
1

Prof Reuven Aviv Department of

Computer Science

Tel Hai Academic College

Computer Graphics

Transformations

Slides adapted from F. Hill, S. Kelley Computer Graphics

Examples of Affine Transformations

• The house has been scaled, rotated and translated,

• in both 2D and 3D.

2

Using Transformations

• One arch is designed

• The scene is drawn by placing copies of instances of

the arch at different places and with different sizes.

Using Transformations (2)

• In 3D, many cubes make a city.

3

Using Transformations (3)

• The snowflake exhibits symmetries.

• We design a single motif and draw the whole shape

using appropriate reflections, rotations, and

translations of the motif.

use it 12 times

Using Transformations (4)

• A designer may want to view an object from

different vantage points.

• Positioning and reorienting a camera can be carried

out through the use of 3D affine transformations.

4

The Graphics Pipeline

• Application sends to OpenGL a series of points Pi

glBegin(GL_LINES);

glVertex3f(...); glVertex3f(...); ... glEnd();

• Points are changed by the current transformation

into a different set of points, say Q1, Q2, Q3.

• The new points further processed, then displayed

Transformations

• Transformations change 2D or 3D points and

vectors, or change coordinate systems.

– An object transformation alters the coordinates of

each point on the object according to the same

rule, leaving the underlying coordinate system

fixed.

– A coordinate transformation defines a new

coordinate system in terms of the old one, then

represents all of the object’s points in this new

system.

• Object transformations are easier to understand

5

Object Transformations

• (2D or 3D) transformation: P � Q, Q= T(P)

• Object Transformation: all points by same T()

• straight line transform to a straight line?

• In general, no

– Affine (linear) transformation preserve lines

General 2D Transformations

• We transform points to points

)

1

(

1

=

y

x

y

x

P

P

TQ

Q

=

=

1

~
,

1

~
y

x

y

x

Q

Q

QP

P

P

+
=

−

1

1

)ln(

)cos(

1

2

x

y

P

x

y

x

P

P

eP

Q

Q
x

6

Affine Transformation in the plane

=

11001

232221

131211

y

x

y

x

P

P

mmm

mmm

Q

Q

•Point & vector represented by a column matrix

•Point, vector: third component always 1, 0

•transformation: matrix multiplication

•Affine matrix: third row 0, 0, 1

Affine Transformations (2)

• If points or vector represented by row matrices

– P = (Px, Py, 1)

• Transformation: Q = P MT

• Q = (Qx, Qy, 1)

=

1

0

0

2313

2212

2111

mm

mm

mm

M T

7

Elementary Affine Transformations

• translation, scaling, rotation, shear

2D Translations

• How points are translated?

• How vectors are translated?

• To translation of a point P by a in the x direction

and b in the y direction:

+

+

=

=

11100

10

01

1

bQ

aQ

P

P

b

a

Q

Q

y

x

y

x

y

x

• using homogeneous coordinates allow us to include

translation as an affine transformation.

8

2D Scaling

• What is scaling?

• Scaling distances from the origin, along axes

• If Sx = Sy Uniform Scaling; magnification factor Sx

• If Sx ≠ Sy : Differential Scaling. distorts the image.

• If Sx or Sy < 0, image reflected across the x or y axis.

=

1100
00
00

1
P
P

S
S

Q
Q

y

x

y

x

y

x

x

y

S(-1, 2)S(Sx, Sy)

2D Rotation

• Counterclockwise around origin by angle θ:

() ()
() ()

=

 −

1100
0cossin
0sincos

1
P
P

Q
Q

y

x

y

x

θθ
θθ

R(θ)

9

Deriving the Rotation Matrix

• Point P is at distance R from the origin, at angle Φ

– P: Px = R cos(Φ) Py = R sin(Φ)

• Q at the same distance as P, and at angle θ + Φ:

–Q: Qx = R cos(θ + Φ), Qy = R sin(θ + Φ)

• cos(θ + Φ) = cos(θ) cos(Φ) - sin(θ) sin(Φ)

• sin(θ + Φ) = sin(θ) cos(Φ) + cos(θ) sin(Φ)

• Eliminate the Φ terms, express (Qx, Qy) in terms of

Px, Py.

Shear

• What is shear?

• Shear along the x direction: Qx = Px + h*Py Qy = Py

– Amount of translation along x proportional to Py

– Example: italic transformation

• Shear along y: Qx = Px ; Qy = g*Px + Py

=

1100
01
01

1
P
P

g
h

Q
Q

y

x

y

x

H(h, g)

10

Inverse Translation and Scaling

Tr-1(tx, ty) = Tr(-tx, -ty)

=

−
−

1100
10
01

1
P
P

t
t

Q
Q

y

x

y

x

y

x

=

1100
0/10
00/1

1
P
P

S
S

Q
Q

y

x

y

x

y

x

S-1(sx, sy) = S(1/sx, 1/sy)

Inverse Rotation and Shear

() ()
() ()

=

−
1100

0cossin
0sincos

1
P
P

Q
Q

y

x

y

x

θθ
θθ

gh
P
P

g
h

Q
Q

y

x

y

x

−
−

−

=

1
1

1100
01
01

1

11

Composing 2D Transformations: Examples

• How to rotate around a point V, by an angle θ

• 1. Translate, so that V moves to the origin. Tr(-v)

• 2. rotate. R(θ)

• 3. Translate, so that V moves back.

• Q = Tr(v) R(θ) Tr(-v)

• How to shear around an arbitrary point V?

• Q = Tr(v) H(f,g) Tr(-v)

• How to scale about an arbitrary point V?

• Q = Tr(v)S(Sx, Sy)Tr(-v)

• what is the vector v?

Composing Affine Transformations (Examples)

• How to reflect across an arbitrary line through the

origin?

• Suppose the reflection line has angle θ with X axis

• M = R(θ) S(1, -1) R(-θ)

• First rotate, so that the reflection line goes to the x-axis,

• Next, do reflection relative to X axis (scaling)

• Then, rotate, so that reflection line goes to original location

• How to perform the Window - viewport

Transformation:

• Translate by -w.l, -w.b, scale by A, B, translate by v.l, v.b.

12

Properties of 2D and 3D Affine Transformations

• preserve affine combinations of points.

–W = a1P1 + a2P2 is an affine combination

– MW = a1MP1 + a2MP2

• Result M preserve lines and planes. Why

• A line AB an affine combination of points (A, B)

– L(t) = (1-t)A + tB

• A plane is an affine combination of points:

• P(s, a) = sA + tB +(1 – s – t)C.

Parallelism of lines and planes is preserved

• Line A + bt having direction b

• transform to M(A + bt) = MA + Mbt, direction Mb.

– Direction independent of A

• two different lines A1+ bt and A2 + bt will transform

into two lines both having the direction, Mb.

• parallelograms map into other parallelograms.

13

Relative Ratios are preserved

• P lying a fraction t of the way between A and B

• Apply affine transformation T() to A , B, and P.

• The transformed point, T(P), lies the same fraction

t of the way between images T(A) and T(B).

A

B

T(A)

P

T(B)
T(P)

T
t

1 - t

t
1 - t

Transformation of area

• When the 2D transformation with matrix M is

applied to a 2D object, its area is multiplied by the

magnitude of the determinant of M:

area after transformation

area before transformation
M= det

• 3D: volume of a 3D object is scaled by |det M| when

the object is transformed by the 3D transformation

based on matrix M.

14

Decomposition of affine matrix

• any 3 x 3 affine matrix can be written as the product

of (reading right to left)

– a translation matrix,

– a rotation matrix,

– a scaling matrix,

– and a shear matrix.

• M = (shear)(scaling)(rotation)(translation)

• This is not the only way

3D World

• Coordinate frame: origin O and three mutually

perpendicular axes in the directions i, j, and k

• Point P in this frame is given by

– P = O + Pxi + Pyj + Pzk,

– a vector V is given by Vxi + Vyj + Vzk.

=

=

0

,

1

z

y

x

z

y

x

V

V

V

V
P

P

P

P

15

3-D Affine Transformations

• The matrix representing a transformation is 4 x 4

• fourth row 0, 0, 0, 1

=

1000

34333231

24232221

14131211

mmmm

mmmm

mmmm

M

Translation, Scaling and Shearing

=

=

1000

000

000

000

,

1000

100

010

001

z

y

x

z

y

x

s

s

s

S
t

t

t

T

=

1000

01

01

01

fe

dc

ba

H

16

x-roll, y-roll, z-roll

• rotation counter-clockwise around an axis looking

toward the origin

 −

=

−
=

−

=

1000

0100

00cossin

00sincos

,

1000

0cos0sin

0010

0sin0cos

,

1000

0cossin0

0sincos0

0001

ϑϑ
ϑϑ

ϑϑ

ϑϑ

ϑϑ

ϑϑ

z

yx

R

RR

•1’s and 0’s row & column of rotation axis

•cos and sin in a rectangular pattern

•in the other rows and columns

Examples

a). the barn

b). -700 x-roll

c). 300 y-roll d). -900 z-roll

X

Y

Z

17

Rotating about an Arbitrary Axis

• Goal: rotate around axis u

• make P coincide with Q

– Assume β is given

– How to calculate β?
• u can have any direction

• Direction: polar angles

• Φ is given

Θ is given

• By 5 rolls – how?

x y

z

u

P

θ

Q

φ

β

Projection

Point: G

The Classic Construction of rotation around

arbitrary axis u, by angle β. 5 β. 5 β. 5 β. 5 rolls

• Do a Z roll so that u lies in the XZ plane: Rz(Φ)

• Do a Y roll so that u coincides with Z axis: Ry(θ)

• Where is now the plane via P, Q, G ?

• Do a z-roll through angle β: Rz(β)

• Do a Y roll, then Z role to bring the u vector to its

original direction

• Ru(β) = Rz(- Φ) Ry(- θ) Rz(β) Ry(θ) Rz(Φ)

18

The Constructive way (highlights)

• What we need is the matrix M such that Q = M P

• rotation plane: the plane via P, Q, G

– perpendicular to the vector u.

• Construct a 2D coordinate system in the rotation plane

– Origin G

– a vector with direction from G towards P: a = P - G

– b is orthogonal to a

• Write Q, P as linear combinations of point G, a and b

• Rewrite Qx, Qy, Qz as linear combinations of Px, Py, Pz

• All coefficients are dot and cross products of a, b, u

Constructive Way: Result

x
y

z
u

P

Q

β

a

b

a'

P

Q

β

h
a'

a

p

a). b).

G

G

−++−−−

−−−++−

+−−−−+

=

1000

0)1()1()1(

0)1()1()1(

0)1()1()1(

)(
2

2

2

zxzyyzx

xyzyzyx

yxzzxyx

u
uccsuuucsuuuc

suuucuccsuuuc

suuucsuuucucc

R β

• c = cos(β), s = sin(β), ui components of u.
• Note: If matrix R is given, you can find u and β!

19

What to do in a program?

• We have house #1, we

want to draw house #2.

• Need to Rotate the

house, then translate

• 1. Comand OpenGL to

translate

• 2. command to rotate

• Note: Reverse order!

x

y

23

32

#1

#2

a).

OpenGL: The Current Transformation Matrices

• OpenGL uses current transformation matrices CT

• Here we use the ModelView CT, called M

–M is a product of affine transformations

• OpenGL applies M to all subsequent primitives

– as a part of the graphics pipeline

• and then applies the Window to Viewport mapping.

20

Order of Transformations

• First Rotate, then translate: what is M?

• M = T*R.

• This will be applied to subsequent primitives

• OpenGL always does post-multiplication on M

– M can be multiplied only on the right

• Hence we specify the transformations in the reverse order of

their application by OpenGL

– Initialize M by glLoadIdentity() �M = I

– call glTranslate� M = I*T

– Then call glRotate � M = I*T*R

Example : Star

• Assume starMotif() draws the “motif” on the right

• For (int count = 0; count < 5; count++) {

starMotif();

glMatrixMode(GL_MODELVIEW) // use ModelView CT

glRotated(72.0, 0.0, 0.0, 1.0)} //*rotate by 72 deg

a). b).

(x1,y1)

21

Example: Snowflake

• Motif (on the right) is given

• How can we model a branch?
• original motifs, plus a copy reflected across x axis

• How can we model the snowflake on the left?
• collection branches, created by consecutive
operations of rotation by 60o

a).
b).

30 o line

Example : Dino Patterns

• Dino motif is upright dinosaur centered at the origin

• How can we models the required copies?

• Rotate Dino through a suitable angle

• translate along y-axis by the length of the radius

• Then rotate again

22

Eye (camera) and View Volume

• Eye by default looks along –z axis at the world window

– a rectangle in the xy-plane.

• view volume of eye is a rectangular parallelepiped.

• side walls fixed by window edges; others by near/far planes

• everything outside view volume is clipped

• Everything inside projected to window plane (orth project.)

Repositioning the eye and the View Matrix V

• eye (and its view volume) can be positioned
somwhre in the World. (OpenGL: use glLookat())

• What happens to the View Volume
• View Volume is accordingly positioned

• all objects and eye are then transformed by V

– So that eye repositioned at the standard location

• The ModelView matrix multiplied by V: M � VM

23

Graphics Pipeline Revisited (1)

• VM includes all objects, eye, view volume transformations

• P is projection onto the World Window

– Here we assume orthogonal transformation

• (ignore Z coordinates)

• Vp transform what’s in the Window to a viewport that will

be drawn on the screen

Graphics Pipeline Revisited (2)

• Input vertices in World Coordinates

– using glVertex3d(x, y, z)

• Each vertex is multiplied by the various matrices,

clipped if necessary, and if it survives, it is mapped

onto the viewport.

• Each vertex encounters three matrices:

– The modelview matrix

– The projection matrix (orthogonal or perspective)

– The viewport matrix

24

Operation of the modelview matrix VM

• M scales, rotates, and translates the cube into the block

• eye with its view volume is positioned somewhere

• V rotates and translates the block into a new position

– so that Eye and view volume in the standard position

• All objects’ coordinates are now called eye coordinates

Operation of the ProjectionMatrix, P

• P translates & scales all vertices & view volume

– so that the new view volume is the standard cube

– extends from -1 to 1 in each dimension

• clipping is done now (relatively easy. Why?)

• Coordinates now called Normalized Device Coords

• P also reverses the sense of the z coordinates

– increasing values of z now represent relatively

farther away points

• Why do we need these Z values?

25

The Viewport Matrix, Vp (1)

• Vp Transforms all (now clipped) objects once more!

• So that standard view volume is the 3D viewport:

• x, y coordinate values extend across the viewport

– A rectangular area that we will see later on the screen

– Coordinates are now called screen coordinates

• z-component extends from 0 to 1

• a measure of the relative depth of each point

• Helps easy identification of hidden surfaces and lines

The viewport Matrix, Vp (2)

