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Slides adapted from F. Hill, S. Kelley Computer Graphics

Examples of Affine Transformations

• The house has been scaled, rotated and translated, 

• in both 2D and 3D.
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Using Transformations

• One arch is designed 

• The scene is drawn by placing copies of instances of 

the arch at different places and with different sizes.

Using Transformations (2)

• In 3D, many cubes make a city.
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Using Transformations (3)

• The snowflake exhibits symmetries. 

• We design a single motif and draw the whole shape 

using appropriate reflections, rotations, and 

translations of the motif.

use it 12 times

Using Transformations (4)

• A designer may want to view an object from 

different vantage points.

• Positioning and reorienting a camera can be carried 

out through the use of 3D affine transformations.
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The Graphics Pipeline

• Application sends to OpenGL a series of points Pi

glBegin(GL_LINES);

glVertex3f(...);  glVertex3f(...);  ... glEnd();

• Points are changed by the current transformation

into a different set of points, say Q1, Q2, Q3.

• The new points further processed, then displayed 

Transformations

• Transformations change 2D or 3D points and 

vectors, or change coordinate systems.

– An object transformation alters the coordinates of 

each point on the object according to the same 

rule, leaving the underlying coordinate system 

fixed.

– A coordinate transformation defines a new 

coordinate system in terms of the old one, then 

represents all of the object’s points in this new 

system.

• Object transformations are easier to understand
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Object Transformations

• (2D or 3D) transformation: P � Q, Q= T(P) 

• Object Transformation: all points by same T()

• straight line transform to a straight line?

• In general, no

– Affine (linear) transformation preserve lines

General 2D Transformations

• We transform points to points 
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Affine Transformation in the plane
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•Point & vector represented by a column matrix

•Point, vector: third component always 1, 0

•transformation: matrix multiplication

•Affine matrix: third row 0, 0, 1 

Affine Transformations (2)

• If points or vector represented by row matrices

– P = (Px, Py, 1)

• Transformation: Q = P MT

• Q = (Qx, Qy, 1)
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Elementary Affine Transformations

• translation, scaling, rotation, shear

2D Translations 

• How points are translated?

• How vectors are translated?

• To translation of a point P by a in the x direction 

and b in the y direction:
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• using homogeneous coordinates allow us to include 

translation as an affine transformation.
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2D Scaling

• What is scaling?

• Scaling distances from the origin, along axes

• If Sx = Sy Uniform Scaling; magnification factor Sx

• If Sx ≠ Sy : Differential Scaling. distorts the image.  

• If Sx or Sy < 0, image reflected across the x or y axis.
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2D Rotation

• Counterclockwise around origin by angle θ:
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Deriving the Rotation Matrix

• Point P is at distance R from the origin, at angle Φ

– P: Px = R cos(Φ)               Py = R sin(Φ)

• Q at the same distance as P, and at angle θ + Φ: 

–Q: Qx = R cos(θ + Φ), Qy = R sin(θ + Φ)

• cos(θ + Φ) = cos(θ) cos(Φ) - sin(θ) sin(Φ)

• sin(θ + Φ)  = sin(θ) cos(Φ) + cos(θ) sin(Φ)

• Eliminate the Φ terms, express (Qx, Qy) in terms of 

Px, Py.

Shear

• What is shear?

• Shear along the x direction: Qx = Px + h*Py Qy = Py

– Amount of translation along x proportional to Py

– Example: italic transformation

• Shear along y: Qx = Px ;         Qy = g*Px + Py



































=



















1100
01
01

1
P
P

g
h

Q
Q

y

x

y

x

H(h, g)



10

Inverse Translation and Scaling

Tr-1(tx, ty) = Tr(-tx, -ty) 
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Inverse Rotation and Shear
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Composing 2D Transformations: Examples

• How to rotate around a point V, by an angle θ

• 1. Translate, so that V moves to the origin. Tr(-v)

• 2. rotate. R(θ)

• 3. Translate, so that V moves back.

• Q = Tr(v) R(θ) Tr(-v)

• How to shear around an arbitrary point V?

• Q = Tr(v) H(f,g) Tr(-v)

• How to scale about an arbitrary point V?

• Q = Tr(v)S(Sx, Sy)Tr(-v)

• what is the vector v?

Composing Affine Transformations (Examples)

• How to reflect across an arbitrary line through the 

origin?

• Suppose the reflection line has angle θ with X axis

• M = R(θ) S(1, -1) R(-θ)

• First rotate, so that the reflection line goes to the x-axis, 

• Next, do reflection relative to X axis (scaling)

• Then, rotate, so that reflection line goes to original location

• How to perform the Window - viewport

Transformation:

• Translate by -w.l, -w.b, scale by A, B, translate by v.l, v.b.
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Properties of 2D and 3D Affine Transformations

• preserve affine combinations of points. 

–W = a1P1 + a2P2 is an affine combination

– MW = a1MP1 + a2MP2

• Result M preserve lines and planes. Why

• A line AB an affine combination of points (A, B)

– L(t) = (1-t)A + tB

• A plane is an affine combination of points: 

• P(s, a) = sA + tB +(1 – s – t)C.

Parallelism of lines and planes is preserved

• Line A + bt having direction b 

• transform to M(A + bt) = MA + Mbt, direction Mb. 

– Direction independent of A

• two different lines A1+ bt and A2 + bt will transform 

into two lines both having the direction, Mb.  

• parallelograms map into other parallelograms.
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Relative Ratios are preserved

• P lying a  fraction t of the way between A and B

• Apply affine transformation T( ) to A , B, and P. 

• The transformed point, T(P), lies the same fraction 

t of the way between images T(A) and T(B).

A

B

T(A)

P

T(B)
T(P)

T
t

1 - t

t
1 - t

Transformation of area

• When the 2D transformation with matrix M is 

applied to a 2D object, its area is multiplied by the 

magnitude of the determinant of M:

area after transformation

area before transformation
M= det

• 3D: volume of a 3D object is scaled by |det M| when 

the object is transformed by the 3D transformation 

based on matrix M.
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Decomposition of affine matrix

• any 3 x 3 affine matrix can be written as the product 

of (reading right to left)

– a translation matrix, 

– a rotation matrix, 

– a scaling matrix, 

– and a shear matrix. 

• M = (shear)(scaling)(rotation)(translation)

• This is not the only way

3D World

• Coordinate frame: origin O and three mutually 

perpendicular axes in the directions i, j, and k

• Point P in this frame is given by

– P = O + Pxi + Pyj + Pzk, 

– a vector V is given by Vxi + Vyj + Vzk. 
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3-D Affine Transformations 

• The matrix representing a transformation is 4 x 4

• fourth row  0, 0, 0, 1
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x-roll, y-roll, z-roll 

• rotation counter-clockwise around an axis looking 

toward the origin
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•1’s and 0’s row & column of rotation axis

•cos and sin in a rectangular pattern 
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Examples

a). the barn 

b). -700 x-roll 

c). 300 y-roll d). -900 z-roll 
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Rotating about an Arbitrary Axis

• Goal: rotate around axis u 

• make P coincide with Q

– Assume β is given

– How to calculate β?
• u can have any direction

• Direction: polar angles

• Φ is given

Θ is given

• By 5 rolls – how?

x y

z

u

P

θ

Q

φ

β

Projection

Point: G

The Classic Construction of rotation around 

arbitrary axis u, by angle β. 5 β. 5 β. 5 β. 5 rolls

• Do a Z roll so that u lies in the XZ plane: Rz(Φ)

• Do a Y roll so that u coincides with Z axis: Ry(θ)

• Where is now the plane via P, Q,  G  ?

• Do a z-roll through angle β: Rz(β)

• Do a Y roll, then Z role to bring the u vector  to its 

original direction

• Ru(β) = Rz( - Φ) Ry( - θ) Rz(β) Ry(θ) Rz(Φ) 
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The Constructive way (highlights)

• What we need is the matrix M such that Q = M P

• rotation plane: the plane via P,  Q,  G

– perpendicular to the vector u.

• Construct a 2D coordinate system in the rotation plane

– Origin G

– a vector with direction from G towards P:  a = P - G

– b is orthogonal to a

• Write Q, P as linear combinations of point G, a and b

• Rewrite Qx, Qy, Qz as linear combinations of Px, Py, Pz

• All coefficients are dot and cross products of a, b, u

Constructive Way: Result
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R β

• c = cos(β), s = sin(β), ui components of u.
• Note: If matrix R is given, you can find u and β!
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What to do in a program?

• We have house #1, we 

want to draw house #2.

• Need to Rotate the 

house, then translate

• 1. Comand OpenGL to 

translate

• 2. command to rotate

• Note: Reverse order!

x

y

23

32

#1

#2

a).

OpenGL: The Current Transformation Matrices

• OpenGL uses current transformation matrices CT

• Here we use the ModelView CT, called M

–M is a product of affine transformations

• OpenGL applies M to all subsequent primitives

– as a part of the graphics pipeline

• and then applies the Window to Viewport mapping.
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Order of Transformations

• First Rotate, then translate: what is M?

• M = T*R.         

• This will be applied to subsequent primitives

• OpenGL always does post-multiplication on M

– M can be multiplied only on the right

• Hence we specify the transformations in the reverse order of 

their application by OpenGL

– Initialize M by glLoadIdentity() �M = I

– call glTranslate� M = I*T

– Then call glRotate � M = I*T*R

Example : Star

• Assume starMotif() draws the “motif” on the right

• For (int count = 0; count < 5; count++) {

starMotif();

glMatrixMode(GL_MODELVIEW)  // use ModelView CT

glRotated(72.0, 0.0, 0.0, 1.0)}  //*rotate by 72 deg

a). b).

(x1,y1)
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Example: Snowflake

• Motif (on the right) is given

• How can we model a branch?
• original motifs, plus a copy  reflected across x axis

• How can we model the snowflake on the left?
• collection branches, created by consecutive 
operations of rotation by 60o

a).
b).

30 o line

Example : Dino Patterns

• Dino motif is upright dinosaur centered at the origin

• How can we models the required copies?

• Rotate Dino through a suitable angle

• translate along y-axis by the length of the radius

• Then rotate again
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Eye (camera) and View Volume

• Eye by default looks along –z axis at the world window

– a rectangle in the xy-plane. 

• view volume of eye is a rectangular parallelepiped.

• side walls fixed by window edges; others by near/far planes

• everything outside view volume is clipped 

• Everything inside projected to window plane (orth project.)

Repositioning the eye and the View Matrix V

• eye (and its view volume) can be positioned 
somwhre in the World.  (OpenGL: use  glLookat())

• What happens to the View Volume
• View Volume is accordingly positioned

• all objects and eye are then transformed by V

– So that eye repositioned at the standard location

• The ModelView matrix multiplied by V:   M � VM
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Graphics Pipeline Revisited (1)

• VM includes all objects, eye, view volume transformations

• P is projection onto the World Window 

– Here we assume orthogonal transformation

• (ignore Z coordinates)

• Vp transform what’s in the Window to a viewport that will 

be drawn on the screen

Graphics Pipeline Revisited (2)

• Input vertices in World Coordinates

– using glVertex3d(x, y, z)

• Each vertex is multiplied by the various matrices, 

clipped if necessary, and if it survives, it is mapped 

onto the viewport.

• Each vertex encounters three matrices:

– The modelview matrix

– The projection matrix  (orthogonal or perspective)

– The viewport matrix
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Operation of the modelview matrix VM

• M scales, rotates, and translates the cube into the block

• eye with its view volume is positioned somewhere

• V rotates and translates the block into a new position

– so that Eye and view volume in the standard position

• All objects’ coordinates are now called eye coordinates

Operation of the ProjectionMatrix, P

• P translates & scales all vertices & view volume

– so that the new view volume is the standard cube

– extends from -1 to 1 in each dimension 

• clipping is done now  (relatively easy. Why?)

• Coordinates now called Normalized Device Coords

• P also reverses the sense of the z coordinates

– increasing values of z now represent relatively 

farther away points

• Why do we need these Z values?
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The Viewport Matrix, Vp (1)

• Vp Transforms all (now clipped) objects once more!

• So that standard view volume is the 3D viewport: 

• x, y coordinate values extend across the viewport

– A rectangular area that we will  see later on the screen

– Coordinates are now called screen coordinates

• z-component extends from 0 to 1 

• a measure of the relative depth of each point

• Helps easy identification of hidden surfaces and lines

The viewport Matrix, Vp (2)


