Prof Reuven Aviv Department of
Computer Science
Tel Hai Academic College
Computer Graphics

Transformations

Slides adapted from F. Hill, S. Kelley Computer Graphics

Examples of Affine Transformations

* The house has been scaled, rotated and translated,
e 1n both 2D and 3D.

al b

"] -

N

¥

after
before

befare

=y

‘ EI

Using Transformations

* One arch is designed

* The scene is drawn by placing copies of instances of
the arch at different places and with different sizes.

D=

AdAR&A

Using Transformations (2

* In 3D, many cubes make a city.

‘ﬁ

Using Transformations (3

» The snowflake exhibits symmetries.

» We design a single motif and draw the whole shape

using appropriate reflections, rotations, and

translations of the motif.

use it 12 times
LLZLL_, - = %%@y
g&L [/

Using Transformations (4

» A designer may want to view an object from
different vantage points.

 Positioning and reorienting a camera can be carried
out through the use of 3D affine transformations.

The Graphics Pipeline

 Application sends to OpenGL a series of points P;
glBegin(GL_LINES);
glVertex3{(...); glVertex3f(...); ... glIEnd();

 Points are changed by the current transformation
into a different set of points, say Q,, O,, Os.

Transformations

 Transformations change 2D or 3D points and
vectors, or change coordinate systems.

— An object transformation alters the coordinates of
each point on the object according to the same
rule, leaving the underlying coordinate system
fixed.

— A coordinate transformation defines a new
coordinate system in terms of the old one, then
represents all of the object’s points in this new
system.

* Object transformations are easier to understand

Object Transformations

* (2D or 3D) transformation: P 2 Q, Q= T(P)
* Object Transformation: all points by same T()
- straight line transform to a straight line?

* In general, no

— Affine (linear) transformation preserve lines

General 2D Transformations

* We transform points to points

Affine Transformation in the plane

*Point & vector represented by a column matrix

*Point, vector: third component always 1, 0
transformation: matrix multiplication
*Affine matrix: third row 0, 0, 1

(my, my, my\ P
Qy =My My, Ny, };

Affine Transformations (2

* If points or vector represented by row matrices
-P=(P,P, 1)
 Transformation: Q =P MT"

*Q=(QuQ, D

Elementary Affine Transformations

* translation, scaling, rotation, shear

l 2D Translations .

* How points are translated?
- How vectors are translated?

 To translation of a point P by a in the x direction
and b in the y direction:

» using homogeneous coordinates allow us to include
translation as an affine transformation.

2D Scaling

« What is scaling?

 Scaling distances from the origin, along axes

* If S, =S, Uniform Scaling; magnification factor S,
 If Sx # Sy : Differential Scaling. distorts the image.

* If S, or S, <0, image reflected across the x or y axis.

2D Rotation

» Counterclockwise around origin by angle 0:

Deriving the Rotation Matrix

* Point P is at distance R from the origin, at angle ®

— P: P,=R cos(D) P = R sin(®)

Q at the same distance as P, and at angle 6 + @:
—Q: Q,=Rcos(8 + P), Q,=Rsin(+ P)
cos(0 + @) = cos(0) cos(P) - sin(0) sin(P)
sin(8 + @) = sin(0) cos(P) + cos(B) sin(P)

Eliminate the ® terms, express (Q,, Q,) in terms of
P, P,

« What is shear?
* Shear along the x direction: Q, =P, +h*P, Q =P,

— Amount of translation along x proportional to P,

— Example: italic transformation
 Shear alongy: Q, =P, ; Q,=g*P, +P

10

Inverse Translation and Scaling

Trl(t, t,) = Tr(-t,, -t

Ol (1/5. 0 0P

S(s,, 8,) =S(1/s,, 1/s)) |[Q.|=| 0 1/S, 0|P,
0 0 1)1

1

Inverse Rotation and Shear

cos(d) sin(@) 0 P.
. P

|
Composing 2D Transformations: Examples

How to rotate around a pointV, by an angle 6
1. Translate, so that V moves to the origin. Tr(-v)
2. rotate. R(0)

3. Translate, so that V moves back.

* Q="Tr(y) R(®) Tr(-y)

How to shear around an arbitrary point V?

Q =Tr(v) H(t,g) Tr(-y)

How to scale about an arbitrary pointV?

Q = Tr(¥)S(S,;, S,)Tr(-y)

. what is the vector v?

Composing Affine Transformations (Examples

* How to reflect across an arbitrary line through the
origin?

Suppose the reflection line has angle 6 with X axis
M =R(0) S(1, -1) R(-6)

First rotate, so that the reflection line goes to the x-axis,

Next, do reflection relative to X axis (scaling)

Then, rotate, so that reflection line goes to original location

 How to perform the Window - viewport
Transformation:

Translate by -w.1, -w.b, scale by A, B, translate by v.1, v.b.

12

Properties of 2D and 3D Affine Transformations

 preserve affine combinations of points.
— W =a,P, + a,P, is an affine combination
—~MW =a MP, +a,MP,

* Result M preserve lines and planes. Why

* A line AB an affine combination of points (A, B)
—L(t) = (1-t)A + tB

A plane is an affine combination of points:

*P(s,a)=sA +tB+(1 —s—t)C.

Parallelism of lines and planes is preserved

* Line 4 + bt having direction b
* transform to M(A + bt) = MA + Mbt, direction Mb.

— Direction independent of A

* two different lines 4,+ bt and 4, + bt will transform

into two lines both having the direction, Mb.

* parallelograms map into other parallelograms.

13

Relative Ratios are preserved

* P lying a fraction ¢ of the way between A and B

* Apply affine transformation T() to A , B, and P.

* The transformed point, T(P), lies the same fraction
t of the way between images T(A) and T(B).

Transformation of area

* When the 2D transformation with matrix M is
applied to a 2D object, its area is multiplied by the
magnitude of the determinant of M:

area after transformation

= |det M|

area before transformation

* 3D: volume of a 3D object is scaled by |det M| when
the object is transformed by the 3D transformation
based on matrix M.

14

Decomposition of affine matrix

 any 3 x 3 affine matrix can be written as the product
of (reading right to left)

— a translation matrix,
— a rotation matrix,
— a scaling matrix,
— and a shear matrix.
* M = (shear)(scaling)(rotation)(translation)

* This is not the only way

3D World

» Coordinate frame: origin O and three mutually
perpendicular axes in the directions i, j, and k

» Point P in this frame is given by
B P:O+Pxi+Pyj.+le_(7
—avector Vis given by V,i+ V,j + V k.

15

3-D Affine Transformations

* The matrix representing a transformation is 4 x 4
e fourth row 0,0, 0, 1

Translation, Scaling and Shearing

x-roll. v-roll, z-roll

* rotation counter-clockwise around an axis looking
toward the origin

1 0 0 cos$¢ 0 sing 0
0 cos$ —sind 0 1 0 0

0 sind cos$ O * |-sin® 0 cos9 Of
0 0 0 0 0 0 1
cos¥ —sinG
sing cosd
0 0
0 0

*1’s and 0’s row & column of rotation axis
cos and sin in a rectangular pattern

*in the other rows and columns

Examples

Y
a). the barn
b). -700 x-roll

c). 300 y-roll d). -90° z-roll

17

Rotating about an Arbitrary Axis

Projection
Point:

Goal: rotate around axis u

make P coincide with Q
— Assume 3 1s given

- How to calculate ?
u can have any direction

Direction: polar angles

« @ is given

1@ is given
* By 5 rolls - how?

T
The Classic Construction of rotation around
arbitrary axis u, by angle 3. 5 rolls

» Do a Z roll so that u lies in the XZ plane: R (D)
Do a Y roll so that u coincides with Z axis: R (8)

- Where is now the plane viaP, Q, G ?
Do a z-roll through angle B: R,(B)

Do a Y roll, then Z role to bring the u vector to its

original direction

R,PB)=R,(-P)R,(-0)R,(B)R,(6) R(P)

18

The Constructive way (highlights

» What we need is the matrix M such that Q =M P

* rotation plane: the plane via P, Q, G
— perpendicular to the vector u.

» Construct a 2D coordinate system in the rotation plane
— Origin G
— a vector with direction from G towards P: a=P -G
— b is orthogonal to a

» Write Q, P as linear combinations of point G, a and b

* Rewrite Q,, Qy, Q, as linear combinations of Px, Py, Pz

 All coefficients are dot and cross products of a, b, u

Constructive Way: Result

c+(l-c)u! A-cuu, —su, (-cu.u, +su,

(I-c)uu, +su, c+(1—c)ui (I-cu.u, —su,

R, (B)=

A-cuu,—su, (-cuu, +su, c+(1-c)u’
0 0 0

¢ =cos(B), s = sin(), u, components of u.
» Note: If matrix R i1s given, you can find u and 3!

19

What to do in a program?

a).
Ay

* We have house #1, we

want to draw house #2.

* Need to Rotate the 0

house, then translate

{/
* 1. Comand OpenGL to $

#
translate OR w0
=

* 2. command to rotate |_| ' >

* Note: Reverse order!

OpenGL: The Current Transformation Matrices

* OpenGL uses current transformation matrices CT
» Here we use the ModelView CT, called M

— M is a product of affine transformations
* OpenGL applies M to all subsequent primitives

— as a part of the graphics pipeline

* and then applies the Window to Viewport mapping.

viewport

t,‘l transfo ation
4 /j YA S
-
P e
t x

\ world
window

20

Order of Transformations

- First Rotate, then transiate: what is M?
M=T*R.

This will be applied to subsequent primitives

OpenGL always does post-multiplication on M

— M can be multiplied only on the right

» Hence we specify the transformations in the reverse order of
their application by OpenGL

— Initialize M by glLoadldentity() > M =1
— call glTranslate > M =I*T
— Then call glRotate > M =I*T*R

I Example : Star l

» Assume starMotif() draws the “motif” on the right

 For (int count = 0; count < 5; count++) {
starMotif();
glMatrixMode(GL MODELVIEW) // use ModelView CT
glRotated(72.0, 0.0, 0.0, 1.0)} //*rotate by 72 deg

21

Example: Snowflake

* Motif (on the right) is given

» How can we mode/ a branch?

« original motifs, plus a copy reflected across x axis

* How can we model the snowflake on the left?

* collection branches, created by consecutive
operations of rotation by 60°

a). b).

30 © line

Dino Patterns

Example

» Dino motif is upright dinosaur centered at the origin
* How can we models the reguired copies?

» Rotate Dino through a suitable angle

* translate along y-axis by the length of the radius

* Then rotate again

Eve (camera) and View Volume

Eye by default looks along —z axis at the world window

— arectangle in the xy-plane.

view volume of eye is a rectangular parallelepiped.

side walls fixed by window edges; others by near/far planes
everything outside view volume is clipped

Everything inside projected to window plane (orth project.)

near plane window ¥ A far plane

ER

viewport

o

Repositioning the eye and the View Matrix V

eye (and its view volume) can be positioned
somwhre in the World. (OpenGL: use glLookat())

What happens to the View Volume
View Volume is accordingly positioned
all objects and eye are then transformed by V

— So that eye repositioned at the standard location
The ModelView matrix multiplied by V: M =2 VM

22

23

Grthics PiBeline Revisited 512

* VM includes all objects, eye, view volume transformations
* P is projection onto the World Window
— Here we assume orthogonal transformation
* (ignore Z coordinates)

* Vp transform what’s in the Window to a viewport that will

be drawn on the screen

projection

/ matrix

F —® clip Vy D

\ |

modelview viewport
matrix matrix

I Grthics PiEeline Revisited 52!

* Input vertices in World Coordinates
— using glVertex3d(x, y, z)

» Each vertex is multiplied by the various matrices,
clipped if necessary, and if it survives, it is mapped

onto the viewport.
» Each vertex encounters three matrices:
— The modelview matrix
— The projection matrix (orthogonal or perspective)

— The viewport matrix
|

24

Operation of the modelview matrix VM

» M scales, rotates, and translates the cube into the block
 eye with its view volume is positioned somewhere
» JVrotates and translates the block into a new position

— so that Eye and view volume in the standard position
 All objects’ coordinates are now called eye coordinates

block

Operation of the Projection Matrix, P

P translates & scales all vertices & view volume

—so that the new view volume 1s the standard cube

—extends from -1 to 1 in each dimension

clipping is done now (relatively easy. Why?)
* Coordinates now called Normalized Device Coords
» P also reverses the sense of the z coordinates

— increasing values of z now represent relatively

farther away points

« Why do we need these Z values?

25

The Viewport Matrix, Vp (1

* Vp Transforms all (now clipped) objects once more!

* So that standard view volume is the 3D viewport:

* x, y coordinate values extend across the viewport
— A rectangular area that we will see later on the screen
— Coordinates are now called screen coordinates

* z-component extends from 0 to 1

 ameasure of the relative depth of each point

» Helps easy identification of hidden surfaces and lines

The viewport Matrix, Vp (2)

3D viewport

