

Transformations Transformations change 2D or 3D points and vectors, or change coordinate systems. An <u>object transformation</u> alters the coordinates of each point on the object according to the same rule, <u>leaving the underlying coordinate system fixed.</u> A <u>coordinate transformation</u> defines a new coordinate system in terms of the old one, then represents all of the object's points in this new system. Object transformations are easier to understand

2D Translations			
 How points are translated? 			
• How vectors are translated?			
• To translation of a point P by a in the x direction and b in the y direction:			
$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = \begin{pmatrix} Q_x + a \\ Q_y + b \\ 1 \end{pmatrix}$			
• using homogeneous coordinates allow us to include translation as an affine transformation.			

$$\begin{aligned}
\mathbf{Inverse Translation and Scaling} \\
\begin{bmatrix}
Q_x \\
Q_y \\
1
\end{bmatrix} = \begin{pmatrix} 1 & 0 & -t_x \\
0 & 1 & -t_y \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
Q_x \\
Q_y \\
1
\end{bmatrix} = \begin{pmatrix} 1/S_x & 0 & 0 \\
0 & 1/S_y & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\end{aligned}$$

Inverse Rotation and Shear

$$\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
\cos(\theta) & \sin(\theta) & 0 \\
-\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
1 & -h & 0 \\
-g & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix} \frac{1}{1-gh}$$

Composing Affine Transformations (Examples)

- How to reflect across an arbitrary line through the origin?
- Suppose the reflection line has angle θ with X axis
- $M = R(\theta) S(1, -1) R(-\theta)$
- First rotate, so that the reflection line goes to the x-axis,
- Next, do reflection relative to X axis (scaling)
- Then, rotate, so that reflection line goes to original location
- How to perform the Window viewport Transformation:
- Translate by -w.l, -w.b, scale by A, B, translate by v.l, v.b.

Properties of 2D and 3D Affine Transformations
preserve affine combinations of points.

-W = a₁P₁ + a₂P₂ is an affine combination
-MW = a₁MP₁ + a₂MP₂

Result M preserve lines and planes. *Why*A line <u>AB</u> an affine combination of points (A, B)
-L(t) = (1-t)A + tB
A plane is an affine combination of points:
P(s, a) = sA + tB + (1 - s - t)C.

Parallelism of lines and planes is preserved

- Line A + bt having direction b
- transform to M(A + bt) = MA + Mbt, direction Mb.

- Direction independent of A

- two different lines A₁+ bt and A₂ + bt will transform into two lines both having the direction, Mb.
- parallelograms map into other parallelograms.

Decomposition of affine matrix

- any 3 x 3 affine matrix can be written as the product of (reading right to left)
 - a translation matrix,
 - a rotation matrix,
 - a scaling matrix,
 - and a shear matrix.
- M = (shear)(scaling)(rotation)(translation)
- This is not the only way

3-D Affine Transformations

- The matrix representing a transformation is 4 x 4
- fourth row 0, 0, 0, 1

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Translation, Scaling and Shearing				
$T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & t_x \\ 1 & 0 & t_y \\ 0 & 1 & t_z \\ 0 & 0 & 1 \end{pmatrix}, $	$S = \begin{pmatrix} s_x \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{cccc} 0 & 0 & 0 \\ s_{y} & 0 & 0 \\ 0 & s_{z} & 0 \\ 0 & 0 & 1 \end{array} $	
	$H = \begin{pmatrix} 1 & a \\ c & 1 \\ e & f \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{cccc} a & b & 0 \\ d & d & 0 \\ c & 1 & 0 \\ 0 & 0 & 1 \end{array} $		

The Classic Construction of rotation around arbitrary axis <u>u</u>, by angle β. 5 rolls Do a Z roll so that <u>u</u> lies in the XZ plane: R_z(Φ)

- Do a Y roll so that $\underline{\mathbf{u}}$ coincides with Z axis: $R_y(\boldsymbol{\theta})$
- Where is now the plane via P, Q, G ?
- Do a *z*-roll through angle β : $R_z(\beta)$
- Do a Y roll, then Z role to bring the <u>u</u> vector to its original direction
- $R_{\mathbf{u}}(\boldsymbol{\beta}) = R_{\mathbf{z}}(-\boldsymbol{\Phi}) R_{\mathbf{y}}(-\boldsymbol{\theta}) R_{\mathbf{z}}(\boldsymbol{\beta}) R_{\mathbf{y}}(\boldsymbol{\theta}) R_{\mathbf{z}}(\boldsymbol{\Phi})$

- What we need is the matrix M such that $\mathbf{Q} = \mathbf{M} \mathbf{P}$
- rotation plane: the plane via P, Q, G
 - perpendicular to the vector <u>u</u>.
- Construct a 2D coordinate system in the rotation plane
 - Origin G
 - $-\underline{\mathbf{a}}$ vector with direction from **G** towards **P**: $\underline{\mathbf{a}} = \mathbf{P} \mathbf{G}$
 - $-\underline{\mathbf{b}}$ is orthogonal to $\underline{\mathbf{a}}$
- Write **Q**, **P** as linear combinations of point **G**, <u>**a**</u> and <u>**b**</u>
- Rewrite Q_x , Q_y , Q_z as linear combinations of **Px**, **Py**, **Pz**
- All coefficients are dot and cross products of <u>a</u>, <u>b</u>, <u>u</u>

Graphics Pipeline Revisited (2)

• Input vertices in World Coordinates

- using glVertex3d(x, y, z)

- Each vertex is multiplied by the various matrices, clipped if necessary, and if it survives, it is mapped onto the viewport.
- Each vertex encounters three matrices:
 - The *modelview* matrix
 - The projection matrix (orthogonal or perspective)
 - The viewport matrix

Operation of the *Projection* Matrix, P

- P translates & scales all vertices & view volume
 - so that the new view volume is the *standard cube*

- extends from -1 to 1 in each dimension

- clipping is done now (relatively easy. *Why?*)
- Coordinates now called *Normalized Device Coords*
- P also reverses the sense of the z coordinates
 - increasing values of z now represent relatively farther away points
- Why do we need these Z values?

The Viewport Matrix, Vp (1)

- Vp Transforms all (now clipped) objects once more!
- So that standard view volume is the 3D viewport:
- *x*, *y* coordinate values extend across the viewport
 - A rectangular area that we will see later on the screen
 - Coordinates are now called screen coordinates
- *z*-component extends from 0 to 1
- a measure of the relative depth of each point
- Helps easy identification of hidden surfaces and lines

