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Vector Mathematics and Clipping

Slides adapted from F. Hill and S. Kelley, Computer Graphics

Graphics Problems solved by Vectors

• Where is the center of the circle through 3 points?  

• What shape appears on the viewplane, and where?  

• Where does the reflection of the cube appear on the 

shiny cone, and what is its exact shape
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Points and vectors

Basics of Points and Vectors
• What’s the diff between vector and point?

• In both cases, they are described by 2/3 coordinates

– relative to some coordinate system

• vector has length & direction, but no position 

• A point has position but no length or direction

• A scalar has only size (a number)
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Displacement Vectors

• What is the displacement vector v from P = 
(1, 3) to Q = (4, 1) 

– v =  (3, -2), calculated by subtracting the 
coordinates individually (Q – P). 

• v: no position, the 2 v arrows are same vector. 

• Similarly for points and displacement vectors in 3D

Point & Vector Operations

• The difference between 2 points is a vector: 

– v = Q – P.

• The sum of a point and a vector is a point: 

• P + v = Q.

• We represent an n-dimensional point or a vector 

by an n-tuple of their components

– v = (vx, vy, vz)

– P = (Px, Py, Pz)
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Vectors: Addition and multiplication by scalar

�a + b

�Move tail of b to head of a

�Draw vector a+b from tail of a to head of b

Subtraction of Vectors

• Subtracting c from a = adding a and (-c), 

– Move tail of a to the head of -c

• draw a vector from the tail of –c to head of a
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Affine and Convex Combinations of Vectors

� Σαivi is an affine combination if Σαi = 1

� 3a +2b -4c is an affine combination of a, b, and c

� 3a + b -4 c is not. 

� (1-t)a + tb is an affine combination of a and b.

� An affine combination is a convex combination if αi

≥ 0 for 1 ≤ i ≤ m.

� .3a+.7b is a convex combination of a and b, 

� 1.8a -.8b is not. 

The Set of All Convex Combinations of 2 or 3 
Vectors

• v = (1 – α)v1 + αv2, 0 <=α<= 1, gives the set of all convex 
combinations of v1 and v2.
– v = v1 + α(v2 – v1)

• These are the vectors shown in the figure

• Why?
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Application of dot (scalar) product: 
Angle Between 2 Vectors

• b = (|b| cos φb, |b| sin φb)

• c = (|c| cos φc, |c| sin φc)

• b·c = |b||c| cos φc cos φb + 
|b||c| sin φb sin φc

• = |b||c| cos (φc- φb) 

• |b||c| cos θ
• θ is the smaller angle 
between b, c

cos (θ ) = ˆ b ⋅ ˆ c 

Standard Unit Vectors

• The standard unit vectors in 3D are

– i = (1,0,0), j = (0, 1, 0), and k = (0, 0, 1). 

– k always points in the positive z direction 
• In 2D, i = (1,0) and j = (0, 1).  

– The unit vectors are orthogonal.
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Finding a 2D "Perp" Vector

• For vector a = (ax, ay), define vector a┴ = (-ay, ax)

• a┴ perpendicular to a in the counterclockwise sense 

• -a┴ perpendicular to a in the clockwise sense 

• Who are the perp vectors in 3D?

• any vector in the plane perpendicular to a is a "perp" vector.

Properties of the perp vectors ┴

� Who is (a ± b)┴

� a┴ ± b┴

� (sa)┴ = s(a┴)

� (a┴)┴ = -a

� How much is (a┴ · b) 

� = -aybx + axby= (-b┴ · a)

� a┴ · a = a · a┴ = 0;  

� |a┴| = |a|; 
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Vector Decomposition
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• What’s the distance of C from the line L ?

• drop a perpendicular onto L from C, where 
does it hit L (point P)?

• Vectors: c = C – A;   v along line L from A

• decompose c into a part along v and a part along v┴

P

Vector decomposition

• decompose c = Kv + Mv┴ some K, M

– Distance C from line L  is |M|

– The hit point is P = A + Kv

• How can we find K?

• Multiply by v � (c·v) = K(v·v) + M(v┴·v) = K|v|2 

– K = c·v/|v|2.

– M = (c·v┴)/|v|2

• c = ((c·v)/|v|2)v + ((c·v┴)/|v|2) v┴
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Application of Projection: Reflections

• A reflection occurs when light hits a shiny surface 

(below) or when a billiard ball hits the wall edge of 

a table.  

Reflections (1)
� incident light vector a, reflection vector r, |a| =|r| = 1
What’s the Law of reflection? 

� angle of reflection must equal the angle of incidence 

� rx = ax, ry = -ay
� (r·n) = -(a·n)          (r·n┴) = (a·n┴) 

� How are we going to find r from a?

n
a r

n┴

n
a r

n┴
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Reflection (2)

• Decompose a and r along n and n┴

– (1)  a = (a·n)n + (a·n┴)n┴

– (2)  r = (r·n)n + (r·n┴)n┴

• Subtract (1) from (2) and use the Law  of 
Reflection

– r = a - 2(a·n)n

n
a r

n┴

n
a r

n┴

Vector Cross Product (3D Vectors Only)

• What is aXb ?

• a x b = (aybz – azby)i + (azbx – axbz)j + (axby – aybx)k.

• The determinant below also gives the result:

• What is the direction of c?

• c = a x b perpendicular to a and b.  

– direction of c is given by a right hand rule

a ×b=

i j k

ax ay az

bx by bz
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Properties of cross product

• a · (a x b) = 0              why?

• a x b = |a||b| sin θ, where θ is the smaller angle 

between a and b. 

• a x b = 0 if a and b point in the same or opposite 

directions, or if one or both has length 0.

Geometric Interpretation 
of the Cross Product?

•a x b the area of the parallelogram formed by a and b



12

Application: Finding the Normal to a Plane

• 3 non-collinear points P1, P2, P3, define a plane 
– find a normal to the plane

– How?
• Construct vectors:  a = P2 – P1, b = P3 – P1, 

• n = a x b.  
• The normal on the other side of the plane is –n

Where is n┴?

Convexity of Polygons

• What is a convex polygon?

• Traversing around a convex

polygon, all turns are either left 

turn or right.

• An edge vector points along the 

edge of the polygon in the direction 

of travel.

• How to test if a polygon is 

convex?

convex

Non

convex
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Testing for convexity of a given polygon?

• Calculate cross 

product of each edge 

vector with the next  

forward edge vector.

• If all the cross 

products point into (or 

all point out of) the 

plane, the polygon is 

convex; otherwise it is 

not.

Homogeneous Coordinates
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Coordinate Frame

• A vector or point has coordinates in an underlying 

Coordinate Frame (or Coordinate System) 

• What’s the change in vector coordinates if the 

Coordinate system is translated?

• no change: vector has no location

• Is there a change in the coordinates of a point?

• YES

• How a Coordinate System is defined?

• a Coordinate System is defined by a single point (the origin, 

O) and 3 mutually perpendicular unit vectors: a, b, and c.

ϑϑ

Coordinate Frames (2)

• A vector v is represented by (v1, v2, v3) 

– such that v = v1a + v2b + v3c. 

• A point P is represented by (v1, v2, v3)

– Such that P - O = v1a +v2b + v3c.
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Homogeneous Coordinates

• represent both points and vectors using same set of 

underlying basic objects, (a, b, c, O).

• A vector has no position, we represent it as 

– (a, b, c, O)(v1, v2, v3,0)T = v1a + v2b + v3c

• A point depends on origin (O), so we represent it by

– (a, b, c, O)(v1, v2, v3,1)T  = O + v1a + v2b + v3c

• (v1, v2, v3,x)  are the 4D homogeneous coordinates of vector 

or a point, 

• with x = 0 (vector) or x = 1 (point)

Changing to and from Homogeneous Coordinates

• To: vector object - put 0 as the 4th coordinate; 

– Point object - put a 1.

• From: remove the 4th coordinate.

• OpenGL uses 4D homogeneous coordinates

– If you send it a 3D point in the form (x, y, z)

• it converts it immediately to (x, y, z, 1). 

– If you send it a 2D point (x, y)

• it converts it to  (x, y, 0, 1) 

• All computations are done within OpenGL in 4D 
homogeneous coordinates.
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Combinations (1) 
• Linear combinations of vectors and points: 

• What is the difference of 2 points

• vector: the fourth component is 1 – 1 = 0

• What is the sum of a point and a vector

• a point: the fourth component is 1 + 0 = 1

• What is the sum of 2 vectors

• a vector: 0 + 0 = 0

• a vector multiplied by a scalar is a vector, s x 0 = 0.

• All linear combinations of vectors are vectors.  Why?

• What is a linear combination of points?

Combinations of Points

� ΣαiPi is a point only if it is an affine combination

� The fourth component of the combination Σαi = 1

� What happens if combination is not affine?

� Consider combination E = αP1+ βP2 of points P1, P2

� Suppose the origin O moves by vector u

� All points move by u; Pi ���� Pi +u, E ���� E + u

� E� αP1 + βP2 + (α + β)u = E + (α + β)u !!!
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Point + Vector

• 2 points A, B. Vector v = B - A

• What is P(t) = A + tv for t between 0 and 1?

• P(t) = A + t(B – A) 

– P(t) = (1-t)A + tB P(0) = A; P(1) = B

– P(t) an affine combination of the points

– P(t) Linear interpolation (lerp) of the two points

A

B

v

P(t)

Application: Tweening

• Given polylines A, B 

– each with n vertices Ai, Bi,  i = 1 to N

• for t = 0.0, 0.1, …, 1.0  

– Construct points Pi (t) = (1-t)Ai + tBi, 

– draw the polyline for Pi(t), one t after another

• Result?

A B
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Tweening Example

Uses of Tweening

• In films, artists draw only the key frames of an 
animation sequence (usually first, last).

– generate in-between frames by tweening

• Preview: construct smooth curve that passes 
through or near 3 points, A, B, C

• expand 1 =  [(1-t) + t]2 = (1-t)2 + 2(1-t) +t2

– Partition 1 into three components that add to 1

• Construct affine combination

• P(t) = (1-t)2A + 2t(1-t)B + t2C
• P(0) = A ; P(1) = C; 
• Bezier Curve with A, B, C Control points
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Preview Bezier Curve

• How to generalize to 4 points?

• expanding ((1-t) + t)3 to four terms and using each 

term as the coefficient of a point

• Generalization to n points…?

Representations of lines, segments and 
planes
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Lines, segments, rays

• A line passes through 2 points and is infinitely long.

• A (line) segment has 2 endpoints.

• What is a ray?

• A ray has a single endpoint.

Parametric Representation
• Given 2 points, B and C, on a line. 
• Write a formula for any point P on line
• P(t) = C + bt, where b = B – C

– -∞≤ t ≤ ∞: line

– 0 ≤ t ≤ 1: line segment;

– -∞≤ t ≤ 0 or 0 ≤ t ≤ ∞: ray

• Note: B, C, P(t), b four components each 

– What are the 4’th components of  P(t), b ?
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Point-Normal (implicit) form (2D only)
• B and C fixed points, R = (x,y) any point on the line 

– Need implicit form: linear equation between x, y 

• b = B – C

• b┴ = n, perpendicular to  R – C

• n · (R – C) = 0    � nx(x-Cx) + ny(y-Cy) = 0   

– -by(x-Cx) + bx(y-Cy) = 0

Changing Representations

• From point-normal to the canonical form:

• n·R - (n·C)  = 0   ���� nxx +nyy = (n·C) 

– fx + gy = 1

• From canonical form to the point-normal form

• f x + g y = 1   � (f,g)·(x,y)T = 1

– (f,g)·(Cx,Cy) = 1 where C is on the line

– (f, g)·(x-Cx, y -Cy)
T = 0

– Hence n is (f, g) (or any multiple thereof).

• From point normal to parametric form 

– n·(R - C) = 0    � R(t) = C+ bt = C + n┴t
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Representing Planes: Point-Normal Form

• B is a given (4 coordinates) point on the plane 

• P = (x, y, z, 1)T any point on the plane

• n vector normal to the plane

• What is the relation between these three?

• n·(P – B) = 0

Plane: Parametric Form

� Given 3 non-collinear points 

on the plane A, B, and C. 

� a = A – C

� b = B – C

� Express a general point 

P(s,t) in the plane in 

terms of C, a and b

� P(s, t) = C + sa + tb

• Infinite plane:

– -∞≤ s ≤ ∞ & -∞≤ t ≤ ∞

• patch:

0 ≤ s ≤ 1 &  0 ≤ t ≤ 1
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Planes: Parametric Form (2)

• P(s,t)  = C + sa + tb

• a = A – C

• b = B – C

• Express P(s,t) in terms of A, B, C

• P(s, t) =  s A + t B + (1 - s - t)C

• Any point on a plane is an affine combination of 

three non-collinear points on the plane

Patch: Parameter Space
� s, t values from finite parameter space  (a square)

� corners of patch at four corners of parameter space

� P(0, 0) = C P(1, 0) = C + a
� P(0, 1) = C + b;                P(1, 1) = C + a + b

� What happens if we change C ?
� patch translated, no change in shape or orientation
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Intersection problems

Relations between 2 Line Segments in space

• They can miss each other (a and b), overlap in 

one point (c and d), or even overlap over some 

region (e). They may or may not be parallel. 
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Intersection of 2 Line Segments 

• Line segments (A, B)     (C, D)

• Find the intersection point

• P(t) = A + bt,     b = B – A  

• Q(u) = C + du,   d = C – D

• Intersection:  P(t*) = Q(u*) 

– Bt* =  c + du*,            where c = C – A

• How we find the values of the t*, u* parameters

• Taking dot product with d┴ :  (b·d┴) t* = (c·d┴)

• Taking dot product with b┴ : – (c·b┴)  = (d·b┴)u*

Intersection of 2 Line Segments (2)

• Case1: (b·d┴) = 0   (or (d·b┴))   no solution  why?

• Segments are on Parallel lines or on same line 

• Case 2: (b·d┴) ≠ 0 

– t* = (c·d┴) / (b·d┴)    ;     u* = (- c·b┴)/ (d·b┴)

• What do we require from s*, t* ?  

• Real intersection: iff 0 ≤ t* ≤ 1   and   0 ≤ u* ≤ 1, 

– P(s*, t*) = A + b((c·d┴) / (b·d┴))
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Application: Finding A Circle through 3 Points

• Given 3 points A, B, C

• Where is the center S ?

– center S: meeting point of perpendicular bisectors

– radius r = |A – S|.

Parametric form of Perpendicular Bisector

• Midpoint of segment AB?

• M = ½ (A + B)  = A + (B-A)/2

• M = A + a/2          a = B-A

• direction of the PB?

• Direction: (B – A)┴ = a┴

• Parametric form of  PB? 

• P(t) = A + a/2 + a┴ t

• S = P(t*)      intersection point

A

B

M

S

L

a
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Circle through 3 Points (3)
• b = C – B c = A – C a + b + c = 0

• PB of (A,B): P(t) = A + a / 2 + a┴ t 

• PB of (A, C): Q(u) = A - c / 2 + c┴ u 

• Intersection:  a┴t* = b/2 + c┴ u*         How we find t* ?

• Multiply by c

– t* = (½)(b·c)/(a┴·c);          

• where is S?

• S = P(t*) = A + a/2 + a┴ t* 

radius =
a

2

b ⋅ c
a⊥ ⋅ c
 
 

 
 

2

+1radius = |S – A|

Ray Intersection with Line or Plane

• The hit point on the ray: P(t*) = A + ct*

• P satisfies the equation of the line/plane

– n·(P(t*) – B) = 0         B some point on line/plane

– n·(A + ct* – B) = 0    n normal to line or plane        

• t* = n·(B - A)/(n·c),           iff n·c ≠ 0.

• What if n·c = 0 ?
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Ray Intersection with Line or Plane (2)

• P(t*) = A + ct* =  A + c(n·(B - A)/n·c)

• If n·c > 0, c and n make an angle of less than 90o

with each other. n goes along with c

• If n·c < 0, c and n make an angle of more than 

90o with each other. n goes away from c

Polygon Clipping Problem



29

Polygon Clipping Problems

• 1. Where does a given ray line enters polygon?

• 2. Which part of a given ray line L lies inside / outside a 

polygon?

• 3. Which part of a segment lies inside a polygon

Convex Polygons and Polyhedrons

• Convex Polygons and Polyhedra: a simple case

• each line/plane divides space into two halves: 

– inside half space, where the polyhedron lies. 

Outside: shares no points with the polyhedron 

• polyhedron: intersection of all the inside half spaces
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Line Intersection an edge of a Polygon

• Ray P(t) = A + ct       segment   0<= t <= 1

• n is the outside normal to the edge-line.

• n =-v┴ = (vy, -vx),  v = (vx, vy) the edge vector

• line intersect each edge-line (except parallel)

– if n·c < 0 line enter the inside half-space 

– if n·c > 0 line leave the inside half-space

v

v┴
n = -v┴

Ray line
cA

Ray clipping on Polygon
• Calculate all in-points tin & out-points tout
• Largest tin & smallest tout are the intersection points 
of line with the actual polygon

• Compare these values with endpoints of ray segment

• The clipped ray is given by the (A’, C’) segment

• A’ = A + c*max(0, tin)

• C’ = A + c*min(1, tout)

v
v┴

n = -v┴

Ray line
c

A’
C’

B

A

tout tin
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Cyrus Beck Algorithm – Ray Clip on Convex Polygon

• Ray : A + ct         segment:   0 <= t <= 1

• Initiate a “candidate interval” [tin, tout] = [0..1] (or +/- ∞)

• For each edge-line with vertex B, normal n

– calculate  intersection point  t* = n·(B-A)/(n·c)

– in-point (n·c < 0) or out-point  (n·c > 0)  

– If it’s in-point set new tin = max( previous tin, t*)

– If it’s out-point set new tout = min( previous tout, t*)

– If tin > tout,  ray does not intersect the real polygon. Stop

• If the candidate interval is not empty then the segment from 

A + ctin to A + ctout is inside the polygon.

Example of Cyrus Beck Algorithm
• Test against L0: 

– tout = 0.83

• Test against L1: 

– tout = 0.66

• Test against L2: 

– tout = 0.84  � tout = 0.66

• Test against L3: 

– tin = -4.7

• Test against L4: 

– tin 0.2

• Test against L5: 

– tin = 0.28

L1 L3

L0 L4

L5

@0

@1

@.2

@.28

@.83

@.66

intersects L 2
@3.4

intersects L 3
@ -4.7

A

C

0
1

4

5
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Example of Cyrus Beck Algorithm

0.660.285

0.660.24

0.6603

0.6602

0.6601

0.8300

ToutTinLine tested

3D Cyrus-Beck Clipping

• The Cyrus Beck clipping algorithm works in three 

dimensions in exactly the same way

• The polygon is a convex polyhedron

– the edges are planes 

• the ray segment is a line in 3D space.
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Ray Clipping Arbitrary Polygons (2D)

• Much harder than for convex polygons.

– Line may intersect polygon any even number of 
times, in in/out pairs

• Which segments are inside? Outside?
• Consecutive pairs define in/out segments

• Intersection at vertex? Counted as 2 intersections

Clipping for Arbitrary Polygons (2)

• Ray A + ct;  Edge i:  Pi + eiu,   ei = Pi+1 – Pi

• Polygon is closed, PN = P0

• calculate intersection points with edges

– Intersection with edge i

– tj = (ei┴·bi)/ (ei┴ ·c), where bi = Pi – A.

– uj = c┴ ·bi/ ei┴ ·c

• True intersections occur only for 0 ≤ u ≤ 1

– Ignore all other intersections

• Sort all intersection points by increasing t.
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Clipping for Arbitrary Polygons (3)

• Look at the sorted list of t values

• line is inside between the first pair t values, the 

second pair of t values, etc

More Advanced Clipping

Any polygon against any 

polygon

NoWeiler–

Atherton 

Any polygon (convex or non-

convex) against any convex 

polygon

NoSutherland–

Hodgman

Line against a convex polygon Tries; poor 

results

Cyrus-Beck 

Line segments against a 

rectangle or cube (2D: square) 

YesCohen 

Sutherland 

DescriptionOpenGL 
Yes/No?

Algorithm


