
1

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Prof. Reuven Aviv

Department of Computer Science

Tel Hai Academic College

Computer Graphics

Three Dimensional Viewing

Slides adapted from F. Hill, J. Kelley, Computer Graphics

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Contents

• Orthogonal projection

• 3D perspective Drawing

– camera position and orientation

– perspective projection

– clipping

2

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Orthogonal projection

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Eye and View Volume in orthogonal projection

• Eye by default looks along –z axis at the world window

– a rectangle in the xy-plane.

• view volume of eye is a rectangular parallelepiped

• side walls fixed by window edges & by near/far planes

• everything outside view volume is clipped

• Everything inside is projected to window plane how?

• z ���� 0 (orthogonal projection)

3

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Repositioning the eye and the View Matrix V

• eye (and its view volume) can be positioned somewhre in

the World. (OpenGL: use glLookat())

• What happens to the View Volume

• View Volume (parallelpiped) is accordingly positioned

• all objects and eye are then transformed by V

– So that eye repositioned at the standard location

• The ModelView matrix multiplied by V: M ���� VM

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Graphics Pipeline Revisited (1)

• VM includes all objects, eye, view volume

transformations

• P is projection onto the World Window

– Here we assume orthogonal transformation z���� 0

• What does the viewport transformation Vp

• World Window ���� viewport to be be drawn on screen

4

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Graphics Pipeline Revisited (2)

• Input vertices in World Coordinates

– using glVertex3d(x, y, z)

• Each vertex is multiplied by the various matrices,

clipped if necessary, and if it survives, it is mapped onto

the viewport.

• Each vertex encounters three matrices:

– The modelviewmatrix

– The projectionmatrix (orthogonal or perspective)

– The viewport matrix

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Operation of the modelview matrix VM

• M scales, rotates, & translates the cube into some block

• eye with its view volume is positioned somewhere

• V rotates and translates the block into a new position

– so that Eye and view volume in the standard position

• All objects’ coordinates are now called eye coordinates

• Why do we put view volume along axes?

5

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Operation of the ProjectionMatrix, P

• P translates & scales all vertices & view volume

– the new view volume is the Canonical View Volume

– extends from -1 to 1 in each dimension

• clipping is done now (relatively easy. Why?)

• Coordinates now called Normalized Device Coords

• P also reverses the sense of the z coordinates

– increasing values of z now represent relatively

farther away points

• Why do we need these Z values?

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The Viewport Matrix, Vp (1)

• Vp Transforms all (now clipped) objects once more!

• CVV ���� the 3D viewport:

– x, y coordinate values extend across the viewport

– rectangular area that we will be drawn on the screen

– Coordinates are now called screen coordinates

– z-component extends from 0 to 1

• a measure of the relative depth of each point

• Helps easy identification of hidden surfaces and lines

6

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The viewport Matrix, Vp (2)

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

3D Perspective Drawing:

Camera position and orientation

7

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Camera & its Viewing Volume: Concepts

camera/eye/ “view reference point (VRP)”

view volume (what shape?); Near/Far/view/side planes,

Projectors of points through view plane (PP’) how?

view plane normal VPN (direction?), viewing angle θ

view plane

viewport

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Default Position and orientation of Camera

� VRP at O

� VPN in the direction of -z

� Near, View, Far Planes orthogonal to z

�Base edges along x, y

�What info needed to define arbitrary position/orientation?

Look

Base edges

8

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Camera: Arbitrary position and Orientation

• Points eye, look n = eye – look view direction –n

• Near, View, Far planes orthogonal to n

• u, v, directions of pyramid base

– n, u, v orthogonal

• how many parameters we need?

Look

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

OpenGL Construction: eye, look, up� n, u, v

• n = eye - look

• up is some “up” vector (typically along y)

– Not necessarily orthogonal to n

• u = up x n how do we find v
• v = n x u ; v and up are not necessarily parallel

9

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The View Transformation, V

� transform the scene s.t. camera goes to default

• Multiplies the modelview matrix, after modeling

=

0000

zzyx

yzyx

xzyx

dnnn

dvvv

duuu

V

eye = eye - O

dx = -(eye·u)

dy = -(eye·v)

dz = -(eye·n)
1

prove that V transforms camera to default. How?

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Proof: V transforms (eye, u, v, n) � (O, i, j, k)

• Veye = V(eyex, eyey, eyez, 1)
T = (0, 0,0,1)T = O

• Vu = V(ux, uy, uz, 0)
T = (1, 0, 0, 0)T = i

• Vv = V(vx, vy, vz, 0)
T = (0, 1, 0, 0)T = j

• Vn = V(nx, ny, nz, 0)
T = (0, 0, 1, 0)T = k

• After applying the viewing transformation camera is

in the default position and orientation

– Origin, looking at the negative z direction

• All objects in the model have new coordinates

– The “eye coordinates”

10

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Applying View Transformation in OpenGL

glMatrixMode(GL_MODELVIEW);

glLoadIdentity(); // start with a unit matrix

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y,

look.z, up.x, up.y, up.z)

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Graphics pipeline (again) & Coordinates

• Input Vertices coordinates are “world coordinates”

• after VM, coordinates are “eye coordinate”

• After Projection, P, coordinates are “clip coordinates”

• after perspective division, coordinates are “Normalized

Device Coordinates”

• After Viewport Transformation, Vp, coordinates are

“screen coordinates” (of which x, y are pixel values)

Projection: What do we have to calculate?

11

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projection

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projections of 3-D Point

• A vertex located at P in eye coordinates is
projected to a certain point (x*, y*, z*) on the
View plane

This is a non-affine transformation!

12

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projections of Point

• (Px, Py, Pz) projects to P* ≡ (x*, y*, z*)

• x*/Px = N/(-Pz) , y*/Py = N/(-Pz) (similar triangles)

• P* = (x*, y*) = N/(-Pz) (Px, Py) (ignore z* now)

• What happens to far away points?

(X*,y*)
y

x

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projection of lines

• Straight lines project to straight lines:

• Plane through A, B, O intersect the View Plane in a straight

line via A’B’

• Straight line segment AB projected into straight line

segment A’B’

• What is the projection of line BO?

O

13

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective Projection of lines (2)

• Line points: P = (Px(t), Py(t), Pz(t)) =

• = A + ct = (Ax + cxt, Ay + cyt, Az + czt)

• c determines direction of the line

• A determines its location: A = P(0)

• N is the distance from the eye to the Projection Plane

• P*(t) projection of P(t)

• P*(t) = - (N/[Az + czt]) (Ax + cxt, Ay + cyt)

• Is this a straight line? Prove it.

• How parallel lines are projected?

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Projection of Lines orthogonal to n

• A ≡ P(0) → P*(0) = - (N/Az)(Ax, Ay)

• 1) If the line orthogonal to n (parallel to the View Plane)

• cz = 0, Pz = Az

• P*(t) = - N/Az (Ax + cxt, Ay + cyt).

• This is a line in View Plane, with slope cy/cx

• lines with same c projected to a line with same slope

• if two lines are parallel to each other and orthogonal to n

(they are parallel to the View Plane), they project to two

parallel lines

14

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Projection of Lines not parallel to the View Plane

• 2) If the line is not orthogonal to n (not parallel to View

Plane) then cz ≠0

• take limit as t � ∞

– P*(t) � P*(∞) = -N/cz (cx, cy) Point independent of A!

• lines w/ dir c are projected to lines

– projected lines meet at P*(∞)

– The “vanishing point”, VP

– depends on direction c

• projected lines are not parallel.
A

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

What is the vanishing point (VP)

• Very remote points on the

line project to VP

• Line from eye to VP

parallel to line AB.

• The VP is the image of the

point t = ∞ of all lines

parallel to AB (e.g. CD)

• Consider line not orthogonal to n

– Line not parallel to view plane

• A projects to A’, B projects to B’, etc…

eye

n

Remote

points

C

D

15

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Example: horizontal grid in perspective

Images lines parallel to nImages of lines orthogonal to n

lines orthogonal to n� parallel lines

Lines parallel to n� lines meet at vanishing point

n

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

What’s the value of z*?
• Lost info: P1 closer than P2 to View Plane. So what?
• Define pseudo depth, z*, increasing with -Pz

– z*(Pz) = (aPz + b)/(-Pz)

– So that z* = -1 for Pz = -N z* = 1 for Pz = -F

• define the 3-D projection point of (Px, Py, Pz)

– (x*, y*, z*) = [1/(-Pz)][NPx, NPy, (a + bPz)]

• Now we want to write the transformation via a matrix!

16

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

homogeneous coordinates representation (1)

• The homogeneous representation of a

Point P is given by a family of 4

components columns

• with arbitrary w, provided w ≠ 0

• All w ≠ 0 define same point

=

w

wP

wP

wP

P
z

y

x

• Before we display a point, we divide

all 4 coordinates by w.

• Affine transformations do not change w; why?
• last row of an affine matrix is (0, 0, 0, 1).

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Homogeneous coordinates representation (2)

• To convert a point from ordinary coordinates to

homogeneous coordinates, append a 1.

• To convert a point from homogeneous coordinates to

ordinary coordinates, divide all components by the last

component and discard the fourth component.

• Affine transformation on a point P transform it to the same

point P’ irrespective of value of w

17

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

perspective transformation and division

• Operate on a point by the non-affine perspective

transformation matrix with the last row (0, 0, -1, 0)

−

+
=

− z

z

y

x

z

y

x

wP

baPw

wNP

wNP

w

wP

wP

wP

ba

N

N

)(

0100

00

000

000

�Divide by the fourth coordinate

�(Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b) ≡ (x*, y*, z*)

�This operation is called the perspective division

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective projection

• perspective transformation + perspective division transform

3D point to 3D point

– (Px, Py, Pz) � -(1/Pz)(NPx, NPy, aPz+b)

– The third component is used for depth testing

– first 2 components used for mapping to viewport

• Projection is discarding the third dimension

– Also called orthographic (or trivial) projection

• (perspective projection) = (perspective transformation) +

(perspective division) + (orthographic/trivial projection)

18

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Perspective projection in OpenGL

• perspective projection done in separate steps

• perspective transformation separated from the

orthogonal projection (throwing third component)

– clipping, perspective division, and one additional

scaling are inserted between them

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Properties of Perspective Transformation

• It preserves straightness and flatness, so lines

transform into lines, planes into planes, and

polygonal faces into other polygonal faces.

• It preserves in-between-ness, if point a is inside an

object, the transformed point will also be inside the

transformed object.

• The choice of the pseudo-depth function was guided

by the need to preserve these properties.

19

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The transformed view volume (1)

• line through the eye map to a single point on the view plane

– Its points map to different depth value z*

– lines through eye transformed to lines parallel to Z axis

• Top, bottom & side walls map to planes parallel to z-axis.

• Near, Far planes map to planes at z = -1, +1.

• view volume is now a rectangular parallelepiped

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The transformed View Volume (2)

• After the perspective transformation the view volume is

bounded by the 6 planes

– y = bott, y = top, x = left, x = right, z = -1, z =+1

• top = N*tan((π/180)*viewAngle) bott = -top

• right = top*aspect left = -right

• Clipping is done relative to this view volume

• Can we simplify clipping by transforming the view

volume?

20

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Facilitating Clipping: Canonical View volume

• CVV, a cube bounded by -1 1 in each dimension

• Translate by –(right+left)/2 in x, –(top+bott)/2 in y

• Scale by 2/(right – left) in x, 2/(top – bott) in y

• The combined perspective transformation and this

scaling is the Projection Matrix

• The distortion (due to uneven scaling) will be

eliminated in the final viewport transformation

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The Projection Matrix

−
−

−

−

+−
−

+

−

−

+

−

=

0100

2)(
00

0
2

0

00
2

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

leftright

N

R

21

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Applying Projection Matrix in OpenGL

• glMatrixMode(GL_Projection);

• glLoadIdentity(); // start with a unit matrix

• glFrustum(Left, Right, bott, top, N, F)

• Or gluPerspective(viewAngle, aspect, Near, Far)

– OpenGL calculates from the arguments:

– top = N*tan((π/180)*viewAngle) bott = -top

– right = top*aspect left = -right

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipping against the Canonical

Volume

22

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipper Against the View Volume: Example

• first clips edge v1v2, finding the

entire edge is inside CVV.

• Then clips edge v2v3, records

the new vertex a

• Finally clips edge v3v1 and

records the new vertex b

• A triangle has vertices v1, v2,v3.

• v3 is outside CVV

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clipping in homogeneous coordinates

• clipping segment AC

• points in homogeneous coordinates

• A = (ax, ay, az, aw), C = (cx, cy, cz, cw)

• If A, C lie on opposite sides of a wall

we need to compute intersection

– I = (Ix, Iy, Iz, Iw).

• When intersection calculation is

not required?

• If both A, C on same side of a wall

23

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

The Inside /Outside Test of a point

• A point P = (x, y, z, w); True coordinates (x/w, y/w, z/w)

• We test whether P is inside the CVV

• When does P lies to the right of X= -1 plane?

• if x/w > -1 � w + x > 0.

• When does P lies to the left of plane X = 1 ?

• if x/w < 1 � w - x > 0.

• The 6 quantities w ± x, w ± y, w ± z are the “Boundary

Coordinates” of point P

– If all BCi >0, point is inside CVV; else outside

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Table: Boundary Coordinates & Clip Planes

�If all BCi > 0, point is inside CVV

�Else, a BCi < 0, the point is outside CVV

24

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clip a line segment

• What are the condition for trivial decisions?

• Trivial accept: both endpoints inside the CVV (all BCi >0)

• Trivial reject: both endpoints lie outside same plane of CVV

• Else Algorithm Similar to Cyrus-Beck clipper

– Line P(t) = A + (C-A)t 0 <= t <= 1

– Jump from wall to wall: intersect line with wall

– Maintain a Candidate Interval (CI) of t within which the

segment might still be inside the CVV.

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Enter/Exit test and Intersection

• segment AC (from A to C) ;

• P(t) = (ax+(cx-ax)t, ay+(cy-ay)t, az+(cz-az)t, aw+(cw-aw)t)

• Intersection relation to wall 1, X = 1

– Denote: BC1(A) = aw–ax BC1(C) = cw–cx (see table)

– If BC1(A) <0 then A is outside wall 1, line enters (why)

– If BC1(C) < 0 then C is outside wall 1, line exits

• Intersection is calculated in both these cases (only)

– [ax + (cx –ax)t]/[aw + (cw – aw)t] = 1

– thit = [aw–ax]/[(aw–ax) – (cw–cx)] =

– thit = BC1(A)/[BC1(A) – BC1(C)]

25

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Clip against CVV: Liang Barski Algorithm

• CI = [tin = 0.0; tout = 1.0]

• We test the line segment against each wall i in turn.

• If BCi(A), BCi(C) have opposite signs, find thit

– If segment is entering update tin = max(old tin, thit)

– if segment is exiting, update tout = min(old tout, thit)

• If, at any time the CI is reduced to the empty

interval (tout > tin), the entire segment is clipped off

• an “early out”, of the algorithm.

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Why Use the CVV?

• It is parameter-free: the algorithm needs no extra

information to describe the clipping volume.

• It uses only the values -1 and 1. So the code itself can be

highly tuned for maximum efficiency.

• Its planes are aligned with the coordinate axes (after the

perspective transformation is performed).

• we can determine which side of a plane a point lies on

using a single coordinate, as in ax > -1.

• If the planes were not aligned, an expensive dot product

would be needed.

26

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Steps in the path of a vertex P through the Pipeline

• P extended to a homogeneous 4-tuple point by appending 1

• P multiplied by the modelview matrix, producing its eye

coordinates, then

• Multiplied by the projection matrix, producing its clip

coordinates, then

• The edge having this point as an endpoint is clipped.

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Steps in the path of a vertex P through the Pipeline

• Perspective division is performed, returning a 3-tuple point

in Normalized Device Coordinates, then

• Point multiplied by viewport matrix; result (sx, sy, dz)

• result used for depth calculations and drawing:

– dz is a measure relative of the depth of the original point

– (sx, sy) is the point in screen coordinates to be displayed

27

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Distortion and its removal

• Projection matrix transformed view volume to CVV

• If aspect ratio of the original view volume is not 1, say 1.5,

there is distortion

• viewport transformation can undo this how?

• Map window in view plane to viewport with original aspect

ratio (e.g. 1.5)

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Distortion and Its Removal in OpenGL

• glViewport(x, y, wid, ht) specifies viewport

– lower left corner (x,y) in screen coordinates

– wid pixels wide and ht pixels high.

– aspect ratio wid/ht

• User usually specifies these so that original aspect

ratio (specified in gluPerspective(viewAngle,

aspect, Near, Far) is kept

• Note: glViewport() also maps pseudodepth from the

range -1 to 1 into the range 0 to 1.

28

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Appendix

Classification of Perspective Projections

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Classifying Planar Projections

•Perspective projections: points projected to view plane via

projectors converging to point eye.

•Directions of projectors vary

•Parallel projections: Points projected to view plane via

projectors that All have the same direction d

29

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Types of Perspective Projection

• Types differ by the orientation of the camera relative to the

World Coordinate System

• Orientation of the camera is defined by the n, u, v vectors

• Camera looks along n

• u, v parallel to view

plane

• View volume base edges

are along u, v.

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Principal axes and their vanishing points

• Principal axes: x, y, z ; Principal planes: (x,y), (y,z), (z,x)

• Reminder: If a principal axis is orthogonal to n, (parallel to

view plane) it does not have a vanishing point

• lines parallel to such axis will be projected to parallel lines

A

• Otherwise, if a principal axis

is not orthogonal to n, it has a

vanishing point

• All lines parallel to such axis

will be projected as lines in the

view plane, which meet at the

vanishing point

30

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

One point Perspective Projection

• exactly one axis has a vanishing point VP, e.g. z axis

– lines parallel to the axis projected to lines that meet at VP

• The two other axes (e.g. x, y) must be orthogonal to n

– n is perpendicular to a principal plane (e.g. (x, y)) plane

– n has two zero coordinates (nx = ny =0)

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Two points perspective projection

• exactly 2 axes have vanishing points VPs, e.g. x, z axes

• lines parallel to axes projected to lines which meet in VPs

– The third axis (y) must be orthogonal to n

– n has one zero coordinate e.g. ny = 0

• used for drawings buildings. Camera looks at an edge

31

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Three-point perspective projection

• all 3 axes have vanishing points.

– Lines parallel to any axis projected to lines meeting at its
VP

• No axis is orthogonal to n

– no component of n is 0.

• Example: looking up or down at the corner of an object.

Nov. 2007 Prof. Reuven Aviv, 3D

transformations

Example three-point perspective projection

