogonal to z

�Base edges along x, y

�What info needed to define arbitrary position/orientation?

Look

Base edges
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Camera:  Arbitrary position and Orientation

• Points eye, look   n = eye – look            view direction –n

• Near, View, Far planes orthogonal to n

• u, v, directions of pyramid base

– n, u, v orthogonal 

• how many parameters we need?

Look
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OpenGL Construction: eye, look, up� n, u, v

• n = eye - look

• up is some “up” vector (typically along y) 

– Not necessarily orthogonal to n

• u = up x n how do we find v
• v = n x u ; v and up are not necessarily parallel
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The View Transformation, V 

� transform the scene s.t. camera goes to default 

• Multiplies the  modelview matrix, after modeling
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V

eye = eye - O

dx = -(eye·u)

dy = -(eye·v)

dz = -(eye·n)
1

prove that V transforms camera to default. How?
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Proof: V transforms (eye, u, v, n) � (O, i, j, k)

• Veye = V(eyex, eyey, eyez, 1)
T = (0, 0,0,1)T = O

• Vu = V(ux, uy, uz, 0)
T = (1, 0, 0, 0)T = i

• Vv = V(vx, vy, vz, 0)
T = (0, 1, 0, 0)T = j

• Vn = V(nx, ny, nz, 0)
T = (0, 0, 1, 0)T = k

• After applying the viewing transformation camera is 

in the default position and orientation

– Origin, looking at the negative z direction

• All objects in the model have new coordinates 

– The “eye coordinates”
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Applying View Transformation in OpenGL

glMatrixMode(GL_MODELVIEW);  

glLoadIdentity(); // start with a unit matrix

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, 

look.z, up.x, up.y, up.z)
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Graphics pipeline  (again) & Coordinates

• Input Vertices coordinates are “world coordinates”

• after VM, coordinates are “eye coordinate”

• After Projection, P, coordinates are “clip coordinates”

• after perspective division, coordinates are “Normalized 

Device Coordinates”

• After Viewport Transformation, Vp, coordinates are 

“screen coordinates” (of which x, y are pixel values) 

Projection: What do we have to calculate?
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Perspective Projection

Nov. 2007 Prof. Reuven Aviv, 3D 

transformations

Perspective Projections of 3-D Point

• A vertex located at P in eye coordinates is 
projected to a certain point (x*, y*, z*) on the 
View plane

This is a non-affine transformation!
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Perspective Projections of Point

• (Px, Py, Pz) projects to P* ≡ (x*, y*, z*)    

• x*/Px = N/(-Pz) , y*/Py = N/(-Pz) (similar triangles)  

• P* = (x*, y*) = N/(-Pz) (Px, Py)       (ignore z* now)

• What happens to far away points?

(X*,y*)
y

x
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Perspective Projection of lines

• Straight lines project to straight lines: 

• Plane through A, B, O intersect the View Plane in a straight 

line via A’B’

• Straight line segment AB projected into straight line 

segment A’B’

• What is the projection of line BO?

O
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Perspective Projection of lines (2)

• Line points: P = (Px(t), Py(t), Pz(t)) =

• = A + ct  =  (Ax + cxt, Ay + cyt,  Az + czt)

• c determines direction of the line

• A determines its location:  A = P(0)

• N is the distance from the eye to the Projection Plane

• P*(t) projection of P(t)

• P*(t) = - (N/[Az + czt]) (Ax + cxt, Ay + cyt)

• Is this a straight line? Prove it.

• How parallel lines are projected?
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Projection of Lines  orthogonal to n

• A ≡ P(0) → P*(0) = - (N/Az)(Ax, Ay)

• 1) If the line orthogonal to n (parallel to the View Plane) 

• cz = 0, Pz = Az

• P*(t) = - N/Az (Ax + cxt, Ay + cyt).

• This is a line in View Plane, with slope cy/cx

• lines with same c projected to a line with same slope

• if two lines are parallel to each other and orthogonal to n

(they are parallel to the View Plane), they project to two 

parallel lines
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Projection of Lines  not parallel to the View Plane

• 2) If the line is not orthogonal to n (not parallel to View 

Plane) then  cz ≠0

• take limit as t � ∞

– P*(t) � P*(∞) = -N/cz (cx, cy)     Point independent of A!

• lines w/ dir c are projected to lines 

– projected lines meet at P*(∞)

– The “vanishing point”, VP

– depends on direction c

• projected lines are not parallel.
A
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What is the vanishing point (VP)

• Very remote points on the 

line project to VP

• Line from eye to VP 

parallel to line AB.

• The VP is the image of the 

point t = ∞ of all lines 

parallel to AB (e.g. CD)

• Consider line not orthogonal to n

– Line not parallel to view plane

• A projects to A’, B projects to B’, etc… 

eye

n

Remote

points

C

D
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Example: horizontal grid in perspective 

Images lines parallel to nImages of lines orthogonal to n

lines orthogonal to n� parallel lines

Lines parallel to n� lines meet at vanishing point

n
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What’s the value of z*?
• Lost info: P1 closer than P2 to View Plane. So what?
• Define pseudo depth, z*, increasing with -Pz

– z*(Pz) =  (aPz + b)/(-Pz)

– So that z* = -1 for Pz = -N         z* = 1 for Pz = -F

• define the 3-D projection point of (Px, Py, Pz)

– (x*, y*, z*) = [1/(-Pz)][NPx, NPy, (a + bPz)]

• Now we want to write the transformation via a matrix!
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homogeneous coordinates representation (1)

• The homogeneous representation of a 

Point P is given by  a family of 4 

components columns

• with arbitrary w, provided w ≠ 0

• All w ≠ 0 define same point 
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• Before we display a point, we divide 

all 4 coordinates by w.

• Affine transformations do not change w; why?
• last row of an affine matrix is (0, 0, 0, 1).
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Homogeneous coordinates representation (2)

• To convert a point from ordinary coordinates to 

homogeneous coordinates, append a 1.

• To convert a point from homogeneous coordinates to 

ordinary coordinates, divide all components by the last 

component and discard the fourth component.

• Affine transformation on a point P transform it to the same 

point P’ irrespective of value of w
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perspective transformation and division

• Operate on a point by the non-affine perspective 

transformation matrix with the last row (0, 0, -1, 0)
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�Divide by the fourth coordinate

�(Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)  ≡ (x*, y*, z*)

�This operation is called the perspective division
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Perspective projection

• perspective transformation + perspective division transform 

3D point to 3D point 

– (Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)

– The third component is used for depth testing

– first 2 components used for mapping to viewport

• Projection is discarding the third dimension

– Also called orthographic (or trivial) projection

• (perspective projection) = (perspective transformation) + 

(perspective division) + (orthographic/trivial  projection)
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Perspective projection in OpenGL

• perspective projection done in separate steps 

• perspective transformation separated from the 

orthogonal projection (throwing third component)

– clipping, perspective division, and one additional 

scaling are inserted between them
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Properties of Perspective Transformation

• It preserves straightness and flatness, so lines 

transform into lines, planes into planes, and 

polygonal faces into other polygonal faces. 

• It preserves in-between-ness, if point a is inside an 

object, the transformed point will also be inside the 

transformed object. 

• The choice of the pseudo-depth function was guided 

by the need to preserve these properties.
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The transformed view volume (1)

• line through the eye map to a single point on the view plane  

– Its points map to different depth value z*

– lines through eye transformed to lines parallel to Z axis

• Top, bottom & side walls map to planes parallel to z-axis. 

• Near,  Far planes map to planes at z = -1, +1.  

• view volume is now a rectangular parallelepiped
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The transformed View Volume (2)

• After the perspective transformation the view volume is 

bounded by the 6 planes

– y = bott, y = top, x = left, x = right, z = -1, z =+1

• top = N*tan((π/180)*viewAngle)     bott = -top

• right = top*aspect left = -right

• Clipping is done relative to this view volume

• Can we simplify clipping by transforming the view 

volume?
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Facilitating Clipping: Canonical View volume

• CVV, a cube bounded by -1 1 in each dimension

• Translate by –(right+left)/2 in x, –(top+bott)/2 in y

• Scale by 2/(right – left) in x,  2/(top – bott) in y

• The combined perspective transformation and this 

scaling is the Projection Matrix

• The distortion (due to uneven scaling) will be 

eliminated in the final viewport transformation
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The Projection Matrix
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Applying Projection Matrix in OpenGL

• glMatrixMode(GL_Projection);  

• glLoadIdentity(); // start with a unit matrix

• glFrustum(Left, Right, bott, top, N, F)

• Or   gluPerspective(viewAngle, aspect, Near, Far)

– OpenGL calculates from the arguments:

– top = N*tan((π/180)*viewAngle)     bott = -top

– right = top*aspect left = -right
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Clipping against the Canonical 

Volume



22

Nov. 2007 Prof. Reuven Aviv, 3D 

transformations

Clipper Against the View Volume: Example

• first clips edge v1v2, finding the 

entire edge is inside CVV. 

• Then clips edge v2v3, records 

the new vertex a

• Finally clips edge v3v1 and 

records the new vertex b

• A triangle has vertices v1, v2,v3. 

• v3 is outside CVV
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Clipping in homogeneous coordinates

• clipping segment AC

• points in homogeneous coordinates 

• A = (ax, ay, az, aw), C = (cx, cy, cz, cw)

• If A, C lie on opposite sides of a wall  

we need to compute intersection 

– I = (Ix, Iy, Iz, Iw).

• When intersection calculation is 

not required?

• If both A, C on same side of a wall
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The Inside /Outside Test of a point

• A point P = (x, y, z, w); True coordinates (x/w, y/w, z/w)

• We test whether P is inside the CVV

• When does P lies to the right of  X= -1 plane?

• if x/w > -1   � w + x > 0.

• When does P lies to the left of plane X = 1 ?

• if x/w < 1 � w - x > 0.

• The 6 quantities w ± x, w ± y, w ± z are the “Boundary 

Coordinates” of point P

– If all BCi >0, point is inside CVV; else outside
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Table: Boundary Coordinates &  Clip Planes

�If all BCi > 0, point is inside CVV

�Else, a BCi < 0, the point is outside CVV
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Clip a line segment 

• What are the condition for trivial decisions?

• Trivial accept: both endpoints inside the CVV (all BCi >0)

• Trivial reject: both endpoints lie outside same plane of CVV

• Else Algorithm Similar to Cyrus-Beck clipper

– Line P(t) = A + (C-A)t 0 <= t <= 1

– Jump from wall to wall: intersect line with wall

– Maintain a Candidate Interval (CI) of t within which the 

segment might still be inside the CVV. 
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Enter/Exit test and Intersection

• segment AC (from A to C) ;    

• P(t) = (ax+(cx-ax)t, ay+(cy-ay)t, az+(cz-az)t, aw+(cw-aw)t)

• Intersection relation to wall 1, X = 1

– Denote: BC1(A) = aw–ax    BC1(C) = cw–cx (see table)

– If  BC1(A) <0 then A is outside wall 1, line enters  (why)

– If BC1(C) < 0 then C is outside wall 1, line exits

• Intersection is calculated in both these cases (only)

– [ax + (cx –ax)t]/[aw + (cw – aw)t] = 1

– thit = [aw–ax]/[(aw–ax) – (cw–cx)] = 

– thit = BC1(A)/[BC1(A) – BC1(C)]
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Clip against CVV: Liang Barski Algorithm 

• CI = [tin = 0.0; tout = 1.0]

• We test the line segment against each wall i in turn. 

• If BCi(A), BCi(C) have opposite signs, find thit

– If segment is entering update tin = max(old tin, thit)

– if segment is exiting, update tout = min(old tout, thit)

• If, at any time the CI is reduced to the empty 

interval (tout > tin), the entire segment is clipped off 

• an “early out”, of the algorithm.
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Why Use the CVV?

• It is parameter-free: the algorithm needs no extra 

information to describe the clipping volume. 

• It uses only the values -1 and 1. So the code itself can be 

highly tuned for maximum efficiency.

• Its planes are aligned with the coordinate axes (after the 

perspective transformation is performed). 

• we can determine which side of a plane a point lies on 

using a single coordinate, as in ax > -1. 

• If the planes were not aligned, an expensive dot product 

would be needed.



26

Nov. 2007 Prof. Reuven Aviv, 3D 

transformations

Steps in the path of a vertex P through the Pipeline 

• P extended to a homogeneous 4-tuple point by appending  1

• P multiplied by the modelview matrix, producing its eye 

coordinates, then

• Multiplied by the projection matrix, producing its clip 

coordinates, then

• The edge having this point as an endpoint is clipped.
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Steps in the path of a vertex P through the Pipeline

• Perspective division is performed, returning a 3-tuple point 

in Normalized Device Coordinates, then   

• Point multiplied by viewport matrix; result (sx, sy, dz) 

• result used for depth calculations and drawing:

– dz is a measure relative of the depth of the original point

– (sx, sy) is the point in screen coordinates to be displayed
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Distortion and its removal

• Projection matrix transformed view volume to CVV 

• If aspect ratio of the original view volume is not 1, say 1.5, 

there is distortion

• viewport transformation can undo this  how?

• Map window in view plane to viewport with original aspect 

ratio (e.g. 1.5)
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Distortion and Its Removal in OpenGL

• glViewport(x, y, wid, ht) specifies viewport

– lower left corner (x,y) in screen coordinates 

– wid pixels wide and ht pixels high. 

– aspect ratio wid/ht

• User usually specifies these so that original aspect 

ratio (specified in gluPerspective(viewAngle, 

aspect, Near, Far) is kept

• Note: glViewport() also maps pseudodepth from the 

range -1 to 1 into the range 0 to 1.
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Appendix

Classification of Perspective Projections
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Classifying Planar Projections

•Perspective projections: points projected to view plane via 

projectors converging to point eye. 

•Directions of projectors vary

•Parallel projections: Points projected to view plane via 

projectors that All have the same direction d
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Types of Perspective Projection

• Types differ by the orientation of the camera relative to the 

World Coordinate System

• Orientation of the camera is defined by the n, u, v vectors

• Camera looks along n

• u, v parallel to view 

plane

• View volume base edges 

are along u, v.
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Principal axes and their vanishing points

• Principal axes: x, y, z ; Principal planes: (x,y), (y,z), (z,x)

• Reminder: If a principal axis is orthogonal to n, (parallel to 

view plane) it does not have a vanishing point

• lines parallel to such axis will be projected to parallel lines

A

• Otherwise, if a principal axis 

is not orthogonal to n, it has a 

vanishing point

• All lines parallel to such axis 

will be projected as lines in the 

view plane, which meet at the 

vanishing point
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One point Perspective Projection

• exactly one axis has a vanishing point VP, e.g. z axis

– lines parallel to the axis projected to lines that meet at VP

• The two other axes (e.g. x, y) must be orthogonal to n

– n is perpendicular to a principal plane (e.g. (x, y)) plane

– n has two zero coordinates (nx = ny =0)
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Two points perspective projection

• exactly 2 axes have vanishing points VPs, e.g. x, z axes

• lines parallel to axes projected to lines which meet in VPs

– The third axis  (y) must be orthogonal to n

– n has one zero coordinate     e.g. ny = 0

• used for drawings buildings.  Camera looks at  an edge
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Three-point perspective projection

• all 3 axes have vanishing points.  

– Lines parallel to any axis projected to lines meeting at its 
VP

• No axis is orthogonal to n

– no component of n is 0.  

• Example: looking up or down at the corner of an object.
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Example three-point perspective projection


