Prof. Reuven Aviv
Department of Computer Science
Tel Hai Academic College
Computer Graphics

Three Dimensional Viewing

Slides adapted from F. Hill, J. Kelley, Computer Graphics

* Orthogonal projection

* 3D perspective Drawing
— camera position and orientation
— perspective projection

— clipping

Orthogonal projection

Eve and View Volume in orthogonal projection

* Eye by default 1ooks along —z axis at the world window
— arectangle in the xy-plane.
» view volume of eye is a rectangular parallelepiped

side walls fixed by window edges & by near/far planes

everything outside view volume is clipped

Everything inside is projected to window plane Aow?

z-> 0 (orthogonal projection)

near plane window ¥ A far plane

ER

viewport

o

Repositioning the eye and the View Matrix V

* eye (and its view volume) can be positioned somewhre in
the World. (OpenGL: use glLookat())

What happens to the View Volume
* View Volume (parallelpiped) is accordingly positioned
« all objects and eye are then transformed by V

— So that eye repositioned at the standard location
» The ModelView matrix multiplied by V: M 2> VM

nir pane vindow far plane
N,

| : ! [/mz_ma/\dewpon

image produced

Grthics PiBeline Revisited slz

* VM includes all objects, eye, view volume
transformations

* Pis projection onto the World Window
— Here we assume orthogonal transformation z-> 0

What does the viewport transformation Vp

* World Window - viewport to be be drawn on screen

projection

/ matrix

P —» clip Vy D

\ /

modelview viewport
matrix matrmx

I Grthics PiEeline Revisited 52!

* Input vertices in World Coordinates
— using glVertex3d(x, y, z)

« Each vertex is multiplied by the various matrices,
clipped if necessary, and if it survives, it is mapped onto

the viewport.
« Each vertex encounters three matrices:
— The modelview matrix
— The projection matrix (orthogonal or perspective)

— The viewport matrix

Operation of the modelview matrix VM

* M scales, rotates, & translates the cube into some block
 eye with its view volume is positioned somewhere
* Vrotates and translates the block into a new position

— so that Eye and view volume in the standard position
« All objects’ coordinates are now called eye coordinates
- Why do we put view volume along axes?

a)

block

Operation of the Projection Matrix, P

* P translates & scales all vertices & view volume

— the new view volume is the Canonical View Volume

— extends from -1 to 1 in each dimension
« clipping is done now (relatively easy. Why?)
* Coordinates now called Normalized Device Coords
« P also reverses the sense of the z coordinates

— increasing values of 7 now represent relatively
farther away points

Why do we need these Z values?

The Viewport Matrix, Vp (1)

Vp Transforms all (now clipped) objects once more!

CVV - the 3D viewport:

— X, y coordinate values extend across the viewport

— rectangular area that we will be drawn on the screen
— Coordinates are now called screen coordinates

— z-component extends from 0 to 1

« a measure of the relative depth of each point

Helps easy identification of hidden surfaces and lines
L roweee 0000000 repmmwmper 0000000000000 1

The viewport Matrix, Vp (2)

3D viewport

3D Perspective Drawing:
Camera position and orientation

Camera & its Viewing Volume: Concepts

far planc sy

view plane

camera/eye/ “view reference poinz (VRP)”

view volume (what shape?), Near/Far/view/side planes,
Projectors of points through view plane (PP’) how?
view plane normal VPN (direction?), viewing angle 0

Default Position and orientation of Camera

XN .
..... .

--2:: Base edges

* VRP at O
= VPN in the direction of -z
= Near, View, Far Planes orthogonal to z
=Base edges along x, y
*What info needed to define arbitrary position/orientation?

Camera: Arbitrary position and Orientation

* Points eye, look n = eye — look view direction —n
» Near, View, Far planes orthogonal to n
* u, v, directions of pyramid base
—n, u, v orthogonal
- how many parameters we need?

=1

.\

OpenGL Construction: eye, look, up 2 n, u, v I

* n=eye - look
* up is some “up” vector (typically along y)
— Not necessarily orthogonal to n
s u=upxn how do we find v
« v=nxu ;v and up are not necessarily parallel

The View Transformation, V

= transform the scene s.t. camera goes to default

* Multiplies the modelview matrix, after modeling

prove that V transforms camera to default. How?

. Veye=V(eye eye,, eye,, 1)' =(0,0,0,)" =0

* Vu=V(u,u,u,0)"=(1,0,0,0 =i
* V¥ =V(v,, v, v,, 0)T=(0, 1, 0, O)T=1
° V(nxﬂ y) 29 O)T = (0 O’ 1’ O)T -

. After applying the viewing transformatlon camera is
in the default position and orientation

— Origin, looking at the negative z direction
 All objects in the model have new coordinates

—The “eye coordinates”

10

Applying View Transformation in OpenGL

giMatrixMode(GL._MODELVIEW);
glLoadldentity(); // start with a unit matrix

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y,
look.z, up.x, up.y, up.z)

Graphics pipeline (again) & Coordinates

* Input Vertices coordinates are “world coordinates”

» after VM, coordinates are “eye coordinate”

« After Projection, P, coordinates are “clip coordinates”

- after perspective division, coordinates are “Normalized
Device Coordinates”

» After Viewport Transformation, Vp, coordinates are
“screen coordinates” (of which x, y are pixel values)

eye clip normalized weind onar
coordinates coordinates device coordinates coordinates

A A" N N
vy, —= VM | — P |—] clip — —,-<)

modelview projection perspective wiewport
matrix matroc division matrix

Projection: What do we have to calculate?

11

Perspective Projection

Perspective Projections of 3-D Point

* A vertex located at P in eye coordinates is
projected to a certain point (x*, y*, z*) on the
View plane

This 1s a non-affine transformation!

12

Perspective Projections of Point

* (P,, P, P, projects to P* = (x*, y*, z*)

* x*/P,=N/(-P) , y*/P, = N/(-P,) (similar triangles)
« P*=(x*y*)=N/(-P) (P, P)) (ignore z* now)
- What happens to far away points?

a) b)

near

Ay / plane
":H'_ﬁo

W

X

Perspective Projection of lines

« Straight lines project to straight lines:
* Plane through A, B, O intersect the View Plane in a straight
line via A’B’

« Straight line segment AB projected into straight line
segment A’B’
What is the projection of line BO?

13

Perspective Projection of lines (2)

* Line points: P = (Py(t), Py(t), P,(t)) =
. =Atcet = (ATt Ajtet, A tch)
e ¢ determines direction of the line
* A determines its location: A = P(0)
* N is the distance from the eye to the Projection Plane
» P*(t) projection of P(t)
« P¥(t) = - (N/[A, T ct]) (A et Ay +cb)
- Is this a straight line? Prove it

* How parallel lines are projected?

Projection of Lines orthogonal to n
+ A=P(0) — P*(0)=- (N/A)(A, A)
* 1) If the line orthogonal to n (parallel to the View Plane)
cc,=0,P,=A,
« P¥(t) =-N/A, (A, T c,t, Ay +cpb).
* This is a line in View Plane, with slope c,/c,
* lines with same ¢ projected to a line with same slope

* iftwo lines are parallel to each other and orthogonal to n

(they are parallel to the View Plane), they project to two

parallel lines
Lo 00 epmmm

14

|
Projection of Lines not parallel to the View Plane

 2) If the line is not orthogonal to n (not parallel to View
Plane) then c, #0
* take limitast > oo
— P*(t) 2 P*(o0) =-N/c, (¢, ¢,) Point independent of A!
* lines w/ dir ¢ are projected to lines
— projected lines meet at P*(0)
— The “vanishing point”, VP

— depends on direction ¢

* projected lines are not parallel.
L e e

What is the vanishing point (VP)

* Consider line not orthogonal to n ﬁshmtote

— Line not parallel to view plane

» A projects to A’, B projects to B’, etc...

* Very remote points on the
line project to VP

* Line from eye to VP

parallel to line AB. / jevriane
;oA N
« The VP is the image of the I
. . eye
point t = oo of all lines
C n

parallel to AB (e.g. CD)

L
£

Example: horizontal grid in perspective

lines orthogonal to n > parallel lines
Lines parallel to n = lines meet at vanishing point

-~ horizon
N
"l = S =
— Pl Ty X
e S
P T o,
// /"‘\\\

Images of lines orthogonal to n . Images lines parallel to n

What's the value of z*?

Lost info: P1 closer than P2 to View Plane. So what?
Define pseudo depth, z*, increasing with -Pz

—z*(Pz) = (aPz + b)/(-Pz)

— So that z* = -1 for P,=-N z*=1for P,=-F
define the 3-D projection point of (Px, Py, Pz)

- (x*,y%, z*) = [1/(-P)][NP,, NP, (a + bP,)]

* Now we want to write the transformation via a matrix!

homogeneous coordinates representation (1)

The homogeneous representation of a
Point P is given by a family of 4
components columns

 with arbitrary w, provided w # 0

All w # 0 define same point

Before we display a point, we divide
all 4 coordinates by w.

« Affine transformations do not change w; why?
last row of an affine matrix is (0, 0, 0, 1).

|
Homogeneous coordinates representation (2)

* To convert a point from ordinary coordinates to

homogeneous coordinates, append a 1.

* To convert a point from homogeneous coordinates to

ordinary coordinates, divide all components by the last

component and discard the fourth component.

« Affine transformation on a point P transform it to the same

point P’ irrespective of value of w

17

perspective transformation and division

» Operate on a point by the non-affine perspective
transformation matrix with the last row (0, 0, -1, 0)

=Divide by the fourth coordinate
(P, Py, P,) 2 -(1/P)(NP,, NP, aPz+b) = (x*, y*, z*)
»This operation is called the perspective division

Perspective projection

e perspective transformation + perspective division transform

3D point to 3D point

- (P, Py, P)) 2 ~(1/P,)(NP,, NP, aP +b)

— The third component is used for depth testing

— first 2 components used for mapping to viewport
* Projection is discarding the third dimension

— Also called orthographic (or trivial) projection

* (perspective projection) = (perspective transformation) +

(perspective division) + (orthographic/trivial projection)

18

Perspective projection in OpenGL

* perspective projection done in separate steps

 perspective transformation separated from the

orthogonal projection (throwing third component)

— clipping, perspective division, and one additional

scaling are inserted between them

Properties of Perspective Transformation

* It preserves straightness and flatness, so lines
transform into lines, planes into planes, and
polygonal faces into other polygonal faces.

* It preserves in-between-ness, if point a is inside an
object, the transformed point will also be inside the
transformed object.

* The choice of the pseudo-depth function was guided
by the need to preserve these properties.

19

The transformed view volume (1)

* line through the eye map to a single point on the view plane

— Its points map to different depth value z*

— lines through eye transformed to lines parallel to Z axis
* Top, bottom & side walls map to planes parallel to z-axis.
* Near, Far planes map to planes at z= -1, +1.

* view volume is now a rectangular parallelepiped

|
The transformed View Volume (2)

After the perspective transformation the view volume is

bounded by the 6 planes
—y=bott,y = top, x = left, x =right,z= -1, z=+1
» top = N*tan((n/180)*viewAngle) bott = -top
* right = top*aspect left = -right
 Clipping is done relative to this view volume
- Can we simplify clipping by transforming the view
volume?

20

Facilitating Clipping: Canonical View volume

* CVV, acube bounded by -1 1 in each dimension

 Translate by —(right+left)/2 in x, —(top+bott)/2 iny

 Scale by 2/(right — left) in x, 2/(top — bott) iny

» The combined perspective transformation and this
scaling is the Projection Matrix

 The distortion (due to uneven scaling) will be

eliminated in the final viewport transformation

The Projection Matrix

2N 0 right + left
right—left right—left
2N top + bottom
R= top—bottom top—bottom
0 0 —(F+N) —-2FN
F-N F-N
0 0 -1 0

21

Applying Projection Matrix in OpenGL

» glMatrixMode(GL _Projection);
» gllLoadldentity(), // start with a unit matrix
» glFrustum(Left, Right, bott, top, N, F)
* Or gluPerspective(viewAngle, aspect, Near, Far)
— OpenGL calculates from the arguments:
— top = N*tan((n/180)*viewAngle) bott = -top

—right = top*aspect left = -right

Clipping against the Canonical
Volume

22

Clipper Against the View Volume: Example

* A triangle has vertices v,, v,,v;.

* v, is outside CVV

a) _ « first clips edge v,v,, finding the
entire edge is inside CV'V.

 Then clips edge v,v;, records
the new vertex a

* Finally clips edge v,;v, and

records the new vertex b

clipping segment AC

* points in homogeneous coordinates

* A = (ax) ay) az) aw)? C = (Cx) cy) Cz) Cw)

« If A, C lie on opposite sides of a wall
we need to compute intersection
—1=(, 1, L, I,).
When intersection calculation is
not required?

If both A, C on same side of a wall

I The Inside /Outside Test of a point I

A point P = (X, y, z, w); True coordinates (x/w, y/w, z/w)
« We test whether P is inside the CVV
When does P lies to the right of X= -1 plane?
e ifxw>-1 2>2w+x>0.
When does P lies to the left of plane X = 1?

e ifxwW<1l=2>w-x>0.

* The 6 quantities w + x, w =y, w = z are the “Boundary

Coordinates” of point P

— If all BCi >0, point is inside CVV; else outside

o e P —
Table: Boundary Coordinates & Clip Planes

boundary coordinaie homogeneous value clip plane
By W+ X x=-1

BC, W—x r=1

B, W+ ¥ v=-—1
B, Wo—y v=1

BC, W4 I z=-1
B, W— z=1

=[f all BCi > 0, point is inside CVV

=Else, a BCi <0, the point is outside CVV

23

24

Clip a line segment

What are the condition for trivial decisions?
* Trivial accept: both endpoints inside the CVV (all BCi >0)
 Trivial reject: both endpoints lie outside same plane of CVV
» Else Algorithm Similar to Cyrus-Beck clipper

— Line P(t) = A + (C-A)t 0<=t<=1

— Jump from wall to wall: intersect line with wall

— Maintain a Candidate Interval (CI) of t within which the
segment might still be inside the CV'V.

Enter/Exit test and Intersection

» segment AC (from A to C) ;
o P(1) = (@ H(cya)t, agH(e,-ay)t, a (e a)t, ayH(cy-ay))
» Intersection relation to wall 1, X =1
— Denote: BC,(A) =a,—a, BC,(C)=c,—c, (see table)
— If BC,(A) <0 then A is outside wall 1, line enters (why)
— If BC,(C) <0 then C is outside wall 1, line exits
* Intersection is calculated in both these cases (only)
~ [a, + (c —a)tl[a, + (¢, — 8)] = 1
-ty = [a,—a,)/[(ay—a,) — (¢,)] =
~ t,,= BC,(A)/[BC,(A) - BC,(O)]

Clip against CVV: Liang Barski Algorithm

. CI=[t_=0.0;t,,=1.0]

out
» We test the line segment against each wall 1 in turn.
« If BCi(A), BCi(C) have opposite signs, find t,
— If segment is entering update ¢,, = max(old t., t,;,)
—1f segment 1s exiting, update ¢, = min(old ¢, t.;,)
« If, at any time the CI is reduced to the empty

interval (¢,,, > t,,), the entire segment is clipped off

* an “early out”, of the algorithm.

Why Use the cVV?

» It is parameter-free: the algorithm needs no extra

information to describe the clipping volume.

» Ituses only the values -1 and 1. So the code itself can be
highly tuned for maximum efficiency.

» Its planes are aligned with the coordinate axes (after the

perspective transformation is performed).

* we can determine which side of a plane a point lies on

using a single coordinate, as in a, > -1.

« If the planes were not aligned, an expensive dot product
would be needed.

26

e
Steps in the path of a vertex P through the Pipeline

» P extended to a homogeneous 4-tuple point by appending 1

» P multiplied by the modelview matrix, producing its eye
coordinates, then

* Multiplied by the projection matrix, producing its clip
coordinates, then

» The edge having this point as an endpoint is clipped.

eye clip normalized window
coordinates coordinates device coordinates coordinates

N) 3

.= VM — P P ddp — ¥ ——()

modelview projection perspective viewpart
matrix matrix division matrix

Steps in the path of a vertex P through the Pipeline

* Perspective division is performed, returning a 3-tuple point
in Normalized Device Coordinates, then

* Point multiplied by viewport matrix; result (s,, s, d,)
» result used for depth calculations and drawing:

— d_ 1s a measure relative of the depth of the original point

— (s, 5,) 1s the point in screen coordinates to be displayed

eye clip normalized window
coordinates coordinates device coordinates coordinates

N) 3

.= VM — P P ddp — ¥ ——()

modelview projection perspective viewpart
matrix matrix division matrix

27

Distortion and its removal

* Projection matrix transformed view volume to CVV

 [f aspect ratio of the original view volume is not 1, say 1.5,

there is distortion
« viewport transformation can undo this Aow?

» Map window in view plane to viewport with original aspect

e — L2

viewpaort

Distortion and Its Removal in OpenGL

» glViewport(x, y, wid, ht) specifies viewport
— lower left corner (X,y) in screen coordinates
—wid pixels wide and ht pixels high.
— aspect ratio wid/ht

 User usually specifies these so that original aspect
ratio (specified in gluPerspective(viewAngle,
aspect, Near, Far) 1s kept

» Note: glViewport() also maps pseudodepth from the
range -1 to 1 into the range 0 to 1.

28

Appendix

Classification of Perspective Projections

Classifying Planar Projections

planar
proj ections

parallsl perspective

: crthographic ane-point | three-point
obligue | Lwo-point

. Foom ormee tric o

cavalicr cabinet orher il tivienay
. | orthographic
isometric Enctric BEmctric

*Perspective projections: points projected to view plane via

projectors converging to point eye.
*Directions of projectors vary
Parallel projections: Points projected to view plane via

projectors that All have the same direction d
_ e

29

I Types of Perspective Projection I

» Types differ by the orientation of the camera relative to the

World Coordinate System
* Orientation of the camera is defined by the n, u, v vectors

» Camera looks along n

principal

planes
Y /

* u, Vv parallel to view

plane

» View volume base edges

are along u, v.

Principal axes and their vanishing points

* Principal axes: x, y, z ; Principal planes: (X,y), (v,2), (z,X)

* Reminder: If a principal axis is orthogonal to n, (parallel to
view plane) it does not have a vanishing point

» lines parallel to such axis will be projected to parallel lines

 Otherwise, if a principal axis
is not orthogonal to n, it has a
vanishing point

 All lines parallel to such axis
will be projected as lines in the
view plane, which meet at the
vanishing point

30

One point Perspective Projection

* exactly one axis has a vanishing point VP, e.g. z axis

— lines parallel to the axis projected to lines that meet at VP
» The two other axes (e.g. x, y) must be orthogonal to n

— n is perpendicular to a principal plane (e.g. (x, y)) plane

— 1 has two zero coordinates (n, = n, =0)

Two points perspective projection

 exactly 2 axes have vanishing points VPs, e.g. X, z axes

* lines parallel to axes projected to lines which meet in VPs
— The third axis (y) must be orthogonal to n
— 1 has one zero coordinate e.g.n, =0

* used for drawings buildings. Camera looks at an edge

al b

31

I Three-point perspective projection I

« all 3 axes have vanishing points.

— Lines parallel to any axis projected to lines meeting at its
VP

» No axis is orthogonal to n
— no component of n is 0.
» Example: looking up or down at the corner of an object.

