Prof. Reuven Aviv Department of Computer Science Tel Hai Academic College Computer Graphics

Vector Mathematics and Clipping

Slides adapted from F. Hill and S. Kelley, Computer Graphics

- Where is the center of the circle through 3 points?
- What shape appears on the viewplane, and where?
- Where does the reflection of the cube appear on the shiny cone, and what is its exact shape

Affine and Convex Combinations of Vectors

- $\Sigma \alpha_i \underline{\mathbf{v}}_i$ is an <u>affine combination</u> if $\Sigma \alpha_i = 1$
 - 3<u>**a**</u>+2<u>**b**</u>-4<u>**c**</u> is an affine combination of <u>**a**</u>, <u>**b**</u>, and <u>**c**</u>
 - $3\underline{\mathbf{a}} + \underline{\mathbf{b}} 4\underline{\mathbf{c}}$ is not.
 - $(1-t)\mathbf{\underline{a}} + t\mathbf{\underline{b}}$ is an affine combination of $\mathbf{\underline{a}}$ and $\mathbf{\underline{b}}$.
- An affine combination is a <u>convex combination</u> if α_i
 ≥ 0 for 1 ≤ i ≤ m.
 - .3<u>a</u>+.7<u>b</u> is a convex combination of **a** and **b**,
 - 1.8<u>a</u> -.8<u>b</u> is not.

Application of Projection: Reflections

• A reflection occurs when light hits a shiny surface (below) or when a billiard ball hits the wall edge of a table.

	Vector	Cross Prod	luct (3D V	Vectors Only)		
•	What is a	ιΧ <u>b</u> ?					
•	• $\underline{\mathbf{a}} \ge \underline{\mathbf{b}} = (\mathbf{a}_{y}\mathbf{b}_{z} - \mathbf{a}_{z}\mathbf{b}_{y})\underline{\mathbf{i}} + (\mathbf{a}_{z}\mathbf{b}_{x} - \mathbf{a}_{x}\mathbf{b}_{z})\mathbf{j} + (\mathbf{a}_{x}\mathbf{b}_{y} - \mathbf{a}_{y}\mathbf{b}_{x})\mathbf{k}$						
•	• The determinant below also gives the result:						
•	What is the direction of c?						
•	$\mathbf{\underline{c}} = \mathbf{\underline{a}} \times \mathbf{\underline{b}}$ perpendicular to $\mathbf{\underline{a}}$ and $\mathbf{\underline{b}}$.						
	- direction of $\underline{\mathbf{c}}$ is given by a right hand rule						
		li	i	k			
		$\mathbf{a} \times \mathbf{b} - a$	J				
		$a \wedge v - u_x$	u_y	u_z			
		b_x	b_{y}	b_{z}			

Coordinate Frame

- A vector or point has coordinates in an underlying Coordinate Frame (or Coordinate System)
- What's the change in vector coordinates if the Coordinate system is translated?
- no change: vector has no location
- Is there a change in the coordinates of a point?
- YES
- How a Coordinate System is defined?
- a Coordinate System is defined by a single <u>point</u> (the origin, **O**) and 3 mutually perpendicular <u>unit</u> vectors: <u>**a**</u>, <u>**b**</u>, and <u>**c**</u>.

Homogeneous Coordinates represent both points and vectors using same set of underlying basic objects, (<u>a</u>, <u>b</u>, <u>c</u>, *O*). A vector has no position, we represent it as (<u>a</u>, <u>b</u>, <u>c</u>, *O*)(v₁, v₂, v₃,0)^T = v₁<u>a</u> + v₂<u>b</u> + v₃<u>c</u> A point depends on origin (*O*), so we represent it by (<u>a</u>, <u>b</u>, <u>c</u>, *O*)(v₁, v₂, v₃,1)^T = *O* + v₁<u>a</u> + v₂<u>b</u> + v₃<u>c</u> (v₁, v₂, v₃,x) are the 4D homogeneous coordinates of vector or a point, with x = 0 (vector) or x = 1 (point)

Combinations (1)

- Linear combinations of vectors and points:
- What is the difference of 2 points
- vector: the fourth component is 1 1 = 0
- What is the sum of a point and a <u>vector</u>
- a **point**: the fourth component is 1 + 0 = 1
- What is the sum of 2 vectors
- a <u>vector</u>: 0 + 0 = 0
- a <u>vector</u> multiplied by a scalar is a vector, $s \ge 0 = 0$.
- All linear combinations of vectors are vectors. Why?
- What is a linear combination of points?

Combinations of Points

- $\Sigma \alpha_i \mathbf{P}_i$ is a point only if it is an affine combination
 - The fourth component of the combination $\Sigma \alpha_i = 1$
- What happens if combination is not affine?
- Consider combination $\mathbf{E} = \alpha \mathbf{P}_1 + \beta \mathbf{P}_2$ of points \mathbf{P}_1 , \mathbf{P}_2
- Suppose the origin O moves by vector <u>u</u>
 - All points move by \underline{u} ; $P_i \rightarrow P_i + \underline{u}$, $\underline{E} \rightarrow E + \underline{u}$
 - $\mathbf{E} \rightarrow \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + (\alpha + \beta) \underline{\mathbf{u}} = \underline{\mathbf{E}} + (\alpha + \beta) \underline{\mathbf{u}}$!!!

Point-Normal (implicit) form (2D only)

Changing Representations • From point-normal to the canonical form: • $\underline{\mathbf{n}} \cdot \mathbf{R} - (\underline{\mathbf{n}} \cdot \mathbf{C}) = \mathbf{0} \rightarrow \mathbf{n}_x \mathbf{x} + \mathbf{n}_y \mathbf{y} = (\underline{\mathbf{n}} \cdot \mathbf{C})$ $- f\mathbf{x} + g\mathbf{y} = 1$ • From canonical form to the point-normal form • $fx + gy = 1 \rightarrow (f,g) \cdot (\mathbf{x}, \mathbf{y})^T = 1$ $- (f,g) \cdot (\mathbf{C}_x, \mathbf{C}_y) = 1$ where **C** is on the line $- (f,g) \cdot (\mathbf{x} - \mathbf{C}_x, \mathbf{y} - \mathbf{C}_y)^T = \mathbf{0}$ - Hence **n** is (f, g) (or any multiple thereof). • From point normal to parametric form $-\underline{\mathbf{n}} \cdot (\mathbf{R} - \mathbf{C}) = \mathbf{0} \rightarrow \mathbf{R}(t) = \mathbf{C} + \underline{\mathbf{b}}t = \mathbf{C} + \underline{\mathbf{n}}^{\perp}t$

• They can miss each other (a and b), overlap in one point (c and d), or even overlap over some region (e). They may or may not be parallel.

Polygon Clipping Problems

- 1. Where does a given ray line enters polygon?
- 2. Which part of a given ray line L lies inside / outside a polygon?
- 3. Which part of a <u>segment</u> lies inside a polygon

Example of Cyrus Beck Algorithm				
Line tested	T _{in}	T _{out}		
0	0	0.83		
1	0	0.66		
2	0	0.66		
3	0	0.66		
4	0.2	0.66		
5	0.28	0.66		

3D Cyrus-Beck Clipping

• The Cyrus Beck clipping algorithm works in three

dimensions in exactly the same way

- The polygon is a convex polyhedron
 - the edges are planes
- the ray segment is a line in 3D space.

More Advanced Clipping					
Algorithm	OpenGL Yes/No?	Description			
Cohen Sutherland	Yes	Line segments against a rectangle or cube (2D: square)			
Cyrus-Beck	Tries; poor results	Line against a convex polygon			
Sutherland– Hodgman	No	Any polygon (convex or non- convex) against any convex polygon			
Weiler– Atherton	No	Any polygon against any polygon			